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Inbuilt tendency of the eIF2 regulatory system to
counteract uncertainties
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Abstract—Eukaryotic initiation factor 2 (eIF2) plays a funda-
mental role in the regulation of protein synthesis. Investigations
have revealed that the regulation of eIF2 is robust against
intrinsic uncertainties and is able to efficiently counteract them.
The robustness properties of the eIF2 pathway against intrinsic
disturbances is also well known. However the reasons for this
ability to counteract stresses is less well understood. In this
paper, the robustness conferring properties of the eIF2 dependent
regulatory system is explored with the help of a mathematical
model. The novelty of the work presented in this paper lies in
articulating the possible reason behind the inbuilt robustness of
the highly engineered eIF2 system against intrinsic perturbations.
Our investigations reveal that the robust nature of the eIF2
pathway may originate from the existence of an attractive natural
sliding surface within the system satisfying reaching and sliding
conditions that are well established in the domain of control
engineering.

Index Terms—Protein synthesis, mathematical modelling, lin-
earisation, key non-linearities, stability, sliding surface.

I. INTRODUCTION

The regulation of gene expression takes place at multiple
levels. However it is primarily controlled by the machinery
of translation initiation [1]–[3]. There are various eukaryotic
initiation factors (eIFs) that play a crucial role in modulating
the dynamic control properties of translation initiation. Eu-
karyotic initiation factor 2 (eIF2) is one of the main factors
that sustain the ongoing translation activity [4], [5]. Defects or
down-regulation in eIF2 can result in severe illnesses, for ex-
ample, disturbance in the translation initiation machinery due
to excessive phosphorylation of eIF2 can cause neurological
diseases [6]–[8].

The perpetuation of sustainable behaviour of the translation
activity is achievable only when eIF2 regulates between its
active (GTP-bound) and inactive (GDP-bound) states, and
carries out its fundamental role of transferring Met-tRNAi (ini-
tiator transfer ribonucleic acid) to the 40S ribosomal subunit
without interruption. However, during amino-acid starvation,
phosphorylation of the α-subunit of eIF2 takes place, which
results in down-regulation of general translation activity [9],
[10].
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The phosphorylation process is one of the main disruptors
of translation activity, converting eIF2 to a dominant inhibitor
of the guanine nucleotide exchange factor (GEF) eIF2B,
which disrupts the upcoming round of translation activity. The
phosphorylated eIF2 loses the affinity with eIF2B or converts
from a substrate to an inhibitor of eIF2B, and hence is unable
to re-energise its active state with the help of eIF2B, resulting
in disruption of the translation process [11], [12].

There are four important kinases that have a tendency
to phosphorylate the eIF2α, namely general control non-
derepressible-2 (GCN2), protein kinase double-stranded RNA-
dependent (PKR), PKR-like ER kinase (PERK), and heme-
regulated inhibitor (HRI) [13]. From the kinases, GCN2 is
one of the most highly conserved that activates due to the
presence of uncharged tRNA and primarily targets eIF2 [14],
[15]. Hence, the kinase GCN2 is a focus in this study and
is included in the mathematical model to understand the dy-
namic aspects of the eIF2 dependent regulatory pathway. The
regulatory pathway representing the impact of phosphorylated
eIF2 (eIF2-P) on translation activity or protein synthesis is
illustrated in Fig. 1. The figure demonstrates eIF2-P as a
competitive inhibitor of eIF2B in the form of bold black dots.

Investigations have revealed that the eIF2 pathway is robust
against uncertainties and can counteract disturbances created
by intrinsic stressors [16], [17]. The robustness properties of
biomolecular processes against internal and structural distur-
bances are well known. However the reasons for this ability
to cope against stresses is less well understood [18]–[20].
Hence, this study is focused on investigating the possible
reason behind the inbuilt tendency of the highly engineered
eIF2 dependent system to counteract intrinsic uncertainties.

