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Abstract—Deep Neural Networks (DNNs) deliver state-of-the-
art performance in many image recognition and understanding
applications. However, despite their outstanding performance,
these models are black-boxes and it is hard to understand how
they make their decisions. Over the past few years, researchers
have studied the problem of providing explanations of why DNNs
predicted their results. However, existing techniques are either
obtrusive, requiring changes in model training, or suffer from low
output quality. In this paper, we present a novel method, Neuro-
Mask, for generating an interpretable explanation of classification
model results. When applied to image classification models,
NeuroMask identifies the image parts that are most important to
classifier results by applying a mask that hides/reveals different
parts of the image, before feeding it back into the model. The
mask values are tuned by minimizing a properly designed cost
function that preserves the classification result and encourages
producing an interpretable mask. Experiments using state-of-
art Convolutional Neural Networks for image recognition on
different datasets (CIFAR-10 and ImageNet) show that Neuro-
Mask successfully localizes the parts of the input image which
are most relevant to the DNN decision. By showing a visual
quality comparison between NeuroMask explanations and those
of other methods, we find NeuroMask to be both accurate and
interpretable.

Index Terms—neural networks, deep learning, image recogni-
tion, interpretability

I. INTRODUCTION

In the past decade, the world has witnessed a revolution in
smart devices and machine intelligence. Computers in different
forms and scales, ranging from servers to smart home devices,
and from mobile phones to smart cars, are now achieving
or exceeding human levels of autonomy and intelligence in
certain specific situations. Much of this success has been
made possible by the surge in the subset of machine learning
algorithms known as Deep Neural Networks (DNNs). DNNs
are a powerful way to learn approximations of the complex
functions that underlie the process of decision making in many
real-world applications (e.g. object recognition, image un-
derstanding, speech, and language understanding) that would
have been hard for human and domain experts to tackle
before. They also, most often, are trained using a domain-
agnostic family of algorithms known as “back propagation”
and “gradient descent” which require only using a labeled
set of training examples and adjusting the model weight
parameters to minimize an error, or loss function, defined over

the training examples and model weights. The final set of
weights are used in the model to carry out future predictions.

While the existing algorithms for training and building
DNNs work effectively and magically to achieve unprece-
dented levels of accuracy in different application domains,
they suffer from a major and, sometimes critical, limitation:
DNNs lack the ability to provide explanations of how the
predicted outcomes were computed. This is extremely impor-
tant. Humans often have a prior knowledge as to what are
the important types of evidence or features which support a
particular decision. A machine learning algorithm, however,
models the correlations between input features and classes.
It can learn relationships which are purely the result of
noise, biases in training data, or even poorly formed machine
learning problems. For example, a cancer diagnosis model
from MRI images should highlight which part of the MRI
image looks abnormal. A job applicant selection program
should be able to explain why it has preferred a given applicant
over another. The explanation is needed to ensure the fairness
and correctness of the deployed models and that they are not
using spurious features. The need for this was dramatically
illustrated in a recent incident where Amazon deployed an
experimental artificial intelligence recruiting tool which rated
every applicant on a scale from one to five based on their
application materials [1]. Not too long after the experiment
began, it was discovered that the program would systemically
assign CVs of women applicants lower ratings than those of
men with similar qualifications. The sexist failing behavior
of the program is of course not intended and could have
been spotted earlier if the model had been able to explain its
results. For these reasons, governments around the world have
started to create regulations (e.g. the General Data Protection
Regulation (GDPR) [2]) requiring organizations that use
machine learning and artificial intelligence to make decisions
affecting users (such as approval of loans, hiring, etc.) to also
provide an explanation of their decision. In a similar effort,
the US government has organized the DARPA’s explainable
Artificial Intelligence (XAI) [3] to encourage and promote
research efforts that address this challenging problem.

One method for understanding the performance of a learned
algorithm is to look directly at its functional form. Some types
of models, such as logistic regression and decisions trees,

ar
X

iv
:1

90
8.

