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Loss of cholinergic innervation differentially 
affects eNOS-mediated blood flow, drainage 
of Aβ and cerebral amyloid angiopathy 
in the cortex and hippocampus of adult mice
Shereen Nizari1, Jack A. Wells2, Roxana O. Carare3, Ignacio A. Romero1 and Cheryl A. Hawkes1,4* 

Abstract 

Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the devel-
opment of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral 
blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased 
vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial 
drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, 
the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of 
Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration 
of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hip-
pocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the 
Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained 
responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly 
increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cor-
tex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD 
was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance 
of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression 
of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the 
brain and reduce its deposition as CAA.
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Introduction
Increasing evidence suggests that structural and func-
tional alterations of the cerebrovasculature contribute to 
the aetiology and/or progression of Alzheimer’s disease 
(AD). In fact, vascular pathology has been suggested to 

be one of the earliest indicators of the development of 
AD [38, 39] and differential perfusion of AD-sensitive 
brain areas such as the hippocampus, frontal and tempo-
ral lobes are present in people both with mild cognitive 
impairment and dementia [2, 18, 34].

Cerebral amyloid angiopathy (CAA) is the most com-
mon form of cerebrovascular pathology in AD [42] and 
is characterised by the deposition of β-amyloid (Aβ) pep-
tides in the walls of cerebral arteries and capillaries [90]. 
While parenchymal plaques are made up predominantly 
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of Aβ42, Aβ40 is more commonly observed in CAA. 
CAA develops topographically, presenting initially in 
the occipital lobe, followed by the temporal, frontal and 
parietal lobes, then in the hippocampus and entorhinal 
cortex at later stages [5, 83, 84]. In addition to causing 
dysfunction and death of mural and endothelial cells, 
recent studies suggest that CAA contributes to impaired 
hemodynamic responses in both individuals with AD and 
people with hereditary CAA [4, 63, 77, 87, 94].

A key pathological feature of sporadic CAA is a failure 
of clearance of Aβ from the brain, which is mediated via 
enzymatic degradation, uptake in microglia and astro-
cytes and transcytosis across the blood–brain barrier [54, 
55, 93]. Aβ is also removed from the brain along the walls 
of the capillaries and arteries via intramural periarterial 
drainage (IPAD) and/or glymphatic drainage [7, 36, 56].

The IPAD hypothesis of Aβ clearance is based in part 
on experimental observations that nanoparticles, solutes 
and Aβ injected into the interstitial fluid (ISF) of deep 
brain structures are transported along and localise to cer-
ebrovascular basement membranes (CVBM) in cortical 
and leptomeningeal vessels [3, 13, 27–29]. In the mouse 
brain, this process occurs very rapidly, within 5–10 min 
of injection [8, 13, 27–29]. Since the pattern of distribu-
tion of solutes closely mimics that of Aβ accumulation 
in CAA and other angiopathies [14, 41, 85], failure of 
IPAD is a key element of CAA pathology. However, as 
the movement of solutes along CVBMs is counter to the 
direction of blood flow, the driving force that underlies 
IPAD is still unknown. Recent mathematical modeling 
suggests that oscillating pulsatile flow generated by the 
focal contraction and relaxation of arteries drives IPAD 
[1] and this is supported by recent experimental data 
[3, 64, 88]. Localised arterial dilatation and contraction 
can occur both spontaneously (e.g. vasomotion) and in 
response to neuronal activity (e.g. neurovascular cou-
pling, NVC) and both mechanisms have been shown to 
be decreased in AD [19, 69, 79].

Smooth muscle cells that regulate arterial contrac-
tion and contribute to the regulation of cerebral blood 
flow (CBF) in the cortex and hippocampus receive 
innervation from cholinergic neurons that originate 
in the basal forebrain. Release of acetylcholine (ACh) 
via stimulation of the basal forebrain or increasing 
cholinergic tone using acetylcholinesterase inhibitors 
(AChEIs) has been shown to increase CBF in the cortex 
and hippocampus [50, 72]. ACh induces vasodilation 
primarily by stimulating the production of nitric oxide 
(NO) via activation of endothelial nitric oxide synthase 
(eNOS) [23, 97], although stimulation of neuronal NOS 
(nNOS)-containing interneurons can also increase CBF 
[15, 89]. ACh-induced activation of eNOS is medi-
ated principally by binding to muscarinic receptors 

that stimulate calcium release and binding of calcium-
calmodulin to eNOS [25]. ACh activation of eNOS can 
also occur via the insulin-receptor substrate/PI3K/Akt 
pathway [96] and stimulation of the PI3K/Akt/eNOS 
pathway by the selective Rho- associated, coiled-coil 
containing protein kinase (ROCK) inhibitor fasudil 
hydrochloride, has been shown to increase CBF in mice 
and humans [59, 68]. Although multiple downstream 
signalling pathways are regulated by ROCK activity [45, 
76], several studies have reported no effect of fasudil 
hydrochloride on cerebral haemodynamics in  eNOS−/− 
mice, suggesting that eNOS is the principal NOS iso-
form targeted by fasudil hydrochloride [68, 78].

Decreased expression of eNOS has been reported in 
the occipital cortex in AD, an area of the brain that is 
hypoperfused in AD [12]. Conversely, eNOS and induc-
ible NOS (iNOS) activity have been shown to be signifi-
cantly increased in the temporal and frontal cortices of 
AD patients [20], in association with hyperperfusion of 
those areas [34]. Several recent studies have reported 
that endogenous CAA load is increased in eNOS-defi-
cient mice in the absence of alterations in parenchymal 
Aβ or increased Aβ production [6, 81], suggesting that 
dysfunction of eNOS may also contribute to the aeti-
ology of CAA and that this may be related to impair-
ments in Aβ clearance from the brain.

