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Abstract

Secure localization and velocity estimation are of great importance in Internet of Things (IoT)

applications and are particularly challenging in the presence of malicious attacks. The problem becomes

even more challenging in practical scenarios in which attack information is unknown and anchor node

location uncertainties occur due to node mobility and falsification of malicious nodes. This challenging

problem is investigated in this paper. With reasonable assumptions on the attack model and uncertainties,

the secure localization and velocity estimation problem is formulated as an intractable maximum a poste-

rior (MAP) problem. A variational-message-passing (VMP) based algorithm is proposed to approximate

the true posterior distribution iteratively and find the closed-form estimates of the location and velocity

securely. The identification of malicious nodes is also achieved in the meantime. The convergence of

the proposed VMP-based algorithm is also discussed. Numerical simulations are finally conducted and

the results show the VMP-based joint localization and velocity estimation algorithm can approach the

Bayesian Cramer Rao bound and is superior to other secure algorithms.
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I. INTRODUCTION

With the explosive growth of Internet of Things (IoT) devices and emerging intelligent ap-

plications, e.g., autonomous driving vehicles and smart logistics, etc., localization and velocity

estimation of mobile target nodes have become more and more important [1, 2]. Usually they are

treated as individual problems and are achieved based on location-related and velocity-related

measurements, respectively. Specifically, the location-related measurements mainly include time-

of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA) and received signal

strength (RSS) [3–5], while the velocity-related measurements can be obtained from Doppler

shifts [6, 7] or synthetic aperture radars (SARs) [8, 9]. Significant progress has been made and

quite a lot algorithms have been proposed in the literature. For example, regarding to target

localization, least squares [10], Bayeisan inference [11], convex optimization [12] and iterative

algorithms [13] have been proposed and a survey on localization techniques can be found in

[14]. On the other hand, various velocity estimation algorithms based on Doppler shifts and/or

SARs measurements have been reported in [6, 7] and [8, 9], respectively.

Considering that the location information is also contained in Doppler shift measurements,

Doppler shift measurements can be further exploited to improve the localization accuracy. Joint

localization and velocity estimation based on both range-based and Doppler shift measurements

is thus feasible and has been discussed in [15–18]. Among them, [18] introduced nuisance

parameters to transform the nonlinear measurement equation into a pseudo linear one, and then

presented a two-stage weighted least squares (WLS) algorithm for joint localization and velocity

estimation based on both TDOA and frequency-difference-of-arrival (FDOA) measurements.

The two-stage WLS algorithm was later extended to multiple input multiple output (MIMO)

radar systems in [16]. By using Taylor expansion for linearization, another WLS-based joint

localization and velocity estimation algorithm was proposed in [17]. When considering large

noise scenarios, a bias-reduced nonlinear WLS method was presented in [15].

In all the aforementioned works, the range measurements were assumed collected securely. In

other words, they were obtained from trusty IoT nodes. However, with the increasing computing

capability of the IoT devices and the presence of malicious users, the range measurements may

be attacked and manipulated intentionally to mislead the localization process and/or prevent from

localizing the target node accurately [19, 20]. The malicious attacks, e.g., Sybil attack, wormhole
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attack and replay attack, are severe threats to reliable and accurate localization [21]. They may

cause serious damages to property or loss of life especially in location-critical applications, e.g.,

autonomous driving vehicles. To avoid this and improve localization accuracy in the presence of

malicious attacks, secure localization becomes necessary and has attracted considerable research

attentions recently.

Some secure results have been reported in [20–27]. Generally they can be classified into two

categories, i.e., secure location verification and secure localization. Regarding to secure location

verification, it mainly aims to identify the malicious nodes or detect the location spoofing attacks.

By using distance bounding protocol, two secure location verification algorithms were proposed

respectively in [22, 23]. Leveraging on verifiable multilateration, a drone-based secure location

verification scheme was also developed in [24]. Another secure algorithm was proposed to

detect malicious nodes based on locations clustering and consistency evaluation via sequential

probability ratio test in [26]. In these algorithms, one or multiple verifier nodes which are

completely trustworthy are needed to achieve secure location verification. Without the need

of verifier nodes, a location spoofing detection algorithm was proposed in [27]. It achieved

the spoofing detection based on generalized likelihood ratio test, by using two-way TOA and

audibility information, and modeling the malicious delay measurements as Gaussian noise with

known mean and variance.

After the malicious nodes are identified, their associated measurements can be either discarded

or further exploited for secure localization. For the latter case, a secure localization algorithm

based on maximum likelihood criterion was developed in [21]. Specifically, by assuming perfect

identification of malicious attacks and modeling the range attacks as Gaussian distribution with

known mean and variance, the secure localization problem was formulated as a maximization

problem of mixture likelihood function of non-malicious and malicious measurements. On the

other hand, without identifying the malicious nodes in advance, secure localization of the target

node was investigated in [20]. By adopting the Gaussian range attack model, an iterative gradient

descent algorithm was developed to localize the target node securely.

All the secure localization algorithms assume the locations of both non-malicious and mali-

cious anchor nodes are perfectly known. This is difficult to achieve in mobile IoT networks where

mobile nodes serve as anchors. It is even impossible to achieve in the presence of malicious

anchor nodes due to their malice nature and capability in falsifying their locations. Moreover,
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Doppler shift measurements which also contain location information are not exploited to enhance

the performance of secure localization. To address these issues, we investigate the joint problem

of secure localization and velocity estimation in mobile IoT networks with malicious attacks

in this paper. To be practical, uncertainties in anchor locations and velocities are considered.

Moreover, both the identification of the malicious nodes and the statistical information of the

range attacks are assumed unknown. By assuming reasonable prior distributions on the attack pa-

rameters and the uncertainties, we formulate the joint problem as a maximum a posterior (MAP)

problem. Due to the presence of unknown malicious attacks and uncertainties, the MAP problem

is intractable. To solve the problem, we propose a variational-message-passing based algorithm

for joint secure localization and velocity estimation. It approximates the intractable posterior

probability iteratively by the product of variational distributions, each being the approximation

of posterior probability with respect to individual unknown parameter. In each iteration, the

variational distributions are derived in tractable and closed forms, which enables the estimation

of the target location and velocity accurately after convergence. The identification of malicious

nodes is also achieved as a byproduct. The convergence of the proposed algorithm is then

discussed and proved. The superior performance in localization and velocity estimation is finally

demonstrated by simulations.

The remainder of this paper is organized as follows. Section II introduces the mobile IoT

networks with unknown malicious attacks and uncertainties in locations and velocities. The

variational-message-passing based secure localization and velocity estimation algorithm and the

convergence analysis are presented in Section III. Section IV validates the proposed algorithm

through simulations and comparison with other algorithms. Conclusions are finally drawn in

Section V.

II. SYSTEM MODEL

We consider a wireless sensor network consisting of S = {1, 2, ...,M} mobile sensors and

one mobile target node. In the network, some sensors are malicious nodes that send erroneous

information to mislead the target node. In practice, the set of malicious nodes is unknown and

denoted as SM. The rest of the sensors are legitimate nodes and are denoted as SL, where

SL
∪

SM = S and SL
∩

SM = ∅. The location of the ith, i ∈ S sensor node is denoted as

xi = [xi, yi]
T , while the location of the target node is denoted as x = [x, y]T . Due to the
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mobility and localization error, the sensor location is coarsely known as x̄i and its true location

can be modeled as

xi = x̄i + ωx
i , (1)

where ωx
i denotes the location uncertainty following Gaussian distribution with zero mean and

covariance matrix Σx
i . Similarly, the velocity of the ith sensor node is also measured/estimated

as v̄i and its true velocity is written as

vi = v̄i + ωv
i , (2)

where ωv
i represents a Gaussian velocity uncertainty with zero mean and covariance matrix Σv

i .

In the sensor network, sensors are communicated over a channel with carrier frequency of fc.

