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1. Introduction

The consideration of distributional impacts in the analysis of the
energy and environmental policies has risen in importance as
more ambitious climate policies are implemented worldwide,
often imposing taxation on energy products. Distributional
impacts refer to the case when different household groups or
individuals are affected by a policy to a different degree.
Distributional impacts are commonly associated with inequality
which may include differences in the environmental burden or
distribution of income and welfare. A case that illustrates the
negative consequences of not considering the distributional

effects of climate policies is the Yellow vest
movement that started in 2018 in France.
The movement was marked by mass
protests against the rising fuel taxes and
prices and claimed that middle and work-
ing classes were paying a disproportionate
share of the burden from the national tax
reforms.[1] These protests are a sign of
how the issue of inequality has grown
in relevance in recent years and how
neglecting this topic may hinder climate
protection action. In the European Union,
for instance, increasing levels of income
and carbon inequality in a large number
of Member States are causing concerns
for both the sustainability of economic
growth and social cohesion.[2] Globally,
the gap between rich and poor is
increasing and in 2015 the wealth of the

richest 62 people in the world was equal to that of the
bottom half.[3]

To tackle the issue of inequality, the United Nations adopted
in 2015 the 2030 Agenda for Sustainable Development, in which
reducing economic disparities is one of the seventeen sustain-
able development goals (SDGs).[4] This agreement reinforces
the need to provide a global solution for the problem of inequality
and shows that policies aiming at sustainable development should
consider their social and distributional impacts on different
income classes and regions.

To this end, this work reviews the recent literature on the
model-based methods utilized for policy analyses in the areas
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Since the signing of the 2030 Agenda for Sustainable Development by the
United Nations Member States and the Yellow vest movement, it is clear that
emission-reducing policies should consider their distributional impacts to
ensure a sustainable and equitable growth compatible with the Paris Agreement
goals. To this end, the design of environmental and energy policies should be
accompanied by an interdisciplinary analysis that includes potential effects on
distinct groups of society (defined by income, age, or location), regions, and
sectors. This work synthesizes common modeling frameworks used to assess
technical, socio-economic, and environmental aspects in policy analysis and the
recent progress to portray distributional impacts in each of them. Furthermore,
the main indicators produced by each method are highlighted and a critical
review pointing to gaps and limitations that could be addressed by future
research is presented.

REVIEW
www.entechnol.de

Energy Technol. 2021, 9, 2000668 2000668 (1 of 16) © 2020 The Authors. Energy Technology published by Wiley-VCH GmbH

mailto:roland.montenegro@ier.uni-stuttgart.de
https://doi.org/10.1002/ente.202000668
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:fragkos@e3modelling.com
http://www.entechnol.de
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fente.202000668&domain=pdf&date_stamp=2020-11-10


of economics, energy systems, and environmental damages.
Furthermore, we explore ways in which these models and meth-
odologies depict distributional impacts, the main indicators
obtained from their results, shortcomings of each modeling
methodology, and suggest improvements for future research.

2. Distributional Impacts from Energy and
Environmental Policies

This section provides a short literature overview of possible distri-
butional impacts of different environmental policies. As the litera-
ture on environmental policies and distributional effects is vast, we
focus here on the main reasons why distributional impacts may
occur and their relevance for environmental policy assessment.

Depending on the chosen policy instrument and the
underlying socio-economic structure, distributional impacts of
environmental policies may vary significantly, both between
countries and within countries.[5–7] Overall, environmental poli-
cies are usually associated with regressive distributional impacts
in literature, disproportionately affecting disadvantaged popula-
tion groups. There is, however, also evidence for progressive
impacts, especially in developing countries, where inequalities
can be effectively reduced.[7,8] The focus and significance of
distributional impacts vary depending on the unit of analysis,
i.e., the spatial scale of the study, the chosen indicator(s) concern-
ing inequalities considered, and sectors/goods affected.[7] For a
detailed discussion of possible distributional impacts of individ-
ual policies, the reader may refer to refs. [7,8].

Evaluating distributional impacts of environmental policies
should consider both financial implications, i.e., impacts on
income and wealth distribution, and possible environmental ben-
efits in the form of reduced environmental hazards or improved
accessibility to environmental goods.[8] The latter is, however, dif-
ficult to assess quantitatively andmay vary greatly on a geographic
scale. In addition, the relationship between a lower socio-
economic status and higher exposure to environmental hazards
is ubiquitous, especially within countries.[8,9] Thus, assessments
of distributional impacts of energy and climate policies often con-
centrate on income distribution, neglecting possible benefits
from reduced environmental inequalities or other indirect effects.
Financial implications usually depend on the demand elasticities
of the affected goods and possible budget or credit constraints
associated with socio-economic status, e.g., different disposable
income, owned assets, or accessibility to technologies.[7]

Depending on how the policy is funded and on who consumes
the affected goods, distributional effects may impact households,
industries, or states both negatively or positively. Well-designed
strategies may also achieve progressive outcomes by considering
appropriate compensation schemes, either by increasing house-
hold income through lump-sum payments or reducing other
taxes, or by public investments, e.g., in infrastructure, or through
the social security system.[5,7,8]

As distributional impacts of environmental policies depend
significantly on the policy design itself, and at least partially on
the geographic distribution of environmental burdens,[7] it is only
possible to assess them on a case-by-case basis. Ignoring possible
distributional effects may, however, result in less effective policies
and even increased inequalities due to missing policies to

mitigate potential impacts.[5,7,8] These are, however, often only
included on a broader level in policy impact assessments without
any detailed analysis of how different socio-economic groups are
affected.[10] Existing policy impact assessment guidelines often
only state that some social and environmental impact assessment
should be conducted[11] and offer scope for interpretation regard-
ing the depth of analysis and applied methodologies. Such con-
textual factors flow into the model design, which often ignores the
complexity of distributional impacts by focusing predominantly
on economic efficiency instead of equity.[5]

3. Quantitative Methods and Modeling
Frameworks Dealing with Distributional Impacts

This section briefly introduces modeling frameworks linked to
the analysis of the energy and climate policies and how they por-
tray distributional impacts. However, as the utilization of these
frameworks precedes the study of environmental policies in its
modern transdisciplinary concept, each method alone is only
capable of capturing specific effects associated with the measures
mentioned earlier.

3.1. Energy System Models (Partial Equilibrium)

Energy system models based on a partial equilibrium framework
consider the economic activities of the energy sector or parts
thereof. They, therefore, do not consider the implications of
energy-related investments on other parts of the economy,
e.g., labor or other investment requirements, in contrast to
general equilibrium models.[12] The framework can be further
categorized into simulation and optimization methodologies
(such as PRIMES and the TIMES framework).[13,14] Optimization
models aim to identify the least-cost solution and simulation mod-
els aim to replicate the development of a specific sector, accounting
for the decision making of different actors. The general objective
function of the optimization models relies on linear programming
andminimizes the discounted total energy system costs, subject to
various constraints (e.g., energy or emission balances, efficiency
relationships, utilization constraints, reserve capacity, greenhouse
gas mitigation targets, emissions, renewable quotas, etc.) as
described in equations of S1, Supporting Information.[13]

The techno-economic framework of the partial equilibrium
models is typically applied to study the long-term effects of a tran-
sition to a low-carbon economy yet often does not include con-
sideration for distributional impacts.[15] Distributional impacts
have typically been assessed through linking with other models,
e.g., macroeconomic, or by increasing the level of detail in a
sector through disaggregation.