04
38

9v
1 

 [
cs

.C
V

] 
 5

 A
ug

 2
01

9



can sometimes be easy to understand. However, their results
are often worse than those for DNNs. DNNs, on the other
hand, learn models which are cascaded sequences of linear
and non-linear operations (e.g. ReLU, tanh, sigmoid) which
lead from the input to the final outcome. It is often impossible
for a human to understand what evidence was used by the the
model and how to reach its final conclusion. The limitation
of DNNs to explain their outcomes and the evidence which
supports them places barriers in their application in critical
areas where an explanation is required and is as important
as the outcome. This trade-off between model accuracy and
interpretability urges the need for a robust approach to generate
explanations of DNNs predictions.

Motivated by the above, many authors have developed
intepretability methods based on heat maps: the parts of an
input image area assigned weights to show their relative
importance in a DNN decision. While these efforts have lead
to the creation of a number of methods (e.g. Saliency Map [4],
LIME [5], Smoothed Grad [6]) as a way to explain neural net-
works results, they are still either computationally inefficient
or generate noisy results. Our new method, NeuroMask, aims
to generate better explanations by formulating the problem of
generating explanations as an optimization problem to learn
a ‘mask’ that hides parts of the input which are irrelevant to
the model output and leaves important parts still visible to the
model. We introduce an efficient algorithm for learning this
‘mask’ in Section III. In addition, when applied to images,
we also add additional constraints that make the explanation
results more interpretable for a human observer by promoting
the mask to hide/reveal contiguous parts of the input image
instead of individual pixels. NeuroMask does not require any
modification to the architecture or training algorithm of the
DNN model and can be applied to produce explanations for
the outputs of any pre-trained model.

We demonstrate the effectiveness of NeuroMask by show-
ing its explanations for the predictions of state-the-art Ima-
geNet [7] and CIFAR-10 [8] image recognition models on dif-
ferent examples. Visual comparison between NeuroMask and
explanations generated by other methods (Saliency Map [4],
Smoothed Grad [6], Guided Backprop [9], LIME [5], and
LRP-epsilon [10]) reflect the success of NeuroMask to produce
high-quality explanations.

The rest of this paper is organized as follows: Section III de-
scribes the assumptions and implementation of the NeuroMask
algorithm. Section IV describes our evaluation experiments
and provides visual examples of explanations generated by
NeuroMask. Section II summarizes the related work. Finally,
Section V concludes the paper and presents directions for our
future work.

II. RELATED WORK

Over the past few years, researchers have studied the
problem of DNNs interpretability. While the definition of
interpretability itself is still confusing as discussed in [11].
Most of the work [4], [6], [6], [12] use the term to refer how

to explain the DNNs prediction results in terms of its own
input which is the same definition we consider in our paper.

The major existing methods for interpretability can coarsely
be categorized according to how they work into one of the
following categories:
(a) Occlusion-based: such as [12] which systemically occlude
different parts of the input image with a grey square and
monitor the change of the prediction class probability. This
method while being effective is computationally inefficient due
to its brute-force nature that requires trying occlusion square at
every possible position in the input image. It is also unsuitable
when objects in the image have different scales and arbitrary
shapes.
(b) Gradient-based: The Saliency Map [4] method relies
on computing the gradient of the prediction class label with
respect to the model input to estimate features importance.
However, the results of Saliency Map are often noisy and hard
to interpret. To improve further, The gradient-weighted action
mapping (GRAD-CAM) [13] uses the gradient of output label
with respect to the final convolution layer to produce a coarse
localization map highlighting important region in the image.
Similarly, the SmoothGrad [6] improves the quality of saliency
maps by reducing the visual noise by using a regularization
technique. The Layerwise Relevance Propagation (LRP) and
Deep LIFT have been recently proposed as an alternative
method. The difference between these two methods and prior
work is that they attempt to estimate the global importance
of pixels, rather than the local sensitivity. LRP [14] was
the first to propose the pixel-wise decomposition of classi-
fiers in order to produce an explanation for a classification
decision. They evaluate individual pixel contributions and
produce “interpretable” heatmaps. Guided-Backprop [9] uses
backpropagation and deconvolution operation to invert the
computation of the DNN in order to visualize the concepts
represents by intermediate layers. Guided-Backprop can be
considered as equivalent to computing gradients except for
the case when the gradient becomes negative then it will be
zeroed out.
(c) Approximate local model-based: such as Local Inter-
pretable Model-agnostic Explanations (LIME) [5] algorithm.
LIME [5] generates an explanation of a model prediction of
a given input by training another model (explainer) which is
selected from a group of intrinsically interpretable group of
models (e.g. linear models, decision trees, etc.). The explainer
is trained to approximate the model’s decision surface around
the provided input example. Training instances are obtained
by drawing samples uniformly at random from the perturbed
neighborhood of the input example. The perturbed samples are
labeled with their prediction outcome from the given model
and given the set of perturbed samples and their labels. The
explainer is trained to mimic the decision surface of input
model around the given example. LIME has been used to
provide explanations for models of different data formats
including text, tabular, and images. For images datasets, LIME
uses super-pixels rather than individual pixels while producing
the explainer training instances in order to produce a more



