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ABSTRACT
Safe and efficient surgical training and workflow management play a critical role in
clinical competency and ultimately, patient outcomes. Video data in minimally inva-
sive surgery (MIS) has enabled opportunities for vision-based artificial intelligence
(AI) systems to improve surgical skills training and assurance through post-operative
video analysis and development of real-time computer assisted interventions (CAI).
Despite the availability of mounted cameras for the operating room (OR), similar
capabilities are much more complex to develop for recording open surgery proce-
dures, which has resulted in a shortage of exemplar video-based training materials.
In this paper, we present a potential solution to record open surgical procedures
using head-mounted cameras. Recorded videos were anonymized to remove patient
and staff identifiable information using a machine learning algorithm that achieves
state-of-the-art results on the OR Face dataset. We then propose a CNN-LSTM-
based model to automatically segment videos into different surgical phases, which
has never been previously demonstrated in open procedures. The redacted videos,
along with the automatically predicted phases, are then available for surgeons and
their teams for post-operative review and analysis. To our knowledge, this is the first
demonstration of the feasibility of deploying camera recording systems and develop-
ing machine learning-based workflow analysis solutions for open surgery, particularly
in orthopedics.
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1. Introduction

Despite the critical nature of surgery, digital technology-assisted solutions for the
modern operating room (OR) are limited (16). Research in computer-assisted interven-
tions (CAI) has focused on the development of data-driven computational approaches
to develop intelligent systems to assist the surgical team. Recognizing surgical work-
flows is one of the fundamental building blocks for such systems as it enables further
understanding of surgical context, partitioning complex procedures into well-defined
surgical steps and the identification of anomalies and best practices, hence, progress-



ing the field towards standardization of surgical practice (16; 17; 23). The majority
of this effort has, however, been concentrated on minimally invasive surgery (MIS) or
endovascular surgery, where a video of the surgical procedure, is inherently present.
Yet some of the largest volume of surgical procedures are still performed open, for
example, in specialties such as orthopedics.

Collecting data from OR equipment is often difficult or expensive as it requires ei-
ther additional hardware or manual intervention (2). Most minimally invasive surgical
workflow analysis approaches rely solely on intraoperative video data, as recordings
can be collected directly from the video feed (8; 14; 17; 20). This has led to the avail-
ability of public datasets such as Cholec80 (21) and EndoVis (6). On the other hand,
less attention has been given to understanding open surgery processes, even though
it is much more complex and would therefore benefit from improved reporting and
standardization. We believe this is due to two main reasons:

• contrary to MIS, capturing open surgery videos require introduction of a camera
recording system to allow recording all or at least the most important part of a
procedure without disrupting the surgical team;

• regulation and process requirements around data access and privacy are more
complex for open surgery procedures (10).

With the rapid evolution of camera technologies, it is technologically possible for wear-
able devices to be used in open surgery. For example, light-weight, battery powered
head-mounted cameras worn by surgeons as shown in Figure 1. The head-mounted
camera makes it possible to capture the surgeon’s view point of the intervention and
interaction with tissues and organs, which are important for surgical workflow recogni-
tion. This is in contrast to other studies (13; 22) that rely on ceiling-mounted cameras
to capture medical team activity and movement in the OR, which can have a limited
view of the surgical procedure due to multiple sources of occlusion. Importantly, open
surgery videos inherently contain sensitive information such as the identity of the pa-
tient or members of the surgical team by recording faces1. To permit utilization of such
sensitive data, identifiable information must be redacted from the videos. Solutions to
anonymize OR video include reducing image resolutions severely to preserve privacy
(19), however, even low resolution faces can still be recognized when video sequences
are available (5). In the work presented in this paper, we localized faces using a deep
Convolutional Neural Network (CNN) model. The localized faces are then blurred out
similarly to previous efforts in anonymization (7). We also propose a model to seg-
ment videos into surgical phases motivated by recent phase detection models, which is
based on a two-stage approach. We first used SENet154 (11) as an encoder to extract
features and a Long Short-Term Memory (LSTM) to recognize surgical steps.

The clinical focus of this paper is on orthopedic surgery, specifically total knee
replacement (TKR) surgery. The procedure was selected due to its high volume, which
is increasing yearly with an aging population (3). Given its high volume, the overall
procedure is relatively standardized with little surgical variations and a low incidence
of complications (13-year risk revision is about 4% for median age of 69 years old
(1; 3)). The procedure is separated in a high number of instruments and surgical
steps. It is therefore important for the medical team to reliably recognize the current
phase of a procedure to be able to plan and act accordingly. In this paper, we relied on
videos captured using head-mounted cameras to demonstrate the feasibility of using a
machine learning model to both preserve privacy and recognize surgical phases: a step

1It is worth mentioning that as the patient is draped, the likelihood of capturing the patient’s face is minimal.
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Figure 1. Camera recording. Left image shows the head-mounted camera worn by two members of the clinical
team. A screenshot taken from the video recorded by surgeon’s camera is presented in the right image.

towards developing context-aware CAI systems.