3.2. Input–Output Models

Input–output models (IOMs) depict the interdependencies
between different sectors of the economy. This framework illus-
trates how the output from one economic sector becomes the
input for another sector and, thus, can cover direct and indirect
price changes of different product categories.[6] The indirect
impact of carbon taxation policies accounts for higher prices
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of goods and services using carbon-intensive inputs. This
approach commonly assumes that levies are fully passed through
to the final consumers. The assumption of inelastic demand
corresponds to the short-term incidence of higher prices.[16–19]

As these models have a bottom-up representation of the econ-
omy, they are capable of producing results on a regional level,
such as changes in sectoral prices and production levels. In terms
of distributional indicators with a focus on households, the mod-
els can provide changes in income and consumption induced by
policies for representative households.

3.3. Macroeconomic Models (General Equilibrium)

Based on the input–output framework, multi-sectoral
Computable General Equilibrium (CGE) models are powerful
modeling tools to consistently assess the impacts of climate
policies in different households. These models link the macro-
economic impacts from changes in prices, assets, and productiv-
ity and capture all sources of income, consumption preferences,
and skill endowments of households. However, analyzing the
implications of climate policies for poverty and income distribu-
tion requires that such models explicitly represent different
household groups and their heterogeneity in terms of: 1) factor
endowments, such as differences in financial assets or labor and
skills supply across households; 2) preferences and savings, com-
monly achieved by differentiating parameters in households’
utility functions (e.g., preference shares, substitution elasticities)
to simulate different decisions of household types on saving ver-
sus consuming; 3) wage rates and different return rates to capital
for different households (e.g., imperfect capital markets such as
credit rationing according to income), but also household deci-
sions on participation in the labor market depending on their
specific characteristics.

An overview of the mathematical formulation of CGE models
is given in Equation S2, S3, and S4, Supporting Information.

3.4. Environmental Models

Environmental models are primarily used to estimate the possi-
ble environmental impacts of technologies and policies.
Environmental impact assessment is conducted regularly as part
of a standard policy assessment to avoid any unwanted side
effects and identify effective and efficient environmental protec-
tion strategies. The applied simulation models often follow the
Impact Pathway Approach to relate socio-economic activities to
possible environmental outcomes.[20] Due to the involved com-
plexity and variety of potential environmental issues, a myriad
of models exists, focusing on different impact categories,
geographic scales, and sectors as potential polluters. In contrast
to economic models, environmental ones do not focus on finan-
cial implications, but try to capture possible impacts of policies
on inequalities regarding the exposure to environmental hazards,
which may not be possible to be reflected in monetary terms.[8]

Depending on their setup and chosen methodology, environ-
mental models may be used to assess distributional impacts
of policies on different spatial resolutions and across sectors,
population groups, or individuals.

3.5. Microsimulation

Microsimulation models account for behavioral changes by
considering consumer choices.[6] In this framework, consumers
maximize their utility for a given set of preferences, prices and
budgets, while considering their demand to be elastic.
Commonly used methods include the Almost Ideal Demand
Systems (AIDS),[21–23] the Quadratic Almost Ideal Demand
System (QUAIDS),[24–26] the more recent Exact Affine Stone
Index (EASI) demand system,[27,28] and the Engel curve model.[29]

These models are capable of assessing policy effects on each
modeled household, which can easily be as numerous as the
number of respondents in national household surveys.[30]

These effects include tax incidence, changes in consumption,
and income level. In addition, they are also used to produce esti-
mations on the levels of (energy) poverty as a result of the policy
being analyzed.

Despite focusing on individual level modeling, as in agent-
based models (ABMs), microsimulation models produce a rich
detailed data description of individual behaviors while often
lacking the interaction and feedback among individuals.[31]

On the other hand, ABMs seek to analyze the interaction and
feedback between individuals and how it affects their behavior.

4. Distributional Impacts in Individual Modeling
Frameworks

This section discusses in more detail the methods, data require-
ments, advantages, and limitations of the three main modeling
frameworks: partial equilibrium, macroeconomic, and environ-
mental impact assessment models.

4.1. Energy System Models (Partial Equilibrium)

This section describes how distributional effects are traditionally
considered in specific partial equilibrium energy system models.
The review explores different modeling research by geographic
scope, policies evaluated, sectors or actors modeled, and the
methods used to incorporate consideration for distributional
impacts. This is followed by an assessment of the strengths
and weaknesses of different methods and their overall effective-
ness in capturing distributional impacts. Various indicators are
used tomeasure the distributional impacts. This section concludes
with an overview of the usefulness of this type of modeling frame-
work for assessing the distributional effects of climate policies.

4.1.1. Methodologies to Assess Distributional Impacts of Energy
and Climate Policies

Partial equilibrium analyses based on an optimization modeling
framework aim to identify the least-cost pathway and the devel-
opment of technology diffusion under policy targets across the
whole energy system. The framework aims to balance prices
and quantities across one or more markets to the point of equi-
librium between energy supply and demand. Concerning distri-
butional impacts, a key limitation of this methodology is that it
only considers what occurs within the energy system boundaries.
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Consequently, there is no inherent feedback loop to better esti-
mate the impacts on the broader economy, e.g., increased energy
costs, or the collection and distribution of carbon taxes. A second
issue concerns the focus of such a framework on technological
and economic factors, where the primary objective is to identify
longer-term technology pathways toward achieving specific
policy targets with limited focus on the role of policy design
in the near term and sectoral implications of policy interventions.
A more aggregate representation of sectors means that socio-
economic differences within sectors are not often represented.
A third issue is the optimization paradigm. This approach
strongly favors the economic efficiency of a solution with less
appreciation of the inertia and barriers inherent across
different sectors, and differences between actors. Given their
techno-economic focus, the simplification of behavioral repre-
sentation, and the long-term analytical time frame, such models
are less able to simulate the impacts of sector-specific policies,
and their distributional impacts.[15,32]

Sabio et al.[33] conducted a review to assess the potential of
long-term energy system models to address the distributional
impact deficit. This study reinforces the point that traditionally,
the impacts on households are difficult to be determined with the
standard partial equilibrium model structure for the reasons
listed earlier, but particularly noting the issue of aggregation
to “typical” households. For the residential sector as an example,
this means a focus on disaggregation based on physical building
stock but without reference to heterogeneity across individuals,
groups, or households. As a result, the differentiated impacts on
this heterogeneous sector are negated.

In rethinking how such models could be used for distribu-
tional impact analysis, the objective would be to capture insights
to determine the impact on economic dimensions (e.g., cost dis-
tribution), social dimensions (e.g., well-being, energy welfare),
and the overall impact on marginalized and vulnerable
groups.[34] As per Sabio et al.,[33] two approaches are considered
for the assessment of distributional impacts using partial
equilibrium models, namely, disaggregation and linking sector
models. A third approach includes off-model interpretation of
scenario metrics to understand distributional impacts using
complementary datasets, referred to as an equity evaluation.