Due to the mobility of nodes and the mismatches in the nodes’ oscillators, Doppler frequency

shifts usually exist between the target node and the sensors [28]. The measurement of the Doppler

shift between the ith sensor and the target node can be collected and written as

hi = fi + f + ψi + ηi, (3)

where f and fi denote the carrier frequency offsets at the target node and the ith sensor,

respectively, ηi is the Gaussian measurement noise with zero-mean and variance ιi, and ψi

is the Doppler shift caused by the mobility of the target node and the ith sensor and is given by

[29–31]

ψi =
(xi − x)T (vi − v)

∥xi − x∥ c
fc, (4)

in which c is the speed of light and v denotes the velocity of the target node to be estimated.

Collecting the Doppler measurements associated with all the sensors together as a vector

h = [h1 . . . , hM ], the likelihood probability function can be written as

p (h|f s, f,xs,x,vs,v) =
M∏
i=1

p (hi|fi, f,xi,x,vi,v) , (5)

where xs =
[
xT1 , . . . ,x

T
M

]
is the vector of all sensors locations, f s = [f1, . . . , fM ] is the vector

of the carrier frequency offsets for all sensors, and vs =
[
vT1 , . . . ,v

T
M

]
denotes the velocity

vector for all the sensors.

On the other hand, the target node can also obtain the range measurements corresponding to

the sensors. Usually the range measurements are obtained based on time of flight measurements.

Due to the presence of the malicious nodes, the time of flight measurements may be intentionally
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manipulated by introducing an extra delay, thus causing additional interfering term in the range

measurement [21]. Considering the possible attacks from malicious nodes, the range measurement

from the ith sensor can be modeled as

ri = ∥xi − x∥︸ ︷︷ ︸
di

+Ξi + εi. (6)

where εi is the measurement error following a zero-mean Gaussian distribution with variance of

Λ−1
L , and Ξi characterizes the interfering term caused by the possible attack from the malicious

node. When the sensor node is legitimate one, Ξi equals to zero. Following the attack models

in [21, 27], the interfering term Ξi from the malicious node can be modeled as mean-shifted

Gaussian interference with non-zero mean µM and variance Λ−1
M .

In practice, the number of malicious nodes and the identification of the malicious nodes are

unknown. Without loss of generality, we assume that the sensor node is a legitimate node with

a probability of α1, while it is a malicious node with a probability of α2. The probabilities

are unknown with
2∑
l=1

αl = 1. By combining the measurement error with the interfering term

together as ε̃i = εi + Ξi, we have

ε̃i =

 N
(
0,Λ−1

L
)

i ∈ SL with probability of α1,

N (µ,Λ−1) i ∈ SM with probability of α2.
(7)

with µ = µM, and Λ−1 = Λ−1
M + Λ−1

L .

In order to differentiate the attack and secure measurements and ease the system modeling,

an auxiliary indicator vector with binary elements yi = (yi,1, yi,2) is introduced. Specifically, the

indicator vector is defined as

yi =

 (1, 0) i ∈ SL,

(0, 1) i ∈ SM,
. (8)

Given the probability of α = [α1, α2], the indicator vector y = {y1,y2, ...,yM} then follows

the distribution as

p(y|α) =
M∏
i=1

2∏
l=1

[αl]
yi,l . (9)

Considering the strong concealing capability of malicious nodes, the statistical information

regarding to malicious nodes, i.e., α, µ and Λ−1, are all assumed unknown. But they can be

modeled as random variables following certain distributions as reported in the literature [32–34].
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Specifically, considering the practical constraint (i.e.,
2∑
l=1

αl = 1), the prior distribution of the

probability α can be modeled as a Dirichlet distribution given by [32]

p
(
α|λ

)
=

2∏
l=1

Dir
(
2, λ̄l

)
, (10)

where λ =
(
λ1, λ2

)
is the parameter of Dirichlet distribution. In regards to the covariance inverse

Λ, it is assumed following Gamma distribution by following the conjugate prior principle [33]

and the prior probability is given by

p(Λ|ā, b̄) = Γ
(
Λ|ā, b̄

)
, (11)

where ā and b̄ are the parameters of Gamma distribution. Finally, the prior distribution of the

Gaussian mean µ can also be assumed as a Gaussian distribution given by [34]

p(µ|m̄, (γ̄)−1) = N (µ|m̄, (γ̄)−1), (12)

with the mean and covariance of m̄ and (γ̄)−1, respectively.

Now based on the range and error models (6) and (7), the likelihood function of the range

measurements can be formulated as

p (r|xs,x,θ) =
M∏
i=1

p (ri|xi,x,θ) =
M∏
i=1

N
(
ri − di,Λ

−1
L
)yi,1N (ri − di − µ,Λ−1

)yi,2 , (13)

where θ = [µ,Λ,α,y] is the unknown parameter vector and r = [r1 . . . , rM ] is the range

measurement vector of the target node.

III. JOINT SECURE LOCALIZATION AND VELOCITY ESTIMATION

A. Probabilistic Model and Variational Message Passing

By collecting range and Doppler measurements r and h from all the sensor nodes and based

on the maximum a posterior (MAP) criterion, the target location and velocity can be theoretically

estimated as [
xMAP,vMAP] = argmax

∫
Φ\x,v

p (Φ|r,h)dΦ\x,v, (14)

where Φ = [f s, f,xs,x,vs,v,θ], Φ\x,v denotes the set of variables by removing x and v from

Φ, and the posterior probability is given as

p(Φ|r,h) ∝ p (r,h|Φ) p (Φ) (15)
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with p (Φ) being the prior probability and p (r,h|Φ) being the joint likelihood function of the

target node as

p (r,h|Φ) =
M∏
i=1

p (ri|xi,x,θ) p (hi|fi, f,xi,x,vi,v). (16)

Unfortunately, with the presence of malicious nodes, the uncertainties in the sensor locations

and velocities, the unknown identification of the malicious nodes and the unknown statistics of

the range errors, the posterior distribution in (15) is very complicated and the MAP estimation

in (14) is intractable.

In this paper, we propose to find a tractable approximation q(Φ) to the posterior distribu-

tion p(Φ|r,h) in (15) based on variational Bayesian framework. Specifically, considering the

independence of the variables in the set Φ, the variational distribution q(Φ) can be factorized

as

q (Φ) =
∏

Φk∈Φ

q (Φk), (17)

where Φk denotes the kth variable in the set Φ. To find a good approximation and inspired by

the non-negative property of Kullback-Leibler (KL) divergence of any two distributions [34],

the approximation is proposed by minimizing the KL divergence between the two distributions

q(Φ) and p(Φ|r,h) as

KL (q (Φ) ||p (Φ|r,h)) = −Eq(Φ)

{
ln
p (Φ|r,h)
q (Φ)

}
≥ 0, (18)

where Eq(Φ) means the expectation with respect to q (Φ) and the equality holds when q (Φ) =

p (Φ|r,h) as proved in [35]. Based on the factorization (17) and the KL divergence minimization

(18), the approximated distribution q (Φk) in fact can be regarded as the approximation of the

corresponding posterior distribution p (Φk|r,h). For example, q (v) is the approximation to the

posterior distribution p (v|r,h). Then the MAP estimation of each parameter Φk can be achieved

as

ΦMAP
k = argmax q (Φk). (19)

With the factorization (17) and by adopting alternative optimization method, the variational

distribution can be iteratively approximated as [32]

q(ξ) (Φk) ∝ exp

{
E ∏

j ̸=k
q(ξ)(Φj) [ln p (Φ, r,h)]

}
, (20)
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Fig. 1: The probabilistic graph of the joint probability

where q(ξ) (Φk) is the approximation in the ξth iteration and p (Φ, r,h) is the joint probability.