2. Method

A deep learning based solution was used to blur any patients and clinical team faces,
which may have been captured by the camera, to preserve their identities and to enable
us to perform subsequent surgical workflow analysis on the recorded video.

2.1. OR Face Detection

Video face detection has advanced dramatically by the availability of large datasets,
like FDDB (12) and WIDER FACE (24). We adopted the Dual Shot Face Detector
(DSFD) (15) and fine-tuned the model on the OR Face dataset presented in (7).
This allowed the model to adapt to be able to recognize faces in the OR, which
is a non-trivial task as surgical team members are required to wear surgical masks
and caps in such an environment, making standard face detection models fail. We
formulated the problem of face detection as bounding box regression. To this end,
we used the dual shot face detector model, which relied on two parallel streams to
extract features and fed it to bounding box regressors. This model utilized a two-
stream network for extracting more robust features along with auxiliary supervision
at different layers. This enabled the model to construct discriminative representations
and a robust predictor. VGG16 (18) was used as the backbone of the architecture.

2.2. Surgical Workflow Analysis

Surgical phase recognition is the process of segmenting a surgical procedure into dif-
ferent parts where the surgeon completes a task before moving to the next phase. We
present a two stage model to recognize surgical phases using video data. In the first
stage, we proposed to use SENet154 (11) to build a rich representation for the task of
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phase recognition. This is achieved by training the network for image classification to
recognize, from a single frame, to which part of the operation that frame belongs. A
single image, however, does not carry enough information to accurately detect surgi-
cal objectives due to the ambiguity of surgical instruments and anatomical landmarks
that could be present in multiple similar phases. We therefore proposed an LSTM
network for the second stage to incorporate temporal information to the model. More
specifically, we used a two layer Bidirectional LSTM network (9) to take into account
information from both past and future. This model was also trained for the same
objective but unlike the previous step, trained jointly with temporal windows adds
long-term context, allowing the model to better understand the temporal relation be-
tween surgical phases. This also enables the network to model temporal dependencies
and leverage time series data to produce temporally consistent predictions.

3. Data

Eighteen TKR procedures were recorded for which both the patients and the clinical
team consented to be filmed and for the associated video data to be used for research
and education purposes. Note that no patient identifiable metadata was collected dur-
ing this process. Videos were uploaded to our online platform that is General Data
Protection Regulation of 2018 (GDPR) compliant, and System and Organization Con-
trols (SOC2), Health Insurance Portability and Accountability Act of 1996 (HIPAA),
NHS Data Security and Protection Toolkit (DSPT) and Cyber Essentials certified.

The procedures were 75 to 130 minutes long, and performed in one OR. The proce-
dures were recorded over the span of four months and membership of the surgical team
(with the exception of the lead surgeon) varies across the procedures. The procedures
were divided into 18 surgical phases, which are presented in Table 1.

A medical liaison officer specialized in orthopedic surgery annotated all 18 surgical
videos with the above phases. A quality assurance check was completed by an ortho-
pedic surgeon. In our dataset, the standard deviation of the duration of phase 16 is 10
minutes, while for all other phases excluding phases 1 and 18 it is below 3 minutes. This
indicates that achieving the objective of this phase involves more complicated tasks,
resulting in high variation between patients. The higher standard deviation in phases
1 and 18 is mainly because of the delay in moving patient to and off the operating
table, and putting on and removing drapes.

4. Experiments

In this section, we present the evaluation results of the model for both face detection
and surgical phase recognition.