Model Disaggregation: This approach allows for the explicit def-
inition and consideration of particular socio-economic groups
according to their specific circumstances (income, building,
tenure, number of people, etc.) within the model framework.[35]

The additional heterogeneity in the model provides a basis to
assess the differentiated impacts on different groups within a
sector.[15] Including disaggregation has become more common
in partial equilibriummodels as a means to gaining more insight
into the behavioral aspects of investment and consumption, but
without necessarily focusing on determining the distributional
impacts of policies.[36–38] The TIMES–GEECO model applied
to Gauteng in South Africa used disaggregation to better reflect
the heterogeneity of the household sector by socio-economic
factors—and, therefore, the ability of different groups to comply
to energy and climate policies.[36,39] A similar approach is applied
in the developed country context, where households are disaggre-
gated by various parameters, including socio-economic charac-
teristics around income, building type, tenure.[39,40] The
TIMES Actors Model (TAM)-household sector model not only

includes the disaggregation of different socio-economic profiles
of households but also uses this structure to evaluate the impact
of different carbon taxes.[39] However, as this approach is not cou-
pled with a macroeconomic model, the impacts reflect only
partially the cost implications of policies on a specific actor,
household, or sector. Doda and Fankhauser[41] applied a deter-
ministic partial equilibrium model to assess the often-neglected
distributional impacts of climate policies on the supply side. The
policy instruments evaluated include emission reduction policies
on power suppliers, such as carbon pricing, taxes and subsidies,
which also investigate subsidy schemes and their impact on
household welfare for specific technologies.

Linking Sector Models: A second approach for incorporating
distributional impacts into energy system models is via linking
sector models. The benefit of linking is that the energy system
model does not have to be disaggregated but can retain its cur-
rent structure and link to another model such as a CGE (to assess
wider economic impacts) or micro-simulation model for detailed
sectoral analysis. The process of linking sector models is done
either through coupling, soft-linking, or hard-linking. Coupling
involves running models separately and exchanging key variables
such as energy prices and demands to reach equilibrium. Soft-
linking includes the use of an intermediary model or an
exchange of common parameters. Hard-linking entails integrat-
ing one model into another and demands a high level of
modeling skills and reformulation of the model objectives,
source code, and underlying database.[42] The types of models
commonly linked to the partial equilibrium models include gen-
eral equilibrium models, micro models, and other economic
models, as discussed in Section 5.2.

Equity Evaluation: The third method works with partial equi-
librium models as structured, but incorporates consideration of
distributional impacts in the scenario definition process and/or
undertakes analysis on the model result metrics through the use
of complementary datasets, i.e., interprets scenario results
through distributional impacts lenses. On the scenario definition
approach, Chapman and Pambudi[43] apply a mixed-methods
approach, which involves identifying preferences and social
equity variables from surveys and then defining scenarios to
be evaluated through energy system modeling. The results are
then analyzed according to weighted factors for sustainability
and social equity.

On the post-processing approach,[34] propose the InVEST
approach to estimate the vulnerability of different regions and
groups from different low-carbon pathways quantified through
the TIMES PanEU model. This analysis first mapped out subna-
tional regions using metrics to capture vulnerability under a low
carbon transition, e.g., regions with higher levels of energy
poverty, regions dependent on energy-intensive industries
and/or hydrocarbon extraction. Based on the regional picture
of vulnerability, the next step was to consider how different
low-carbon pathways might impact on such regions and commu-
nities if such vulnerabilities were to persist in the future.

Various studies have used methods such as model linking and
disaggregation, but few have applied them to address distribu-
tional impacts specifically through a partial equilibrium energy
system model. The strengths and weaknesses of these method-
ologies in relation to distributional impact analysis are summa-
rized in Table 1.
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Data, Metrics, and Limitations: The model disaggregation
approach requires additional datasets for capturing differences
between households in the model, with a focus on socio-
economic factors and their linkage to the energy system, e.g.,
how much energy they consume, age of appliances and building
envelope, household condition, dwelling ownership, access to
personal mobility.[15] The challenge is that this approach is very
data-intensive. Furthermore, often socio-economic datasets are
not linked to the physical energy system. For example, under-
standing the dwelling profiles in a model by socio-economic
category is often challenging due to limited data. A further chal-
lenge concerns how socio-economic factors may change over
time. This issue can be handled by exploring alternative scenar-
ios. Finally, the data required are dependent on the specific distri-
butional impact question. Distributional impacts are related to
many different socio-economic variables. A particular challenge
for partial equilibrium models concerns spatial resolution, and
therefore exploring regional differences would be problematic.
A key question is balance; these models answer different ques-
tions and therefore ensuring tractability while building in distri-
butional impact analysis capability is critical.

Fell et al.[15] undertook a useful exercise to ask stakeholders
about the utility of such an approach. There was a pragmatic
recognition that such models would never be able to capture
all issues related to distributional impacts and that large uncer-
tainty would exist when applied to long-term analysis. Although
the approach was considered to have potential, stakeholders sug-
gested to focus not only on identifying distributional impacts but
could also provide policy insights around different pathways.
Key challenges remain for this approach around data—and
the suitability of the framework for this type of analysis.
However, this should be balanced against the importance of
ensuring that distributional impact analysis is recognized in
long-term pathway analysis.

The linking approach essentially allows for separate models to
exchange data and information between each other. Linkages to
CGE models are fairly well understood, whereby energy cost
increases are fed from the partial equilibrium model to the

CGE model, with feedback in respect of energy demand levels.
Linkages to micro-simulation could involve metrics such as
energy costs, carbon prices, and energy demand levels, providing
the boundary conditions for the sector-level assessment. A key
challenge is the consistency between models and the level of
complexity in moving toward a hard-linked framework.

Finally, on the equity evaluation approach, Pye et al.[34] provide
insights into the metrics used from the partial equilibrium
model to further explore vulnerability and distributional impacts.
These focused on the energy cost burden on different industries
and households under different scenarios, and the levels of
investment needed. Both metrics highlight positive and negative
impacts, and the requirements for policy interventions. In terms
of vulnerability indicators on which to map the scenario metrics,
these include energy intensity of industries, energy poverty lev-
els, and employment in carbon-exposed industries. For example,
statistical indicators around vulnerability in households aimed at
assessing the level of energy poverty show a household or region
is already vulnerable to energy cost changes as exemplified in
Figure 1. The expenditure not only varies widely by regions
but also within a region by income group.

The metrics give an indication of whether households would
be disproportionately burdened when looking at the required
per-household investment costs resulting from the model for
a specific scenario. These insights mainly point toward the types
of technologies that will be required and give insights to the
policy interventions that will be needed to avoid potential
detrimental impacts on vulnerable households, industries, or
regions—depending on the geographical or sector scope of
the model.

Final Remarks: Energy systemmodels are limited by the lack of
behavioral representation, including heterogeneous actors and
the lack of linkage to the wider economy. Although there is a live
debate as to whether such models should be applied to distribu-
tional impact analysis, a number of approaches do offer some
possibilities. These include further disaggregation of energy
models to capture the heterogeneity of households, linking to
more detailed sector models, and finally additional interpretation

Table 1. Comparison of common modeling approaches to assess distributional impacts in partial equilibrium energy system models.

Method Strengths Weaknesses

Model
disaggregation

Allows greater detail in representative groups;
Explicitly defines and considers particular socio-economic

groups according to their specific circumstances

Data-intensive, data availability, long-term data projections,
model complexity, and run-time increased

Linking sector
models

Coupling Requires moderate skill level and less detailed knowledge
of separate models;

Model algorithms and formulation remain unchanged

Direct link between the models needed via variables;
Iterations may result in higher computational times and prove
more arduous depending on the number of variables exchanged

Soft-linking Requires moderate skill level and intermediate model knowledge;
Model algorithms and formulation remain unchanged;

Makes use of the tool’s capabilities

Data analysis is intensive to determine the level of
harmonization required.