Loss of cholinergic neurons as an early pathologi-
cal feature of AD has been known since the 1980s and 
underpins the rationale for the current clinical use of 
AChEIs for the treatment of AD [9, 22, 66]. Two recent 
findings from the Alzheimer’s Disease Neuroimaging 
Initiative have reported that vascular dysregulation is 
an early predictor of the progression to AD and that 
loss of volume in the basal forebrain precedes patholog-
ical changes in the entorhinal cortex of individuals who 
went on to develop AD [38, 73]. These findings suggest 
that the interplay between loss of cholinergic innerva-
tion and vascular dysfunction may be important in the 
aetiology of AD. However, although some pathological 
studies have examined cholinergic loss at the neurovas-
cular unit under experimental conditions [61] and in 
AD [60], less has been done to directly investigate the 
functional outcome of perivascular cholinergic dener-
vation. The aim of this study was to test the hypoth-
esis that loss of cholinergic innervation decreases 
CBF and IPAD of Aβ from the cortex and hippocam-
pus of wildtype mice, leading to increased CAA in the 
TetOAPPSweInd model of AD.

Materials and methods
Animals
C57BL/6 mice were bred at the Open University (OU, 
Milton Keynes, UK) and the University of Southampton 
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(Southampton, UK). TetOAPPSweInd mice developed 
by Dr Joanna Jankowsky (Baylor College of Medicine, 
Texas, US) [40] were a generous gift from Dr JoAnne 
McLaurin (Sunnybrook Research Centre, Toronto, Can-
ada) and were also bred on a C57BL/6 background. Food 
and water were provided ad libitum. All animal work was 
approved by the Animal Welfare and Ethics Research 
Boards (AWERB) at the OU, University of Southampton 
and UCL in accordance with Home Office regulations 
and project licences (PPL 70/8507 and PPL 30/3095) 
under the Animals (Scientific Procedures) Act 1986.

Mu‑Saporin administration
8–10 week old male C57BL/6 mice and 4-month old male 
and female TetOAPPSweInd mice were used for saporin 
injections. Mice were anesthetised under isoflurane gas 
and placed into a stereotaxic frame (Kopf instruments, 
CA, USA). Analgesia was administered intraperitoneally 
(Carprieve, 5% w/v, 0.32  ml/kg, Norbrook, Northamp-
tonshire, UK) and a topical anaesthetic (Cryogesic (ethyl 
chloride), Acorus Therapeutics Ltd, Chester, UK) was 
applied before making a midline incision. 0.5 µL of mu-
saporin (0.596  µg/µl, Advanced Targeting Systems, CA, 
USA) or 0.9% sterile saline was injected into the left 
and right lateral ventricles (coordinates from Bregma: 
AP = − 0.4 mm, ML = ∓ 1.0 mm, DV = − 2.3 mm) using 
a 33 gauge Hamilton syringe. Mice were able to self-
administer sugar free jelly containing Carprofen (250 µg 
in 500 µl jelly, Zoetis, London, UK) for 1 week post-sur-
gery. Animals were randomly assigned to receive either 
saline or saporin and all experimenters were blinded to 
treatment until statistical analysis.

Immunohistochemistry
45 days after surgery, mice were deeply anesthetised and 
perfused intracardially with 0.01  M phosphate buffered 
saline (PBS) followed by 4% paraformaldehyde (PFA). 
Brains were post-fixed in 4% PFA overnight, sectioned 
(20 µm thickness) using a cryostat and stored at − 20 °C. 
Details of primary and secondary antibodies used for 
immunohistochemistry are listed in Additional file  1: 
Table 1.

For enzyme-linked immunohistochemistry, sections 
were washed in 0.01 M PBS, incubated with 3% hydrogen 
peroxide, rinsed in PBS and treated with 70% formic acid 
for 45 s. Sections were then blocked in 15% normal don-
key or goat serum (NDS, Sigma-Aldrich, Dorset, UK), 
followed by incubation overnight at 4 °C with anti-Aβ40 
(1:100) or anti-Aβ42 (1:100). The next day, sections were 
incubated with biotinylated anti-rabbit (1:400) and devel-
oped using glucose oxidase enhancement with DAB as 
chromagen (Sigma-Aldrich, Dorset, UK). The specificity 
of the anti-Aβ40 and anti-Aβ42 antibodies was verified 

by pre-absorbing purified human Aβ40 peptide with the 
anti-Aβ40 antibody (10:1 molar ratio) alone or in combi-
nation with the anti-Aβ42 antibody for 1.5 h at RT before 
proceeding with tissue incubation and development as 
described above (Additional file  2: Fig.  1a–d). Photomi-
crographs were obtained using a Nikon Eclipse 80i light 
microscope (Nikon UK Limited, Surrey, UK) and images 
from the hippocampus and cortex (n = 6 control and 
n = 7 saporin) were analysed using Fiji (NIH, Maryland, 
USA).

For single labelling immunofluorescence, sections were 
washed in 0.01  M PBS, blocked with serum and incu-
bated overnight at 4  °C with anti-choline acetyltrans-
ferase (ChAT; 1:75), anti-p75NTR (1:350), anti-GFAP 
(1:500), anti-Iba1 (1:500) or anti-laminin (1:350). Sec-
tions were incubated with the appropriate fluorophore-
conjugated secondary antibodies and coverslipped using 
 Mowiol® (Sigma, Dorset, UK) containing 0.1% v/v Citif-
luor (Citifluor ltd, London, UK).

For multiple labelling fluorescent immunohistochem-
istry, sections underwent antigen retrieval (Additional 
file  1: Table  1) and were then incubated overnight at 
4  °C with either i) anti-ChAT (1:75) and anti-p75NTR 
(1:400), or ii) with anti-NOS (1:200) or anti-eNOS (1:200) 
in combination with anti-GFAP (1:2000) or anti-Iba1 
(1:500). Sections were then incubated for 2 h at RT with 
the appropriate fluorophore-conjugated secondary anti-
bodies, washed in PBS and coverslipped as above. The 
specificity of the fluorescently-conjugated secondary 
antibodies was verified by omitting the primary antibod-
ies (Additional file 2: Fig. 1e–h).

For all fluorescent imaging, photomicrographs were 
obtained using a Leica SP5 confocal microscope using 
the same gain and intensity and maximum projection 
images were exported to Adobe Photoshop 2020 or Fiji.

