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ABSTRACT
In a previous work [Pan et al., Molecules 23, 2500 (2018)], a charge projection scheme was reported, where outer molecular mechanical
(MM) charges [>10 Å from the quantum mechanical (QM) region] were projected onto the electrostatic potential (ESP) grid of the QM
region to accurately and efficiently capture long-range electrostatics in ab initio QM/MM calculations. Here, a further simplification to the
model is proposed, where the outer MM charges are projected onto inner MM atom positions (instead of ESP grid positions). This enables a
representation of the long-range MM electrostatic potential via augmentary charges (AC) on inner MM atoms. Combined with the long-range
electrostatic correction function from Cisneros et al. [J. Chem. Phys. 143, 044103 (2015)] to smoothly switch between inner and outer MM
regions, this new QM/MM-AC electrostatic model yields accurate and continuous ab initio QM/MM electrostatic energies with a 10 Å cutoff
between inner and outer MM regions. This model enables efficient QM/MM cluster calculations with a large number of MM atoms as well as
QM/MM calculations with periodic boundary conditions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038120., s

I. INTRODUCTION

Combined quantum mechanical and molecular mechanical
(QM/MM) calculations have been widely used in the study of molec-
ular solvation, ligand–receptor binding, chemical/enzyme reactions,
photochemistry, and photobiology.1–11 Within QM/MM calcula-
tions, a central region of interest in a system (such as a reactive
site and a binding pocket) containing up to a few hundred atoms is
designated as the quantum mechanical (QM) region, whose inter-
nal nuclear and electronic motions are subjected to rigorous QM
modeling. Meanwhile, the remaining atoms of the system constitute
the molecular mechanical (MM) region, whose internal (nuclear)
motions are captured by classical MM force fields. Finally, the

interactions between QM and MM regions consist of three types
of terms: QM/MM covalent bonding, QM/MM electrostatics, and
QM/MM van der Waals (vdW) interactions.

Out of the three types of interactions mentioned above,
QM/MM electrostatics is our primary concern in this work.
QM/MM covalent and vdW interactions are significant only for
QM-MM atom pairs in close contact. Nevertheless, it should be
noted that link-atom, double link atom,12 local SCF,13,14 generalized
hybrid orbitals,15,16 pseudobond,17,18 frozen orbitals,19,20 Yin-Yang
atom,21 and other approaches were developed to handle covalent
bonds across the QM/MM interface. This is usually accompanied
by excluding the atomic charges on the first MM group22,23 and/or
redistributing MM charges near the interface.24–30 An alternative
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way to avoid an over-polarization of the QM wavefunction by point
MM charges near the QM/MM interface is to reproduce them with
Gaussian-blurred MM charges.12,27,31,32

QM/MM van der Waals interactions are usually treated empir-
ically, where QM atoms are assigned vdW parameters based on
atomic similarity, while MM atoms retain their vdW parameters
from the MM force field. As such, QM/MM vdW interactions are
not necessarily compatible with QM/MM electrostatics, especially
during a chemical or physical process.33,34 This has led to the devel-
opment of several density-dependent QM/MM vdW models, which
have yet to gain wide use.35–42

There are three general schemes for capturing the electro-
static interactions between QM and MM atoms. In the “continu-
ous” scheme [Fig. 1(a)], the continuous QM electron density, ρ(r),
directly interacts with the MM charges, qB,

Eelec, C
QM/MM = − ∑

B∈MM
∫

ρ(r)qB

∣r − rB∣
dr + ∑

A∈QM
∑

B∈MM

ZAqB

∣rA − rB∣
, (1)

which was offset by the interactions between nuclear charges, ZA,
and MM charges. In a variation of this scheme,43 one precomputes
the MM electrostatic potentials on the grid positions in the QM
region, ϕ(r), and at the QM nuclear positions, ϕA. Then, the energy
becomes

Eelec, C′
QM/MM = −∫ ρ(r)ϕ(r)dr + ∑

A∈QM
ZAϕA. (2)

In the “surrogate” scheme [Fig. 1(b)], the QM electron den-
sity (and nuclei) is represented by surrogate charges, QA, and dipole
moments, μA, and higher moments assigned to each QM atom.
Together, these local multipole moments, MAm, interact with FAm,
the local Taylor expansion of the MM electrostatic embedding
potential,

Eelec, S
QM/MM = ∑

A∈QM
∑
m

MAmFAm

= ∑
A∈QM
[QAϕA − μA ⋅ EA +⋯], (3)

where the leading Taylor expansions include ϕA and EA, i.e., the local
electrostatic potential and field (at the position of the Ath QM atom)
due to all MM charges.

FIG. 1. Two schemes for describing the electrostatic interaction between QM and
MM atoms: (a) a continuous QM electron density interacts with MM charges; (b)
QM atoms are represented by surrogate multipoles in their interactions with MM
charges.

Finally, the hybrid scheme combines a “continuous” descrip-
tion for the short-range (SR) QM/MM electrostatics and a “surro-
gate” description for the long-range (LR) QM/MM electrostatics,

Eelec, hybrid
QM/MM = Eelec, C

SR-QM/MM + Eelec, S
LR-QM/MM. (4)

These three schemes have been implemented within various
quantum chemistry and molecular mechanics programs as well as
their interfaces.23,30,57–68 The reader is referred to Ref. 69 for a com-
plete review of these methodologies. Here, we shall only briefly dis-
cuss several models listed in Table I that are most relevant to this
work.

The continuous scheme, where the continuous electron den-
sity interacts directly with the MM charges, is routinely used in
ab initio QM/MM (ai-QM/MM) calculations on truncated sys-
tems. In the setup of these truncated systems, all MM atoms
beyond a cutoff distance (typically around 15 Å–25 Å) from the
QM region are removed, thus completely neglecting long-range
QM/MM electrostatics or partially accounted for it through adding
an implicit solvent environment. To maintain a proper boundary, a
layer of MM atoms just within the cutoff are usually kept at fixed
positions.

Within the continuous scheme, one essentially represents the
MM embedding electrostatic potential in the basis of atomic orbitals
(χμ, χν, . . .),

VMM
μν = ∫ χμ(r)[ ∑

B∈MM

qB

∣r − rB∣
]χν(r) dr, (5)

and uses it as part of the one-electron effective Hamiltonian (a.k.a.
Fock matrix) to converge SCF energy. Unfortunately, such a con-
tinuous scheme becomes infeasible for extended systems because
the cost of evaluating one-electron integrals in Eq. (5) (as well as
their nuclear derivatives for obtaining ai-QM/MM energy gradient)
increases linearly with the number of MM atoms.

