
A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 1

Transfer Learning and Meta Learning Based

Fast Downlink Beamforming Adaptation

Yi Yuan, Gan Zheng, Senior Member, IEEE, Kai-Kit Wong, Fellow, IEEE,

Björn Ottersten, Fellow, IEEE, Zhi-Quan Luo, Fellow, IEEE

Abstract

This paper studies fast adaptive beamforming optimization for the signal-to-interference-plus-noise

ratio balancing problem in a multiuser multiple-input single-output downlink system. Existing deep

learning based approaches to predict beamforming rely on the assumption that the training and testing

channels follow the same distribution which may not hold in practice. As a result, a trained model

may lead to performance deterioration when the testing network environment changes. To deal with

this task mismatch issue, we propose two offline adaptive algorithms based on deep transfer learning

and meta-learning, which are able to achieve fast adaptation with the limited new labelled data when

the testing wireless environment changes. Furthermore, we propose an online algorithm to enhance the

adaptation capability of the offline meta algorithm in realistic non-stationary environments. Simulation

results demonstrate that the proposed adaptive algorithms achieve much better performance than the

direct deep learning algorithm without adaptation in new environments. The meta-learning algorithm

outperforms the deep transfer learning algorithm and achieves near optimal performance. In addition,

compared to the offline meta-learning algorithm, the proposed online meta-learning algorithm shows

superior adaptation performance in changing environments.

Index Terms

Deep transfer learning, meta-learning, online learning, beamforming, MISO, SINR balancing.

Y. Yuan and G. Zheng are with the Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough

University, Loughborough, LE11 3TU, UK (E-mail: {y.yuan, g.zheng}@lboro.ac.uk).

K.-K. Wong is with the Department of Electronic and Electrical Engineering, University College London, London, WC1E

6BT, UK (Email: kai-kit.wong@ucl.ac.uk).

B. Ottersten is with Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, L-1359

Luxembourg (Email: bjorn.ottersten@uni.lu).

Z.-Q. Luo is with Shenzhen Research Institute of Big Data, and the Chinese University of Hong Kong, Shenzhen, China

(Email: luozq@cuhk.edu.cn).

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 2

I. INTRODUCTION

Multi-antenna techniques have been widely used to improve the spectral efficiency of modern

wireless communications systems due to their ability to exploit spatial characteristics of the

propagation channel [1], [2]. Beamforming is recoginized as one of the most promising multi-

antenna techniques since it can efficiently improve the antenna diversity gain and mitigate

multiuser interference. In the last two decades, beamforming optimization has been well studied

for some specifical problems, such as signal-to-interference-plus-noise ratio (SINR) balancing

problem [3], [4], power minimization problem [5], [6] and sum rate maximization problem

[4], [7]–[9]. Most beamforming design problems are solved using either tailor-made iterative

algorithms or general iterative algorithms using convex optimization tools. However, iterative

algorithms may have slow convergence. This fact causes severe computational latency and makes

the optimized beamforming solutions outdated. Hence, existing beamforming techniques have

difficulty meeting the demands for real-time applications in the fifth generation (5G) systems.

Although heuristic methods such as zero-forcing (ZF) beamforming are faster to implement,

they often show far from optimal system performance. Hence, designing efficient solutions that

balance computational complexity and performance has attracted much attention.

Recently, deep learning (DL) has been recognized as an efficient technique to solve difficult

design problems in wireless communications due to its ability of modeling highly non-linear

functions at considerably lower complexity [10]–[12]. Accordingly, DL techniques have been

widely used in many applications of wireless networks to address specific physical layer issues,

such as channel estimation and decoding [13]–[15], hybrid precoding [16]–[18] and resource

allocation [19]–[21]. The successful application of the DL techniques on the problems of resource

allocation [19]–[21] is based on the learning to optimize framework, which aims to learn a simple

mapping through the deep neural network (DNN) instead of optimizing the complex mathematic

problems. Motivated by the above successful applications of DL techniques, it is possible to

address the tradeoff issue between complexity and performance in the beamforming design.

This is the result of the mapping from the input channel state to output beamforming that is

obtained by training the neural networks in an offline manner. The beamforming solution can

be directly predicted using the trained network in real time. The advantage of the learning

to optimize framework is to transfer the complex real-time optimization procedures to offline

training showing great potential to solve the beamforming design problems in multi-antenna

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 3

systems [22]–[26]. In [22], a DL model was proposed to predict the beamforming matrix with a

restricted codebook and a finite solution space which cause performance loss. In order to improve

the performance, the works in [23], [24] directly predicted the beamforming matrix using the

trained network. However, the direct prediction method may cause high training complexity and

low learning accuracy of the neural networks since the number of variables to predict increases

significantly as the number of transmit antennas and users increases. To overcome this drawback,

the authors in [25] exploited the problem structure and proposed a model-based DL framework

to optimize the beamforming matrix. The proposed model-based framework includes two parts:

the DL part used to learn the optimal mapping from the channel to the uplink power allocation

as key features with much reduced dimension than the original beamforming matrix, and the

signal processing part used to recover beamforming from the predicted uplink power allocation.

By utilizing the specific problem structure, a DL enabled approach was proposed to optimize

beamforming of the SINR balancing problem under per-antenna power constraints [26]. The

proposed DL algorithms in [22]–[26] are based on a common assumption that the training and

testing channel data are drawn from the same distribution in a fixed stationary environment.

However, this assumption may be violated in real-world systems due to the dynamic nature of

wireless networks. As a result, existing DL based optimization algorithms may cause a task

mismatch issue when the network environment changes. A straightforward way is to re-train the

model from scratch using newly collected data for each new network environment. However,

this method results in huge overhead of data collection and training time. Hence, overcoming

the task mismatch issue in deep learning to optimize beamforming becomes a major challenge

in dynamic communications environments.

Transfer learning is a promising technique to deal with the task mismatch issue experienced

in the practical wireless communication systems due to its ability to transfer the useful prior

knowledge to a new scenario [27]. The basic idea of transfer learning is to extract the key features

of the source domain and refine the pre-trained model in the target domain. The efficiency of

the transfer learning technique on solving the task mismatch issue has been investigated in

the resource allocation of wireless communications [28], [29]. Another efficient way to deal

with the task mismatch issue is meta-learning, which aims to improve the learning ability by

leveraging the different but related training and testing data [30]. Most existing meta-learning

algorithms are problem-specific. In order to eliminate the model architecture restriction on the

applications of meta-learning, the authors in [31] proposed the model-agnostic meta-learning

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 4

(MAML) algorithm. The MAML algorithm aims to learn a parameter initialization of the

model for fast adaptation by alternating between inner-task procedure and cross-task procedure.

Specifically, the task-specific parameters are updated by performing the gradient descent on

the loss function of the corresponding task in the inner-task procedure, and the global network

parameter is updated by performing the gradient descent on the sum of the loss function of the

associated tasks in the cross-task procedure. Based on the advantages of the MAML algorithm

on solving mismatch issues, it has been used to deal with the channel estimation problems in

wireless communication systems [32]–[34]. For instance, MAML-based meta-learning algorithm

was proposed to solve the decoding problem over fading channels [32], to estimate the end-to-end

channel with insufficient pilots [33], and to predict channel state information (CSI) of frequency

division duplexing systems [34]. The simulation results in [32]–[34] indicate that meta-learning

is able to achieve better adaptation performance compared to the joint training method since the

joint training method uses the overall available data in the source domain and target domain to

train the model without the adaptation process.