Medium tool development time.

Hard-linking Requires high skill level and knowledge of model;
Model reformulation required (and development of

new source code)
Full exploitation of tool strengths

Intensive model analysis and harmonization
High tool development time

All possible communication channels need to be joined
and harmonized.

Equity
evaluation

A flexible framework, which allows all other models used
to maintain their structure

Data and assumptions can be intensive or scarce
Does not capture the complex interlinkages among actors

and sectors, such as in the hard-linking method
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of model outputs based on a careful definition of scenarios with
relevant indicators. Without further research into the prospects
of such approaches, the analyses by energy system models risk
ignoring critical issues of equity of transitions and the distribu-
tional impacts that arise. Given that such issues are fundamental
to a successful low carbon transition, more research on the
merits of these approaches are needed.

4.2. Macroeconomic Models

This section reviews methods to depict distributional impacts in
macroeconomicmodels based on the general equilibrium theory.
We start by giving an overview of macroeconomic modeling
applied to evaluate the distributional effects of energy transition
and summarize commonly used techniques to portray these
effects in the general equilibrium framework. The description
of each technique is followed by a critical assessment of its data
requirements, strengths, and weaknesses. Despite not being the
focus of this work, but given their importance, the last part of this
section briefly comments on the application of IOMs for the anal-
ysis of distributional impacts.

The main advantage of using macroeconomic models, com-
pared to energy system models portrayed in the last section,
is that general equilibriummodels can represent the entire econ-
omy. This feature allows for feedback effects between the energy
system and other sectors of the economy.

Introducing household heterogeneity into CGEmodels for the
analysis of distributional effects dates back to the 1970s when
Adelman and Robinson analyzed income distribution policies
in South Korea as a case study.[44,45] The addition of this feature
better reflects the fact that households have distinct utility
functions, labor types (skilled/unskilled), capital endowments,
and consumption patterns and allows for the analysis of

socio-economic effects such as poverty, income distribution, the
incidence of taxes, and social equity.

In recent years, macroeconomic models are being utilized to
depict distributional effects due to their flexible formulation,
which allows for an efficient implementation of household
heterogeneity. This feature was applied in global models[46–48]

by characterizing a representative household on the basis of
underlying changes in age, household size, or urban–rural sta-
tus, to analyze the effects of demographic change on economic
growth, energy use and emissions. The inclusion of multiple
household groups in global models can be performed by extend-
ing the number of household types for several countries or by
performing a sequential microsimulation.[49,50]

Most of themethods to integrate income distribution in general
equilibrium models have been developed in the context of devel-
opment economics.[51–53] However, this strand of literature mostly
uses static CGE models and analyzes short-term poverty impacts
of development-related policy shocks and does not account for
several factors that are relevant for long-term climate policy assess-
ment such as education and productivity development.

4.2.1. Direct Modeling of the Income Distribution

This methodology, as shown in Figure 2, utilizes a predefined rel-
ative income distribution function to describe the income hetero-
geneity within one or more representative households and can be
used to assess the changes in income for different households and
number of people or households in risk of poverty. As shown by
Boccanfuso,[54] this function can be modeled according to an exist-
ing distribution function (e.g., log-normal and gamma), or fit to a
specific distribution data, such as household survey data.[30]

Although this method is rarely utilized for climate policy
analysis, Van der Mensbrugghe[55] used it to assess the long-term

Figure 1. Average household expenditure on energy by income decile (lowest, highest, and average) by NUTS1 regions across Europe. Adapted with
permission.[34] Copyright 2019, EC, REEEM project.

Figure 2. Schematic representation of direct modeling of income distribution. By the authors.
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effects on the income distribution of the Shared Socio-economic
Pathways (SSP), which are extensively used for climate policy
assessment.

Groot and Oostveen[56] analyze the effects of energy subsidy
reforms on welfare in selected countries by assuming income
to be log-normally distributed. Results indicate that eliminating
subsidies yields more budget-saving than the cost of compensat-
ing the population for the price increase. Also, countries that
currently apply energy subsidization schemes could benefit from
reforming them.

Data Issues: As this method focuses on the distribution of
income, the data requirements are lower than other approaches.
In addition, from an income-level survey, it is possible to derive
the parameters for the probability distribution functions.[54]

Limitations: The results of this method depend strongly on the
quality of the utilized income data and income distribution, espe-
cially considering the tails of the sample (richest and poorest
households). In addition, the distribution function is often kept
constant over time. Although this effect is negligible for short-
term analysis, it should be considered for long-term studies
when distribution functions can change significantly.[30]

4.2.2. Representative Households

In this methodology, as shown in Figure 3, the number of house-
holds is extended from a single representative household (used
in conventional CGEs) into several representative household
groups. Each group is individually described to account for het-
erogeneity in aspects such as labor supply, capital endowment,
and consumption preferences. This strategy maintains the struc-
ture of the CGE model relatively unchanged, except for the
increased number of households that are modeled integrally
in the CGE framework. The model then produces specific results
for each household group in terms of income development, tax
incidence, savings, and consumption. The number of represen-
tative households can vary from a few to a couple of thousands
and the choice of the number depends on computational, data, or
application-specific considerations.[30]

Feng et al.[19] divide the household sector into income deciles
to analyze the distributional effects of carbon taxation and four
revenue recycling options in Taiwan. When compared to the case
of no-carbon taxation, using tax revenues to reduce labor taxes
resulted in an increase of 1.3% of GDP in 2050, not recycling
the revenues led to a GDP reduction of 0.2% and direct redistri-
bution to households with a higher share to low-income earners
reduced GDP by 0.1%. On the other hand, the latter option pro-
duces the highest reduction in inequality.

Orlov[57] investigates the distributional effects of eliminating
subsidy on gas consumption in Russia using a dynamic,

multi-region, multi-sector CGE model with the electricity sector
disaggregated into key technologies and ten representative
household groups (i.e., income deciles). This work suggests that
using the additional revenue from higher domestic gas prices
can alleviate income inequality in Russia and increase the total
private consumption of the poorest decile by 3%. However, the
most efficient revenue-recycling scheme is to invest in the energy
efficiency of buildings, which have the largest energy-saving poten-
tial in Russia, leading to higher reductions of GHG emissions
while increasing the consumption of the poorest decile by 1%.

Cunha Montenegro et al.[58] use a multiregional recursive-
dynamic CGE model to analyze the impacts of long-term cap-
and-trade policies on the EU Member States among four scenar-
ios with different levels of decarbonization. The households of
the EU-MS are divided into income quintiles and the revenues
from the cap-and-trade policies are redistributed to the house-
holds in the same proportion that it occurred in the base year
of 2011. Results indicate that increasing the reduction targets
in the EU leads to a higher increase of income in low-income
households compared with high-income households. However,
the magnitude of income distribution varies per Member States.

Rausch et al.[59] used a static CGE model for the US that
includes 15 588 household types, to analyze the impacts of a
20 USD/tCO2 carbon price under three different revenue recy-
cling scenarios. They found that the variation in impacts within
broad socio-economic groups may swamp the average variation
across groups, highlighting the relevance of including household
heterogeneity in climate research.