In contrast, the alternative continuous scheme in Eq. (2) would
allow us to retain a continuous description of QM electron density in
the evaluation of long-range electrostatics of extended systems. For
instance, in the ambient-potential composite Ewald method (CEw)
from the work of Giese and York,43 the long-range MM electrostatic
potential was first computed on a rectangular grid in the QM region
using the PME method. This potential was subsequently interpo-
lated to the atom-centered Lebedev grid position for a numerical
integration with the QM basis functions and electron density. A
related Ewald-based approach was employed by Sanz–Navarro and
coworkers in the SIESTA/Amber interface58 and more recently by
Kawashima, Ishimura, and Shiga.70

The surrogate schemes are commonly used in semi-empirical
QM/MM (se-QM/MM) calculations. For instance, Cui and co-
workers studied the interaction of Mulliken charges of QM atoms
with MM charges in their SCC-DFTB/CHARMM calculations.45,46

In ai-QM/MM calculations, Ferré and Ángyán proposed the use of
ESP charges or charges/dipoles of QM atoms in the computation of
ai-QM/MM electrostatic energy.44 This method is current available
within the MolCAS program71–73 and through a Gaussian16/Tinker
interface.74–77
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TABLE I. A partial list of QM/MM electrostatic models.

Schemes Methods Systems Description References

Continuous Ambient-potential se-QM/MM-PBC PME calculation of long-range Giese and York43

composite Ewald (CEw) and ai-QM/MM-PBC MM electrostatic potentials
on QM grid, ϕ(r), in Eq. (2)

Surrogate Electrostatic potential ai-QM/MM cluster ESP charges/dipoles of QM atoms Ferré and Ángyán44

fitted operator (ESPF) interacting with MM charges
QM/MM-Ewald se-QM/MM-PBC Mulliken charges of QM atoms Cui et al.45,46

interacting with MM charges
Hybrid QM/MM-PBC ai-CP-QM/MM Multipole moments of the QM region Rothlisberger et al.47

used in long-range electrostatics
QM/MM-Ewald se-QM/MM-PBC Mulliken charges of QM atoms Nam, Gao, and York48

used in Ewald summation of
long-range electrostatics

QM/MM-PME se-QM/MM-PBC Mulliken charges of QM atoms Walker, Crowley, and Case49

used in PME calculation of
long-range electrostatics

QM/MM-Ewald ai-QM/MM-PBC ChElPG charges of QM atoms Herbert et al.50,51

used in Ewald summation of
long-range electrostatics

Dual focal ai-QM/MM-PBC ESP charges of QM atoms Zhou, Wang, Zhang52

ai-QM/MM-PME used in PME calculation of
long-range electrostatics

QM(LREC)/MM(PME) ai-QM/MM-PBC LREC function used to smooth Cisneros et al.53,54

transition between short-range
and long-range electrostatics

Gen-Ew ai-QM/MM-PBC PBC potential represented Vasilevskaya and Thiel55

by virtual charges on a sphere
ESPC and ESPCD ai-QM/MM cluster Long-range MM potential represented Pan, Rosta and Shao56

by virtual charges on ESP grid
QM/MM with ai-QM/MM cluster Long-range MM potential This work

augmentary charges ai-QM/MM-PBC represented by augmentary charges
(QM/MM-AC) on inner MM atoms

The hybrid methods are widely adopted in se-QM/MM calcu-
lations on systems with a periodic boundary condition (PBC). The
use of Mulliken charges of QM atoms to obtain the PBC correction
of long-range se-QM/MM electrostatics was first proposed by Nam,
Gao, and York.48 While they obtained QM-MM and QM-QM
PBC corrections using Ewald summation, Walker, Crowley, and
Case calculated these corrections using the more efficient PME
algorithm.49

Several hybrid methods have also been implemented for ai-
QM/MM-PBC calculations. In an early implementation by the
Rothlisberger group, the QM region was represented by its total
charge, dipole, and quadrupole in the long-range QM/MM electro-
static interaction.47 Subsequent implementations employed surro-
gate atomic charges for the QM region. Instead of using the Mul-
liken population scheme, which are known to be sensitive to the
basis sets,50 more stable schemes, such as ChElPG charges and other
electrostatic potential (ESP) derived charges,78–81 were adopted by
Herbert, Zhang, and other groups.50–52

When using ESP-derived charges to represent the QM region in
the long-range QM/MM electrostatics, one is essentially projecting
the outer MM charges (as well as QM and MM charges in image
cells in the case of a PBC system) onto the ESP grid for the charge
fitting. An explicit charge projection (onto a sphere) of this kind was
carried out in Vasilevskaya and Thiel’s Gen-Ew model, which was
built upon earlier Spherical Solvent Boundary Potential (SSBP),82,83

Generalized Solvent Boundary Potential (GSBP),84–86 and Solvated
Macromolecular Boundary Potential (SMBP) methods.87,88

The accuracy of such charge projections was studied in an ear-
lier work by some of the authors.56 In the ESP-charge-based (ESPC)
model, for example, the outer MM charges (beyond a cutoff dis-
tance of 10 Å) were interacted with ESP charges of QM atoms,
which amounted to a projection of outer MM charges onto the
Merz–Kollman grid (i.e., points on four layers of vdW surfaces).80 In
the ESP-charge-and-dipole-based (ESPCD) model, ESP dipoles on
QM atoms were also included to further improve the accuracy (in
terms of reproducing the electrostatic energy from the continuous
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scheme). When combined with the LREC function from the work of
Cisneros and co-workers53,54 for smoothing the transition between
inner and outer MM regions, the ESPCD model could reproduce the
total QM/MM energy within 0.1 kcal mol−1 and TDDFT/MM exci-
tation energies within 0.001 eV, both compared to reference values
of the same test systems within a large number of image cells.

Notwithstanding the high accuracy of the ESPCD model, it is
not optimal to project outer MM charges onto the four layers of vdW
surfaces, where the grid points are much closer to the QM region
than the outer MM charges to be represented. More importantly,
with each update of the geometry of the QM region, new grid points
might appear, while some existing grid points might vanish, mak-
ing it non-trivial to maintain a continuous PES surface and thus to
compute the analytical energy gradient.