In control theory, the application of sliding mode control
has been widely acknowledged to efficiently stabilise the
uncertain nonlinear systems, such as power systems, biped
robots etcetera [21]. Analogous to the highly engineered
system, most of the biological systems naturally hold the high
level of robustness against disturbances, possibly due to the
existence of natural sliding surface within the system which is
able to attain the stable sliding motion by reaching the phase
where the motion converges from a non-zero initial value to
the naturally existing sliding surface and then converges to the
origin along that sliding surface.

The remainder of the paper is organized as follows. In
Section II, a mathematical model of eIF2 regulatory system
is presented. Section III presents the limitations of the lin-
earisation concept of the nonlinear eIF2 model. The role of
key nonlinearities in maintaining the temporal behaviour of
the model is explored in Section IV. The same section also
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Fig. 1. Impact of phosphorylation of eIF2 on translation initiation machinery. The eIF5 has an additional role of GDP dissociation inhibitor (GDI) in translation
initiation along with its established functions in pre-initiation complex assembly and GTPase activating proteins (GAPs) activity. The kinase K (GCN2) is
activated by activator KA (uncharged tRNAs) and forming a feedback path for its regulation

investigates the robustness conferring nature of eIF2 pathway
against intrinsic stresses. Section V presents the novel theory
regarding the possible reason behind the inbuilt tendency
of the highly engineered eIF2 system to counteract intrinsic
uncertainties. Finally, the paper is concluded in Section VI.

II. MATERIALS AND METHODS

Molecular reaction network theory is one of the earliest
attempts to theoretically model the dynamical behaviour of
biomolecular systems. Reaction network theory has also at-
tracted researchers from other communities where nonlin-
ear dynamical systems are examined such as biochemistry,
physics, control engineering and theoretical chemistry [22]–
[25]. The reaction networks resembling the nonlinear inter-
action of a large number of biological elements are very
complex in nature [26], [27]. Therefore some model reduction
transformations or simplifications have been suggested in the
literature to reduce the complexity of large reaction networks.
Examples include linearisation of the resulting network, model
reduction based on quasi steady state analysis and gramian-
based input/output balancing [28]–[30]. It should be noted that
each species of the regulatory pathway should hold a positivity
characteristic during any simplification or reduction process.
During simulation the concentration of each species (say Y )
must satisfy the following proposition.

Proposition: The concentrations Yi ∀i ∈ [1, n] of all n
species in a given model have non-negative values, that is Yi
≥ 0, ∀t ≥ 0.

One of the well known approaches to efficiently model
regulatory systems is to focus on the details of the core
reactions under study [31]–[34]. In addition, it is desirable
to combine the theoretical model with experimental data. In
the present study, the core reactions constituting eIF2:GDP
complexes (refer Fig. 1) are considered for developing a math-
ematical model, which is comprised of two stages, namely

the unstressed and stressed stages. The unstressed stage is the
one in which kinase GCN2 is not active and the translation
machinery is uninterrupted. The stressed stage is the one in
which phosphorylation of eIF2 takes place due to activation
of GCN2, resulting into cease in the translation activity. The
overall reaction model of the eIF2 regulatory system is as
follows:

[Protein] C1→ [eIF5:eIF2:GDP]

[eIF5:eIF2:GDP] + [eIF2B]
C2



C3

[eIF5:eIF2B:eIF2:GDP]

[eIF5:eIF2B:eIF2:GDP]
C4



C5

[eIF5] + [eIF2B:eIF2:GDP]

[eIF5:eIF2:GDP]
C6



C7

[eIF2:GDP] + [eIF5]

[eIF2B] + [eIF2:GDP]
C8



C9

[eIF2B:eIF2:GDP]

[eIF2B:eIF2:GDP] C10→ [eIF2B]+[eIF2:GTP]

[eIF5] + [eIF2:GTP] C11→ [Protein]

[GCN2] + [tRNA]
C12



C13

[tRNA:GCN2]

[eIF2:GDP] + [tRNA:GCN2]
C14



C15

[tRNA:GCN2:eIF2]

[eIF2-P] + [eIF2B]
C16



C17

[eIF2-P:eIF2B]

[eIF2-P] C18→ [eIF2:GDP]