Although transfer learning and meta learning techniques have been used to solve the mismatch

issues of channel estimation and decoding problems [32]–[34], they are still in the early stage for

wireless communications applications. Different from channel estimation and decoding problems,

beamforming design is a well-known challenging problem and there is no known solution to

the optimal adaptive beamforming in a dynamic wireless environment. Hence, it is important

to design adaptive beamforming algorithms to solve the mismatch issue. In addition, directly

applying adaptive learning techniques to solve the high dimensional beamforming solution will

cause high training complexity and inaccurate results. In order to improve the accuracy and

reduce the complexity of neural network training, we choose the uplink power allocation vector

as the low dimensional feature to predict. To be specific, we propose the offline and online fast

adaptive algorithms using transfer learning and meta learning techniques to solve the mismatch

issue of beamforming design in dynamic wireless environments. Our main contributions are

summarized as follows:

• We propose an offline adaptive learning algorithm based on deep transfer learning (DTL)

by combining DL techniques and transfer learning to achieve the adaption to a new envi-

ronment. This algorithm first trains a model in the source domain which includes channel

data different from those in the testing environment. It then refines the pre-trained model by

fixing common feature layers and re-training the fully connected layer in the target domain

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 5

which includes few labelled data from the testing environment.

• We proposed an offline adaptive learning algorithm based on meta-learning by utilizing the

idea of MAML. This algorithm includes two parts: the meta-training part and the fine-tuning

part. The meta-training aims to optimize the global parameter initialization via alternating

between the inner-task procedure and the cross-task procedure using data in the source

domain. The fine-tuning part refines the initialized parameter using the global parameter

and limited data in the new environment. The advantages of the proposed meta-learning

include fast adaptation and near optimal performance.

• We propose an online adaptation algorithm to further improve the adaptation capability

of the offline meta-learning algorithm in the real-world non-stationary communications

scenarios where the environment constantly changes such that new labelled data only arrive

sequentially. This algorithm is designed based on meta-learning and the ‘follow the leader

(FTL)’ method. The FTL method is used to deal with the sequential data in real-time

systems and the meta-learning method is used for fast adaptation.

• Extensive simulations are carried out to evaluate the adaptation capability of the proposed

algorithms in realistic communications scenarios using WINNER II and 3GPP channel

models. The results verify the adaptation performance of the proposed offline algorithms

and indicate that the offline meta-learning algorithm can achieve near optimal performance

by avoiding the huge data collection and training time in new communications scenarios.

In addition, the proposed online algorithm can significantly improve the adaptation of the

offline meta-learning algorithm in non-stationary scenarios.

The remainder of this paper is organized as follows. Section II introduces the system model

and the beamforming neural network (BNN) learning framework. In section III, the offline

DTL algorithm and meta-learning algorithm are proposed. Section IV develops the online meta-

learning based adaptation algorithm. Simulation results and conclusions are presented in Section

V and Section VI, respectively.

Notions: The boldface lower case letters and capital letters are used to represent column

vectors and matrices, respectively. The notation aH and ‖a‖2 denote the Hermitian conjugate

transpose and the l2-norm of a vector a, respectively. The operator CN (0,Θ) represents a

complex Gaussian vector with zero-mean and covariance matrix Θ. IM denotes an identity

matrix of size M ×M . Finally, ← denotes the assignment operation.

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 6

II. SYSTEM MODEL

A multi-input single-output (MISO) downlink transmission system is considered, in which K

single antenna users are served by a base station (BS) with M antennas. The received signal at

user k can be expressed as

yk = hHk wksk + nk, ∀k (1)

where hk ∈ CM×1 denotes the channel coefficient between the BS and user k, wk and sk ∼

CN (0, 1) denote the transmit beamforming and the information signal for user k, respectively,

and the additive Gaussian white noise (AWGN) is given by nk ∼ CN (0, σ2
k). Consequently, the

signal-to-interference-plus-noise ratio (SINR) balancing problem can be formulated as:

max
wk,k=1,...,K

min
1≤k≤K

|hHk wk|2∑K
j 6=k |hHk wj|2 + σ2

k

, s.t.
K∑
k=1

‖wk‖2 ≤ P, (2)

where P is power budget. Many existing algorithms can be used to generate the optimal solution

of problem (2). Although the existing DL-based algorithms can solve the issue of outdated

beamforming caused by the conventional optimization algorithms, they will cause the task

mismatch issue when the network environment changes. Hence, we focus on the design of

fast adaptive learning algorithms to overcome the task mismatch issue in beamforming design

in dynamic network environments.

Fig. 1. The DL-based BNN for uplink power prediction and beamforming recovery [25].

Directly predicting beamforming causes high training complexity and inaccurate results due

to the high dimensional beamforming matrix, so instead we predict the low dimensional uplink

power allocation vector. According to the uplink-downlink duality in [3] and [25], using the

uplink power allocation vector to replace beamforming as the output of the neural network is

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 7

possible because the same SINR region of the uplink and downlink problems can be achieved.

Based on uplink-downlink duality and normalized beamforming wk = w̃k
√
pk, the downlink

problem (2) can be converted into the following uplink problem

max
q

min
1≤k≤K

qk|hHk w̃k|2∑K
j 6=k qj|hHj w̃k|2 + σ2

k

, s.t. ‖q‖1 ≤ P, ‖w̃k‖2 = 1,∀k, (3)

where q = [q1, . . . , qK]
T and qk is uplink power allocation for user k, w̃k and pk are the normal-

ized beamforming and downlink power allocation of user k, respectively. Sufficient labelled data

can be generated by solving problem (3). The model-based BNN approach proposed in [25] is

chosen for our algorithms design since it can efficiently extract features and can recover the high

dimensional beamforming matrix from the low dimensional feature vector. The BNN framework

shown in Fig. 1 includes two modules: the neural network module and the beamforming recovery

module. First, we introduce how to recover beamforming matrices by using the recovery module.

With the predicted uplink power allocation vector, the normalized beamforming vector can be

obtained as w̃k =
(σ2
kI+

∑K
k=1 qkhkh

H
k)−1hk

‖(σ2
kI+

∑K
k=1 qkhkh

H
k)−1hk‖2

,∀k. Then, the optimal downlink power allocation

vector p = [p1, . . . , pK]
T can be obtained by finding the first K components of the eigenvector

of the following matrix

Υ(W̃, P) =

 DU Dσ

1
P

1TDU 1
P

1TDσ,

 , (4)

where 1 = [1, 1, . . . , 1]T , D = diag{1/|w̃H
1 h1|2, . . . , 1/|w̃H

KhK |2}, σ = [σ2
1, σ

2
2, . . . , σ

2
K]

T , and

[U]kk′ = |w̃H
k′

hk|2, if k′ = k, otherwise [U]kk′ = 0. Finally, the downlink beamforming matrix

W = [w1, . . . ,wk] is derived as W = W̃
√

P, where W̃ = [w̃1, . . . , w̃K] and P = diag(p).

Second, we briefly describe the neural network framework used in the paper according to the

neural network module of BNN. The convolutional neural network (CNN) architecture is chosen

as the based learning framework in this paper due to its ability of extracting features and reducing

learned parameters. Specifically, the CNN framework includes the input layer, convolutional

layer (CL), batch normalization (BN) layer, activation (AC) layer, and fully connected layer

(FC). Channel realization is split into two real value inputs. One is in-phase component R(h)

of channel realization and the other one is quadrature component I(h) of channel realization.

As a regression problem is considered in this paper, we use supervised learning and the

standard mean squared error (MSE) as the loss function to calculate the loss of the neural

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 8

network. The loss function is defined as follows:

LossD(θ) =
1

N

N∑
i=1

‖q̂(i)(θ)− q(i)‖22, (5)

where D = {(h(i),q(i))}Ni=1 is the training dataset, q(i) and q̂(i)(θ) denote the optimal uplink

power allocation vector generated by solving (3) and the predicted uplink power allocation vector

of the neural network for the i-th sample in each batch, respectively, θ is the network parameter

and N is the batch size. In the following sections, we will design our fast adaptive learning

algorithms.

III. OFFLINE LEARNING ALGORITHMS

In this section, we design two offline adaptive learning methods to optimize beamforming:

1) DTL algorithm and 2) meta-learning algorithm. These two algorithms aim to achieve fast

adaptation in the new test wireless environment with limited channel data whose distribution is

different from that in the training environment. In the following subsections, we describe the

details of these two algorithms.