In this work, a simpler charge projection scheme is pro-
posed, where outer MM charges are projected onto the position
of inner MM atoms. Effectively, each inner MM atom receives an
augmentary charge due to this projection. This QM/MM model
with augmentary charges on inner MM atoms, which will be called
“QM/MM-AC,” is described in Sec. II. Its performance in ground-
state QM/MM calculations is shown in Sec. III. Conclusions are
drawn in Sec. IV.

II. METHODS
A. Hybrid QM/MM electrostatics

In a QM/MM calculation with electrostatic embedding, the
total potential energy can be expressed as

E = EQM + EQM/MM + EMM

= EQM + Eelec
QM/MM + Evdw

QM/MM + Ebound
QM/MM + EMM, (6)

where EQM and EMM are energies for the QM and MM subsystems,
respectively. EQM/MM is the coupling term between them, which
can be further divided into electrostatic (Eelec

QM/MM), van der Waals
(Evdw

QM/MM), and the covalent bonding (bound
QM/MM) terms. The bound

QM/MM is
applied when one or more covalent bonds are cut at the QM–MM
boundary.

As we mentioned in the Introduction, in typical QM/MM cal-
culations, Evdw

QM-MM remains to be treated at the MM level using
empirical parameters. If QM/MM vdW interactions are described
empirically and a fixed-charge model is used for the MM subsystem,
two energy terms (Evdw

QM/MM and EMM) in Eq. (6) can be decoupled
from the QM calculations. The actual form of EQM is determined by
the specific QM method chosen for the calculation.

In the hybrid scheme, as shown in Eq. (4), the QM/MM elec-
trostatic energy (i.e., MM charges interacting with both the QM
electron density and nuclei) is broken into the short-, long-range,
and periodic boundary correction terms, as

Eelec, hybrid
QM/MM = Eelec, C

SR-QM/MM + Eelec, S
LR-QM/MM + Eelec, S

CR-QM/QM, (7)

where the last term is only included under the periodic boundary
conditions, as discussed below. For each MM atom, a continuous
minimum distance function89

dmin
B = α

ln[∑A∈QM exp( α
dAB
)]

(8)

is used to calculate its distance from the QM region, where dAB is the
distance between the Bth MM atom and the Ath QM atom and α is
an adjustable parameter. For systems with a periodic boundary con-
dition, the minimum image convention is applied in the calculation
of dAB and dmin

B values.
A distance-based partitioning of MM atoms into inner and

outer MM regions is rather straightforward. All MM atoms with
a dmin

B value smaller than a cutoff distance roff will fall into the
inner MM region, and the interaction of their charges q<B with the
QM region will be called short-range QM/MM electrostatics and
computed using Eq. (1). All other MM atoms in the center cell, as
well as MM and QM charges in the image cells, will be assigned to
the outer MM region, and their charges q>B interact with the QM
region through the “surrogate” model in Eq. (3), thus accounting for
long-range QM/MM electrostatics.

However, such a sharp boundary between inner and outer MM
regions causes a discontinuity in the total energy and gradient when
a MM atom crosses the boundary. Therefore, we need to employ
a switch function, S(dmin

B ), to smooth the transition between the
two types of interactions at the cutoff distance. This function would
decay smoothly from 1 to 0, when dmin

B increases from 0 to roff;
Sec. II E shows four switch functions considered in the work.
Thus, q<B charge of each inner MM atom will be divided into two
parts,

q<B = q<,C
B + q<,S

B , (9)

q<,C
B = S(dmin

B )q<B , (10)

q<,S
B = (1 − S(dmin

B ))q<B , (11)

where only q<,C
B charges interact explicitly with a continuous QM

electron density [see Fig. 2(a)]. Meanwhile, as shown in Fig. 2(b),
q<,S

B charges are combined with outer MM charges (and QM
charges in image cells) in the evaluation of long-range QM/MM
electrostatics.

B. Charge projection for long-range QM/MM
electrostatics

For the long-range QM/MM electrostatics in Eq. (3), the QM
atoms are represented by MAm, a “surrogate” set of multipoles cen-
tered on the QM atom sites. These multipoles are fitted to reproduce
ϕs, the electrostatic potential due to QM electron density and nuclei,
on each point s of a pre-defined grid,

∑
A
∑
m

KAm,sMAm = ϕs, (12)

where KAm,s is the interaction tensor between the QM atomic
multipole moments MAm and a unit charge on the grid point s.
By employing singular-value decomposition (SVD) to invert the
interaction tensor, we can obtain the ESP multipoles according to

MAm =∑
s
(𝓚−1)

Am,s
ϕs. (13)

Based on Eq. (3), the long-range QM/MM electrostatic
energy is
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FIG. 2. Partitioning of the MM charges: (a) smoothed charges from inner MM
atoms in Eq. (10) to be interacted with a continuous QM electron density in the
short-range QM/MM electrostatics; (b) projected charges to be used to compute
long-range QM/MM electrostatics. The projected charges represent (i) outer MM
charges and remaining inner MM charges in Eq. (11) in the central cell and (ii)
all QM and MM charges in image cells. Projected charges are located on either
ESP fitting surfaces (Ref. 56) or inner MM atoms (this work). While our scheme
[as shown in the last panel in 9b] resembles a truncated model, it should be noted
that q<,AC charges capture the effect of long-range electrostatics.

Eelec, S
LR-QM/MM = ∑

A∈QM
∑
m

MAmF>
Am, (14)

where F>
Am refers to the local Taylor expansion of the MM elec-

trostatic embedding potential due to outer MM charges (q>B ), QM
charges in image cells (Qn≠0

A ), as well as q<,S
B , which is the long-

range portion of inner MM charges defined in Eq. (11). In actual
implementation, one can calculate the F>

Am values using Coulomb’s
law for non-PBC calculations and Ewald or PME for PBC calcula-
tions. Furthermore, q<,C

B -QM charge interactions are subjected to
the exclusion rules. Namely, for each QM atom site A, the contribu-
tions to F>

Am from q<,C
B , along with the contributions from the other

QM charges (from the center cell for PBC calculations), and typically
“MM1” atoms are excluded.22,23 In our implementation, QM atoms
in image cells adopt fixed charges, which can be pre-determined by
following the standard protocol to fit MM partial charges for the

corresponding force field. In this way, the generalized long-range
MM embedding potential F>

Am does not depend on the QM electron
density, which is similar to the CEw method.43

By substituting MAm in Eq. (13) into the energy expression in
Eq. (14), we get

Eelec, S
LR-QM/MM =∑

A
∑
m
[∑

s
(𝓚−1)

Am,s
ϕs]F>

Am

=∑
s
[∑

A
∑
m

F>
Am(𝓚−1)

Am,s
]ϕs

=∑
s

qsϕs, (15)

where qs are the projected charges on the ESP grid,

qs =∑
A
∑
m

F>
Am(𝓚−1)

Am,s
. (16)

Equation (15) indicates that the long-range QM/MM electrostatic
energy can also be viewed as the interaction energy between pro-
jected charges and QM electron density and nuclei.