Quantification of immunohistochemistry
The density of ChAT staining (neuronal cell bodies or 
fibres) in each brain region was quantified from low mag-
nification images by calculating the percentage area cov-
ered by staining using the “Analyze particle” function in 
Fiji (NIH. Maryland, USA). For quantification of staining 
in the hippocampus, overlapping images were stitched 
together and values from both the ipsilateral and con-
tralateral hemispheres were averaged for each animal. For 
quantification of cortical images, six random non-over-
lapping images spanning the somatosensory cortex of 
the ipsilateral cortex to the somatosensory cortex of the 
contralateral cortex were captured and averaged per ani-
mal. A single low magnification image/animal was used 
to quantify ChAT staining in the medial septum. The per-
centage area containing microglia, astrocytes and blood 
vessels was also calculated using the ‘Analyze particle” 
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function in Fiji. Additionally, for anti-laminin staining, in 
order to quantify density by vessel type, a mask was set 
to select capillaries (0–100  µm2) or large-diameter ves-
sels (101  µm2-infinity) using images calibrated accord-
ing to the scale bar. The degree of colocalization between 
ChAT and p75NTR and between e/NOS and laminin 
was determined from three images/region/animal taken 
at × 40 magnification using Pearson’s correlation coeffi-
cient (PCC, Coloc 2 plugin) in Fiji. For quantification of 
Aβ staining, images from the hippocampus and cortex 
taken at × 4 magnification were stitched together, images 
were converted to 8 bit greyscale images and the % area 
covered by CAA and plaques were quantified separately 
in Fiji.

Arterial spin labelling MRI
Approximately 5  weeks after ICV injection, C57BL/6 
mice that received saline (n = 7) or mu-saporin (n = 7) 
were transported to UCL Centre for Advanced Imag-
ing and allowed to acclimate for 1 week before imaging. 
A 9.4 T VNMRS horizontal bore scanner (Agilent Inc., 
Santa Clara, CA, USA) with a 72 mm inner diameter vol-
ume coil and 2 channel array head coil (Rapid Biomedi-
cal, Columbus, OH, USA) was used for radio frequency 
transmission and signal detection. Mice were initially 
anaesthetised under 2% isoflurane in medical air and 
maintained under 1.5% during imaging. A rectal probe 
and a pressure pad (SA Instruments, Stony Brook, NY, 
USA) were used to measure core temperature and moni-
tor respiration throughout the procedure. Heated water 
tubing and a warm air blower using a feedback system 
(SA Instruments, Stony Brook, NY, USA) was used to 
regulate the temperature of the mice to 37 °C. Following 
a 5 min acquisition of baseline CBF, mice were adminis-
tered 10 mg/kg Fasudil hydrochloride i.p. (Tokyo Chemi-
cal Industries, Tokyo, Japan) and re-imaged 10  min 
later for an additional 5 min. At the end of the imaging 
experiments, mice were perfusion fixed with 4% PFA 
and their brains collected for immunohistochemistry. A 
total of 15 brain image slices were acquired with a thick-
ness of 1 mm and an ‘in-plane’ resolution of 0.28 mm per 
mouse per experiment. Statistical Parametric Mapping 
(SPM, http://www.fil.ion.ucl.ac.uk/spm/) was applied to 
perfusion-weighted acquired ASL images [91]. Acquired 
images were processed using a Matlab (Mathworks, MA, 
USA) customised script. Regions of interest (cortex and 
hippocampus) were then manually traced on a single slice 
and quantified using a Matlab script which converted 
pixel intensity into CBF (ml/100 g/min) [91].

Western blotting
45  days post-injection with saline (n = 7) or mu-
p75-saporin (n = 6), C57BL/6 mice were given an 

overdose of sodium pentobarbitone and perfused with 
0.01  M PBS. Brains were removed, dissected for hip-
pocampus and cortex, snap frozen and stored at − 80 °C 
until use. Tissues were homogenised in RIPA lysis buffer 
(20 mM Tris pH 8.0, 0.15 M NaCl, 1.27 mM EDTA, 1 ml 
Igepal, 0.1% SDS, 50 mM NaF, 1.48 mM  NaVO3 contain-
ing 1:100 Protease inhibitor cocktail [Merck Millipore, 
UK]), centrifuged at 10,000 g at 4 °C for 10 min and the 
supernatant was collected. 30 μg or 40 μg of proteins 
were separated by gel electrophoresis and membranes 
were then blocked in 8% non-fat milk before incubation 
with anti-eNOS (1:5000, Cell Signalling Technology, Lon-
don, UK) or anti-nNOS (1:250, Cell Signalling Technol-
ogy) overnight at 4  °C. Membranes were then washed 
in TBST before being incubated in HRP-conjugated 
anti-rabbbit (1:5000, Fisher Scientific) for 1  h at room 
temperature and developed using an enhanced chemi-
luminescence kit (GE Healthcare, Little Chalfont, UK). 
Membranes were then stripped and re-probed with anti-
GAPDH (1:50,000, Sigma-Aldrich) to ensure equal pro-
tein loading. Optical density of the bands was quantified 
and normalised to GAPDH levels using Fiji.

Assessment of IPAD
45 days after injection with saline or saporin, mice were 
anesthetised with isoflurane and placed into a stere-
otaxic frame. For hippocampal injections, 0.5 µL of 
50 µM human Aβ40 HiLyte Fluor™ 555 (AnaSpec, Cali-
fornia, USA) was injected into the left hippocampus (co-
ordinates from Bregma: AP = − 1.9  mm, ML = 1.5  mm, 
DV = − 1.7 mm, n = 16 control and n = 14 saporin). Mice 
were perfused with PBS and 4% PFA 5 min post-injection. 
For cortical injections, control (n = 8) and saporin (n = 7) 
mice were injected with 0.25 µL of 50 µM Aβ40 HiLyte 
Fluor™ 555 into the right cortex (co-ordinates from 
Bregma AP = − 2 mm, ML = − 1.5 mm, DV = − 0.5 mm) 
and mice were perfused 2.5 min later. All injections were 
carried out at a rate of 0.2 µL/min using a 33 gauge Ham-
ilton syringe and the injection needle was left in situ for 
2  min to avoid reflux. A separate group of control and 
saporin-treated mice (n = 5/group) were administered 
fasudil hydrochloride (10  mg/kg, i.p.) 10  min before 
intracerebral injections. Tissue sections were processed 
for double-labeling immunohistochemistry as described 
above using anti-laminin (1:350) and anti-α smooth mus-
cle actin conjugated to FITC (1:350; Additional file  1: 
Table  1). Brain sections that were ≥ 400 μm away from 
the site of injection were imaged for quantification. The 
number of capillaries, arteries and veins that contained 
Aβ40 HiLyte Fluor™ 555 within each image were counted 
manually and divided by the total area analysed, as 
described previously [27, 29, 61].