Considering the complexity in the joint probability p (Φ, r,h), we further adopt a probabilistic

graph model to analyze it. As shown in Fig. 1, the variables are denoted as nodes in the graph and

the directed edges signify the dependence of the variables in terms of conditional probabilities.

Moreover, according to the dependencies of the variables, the nodes excluding those in the set

Φ can be further classified as the parent nodes PΦk
and child nodes CΦk

with respect to Φk.

Based on the probabilistic graph model, the joint probability can be written as the product of the

marginal probabilities of the nodes and the conditional probabilities among the nodes and their

parent/child nodes, i.e., p (Φk|PΦk
) and p (CΦk

|Φk,Φm) where Φm is the other parent node of

CΦk
if any with m ̸= k. Taking the mean of the attack delay µ as an example (i.e., Φk = µ),

it contributes to the joint probability through the prior distribution p (µ|m̄, γ̄) and the likelihood

distribution p
(
r,h|µ,Φ\µ

)
where m̄ and γ̄ are the parent nodes while r and h are the child

nodes of µ, respectively.

We notice that all the Dirichlet, Gamma and Gaussian distributions involved in our system

model can be rewritten in the form of exponential functions. This fact inspires us to reformulate

the two conditional distributions as [33]

p (Φk|PΦk
) = exp [HP (PΦk

)Ω (Φk) +Z (PΦk
) + fΦk

(Φk)] , (21)

p (CΦk
|Φk,Φm) = exp

[
HC(Φm, CΦk

)Ω (Φk) +Υ (Φm, CΦk
) + fCΦk

(CΦk
)
]
, (22)

where Υ(·) and Z(·) can be regarded as the normalization functions associated with the cor-

responding variables in the conditions, and fCΦk
(CΦk

) and fΦk
(Φk) are the functions only

associated with the corresponding variables. The expressions of the functions in (21) and (22)

change with its associated variables and will be specifically given in the next subsection.
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By plugging (21) and (22) into (20) and after some tedious manipulations, it yields

q(ξ+1) (Φk) ∝ exp




E ∏

j ̸=k
q(ξ)(Φj) [HP (PΦk

)] +
∑
CΦk

E ∏
j ̸=k

q(ξ)(Φj) [HC (Φm, CΦk
)]

︸ ︷︷ ︸
H(ξ+1)

Φk


Ω (Φk)


exp (fΦk

(Φk)) exp

(
E ∏

j ̸=k
q(ξ)(Φj)

(
Z (PΦk

) +Υ (Φm, CΦk
) + fCΦk

(CΦk
)
))

︸ ︷︷ ︸
constant term

,

(23)

where the last exponential term is irrelevant to the variable Φk and can be regarded as constant

and ignored in the MAP estimation of Φk.

Clearly from (23), in the update of the variational distribution of q(ξ+1) (Φk) in each iteration,

only the term H(ξ+1)
Φk

needs to be updated. It can be termed as a natural parameter and further

partitioned into two sub-terms as follows

H(ξ+1)
Φk

= E ∏
j ̸=k

q(ξ)(Φj) [HP (PΦk
)]︸ ︷︷ ︸

M(ξ)
PΦk

→Φk

+
∑
CΦk

E ∏
j ̸=k

q(ξ)(Φj) [HC (Φm, CΦk
)]︸ ︷︷ ︸

M(ξ)
CΦk

→Φk

, (24)

The first subterm M(ξ)
PΦk

→Φk
can be regarded as the message from the parent node PΦk

, while

the second subterm is the sum of messages M(ξ)
CΦk

→Φk
from the child nodes CΦk

.

With (24), we now can propose a variational message passing (VMP) algorithm to update

the natural parameter H(ξ+1)
Φk

. Specifically, the natural parameter can be updated in an iterative

message passing way. The messages are the variational expectations of natural parameters of

neighboring nodes. Through the variational message passing algorithm, the natural parameters

of the complicated posterior distributions can be approximated iteratively. In the considered

network, the natural parameters of variational distributions q (x) and q (v) can be approximated

iteratively by using the information from its neighboring nodes. Then the secure localization

and velocity estimation can be finally achieved based on (19). Since the considered localization

network is very complicated with unknown malicious nodes and uncertainties in the sensor

locations and velocities, the derivations of the natural parameters H(ξ+1)
Φk

and the variational

distribution q (Φk) are non-trivial and still challenging. The details of the derivations are then

given in the next subsection.
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B. VMP-Based Joint Localization and Velocity Estimation

Based on (24), the messages between unknown parameters are updated and passing through

the parent nodes and child nodes of the variable nodes, and then enable the MAP estimation of

all the parameters. In the following, the message update and the estimation of each parameter

are presented one by one in details.

1) Estimation of yi: According to the probabilistic graph in Fig. 1, the parent and child

nodes of the variable node yi are the nodes α and ri respectively. The messages to the variable

node yi include the message M(ξ)
α→yi

from the parent node α and the message M(ξ)
ri→yi

from

the child node ri.

Message M(ξ)
α→yi

: The prior distribution p (yi|α) in (9) can be rewritten as

p (yi|α) = exp

lnα1

lnα2

T yi,1
yi,2

 . (25)

By matching (25) with the form in (21), it follows that HP (yi) =

lnα1

lnα2

T and Ω (yi) =

yi,1
yi,2

.

Substituting (10) and (25) into (24), the message from the parent node α can be derived as

M(ξ)
α→yi

= Eq(ξ)(Φ\yi)
[HP (yi)] =

 ς(λ
(ξ)
1 )− ς(

2∑
l=1

λ
(ξ)
l )

ς(λ
(ξ)
2 )− ς(

2∑
l=1

λ
(ξ)
l )


T

, (26)

where ς (·) is the digamma function and λ
(ξ)
l is the parameter of the variational distribution

q(ξ) (α). By following the conjugate prior principle and with the prior distribution of α in (10),

we have q(ξ) (α) = Dir
(
α|λ(ξ)1 , λ

(ξ)
2

)
. The parameters of λ(ξ)l will be derived later in Section

III-B3.

Message M(ξ)
ri→yi

: According to (22), the likelihood function (13) can be factorized into

p (ri|xi,x,θ) = exp

 lnN
(
ri − di,Λ

−1
L
)

lnN (ri − di − µ,Λ−1)

T yi,1
yi,2

 , (27)

and HC (ri) =

 lnN
(
ri − di,Λ

−1
L
)

lnN (ri − di − µ,Λ−1)

T .

July 20, 2020 DRAFT



12

Plugging (27) into (24) and with the derivations in Appendix A, the message M(ξ)
ri→yi

from

ri to yi can be obtained as

M(ξ)
ri→yi

= Eq(ξ)(Φ\yi)
[HC (ri)] =

 −ΛL
2
ω
(ξ)
i,1 − 1

2
ln 2π + 1

2
ln ΛL

−β(ξ)

2
ω
(ξ)
i,2 − 1

2
ln 2π + 1

2
φ
(
a(ξ)
)
+ 1

2
ln
(
b(ξ)
)
T ,

 ϑ
(ξ)
i,1

ϑ
(ξ)
i,2

T ,
(28)

where φ (·) is a Gamma function, β(ξ) = a(ξ)/b(ξ), a(ξ) and b(ξ) are the parameters of the

variational distribution q(ξ) (Λ), and ω
(ξ)
i,l is defined in Appendix A. The parameters of a(ξ) and

b(ξ) will be derived later in the subsection corresponding to the estimation of Λ.