A. Joint Training

In this subsection, we introduce the joint training method, which is considered as a benchmark

for evaluating the adaptation ability of the proposed offline algorithms. The joint training method

aims to learn a single model on a joint dataset. Hence, the objective of the joint training method

can be expressed by the following optimization problem

ϕ = argmin
ϕ

LossDjoint(ϕ), (6)

where Djoint denotes the joint training dataset, which is generated by merging the training data

and adaptation data, and ϕ is the parameter vector of the single model. The parameter vector ϕ

can be iteratively updated based on the following gradient-based learning rule

ϕ← ϕ− α∇ϕLossDjoint(ϕ), (7)

where α is the learning rate.

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 9

B. Deep Transfer Learning

Transfer learning has been recognized as an efficient method for model prediction as it not

only reduces the dependence on a large amount of labelled data but also avoids training the

model from scratch. Different transfer learning methods and corresponding applications have

been introduced in [27]. Since the same SINR balancing optimization problem are used to

guide beamforming design over different wireless environments, it indicates that some common

features inherent in the optimization problem can be extracted and transferred. Therefore, a DTL

algorithm via fine-tuning, which combines the DL and transfer learning techniques, is proposed

to generalize the beamforming prediction in different channel distributions.

1) Definition of Datasets: The fundamental idea of transfer learning is to train the neural

network in a given source domain and then adapt the model to a target domain. To apply DTL,

we first define datasets for the network model. We use the algorithm in [3, Table 1] to generate

NTr sample pairs for each user to compose the training dataset DTr(·), which will be used to

create the pre-trained model. Then, we use the same process to generate the adaptation dataset

DAd(·) with NAd sample pairs using the test channel fading distribution different from that used

in generating DTr(·). We assume that any sample pair in the testing dataset DTe(·) does not

appear in the adaptation dataset.

2) Transfer Learning: The proposed DTL includes two stages: 1) building the pre-trained

neural network model in the source domain 2) refining the pre-trained model in the target domain.

In the first stage, we minimize the loss function LossDTr
(θ) on the training dataset {DTr(k)}NTrk=1 ,

which includes sufficient sample pairs, to optimize the network model. The network parameter

can be updated by using the following equation

θ ← θ − α∇θLossDTr
(θ), (8)

where α is the network learning rate, ∇θLossDTr
(θ) is the gradient of the loss function over

θ. Alternatively, the network parameter θ also can be updated by using the existing adaptive

moment estimation (ADAM) algorithm [38].

Next, we move to the fine-tuning stage when the pre-training stage is finished. Fine-tuning

aims to refine the pre-trained network in the target domain by tuning the learning rate of each

neural network layer. In order to implement fine-tuning in the proposed network, we assume

the number of neural network layers is L and divide the pre-trained model into two parts. We

set the first L − 1 layers as the extractor, which is used to extract features of the problem and

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 10

Algorithm 1: The proposed offline adaptation algorithm based on DTL.

Input: Learning rate α and β, batch size Nb, training dataset {DTr(k)}NTr
k=1 , adaptation dataset {DAd(k)}NAd

k=1

Output: Learned network parameter θ

Pre− training

1) Randomly initialize the network parameter θ

2) Initialize the step: t = 0

3) while not done do

4) Randomly select Nb sample pairs form {DTr(k)}NTr
k=1 to compose a batch task

5) t← t+ 1

6) Update the network parameter by θt ← θt−1 − α∇θt−1LossDTr(θt−1) or by ADAM optimizer

7) end while

Fine− tuning

1) Initialize θ̃ ← θ

2) repeat

3) Update θ̃ by θ̃ ← θ̃ − β∇θ̃LossDAp(θ̃) or ADAM, only update the parameter of the final layer

4) until the stopping criterion is satisfied

the last FC layer as the learner which is used to refine the network in the target domain. We

assume that the extractor part is non-trainable and only the learner part is trainable when the

network is trained using the adaptation dataset. Then the pre-trained network can be trained on

the adaptation dataset DAd(·) by using either (8) or ADAM to update the network parameter θ.

After finishing the training and fine-tuning steps, we obtain the adapted network model which

can be used to predict the uplink power allocation coefficient on DTe(·). The proposed DTL

algorithm is summarized in Algorithm 1 which includes pre-training and fine-tuning stages.

C. Meta Learning Algorithm

Different from transfer learning, meta learning aims to learn the best learning strategy, which

is used to acquire an inductive bias for the entire class of tasks of interest for fast adaptation

[31]. We will design an offline meta learning algorithm to achieve faster and better adaptation

than DTL in dynamic environments based on the MAML algorithm proposed in [31].

1) Definition of Task: Since the goal of the MAML algorithm is to train an efficient parameter

initialization based on the multiple tasks, we define and form tasks before using MAML to

design our algorithm. In our algorithm, a task is defined as a prediction process of uplink power

allocation from channel realizations in a chosen dataset. Each such dataset is composed of

training data and validation data for a particular task. We define a task set {Tmt(k)}Kmtk=1 , which

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 11

includes Kmt tasks. Each task in the task set is formed by randomly selecting training data and

validation data from the meta training dataset DTr(·).

2) Definition of Dataset: Channel realizations and the associated optimal uplink power al-

location vectors are involved in both training data and validation data of each task. The set of

training data is defined as the support set Dmts(·) and the set of validation data is defined as the

query set Dmtq(·). The support set and query set include Ns and Nq labelled data, respectively.

We define the set used for adaption as the adaption dataset DAp(·), which includes NAd sample

pairs. Note that the distribution of channel realizations in DAp(·) is different from the distribution

in DTr(·).

Fig. 2. The workflow of the meta learning.

3) Meta-training Stage: The MAML algorithm uses two iterative processes, inner-task update

and cross-task update, to generate the parameter initialization with the good generalization ability.

Inner-task update is used to optimize the neural network parameter of each task, and cross-task

update is used to optimize the global neural network based on the sum of the loss functions of all

tasks. In order to efficiently solve the mismatch issue of beamforming design, these two iterative

processes are adopted to design our meta learning based adaptive beamforming algorithm. In Fig.

2, the workflow of two iterative training processes is provided to explain the training process of

our meta algorithm. In the following, we use a batch of tasks (include Nb tasks) as an example to

introduce the two processes in Fig. 2. The same neural network architecture is used in inner-task

update and cross-task update.

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 12

Inner-task update is a process of training the neural network parameters of each task in the

related batch. The goal of each task is to optimize its own neural network parameter on its support

set via the global network parameter. The objective of each task is achieved by minimizing the

loss function based on supervised learning. Although the objective function of each task is same,

the dataset used to achieve the goal of each task is different. The objective function of each task

can be expressed as

φk = argmin
φk

LossDmts(k)(φk), k = 1, . . . , Nb, (9)

where φk is the neural network parameter of task k and it is initialized by the global network

parameter θ, Dmts(k) is the support set of task k. Since the loss function LossDmts(k) in (9)

is represented by the MSE between the predicted value and the true value shown in (5), such

loss function is differentiable. Hence, the gradient descent technique can be used to solve the

optimization problem in (9). Multiple gradient updates are considered to update the parameter

of each task rather than one gradient update originally proposed in [31]. Notice that the neural

network parameter of each task is independently updated. As we can see from Fig. 2, the updating

process of the neural network parameter for each task on its support set is parallel. Since the

objective function of each task is same and the updating processes of the parameters for all

tasks are parallel, we use task k as an example to explain the updating process of its own neural

network parameter on the related support set Dmts(k). The neural network parameter of all tasks

is initialized by the global parameter θ. By using the gradient descent technique, the neural

network parameter φk of task k can be estimated by

φ
(0)
k = θ − β∇θLossDmts(k)(θ), (10)

where β is the learning rate of the inner-task update, the superscript 0 of φk denotes the first

iteration of gradient update. When the number of iterative steps is greater than one, the parameter

φk of task k is updated by calculating the gradient of the loss function over its own parameter

obtained at the previous iterative step, where is given by

φ
(i)
k = φ

(i−1)
k − β∇

φ
(i−1)
k

LossDmts(k)(φ
(i−1)
k), (11)

where the superscript i of φk is the index of the iteration step and i = 1, . . . , Gin, Gin is the

number of inner iterative steps. The ‘compute gradient’ function in Fig. 2 is used to compute the

gradient of the loss function in (10) and (11). The repeated updating processes are represented

by φk, k = 1, . . . , Nb, reversing into ‘compute gradient’ in Fig. 2. The neural network parameter

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 13

of task k can be updated as φk = φGink when the number of iteration arrives at the final step

Gin. Notice that the loss function LossDmts(k)(φk),∀k of each task is unknown and needs to be

estimated on its support set Dmts(k) at each iterative step. When all tasks in the batch finish

their iterations, the loss function can be considered as a metric to evaluate the trained parameter

of each task on the related query set Dmtq(·). These loss functions can be used to optimize the

global network parameter θ in cross-task update, which is described in the following part.