http://www.fil.ion.ucl.ac.uk/spm/
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Statistical analysis
Data were tested for normality using the Shapiro–Wilk 
test and the ROUT test was used to identify and remove 
statistical outliers. Comparisons between control and 
saporin-treated mice were analysed using two-tailed 
Student’s t test or Mann–Whitney U test where data 
were not normally distributed. Analysis of baseline vs 
stimulated CBF was carried out using paired one-tailed 
t-test and Wilcoxon matched-pairs signed rank test. Dif-
ferences in NOS activity were analysed using one-way 
ANOVA with Sidak post hoc test. Differences in counts 
of Aβ40-positive vessels within each brain region were 
analysed using a one-way ANOVA with Sidak post hoc 
analysis or Kruskal–Wallis test with Dunn’s post hoc. In 
all cases, significance was set at p < 0.05 and data are dis-
played as mean ± SEM.

Results
mu‑Saporin induces loss of cholinergic neurons and fibres
In control mice, immunohistochemistry for ChAT 
labelled neurons in the medial septum (MS), diago-
nal band of Broca (DBB) and striatum (Fig.  1a). ChAT-
positive fibres in the hippocampus and cortex were also 
observed in these animals (Fig.  1b, c). Colocalization 
was noted between ChAT and p75NTR in the majority 
of basal forebrain neurons (PCC = 0.68) as well as in fibre 
projections in the hippocampus and cortex (PCC = 0.25 
and 0.24, respectively) in control animals (Additional 
file  3: Fig.  2). Administration of mu-saporin induced a 
significant loss of ChAT-positive, p75NTR-positive neu-
rons in the MS and DBB (Fig.  1d, g, Additional file  3: 
Fig.  2), as well as fibres in the hippocampus (Fig.  1e, h, 
Additional file 3: Fig. 2) and cortex (Fig. 1f, i, Additional 
file 3: Fig. 2), confirming the usefulness of the model to 
induce significant death of basal forebrain cholinergic 
neurons and their projection fibres.

Cholinergic loss decreases eNOS‑mediated cerebral blood 
flow in the cortex but not the hippocampus
We have previously found that mu-saporin causes loss of 
cholinergic innervation of cerebral blood vessels and that 
this denervation is more pronounced in the cortex than 
the hippocampus [61]. To assess the effect of this loss on 
baseline and evoked CBF, arterial spin labelling MRI was 
used to image cerebral perfusion in the hippocampus and 
cortex of control and saporin-treated mice. Baseline CBF 
did not differ between control and saporin mice in either 
the hippocampus or cortex (Fig.  2a, b). Administration 
of fasudil hydrochloride caused a significant increase in 
hippocampal CBF relative to baseline in both control 
and saporin-treated mice (Fig.  2a). The degree of CBF 
increase was similar between treatment groups (Fig. 2 a). 
In the cortex, fasudil hydrochloride induced a significant 

increase in CBF in the control, but not the saporin group 
compared to baseline (Fig. 2b). In addition, control mice 
that were administered fasudil hydrochloride had a sig-
nificantly higher CBF compared to saporin-treated mice 
given the drug (Fig. 2b). These results suggest that dener-
vated hippocampal vessels were still responsive to eNOS 
stimulation, while cortical vessels were not.

eNOS protein expression in the hippocampus and cortex 
is differentially affected by saporin treatment
To determine whether regional differences in the respon-
siveness to fasudil hydrochloride were due to differences 
in the levels of NOS expression, cortical and hippocam-
pal tissues were assessed by Western blotting using 
eNOS and nNOS-specific antibodies. eNOS expression 
was significantly higher in the hippocampus of saporin-
treated mice compared to controls (Fig. 3a), while no sta-
tistically significant differences were observed between 
control and saporin mice in the cortex (Fig.  3b). Levels 
of nNOS did not differ significantly between control and 
saporin-treated mice in either the hippocampus or cor-
tex (Fig. 3c, d). To determine if NOS expression may have 
been influenced by possible differences in vessel densi-
ties, the vascular expression of NOS in laminin-positive 
vessels was quantified in control and saporin tissues 
(Fig.  3e–h). Quantification of the NOS-to-laminin ratio 
confirmed the significant decrease in NOS expression in 
the cortex of saporin-treated mice (Fig.  3m). However, 
the NOS ratio in the hippocampus did not differ signifi-
cantly between control and saporin mice (Fig.  3m). We 
also observed some NOS expression in glial cells in the 
hippocampus of saporin-treated mice. To determine if 
the increased eNOS expression detected by Western blot 
was due to expression in glial cells, hippocampal sections 
were stained with anti-eNOS and anti-GFAP or anti-
Iba1 (Fig. 3i–l). These results confirmed minimal expres-
sion of eNOS in astrocytes, but some colocalization of 
eNOS with Iba1-positive microglia, which was higher in 
saporin-treated mice, although this did not reach statisti-
cal significance (p = 0.13, Fig.  3n). These results suggest 
that levels of eNOS are downregulated in the cortex, and 
upregulated in the hippocampus of saporin-treated mice 
and that increased eNOS expression in the hippocampus 
may be due in part to upregulation by microglia.