Natural Parameter H(ξ+1)
yi

: By substituting (26) and (28) into (24), it yields

H(ξ+1)
yi

=

 ς(λ̄1)− ς(
2∑
l=1

λ̄l) + ϑ
(ξ)
i,1

ς(λ̄2)− ς(
2∑
l=1

λ̄l) + ϑ
(ξ)
i,2


T

,

 lnϕ
(ξ+1)
i,1

lnϕ
(ξ+1)
i,2

T . (29)

Plugging (29) and Ω (yi) into (23), the variational distribution q(ξ+1) (yi) is given by

q(ξ+1) (yi) ∝
2∏
l=1

eyi,l lnϕ
(ξ+1)
i,l . (30)

By normalizing ϕ(ξ+1)
i,l , we obtain

κ
(ξ+1)
i,l , Eq(ξ+1)(yi)

(yi,l) =
ϕ
(ξ+1)
i,l

2∑
l=1

ϕ
(ξ+1)
i,l

, (31)

and (30) can be reformulated as

q(ξ+1) (yi) =
2∏
l=1

eyi,l lnκ
(ξ+1)
i,l , (32)

Considering yi is a vector with only binary elements and putting (32) into (19) for MAP

estimation, the MAP estimate of yi in the (ξ + 1)th iteration can be obtained as

y
(ξ+1)
i =

 (1, 0) ϵ
(ξ+1)
i,1 ≥ 1

(0, 1) ϵ
(ξ+1)
i,1 < 1

(33)

where ϵ(ξ+1)
i,1 is the posterior ratio given as

ϵ
(ξ+1)
i,1 , q(ξ+1) (yi,1 = 1)

q(ξ+1) (yi,1 = 0)
= elnϕ

(ξ+1)
i,1 . (34)

Notice that the estimation of yi in fact can be regarded as the identification process of the

malicious nodes.
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2) Estimation of µ: Clearly from Fig. 1, the messages to the variable node µ include the

message M(ξ)
ri→µ from the child node ri and the messages M(ξ)

Pµ→µ from parent nodes m̄ and γ̄ .

Message M(ξ)
Pµ→µ: By plugging (12) into (24), the message M(ξ)

Pµ→µ can be directly derived

as

M(ξ)
Pµ→µ =

 γ̄m̄

− γ̄
2

T , (35)

and Ω (µ) =

 µ2

µ

.

Message M(ξ)
ri→µ: Following similar derivations as (27) and (28), the message M(ξ)

ri→µ can be

given by

M(ξ)
ri→µ =

 β(ξ)
(
ri − d

(ξ)
i

)
κ
(ξ)
i,2

−β(ξ)κ
(ξ)
i,2

2

T , (36)

where d(ξ)i = Eq(ξ)(xi,x) (di) =
∥∥∥x(ξ)

i − x(ξ)
∥∥∥ as shown in Appendix A.

Natural Parameter H(ξ+1)
µ : By substituting (35) and (36) into (24), it yields

H(ξ+1)
µ =

 γ̄m̄+
M∑
i=1

β(ξ)
(
ri − d

(ξ)
i

)
κ
(ξ)
i,2

− γ̄
2
−

M∑
i=1

β(ξ)κ
(ξ)
i,2

2


T

. (37)

By using the conjugate prior principle, the variational distribution q(ξ+1)(µ) is also a Gaussian

distribution with mean and variance denoted as m(ξ+1) and
[
γ(ξ+1)

]−1 respectively. Hence the

natural parameter should follow

H(ξ+1)
µ =

 m(ξ+1)γ(ξ+1)

−γ(ξ+1)

2

T . (38)

Mapping (37) with (38) yields

γ(ξ+1) = γ̄ + β(ξ)ν
(ξ)
2 , (39)

m(ξ+1) =
1

γ(ξ+1)

[
γ̄m̄+

M∑
i=1

β(ξ)
(
ri − d

(ξ)
i

)
κ
(ξ)
i,2

]
=

1

γ(ξ+1)

[
γ̄m̄+ ν

(ξ)
2 e

(ξ)
2

]
, (40)

where e(ξ)2 = 1

ν
(ξ)
2

M∑
i=1

β(ξ)
(
ri − d

(ξ)
i

)
κ
(ξ)
i,2 and ν(ξ)2 =

M∑
i=1

κ
(ξ)
i,2 .

Hence, the MAP estimation of µ in the (ξ + 1)th iteration can be given by

µ(ξ+1) = m(ξ+1). (41)
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3) Estimation of α: The messages to the variable node α include the message M(ξ)
λ→α from

its parent node λ and the message M(ξ)
y→α from its child node y.

Message M(ξ)
λ→α: Plugging (10) into (24), the message M(ξ)

λ→α is obtained as

M(ξ)
λ→α =

 λ̄1 − 1

λ̄2 − 1

T . (42)

and Ω (α) =

 lnα1

lnα2

.
Message M(ξ)

y→α: Using (31) and (24), the message M(ξ)
y→α is given by

M(ξ)
y→α =

M∑
i=1

 κ
(ξ)
i,1

κ
(ξ)
i,2

T,
 ν

(ξ)
1

ν
(ξ)
2

T . (43)

Natural Parameter H(ξ+1)
α : By plugging (42) and (43) into (24), we obtain the natural

parameter as

H(ξ+1)
α =

 λ̄1 + ν
(ξ)
1 − 1

λ̄2 + ν
(ξ)
2 − 1

T ,

 λ
(ξ+1)
1 − 1

λ
(ξ+1)
2 − 1

T , (44)

Following the conjugate prior principle, the variational distribution q(ξ+1) (α) is also a Dirich-

let distribution denoted as Dir
(
α|λ(ξ+1)

)
with λ(ξ+1) =

[
λ
(ξ+1)
1 , λ

(ξ+1)
2

]
. Hence, the MAP

estimatison of αl can be given by

α
(ξ+1)
l =

λ
(ξ+1)
l

2∑
l=1

λ
(ξ+1)
l

. (45)

4) Estimation of Λ: The messages to Λ include the message M(ξ)
PΛ→Λ from its parent nodes ā

and b̄ and the message M(ξ)
ri→Λ from its child node. Following similar derivations, the messages

can be given as

M(ξ)
PΛ→Λ =

 −1
b̄

ā− 1

T , (46)

M(ξ)
ri→Λ =

 −κ
(ξ)
i,2

2
ω
(ξ)
i,2

κ
(ξ)
i,2

2

T . (47)

and Ω (Λ) =

 Λ

lnΛ

.
July 20, 2020 DRAFT
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Substituting (46) and (47) into (24), the natural parameter follows

H(ξ+1)
Λ =

 −1
b̄
− ζ

(ξ)
2

2

ā+
ν
(ξ)
2

2
− 1

T (48)

where ζ(ξ)2 =
M∑
i=1

κ
(ξ)
i,2ω

(ξ)
i,2 .

Following the conjugate prior principle, the variational distribution q(ξ+1) (Λ) is also a Gamma

distribution denoted as Γ
(
Λ|a(ξ+1), b(ξ+1)

)
. The natural parameter thus should follow

H(ξ+1)
Λ =

 − 1
b(ξ+1)

a(ξ+1) − 1

T , (49)

With (48) and (49), we have

b(ξ+1) =

(
1

b̄
+
ζ
(ξ)
2

2

)−1

, (50)

a(ξ+1) = ā+
ν
(ξ)
2

2
. (51)

Then the MAP estimation is the posterior mean of Λ given by

Λ(ξ+1) = β(ξ+1) = a(ξ+1)/b(ξ+1). (52)

5) Estimation of f : As shown in Fig. 1, the variable node f does not have a parent node.

To enable the message passing algorithm, we assume a non-informative Gaussian distribution

N
(
0, δf

)
with δf approaching to infinity as the prior distribution of the carrier frequency offset

f [36]. The two kinds of messages to the variable node f are then as follows.

Message M(ξ)
Pf→f : By formatting the Gaussian prior into the form as (21) and then putting

the prior into (24), we have the message M(ξ)
Pf→f as

M(ξ)
Pf→f =

1

δf

 1

0

T . (53)

and Ω (f) =

 f 2

f

.
Message M(ξ)

hi→f : Similarly, rewriting (5) into the form as (22) and substituting the result into

(24), it yields

M(ξ)
hi→f =

1

ιi

 1

Di

T . (54)
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where Di = Eq(ξ)(Φ\f)

(
hi − fi − (xi−x)T (vi−v)

cdi
fc

)
is obtained by using Taylor expansion to

approximate the intractable term Eq(ξ)(Φ\f)

(
xi−x
di

)
. As derived in Appendix B, it can be ap-

proximated as Di ≈ hi − f
(ξ)
i −

(
x
(ξ)
i −x(ξ)

)T(
v
(ξ)
i −v(ξ)

)
cd

(ξ)
i

fc.