4.1. OR Face Detection

The DSFD model is among the top performing models on many challenging computer
vision datasets like WIDDER Face, which includes faces at different scales, pose and
levels of occlusions. The OR Face dataset (7) was used to assess the performance of
DSFD on faces captured in the OR. The OR face dataset was generated from 15 surgi-
cal videos recorded in the OR using ceiling- or wall-mounted cameras. Table 2 presents
the performance results following the same experimental setup as in FaceOff (7). We
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ID Surgical Phase Description Duration Screen
Avg±STD shot

1 Patient Preparation prepare the patient 280±200

2 Mark Incision outline incision path 732±91

3 Stryker OrthoMap Setup & Pin
Place

setup knee software 212±7

4 Incision & Exposure skin incision and superficial tis-
sue dissection

290±88

5 Medial Parapatellar Arthro-
tomy

access to the joint 157±61

6 Patella Preparation and Trial
Insertion

complete preparation of patella
for trialing

66±34

7 OrthoMap Sync. & Bone Reg-
istration

synchronize bone with software
to create a map of the bone in
software to guide bone cuts

229±125

8 Distal Femoral Alignment &
Resection

bone alignment and resection of
the distal femoral surface

169±76

9 Femoral Rotation Alignment setting rotation for the AP
chamfer block

64±35

10 Femoral AP and Chamfer Cuts remaining cuts of the distal fe-
mur

264±91

11 Femoral Notch Cut final femur cut for placement of
trials and implants

288±75

12 Proximal Tibial Alignment &
Resection

bone alignment and resection of
the tibial joint surface

253±73

13 ACL/PCL Excision, Excess
Soft Tissue and Bone Removal

to clear any excess soft tissue or
bone to prevent trial/implant
impingement/bad placement

498±130

14 Trial Implant Insertion, ROM
Assessment, & Soft Tissue Bal-
ancing

trial placement and assessment
of function and gap balancing

307±138

15 Tibial Reaming & Implantation
Preparation

makes space into the tibia for
the tibial implant

216±49

16 Cementing & Implant Insertion final and proper placement of
implants

763±552

17 Final Assessment with Tibial
Trial Insert

final assessment of the knee
with final implants except for
tibial trial insert

463±71

18 Tibial Insert, Wound Closure,
& Pin Removal

final tibial insert and final re-
duction and wound closure

364±255

Table 1. TKR surgical phases, description, and average and STD duration in seconds.
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(a) (b)

(c) (d)

Figure 2. Sample face detection: (a-c), images from head-mounted camera recordings during total knee
replacement, (d) an image from OR Face. False positive face detection is shown in (c) and failure to identify

faces in (d).

evaluated the DSFD model trained on the WIDDER FACE dataset, presented in the
second row of Table 2. The model outperforms FaceOff, which uses Faster R-CNN
as a detector, and fine-tuning on OR Face improved the performance even more (the
second row Table 2). Qualitative results are shown in Figure 2. Despite the significant
viewpoint change because of the head-mounted camera, the model performed well and
with only a few false positives identified, i.e. incorrect face detection on the background
(see Figure 2). Missed detection was only identified in cases where the nose and eyes
were not visible (see Figure 2). We should highlight that missing such faces does not
jeopardize any privacy guidance.

Model Precision Recall F1 Score

FaceOff (OR Face) 59.07% 93.46% 72.39%

DSFD (WIDER FACE) 88.89% 93.18% 90.98%
DSFD (finetune on OR Face) 88.04% 97.54% 92.55%

Table 2. Face detection results on OR Face. DSFD is evaluated and compared with FaceOFF on the same

experimental setup.
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4.2. Surgical Phase Recognition

Our SENet encoder is initialized using ImageNet pre-trained weights (4) and the num-
ber of hidden units for each layer in LSTM is set to 2048. We use our TKR phase
dataset to perform 6-fold cross-validation. In each fold, we use 15 videos in the training
set, one video in the validation set and two videos in the test set.

The average F1 score of predicting different phases is 91.06% with a standard devi-
ation of 1.72%. We noticed that training the model from scratch (without pretrained
weights) can lead to around 4% drop in performance due to the small sample of videos
in this dataset. We also computed the average error in seconds between the ground
truth phase transitions and first time a phase was predicted as another metric. The
model achieved an average error of 15 ± 2.5 seconds, where the average error per fold
varies between 12 to 18 seconds. In other words, if we change to a phase upon the
first detection of a phase, the prediction was off by 15 seconds on average. Figure 3
shows ground truth and predicted phases using staircase plots for two test videos. For
a better visibility, we shifted the staircase plots for the predicted phases upward. The
vertical axis indicates the phase id and the horizontal axis the procedure progression
time in seconds.

Figure 3. Surgical phase prediction for two test videos across different folds. The vertical and horizontal axes

indicate phase id and the surgery progression in seconds, respectively. We shift the prediction a bit upward to
allow better compression between ground truths and predictions.

The confusion matrix for the two test video in Figure 3 has been reported in Figure 4.
The numbers on the vertical and horizontal axis indicate phase IDs. Most of the phase
has been classified correctly and miss classification is happened among consecutive
phases.