This leads to an alternative way adopted in this work for
handling the long-range QM/MM electrostatics, which was also
employed in our previous ESPC and ESPCD models.56 Instead of
explicitly computing ESP-based multipoles for QM atoms, we will
compute projected charges on the ESP grid points according to
Eq. (16) and use these virtual charges to interact with and polarize
QM electron density.

Traditionally, ESP charges are fitted by using grid points on the
Merz–Kollman80 or rectangular grid (e.g., CHELP and CHELPG)78

outside the QM region. In our previous work, the Merz–Kollman
grid (points on four layers of vdW surfaces) was employed. How-
ever, in our hybrid scheme, the long-range electrostatic embedding
potential arises partially from q<,S

B from inner MM atoms (due to
the use of the switching function). This contribution can be rather
substantial because these virtual surface charges are located closer to
the QM region than outer MM atoms. When simulating condensed-
phase systems, to minimize the error (caused by our charge projec-
tion) in the interaction energy between those charges and the QM
electron density, a better way is to use the inner MM atom posi-
tions as the “grid” for charge fitting and projection. Since only the
interatomic distances between the QM and inner MM atoms were
involved in the fitting, the resulting projection is naturally transla-
tionally and rotationally invariant. This is different from the use of
grids on vdW surfaces, which does not maintain rotational invari-
ance, or rectangular grids, which retains neither translational nor
rotational invariance.

Henceforth, in this work, we will use this special “grid” to
obtain projected charges that augment q<,C

B charges on inner MM
atoms. We will therefore refer qs in Eq. (16) as q<,AC

B , where “AC”
stands for “augmentary charges,” and our overall QM/MM electro-
static scheme as “QM/MM-AC.” To maintain a smooth potential
energy surface at the cutoff distance, we can also use a weighting
function wB to scale the Coulomb interaction tensor, (WK )Am,B
= wBKAm,B, in the calculation of the projected charges,
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q<,AC
B =∑

A
∑
m

F>
Am((WK )−1)

Am,B
wB, (17)

to ensure that the projected charges vanish smoothly at the cutoff
distance. In general, any weighting function that decays smoothly
to zero at the cutoff distance can be used as wB. In our work, for
the sake of convenience, the same smoothening function in Sec. E is
employed.

As an added benefit of our hybrid QM/MM-AC scheme, its
support within a QM package can be trivial. Once the augmentary
charges are computed by a MM package or QM/MM interface, one
just needs to add the scaled and augmentary charges on inner MM
atoms, q<,C

B + q<,AC
B , and include them as “external” point charges in

QM calculations. In doing so, no extra modification is needed for the
QM packages. The overall workflow is summarized in Algorithm 1.

C. QM–QM image electrostatic correction
For QM/MM-AC calculations under periodic boundary con-

ditions, the generalized long-range MM embedding potential F>
Am

also includes contributions from the reference charges of QM atoms
in all the image cells, which results in a double counting of the QM-
QM image electrostatics. Instead of subtracting half of the QM-QM
image electrostatics as done in Ref. 48,

Eelec, S
CR-QM/QM = −

1
2 ∑A∈QM

∑
m

MAmF
QM-image
Am , (18)

we followed the CEw method43 and calculated the correction using

Eelec, S
CR-QM/QM = −

1
2 ∑A∈QM

qref
A ϕQM-image

A , (19)

where ϕQM-image
A is the electrostatic potential on the QM atom site A

from the reference charges of the QM atoms from all the image cells,
and can be calculated using the standard Ewald method efficiently.
For non-PBC calculations, this correction term is not needed.

ALGORITHM 1. Workflow for computing QM/MM-AC electrostatic embedding poten-
tial.

1 Get q<,C
B , short-range portion of inner MM charges [Eq. (10)]

2 Get q<,S
B , long-range portion of inner MM charges [Eq. (11)]

3 if PBC then
4 Call helPME to compute, F>

Am, long-range electrostatic
potential (and field, if necessary) due to q<,S

B , outer MM
charges q>B , and all MM and (fixed-value) QM charges
in the image cells

5 else
6 Compute, F>

Am, long-range electrostatic potential
(and field, if necessary) due to q<,S

B and outer MM charges
q>B

7 end
8 Get q<,AC

B , augmentary charges on inner MM atoms from
F>

Am through charge projection [Eq. (17)]
9 Compute the total MM electrostatic embedding potential,

VMM
μν , due to both q<,C

B and q<,AC
B [Eq. (5)]

10 Perform QM calculations using the MM embedding potential

D. Analytic gradient
As shown in Fig. 4, it is beneficial to use inner MM atom

sites as the ESP grid for fitting QM atomic multipole moments
and thus as sites for projecting outer MM charges. The accuracy
of computed energies (at the same cutoff) is shown in Sec. III A,
when compared to the use of points on vdW surfaces for multi-
pole fitting and charge projection. As a result, our target accuracy
(0.1 kcal mol−1 in total energy) can be achieved by only using ESP
charges on the QM atoms, making it much easier to implement the
analytical gradient. Hence, in the remainder of this subsection, only
the ESP charges are used. Accordingly, the local Taylor expansion
of the MM electrostatic embedding potential F>Am is truncated after
the zeroth order,

F>Am = {ϕ>A}, (20)

and the charge projection in Eq. (17) becomes

q<,AC
B =∑

A
ϕ>A((WK )−1)

A,B
wB. (21)

1. Analytic gradient on QM atoms
In the hybrid scheme, the gradient of the QM/MM electrostatic

energy with respect to a Cartesian coordinate xA of the QM atom A
is

∂Eelec, hybrid
QM/MM

∂xA
=
∂Eelec, C

SR-QM/MM

∂xA
+
∂Eelec, S

LR-QM/MM

∂xA
+
∂Eelec, S

CR-QM/QM

∂xA
, (22)

where the last term is only required for QM/MM-AC calculations
under periodic boundary conditions [see Eq. (19)].