Natural Parameter H(ξ+1)
f : By plugging the message M(ξ)

Pf→f and the message M(ξ)
hi→f into

(24), we can obtain the natural parameter H(ξ+1)
f as

H(ξ+1)
f =


1
δf

+
M∑
i=1

1
ιi

M∑
i=1

Di

ιi
.


T

(55)

Since the variational distribution q(ξ+1) (f) also follows a Gaussian distribution based on the

conjugate prior principle, by denoting the mean and variance as f (ξ+1) and δ
(ξ+1)
f respectively,

the natural parameter of q(ξ+1) (f) can also be given as

H(ξ+1)
f =

 1

δ
(ξ+1)
f

f (ξ+1)

δ
(ξ+1)
f


T

. (56)

By combining (55) and (56), the posterior mean f (ξ+1) then follows

f (ξ+1) =

(
1

δf
+

M∑
i=1

1

ιi

)−1( M∑
i=1

Di

ιi

)
, (57)

which is also the MAP estimation of f in the (ξ + 1)th iteration. Similarly, the carrier frequency

offset of node i can also be formulated to follow N
(
fi|f (ξ+1)

i ,
(

1

δfi
+ 1

ιi

)−1
)

with f
(ξ+1)
i =(

1

δfi
+ 1

ιi

)−1
Di

ιi
and a non-informative prior N

(
0, δfi

)
.

6) Estimation of v: Following the similar approach as the estimation of f , we assume a

non-informative Gaussian distribution N (0,Σv) with ∥Σv∥2 → ∞ as the prior distribution of

the velocity v [36]. The message M(ξ)
Pv→v from the parent node can then be written as

M(ξ)
Pv→v =

 (Σv)−1

0

T . (58)

and Ω (v) =

 vvT

v

.
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On the other hand, by putting (5) into (24), the messages from the child node hi to v are

given by

M(ξ)
hi→v =


(
Σ̃

v,(ξ)

i

)−1

(
Σ̃

v,(ξ)

i

)−1

ṽ
(ξ)
i


T

, (59)

where

Σ̃
v,(ξ)

i =
f 2
c

c2ιi
Eq(ξ)(xi,x)

(
(xi − x) (xi − x)T

d2i

)
≈ f 2

c

c2ιi

(
x
(ξ)
i − x(ξ)

)(
x
(ξ)
i − x(ξ)

)T
(
d
(ξ)
i

)2 , (60)

ṽ
(ξ)
i ≈ −

((
hi − f

(ξ)
i − f (ξ)

)(x
(ξ)
i − x(ξ)

d
(ξ)
i

))
fc
cιi

+ Σ̃
v,(ξ)

i v
(ξ)
i . (61)

and detailed approximation of (60) is given in Appendix C.

Natural Parameter H(ξ+1)
v : Given the posterior distribution q(ξ+1) (v) as Gaussian distribution

with mean and variance denoted as v(ξ+1) and Σv,(ξ+1) respectively by following the conjugate

prior principle, the natural parameter of the variational distribution can be written as

H(ξ+1)
v =

 (
Σv,(ξ+1)

)−1(
Σv,(ξ+1)

)−1

v(ξ+1)

T . (62)

Putting (58) and (59) into (24) and mapping the result with (62), it yields

v(ξ+1) =
(
Σv,(ξ+1)

)−1
M∑
i=1

(
Σ̃

v,(ξ)

i

)−1

ṽ
(ξ)
i , (63)

where

Σv,(ξ+1)=

(
(Σv)−1+

M∑
i=1

(
Σ̃

v,(ξ)

i

)−1
)−1

. (64)

The MAP estimation of v is thus obtained as the posterior mean as (63). Similarly, the velocities

of sensor nodes vi can also be given to follow N
(
vi|v(ξ+1)

i ,Σ
v,(ξ+1)
i

)
with

Σ
v,(ξ+1)
i =

(
(Σv

i )
−1+

(
Σ̃

v,(ξ)

i

)−1
)−1

, (65)

v
(ξ+1)
i =

(
Σ

v,(ξ+1)
i

)−1
[(

Σ̃
v,(ξ)

i

)−1

ṽ(ξ) + (Σv
i )

−1v̄i

]
, (66)

ṽ(ξ) ≈

((
hi − f

(ξ)
i − f (ξ)

)(x
(ξ)
i − x(ξ)

d
(ξ)
i

))
fc
cιi

+ Σ̃
v,(ξ)

i v(ξ). (67)
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7) Estimation of x: Similarly, we assume a non-informative Gaussian distribution as the

prior distribution of the target location, that is, N (x|x̄,Σx) where x̄ is a coarse estimate of x

and Σx is the covariance matrix with a large value of ∥Σx∥2 [35]. With this prior assumption,

the messages to the variable node x include the message M(ξ)
Px→x from the parent nodes x̄ and

Σx, and the message M(ξ)
(ri,hi)→x from the child nodes ri and hi.

Message M(ξ)
Px→x: By plugging the non-informative Gaussian prior of x into (24), the message

from the parent nodes to x is obtained as

M(ξ)
Px→x =

 (Σx)−1

(Σx)−1x̄

T , (68)

and Ω (x) =

 xxT

x

.
Message M(ξ)

(ri,hi)→x: The range and Doppler measurements involve nonlinear terms di (6) and

ψi (4) respectively. To ease the derivation, we first linearize them based on the ξ-th estimations

of the locations and velocities, i.e.,
(
x
(ξ)
i ,x(ξ)

)
and

(
v
(ξ)
i ,v(ξ)

)
. As presented in Appendix A,

di is approximated as

di ≈ d
(ξ)
i + ρTi

(
xi − x

(ξ)
i + x(ξ) − x

)
, (69)

By denoting ψi (4) as ψi (xi,x,vi,v), the Doppler shift can be approximated based on first

order Taylor expansion as

ψi (xi,x,vi,v) =ψi

(
x
(ξ)
i ,x(ξ),v

(ξ)
i ,v(ξ)

)
+ F (ξ)

xi

(
xi − x

(ξ)
i

)
+ F (ξ)

x

(
x− x(ξ)

)
+ F (ξ)

vi

(
vi − v

(ξ)
i

)
+ F (ξ)

v

(
v − v(ξ)

)
,

(70)

where Fxi
=
(
∂ψi(xi,x,vi,v)

∂xi

)T
, Fx =

(
∂ψi(xi,x,vi,v)

∂x

)T
, Fvi

=
(
∂ψi(xi,x,vi,v)

∂vi

)T
and Fv =(

∂ψi(xi,x,vi,v)
∂v

)T
are the first order derivatives and are respectively given by

Fx = −Fxi
=
(
v
(ξ)
i − v(ξ)

)T fc
c

(
I

di
− (xi − x) (xi − x)T

d3i

)
, (71)

F (ξ)
vi

= −F (ξ)
v =

(
x
(ξ)
i − x(ξ)

)T∥∥∥x(ξ)
i − x(ξ)

∥∥∥ cfc, (72)

and F (ξ)
xi and F (ξ)

x are obtained by plugging the estimates x
(ξ)
i , x(ξ) into (71).
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As ri and hi are the child nodes of x, the message M(ξ)
(ri,hi)→x is the sum of messages M(ξ)

ri→x

and M(ξ)
hi→x. Firstly, the range likelihood (13) can be reformulated as

p (r|x,xs,θ) =
M∏
i=1

p (ri|x,xs,θ) = exp

(
M∑
i=1

(
yi,1 lnN

(
ri − di,Λ

−1
L
)
+ yi,2 lnN

(
ri − di − µ,Λ−1

)))
.