[tRNA:GCN2:eIF2] C19→ [tRNA:GCN2] + [eIF2-P]

[Protein] C20→ [tRNA]

The detailed nonlinear ordinary differential equations
(ODEs) of the overall reaction model, initial concentrations
and rate constant values are described in supplementary files
S1, S2 and S3 respectively.
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Fig. 2. Impact of mutation induced changes in the rate constants of the pathway for: (a) unstressed stage, and (b) stressed stage, resulted into controlled
variation in the overall translation activity from its experimental value. The blue line represents mean behaviour of the eIF2 model for the rate constants
described in supplementary file S3, while red error bar represents the deviation of the model from its mean behaviour due to perturbations in the rate constants.

The experimental observations of eIF2 pathway have re-
vealed that the translation activity of the pathway illustrated in
Fig. 1 is insensitive to the changes in the levels of eIF2, eIF2B
and eIF5 [4], and is also robust against the mutation induced
changes in the rate constants [35]. That is, the tolerance
characteristic of the eIF2 pathway against intrinsic robustness
is naturally controlled might be due to the fact that the
pathway is structured in such a way that its output is relatively
insensitive to the variations in the micro-environment [36].
Computationally such intrinsic robustness can be visualised by
randomly perturbing the rate constants of the model to the limit
of ±50% form its actual values described in supplementary file
S3.

Fig. 2 summarises the impact of intrinsic perturbations in
the eIF2 pathway for unstressed and stressed stages due to
mutation induced changes in the rate constants, which are
accordant with the biological observations. The robustness
conferring property of the eIF2 pathway against disturbances
is well known, however the reasons for this ability is less
well understood. From the control theory perspective, it can
be proposed that the natural phenomena of intrinsic robustness
against perturbations in both the stages is likely due to the pre-
existence of a highly engineered natural control within the
eIF2 pathway which is helping the system to cope with such
uncertainties.

III. LINEAR APPROXIMATION OF NONLINEAR EIF2
SYSTEM

In order to investigate the ability of the highly engineered
eIF2 system to counteract uncertainties, it is necessary to first
simplify or linearise the developed nonlinear ODE model.
Linear models can be efficiently analysed in the frequency
domain which can predict the non-trivial states of the system
that are responsible for maintaining its basal activity [17].
The linearisation process is helpful in approximating the
higher order nonlinear system by a lower order linear system,
through which the local behaviour of nonlinear systems can
be estimated around the equilibrium point [37]–[39]. The

feasible equilibrium point of the eIF2 pathway is given in
supplementary file S4.

The generalised form of the nonlinear mathematical model
described in supplementary file S1 can be defined as follows:

Ẏ (t) = f(Y, t) (1)

where, Y is the non-negative concentration of the species and
t is the evolution time. The state space representation of the
approximate linear model around equilibrium point Y eq using
the Jacobian matrix A of the vector f(·) can be re-written in
the form:

Ẏ (t) =AY (t) (2)

The diagonal elements of A (presented in the supplementary
file S5) represent the behaviour of the species due to reversible
(or irreversible) interaction, whereas non-diagonal elements
represent interactions between species. In order to compare
the performance of the linear and nonlinear models, Y eq is
considered as an initial condition of the nonlinear model,
which has been perturbed by a small amount δ and then
the same δ value is used as an initial condition of the
corresponding linear model.

The comparison of steady states of both models for different
values of δ is given in supplementary file S6. Observe that as
the value of δ increases, the difference between the models
becomes substantial.

In order to investigate the origins of robustness within the
system with the help of applied control theory, the overall
system is converted into a single input single output (SISO)
system by eliminating the dynamics of uncharged tRNA and
considering it as a control input u [17].

Consider the nonlinear system described in supplementary
file S1 where the dynamics of uncharged tRNA has been
eliminated. The generalised state space representation of the
system can be written in the following SISO form:

Ẏ (t) =Y(Y, t) + B(Y (t))u (3a)
Z(t) =Y1(t) (3b)



4

where, B(Y (t)) =
[
0 0 0 0 0 0 0 0 − C12Y9 C12Y9 0 0 0

]T
,

Z(t) is the output signal or translation rate, and vector

Y =
[
Y1 Y2 · · · Y12 Y14

]T
.