Administration of fasudil hydrochloride increases IPAD 
in the hippocampus but not cortex of denervated mice
Our previous work has shown that saporin treatment 
significantly decreases cholinergic innervation of arterial 
smooth muscle cells in the hippocampus and cortex [61]. 
In vitro modelling supports the hypothesis that the local-
ised arterial pulsations that regulate CBF [32] also pro-
vide the principle driving force for solute clearance from 



Page 6 of 17Nizari et al. acta neuropathol commun            (2021) 9:12 

the brain via IPAD [1]. To determine if loss of choliner-
gic innervation altered IPAD, the pattern of distribution 
of human Aβ40-AF555 was evaluated following injection 
into the hippocampus or cortex of control and saporin-
treated C57Bl/6 mice under physiologic and stimulated 
conditions. Triple-labelling immunohistochemistry 
demonstrated the presence of Aβ40-AF555 primarily 

in capillaries and arteries in both the hippocampus and 
cortex (Fig. 4a–f). Quantification of the number of hip-
pocampal blood vessels that contained Aβ showed no 
difference between control and saporin-treated mice 
under baseline physiological conditions (Fig. 4c). Admin-
istration of fasudil hydrochloride resulted in significantly 
more Aβ-positive blood vessels in both control and 

Fig. 1 Saporin administration kills cholinergic neurons and fibres in wildtype mice. a–f Photomicrographs of ChAT staining in the medial septum 
and diagonal band of Broca (a and d), hippocampus (b and e) and cortex (c and f) in control (a–c) and mu-saporin treated C57BL/6 mice (d–f). 
(g‑i), Quantification of % area covered by ChAT-positive neurons in the medial septum (g) and fibres in the hippocampus (h) and cortex (i). Scale 
bar = 100 μm. n = 5/group, *p < 0.05, **p < 0.01
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saporin animals compared to baseline (Fig. 4b, c). How-
ever, fasudil treatment did not affect hippocampal vessel 
counts between control vs. saporin mice (Fig. 4c).

Preliminary assessment of IPAD in the cortex using 
the same parameters as those in the hippocampus (e.g. 
0.5 μL Aβ40-AF555 + 5  min clearance) revealed a much 
smaller bolus of Aβ at the site of injection and very few 
Aβ-positive vessels were visible at 400 µm away from the 
injection site compared to the hippocampus (Additional 
file  4: Fig.  3a and b). Following a series of modifications 
(Additional file  4: Fig.  3c–e), the injection protocol for 
cortical injections was adapted to 0.25 µL Aβ40-AF555 
with 2.5 min post-injection time (Fig. 4d–f), to allow for 
sufficient numbers of Aβ40-positive vessels to be counted. 
Similarly to the hippocampus, quantification of corti-
cal vessels that contained Aβ revealed no baseline differ-
ences between control and saporin-treated mice (Fig. 4f ). 
In control animals, administration of fasudil hydrochlo-
ride resulted in significantly fewer Aβ40-containing ves-
sels (Fig. 4d–f). Although a similar trend was observed in 
saporin animals, the difference was not statistically signif-
icant (p = 0.08) and no difference was observed between 
control + fasudil and saporin + fasudil groups (Fig. 4f ).

To determine if IPAD may have been influenced by dif-
ferences in vessel number and/or microglia and astrocyte 
activation, densities of each were quantified in control 
and saporin-treated mice. The density of laminin-posi-
tive macrovessels and capillaries did not differ between 
control and saporin-treated mice in either the cortex or 
hippocampus (Fig.  4g–j), although capillary density was 
significantly higher in the cortex than the hippocampus 
in both treatment groups (p = 0.003). Similarly, quanti-
fication of Iba1 and GFAP staining revealed no effect of 
saporin treatment on astrocyte or microglial coverage of 
the hippocampus or cortex (Additional file 4: Fig. 3f–k).

These findings confirm that IPAD was not affected 
by differences in vessel density or glial activation and 
indicate that clearance of Aβ was stimulated by fasudil 
hydrochloride and that this responsiveness remains 
intact in the hippocampus, but not the cortex of dener-
vated mice.

Loss of cholinergic innervation increases CAA 
in the hippocampus of TetO‑APP mice
To evaluate if cholinergic denervation potentiated Aβ 
pathology, 4-month old TetO-APPSweInd mice were 
administered saline or mu-saporin. Unexpectedly and 
in contrast to the observations made in the C57BL/6 
mice, no significant differences were noted in the num-
ber of ChAT-positive neurons in the medial septum 
between control and saporin-treated mice (Fig.  5a, d, 
g). Significantly fewer cholinergic fibres were observed 
in the hippocampus of saporin vs control mice (Fig. 5b, 
e, h), while ChAT fibre density in the cortex was also 
unaffected by saporin treatment (Fig.  5c, f, i). To deter-
mine if the attenuated effect of saporin in the TetO-
APPSweInd mice was due to endogenous differences in 
ChAT and p75NTR expression, fibre appearance and 
density was compared between TetO-APPSweInd mice 
and wildtype littermates. The morphology of fibres in 
the TetO-APPSweInd appeared dystrophic, with swollen 
varicosities and shorter processes than that of cholinergic 
fibres in the wildtype mice (Figs.  1b, c, 5b, c). The den-
sity of ChAT-positive neurons in the MS was significantly 
higher in TetO-APPSweInd mice compared to wildtype 
animals, although no differences in hippocampal or cor-
tical ChAT fibre density were observed between strains 
(Fig. 5j). Analysis of p75NTR expression showed signifi-
cantly lower receptor expression in the hippocampus of 
TetO-APPSweInd mice compared to wildtypes, while no 
differences were observed in the cortex or MS (Fig. 5k). 
Additional analysis found that the ratio of p75NTR to 
ChAT expression was significantly lower in the MS and 
hippocampus of TetO-APPSweInd mice compared to 
wildtype animals (Fig. 5l).

Quantification of Aβ pathology in the hippocampus 
after saporin treatment showed no difference in the per-
centage area covered by Aβ40-positive plaques between 
control and saporin mice (Fig.  6a, b, e). However, Aβ40 
CAA load was significantly higher in the saporin-treated 
mice (Fig. 6a, b, e). A similar but non-significant pattern 
of vascular Aβ42 staining was observed between con-
trol and saporin mice, while parenchymal Aβ42 was not 
affected by saporin treatment (Fig.  6a, b, f ). In the cor-
tex, no differences were observed between control and 
saporin-treated mice in the density of Aβ40-positive 