(73)

By substituting the linearized distance (69) into (73), the range likelihood can be rewritten as

p (r|x,xs,θ) = exp

(
M∑
i=1

(
yi,1 lnN

(
ri − di,Λ

−1
L
)
+ yi,2 lnN

(
ri − di − µ,Λ−1

)))

= exp

tr
 (

yi,1Λ
−1
L + yi,2Λ

−1
)
I(

yi,1Λ
−1
L η

(ξ)
i,1 + yi,2Λ

−1η
(ξ)
i,2

)T xxT
x

+ C,

(74)

where η
(ξ)
i,l = x

(ξ)
i −ρi (ri − µ(l − 1)) and C is a constant. Based on (22) and (24), the message

from r can be derived as

M(ξ)
r→x =

M∑
i=1

M(ξ)
ri→x =

M∑
i=1

 Θ
(ξ)
i

2∑
l=1

η̃
(ξ)
i,l g

(ξ)
i,l


T

=
M∑
i=1

 Θ
(ξ)
i

U (ξ)
i

T , (75)

where Θ
(ξ)
i =

2∑
l=1

g
(ξ)
i,1 I, g

(ξ)
i,1 = κ

(ξ)
i,1ΛL, g(ξ)i,2 = κ

(ξ)
i,2β

(ξ), η̃(ξ)
i,l = x

(ξ)
i − ρi

(
ri −m(ξ)(l − 1)

)
and

U (ξ)
i =

2∑
l=1

η̃
(ξ)
i,l g

(ξ)
i,l .

Similarly, the Doppler likelihood (5) can be reformulated as

p (h|f s, f,xs,x,vs,v) =
M∏
i=1

p (hi|fi, f,xi,x,vi,v) = exp

(
M∑
i=1

lnN (hi − fi − f − ψi, ιi)

)
,

(76)

Plugging (70) into (76) leads to

p (hi|fi, f,xi,x,vi,v) = exp

tr
G(ξ)

Ri

T xxT
x

+ C, (77)

where

G(ξ) =
1

ιi

(
F (ξ)

x

)T F (ξ)
x , (78)

Ri =
1

ιi

(
hi − f − fi − ψi

(
x
(ξ)
i ,x(ξ),v

(ξ)
i ,v(ξ)

))
F (ξ)

x . (79)
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Then the message from h can be given by

M(ξ)
h→x =

M∑
i=1

M(ξ)
hi→x =

M∑
i=1

 G(ξ)

R(ξ)
i

T , (80)

where R(ξ)
i = Eq(ξ)(f,fi) (Ri) =

1
ιi

(
hi − f (ξ) − f

(ξ)
i − ψi

(
x
(ξ)
i ,x(ξ),v

(ξ)
i ,v(ξ)

))
F (ξ)

x .

By plugging (75) and (80) into (24), we obtain

M(ξ)
(r,h)→x =

M∑
i=1

M(ξ)
(ri,hi)→x =

M∑
i=1

 Θ
(ξ)
i

U (ξ)
i

T
︸ ︷︷ ︸
TOA-related message

+
M∑
i=1

 G(ξ)

R(ξ)
i

T
︸ ︷︷ ︸
FOA-related message

. (81)

Natural Parameter H(ξ+1)
x : By substituting (68) and (81) into (24) and with some manipu-

lations under the constraint of conjugate prior, we can obtain

H(ξ+1)
x =


M∑
i=1

(
Θ

(ξ)
i + G(ξ)

)
+ (Σx)−1

M∑
i=1

(
U (ξ)
i +R(ξ)

i

)
+ (Σx)−1x̄


T

=

 (
Σ(ξ+1)

)−1

(
x(ξ+1)

)T (
Σ(ξ+1)

)−1

T , (82)

where x(ξ+1) and Σ(ξ+1) directly follow as

x(ξ+1) =

(
M∑
i=1

(
Θ

(ξ)
i + G(ξ)

)
+ (Σx)−1

)−1( M∑
i=1

(
U (ξ)
i +R(ξ)

i

)
+ x̄T (Σx)−1

)
, (83)

Σ(ξ+1) =

(
M∑
i=1

(
Θ

(ξ)
i + G(ξ)

)
+ (Σx)−1

)−1

. (84)

Similarly to (56) and (62), the MAP estimate of the location x is the posterior mean x(ξ+1) given

in (83). The locations of sensor nodes can also be refined similarly to follow N
(
xi|x(ξ+1)

i ,Σ
x,(ξ+1)
i

)
with

Σ
x,(ξ+1)
i =

(
Θ

(ξ)
i + G(ξ)

i + (Σx
i )

−1
)−1

, (85)

x
(ξ+1)
i =

(
Σ(ξ+1)

)−1 (
U (ξ) +R(ξ) + (Σx

i )
−1x̄i

)
, (86)

U (ξ) =
2∑
l=1

(
x(ξ) + ρi

(
ri +m(ξ) (l − 1)

))
g
(ξ)
i,l , (87)

R(ξ) =
1

ιi

(
hi − f (ξ) − f

(ξ)
i − ψi

(
x
(ξ)
i ,x(ξ),v

(ξ)
i ,v(ξ)

))
F (ξ)

xi
, (88)

G(ξ)
i =

1

ιi

(
F (ξ)

xi

)T F (ξ)
xi
. (89)
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C. Summary and Discussion

Our proposed algorithm is an iterative algorithm developed based on Bayesian criterion and

variational message passing framework. By reformulating the prior and likelihood probability

distributions as exponential family, messages can be calculated easily and only the natural

parameters need to be updated in each iteration. As shown in (29), (38), (44), (49), (56), (62)

and (82), the natural parameters only involve the mean and covariance of the corresponding

variational distributions. In other words, only the means and covariance matrices need to be

updated iteratively. Clearly from Fig. 1, the probabilistic graph is loop-free. As proved in [33, 34],

under loop-free graph, the VMP-based algorithm can reduce the KL divergence in each iteration

and thus the convergence of our proposed algorithm is guaranteed. After convergence, the target

location and its velocity can be finally estimated as (83) and (63) respectively. In summary, the

implementation of the proposed algorithm is shown in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we demonstrate the estimation performances of the proposed algorithm in

different scenarios. We consider the 2D localization of one target node with the help of M = 10

sensor nodes in the field of 100m × 100m. Among the 10 sensor nodes, some of them are

malicious nodes. The number of malicious nodes are unknown and the expectation of attack

probability is given by E (α2) =
λ̄2

λ̄1+λ̄2
. The hyper parameters are respectively given as Λ−1

L = 1,

m̄2 = 10, γ̄ = 1, ā = 102, and b̄ = 104. The location uncertainty of the sensor node is set

as Σx
i = δ2I = 0.1I and the non-informative covariance matrix of target location is set to

be Σx = 100I. The unormalized CFO is generated in 2π [−0.2, 0.2] for each node. The non-

informative variances δf and Σv are set as 103 and 103I respectively. The mean and variance

of sensor velocity are respectively given by v̄i = 20m/s · 1T and Σv
i = 0.5I. The threshold for

convergence control is set as T = 0.01. The simulation settings keep unaltered unless otherwise

stated. The results shown in this paper are the average of the results over 1000 localization

realizations. For comparison, the proposed algorithm referred as VMP-JLVE is compared to the

following algorithms:

• WLS1: A weighted least square algorithm proposed in [17] which exploited the range and

Doppler measurements to localize a target node with the aid of a set of non-malicious nodes

with sensor node location uncertainties;

July 20, 2020 DRAFT



22

Algorithm 1 VMP-Based Joint Localization and Velocity Estimation
1: Input the prior distributions p(vi) and p(xi), i ∈ S , the non-informative Gaussian priors for the target velocity

and the target location, and the prior information λ̄l, m̄, γ̄, ā, b̄;