Fig. 1. Interactions of different components in NeuroMask. The blue blocks are clones of the pre-trained models. The dotted line represent gradient updates
the adjust the values of mask weights.

interpretable explanation in terms of super-pixels. However,
the reliance of superpixels sometimes can cause LIME to
fail as we have observed in our experiments. It is also
computationally inefficient due to the necessity of training the
explainer model. During our literature survey to prepare this
manuscript, we have found the approach of [15] to be the
most similar to our idea. Both methods attempt to generate
interpretable explanations of DNN decision by learning a mask
that perturbs the input image. Nevertheless, our method is
novel in its algorithm and cost function definition.

A more comprehensive review of literature in this topic can
be found in [16] and [17].

III. ALGORITHM DESIGN

The basic idea behind NeuroMask is that input features
which are not strongly relevant to the model’s classification
decision can be suppressed from the input without affecting
the model’s output. In order to find out which pixels are
influential/unimportant, NeuroMask maintains two clones of
the given pre-trained classification model. As an input to one
of them, we feed the input example for which we seek an
explanation of the model’s result. The image fed into the
other model copy is the input example after suppressing part
of its features. By comparing the outputs of the two copies,
NeuroMask attempts to find which are the unimportant features
that could be suppressed while maintaining close similarity
between the outputs of the two model copies. Importantly,
the output explanation should be comprehensible for a human
observer. Toward this end, we design NeuroMask such that the
explanation output is both minimal and interpretable. In this
rest of this section, we give more details on how NeuroMask
operates.

We formalize the problem of explaining the predictions of
a DNN from a given example, as follows:
Given
• x ∈ RH×W×3: an input example representing RGB

image whose height is H and width is W .
• f(x; θ) : RH×W×3 → [0, 1]L: a pre-trained image

recognition model that maps input example to one of
different L classification labels. θ denotes the set of
model parameters.

The goal of NeuroMask is to learn the values of a single
channel mask filter m ∈ [0, 1]H×W with the same height
and width as the input image. Elements of the mask are real
values the [0, 1] corresponding to the relevance of the input
image pixels at the same coordinate to the model prediction.
The value 1 signifies a strongly relevant pixel and 0 deemed
as an irrelevant pixel.

Figure 1 illustrates the different components of Neuro-
Mask and how they interact with each other. At the heart
of NeuroMask, there are two copies of the given pre-trained
model (shown within the grey box). The two copies are
identical and their weights remain frozen during the operation
of NeuroMask. They only differ in the input applied to each
one of them. Additionally, NeuroMask defines a set of trainable
parameters which we refer to as ‘mask weights’ W. The mask
weights are initialized from a uniform random distribution, and
transformed into a ‘relevance mask’ m using a sigmoid
function. The relevance mask is what we need to compute
by NeuroMask through the algorithm described in 1. One of
the two model copies receives the input example as its input
while the other receives the result of multiplying (pixel-wise)
the input example by the relevance mask. Outputs from the
two models are fed into a cost function Lpred the measures



the distance between their predictions. In addition, the mask
weights W goes into two additional cost terms Lsparse and
Lsmooth which are designed to improve the interpretability of
the final mask weights. The weighted sum of these three terms
(Lpred, Lsparse, Lsmooth) represent the total cost function
Ltotal of NeuroMask.