Data Issues: As stated by van Ruijven et al.,[30] a relevant issue
to this method is that data concerning consumption, assets, and
incomes of households can deviate considerably between house-
hold survey data and national accounts. For that reason, it is
necessary to reconcile data obtained from household surveys
with national social accounting matrices (SAM), on which
CGE models are usually based.

For dynamic model runs, one should also consider the
development of each representative household with time. As
time passes, the composition of education level within each
group changes, there is migration among regions, the population
structure changes, and fiscal policies adapt to the demography of
the population. These phenomena require their own set of
assumptions (which are commonly decided by the modelers),
increasing the data requirements for this methodology.

Limitations: Implementing multiple representative house-
holds in a CGE model results in increased computational
demand and higher running times to solve. Therefore, one needs
to consider this limitation when choosing the number of repre-
sentative groups that fit the computational power available and
meet the requirements of the analysis being made.

Figure 3. Schematic representation of the approach with multiple households. By the authors.
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Another limitation of this method is related to the fact that the
income distribution within each representative household is not
modeled. By disaggregating the households into groups of equal
size and ordering them according to income levels, e.g., in quin-
tiles, the income level of each new representative household is
the average of all the households in this group (“representative
household”). However, the average income level can still present
substantial deviations from the extremes, especially when consid-
ering the poorest and richest income groups. Therefore, the
method is not well-suited to explore the impacts of climate
policies on the poorest 1% of households.

4.2.3. Final Remarks

The methods to analyze the distributional impacts of climate pol-
icies using CGEmodels have varying data requirements and may
produce diverging results, as they consider the interactions
between household types and the rest of the economy in different
ways. GCE models that integrate multiple households in their
structural formulations produce detailed output for heteroge-
neous households while fully considering the interactions and
general equilibrium effects between the household types and
the economy. On the other hand, micro-simulations can provide
detailed outcomes for a large number of household types but do
not cover interactions among households. Direct modeling of the
income distribution can be implemented with limited data avail-
able but does not deal with structural changes or any interactions
between households and/or with the economy. The assessment
of long-term distributional implications of climate policies
requires capturing the heterogeneity in capital endowment
and accumulation as well as differences between household
types in consumption patterns and responses to price changes.
To capture these effects consistently, methodological develop-
ments are required beyond the current applications of these
methods in (mainly) static models.

The inclusion of multiple household types in CGE models
would enable producing scenarios to explore the impacts of
climate policies on household income and consumption, consid-
ering the interactions among households and between house-
holds and the economy. The micro-simulation methods can
provide similar information as increasing the number of house-
hold types within the CGE model, but potentially for a larger
number of household types with fewer computational limita-
tions. The arithmetic micro-simulations enable developing
comprehensive income distribution scenarios and account for
the full impacts of climate policy on different household types.
Behavioral microsimulation methods add to this as they account
for changes in the labor force decisions of households which are
important for long-term climate policy analysis.

4.2.4. Distributional Impacts in IOMs

Leontief first presented the IOM in 1936 when he created a table
representing the economy of the United States in 1919, which
depicted the mutual interrelations among industries in that
country.[60] IOMs rely on tables that describe sale and purchase
relationships between producers and consumers, where rows
represent supply and columns the demand.[61] As these tables

are fairly accurate in their depiction of inter-industrial relation-
ships, they have been used extensively by economists, environ-
mentalists, and policy makers.[62] On the other hand, IOMs also
present limitations due to their simplistic nature, most notably
the assumption of fixed coefficients of productions which ignores
the possibility of factor substitution.

The disaggregation of households in IOMs for the analysis of
distributional impacts is rather straightforward and consists of
using household expenditure survey to disaggregate the final con-
sumption into the desired representative groups, often requiring
matrix balancing techniques to ensure harmonization between the
input–output table and the survey.[63,64] However, as observed by
researchers in the 1960s, it is necessary to consider households
as heterogeneous entities who have distinct consumption
patterns.[65] To address this issue, Miyazawa[66] developed an
extension to the IOM by introducing an inter-relational multiplier
which computes how direct changes in income of one group
results in indirect and induced income changes in another.[67]

Recent applications of IOMs go beyond the monetary frame-
work and include physical units to better portray the energy and
environmental systems. Zhang et al.[64] use an IOM with hybrid
units and different income groups to investigate the effects of a
CO2 tax on the Chinese economy and the results indicate that
while this instrument is successful on reducing emissions with
little impact to GDP, the effect on households is regressive and
themost affected group are low-income rural households. Ramos
Carvajal et al.[67] also uses the Miyazawa model to analyze the
expansion of renewable distributed generation of electricity in
Spain and suggests that increasing wind and solar electricity
generation has the potential to decrease electricity prices and
generate a positive impact on households’ income.

4.3. Distributional Impacts on Environmental Impact
Assessment Models

In contrast to macroeconomic and energy system models,
environmental impact assessment models do not necessarily
deal with direct distributional impacts in the form of financial
implications but focus on estimating the distribution of the envi-
ronmental burden associated with specific policies. There has
been a lengthy discourse in the literature regarding if and
how environmental burdens relate to socio-economic status, thus
affecting inequalities, especially in the case of air pollution and
its impacts on human health.[8,68–70] Results regarding the direc-
tion and significance of such a relationship are, however, mixed.
Hence, distributional impacts of energy and climate policies
reducing the environmental burden may depend on the
geographic scope, chosen socio-economic characteristics, and
considered environmental risks.[5,8,69–71] This ambivalence is
also reflected in the variety of applicable models. The following
provides examples of available modeling frameworks and dis-
cusses their advantages and limitations.

4.3.1. Methodologies to Assess Environmental Impacts of Policies
and Their Distributional Implications

As air pollution directly relates to the energy sector and consti-
tutes the biggest environmental hazard for human health,[9] most
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impact assessments of energy policies tend to focus on air pol-
lution as their main environmental indicator. Most modeling
frameworks in this field follow the Impact Pathway Approach,
which links the release of emissions through exposure assess-
ment to predefined impact categories.[20] As air pollution varies
locally with meteorological and geographical conditions, spatial
analysis and disaggregation offers itself to study distributional
impacts. It is also possible to study distributional impacts
between representative population groups. By introducing
ABM, behavioral reactions to climate and energy policies may
also be considered (e.g., a shift in transportation modes).
These three concepts—spatial disaggregation, representative
population groups, and ABMs—are shortly introduced and dis-
cussed in the following.

Spatial Disaggregation: As environmental impact assessment
models are primarily designed to simulate and estimate changes
in the spatial distribution of the environmental burden, distribu-
tional impacts on a spatial scale are often considered implicitly.
The IPCC impact assessment,[60] for example, discusses in detail
how different countries may be affected by climate change, based
on the spatial variation in temperature and meteorological con-
ditions.[72] They conclude that the most vulnerable countries
would suffer the most and thus profit the most from climate
change mitigation. Such environmental benefits may even offset
additional costs.[73,74]

Kitous et al.[73] analyze possible co-benefits from reduced air
pollution due to increased climate mitigation on a global level.
Although changes in concentration levels are modeled with a
spatial resolution of 1��1�, the analysis concentrates on the
country level. Countries such as China and India seem to profit
most from additional climate change mitigation efforts, indicat-
ing that there are distributional impacts on the country level.
Similar results are also provided by Vandyck and Van
Regemorter,[74] who applied the same modeling framework.