2: Collect the range and Doppler measurements r and h;

3: Set the iteration index ξ = 0;

4: while |KL
(
q(ξ+1) (Φ) ||p (Φ|r,h)

)
− KL

(
q(ξ) (Φ) ||p (Φ|r,h)

)
| > T do

5: yi: Calculate the messages from parent node α and child node ri according to (26) and (28) respectively;

6: µ: Calculate the messages from parent nodes m̄ and γ̄ and child node ri according to (35) and (36)

respectively;

7: α: Calculate the messages from parent node λ and child nodes y according to (42) and (43) respectively;

8: Λ: Calculate the messages from parent nodes ā and b̄ and child node ri according to (46) and (47)

respectively;

9: f : Calculate the messages from parent node δf and child node hi according to (53) and (54) respectively;

10: v: Calculate the messages from parent nodes Σv and child node hi according to (58) and (59) respectively;

11: x: Calculate the messages from parent nodes x̄ and Σx and child nodes ri and hi according to (68), (75),

(80) and (81) respectively;

12: Calculate the expectations of all variable nodes based on the updated natural parameters from (24);

13: Update the expectations as: κ
(ξ+1)
i,l =

ϕ
(ξ+1)
i,l

2∑
l=1

ϕ
(ξ+1)
i,l

, µ(ξ+1) = m(ξ+1), α
(ξ+1)
l =

λ
(ξ+1)
l

2∑
l=1

λ
(ξ+1)
l

, Λ(ξ+1) =

a(ξ+1)/b(ξ+1), f (ξ+1), v(ξ+1), x(ξ+1) according to (31), (41), (45), (52), (57), (63) and (83) respectively;

14: ξ = ξ + 1;

15: end while

16: Output the location estimation x = x(ξ+1) and velocity estimation v = v(ξ+1) according to (83) and (63)

respectively, as well as the estimates of the nuisance parameters y, α, Λ and µ.

• WLS2: Another weighted least square algorithm proposed in [18] which exploited the range

and Doppler measurements to localize a target node with the aid of a set of non-malicious

nodes with sensor node location uncertainties;

• SLOT: A secure localization algorithm proposed in [21] which assumed perfect identifica-

tion of malicious nodes, perfect knowledge of attack parameters and perfect sensor node

locations, and exploited only the range measurements for localization;

• ELSA: A secure detection and localization algorithm proposed in [27] which assumed

perfect knowledge of attack parameters and perfect sensor node locations, and exploited

only the range measurements for malicious node identification and target node localization;
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• BCRB: The Bayesian Cramer Rao Bound for the localization performance. Given the

variable vector Φ = [x,v,vs, f,f s,xs,θ], the Fisher information matrix J (Φ) is defined

as [35]

[J (Φ)]m,n = −Er,h,Φ

[
∂2 ln p (r,h|Φ)

∂{Φ}m∂ {Φ}n

]
︸ ︷︷ ︸

Likelihood FIM

−EΦ

[
∂2 ln p (Φ)

∂{Φ}m∂ {Φ}n

]
︸ ︷︷ ︸

Prior FIM

,
(90)

where EΦ,r,h [·] denotes the expectation with respect to the distribution p(r,h,Φ). By

following the similar derivations in [35], the BCRB is given by

BCRB = tr
(
J−1 (Φ)

)
. (91)

Notice that the WLS1 and WLS2 algorithms [17, 18] assumed perfect frequency synchronization

in the network, i.e., the carrier frequency offsets (f and fi) are assumed as zero. This assumption

however is not necessary in our proposed VMP-JLVE algorithm.

A. Malicious Nodes Identification

In the proposed VMP-JLVE-based algorithm, the identification of malicious nodes can be

achieved through the MAP estimation of the auxiliary indicator vector yi based on (33). The

identification performance of the proposed algorithm is compared with that of ELSA in [27] and

the results are shown in Fig. 2. In the comparisons, two scenarios with various attack variances

E(Λ−1) = b̄/ā = {100, 10} are considered. It is clear that our proposed algorithm can provide

much higher identification accuracy than the ELSA algorithm. Specifically, the identification

accuracy of our algorithm could be 95%, while that of ELSA is only around 87% even with the

perfect statistical information of the attack distribution, i.e., perfect information of µ and Λ.

B. Localization and Velocity Estimation under No-Attack Environment

No attack environment is first considered to test the localization performance of our proposed

algorithm. The results are shown in Fig. 3. Notice that in the WLS1 and WLS2 algorithms,

the carrier frequency offsets in the nodes are ignored, while in the SLOT and ELSA algorithm,

brutal-force grid searching is adopted for localization and the grid size is set as 50 × 50 in

the simulations. Clearly, our proposed VMP-JLVE algorithm performs the best among all the

algorithms since MAP criterion is adopted and additional Doppler measurements are exploited

for estimation. Its performance is close to the BCRB bound after convergence. In the no
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Fig. 2: Identification error under attack environments with δ = 0.1 and E (α2) = 0.1
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Fig. 3: Localization RMSEs under no-attack environment with δ = 0.1

attack environment, the WLS1 and WLS2 algorithm perform similarly as the worst due to the

impact of ignored carrier frequency offsets. The velocity estimation performance of the proposed

algorithm is then compared with that of WLS1 and WLS2, as shown in Fig. 4. Similarly, due

to the frequency synchronization in (57), our proposed algorithm provides much higher velocity

estimation accuracy than the WLS1 and WLS2 algorithms.
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Fig. 4: Velocity RMSEs under no-attack environment with δ = 0.1
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Fig. 5: Localization RMSEs with Different Sensor Node Uncertainty δ, E(Λ−1) = 10 and

E(α2) = 0.2

C. Secure Localization under Attack Environment

Now attack environment is considered, and the impacts of sensor location uncertainty and the

attack probability on secure localization algorithms are investigated. The results are shown in

Fig. 5 and Fig. 6 respectively. In the simulations, two implementations of SLOT algorithm are

tested. In original SLOT algorithm [21], perfect identification of malicious nodes is assumed.
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Fig. 6: Localization RMSEs with different attack ratios E(α2), δ = 10 and E−1(Λ) = 100

It is referred as SLOTPerfect. Since the perfect identification of malicious nodes is difficult to

achieve in practice, we also simulate another implementation of SLOT algorithm with 20%

identification error. This implementation is referred as SLOT0.2. As shown in Fig. 5, under 20%

attack probability, i.e., E(α2) = 0.2, when the sensor location uncertainty δ increases from 0 to

10 which covers the cases of perfect sensor location and large uncertainty of sensor location, the

localization accuracy of our proposed VMP-JLVE-based algorithm slightly degrades. However,

it still performs better than the ELSA and SLOT algorithms even with perfect identification of

malicious nodes. Moreover, as shown in Fig. 6, when the attack probability E(α2) increases

from 0.1 to 0.9, only slight degradation of localization accuracy is observed for our proposed

VMP-JLVE algorithm, while significant degradation occurs for both SLOT and ELSA algorithms.

These results demonstrate the superiority and robustness of our proposed algorithm under attack

environments. The localization superiority of our proposed algorithm is mainly coming from

MAP estimation with additional prior information and Doppler measurements, when compar-

ing to the SLOT and ELSA algorithms with maximum likelihood (ML) estimation and range

measurements only.

V. CONCLUSION

In this paper, we proposed a variational message passing algorithm for secure localization and

velocity estimation in mobile sensor networks with multiple malicious nodes and sensor location
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uncertainty. The proposed VMP-JLVE-based algorithm followed MAP criterion and solved the

intractable MAP estimation problem by an iterative message passing algorithm. In each iteration,

the variational distributions were updated in closed-forms, which enabled the estimation of the

target location and velocity together with the identification of malicious nodes. Only the statistical

information of the attacks from malicious nodes was assumed, which improved the practicability

of our proposed algorithm. The superiority and robustness of our proposed VMP-JLVE-based

algorithm were well validated by comparison with existing secure localization algorithms.