Ltotal = λp Lpred + λsp Lsparse + λsm Lsmooth

where λp, λsp, and λsm are weighting coefficient to balance
between the different components of cost function.

We use the RMSProp [18] optimization algorithm to com-
pute the final mask weights W∗ that minimizes this cost
function. Therefore, the final mask weights are defined by

W∗ = argmin
W

Ltotal(W;x, θ)

The three components in NeuroMask cost function are
defined according the the following:
• Prediction cost Lpred: which measures the distance

between the predictions of the two clones of the given
model. It is defined as the cross-entropy between the two
model copies outputs.

Lpred(y, ŷ) = −
∑

i∈{1,2,..L}

1(i = argmax
j∈{1,2,..L}

yj) log (ŷi)

• Sparseness cost Lsparse: A high-quality explanation
should be minimal. Rather than declaring all pixels in
the input image as relevant to the model’s prediction, we
need to identify as small as possible subset of pixels that
are considered the most relevant. This can be achieved by
forcing the “relevance mask” m to be sparse matrix. The
sparseness of m can be encouraged by defining Lsparse
as a L1 regularizer over the mask weights.

Lsparse(W) =

H∑
i=1

W∑
j=1

|Wi,j + τ |

This will force as many as possible elements of matrix
W to be equal to −τ . The τ (we pick its value equal 20)
is chosen such that σ(−τ) ≈ 0.

• Smoothness cost Lsparse: In addition to being minimal,
it is also desirable for an explanation to be interpretable.
I.e., the explanation would ideally be defined in terms
of objects and object parts in the image rather than a
subset of ungrouped pixels. Previous work (LIME, [5])
addressed this requirement by expressing the explanation
in terms of super-pixels which are patches of nearby
pixels with similar color intensities, the approach would
often fail when we have nearby objects with similar colors
(as we show in our results section). Inspired by the work
of [19] that altered the training algorithm of convolu-
tional networks so that convolution filters correspond to
interpretable parts of objects in the image, we employ a
similar constraint that encourages the mask weights to be
smooth and therefore highlights groups of spatially co-
located pixels. Accordingly, the definition of Lsparse is

Algorithm 1 Optimization algorithm to compute the explana-
tion mask m.

1: Input: input example x ∈ RH×W , a pre-trained prediction
model f : Rd → [0, 1]L.

2: Output: m explanation mask showing the relevance of
different image parts to the model decision.

3: W ∼ Uniform(−τ, τ) {Initialize mask weights}
4: for i = 1, ..., T do
5: x̄ = σ(W) · x {Apply mask to input}
6: y = f(x; θ) {Prediction of original input}
7: ŷ = f(x̄; θ) {Prediction of masked input}
8: Lpred = −

∑L
i=1 1(i = argmaxj yj) log (ŷi)

9: Lsparse = |W|1
10: Lsmooth = |W ~ fs|1
11: dW = ∇W (λp Lpred + λsp Lsparse + λsm Lsmooth)
12: {RMSProp optimizer step }
13: vdw = βvdw + (1− β)dW 2

14: W =W − α dW√
dW+ε

15: end for
16: m = σ(W) {Final mask}

chosen to be the L1 norm of the 2nd derivative of the mask
weights, which are computed by convolving W with a
discrete Laplacian filter fs

Lsmooth(W) =|∇2W(x, y)|1 =

∣∣∣∣δ2Wδx2 +
δ2W

δy2

∣∣∣∣
1

,

=|W ~ fs|1,

where ~ denotes the 2d convolution operation.

Algorithm 1 describes the steps to compute the explanation
mask by minimizing the cost function.