The same methodological setup is applied as part of the policy
impact assessment of the European long-term strategy “A clean
planet for all”.[75] This study applies the GAINS model,[76–78]

which is developed to assess compliance with air pollution con-
trol legislation and models air pollution down to street level.
Although this modeling framework allows studying distribu-
tional impacts between countries, or cities, the policy impact
assessment focuses only on the EU level, ignoring any possible
effects between or within European countries.

SHERPA is another modeling framework suitable for policy
assessment, which is specifically designed to analyze the impacts
of different emission sources, i.e., sectors and neighboring
regions, on air pollution levels in cities and/or administrative
areas.[79–81] With its spatial variability, it provides a flexible
and easy-to-apply tool for policy-makers to study the distribu-
tional impacts of air pollution mitigation policies between differ-
ent administrative areas. Spatial variance in the environmental
burden within a city can, however, not be analyzed as also
acknowledged by Pisoni et al.[82] For this purpose, dedicated city
models, such as DIDEM, are required.[83] DIDEM has been spe-
cifically developed to study the impact of extending the district
heating network in Torino. Although total emission may even
rise, the city benefits from improved air quality and reduced
associated impacts by relocating emissions from the city center
to a rural area.[84] This example shows the relevance of spatial

distribution of both emissions and population when it comes
to environmental impacts. Although the people in the city center
benefit from better air quality, people living next to the new dis-
trict heating plant may be affected negatively; yet due to the
higher population density in the city center, this is still consid-
ered a beneficial policy as indicated by a cost–benefit analysis.

The spatial distribution of the environmental burden does,
however, not provide any information on the type of distribu-
tional impact, i.e., whether a policy has regressive or progressive
impacts. For this, we also need to correlate exposure to some
socio-economic indicators.

Representative Population Groups: One way to link environmen-
tal burden to socio-economic indicators is to define representa-
tive population groups and estimate their exposure to
environmental risks in different microenvironments based on
time–activity patterns.[85–88] Li et al.[86,87] showed that lifelong
exposure to different environmental hazards varies significantly
between population subgroups differentiated by age, gender,
employment level and degree of urbanization, with characteristic
behavioral patterns, such as smoking habits and time spent
indoors. People living in areas with higher population density,
for example, are usually exposed to higher ambient background
concentrations. There is also evidence that low-income house-
holds show higher exposure to environmental hazards as they
spend more time indoors, have usually smaller average room
sizes and tend to smoke more often.[89] Gens et al.[85] used a
similar model setup to study possible distributional impacts of
improved insulation of buildings, which is supposed to reduce
ambient air pollution through reduced energy consumption
but may affect indoor air quality negatively due to a tighter
building envelope. Though a tighter envelope also means less
penetration of outdoor air, if significant indoor sources, such
as fireplaces, cooking or smoking are present, their increased
concentration levels due to lower air-exchange rates may out-
weigh any benefits related to ambient air quality. Due to the time
spent indoors and associated activities, insulation measures may
thus have negative impacts on low-income households.[90]

Estimating exposure for representative population subgroups
allows to include distributional impacts within countries or
administrative regions in environmental impact assessments.
Results may, however, differ, depending on how the subgroups
are determined, i.e., which socio-economic characteristics are
considered. As discussed in Li et al.,[87] different environmental
hazards may correlate with different socio-economic characteris-
tics. Population subgroups are usually determined based on
micro-census data; its availability determines, in the end, the spa-
tial resolution of the analysis. Also, this data often only contains
information about the location of residency, but not about where
people work. For simplicity, it is often assumed that ambient con-
centration levels at the working place are the same as at the resi-
dency, ignoring possible distributional effects resulting from
moving between different locations. One possible improvement
could be to include data from GPS tracking.[91] Combining time–
activity patterns with GPS location could allow to estimate indi-
vidual exposure based on ambient environmental data with a
high spatial resolution. The socio-economic characteristics of
subgroups have to be matched to time–activity patterns, which
are usually based on time use surveys. These surveys provide
static diaries with additional socio-economic information.
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To avoid biased results, the models are usually run in a Monte
Carlo simulation to capture uncertainty, iterating through differ-
ent possible diaries, resulting in an exposure distribution for
each subgroup. As these diaries are, however, exogenously deter-
mined, the models are not able to capture any behavioral reac-
tions. With improved building insulation, for example, people
may open windows more frequently as they notice a decline
in indoor air quality. Similarly, better access to public transport
and cycling lanes will affect the decision to travel by private cars.
To also capture these responses and their impact on the environ-
mental burden, especially in cities, agent-based exposure models
were recently developed.

Agent-Based Models: As described in Vallamsundar et al.,
Chapizanis et al., and Yang et al.,[92–94] ABM is used to estimate
the dynamic exposure of population subgroups or individual
agents to environmental hazards by combining, for example,
air pollution maps with street and building information and
an ABM layer. The ABM simulates the movement (behavior)
of different agents according to their socio-economic character-
istics and associated behavioral rules. Agents then react dynami-
cally to changed situations, e.g., closed roads or improved public
transport. With this approach, it is possible to also account for
spatial variations in exposure and their distributional impacts
within administrative areas. The modeled agents depend on
the available information and data regarding time–activity pat-
terns, socio-economic status, movement profiles, and considered
microenvironments. In addition, decision-making rules may
differ in each microenvironment or from region to region.
Due to high data requirements, ABMs are usually only applicable
to smaller domains, such as individual cities. Their current appli-
cation seems to also focus on policy implications in the transport
sector due to its dominance in urban air pollution. By consider-
ing dynamic exposure of different population subgroups, ABM
frameworks may help policymakers to identify vulnerable sub-
groups and design better, targeted mitigation policies, effectively
reducing distributional impacts. Despite their potential and flex-
ibility, their suitability for policy analysis could be limited due to
their complexity and missing knowledge on how socio-economic
status affects mobility or consumption patterns in different
regions or administrative areas.

4.3.2. Data, Metrics, and Limitations

Environmental impact assessment models require a lot of data.
This data dependency increases the more detailed distributional
impacts are to be studied. To differentiate population subgroups,
spatially resolved population data has to be combined with socio-
economic characteristics, e.g., from micro-census data, often
only available on a coarser resolution (census or administrative
level) due to data protection issues. In addition to having to fuse
different spatial scales and match different socio-economic dif-
ferentiation, policy assessment is usually done prospectively
and thus requires projections for future years. Available popula-
tion projections consider changes in age distribution due to
changing life expectancy and birth rates and partly also spatial
changes due to increased urbanization. It is, however, not possi-
ble to project the distribution of socio-economic characteristics

without introducing a substantial amount of new uncertainties.
Though changes in socio-economic characteristics such as
employment and income level may, for example, be determined
by sequential analysis,[86,87] high uncertainties and increased
complexity may result in difficulties to interpret the policy assess-
ment results.

Improved exposure assessment considering different
microenvironments additionally requires information about
time–activity patterns. These are usually derived based on dia-
ries, constituting only a snapshot in time of typical activities,
which may also change in the future, also as a response to
policies. Without modeling this change in activities, e.g., with
ABMs, or considering such implications in the scenario setup,
these behavioral responses are neglected in the analysis.
Relevant information linking socio-economic characteristics to
activity/movement patterns and to derive corresponding decision
rules could be collected from wearable sensors[95] or by coupling
with other models, e.g., energy systemmodels, transport models,
or economic models with a suitable disaggregation, especially
with regard to households.