Cross-task update is a process of optimizing the global network parameter θ based on the sum

of the loss functions of all tasks in the batch. As mentioned in the inner-task update process, the

loss functions of all tasks in the batch can be estimated based on the neural network parameter

of the related task and its query sets when the maximum iteration step is achieved. Such loss

functions can be added together to form the loss function used to optimize the global network

parameter θ. This process is implemented by the sum function in Fig. 2. The objective function

of optimizing the global network parameter θ on a batch of tasks can be expressed as

θ = argmin
θ

Nb∑
k=1

LossDmtq(k)(φk), (12)

where Dmtq(k) is the query set of task k. Similar to inner-task update, the gradient descent

technique can be used to update θ in (12), which is given by

θ ← θ − α∇θ

Nb∑
k=1

LossDmtq(k)(φk), (13)

where α is the learning rate of cross-task update. Notice that there exists the chain rule when

calculating the gradient of the loss function of each task in (13) since the neural network

parameter of each task is updated at each iteration based on the updated parameter of this

task at the previous iteration. Hence, the neural network parameter in each iterative step needs

to compute the gradient with respect to the parameter of the previous iterative step when

computing the gradient of the loss function with respect to θ, which can be expressed as
∂LossDmtq(k)(φk)

∂(φk)
=

∂LossDmtq(k)(φ
Gin
k)

∂(φ
Gin
k)

· ∂(φ
Gin
k)

∂(φ
Gin−1

k)
· ∂(φ

Gin−1

k)

∂(φ
Gin−2

k)
· . . . · ∂(φ

0
k)

∂θ
. It indicates that the MAML

algorithm needs an additional backward pass since it involves a gradient through a gradient

process. As shown in Fig. 2, the updated global network parameter θ is considered as the

initialized parameter of the tasks in the next batch and will be continuously updated. The

algorithm will move to the next training step when the global network parameter in all batches

completes the updating process by alternating inner-task update and across-task update in Fig.

2. An efficient parameter initialization θ will be obtained when the training is completed.

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 14

Different from the joint training method, which optimizes the neural network parameter based

on the loss function of the single model shown in (7), the proposed meta learning algorithm

optimizes the model parameter via the loss functions of multiple tasks on their own model

shown in (13). Using multiple models will improve the generalization ability. Compared to the

joint training method, the proposed MAML-based learning algorithm can generate the parameter

initialization, which has better generalization ability and can help any task from the same

distribution to achieve their optimal parameter more efficiently.

4) Meta-adaption Stage: Based on the initial global network parameter θ obtained from the

above meta-training stage, the network parameter will be updated using the adaptation dataset

DAp(·) to achieve fast adaptation to the new task. We set the number of adaptation steps as GAd.

Before implementing the adaptation, we initialize the adaptation parameter φAp as θ, which is

obtained through the meta training stage. In the jth adaptation step, the network parameter φAp

can be updated as

φ
(j+1)
Ap ← φ

(j)
Ap − β∇φ

(j)
Ap
LossDAp(φ

(j)
Ap). (14)

The iteration will finish when the stoping criterion is achieved. Full details for implementing

meta-learning and meta-adaptation are summarized in Algorithm 2.

Comparison of transfer learning and meta leaning: Transfer learning and meta learning both

have the training and adaption stages. Although they have the same objective of achieving fast

adaption, the strategies used in the training and adaption stages are different. Hence, transfer

learning is not a special case of meta learning. Meta learning uses two iterative procedures to

train the model, which means that it needs two backward passes in the training stage. However,

transfer learning uses one backward pass to train the model in the training stage. In the adaption

stage, meta learning re-trains all parameters on the new task whereas transfer learning only

re-trains the parameter of the last layer while retaining the rest parameters.

IV. ONLINE META-LEARNING ALGORITHM

Although the proposed offline learning algorithms offer effective strategies to achieve fast

adaptation to a new task, the design of the adaptation stage is based on the assumption that the

dataset used for adaptation is available in advance and comes from a stationary distribution. Under

this assumption, the offline adaptation algorithms may not perform well in real-world wireless

communication applications, such as vehicular communications in which the communications

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 15

Algorithm 2: The proposed offline adaptation algorithm based on meta-learning.

Input: Learning rate α and β, batch size Nb, meta-training task set {Tmt(k)}Kmt
k=1 , support set Dmts(k)Kmt

k=1 with Ns labelled

data, query set Dmtq(k)Kmt
k=1 with Nq labelled data, the number of inner-task update steps Gin, adaptation dataset DAp,

and the number of adaptation steps GAp

Output: Learned initial network parameter θ

Meta− training

1) Randomly initialize the network parameter θ

2) while not done do

3) Randomly sample batch of task Tk from {Tmt(k)}Kmt
k=1

4) for Tk, k = 1, . . . , Nb do

5) Randomly sample support set Dmts(k) with Ns sample pair and query set Dmtq(k) with Nq sample pair from Tk
6) for i = 1, . . . , Gin do

7) Evaluate the gradient of the loss function of task k on Dmts(k)

8) Update the task parameter based on (10) and (11)

9) end

10) end

11) Update the global network parameter θ by (13) or by using ADAM optimizer

12) end while

Meta− adaptation

1) Initialize φAp ← θ

2) while not done do

3) for j = 1, . . . , GAd do

4) Update φAp based on (14) or using ADAM

5) end

6) end while

environment may keep changing. This is because of two reasons: 1) the channel is likely to

become available sequentially since channel estimation methods normally need time to first obtain

the channel statistics and then estimate the channel; 2) the channel may follow a non-stationary

distribution as the environment continues to change. In order to enhance the adaptation capability

of the proposed offline meta-learning algorithm in real-world applications, we propose an online

adaptation algorithm in this section based on the online meta-learning framework introduced in

[35].

A. Online learning

Online learning is a learning paradigm which uses the idea of continual learning on a non-

stationary distribution of tasks over time [36]. The learner aims to sequentially learn the model

parameter θt over all time slots. In order to measure the learning ability of a learner, the notion

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 16

of regret is introduced, which is defined as difference between the cumulative loss of the learner∑T
t=1 LossDt(θt) and the cumulative loss of best single model

∑T
t=1 LossDt(θ). The parameter θt

is determined by the online learner, while and the parameter θ is obtained by training the model

based on the hindsight data [37]. The aim of online learning is to design an algorithm which

can make the corresponding regret grow as slowly as possible.

FTL is a standard online learning algorithm [36] which aims to update the parameter θt at

slot t based on the sum of the loss functions of the previous data Dt−1. It can be expressed as

θt = argmin
θ

t−1∑
k=1

LossDk
(θ). (15)

B. Online Meta-learning

FTL may not learn an effective online model because it trains a single model on a single dataset

from all prior time slots. In order to learn effective models to adapt to the non-stationary scenario,

we consider to incorporate the meta-learning technique into FTL to design the online adaptation

algorithm. Note that we cannot directly apply the offline meta-training learning introduced in

section III-B to design the online algorithm for the following reason. In the offline scenario, the

data used for adaptation are available in advance and come from a stationary distribution, which

means all data in the adaptation set can be used to adapt the learning model. In the online scenario,

however, the data used for adaptation arrive sequentially and may come from a non-stationary

distribution, which means we cannot use the whole data in the adaptive set to implement the

adaptation like the offline scenario. We need to use the cumulative data to implement adaptation

in an online manner. Based on the aforementioned difference, in the following we will provide

details for the design of our online meta adaptive algorithm.