IV. EVALUATION RESULTS

We evaluate the effectiveness of NeuroMask by demonstrat-
ing the visual quality of the explanations it generates of the
predictions made by pre-trained state-of-art image recognition
models. These models are tested using the CIFAR-10 [8] and
ImageNet [7] datasets. We also compare NeuroMask outputs
to the outputs to other state-of-the-art interpretability methods.

A. CIFAR-10 Results

The CIFAR-10 dataset [8] contains small images (32x32
pixels) for 10 different categories. We used a convolutional
network from [20] that reaches near to state-of-the-art (80%)
classification accuracy on the CIFAR-10 dataset. We use
NeuroMask to explain the classification model predictions on
randomly selected images. As shown in figure 2, NeuroMask
can accurately localize the object within the image and high-
light its discriminative parts (for example; tires of the car
and wings of the airplane). This indicates that NeuroMask is
effective in explaining the decisions of the pre-trained model.



Fig. 2. Using NeuroMask to explain the predictions on a pre-trained model for image recognition on randomly selected examples from the CIFAR-10 dataset.

Fig. 3. Qualitative evaluation of the explanations make by NeuroMask vs other state-of-the-art interpretability methods (Saliency Map [4], Smoothed
Grad [6], Grad-CAM [13], Guided Backprop [9], LIME [5], LRP-epsilon [10]) on images selected from ImageNet [7] test dataset using Inception v3 [21]
image recognition model.

B. ImageNet Results

We also performed comparison to evaluate the quality of
explanations produced by NeuroMask versus prominent state-
of-the-art methods (Saliency Map [4], Smoothed Grad [6],
Grad-CAM [13], Guided Backprop [9], LIME [5], and LRP-
epsilon [10]) for DNNs interpretability. We randomly select
test images from the ImageNet [7] test dataset. The ImageNet
dataset contains large scale (299×299 pixels) images for 1000
different classes of images. In our experiments, We use the
Inception-v3 [22] as the pre-trained image recognition model
(with 93.2% top-5 accuracy). The implementation of LIME [5]
was obtained from the author’s Github repo1, while for the
remainder of methods we use the implementations provided
by the iNNvestigate tool kit [23].

1https://github.com/marcotcr/lime

Our remarks from the visual comparison are as follow: both
NeuroMask and Smoothed Grad [6] produce explanations that
are accurate and easy to interpret for a human observer. On the
other hand, explanations produced by Saliency Map [4] and
Guided Backprop [9] have too much noise which makes them
hard to understand. By contrast, Grad-CAM [13] is too coarse
grained while LRP-epsilon [10] is too conservative in what it
highlights. Finally, LIME [5] works well in some cases but
fails in others (such as in the 2nd row) where its reliance on
superpixels causes it to declare the background as important
as the golf-ball itself.

Based on these results, we conclude that NeuroMask has
a lot of potential and promise to provide explanations for
DNNs outcomes. Nevertheless, in the future, we plan to
conduct more comprehensive evaluation studies that include
doing user’s surveys to analyze their feedback on the different

https://github.com/marcotcr/lime


interpretability results.

C. NeuroMask Learning Progress

Fig. 4. Evolution of the explanation by NeuroMask during the optimization
process.

Figure IV-C shows the progress of learning an interpretable
explanation during the optimization process of NeuroMask.
Since the mask weights are initialized as uniformly random,
the mask initially looks like white noise (step 0) and then
gradually it starts to focus more on the relevant part of the
image as shown in Step 600. After that, the mask weights are
refined to focus on important parts of the object which are
most relevant to the classifier outcome.

V. CONCLUSION

In this paper, we presented NeuroMask a novel approach
for generating explanations for the predictions of pre-trained
deep neural networks. NeuroMask is model agnostic and can
be used to explain the outputs of any image recognition
models. The visual quality of explanations shows the success
of NeuroMask to identify which parts of the input image were
relevant to the classifier decision. Compared to explanations
generated by other interpretability methods, we find Neuro-
Mask to produce competitive explanations. Our directions for
future work include: extending NeuroMask to DNNs used for
other tasks such as image captioning, and data modalities such
as text and sound. We are also going to conduct users study
surveys to understand their perception and feedback of the
NeuroMask generated explanations.
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