4.3.3. Final Remarks

Environmental impacts are often modeled with a high spatial
resolution that would allow studying distributional impacts on
a spatial level, e.g., between neighborhoods, but the analysis is
often carried out only on a more aggregated, administrative level.
Thus, most policy assessments focus on differences between
countries, ignoring potential distributional impacts within coun-
tries due to changes in the environmental burden. Available
frameworks to analyze these distributional impacts on
population-level are characterized by high uncertainty and
depend on available data quality. Static approaches based on sim-
ulating exposure in different microenvironments according to
time–activity patterns can only provide a snapshot of possible
distributional impacts. Assumptions about changing activities
in the future need to be explicitly included in the scenario setup.
ABMs offer the possibility to also consider behavioral feedbacks,
i.e., changes in activities, but only as long as decision rules are
known. In addition, ABMs are potentially limited in their spatial
domain due to increased data requirements. Finally, all dis-
cussed frameworks do not consider any financial implications
of reduced environmental burden. Although health impacts
are sometimes expressed as external costs, their financial
implications with regard to distributional impacts are often
not discussed. As mentioned in ref. [8], not all environmental
impacts can be expressed in market-relevant terms. If they
are, however, it is possible to also feed their implications back
to economic models. Less work-loss days resulting from
improved air pollution, for example, could increase labor avail-
ability in CGE models.[75] Including air pollution costs in energy
system models may affect the energy transition pathways,[96] and
thus have direct distributional impacts. By coupling environmen-
tal impact models with economic models would allow studying
both the environmental and financial dimensions of distribu-
tional impacts or energy or climate policies.
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5. Integrated Solutions

The previous sections have shown how distributional impacts of
energy and environmental policies can be integrated into energy
system models, macroeconomic models, and environmental
models. However, due to the unique formulation of each model-
ing framework, it is a challenge to develop a comprehensive
method that includes the energy, socio-economic, and environ-
mental dimensions altogether. An integrated solution attempts
to link two or more models in a common framework to close
the gap between different perspectives and mitigate the
weaknesses of individual modeling techniques.

Although the process of linking two or more of the aforemen-
tioned models is not new and is further reviewed by Korkmaz
et al.,[97] cases applied to the investigation of distributional effects
among households are still scarce. For this reason, we focus this
section on two existing strategies: 1) linking macroeconomic and
micro-simulation models, and 2) linking partial equilibrium
models with other models.

5.1. Linking Macroeconomic and Micro-Simulation Models

Micro-simulation models may include a very large number of
household types, even considering all households from a sample
survey as separate household types. These models can vary
widely in sophistication and granularity, ranging from simple
accounting/arithmetic methods to approaches that include
behavioral responses of households to changes in labor markets
and product prices (i.e., changes in savings behavior). The micro-
simulation and the macroeconomic models can operate in a
sequential (top-down) form or in an iterative format (top-down/
bottom-up), in which there is a feedback loop between the
models,[30] as shown in Figure 4.

5.1.1. Sequential Approach

In sequential studies, changes in labor and capital markets and
consumption are first determined in the CGEmodel and are then
integrated into the Micro-Simulation model as exogenous varia-
bles, which is then used to determine the impacts on house-
holds.[98] These are based on a set of equations quantifying
income, expenditures, taxes, and savings for different household
types constrained by the survey data and CGE model results.
These models usually include a detailed representation of taxes
and transfers, and determine income of different household
types.[99] Commonly, several output variables of CGE models
are used as inputs to Micro-Simulation models, which can dis-
aggregate the results over multiple household types, including

wages, prices of goods, consumption, the sectoral composition
of labor, etc.[100]

In addition, some modeling approaches include behavioral
equations, which determine the behavior of households (e.g.,
occupational choices) based on characteristics of individuals
from the household survey.[101] This approach can capture
changes in population structure and employment shifts among
sectors using appropriate weighting. These models estimate
econometrically the probability for household members to be
in a certain labor market, derived from implicit utility functions
and do not identify a particular labor market choice for each indi-
vidual, but generate a probability distribution over the labor mar-
ket choices of the population.[101] Some constraints have to be
imposed to maintain consistency between the CGE and the
micro-simulation models with respect to total employment, wage
rates, and income levels.[99] This is usually done by adjusting the
parameterization of the CGE model aiming to minimize the dif-
ferences between the model results, while alternative approaches
have been also analyzed.[99]

Although most applications of this approach are performed
with static CGEmodels, attempts exist to use dynamic CGEmod-
els. Buddelmeyer et al.[102] combine a dynamic CGE model for
Australia with a Micro-Simulation model, with both models
using a similar population structure. The CGE model results
are downscaled to the level of households (through Micro-
Simulation modeling) and reweighted for structural changes
in the population. The GTAP poverty framework (GTAP-Pov)
is a micro-simulation model drawing on national household
survey data, sequentially linked to a “standard” GTAP CGE
model,[103,104] used to perform policy analysis for single
countries.

Data requirements include information on taxes, social bene-
fits, hours worked, as well as information on the benefits system
to determine implications of changes in a household earning for
tax payments and/or eligibility for benefits. Behavioral micro-
simulation is more data-intensive as it needs background data
that characterize household members to define behavioral choice
modeling. To model occupational choices of households,
information on household characteristics is required, e.g., age,
gender, education, skills, children under six, etc.

In modeling approaches not including behavioral aspects, the
changes in economic variables (i.e., employment, consumption)
are determined by the survey data and the aggregate changes in
the representative households (modeled with CGE). Therefore,
this method cannot capture the characteristics of the individual
households.[102] However, the inclusion of behavioral aspects
may overcome these limitations and help the analysis of house-
hold economic behavior such as consumption preferences.

Figure 4. Schematic representation of the approach with micro-simulation. By the authors.
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5.1.2. Iterative Approach

The iterative approach ensures that the information from
micro-simulation models is fed back to the CGE or energy
system models aiming to converge to a common solution in
a few iterative steps. In the case of CGEs, the variables iterated
across models are changes in employment, labor supply, wages,
consumption patterns, and prices.[98] In ref. [105], the CGE
determines and passes the prices, household income, goods
supply and labor demand on to the micro-simulation model,
which in turn calculates endogenously household incomes,
consumption, labor supply, and unemployment. Labor supply
and consumption patterns change in both models as house-
holds respond to changes in wage rates, with the loop continu-
ing until the models converge on consumption and labor
supply.

Böhringer et al.[106] coupled a CGE model with a micro-
simulation model to assess the impacts of a green tax reform
where additional revenues are redistributed lump-sum to
Spanish households on an equal-per-capita basis. The quantita-
tive evidence from coupled CGE and micro-simulation analyses
showed that such a green tax reform leads to a substantial reduc-
tion in harmful emissions while having a progressive impact on
low-income households.

The way of modeling feedback from the micro-simulation to
the CGE or energy system model influences the results of the
approach. Results can also be affected by observed inconsisten-
cies between the data from household surveys and the SAM
used in CGE modeling or energy demand disaggregation in
the energy system model. This can be prevented by adjusting
either the micro or the macro data, at the stage of model
development.