Fig. 2 The hippocampus, but not cortex, of denervated mice 
remains responsive to eNOS-stimulated increase in CBF. a and b 
Quantification of cerebral blood flow (CBF) in the hippocampus (a) 
and cortex (b) of control (con) and saporin-treated mice (sap) at 
baseline and 10 min after administration of fasudil hydrochloride 
(+F), averaged over 5 min. n = 5–7/group, *p < 0.05
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Fig. 3 Regional variation in NOS expression and activity in control and saporin-treated mice. a–d Western blots and quantification of levels of 
eNOS (a and b) and nNOS (c and d) in the hippocampus (a, c) and cortex (b, d) of control and saporin-treated mice (n = 6–8/group). Molecular 
weight markers (kDa) are shown on the right hand side. The black line demarcates the original blot (upper) and the same blot re-probed for 
loading control (lower). e–h Photomicrographs showing the expression of total NOS (green) in laminin-positive vessels (blue) in the hippocampus 
(e and f) and cortex (g and h) of control (e and g) and saporin-treated mice (f and h). Note the stable expression of NOS in hippocampal vessels 
of saporin-treated mice, while NOS expression is significantly reduced in cortical vessels of saporin animals. i–l eNOS expression (green) in 
GFAP-positive astrocytes (blue, i and j) and Iba1-positive microglia (blue, k and l) in the hippocampus of control (i and k) and saporin mice (j and l). 
Colocalization between eNOS and GFAP or Iba-1 is shown as white-turquoise. m and n Quantification of NOS expression in blood vessels as a ratio 
to overall vessel density (m) and degree of colocalisation between eNOS and GFAP or Iba1 as measured by the Pearson’s correlation coefficient (n). 
n = 5/group. Scale bars for f and h = 50 μm; j and l = 20 μm. *p < 0.05
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plaques or CAA (Fig.  6c, d, g). Likewise, the density of 
cortical parenchymal and vascular Aβ42 was unaffected 
by saporin treatment (Fig. 6c, d, h).

As with the C57BL/6 mice, vessel density between 
control and saporin-treated TetO-APPSweInd mice was 
similar in both the cortex and hippocampus (Fig.  6i–l). 
Analysis of GFAP and Iba1 expression revealed no sig-
nificant difference in area coverage between treatment 
groups in either brain region (Additional file 4: Fig. 3l–q). 
These findings confirm that saporin administration did 
not significantly alter vessel density or glial activation in 
the TetO-APP mice and support a role for loss of cholin-
ergic innervation in potentiating CAA pathology.

Discussion
Results from this study suggest that loss of cholinergic 
innervation differentially affects cortical and hippocampal 
responsiveness to eNOS-stimulated increases in CBF and 
IPAD in wildtype mice, with hippocampal, but not cortical, 
vessels remaining responsive to stimulation. The death of 
cholinergic nerve fibres resulted in a significant and selec-
tive increase in Aβ40-positive CAA in the TetO-APPS-
weInd model of AD. These findings support the importance 
of the interrelationship between cholinergic innervation 
and vascular function in the aetiology and/or progression 
of CAA and suggest that regional vulnerability or resilience 

Fig. 4 Administration of fasudil hydrochloride increases IPAD in the hippocampus, but not cortex of denervated mice. a–f Photomicrographs 
showing the distribution of human Aβ40-AF555 (red) at 5 min post-injection into the hippocampus (a and b) and at 2.5 min after injection into 
the cortex (d and e) of control mice at baseline (a and d) and after administration of fasudil hydrochloride (b and e). The cerebrovascular basement 
membrane was labelled with anti-laminin (blue) and smooth muscle cells were identified with anti-α smooth muscle actin (green). Quantification 
of the total number of Aβ40-containing vessels in the hippocampus (c) and cortex (f) of control (con) and saporin (sap)-treated mice at baseline 
(n = 14–16 for hippocampus and n = 7–8 for cortex) and after fasudil hydrochloride (+F) (n = 5/group for both regions). g and h Photomicrographs 
of laminin staining in the hippocampus (g) and cortex (h) of control (upper panels) and saporin-treated mice (lower panels). i and j Quantification 
of % area covered by laminin in the hippocampus (i) and cortex (j) of control and saporin animals. n = 5–7/group. Scale bars = 100 μm. *p < 0.05, 
**p < 0.01, ***p < 0.001
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to loss of cholinergic dysfunction may contribute to the 
topographical nature of CAA (Additional file 4: Fig. 3).

Degeneration of cholinergic neurons and shrinkage of 
the basal forebrain are early features of AD and are asso-
ciated with increased Aβ pathology, altered CBF and 

cognitive impairment [9, 22, 26, 82, 86]. In agreement 
with previous studies [58, 61], we found that intracer-
ebral administration of mu-saporin, which selectively 
targets p75NTR-expressing neurons, caused the death 
of ChAT-positive neurons in the MS as well as their fibre 

Fig. 5 Distribution and quantification of cholinergic and p75NTR-positive neurons in control and saporin-treated TetO-APPSweInd mice. a–f 
Photomicrographs of ChAT staining in the medial septum and Diagonal band of Broca (a and d), hippocampus (b and e) and cortex (c and f) in 
control (a–c) and mu-saporin treated (d–f) TetO-APPSweInd mice. (g–i), Quantification of % area covered by ChAT-positive neurons in the medial 
septum (g) and fibres in the hippocampus (h) and cortex (i), n = 4–5/group. j–l Quantification of % area covered by ChAT (j) and p75NTR-positive 
(k) neurons and fibres and the ratio of ChAT:p75NTR expression (l) in the medial septum (MS), hippocampus (Hippo) and cortex of C57BL/6 and 
TetO-APPSweInd (TETAPP) mice, n = 5/group/strain. Scale bar = 100 μm. *p < 0.05, **p < 0.01,* **p < 0.001
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projections in the cortex and hippocampus of wildtype 
mice.

ACh has a well-known vasodilatory effect in the brain 
and stimulation of the basal forebrain leads to increased 
cortical CBF [33, 35]. This effect is predominantly 
observed during NVC when release of ACh stimulates 
the production of NO via activation of eNOS or indi-
rectly by stimulation of nNOS-containing interneurons 
[53]. Although ASL MRI can be used to measure NVC in 
the cortex using whisker or forepaw stimulation [49], to 
our knowledge similar methods are not available to stim-
ulate NVC in the hippocampus of anesthetised animals. 