APPENDIX A

In (28), the expectation of HC (ri) involves expectations of two elements with respect to

variables x, xi, µ and Λ. The expectation is given by

Eq(ξ)(Φ\yi)
[HC (ri)] =

 −ΛL
2
Eq(ξ)(Φ\yi)

(ri − di)
2 − 1

2
ln 2π + 1

2
ln ΛL

−
E
q(ξ)(Φ\yi)

(Λ)

2
Eq(ξ)(Φ\yi)

(ri − di − µ)2 − 1
2
ln 2π + 1

2
Eq(ξ)(Φ\yi)

(lnΛ)

 .
(92)

The involved expectations are calculated individually as follows. At first, we have

Eq(ξ)(Φ\yi)
(Λ) = Eq(ξ)(Λ) (Λ) = a(ξ)/b(ξ) , β(ξ), (93)

where a(ξ) and b(ξ) are the parameters of the variational distribution q(ξ) (Λ). By following

the conjugate prior principle and with the prior distribution of Λ in (11), we have q(ξ) (Λ) =

Γ
(
Λ|a(ξ), b(ξ)

)
. The parameters of a(ξ) and b(ξ) will be derived later in Section III-B4.

Using the results in [37], it yields

Eq(ξ)(Φ\yi)
(lnΛ) = φ

(
a(ξ)
)
+ ln

(
b(ξ)
)
, (94)

where φ (·) is a Gamma function.

On the other hand, for the expectation terms Eq(ξ)(Φ\yi)
(ri − di − µ)2 and Eq(ξ)(Φ\yi)

(ri − di)
2,

we define ω(ξ)
i,l , Eq(ξ)(Φ\yi)

(ri − di − µ (l − 1))2 with l = 1 corresponding to the non-attack

case while l = 2 corresponding to the malicious attack case from sensor i. By expanding the

quadratic term and taking expectations of variables with respect to x, xi and µ, we can obtain

ω
(ξ)
i,l =

(
ri −m(ξ) (l − 1)

)2
+ Eq(ξ)(xi,x)

(
d2i
)
− 2

(
ri −m(ξ) (l − 1)

)
Eq(ξ)(xi,x) (di) + [γ(ξ)]−1 (l − 1),

(95)
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where m(ξ) and [γ(ξ)]−1 are the ξ-th mean and variance of the distribution N
(
µ|m(ξ), [γ(ξ)]−1

)
.

By following the conjugate prior principle and with the prior distribution of µ in (12), we have

q(ξ) (µ) = N
(
µ|m(ξ), [γ(ξ)]−1

)
. The parameters of m(ξ) and γ(ξ) are derived in the corresponding

estimation of µ in Section III-B2. Similarly, we also have q(ξ) (x) = N
(
x|x(ξ),Σx,(ξ)

)
and

q(ξ) (xi) = N
(
xi|x(ξ)

i ,Σ
x,(ξ)
i

)
, where x

(ξ)
i , x(ξ), Σx,(ξ)

i and Σx,(ξ) are the estimated locations

and covariance matrices of the ith sensor node and target node respectively.

Due to the nonlinear expression in the distance di, we apply the Taylor expansion at
(
x
(ξ)
i ,x(ξ)

)
for linearization, which is given by

di ≈ d
(ξ)
i + ρTi

(
xi − x

(ξ)
i + x(ξ) − x

)
, (96)

where ρi =
x
(ξ)
i −x(ξ)

d
(ξ)
i

.

Hence the expectations Eq(ξ)(xi,x) (d
2
i ) and Eq(ξ)(xi,x) (di) are respectively given by

Eq(ξ)(xi,x) (di) = d
(ξ)
i , (97)

and

Eq(ξ)(xi,x)

(
d2i
)
=
(
x
(ξ)
i − x(ξ)

)T (
x
(ξ)
i − x(ξ)

)
+ tr

(
Σ

x,(ξ)
i +Σx,(ξ)

)
. (98)

By pluging (93), (94) and (95) into (92), we can obtain the result in (28).

APPENDIX B

The term Di can be reformulated as

Di = hi − Eq(ξ)(fi) (fi)−
fc
c
Eq(ξ)(xi,x)

(
xi − x

di

)T
Eq(ξ)(vi,v) (vi − v) . (99)

Clearly, the second term in (99) follows

Eq(ξ)(fi) (fi) = f
(ξ)
i . (100)

where f (ξ)
i is the posterior mean given in Section III-B5. Meanwhile, we have

Eq(ξ)(vi,v) (vi − v) = v
(ξ)
i − v(ξ), (101)

where v
(ξ)
i and v(ξ) are the corresponding posterior means given in Section III-B6.

July 20, 2020 DRAFT



29

For the expectation term Eq(ξ)(xi,x)

(
xi−x
di

)T
, we apply Taylor expansion to approximate it.

By denoting S (xi,x) = xi−x
di

, we linearize the nonlinear function S (xi,x) with respect to(
x(ξ),x

(ξ)
i

)
as

S (xi,x) = S
(
x
(ξ)
i ,x(ξ)

)
+
∂S (xi,x)

∂xi

∣∣∣∣∣
xi=x

(ξ)
i

x=x(ξ)

(
xi − x

(ξ)
i

)
+
∂S (xi,x)

∂x

∣∣∣∣∣
xi=x

(ξ)
i

x=x(ξ)

(
x− x(ξ)

)
,

(102)

where ∂S(xi,x)
∂xi

= −∂S(xi,x)
∂x

= I
di
− (xi−x)(xi−x)T

d3i
. Hence Eq(ξ)(xi,x)

(
xi−x
di

)
=

x
(ξ)
i −x(ξ)

d
(ξ)
i

. Together

with (100) and (101), the result of Di directly follows.

APPENDIX C

The term Eq(ξ)(xi,x)

(
(xi−x)(xi−x)T

d2i

)
is a symmetric matrix that involves expectations of nonlin-

ear terms. We approximate each element in the matrix by using Taylor expansion at
(
x
(ξ)
i ,x(ξ)

)
.

Specifically,

Eq(ξ)(xi,x)

(
(xi − x) (xi − x)T

d2i

)
=Eq(ξ)(xi,x)

 (xi−x)2
d2i

(xi−x)(yi−y)
d2i

(xi−x)(yi−y)
d2i

(xi−x)2
d2i

 . (103)

By taking the first diagonal element as an example and using results in [38], we can obtain

s (xi, x) =
(xi − x)2

d2i
≈

(
x
(ξ)
i − x(ξ)

)2
(
d
(ξ)
i

)2 +∇xis
(
x
(ξ)
i , x(ξ)

)(
xi − x

(ξ)
i

)
+∇xs

(
x
(ξ)
i , x(ξ)

) (
x− x(ξ)

)
+∇yis

(
x
(ξ)
i , x(ξ)

)(
xi − x

(ξ)
i

)
+∇ys

(
x
(ξ)
i , x(ξ)

) (
x− x(ξ)

)
,

(104)

where ∇xis
(
x
(ξ)
i , x(ξ)

)
, ∇xs

(
x
(ξ)
i , x(ξ)

)
and ∇yis

(
x
(ξ)
i , x(ξ)

)
and ∇ys

(
x
(ξ)
i , x(ξ)

)
are respec-

tively the gradients at the point
(
x(ξ), y(ξ)

)
and

(
x
(ξ)
i , y

(ξ)
i

)
. Hence we can obtain

Eq(ξ)(xi,x)

(
(xi − x) (xi − x)T

d2i

)
≈

(
x
(ξ)
i − x(ξ)

)(
x
(ξ)
i − x(ξ)

)T
(
d
(ξ)
i

)2 . (105)
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