5. Discussion

The face detection results in Table 2 and Figure 2 indicate that the CNN-based model
reliably detects and localizes faces in OR environments. Due to the critical importance
of this step to comply with GDPR and preserve identities, we needed to generate a
fully annotated dataset from recordings under similar viewpoint. Our recordings were
filmed using head-mounted cameras, which reduced the likelihood of capturing faces.
One of the major limitation is the low number of videos captured to date. Therefore,
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Figure 4. Confusion Matrix. The numbers along the vertical and horizontal axis indicate the phase IDs as
per Table 1.

to improve the model, we are planning to collect a diverse dataset and include other
objects like screens and whiteboards, which could also potentially reveal sensitive
information.

The phase recognition model accurately segments videos into different surgical
phases. Even though a small dataset was available to date, the model achieved an
average error of 15 seconds in predicting phase transitions. We will explore collect-
ing larger datasets and further investigating the importance of training model from
scratch versus pre-trained weights. It was noticed that the model sometimes confused
phases 12, 13 and 14. We believe that this is due to the fact that in all these phases
the surgeon might require to remove some soft tissues, which are phase agnostic and
have similar appearance in all phases. Another type of error is the early or late transi-
tion between phases (Figure 4). We should however note that the average errors of 15
second error in phase transitions are negligible for this type of procedure that could
take more than one hour. The availability of more training data and more detailed
annotation of key steps for each could potentially result in a more robust model.

These results demonstrate that video data alone is sufficient for developing phase
recognition models for open surgery, despite the inherent challenges such as specular
highlights, severe motion blurring due to head movement and dynamic background
changes. It should be noted that total knee replacement has a rather complex workflow
with 18 phases and a wide range of instruments. This work paves the way towards
developing context-aware CAI system by detecting the progress of a procedure and
providing relevant assistive information to the clinical team for better coordination,
education, risk minimization and ultimately better outcomes for patients.

The captured data was also used post-operatively for review of surgical phases, per-
formance monitoring and teaching purposes by the operating surgical team. Figure 5
illustrates our web-based video platform that allows secure access of the surgical pro-
cess data from any device. Compliant with GDPR and HIPAA certified, obtaining the
necessary consent and redacting of the data has played a major role on allowing this
data to be available for the surgeon and their team. Automatically detected phase
transitions are also shown in the web interface in order to facilitate browsing through
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Figure 5. Video platform screenshots. Our web platform shows surgical phases and allows browsing through

the videos.

the videos by clicking on them.

6. Conclusion

The ability to video capture open surgery facilitates possibilities for developing ma-
chine learning-based approaches to assist surgical teams and improve efficiency and
safety within the OR. In this paper, we presented a first demonstration of a solution
to record procedures using head-mounted cameras and process this information on a
secure manner in a machine learning pipeline. We demonstrated that machine learning
models can be used to remove any personal identifiable data in compliance with GDPR
and HIPAA. The anonymized surgical video from TKR was then used to perform sur-
gical workflow analysis through automated surgical phase prediction. A CNN-LSTM
model was introduced to recognize surgical phases in the open surgery domain, which
has previously not been reported. The proposed model predicted phase transitions
within an average of 15 seconds from the manually annotated phase transitions. Our
results indicate that head-mounted video recordings can be used to perform surgical
phase recognition. Our novel web platform allows the surgeon to access the videos
and use the phase information for post-operative insights. The platform can be used
for postoperative review and training purposes with other team members to better
understand surgical process. Future work will extend our model to work in real-time
and provide context-aware intraoperative assistive information. We will also explore
applying our approach to additional open surgical specialties where currently there is
no solution for automated activity recognition and analysis.
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[2] S. Bodenstedt, M. Wagner, D. Katić, P. Mietkowski, B. Mayer, H. Kenngott, B.
Müller-Stich, R. Dillmann, and S. Speidel, Unsupervised temporal context learn-
ing using convolutional neural networks for laparoscopic workflow analysis, arXiv
preprint arXiv:1702.03684 (2017).

[3] R. Cook, P. Davidson, and R. Martin, More than 80% of total knee replacements
can last for 25 years, Bmj 367 (2019).

[4] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and L. Fei-Fei, Imagenet: A large-
scale hierarchical image database, in 2009 IEEE conference on computer vision
and pattern recognition, 2009, pp. 248–255.

[5] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, Arcface: Additive angular margin loss
for deep face recognition, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4690–4699.

[6] EndoVis Challenge, https://endovis.grand-challenge.org/ (2020), accessed:
March 2020.