Similar to the offline meta learning algorithm in section III-C, the proposed online meta

algorithm involves two processes of calculating the gradient in the meta training phase. The

first gradient is used to update the task-specific parameter based on the network parameter. The

second gradient is used to update the network parameter based on the updated task-specific

parameters. To implement online learning, we assume that data received at each time slot is a

task for adaptation in subsequent time slots, and each task includes N input/output pairs for

each user. We use Tt to denote the task of the time slot t. Then, we define an empty task set Bt
to store the data of the task Tt at the time slot t. Notice that there is no training process at the

beginning t = 0. In the following, we use time slot t > 1 as the example to describe the online

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 17

learning process of the proposed algorithm. At the beginning of the time slot t, the algorithm

uses the task set Bt to store the sample pairs of Tt as the data of the task Tt arrives. The algorithm

samples a minibatch of tasks with size Ntask from previous task sets {Bk, k = 0, . . . , t−1}. For

each task in the minibatch, we sample its training set Dtrk with Ntr sample pairs and validation

set Dvalk with Nval sample pairs from the corresponding task set Bk, k = 0, . . . , t − 1. In the

following, we will describe two iterative processes, one is the process to update the task-specific

parameter and the other one is to update the network parameter at the time slot t. First, we use

task Tk as an example to describe the updating process of the task-specific parameter. Based on

the training set Dtrk , the task-specific parameter φk for task Tk can be updated by the stochastic

gradient descent method as follows:

φk ← θt − β∇θtLossDtr
k
(θt), (16)

where β is the learning rate, Loss is the MSE loss function provided in (5). θt is the network

parameter at the time slot t, which is used to initialize the task-specific parameter φk of the task

k at the beginning of the updating process. The equation in (16) is used for the first gradient

descent update on the task parameter φk. If multiple gradient descent updates are used, the

updating equation after the first update is given by

φ
(j)
k ← φ

(j−1)
k − β∇

φ
(j−1)
k

LossDtr
k
(φ

(j−1)
k), (17)

where superscript j of φk is the index of the iterative step and j = 2, . . . , Nin. Second, we move

to estimate the network parameter once the updating process of the task-specific parameter for

each task in the minibatch is finished. Note that the same task may appear several times in a

minibatch. Hence, we use index Zk ∈ [0, Ntask] to record the number of appearance times of

task Tk in the corresponding minibatch. Based on the updated task-specific parameter φNink of

each task in the minibatch, the shared network parameter θt at the time slot t can be updated

using the validation set of the corresponding tasks as follows:

θt ← θt − α∇θ

t−1∑
k=1

ZkLossDval
k
(φNink), (18)

where α is the learning rate. Once the iterative procedure of updating the network parameter θt

of time slot t is finished, we adapt the trained model using the current received the data in Bt.

The process is repeated in the next time slot t+1. Full details of the online meta adaptation are

summarized in Algorithm 3. We use the network parameter obtained from offline meta learning

as the initialized network parameter for the learning algorithm.

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 18

Algorithm 3: The proposed online meta-learning algorithm.

Input: Learning rate α and β, offline trained network parameter θmeta, empty task sets Bt, ∀t, the number of inner update

steps Nin, the number of adaptation steps Nad, the number of minibatch size Ntask, the received sample pairs N , the

sample pairs of training set and validation set Ntr and Nval

Output: Learned network parameter θt for each slot t

1) initialize the network parameter θ1 ← θmeta

2) for t = 0, . . . do

3) if t = 0

4) B0 ← {h0,q0} of task T0
5) else

6) Bt ← {ht,qt} of task Tt
7) while not done do

8) random sample a minibatch of tasks and the corresponding set Dtrk and Dvalk from Bk, k = 0, . . . , t− 1,

9) for all sampled task do

10) for j = 1, . . . , Nin do

11) update the parameter of each task by (16) and (17)

12) end for

13) end for

14) update the shared network parameter θt by using (18)

15) end while

16) −−−−−−−−−−−−−−−−−−−−Adaptation−−−−−−−−−−−−−−−−−−−

17) initialize θad ← θt

18) for n = 1, . . . , Nad do

19) update θad on current task set Bt: θad ← θadβ∇θadLossBt(θad)

20) end for

21) θt+1 ← θt

22) end if

23) end for

V. SIMULATION RESULTS

In this section, numerical simulations are carried out to evaluate the advantages of the proposed

adaptive beamforming optimization algorithms for different wireless communications scenarios.

A MISO downlink system with one BS and multiple users is considered. The main simulation

parameters are set as follows: carrier frequency is 2.9 GHz, bandwidth is 20 MHz, noise power

spectral density is -174 dBm/Hz, the learning rates are α = 0.001, β = 0.01, the iterative steps

are Gin = Gad = Nin = Nad = 20, and the batch size is Nb = 20. Other specific parameters

including the number of antennas at the BS M , the number of users K and the transmit power

P are provided in each figure. All input data and corresponding labels are generated by using

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 19

MATLAB. Tensorflow 2.0.0 and Keras 2.3.1 are used to implement the proposed DTL algorithm.

PyTorch 1.4.0 is used to implement the proposed meta-learning algorithms. All simulation results

are generated by using a computer with Intel i7-7700HQ CPU and 8 GB RAM.

In our simulation, we assume that the BS can obtain perfect CSI based on channel estimation

or feedback. Each sample pair in all datasets is composed of channel realization and the uplink

power allocation vector. For each channel realization, we can generate its associated uplink power

allocation vector by solving the uplink problem (3). Channel realizations of the testing dataset

and the adaption dataset come from the same distribution. The distribution of channel realizations

in the testing dataset is different from that of the training dataset. The channel realizations in

training dataset used for transfer learning and meta-learning algorithms are generated by using

three small-scale fading channel models: Rayleigh model with distribution CN (0, IM), Rician

model with rician factor 3, and Nakagami model with fading parameter 5 and the average power

gain 2. We generate 5000 channel samples for each of the three small fading models. Hence,

the training dataset includes 15000 sample pairs. For meta-learning algorithm, we randomly

sample labelled data from 15000 sample pairs to construct 1500 tasks, Kmt = 1500. Each task

includes Ns = 50 training sample pairs and Nq = 50 validation sample pairs. In addition, 5000

testing sample pairs are generated for each testing channel model, which uses different channel

distribution from the training data. The DL network shown in Fig. 1 includes eleven layers, one

input layer, two CL layers, two BN layers, three AC layers, one flatten layer, one FC layer, and

one output layer. The input size of the input layer is 2×MK. For the two CL layers, each CL

layer applies 8 kernels of size 3× 3, one stride, and one padding. The input size of the first CL

layer equals to the size of the input data. The input size of the second CL layer and the output

size of both CL layers equal to 2×MK×8. Besides, ReLU and Sigmoid functions are adopted

at the first two activation layers and the last activation layer, respectively. Adam optimizer is

adopted [38]. The exponential decay rates for the 1st moment estimates and the 2nd moment

estimates are set to 0.9 and 0.999, respectively. The epsilon of Adam is set to 10−8.

We consider the following four typical fading scenarios for testing the adaptation capability

of the proposed learning algorithms:

• Large-scale fading case: this model is a typically fading model used in communications

systems.

• WINNER II indoor case: the WINNER II indoor office scenario specified in [39].

• WINNER II outdoor case: a typical WINNER II urban scenario specified in [39].

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 20

• Vehicular case: we adopt an urban vehicle-to-infrastructure (V2I) scenario defined in Annex

A of 3GPP TR 36.885 [40].