The gradient of the short-range QM/MM electrostatics with
respect to a Cartesian coordinate xA of the Ath QM atom is

∂Eelec, C
SR-QM/MM

∂xA
= ∑

B∈inner-MM
[−∫

∂ρ(r)
∂xA

1
∣r − rB∣

dr − ZA
xA − xB

R3
AB
]q<,C

B

+ ∑
B∈inner-MM

[−∫
ρ(r)
∣r − rB∣

dr +
ZA

RAB
]∂q<,C

B

∂xA
, (23)

where RAB = ∣rA − rB∣. The first term is the standard contribu-
tion from the external point charge to the QM gradient, which
can be computed routinely by QM packages. Note that the den-
sity relaxation ∂ρ(r)

∂xA
does not have to contain the molecular orbital

response contributions because the total QM/MM energy is varia-
tional to molecular orbital rotations. The second term in Eq. (23)
arises from the external charge derivative ∂q<,C

B /∂xA “interacting”
with the electrostatic potential from the QM subsystem,

ϕQM
B = −∫

ρ(r)
∣r − rB∣

dr +
ZA

RAB
, (24)

at the MM site B. In regular QM/MM calculations, this term vanishes
because q<,C

B is typically fixed at the charge value defined in the force
field. However, in the hybrid scheme, ∂q<,C

B /∂xA is not necessarily
zero because q<,C

B is scaled by the weighting function that depends
on the QM coordinates,

∂q<,C
B

∂xA
= ∂S(dmin

B )
∂xA

q<B . (25)
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For long-range QM/MM electrostatics, the outer MM charges
(and QM image charges) are described by the “surrogate” charges,
q<,AC

B , as defined in Eq. (21). The corresponding QM gradient is
similar to the “continuous” one, just with q<,C

B replaced by q<,AC
B ,

∂Eelec, S
LR-QM/MM

∂xA
= ∑

B∈inner-MM
[∫ −

∂ρ(r)
∂xA

1
∣r − rB∣

dr − ZA
xA − xB

R3
AB
]q<,AC

B

+ ∑
B∈inner-MM

ϕQM
B

∂q<,AC
B

∂xA
. (26)

In the equation, the charge derivative is

∂q<,AC
B

∂xA
= ∂ϕ>A
∂xA
((WK )−1)

A,B
wB + ϕ>A

∂((WK )−1)
A,B

∂xA
wB

+ ϕ>A((WK )−1)
A,B

∂wB

∂xA
, (27)

where ∂ϕ>A/∂xA in the first term is the gradient of the long-range
MM embedding potential ϕ>A at QM site A, which is calculated using
the PME method in this work. The second term,

∂((WK )−1)
A,B

∂xA
= (∂(WK )−1

∂xA
)

A,B
, (28)

can be calculated using the formula for the derivative of the pseudo-
inverse of a matrix,90

∂

∂x
A−1 = −A−1( ∂

∂x
A)A−1 + A−1A−1⊺( ∂

∂x
A⊺)(1 −AA−1)

+ (1 −A−1A)( ∂

∂x
A⊺)A−1⊺A−1. (29)

2. Analytic gradient on inner MM atoms
For gradient on inner MM atoms, the contribution from short-

range QM/MM electrostatics is

∂Eelec, C
SR-QM/MM

∂xB
=
⎡⎢⎢⎢⎣
−∫ ρ(r) x − xB

∣r − rB∣3
dr + ∑

A∈QM
ZA

xA − xB

R3
AB

⎤⎥⎥⎥⎦
q<,C

B

+ ϕQM
B

∂q<,C
B

∂xB
, (30)

where the first term is typically evaluated by computing the electro-
static field of QM electrons/nuclei at the position of the Bth MM
atom and then scaling it by the charge value, q<,C

B , and the charge

derivatives,∂q<,C
B

∂xB
is computed in a similar way as Eq. (25).

The corresponding long-range QM/MM electrostatic contribu-
tion is

∂Eelec, S
LR-QM/MM

∂xB
=
⎡⎢⎢⎢⎣
−∫ ρ(r) x − xB

∣r − rB∣3
dr + ∑

A∈QM
ZA

xA − xB

R3
AB

⎤⎥⎥⎥⎦
q<,AC

B

+ ϕQM
B

∂q<,AC
B

∂xB
, (31)

where the charge derivatives are

∂q<,AC
B

∂xB
= ∑

A∈QM

∂ϕ>A
∂xB
((WK )−1)

A,B
wB + ∑

A∈QM
ϕ>A

∂((WK )−1)
A,B

∂xB
wB

+ ∑
A∈QM

ϕ>A((WK )−1)
A,B

∂wB

∂xB
, (32)

and the first term involves

∂ϕ>A
∂xB
= ∂

∂xB
( q<,S

B

RAB
) = q<,S

B
xA − xB

R3
AB

+
∂S(dmin

B )
∂xB

q<B
RAB

. (33)

3. Analytic gradient on outer MM atoms
Outer MM charges interact with the QM atoms only through

long-range electrostatics,

∂Eelec, S
LR-QM/MM

∂xB′
= ∑

B∈inner-MM
ϕQM

B
∂q<,AC

B

∂xB′

= ∑
A∈QM

∂ϕ>A
∂xB′

∑
B∈inner-MM

((WK )−1)
A,B

wBϕQM
B

= ∑
A∈QM

∂ϕ>A
∂xB′

qESP
A , (34)

where

qESP
A = ∑

B∈inner-MM
((WK )−1)

A,B
wBϕQM

B (35)

is the QM ESP charges fitted using the inner MM atom sites as the
weighted grid. Thus, this term arises from the electric field at outer
MM atom positions from the QM ESP charges, which can be readily
calculated using the PME method.

E. Smoothing functions
As in our previous work,56 four smoothing functions were

considered in this study, including the step function,

SStep(r) = {1, r ⩽ roff

0, r > roff,
(36)

the shift function,91

SShift(r) = {(1 − (r/roff)2)2 r ⩽ roff,
0, r > roff,

(37)

the switch function,91

SSwitch(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, r ⩽ ron

(r2
off − r2)2(r2

off + 2r2 − 3r2
on)

(r2
off − r2

on)3 , ron < r ⩽ roff

0, r > roff,

(38)

with ron set to be 0.75roff, and the long-range electrostatic correction
(LREC) function,53,54
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SLREC(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − [2(1 − r
roff
)

3
− 3(1 − r

roff
)

2
+ 1]

2
, r ⩽ roff

0, r > roff.
(39)

These functions are employed in Eqs. (10) and (11) to split
inner MM charges into continuous and surrogate portions. They
are also used in Eq. (17) to define the weighting function wB in the
charge fitting.