Investigations illustrated in supplementary file S7 have
revealed that linearising the nonlinear SISO model in order
to analyse the trivial species in the eIF2 pathway using the
matched DC gain method [40] produces unfeasible temporal
behaviour such as a substantial difference in the transient
behaviour of models and concentrations of kinase and kinase-
activator reaching negative values at certain physiological time
instants. In order to cope with the problem of the infeasible
behaviour of the system, the key nonlinearities of the system
have been estimated and restored. This is necessary to preserve
the overall transient behaviour of the system, and hence
the approximate model can be used to estimate the origins
of robustness within the highly engineered eIF2 dependent
system that are responsible for counteracting the intrinsic
uncertainties.

IV. RESTORING KEY NONLINEARITIES WITHIN THE EIF2
SYSTEM

As stated earlier, linearisation is a helpful tool in simplifying
the nonlinear interactions between the species, so that the indi-
vidual effect of each parameter can be investigated. However
linearising the whole system may produce an unacceptable
transient response. Therefore in this section emphasis is given
to illustrating the role key nonlinearities play in maintaining
the temporal behaviour of the system.

Consider a SISO system defined in eq.(3), which can be
rewritten in the generalised state space form:

Ẏ (t) =Ŷ(Y, t) + ϕ(Y, t) + B(Y (t))u (4a)
Z(t) =Y1(t) (4b)

where, the term ϕ(Y,t) represents important nonlinearities of
the system. Note that, Y(Y, t) = Ŷ(Y, t) + ϕ(Y, t). Now,
linearising the whole system expect ϕ(Y, t) around an equilib-
rium point will result in the partially linearised SISO model
given in supplementary file S8. The generalised state space
system of the model can be defined as:

Ẏ =ÂY + ϕ(Y, t) +Bu (5a)
Z =DY (5b)

where Â is a Jacobian matrix, B and D are constant matrices,
and ϕ(Y, t) is a nonlinear vector defined as:

ϕ(Y, t) =
[
0 0 − γ 0 0 0 0 0 0 0 − γ γ 0

]T
where, γ = C16Y3Y11. The above system which includes key
nonlinearity is expected to provide better temporal behaviour
than a completely linearised system when compared with the
original nonlinear system. The figures in supplementary file
S9 illustrate the important role of key nonlinearities within
the eIF2 system in maintaining the temporal behaviour of
the model. It is worth noting that the partially linearised
SISO system should not only possess approximate temporal
behaviour but also exhibit similar stability properties to those
exhibited by the nonlinear SISO system.

Consider a candidate Lyapunov function V(Y,t) for the eIF2
system defined in supplementary file S8:

V (Y, t) =

14∑
i=1

Yi + Y1 + Y2 + 2Y4 + Y6 + Y10 + 2Y14 (6)

where V (0, t) = 0 and V (Y, t) > 0, ∀Y 6= 0.
According to Lyapunov theory, the system is stable if the

temporal derivative of V (Y, t) ≤ 0. Following the Lyapunov
stability theorem, the eIF2 system is said to be stable if V̇ (Y, t)
for the eIF2 system is negative semidefinite. The temporal
derivative of eq.(6) can be defined as:

V̇ (Y, t) =

14∑
i=1

Ẏi + Ẏ1 + Ẏ2 + 2Ẏ4 + Ẏ6 + Ẏ10 + 2Ẏ14 (7)

= −(C16Y3Y11 + C17Y12 + C20Y1) (8)

Since C16, C17 and C20 are non-negative rate constants,
from eq.(8) it is evident that V̇ (Y, t) is negative semidefinite.
Therefore the approximate eIF2 system defined in supple-
mentary file S8 is stable. Further, it can be observed that
perturbing the rate constants will have no impact on the overall
stability of the dynamical system. This observation leads to the
conclusion that the eIF2 pathway is a highly engineered system
that can efficiently tolerate intrinsic perturbations without
compromising the overall stability characteristics.