Therefore, to evaluate the impact of loss of cholinergic 
innervation on evoked CBF, we mimicked ACh activa-
tion of eNOS by using the selective ROCK inhibitor fas-
udil hydrochloride, which has been shown to increase 
CBF by stimulating the PI3K/Akt/eNOS pathway [68, 
76]. Consistent with previous reports [50], loss of cholin-
ergic innervation in the cortex and hippocampus did not 
affect baseline CBF in either region, supporting a primary 
role of ACh on CBF during NVC. However, while admin-
istration of fasudil hydrochloride was not able to evoke 
a change in CBF in the cortex of saporin-treated mice, 

Fig. 6 Loss of cholinergic innervation selectively increases Aβ40-positive CAA in the hippocampus of TetO-APP mice. a–h Photomicrographs of 
hippocampal (a and b) and cortical tissues (c and d) of TetO-APP mice stained with antibodies against human Aβ40 (a–d, left panels) and Aβ42 
staining (a–d, right panels). Tissues from control animals are shown in the upper panels and saporin-treated tissues are shown in the lower panels. 
Arrowheads show plaques and asterisks show CAA-positive vessels. e–h Quantification of % area covered by Aβ40 (e and g) and Aβ42-positive (f 
and h) plaques and blood vessels in the hippocampus (e and f) and cortex (g and h) of TetO-APPSweInd mice, n = 6–7/group. i–l Photomicrographs 
of laminin staining in the hippocampus (i) and cortex (j) of control (upper panels) and saporin-treated mice (lower panels). k Histogram showing 
quantification of laminin density in control and saporin-treated mice. n = 3–5/group. Scale bars = 100 μm. **p < 0.01
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denervated vessels in the hippocampus remained respon-
sive to stimulation.

Because multiple downstream signalling pathways in 
addition to eNOS are regulated by ROCK activity, includ-
ing those relating to smooth muscle contraction [45], we 
cannot definitively conclude that the observed effects 
were due to stimulation of eNOS. However, the find-
ings that levels of eNOS were significantly decreased in 
the cortex and increased in the hippocampus of saporin-
treated mice, support the hypothesis that loss of cholin-
ergic innervation resulted in opposing effects on eNOS 
expression that aligned with the CBF response. Although 
eNOS is principally expressed by endothelial cells, pre-
vious studies have reported its expression in neurons, 
astrocytes and in microglia across various species [16, 75, 
92]. Our observation that eNOS was expressed not only 
in blood vessels but also by microglia in the hippocam-
pus of saporin-treated mice, suggests that the functional 
effects of fasudil hydrochloride in the hippocampus may 
also be due in part to activation of non-vascular cells. 
Although it is not clear why the effect of saporin treat-
ment induced an opposite expression of eNOS between 
the cortex and hippocampus, endogenous NOS activ-
ity in both the nNOS- and eNOS-enriched fractions has 
previously been reported to be higher in the hippocam-
pus compared to the cortex [74]. This is supported by 
previous reports showing that changes in CBF in the hip-
pocampus were more proportional to changes in nNOS 
activity than in the cortex [52] and that the cortex is more 
sensitive than the hippocampus to inhibition of nNOS 
activity [43].

Previous studies have suggested that contractions of 
arterial smooth muscle cells are required for drainage 
of fluid along cerebral blood vessels [1, 3, 37], although 
whether this pulsation is sufficient to drive bulk flow of 
ISF and CSF remains controversial [11, 31]. Several stud-
ies have shown that vasoreactivity in AD is improved 
following treatment with AChEIs [71]. We hypothesised 
that there is a direct relationship between vasoreactivity 
and the efficiency of IPAD and that loss of cholinergic 
innervation would impair IPAD of Aβ in a similar pat-
tern to that observed for CBF. No differences in IPAD 
were observed between control and saporin-treated mice 
in either brain region under baseline physiological con-
ditions. Our observation that fewer Aβ-positive vessels 
were visible in the cortex after a 5 min diffusion period 
compared to the hippocampus, suggests that IPAD of Aβ 
may be endogenously faster in the cortex than in the hip-
pocampus. We have previously reported differences in 
the efficiency of IPAD between subcortical brain regions 
that are differentially affected by CAA [27]. However, 
given the relatively small thickness of the mouse cortex 
[65], it is possible that the depth of injection into the 

cortex (0.5  mm from dura) may have flooded the suba-
rachnoid space, even when using the smaller 0.25 µL vol-
ume. Therefore, more detailed in vivo tracer experiments 
are needed to clarify rates of IPAD between cortical and 
hippocampal regions. However, in agreement with other 
studies [21, 62], we also found that cerebrovascular den-
sity was significantly higher in the cortex compared to 
the hippocampus. This larger surface area may allow 
for solutes contained within the ISF to be more rapidly 
removed from the cortex than from the hippocampus 
under physiological conditions.

Administration of fasudil hydrochloride resulted in 
significantly more vessels with Aβ in the hippocampi of 
both control and saporin-treated mice, while in the cor-
tex, fewer vessels were found to contain Aβ and this was 
observed in control mice only. Although the pattern of 
distribution was opposite between the two regions, we 
interpret both findings as representing increased IPAD 
at different rates of clearance. These findings are consist-
ent with our CBF data and suggest that IPAD is signifi-
cantly increased in the presence of vasodilation, which is 
in agreement with reports of impaired solute clearance 
from the brain during hypoperfusion [3, 37]. However, 
the similarity in the number of labeled cortical vessels 
between control + fasudil and saporin + fasudil mice 
suggests that other factors are also contributing to Aβ 
clearance in denervated mice. Although blood pressure 
was not monitored in the current experiments, previ-
ous studies have shown that fasudil hydrochloride does 
not alter systolic blood pressure in normotensive rodents 
or humans [44, 51, 57, 59], suggesting that the observed 
effects were unlikely to be due to changes in peripheral 
blood pressure. In addition, no differences in vessel den-
sity or markers of microglia and astrocytes were observed 
between control and saporin mice in either brain region. 
Although our findings are consistent with reports of an 
association between decreased eNOS expression and 
increased CAA [6, 81], recent work has shown that NVC 
is mediated in part by arteriole caveolae independent of 
eNOS activation [17]. Further work is required to deter-
mine the factors that regulate Aβ clearance when cholin-
ergic signalling is attenuated.