III. IMPLEMENTATION AND COMPUTATION DETAILS
Our QM/MM-AC scheme was implemented and tested

through a generic QM/MM interface named QMHub, which in our
work connects the AMBER molecular mechanics software package92

and a development version of the Q-CHEM 5.0 software package.63

Specifically, QMHub collects atomic coordinates and charges from
AMBER (which performs the MD sampling), divides the system
into QM, inner, and outer MM regions, carries out the charge pro-
jection, and prepares Q-CHEM QM/MM input files. Subsequently, Q-

CHEM performs a standard ai-QM/MM calculation with inner MM
charges (scaled charges augmented by projected charges from outer
atoms). Information is then sent back to QMHub, which computes
forces on all MM atoms and sends them to AMBER for driving
dynamics. The long-range electrostatic potential and electric field
are calculated by PME using the helPME package developed by
Simmonett (https://github.com/andysim/helpme). Below, we shall
describe the three test systems used to validate our QM/MM-AC
scheme.

A. Anionic oxyluciferin in luciferase
Neutral and anionic oxyluciferin (OLU and OLU−) in both

aqueous and enzyme environments were used in our previous
work,56 where several electrostatic models were compared. It was
concluded that the ESPCD model, where ESP charges and dipoles
were used to reproduce the electrostatic potentials on the Merz–
Kollman grid, was needed to achieve the accuracy we targeted
(0.1 kcal mol−1 in total energy).

In this work, we revisited the most challenging case from
our previous study,56 anionic oxyluciferin [OLU−, Fig. 3(a)] in
luciferase. Similar calculations were performed using the ESPC and
ESPCD models but with inner MM atom sites as the ESP fitting
grid. We considered two options for the ESP charge fitting: (a) each
MM atom position was assigned an equal weight and (b) the weights

FIG. 3. Structures for (a) anionic oxyluciferin and (b) N-methylacetamide (NMA);
(c) chorismate mutase catalyzed reaction.

for inner MM atom points were dependent on their distances to
the nearest QM atoms. In the latter case, the same switching func-
tion, S(dmin

B ), which we used to partition the inner MM charges, was
also adopted as the weighting function in Eq. (21) for ESP charge
fitting.

All calculations were carried out using the same 100 configu-
rations from a classical MD trajectory as in our previous work.56

For the reference calculations, a very large supercell (with 123 image
cells, ∼20 000 000 atoms) was built from the original simulation
box of 117 × 117 × 117 Å3 to mimic a periodic system. The QM
subsystem consisted of the OLU− molecule in the center cell and
was described by density functional theory with the B3LYP func-
tional93–95 and 6-31+G∗ basis set.96–98 The rest of the center cell and
all the image cells, including the image OLU− molecules, became the
MM subsystem and was represented by their partial atomic charges
from the C36/CGenFF/TIP3P force fields.99–102

In QM/MM calculations using the ESPC or ESPCD models, the
setup of the QM and MM subsystems, QM method, and MM charges
were identical to the reference calculations. An atom-centered cut-
off around the QM subsystem was used to divide the MM subsys-
tem into inner and outer MM regions. Atom-based cutoffs were
applied in cases where a switching function (shift, switch, or LREC)
was used, while group-based cutoffs were employed when the step
function was used to avoid artificial net charges in the near-field
region.

B. Solvated NMA
Solvated N-methylacetamide [NMA, Fig. 3(b)], which is a

model system for peptide, was used to check the energy conservation
of our QM/MM-AC scheme in a microcanonical (NVE) simulation.
Specifically, it contains one NMA molecule solvated in a cubic box
containing 1661 TIP3P water molecules (∼37× 37× 37 Å3 after equi-
libration). QM/MM-AC NVE simulations were conducted under
periodic boundary conditions using a modified version of SANDER.

The QM subsystem included only the NMA molecule, which
was described at the B3LYP/6-31G∗ level of theory, whereas the sol-
vent molecules constituted the MM subsystem. The van der Waals
interactions between the QM and MM subsystems were modeled at
the MM level using Lennard-Jones (LJ) potential, and the LJ param-
eters for NMA were taken from the ff14SB force field.103 The RESP
charges of NMA, which were obtained using the standard AMBER
protocol, were used to represent the QM atoms in the image cells for
the intercell QM–QM interactions. For ai-QM/MM electrostatics,
we employed the QM/MM-AC algorithm, which adopts the LREC
switch function in the ESPC electrostatic modeling with weighted
inner MM positions as the ESP grid.

For comparison, we also performed MM MD simulations as
well as se-QM/MM MD simulations using the built-in QM/MM
functionality of SANDER with PM3 as the se-QM method. In all
three NVE simulations, a time step of 0.5 fs was used for all the sim-
ulations. The PME method was employed to treat the electrostatic
interactions, while the van der Waals interactions were truncated at
a cutoff of 10 Å. The SHAKE algorithm was used to constrain all the
bonds involving hydrogen atoms in the MM subsystem. The system
was heated and equilibrated at the MM level at 300 K and 1 atm, and
a 100 ps NVE production run was performed for each of the MM,
se-QM/MM, and ai-QM/MM simulations.
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C. Chorismate mutase
We calculated the free energy profile of the chorismate mutase

reaction [Fig. 3(c)] using the QM/MM-AC scheme under periodic
boundary conditions. The QM subsystem consisted of the substrate
chorismate and was described by the B3LYP/6-31G∗ level of the-
ory. Meanwhile, the MM subsystem included the enzyme, water
solvent molecules, and Na+ counter ions in the center cell, as well
as all the atoms in the image cells (including the QM images), and
was described by ff14SB/GAFF/TIP3P forces fields.102–104 Langevin
dynamics with a friction coefficient of 5 ps−1 was performed at
300 K, and a time step of 1 fs was used for the MD integration. The
simulations were performed in the NVT ensemble with a box size of
76× 76× 76 Å3. The rest of setup was similar to the NMA simulation
stated above.