V. EXISTENCE OF NATURAL SLIDING SURFACES WITHIN
THE EIF2 REGULATORY MODEL

In control theory, model uncertainties can be divided into
two forms, namely matched and unmatched uncertainties.
Generally, in a given dynamical system if uncertainty lies
in the input channel, then this type of uncertainty is known
as matched uncertainty. On the other hand, unmatched uncer-
tainty corresponds to uncertainty acting in channels that are
not implicit in the input channels. Note that, in engineering
systems not all unmatched uncertainty can be rejected by
design of a control but an appropriate control will reject
matched uncertainty completely [21].

The motivation for considering this theory is to provide
evidence of robust conferring feature in the biomolecular sys-
tems against intrinsic disturbances. That is, the biomolecular
systems are robust and relatively insensitive to alterations in
their internal parameters and are able to adapt to changes in
their micro-environment. In this section, matched uncertainties
are embedded in the eIF2 system to investigate the reason
behind the inbuilt tendency of the eIF2 regulatory system to
counteract uncertainties. The supplementary file S10 defines
the mathematical model of an eIF2 regulatory pathway with
key nonlinearities and matched uncertainties.

Fig. 3 shows the inbuilt ability of the eIF2 dependent regu-
latory model, which includes key nonlinearities, to counteract
matched uncertainties. In other words, the pathway is able
to completely reject matched uncertainty. It is observed from
Fig. 3 that perturbing the value of C13 to 100% from its
reference value has no effect on the translational behaviour
(red solid line) with respect to the behaviour of the SISO
model including key nonlinearities (green dotted line). Fig. 4
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Fig. 3. Comparison of translation rate of nominal model, model with known nonlinearity and uncertain model with known nonlinearity around equilibrium
point for: (a) δ = 10−1 and ∆C13 = 10+2 × C13, and (b) δ = 10−1 and ∆C13 = 10−1 × C13
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Fig. 4. Change in control u for: (a) δ = 10−1 and ∆C13 = 10+2 × C13, and (b) δ = 10−1 and ∆C13 = 10−1 × C13

shows the time evolution of the control u that is counteracting
the effect of matched uncertainty in the eIF2 regulatory
system.

The above observation asserts that the eIF2 dependent reg-
ulatory model is able to counteract matched uncertainties by
natural control and making it robust against such uncertainties.
One of the reasons behind such tolerance may be the existence
of attractive natural sliding surfaces within the system which
prescribe an appropriate stable sliding motion. The regulation
within the system would effectively ensure a corresponding
reachability condition is satisfied, which effectively ensures the
sliding motion is established. In sliding mode control, motion
of the system is divided into two phases: the first phase is gen-
erally called the reaching phase where motion converges from
a non-zero initial value to the sliding surface, and the second
phase of the motion is called the sliding phase during which
the system converges to the origin along the sliding surface.
The reachability condition accommodates the nonlinearities
within the system and robustness properties with respect to
parameter and modelling uncertainty are exhibited. Hence, the
reachability analysis provides a dynamical condition for the
translation response to reach and maintain the steady state.
Satisfaction of both conditions ensures that system output is

not affected by matched uncertainty and indicates the system
includes a natural sliding surface which results in an ability
to counteract uncertainty.

In order to verify the validity of this theory within the
nonlinear system, consider the following nonlinear sliding
surface for the eIF2 dependent regulatory model that has a
relative degree of two.