Rutherford et al.[107] showed that under some conditions
(i.e., households not changing occupation), the iterative micro-
simulation method resembles the same results as a multiple
households CGE model. The combined CGE–MicroSimulation
approach has the advantage of numerical tractability and reduced
running time with respect to large numbers of households in
income–expenditure surveys.[106]

5.1.3. Hybrid Approach

Hybrid approaches have also been developed, the most
common of which is the combination of a multiple household
CGE (representing a small number of household types)
with direct modeling of the income distribution and micro-
simulation to produce results for a larger number of household
types. This approach captures the general equilibrium effects
(related to changes in prices, demand) between a large number
of household categories within the CGE modeling
framework.[74,108,109]

The hybrid approaches are even more data-intensive as
they require (in addition to full-scale SAM) surveys with
household-level data on 1) expenditures on goods, 2) wages
and capital income, 3) assets and demographic projection on
changes in household characteristics, but also household-level
information on taxes paid, social benefits, and labor.

5.2. Integrated Solutions with Partial Equilibrium

Partial equilibrium models are well-equipped as part of a suite of
integrated solutions to assess the distributional impacts of energy
and climate policies. The focus of partial equilibrium models is
on the techno-economic pathways, which can include linking to
other models or applying the equity evaluation.

As described in Section 4.1 and shown in Table 1, there are
three variations to link models: coupling, soft-linking, and hard-
linking—each with its own advantages and disadvantages. The
advantage of model linking methods is to retain a high level
of detail in each of the separate models—similarly to disaggre-
gation—and at the same time to maintain the flexibility of the
different modeling frameworks. Retaining the positive aspects
of the partial equilibrium framework to assess the long-term
implications for energy transitions requires preserving the main
method such that the soft-linking approach is most common.
Capros et al.[110] applied the PRIMES model to quantify the
impacts of the European “Clean Energy for all Europeans” pack-
age. The PRIMES model links a suite of detailed sector models,
which although did not specifically aim to address distributional
impacts, identifies specific challenges that not only impact the
policy objectives but also will have effects to consumers in terms
of benefits and economic repercussions.

Fell et al.[15] reviewed integrated ways to capture the distribu-
tional impacts of long-term transitions by linking a partial equi-
librium model with a higher level of disaggregation in the
household sector with a model specifically designed to evaluate
distributional impacts. This mixed-methods approach, however,
allows to identify potential areas in long-term policies that might
be of concern with regard to distributional impacts. Pye et al.[34]

apply an equity evaluation as a means of linking information
from different sources and models without changing the struc-
ture of each method.

The linked model approach of partial equilibrium with other
models, such as macroeconomic models, is a powerful tool that
offers a unique insight through the combination of long-term
energy and climate policy pathways in conjunction with a view
on their potential distributional impacts on specific groups. Soft-
linking allows each model to maintain its framework and
strengths without the burden of increasing the computational
time or the model complexity.

6. Conclusion and Outlook

In this work, we reviewed several modeling frameworks that are
1) commonly utilized for energy and environmental policy anal-
ysis and 2) capable of assessing the distributional impacts of such
policies. This study comes from the necessity to better contem-
plate the distributional aspects of measures that aim at decreas-
ing GHG emissions. This need is clearly stated at the 2030
Agenda for Sustainable Development signed by the United
Nations Member States and is reflected on protests against fiscal
policies that, despite aimed at curbing emissions, end up
impacting low-income earners as it happened in Yellow vest
movement.
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Distributional effects refer to how the gains and costs of a proj-
ect or policy are distributed among its participants, which in
terms of policy-making may refer to different regions, sectors,
and households. This work focuses on the last dimension and
examples of distributional effects, in this case, are the incidence
of taxes, income growth, energy consumption, and health dam-
ages caused by environmentally harming activities.

A number of modeling frameworks capable of depicting distri-
butional impacts in different dimensions is presented, ranging
from earlier methods such as energy and IOMs to more recent
environmental impact assessment tools. The fundamentals of
each framework are briefly described to provide a complete view
of the diversity of modeling tools available for energy and envi-
ronmental policy analysis.

Following, in Section 4, we discussed three individual
modeling techniques with distinct focusses and how they
incorporate distributional impacts into their analyses. First,
energy system models using partial equilibrium formulation
can be used to assess the technological requirements and costs
of energy and environmental policies due to their high level of
technical detail. However, the lack of feedback with other
economic sectors constrains their use in climate policy analysis.
Next, we move to general equilibrium models which are
capable of accounting for feedback effects between sectors
and regions in exchange for a less detailed technical description
of the energy system. Finally, environmental impacts
assessment models make it possible to estimate the health
impacts of air pollution from fossil-fuel consumption for
energy-related activities.

Integrated solutions that involve linking two or more models
in a single unified framework are reviewed in Section 5.
We mainly discuss the combination of macroeconomic with
micro-simulation models and integrated solutions involving
partial equilibrium models because these are widely used to
better represent distributional effects.

Among the techniques discussed in Section 4 and 5, it is clear
that a common solution for the inclusion of distributional effects
on modeling frameworks is the disaggregation of sectors or
households. The main challenge of this approach is the availabil-
ity of data because it requires describing each individual repre-
sentative household with specific information depending on the
modeling framework being used. Therefore, the scarcity of data
and difficult access to household surveys are obstacles that
should be tackled to improve the analyses of distributional
impacts of energy and environmental policies, especially those
conducted by governments, which should in theory have easier
access to these resources.

Integrated solutions offer a pathway to reconcile the strengths
of different modeling approaches, but literature is scarce on
linking different model types in a unified framework and also
consider different household groups. In such a modeling exer-
cise, data requirements are very high and there is also the issue
of how the different models communicate with each other. In
this case, one viable option is to select one central model that
receives input from the others and reacts accordingly, such as
the PRIMES or PROMETHEUS model,[14,111] with the addition
of multiple representative households from Section 4.2 or an
integrated micro-simulation.[112] Also, starting with static

analysis of a single region would help obtain useful insights
for expanding the framework in future exercises.
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K. Hufendiek, Sustainability 2019, 11, 6868.
[59] S. Rausch, G. Metcalf, J. Reilly,Distributional Impacts of Carbon Pricing:

A General Equilibrium Approach with Micro-Data for Households,
National Bureau Of Economic Research, Cambridge, MA 2011.

[60] W. W. Leontief, Rev. Econ. Stat. 1936, 18, 105.
[61] Input-Output Tables (IOTs) – OECD, http://www.oecd.org/sti/ind/

input-outputtables.htm (accessed: July 2020).
[62] Y. Wang, J. Li, L.-C. Lee, M. Wang, H. Du, Environ. Rev. 2019, 27, 567.
[63] C. Grainger, A. Schreiber, F. Zhang, Energy Policy 2019, 125, 65.
[64] H. Zhang, G. J. D. Hewings, X. Zheng, Energy Policy 2019, 128, 223.
[65] M. L. Cloutier, P. J. Thomassin, Econ. Syst. Res. 1994, 6, 397.
[66] K. Miyazawa, Input-Output Analysis and the Structure of Income

Distribution, Springer Berlin Heidelberg, Berlin, Heidelberg 1976,
pp. 22–42.

[67] C. Ramos Carvajal, A. S. García-Muñiz, B. Moreno Cuartas, Energies
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