The umbrella sampling technique105 was used to estimate the
free energy profile along the reaction coordinate, which was defined
as the difference between the bond lengths of the breaking and
forming bonds in this study. 40 windows were evenly distributed
along the reaction coordinate ranged from −1.95 Å to 1.95 Å, and
the force constant of the harmonic biasing potential was set to be
300 kcal mol−1 Å−2 for all the windows. For each window, 30 ps ai-
QM/MM MD simulation was performed, and the snapshots were
collected every 20 steps during the last 20 ps simulation, which
resulted in 1000 snapshots in each window for further analysis. The
Multistate Bennett acceptance ratio (MBAR)106 as implemented in
the pymbar package (https://github.com/choderalab/pymbar) was
used to compute the free energy profile.

IV. RESULTS AND DISCUSSIONS

A. Accuracy of using MM atom sites as ESP fitting grid

For anionic oxyluciferin (OLU−) in its enzyme environment,
Fig. 4 showed the root-mean-square deviations (RMSD) in the
QM/MM electrostatic and polarization energies from the theoreti-
cal reference values. Here, QM/MM permanent electrostatic energy
referred to the interaction of oxyluciferin anion at its gas-phase
electronic density with the extended MM electrostatic environment.
QM/MM polarization energy, on the other hand, corresponded to
the energy lowering due to the polarization of QM electron density
by the MM charges. The deviations, as averaged over 100 different
configurations for the system, were shown at different cutoff dis-
tances, roff, ranging from 5 Å to 30 Å. Our objective was to identify
embedding schemes that could produce accurate values (i.e., within
0.1 kcal mol−1 from the reference values) for both energies at a
standard cutoff distance (∼10 Å).

In general, the errors in QM/MM permanent and polarization
energy are expected to decay rapidly with larger cutoff distances
because more MM atoms were assigned to the inner MM region and
interacted explicitly with the QM density. However, with the “Step”
option, where no smoothing occurred at all at the cutoff distance, the
energy errors oscillated with the cutoff distance in panels (a1), (a2),
and (a4) of Fig. 4. In contrast, a steady decay in the energy errors
was observed with three smoothing functions (LREC, switch, and
shift). This reaffirmed the importance of using smoothing functions
to ensure a smooth transition between inner and outer MM regions.

FIG. 4. Errors in ai-QM/MM permanent electrostatic and polarization energies (in kcal mol−1) of anionic oxyluciferin in luciferase with different cutoff distances (in Å). (a) ESP
charges (ESPC) and ESP charges/dipoles (ESPCD) were fitted to reproduce the long-range electrostatic potential (due to QM nuclei and electron density) on Merz–Kollman
(MK) grid points on four layers of vdW surfaces [panels (a1)–(a4)], MM atomic sites [panels (a5)–(a8)], or weighted MM atomic sites [WMAS, panels (a9)–(a12), see Eq. (17)].
The ESPC-WMAS model in panels (a9) and (a10) with a 10 Å cutoff and the “LREC” switch function is the “QM/MM-AC” model recommended for use. (b) The energy errors
from panels (a1) to (a12) are grouped with the LREC (b1) and (b2), switch (b3) and (b4), and shift (b5) and (b6) smoothing functions.
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Among three smoothing functions, the “Shift” function dis-
played similar performance as “LREC” and “Switch” for the ESPC-
MK model [panels (a1) and (a2)]. However, for all other models
[panels (a3)–(a12)], “LREC” and “Switch” functions consistently led
to lower errors than the “Shift” function. Thus, as discovered in
our previous work,56 “LREC” and “Switch” should be the preferred
choices for the smoothing function in our QM/MM electrostatic
calculations.

Among the six methods, ESPC-MK model [panels (a1) and
(a2)] never achieved our target accuracy of 0.1 kcal mol−1, even
with a 30 Å distance cutoff. Hence, the original ESPC-MK model
was not recommended.56 In contrast, at a 10 Å distance cutoff, all
other models with a “LREC” or “Switch” function already produced
an error at or below 0.1 kcal mol−1 in QM/MM electrostatic energy
[see panels (b1) and (b3)] and an error below 0.01 kcal mol−1 in
QM/MM polarization energy [see panels (b2) and (b4)]. While these
five models (ESPCD-MK, ESPC-MM, ESPCD-MM, ESPC-WMM,
and ESPCD-WMM) all met our target accuracy, the ESPC-MM and
ESPC-WMM models looked the most attractive because it is easier
to formulate the analytical gradient of an ESPC model than that of
an ESPCD model.

In panels (a9) and (a10), when the inner MM atom positions are
weighted for charge fitting/projection in the ESPC-WMM model,
the resultant results (at the logarithm scale) showed no substantial
difference from those of the ESPC-MM model [panels (a5) and (a6)].
In the end, our favorite electrostatic embedding model is the ESPC-
WMM model at a 10 Å cutoff (on the blue curves) in panels (a9)
and (a10), which combines a “surrogate” ESP charge description
for the QM region with weighted inner MM atom positions as the
ESP fitting grid, 10 Å distance cutoff, and “LREC” smoothing func-
tion. We will refer to this model as the “QM/MM-AC” model in the
remainder of this paper.

B. Accuracy of analytic energy gradient
Table II lists the QM/MM gradient values for a reactant config-

uration of the chorismate mutase reaction. Four QM atoms involved

FIG. 5. Fluctuation in (a) total MM energy, (b) total se-QM/MM energy, and (c) total
ai-QM/MM energy in NVE simulations of a NMA molecule solvated in a box of
1661 TIP3P water molecules. PM3 and B3LYP/6-31G∗ levels of theory were used
in se-QM/MM and ai-QM/MM calculations, respectively.

in the chemical reaction (C1, C5, O7, and C9), two inner MM atom
(Arg90–Nϵ; water-1057 oxygen), and one outer MM atom (water-
440 oxygen) were considered as representative atoms in each region.
The maximum difference between the analytical and numerical gra-
dients was found to be 0.049 kcal mol−1 Å−1. This confirmed that
our analytical QM/MM gradient was properly implemented.

C. Energy conservation in microcanonical MD
simulations

As a further validation of the analytical gradient, the energy of
a solvated NMA in NVE simulations was computed and shown in
Fig. 5. In a pure MM simulation of the periodic system [Fig. 5(a)],
the energy was found to drift by an average of −0.0004 kcal
mol−1 per ps, while a drift rate of 0.0001 kcal mol−1 ps−1 was
found from a se-QM/MM simulation with the PM3 model applied
on the NMA molecule [Fig. 5(b)]. A comparable drift rate of
−0.0002 kcal mol−1 ps−1 can be observed in Fig. 5(c) for our new
QM/MM-AC model with a B3LYP/6-31G∗ level description for the
NMA molecule.