S = Y1Y14 (9)

A nonlinear sliding function is chosen to fulfil both sliding
and reaching conditions which is essential for counteracting
matched uncertainties within the eIF2 dependent regulatory
system. Note that the existence of a unique nonlinear sliding
surface for both the non-stress and stress cases assures ac-
complishment of sliding motion and instigation of the natural
tendency for robustness. In order to investigate the reachability
condition, the derivative of the sliding surface is computed as
follows:

Ṡ =Ẏ1Y14 + Y1Ẏ14 (10)
=− (C1 + C20 + C15 + C19)Y1Y14 + C11Y5Y8Y14

+ C14Y7Y10Y1 (11)
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Fig. 5. Time evolution of: (a) sliding surface (S), and (b) ṠS for varying concentration of uncharged tRNA

Considering both cases in the eIF2 pathway, the eq.(11)
becomes:
Case I: Unstressed condition

Under nominal or unstressed condition, the accumulation
of uncharged tRNA remains nil, which fails to induce
any stress complexes into the nominal system, that is
complexes such as tRNA:GCN2 (Y10), tRNA:GCN2:eIF2
(Y14) etcetera remain in an inactive state resulting in zero
concentration.

Case II: Stressed condition
In the stressed condition, when the stress dynamics enters
the eIF2 system, the uncharged tRNA starts accumulating
which induces the stress complexes into the system
resulting into cessation of protein synthesis (Y1) due to its
dependency on core eIF2 complexes such as eIF2:GDP,
eIF2:GTP (Y8) etcetera.

Considering the above cases, it can be seen that when the
system moves from non-stress to stress condition or vice-versa,
the temporal derivative of S reaches zero. Fig. 5 illustrates the
transient response of the sliding surface for varying concen-
tration of uncharged tRNA. When the reachability condition
is fulfilled, it follows that S = Ṡ = 0. Observing Fig. 5, it
is evident that in the unstressed case the motion is strictly
taking place on the constraint manifold, i.e. S = 0 ∀ t and
ṠS = 0 ∀ t. Hence it can be established that in both unstressed
and stressed cases, the sliding phase and reaching phase have
been fulfilled i.e. the function S reaches zero at finite time t
and ṠS ≤ 0.

Note that, in the scenario of biomolecular systems, satis-
faction of the reachability condition gives rise to two distinct
cases:
Case I: When Y1 = 0, Y14 6= 0

Ṡ = Y1Ẏ14 + Ẏ1Y14 = 0
⇒ Ẏ1Y14 = 0 ⇒ Ẏ1 = 0
⇒ −C1Y1 + C11Y5Y8 − C20Y1 = 0
⇒ C11Y5Y8 = 0
The above case is biologically infeasible because in the
unstressed case C11Y5Y8 6= 0.

Case II: When If Y1 6= 0, Y14 = 0
Ṡ = Y1Ẏ14 + Ẏ1Y14 = 0
⇒ Y1Ẏ14 = 0 ⇒ Ẏ14 = 0
⇒ C14Y7Y10 = 0
The aforementioned equality is biologically feasible un-
der both stressed and unstressed cases, because in the
unstressed case the concentration of tRNA:GCN2 (Y10)
is zero while the concentration of eIF2:GDP (Y7) is non-
zero, and as the stress dynamics enters the concentration
of eIF2:GDP falls to zero while the concentration of
tRNA:GCN2 increases.

Observing Case II, it can be asserted that when the reach-
ability condition for a sliding mode is satisfied, the dynamics
of the system self regulates itself and the system is driven
towards a naturally existing sliding manifold and remains on
it.

VI. CONCLUSION

In this paper the inbuilt robustness tendency of the eIF2
dependent regulatory model has been explored with the help
of a mathematical model and applied control theory. In order
to explore the origins of the robustness conferring properties
of the eIF2 system, a linearsation concept has been adopted.
The study indicates that entirely linearising the eIF2 system
around an equilibrium point results in unacceptable system
behaviour. Therefore a key nonlinearity within the eIF2 system
has been identified and restored within the model. A simpli-
fied mathematical model results which exhibits comparatively
closer temporal behaviour to that of the original nonlinear
system. The investigations have revealed that the eIF2 pathway
is robust to intrinsic uncertainties and is able to efficiently
counteract them without affecting system stability. One of the
possible reasons behind this tendency of highly engineered
eIF2 system to exhibit robustness against intrinsic perturba-
tions is the existence of an attractive natural sliding surface
within the eIF2 system that satisfies reaching and sliding
conditions through which the system is able to counteract
efficiently the disturbances.
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