For comparison, we introduce other three benchmarks, namely, the optimal solution, the BNN

solution, and the joint learning solution. The definitions of all solutions for comparison are listed

below:

• The optimal solution: this solution shows the optimal result of the problem in (2) obtained

by using the iterative algorithm proposed in [3]. It serves as a performance upper bound

for all other schemes.

• The BNN solution: this solution [25] shows the predicted result, which is obtained based

on the assumption that wireless channels in the training dataset follow the same fading

distribution as those in the testing dataset. It provides a performance upper bound for our

proposed adaptive algorithms.

• The transfer learning solution: this solution shows the adaptation result of the proposed

DTL algorithm in Section III-A.

• The meta-learning solution: this solution shows the fast adaptation result of the proposed

meta-learning algorithm in Section III-B.

• The joint training solution: this solution shows the result obtained by training the neural

network using all available data without adaptation.

For fair comparison, we set the same convergence criteria for the iterative procedures of all

schemes. In addition, we set the same size of training set of fine-tuning for transfer learning and

meta-learning algorithms. The results and analysis are provided for each case below.

A. Large-scale fading case

In this case, the pathloss model is given by PL = 128.1 + 37.6 log10(d [km]), where d is the

distance between a user and BS. The shadow fading follows the log-normal distribution with

zero mean and 8 dB standard deviation. The Rayleigh fading channel with zero mean and unit

variance is adopted as the small-scale fading for this case. All users are randomly distributed

within a disc with a radius of 500 m. In order to choose the proper size of fine-tuning samples

for the proposed two adaptation algorithms, we first investigate the effect of the number of

fine-tuning samples used in the transfer learning and the meta-learning algorithms in Fig. 3.

As the figure shows, the SINR increases when the number of fine-tuning samples increases for

both algorithms under different transmit power settings. The SINR generated by the proposed

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 21

10 20 30 40 50 60 70 80 90 100

The number of fine-tuning samples

0

1

2

3

4

5

6

S
IN

R
 (

dB
)

BNN
Meta learning
Transfer learning

25 dBm

20 dBm

Fig. 3. The comparison of fine-tuning samples for meta and transfer learning when M = 8,K = 8.

10 15 20 25 30

Transmit power (dBm)

-5

0

5

10

15

S
IN

R
 (

dB
)

Optimal solution
BNN
Meta learning
Transfer leanring
Joint training

(a)

2 3 4 5 6 7 8

The number of users

0

5

10

15

20

25

S
IN

R
 (

dB
)

Optimal solution
BNN
Meta learning
Transfer leanring
Joint training

(b)

Fig. 4. The SINR performance comparison on large-scale case for different metrics: (a) transmit power when M = 4, K = 4

and (b) the number of users when M = 8, P = 25 dBm.

meta-learning algorithm almost converges by using only 20 fine-tuning samples. However, there

is still an obviously gap (almost 1 dB for 25 dBm and 0.5 dB for 20 dBm of transmit power)

between the meta-learning and transfer learning algorithms when the number of fine-tuning

samples increases to 100. By considering the adaptation overhead and the SINR performance,

we choose 20 samples for fine-tuning of the transfer-learning and the meta-learning algorithms

in all testing channel models.

Based on the 20 fine-tuning samples, we demonstrate the adaptation capability of the proposed

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 22

10 15 20 25 30

Transmit power (dBm)

-8

-6

-4

-2

0

2

4

6

8

10

S
IN

R
 (

dB
)

Optimal solution
BNN
Meta learning
Transfer leanring
Joint training

(a)

1 2 3 4 5 6

The number of walls

-10

-8

-6

-4

-2

0

2

4

6

8

S
IN

R
 (

dB
)

Optimal solution
BNN
Meta learning
Transfer leanring
Joint training

(b)

Fig. 5. The SINR performance comparison in the WINNER II indoor case when M = 4, K = 4: (a) transmit power when

nw = 2 and (b) the number of walls when P = 25 dBm.

algorithms via the SINR performance using two different metrics in Fig. 4. Fig. 4(a) shows the

effects of the transmit power on the SINR performance. As can be seen, the SINR increases as

the transmit power increases for all schemes. The SINR result generated by the proposed meta-

learning algorithm is very close to that of the BNN scheme which validates its effectiveness.

It is observed that the performance gap between the transfer learning and the meta-learning is

significantly enlarged as the transmit power increases. The joint training scheme without adap-

tation achieves the worst SINR compared to other schemes. In Fig. 4(b), the SINR performance

becomes worse as the number of users increases. The proposed meta-learning algorithm still

produces better result which is close to the BNN scheme, compared to the transfer learning

and the joint training scheme. It is interesting that there is an obviously reduction of the SINR

performance gap between the meta-learning algorithm and the transfer learning algorithm when

the number of users is greater than 6. This is because more channel features can be extracted

and transferred by using the transfer learning algorithm as more users are involved. Overall,

the results plotted in Fig. 4 demonstrates that the proposed meta-learning algorithm provides an

efficient beamforming adaptation solution.

B. WINNER II indoor case

In the WINNER II indoor case, we assume that the access point (AP) and users are located on

the same floor. Users are randomly located between 10 m to 100 m away from the AP. We adopt

the corridor-to-room scenario, in which only non line-of-sight (NLOS) path is considered due to

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 23

10 15 20 25 30

Transmit power (dBm)

0

5

10

15

20

25

S
IN

R
 (

dB
)

Optimal solution
BNN
Meta learning
Transfer leanring
Joint training

(a)

2 3 4 5 6 7 8

The number of users

0

5

10

15

20

25

30

35

40

S
IN

R
 (

dB
)

Optimal solution
BNN
Meta learning
Transfer leanring
Joint training

(b)

Fig. 6. The SINR performance comparison in the WINNER II outdoor case: (a) transmit power when M = 4, K = 4 and (b)

the number of users when M = 8, P = 25 dBm.

the blocked light-of-sight (LOS) path. The pathloss is given by PL = 43.8+36.8 log10(d [m])+

20 log10(fc/5) + 5(nw − 1), where fc is carrier frequency and nw is the number of walls. The

standard deviation of shadow fading is 4 dB. The adaptation capability of the proposed learning

algorithms in the WINNER indoor case is investigated in Fig. 5 based on two factors: the transmit

power at the AP and the number of walls. Fig. 5(a) shows that the adaptation capability of the

proposed meta-learning algorithm in the indoor fading case is similar to that demonstrated in

the large-scale case. Different from the results shown in Fig. 4(a), the SINR performance of

the transfer learning algorithm is close to that of the meta-learning algorithm when the transmit

power is smaller than 15 dBm in Fig. 5(a). This fact may indicate that the system needs to spend

more power on overcoming the fading caused by the walls. Hence, the effects of the number

of walls on the adaptation capability for the proposed algorithms are provided in Fig. 5(b). As

can be seen from Fig. 5(b), the SINR performance decreases for all schemes when the number

of walls between the user and AP increases. In addition, the performance gap between the meta

learning and the transfer learning algorithm rapidly reduces as the number of walls increases.

C. WINNER II outdoor case

In the WINNER II outdoor case, we assume that the BS is located in the cell center and covers

a disc with a radius of 1000 m. Users are randomly distributed between 100 m to 1000 m away

from the BS. The pathloss and shadowing of LOS in WINNER B1 are adopted to generate the

large-scale fading for this case. Fig. 6 demonstrates the adaptation capability of the proposed

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 24

learning algorithms in the WINNER II outdoor case through the SINR performance. As can be

seen from Fig. 6, the proposed meta-learning algorithm achieves the highest SINR performance

compared to the proposed transfer learning algorithm and the joint training algorithm as the

transmit power and the number of users change. Compare with the SINR performance in Fig.

4(a) and Fig. 5(a), the performance gap between the proposed transfer learning algorithm and

the joint training algorithm is significantly increased when the transmit power is greater than 15

dBm in Fig. 6(a).

D. Vehicular case

Fig. 7. Manhattan road grid 750 m× 1299 m [40].