[7] E. Flouty, O. Zisimopoulos, and D. Stoyanov, FaceOff: Anonymizing Videos in
the Operating Rooms, in OR 2.0 Context-Aware Operating Theaters, Computer
Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image
Analysis, Springer, 2018, pp. 30–38.

[8] I. Funke, A. Jenke, S.T. Mees, J. Weitz, S. Speidel, and S. Bodenstedt, Temporal
coherence-based self-supervised learning for laparoscopic workflow analysis, in OR
2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy,
Clinical Image-Based Procedures, and Skin Image Analysis, Springer, 2018, pp.
85–93.

[9] A. Graves, S. Fernández, and J. Schmidhuber, Bidirectional LSTM networks for
improved phoneme classification and recognition, in International Conference on
Artificial Neural Networks, 2005, pp. 799–804.

[10] C.E. Houghton, D. Casey, D. Shaw, and K. Murphy, Ethical challenges in quali-
tative research: examples from practice, Nurse researcher 18 (2010).

[11] J. Hu, L. Shen, and G. Sun, Squeeze-and-excitation networks, in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–
7141.

[12] V. Jain and E. Learned-Miller, FDDB: A benchmark for face detection in uncon-
strained settings. university of massachusetts, Amherst, Tech. Rep. UM-CS-2010-
009 2 (2010), p. 8.

[13] A. Kadkhodamohammadi, A. Gangi, M. de Mathelin, and N. Padoy, Articulated
clinician detection using 3d pictorial structures on RGB-D data, Medical Image
Analysis 35 (2017), pp. 215 – 224.

[14] A. Kadkhodamohammadi, I. Luengo, S. Barbarisi, H. Taleb, E. Flouty, and D.
Stoyanov, Feature Aggregation Decoder for Segmenting Laparoscopic Scenes, in
OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical
Neuroimaging, Springer International Publishing, Cham, 2019, pp. 3–11.

[15] J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li, and F. Huang,
DSFD: Dual Shot Face Detector, in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June, 2019, pp. 5060–5069.

[16] L. Maier-Hein, S.S. Vedula, S. Speidel, N. Navab, R. Kikinis, A. Park, M. Eisen-
mann, H. Feussner, G. Forestier, S. Giannarou, M. Hashizume, D. Katic, H. Ken-
ngott, M. Kranzfelder, A. Malpani, K. März, T. Neumuth, N. Padoy, C. Pugh, N.
Schoch, D. Stoyanov, R. Taylor, M. Wagner, G.D. Hager, and P. Jannin, Surgical

10

https://endovis.grand-challenge.org/


data science for next-generation interventions, Nature Biomedical Engineering 1
(2017), pp. 691–696.

[17] N. Padoy, Machine and deep learning for workflow recognition during surgery,
Minimally Invasive Therapy & Allied Technologies 28 (2019), pp. 82–90.

[18] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-
Scale Image Recognition, in International Conference on Learning Representa-
tions, 2015.

[19] V. Srivastav, A. Gangi, and N. Padoy, Human Pose Estimation on Privacy-
Preserving Low-Resolution Depth Images, in Medical Image Computing and Com-
puter Assisted Intervention – MICCAI 2019, Springer, 2019, pp. 583–591.

[20] A.P. Twinanda, E.O. Alkan, A. Gangi, M. de Mathelin, and N. Padoy, Data-driven
spatio-temporal rgbd feature encoding for action recognition in operating rooms,
International journal of computer assisted radiology and surgery 10 (2015), pp.
737–747.

[21] A.P. Twinanda, S. Shehata, D. Mutter, J. Marescaux, M. De Mathelin, and N.
Padoy, Endonet: A deep architecture for recognition tasks on laparoscopic videos,
IEEE transactions on medical imaging 36 (2016), pp. 86–97.

[22] A.P. Twinanda, P. Winata, A. Gangi, M. Mathelin, and N. Padoy, Multi-stream
deep architecture for surgical phase recognition on multi-view RGBD videos, in
Proc. M2CAI Workshop MICCAI, 2016, pp. 1–8.

[23] T. Vercauteren, M. Unberath, N. Padoy, and N. Navab, Cai4cai: The rise of
contextual artificial intelligence in computer assisted interventions, Proceedings
of the IEEE 108 (2020), pp. 198–214.

[24] S. Yang, P. Luo, C.C. Loy, and X. Tang, WIDER FACE: A face detection bench-
mark, in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 5525–5533.

11


	Introduction
	Method
	OR Face Detection
	Surgical Workflow Analysis

	Data
	Experiments
	OR Face Detection
	Surgical Phase Recognition

	Discussion
	Conclusion