Previous studies have reported a relationship 
between basal forebrain degeneration and Aβ pathol-
ogy in the cortex [26] and basal forebrain atrophy has 
been suggested to predict cortical Aβ burden [82]. 
Induced loss of cholinergic neurons in rodent mod-
els of AD has also been associated with increased Aβ 
plaque deposition [48, 67], however most studies have 
not specifically investigated the effect on vascular Aβ. 
In the present study, administration of mu-saporin in 
TetO-APPSweInd mice resulted in a loss of cholinergic 
neurons that was only significant in the hippocampus. 
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The reasons for the discrepancies between the degree 
of loss between the C57BL/6 and TetO-APPSweInd 
mice are not clear, but may relate to the dystrophic 
appearance of cholinergic fibers and decreased 
p75NTR:ChAT ratio observed in the TetO-APPSweInd 
mice. As binding of the p75NTR by Aβ is known to 
induce apoptosis [95], it may be that pre-existing Aβ 
pathology caused damage to cholinergic neurons 
and fibres that induced a downregulation in p75NTR 
expression and decreased receptor availability for mu-
saporin binding.

Although unexpected, the difference in sensitivity to 
saporin treatment between the cortex and hippocam-
pus provided an internal control to study the effect of 
cholinergic loss on Aβ pathology. We found that loss 
of cholinergic innervation in the hippocampus was 
associated with a significant increase in Aβ40-positive 
vessels, consistent with the preferential deposition of 
Aβ40 in the vasculature in AD [30, 80]. By contrast, 
CAA load was not affected in the cortex where cholin-
ergic fibre density was not altered by saporin treatment. 
Parenchymal plaque load did not differ between con-
trol and saporin-treated mice in either region. These 
findings are consistent with previous studies showing 
significantly more endogenous CAA in the absence of 
changes in parenchymal changes or changes in APP 
processing in rabbits administered saporin [10, 70]. 
These findings are also similar to a study which found 
that age-related loss of perivascular cholinergic inner-
vation in the cortex did not significantly correlate with 
increased cortical plaque load in the Tg2576 AD mouse 
model [46]. However, other studies have reported 
increased plaque load and elevated concentrations of 
soluble Aβ following saporin-induced cholinergic loss 
in the APP/PS1 and Tg2576 mouse models [24, 48, 
67]. Many factors may have contributed to these differ-
ent observations, including the degree of cholinergic 
degeneration, age of the mice and amount of pre-exist-
ing Aβ pathology before saporin treatment, as well as 
the ratio of Aβ40:Aβ42 and progression of pathology 
between the different mouse models. Despite these dis-
crepancies, our results support a consensus that loss 
of cholinergic innervation contributes to increased Aβ 
pathology.

In addition to the previously discussed limitations 
related to inducing NVC in the hippocampus of anes-
thetised animals and assessment of IPAD ex  vivo, this 
study has several other weaknesses. The saporin model 
induces loss of basal forebrain cholinergic neurons 
in a retrograde manner [47], and over a more rapid 
timeframe than that observed in AD, which may acti-
vate a strong acute inflammatory reaction and/or the 
development of compensatory mechanisms in the 

animal model that are not present in AD. In addition, 
as age is the major risk factor for both sporadic AD and 
CAA, additional experiments are needed to determine 
whether the effects of cholinergic denervation on CBF 
and IPAD in the cortex and hippocampus seen here in 
young adult mice are also observed in aged animals.

Conclusions
Despite these limitations, findings from this study sup-
port a role for loss of cholinergic innervation in the aeti-
ology and/or progression of CAA and suggest that this 
may be related to eNOS-mediated vasodynamics that 
contribute to clearance of Aβ from the brain via IPAD 
pathways. Therefore, combined targeting of eNOS and 
cholinergic signalling/activation may represent a new 
mechanism to improve the efficiency of Aβ removal and 
reduce its deposition as CAA.
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Additional file 1: Table 1 List of source of primary and secondary anti-
bodies used for immunohistochemistry.

Additional file 2: Fig. 1 a–d Photomicrographs of diffuse parenchymal 
plaques identified by the anti-Aβ40 antibody (a) and senile plaques 
stained by the anti-Aβ42 antibody (b) in TetO-APPSweInd mice. No stain-
ing was observed after pre-absorption of the Aβ40 antibody with Aβ40 
peptide (1:10 molar ratio, c). Sections incubated after pre-absorption of 
Aβ40 with anti-Aβ40 + anti-Aβ42 (d) showed a similar pattern of staining 
to that of sections incubated with the anti-Aβ42 antibody alone. e–h No 
staining was observed in tissue sections from C57Bl/6 mice incubated 
with fluorescently-conjugated secondary antibodies alone.

Additional file 3: Fig. 2 a–f Photomicrographs showing expression of 
ChAT (green), p75NTR (red) and their colocalization (yellow) in neurons 
in the medial septum (a and b) and fibers in the hippocampus (c and d) 
and cortex (e and f) of C57Bl/6 mice. Animals received an intracerebroven-
tricular injection of either PBS (control, a, c and e) or mu-saporin (b, d and 
f). Saporin treatment significantly reduced expression of p75NTR, ChAT-
positive cell bodies and fibers in the medial septum (b), hippocampus (d) 
and cortex (f). Images of the hippocampus are composed of individual 
overlapping images stitched together using Fiji. Scale bars: a, b, e, f = 250 
μm; c and d = 100 μm.

Additional file 4: Fig. 3 a and b Photomicrographs showing the distribu-
tion of 0.5 μL human Aβ40-AF555 (red) at 400 μm away from the injection 
site after 5 min post-injection (PI) into the hippocampus (a) and cortex (b) 
of control mice. The cerebrovascular basement membrane was labelled 
with anti-laminin (blue) and smooth muscle cells were identified with 
anti-α smooth muscle actin (green). c–e Photomicrographs showing the 
distribution of Aβ40-AF488 (green) in the cortex of C57BL/6 mice, at 400 
μm away from the injection site. The volume and post-injection (PI) time 
is indicated for 3 combinations that were tested to determine the optimal 
parameters for quantification of Aβ-positive vessels. f–k Photomicro-
graphs and quantification of GFAP (f, g, j) and Iba1 (h, i, k) staining in the 
hippocampus (f, h) and cortex (g, i) of control (con, upper panels) and 
saporin-treated C57Bl/6 mice (sap, lower panels). l–q Photomicrographs 
and quantification of GFAP (l, m, p) and Iba1 (n, o, q) staining in the 
hippocampus (l, n) and cortex (m, o) of control (con, upper panels) and 
saporin-treated TetO-APPSweInd mice (sap, lower panels). n = 3–5/group. 
Scale bars = 100 μm.
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