In the vehicular case, we use the Manhattan grid layout with the region size of 750m×1299m

to set up a realistic V2I communication scenario as shown in Fig. 7. The size of each grid is

250 m× 433 m. There are two lanes in each direction for vehicles with 3.5 m lane width. The

BS is located in the center of the layout. The vehicles are uniformly placed on each direction of

the road. The probability of each vehicle to change its direction at the intersection is set to be

0.4. Each vehicle will change its direction when it arrives at the edge of the layout. We assume

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 25

that the velocity of each vehicle is 60 km/h. The pathloss and shadowing adopted in this case

are the same to those in the large-scale case. Besides, the antenna gains of the BS and each

vehicle user are set to be 8 dBi and 3 dBi, respectively. The decorrelation distance is set to 50

m. We use Clarke’s model introduced in [41] to generate the small-scale fading of the moving

vehicles.

The effects of the transmit power and the number of vehicles on the SINR performance

are presented in Fig. 8(a) and Fig. 8(b), respectively. For both factors, the SINR performance

of the proposed meta-leaning algorithm is close to that of the BNN scheme. Fig. 8(a) shows

that the proposed meta-learning and transfer learning algorithms significantly outperform the

joint training scheme when the transmit power is greater than 14 dBm. There exists an obvious

performance gap between the two learning algorithms when the transmit power is greater than

25 dBm. Fig. 8(b) shows that the meta-learning algorithm significantly outperforms the transfer

learning algorithm and the joint training method. The SINR performance gap between the transfer

learning algorithm and joint training method becomes large as the number of vehicles increases.

Similar to the above three fading cases, the proposed meta-learning algorithm provides superior

performance thanks to its fast adaptation even in the moving scenario. Fig. 8(c) shows the

comparison of the execution time between the proposed algorithms (same for the transfer learning

and the meta-learning algorithms) and the optimal solution. From the figure, we can see that

the proposed learning algorithms requires much less time compared to the optimal solution.

This is because no iterative process is used in the proposed learning algorithms to predict the

beamforming solution.

In addition, we compare the fine-tuning execution time of the meta-learning algorithm and

transfer learning algorithm in Table I. The results are obtained by averaged over 20 fine-tuning

samples. For a fair comparison, we set the iterative step of the fine-tuning for both algorithms

to be 20. From the Table, we can see that the execution time of the meta-learning algorithm to

adapt one channel is significant less than that of the transfer learning algorithm.

TABLE I

COMPARISON OF FINE-TUNING EXECUTION TIME BETWEEN META LEARNING AND TRANSFER LEARNING.

No. Users 2 3 4 5 6 7 8

Meta-learning (ms) 112 113 117 118 122 132 137

Transfer learning (ms) 810 823 842 879 901 928 1107

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 26

10 15 20 25 30

Transmit power (dBm)

-6

-3

0

3

6

9

S
IN

R
 (

dB
)

Optimal solution
BNN
Meta learning
Transfer leanring
Joint training

(a)

2 3 4 5 6 7 8

The number of vehicles

2

4

6

8

10

12

14

16

18

20

22

S
IN

R
 (

dB
)

Optimal solution
BNN
Meta learning
Transfer leanring
Joint training

(b)

2 3 4 5 6 7 8

The number of vehicles

0

0.5

1

1.5

2

2.5

3

3.5

4

E
xe

cu
tio

n
tim

e
pe

r
ch

an
ne

l (
s)

10-3

Proposed NN
Optimal solution

(c)

Fig. 8. The performance and complexity comparison of the proposed algorithms in the vehicular case: (a) SINR versus transmit

power when M = 4, K = 4, (b) SINR versus the number of vehicles when M = 8, P = 25 dBm and (c) execution time per

channel versus the number of vehicles when M = 8, P = 25 dBm.

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 27

E. Online learning

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Index of time slots (t)

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 S
IN

R
 (

dB
)

Online meta adaptation
Online joint adaptation
Offline upper bound
Offline meta adaptation

Outdoor Urban
60 km/h

Highway
120 km/h

Fig. 9. Performance comparison between online and offline adaptation algorithm M = 4, K = 4, P = 25 dBm

In this case, we evaluate the performance of the proposed online meta-learning algorithm in

real-world non-stationary scenarios. We consider mobile users travelling from outdoor to urban

and then highway environments in the simulation to investigate the adaptation capability of the

proposed online algorithm in the changing environments. The WINNER II outdoor and vehicular

case are used to generate channel data for the outdoor and urban scenarios, respectively. The

freeway case introduced in 3GPP TR 36.885 [40] is used to generate channel data for the

highway scenario. The number of lanes in each direction and the velocity of each vehicle are

set as 3 and 120 km/h, respectively. The antenna gains of the BS and vehicle in the urban and

highway scenario are set as 8 dBi and 3 dBi, respectively. We set the minibatch Ntask = 20,

the same sample pairs for training set and validation set Ntr = Nval = 4. The results of

the online joint adaptation algorithm is obtained by using the FTL method. Fig. 9 shows the

adaptation performance comparison between the proposed offline and online learning algorithm

over the whole communications period as the users move across different environments. Each

simulation point in the figure is obtained by averaging all of the actual experimental points

at the individual time slots over the previous time slots in the corresponding communications

scenario. To implement simulation, we assume that five adaptation channels N = 5 and ten

testing channels of each user are received at each time slot. Each communications scenario lasts

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 28

50 time slots. For the offline meta adaptation case, the neural network model will be updated

periodically at every 60 time slots based on the collected channel information during that period.

For the offline upper bound case, we assume that the system knows the exact environment for all

communications scenarios in advance and also knows when to update the model, so it provides

a performance upper bound. The online joint adaptation uses all data until slots t − 1 to train

the model and then use the data at slot t to fine tune the model. As we can see from the

figure, there is an obvious drop on the average SINR for all cases when the communications

scenario changes, which indicates that the changing communications scenario can significantly

affect the system performance. There exists an obvious gap between the online algorithm and the

offline upper bound, and the performance gap is obviously enlarged when the communication

scenario changes from outdoor to urban, whereas the performance gap is slightly increased

when the scenario changes from urban to highway. The reason is that urban and highway are

both scenarios with high mobility and they share more similar channel statistics features. It is

interesting to point out that the offline meta adaptation algorithm performs worse than the online

joint method from the beginning of the urban scenario to the beginning of the highway scenario.

The reason is that the offline meta adaptation algorithm still uses the trained model based on

the previous scenario (outdoor/urban) to the new scenarios (urban/highway). The difference in

mobility between different environments causes the task mismatch issue for the offline meta

learning algorithm before its periodic update. Whereas the offline meta adaptation algorithm

outperforms the online joint method after updating its model in the highway case. This fact

indicates that the offline algorithm heavily relies on the stationary environment. The proposed

online meta adaptation algorithm has the best performance compared to the online joint method

and the offline meta adaptation, and it can fast adapt to the new communications scenario by

effectively making use of sequential data.

VI. CONCLUSION

In this paper, we have proposed two offline learning algorithms to achieve fast adaptation

on the beamforming design when the distribution of testing wireless environments changes. For

the DTL algorithm, it utilizes the pre-trained model to re-train part of the parameter in order

to achieve the adaption on the new environment. Different from the DTL algorithm, the meta

learning algorithm aims to learn the parameter initialization, which can be used to achieve fast

adaption to the new environment without retaining parts of the neural network. In order to

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 29

enhance the adaptation capability of the proposed offline meta-learning algorithm in the real-

world scenarios, an online adaptive learning algorithm was proposed based on the meta-learning

algorithm and the FTL approach. Simulation results demonstrated that both offline algorithms

can achieve fast adaptation when testing data come from a different but stationary distribution,

and the proposed meta-learning algorithm outperforms the DTL algorithm in terms of both

performance and execution time. The online adaptive algorithm can significantly enhance the

adaptation capability of the proposed offline meta-learning algorithm in non-stationary scenarios.

In this paper we only consider a single task distribution which is to optimize beamforming. In

the future, we plan to use the lifelong learning technique [42] to solve more complex problems in

self-organizing networks, in which tasks may come from different distributions, so bidirectional

learning, knowledge retention and accumulation are necessary.