D. Free energy profile for chorismate mutase
The free energy profile of the chorismate mutase reaction using

ai-QM/MM under PBC was shown in Fig. 6. The free energy pro-

TABLE II. Comparison of analytical and numerical gradients for chorismate mutase (kcal mol−1 Å−1). Three-point stencil
and displacements of ±0.001 Å were used in the finite-difference calculation.

Analytical Numerical Difference

Atom x y z x y z x y z

C1–CHOa −11.903 −30.438 −25.330 −11.921 −30.422 −25.316 −0.018 0.016 0.014
C5–CHO 30.377 47.644 20.784 30.360 47.712 20.811 −0.017 0.068 0.027
O7–CHOb −15.323 4.165 0.148 −15.314 4.162 0.148 0.009 −0.003 0.000
C9–CHO 7.003 31.950 1.070 6.999 31.992 1.072 −0.004 0.042 0.002
NE-ARG90c 37.012 −43.649 37.000 36.991 −43.665 37.049 −0.021 −0.016 0.049
O-WAT1057d 14.648 −0.955 −13.235 14.640 −0.954 −13.227 −0.008 0.001 0.008
O-WAT440e 36.766 8.161 4.189 36.746 8.160 4.187 −0.020 −0.001 −0.002

aC1–CHO and C5–CHO are the atoms of the forming bond during the chorismate mutase reaction.
bO7–CHO and C9–CHO are the atoms of the breaking bond during the chorismate mutase reaction.
cNE-ARG90 is the ϵ nitrogen of ARG90.
dO-WAT1057 is an arbitrary water oxygen between 9 Å and 10 Å from the QM region.
eO-WAT440 is an arbitrary water oxygen between 24 Å and 25 Å from the QM region.
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FIG. 6. Potential of mean force for the chorismate mutase reaction. The error bars
show the uncertainties estimated by the MBAR method.

file of the same reaction using a droplet model (with a cutoff dis-
tance of 25 Å) from our previous study107 was included for a com-
parison. While the two profiles are qualitatively very similar, the
differences in the free energy barrier and reaction free energy are
non-negligible (>1 kcal mol−1). The difference mainly arose from
two sources. The first source is that in the droplet model, the atoms
beyond 25 Å were deleted from the system, and thus, the long-range
QM-MM electrostatic interactions were missing. In contrast, our
new QM/MM-AC model captured the electrostatic potential from
all MM atoms. The second source is the periodic boundary con-
dition, which avoids arbitrary constraints/restraints near the outer
shell of the droplet, thus removing a bias toward specific boundary
configurations and ensuring a proper sampling of all protein/solvent
conformations.

E. Timing
For the chorismate mutase reaction, the aggregated wall time

for 30 ps per window for 40 windows of umbrella sampling was
3822.4 h on one 20-core node (2.3 GHz Intel Xeon E5-2650 v3 pro-
cessors), which arose mainly from the QM/MM energy and force
calculations using the Q-CHEM software package. In contrast, the
droplet model took 5687.6 h of simulation time. The 30% reduction
in computer time was made possible by having fewer MM charges
interact explicitly with the QM electron density.

V. CONCLUSIONS
In QM/MM calculations of condensed-phase reactions (as well

as photochemical processes), it is still common to use the cutoff
model, where all MM atoms beyond a distance cutoff (∼15 Å–25 Å
beyond the macromolecule) are removed. Then, to prevent the sol-
vent molecules from “flying away,” one can either apply a restraining
potential to keep all atoms within the outer boundary or restrain an
outer shell of MM atoms (usually 5 Å–10 Å thin) around their ini-
tial positions. Such a cutoff model artificially restricts the motion of
MM atoms near the outer boundary, while ignoring long-range elec-
trostatics (or approximating it with a continuum medium model).
The effect of these restrictions/approximations, which can some-
times be rather substantial (as shown in Fig. 6), is hard to predict

in a practical QM/MM calculation. As a result, in order to get reli-
able free energy results, one usually performs parallel simulations
from different initial conformations,108 thus further increasing the
computational cost.

This problem can, in principle, be resolved by carrying out
QM/MM calculations using a much larger cutoff distance or, more
appropriately, a periodic boundary condition. This has inspired
the development of many QM/MM-PBC models mentioned earlier
in the Introduction. Our QMMM-AC model builds upon previous
QM/MM-PBC models and offers an alternative but effective protocol
for handling QM/MM electrostatics of both PBC and non-PBC
systems. It allows us to separate inner MM and outer MM regions
with a cutoff distance of 10 Å and projects outer MM charges onto
inner MM atom positions. The model is accurate, leading to an error
less than 0.1 kcal mol−1 in the total QM/MM energy. It is cost-
effective, with a computational time demand even lower than typical
cutoff models (with a ∼25 Å cutoff). It is also compatible with most
QM packages, requiring only an augmentation to the charge values
of inner MM atoms passed to the QM program.

An efficient QM/MM electrostatic evaluation method will
facilitate QM/MM calculations of systems with either a peri-
odic boundary condition or a cluster with a large number of
MM atoms. In addition, it will expedite QM/MM calculations
with a single QM region embedded within an ensemble of MM
environments, such as average solvent/macromolecule potential
methods,109–112 free energy gradient method,113–115 and QM/MM-
MFEP method.6

Finally, we note that this work focuses entirely on the treat-
ment of long-range QM/MM electrostatics. An accurate and effi-
cient long-range QM/MM electrostatic model, like the QM/MM-AC
model proposed in this work, should be combined with an appro-
priate treatment of short-range electrostatics. As mentioned in the
Introduction, for cases where the QM region is covalently linked to
the MM region, MM charges near the covalent interface should be
redistributed and/or Gaussian-blurred to avoid an over-polarization
of the QM wavefunction.
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Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L.
Woodcock, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G.
J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown,
D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden,
M. Diedenhofen, R. A. DiStasio, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi,
L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D.
Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden,
T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King,
P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D.
Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan,
A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich,
S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya,
D. P. O’Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn,
E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein,
D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt,
O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang,
S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks,
G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard, M. S. Gordon, W. J.
Hehre, A. Klamt, H. F. Schaefer, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar,
A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai,
A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong,
D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E.
Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, and
M. Head-Gordon, “Advances in molecular quantum chemistry contained in the
Q-CHEM 4 program package,” Mol. Phys. 113, 184–215 (2015).
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