REFERENCES

[1] C. Lim, T. Yoo, B. Clerckx, B. Lee and B. Shim, “Recent trend of multiuser MIMO in LTE-advanced,” IEEE Commun.

Mag., vol. 51, no. 3, pp. 127-135, Mar. 2013.

[2] F. Boccardi, R. W. Heath Jr., A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,”

IEEE Commun. Mag., vol. 52, no. 2, pp. 74-80, Feb. 2014.

[3] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem with individual SINR constraints,”

IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 18-28, Jan. 2004.

[4] M. Bengtsson and B. Ottersten, “Optimal downlink beamforming using semidefinite optimization,” in Proc. Annual Allerton

Conf. on Commun., Control and Computing, Monticello, NY, Sept. 1999, pp. 987-996.

[5] F. Rashid-Farrokhi, K. R. Liu, and L. Tassiulas, “Transmit beamforming and power control for cellular wireless systems,”

IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1437-1450, Oct. 1998.

[6] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic optimization for fixed MIMO receivers,” IEEE Trans.

Signal Process., vol. 54, no. 1, pp. 161-176, Jan. 2006.

[7] Q. Shi, M. Razaviyayn, Z. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization

for a MIMO interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331-4340, Sept. 2011.

[8] G. Zheng, “Joint beamforming optimization and power control for fullduplex MIMO two-way relay channel,” IEEE Trans.

Signal Process., vol. 63, no. 3, pp. 555-566, Feb. 2015.

[9] Y. Yuan, P. Xu, Z. Yang, Z. Ding, and Q. Chen, “Joint Robust Beamforming and Power-Splitting Ratio Design in SWIPT-

based Cooperative NOMA Systems with CSI Uncertainty,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2386-2400, Jan.

2019.

[10] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless networking: A survey,” IEEE Commun. Surveys

Tuts., vol. 21, no. 3, pp. 2224-2287, Mar. 2019.

[11] T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and

challenges,” China Commun., vol. 14, no. 11, pp. 92-111, Nov. 2017.

[12] A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design in the era of deep learning: Model-based, AI-based,

or both?” IEEE Trans. Commun., vol. 67, no. 10, pp. 7331-7376, Oct. 2019.

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 30

[13] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based channel estimation for beamspace mmwave massive MIMO

systems,” IEEE Wireless Commun. Lett., vol. 7, no. 5, pp. 852-855, Oct. 2018.

[14] H. Ye, G. Y. Li, and B. Juang, “Power of deep learning for channel estimation and signal detection in OFDM systems,”

IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114-117, Feb. 2018.

[15] F. Liang, C. Shen, and F. Wu, “An iterative BP-CNN architecture for channel decoding,” J. Sel. Topics Signal Process.,

vol. 12, no. 1, pp. 144-159, Feb. 2018.

[16] H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, “Deep-learningbased millimeter-wave massive MIMO for hybrid

precoding,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 3027-3032, Mar. 2019.

[17] A. M. Elbir and A. Papazafeiropoulos, “Hybrid precoding for multi-user millimeter wave massive MIMO systems: A deep

learning approach,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 552-563, Jan. 2020.

[18] A. M. Elbir and K. V. Mishra, “Deep learning strategies for joint channel estimation and hybrid beamforming in multi-

carrier mm-Wave massive MIMO systems,” 2019, arXiv:1912.10036. [Online]. Available: http://arxiv.org/abs/1912.10036.

[19] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, “Learning to optimize: Training deep neural networks

for wireless resource management,” in Proc. 18th IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC),

Sapporo, Japan, 2017, pp. 1-6.

[20] W. Lee, M. Kim, and D.-H. Cho, “Deep power control: Transmit power control scheme based on convolutional neural

network,” IEEE Commun. Lett., vol. 22, no. 6, pp. 1276-1279, Jun. 2018.

[21] F. Liang, C. Shen, W. Yu, and F. Wu, “Towards optimal power control via ensembling deep neural networks,” IEEE Trans.

Commun., vol. 68, no. 3, pp. 1760-1776, Mar. 2020.

[22] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, “Deep learning coordinated beamforming for highly-mobile

millimeter wave systems,” IEEE Access, vol. 6, pp. 37328-37348, 2018.

[23] Y. Shi, A. Konar, N. D. Sidiropoulos, X. Mao, and Y. Liu, “Learning to beamform for minimum outage,” IEEE Trans.

Signal Process., vol. 66, no. 19, pp. 5180-5193, Oct. 2018.

[24] H. Huang, W. Xia, J. Xiong, J. Yang, G. Zheng, and X. Zhu, ”Unsupervised learning based fast beamfrming design for

downlink MIMO,” IEEE Access, vol. 7, pp. 7599-7605, 2019.

[25] W. Xia, G. Zheng, Y. Zhu, J. Zhang, J. Wang, and A. P. Petropulu, “A deep learning framework for optimization of MISO

downlink beamforming,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1866-1880, Mar. 2020.

[26] J. Zhang, W. Xia, M. You, G. Zheng, S. Lambotharan, and K.-K. Wong, “Deep learning enabled optimization of downlink

beamforming under per-antenna power constraints: Algorithms and experimental demonstration,” IEEE Trans. Wireless

Commun., 2020, doi: 10.1109/TWC.2020.2977340

[27] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359,

Oct. 2010.

[28] A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, and X. Qian, “Model-aided wireless artificial intelligence: Embedding

expert knowledge in deep neural networks towards wireless systems optimization,” IEEE Veh. Technol. Mag., vol. 14, no.

3, pp. 60-69, Jul. 2019.

[29] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Transfer learning for mixed-integer resource allocation problems in wireless

networks,” in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai, China, May 2019, pp. 1-6.

[30] S. Thrun and L. Pratt, “Learning to learn: Introduction and overview,” in Learning to Learn. Springer, 1998, pp. 3-17.

[31] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in Proc. 34th Int.

Conf. Machine Learning. JMLR. org, 2017, vol. 70, pp. 1126-1135.

[32] S. Park, H. Jang, O. Simeone, and J. Kang, “Learning to demodulate from few pilots via offline and online meta-learning,”

2019, arXiv:1908.09049, 2019. [Online]. Available: https://arxiv.org/abs/1908.09049

September 11, 2020 DRAFT

A REVISION SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 31

[33] S. Park, O. Simeone, and J. Kang, “Meta-learning to communicate: Fast end-to-end training for fading channels,” in Proc.

IEEE 45th Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, May, 2020, pp. 5075-5079.

[34] Y. Yang, F. Gao, Z. Zhong, B. Ai, and A. Alkhateeb, “Deep transfer learning based downlink channel prediction for FDD

massive MIMO systems,” 2019, arXiv:1912.12265. [Online]. Available: https://arxiv.org/abs/1912.12265

[35] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-learning,” 2019, arXiv:1902.08438. [Online]. Available:

https://arxiv.org/abs/1902.08438

[36] J. Hannan, “Approximation to bayes risk in repeated play,” Contributions to the Theory of Games, vol. 3, pp. 97-139,

1957.

[37] S. Shalev-Shwartz, “Online learning and online convex optimization,” Foundations and Trends in Machine Learning, vol.

4, no. 2, pp. 107-194, 2012.

[38] J. Ba and D. Kingma, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learning Representations (ICLR),

San Diego, USA, May 2015, pp. 1-15.

[39] P. Kyosti, “IST-4-027756 WINNER II D1.1.2 v.1.2: WINNER II channel models,” Inf. Soc. Technol., 2007.

[40] 3rd Generation Partnership Project: Technical Specification Group Radio Access Network: Study LTE-Based V2X Services:

(Release 14), Standard 3GPP TR 36.885 V2.0.0, Jun. 2016.

[41] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2005.

[42] S. Thrun, “Lifelong learning algorithms,” in Learning to Learn. Springer, 1998, pp. 181-209.

September 11, 2020 DRAFT

