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A b stra c t

Much of the work in the theory of approximation has crystallised around 

two classical problems; the first is the Tchebyshev problem of finding a poly­

nomial of degree n  which gives the best uniform approximation to a given 

continuous function on an interval. The second is that of Weierstrass, to show 

that every continuous function on a closed bounded interval can be uniformly 

approximated with arbitrarily small error by a polynomial.

Closure and completeness problems fall in the second category. In this 

thesis, we look at some sequences of rational functions in certain Hilbert spaces 

of bounded analytic functions, and ask when every function in these Hilbert 

spaces can be approximated arbitrarily closely (in the Hilbert space norm) by 

finite linear combinations of the rational functions. Furthermore, we provide 

a characterisation of the closed subspaces that the rational functions generate 

in the case when this is not the whole space. Finally, we obtain necessary 

and sufficient conditions in order that the rational functions will constitute 

Schauder bases in the closed subspaces which they generate.
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In tro d u c tio n

This thesis concerns the closure and completeness of various systems in 

some classical Hilbert function spaces. The archetypal problems discussed 

proceed as follows.

Let { / n }  denote a sequence of functions in a given Hilbert function space 

H . We say that { / n }  is closed in H  if every element in H  can be approximated 

arbitrarily closely by finite linear combinations o i  f i , f 2,  In the most gen­

eral case, there is a well-known necessary and sufficient condition for a given 

sequence { / n }  to be closed in H. We consider certain special Hilbert spaces 

of analytic functions and give a characterisation of the closed linear manifold

s p a n { f n }  say, that { / n }  generates if the closure condition fails to hold. Finally, 

in these special cases, we provide a necessary and sufficient condition for { / n }

to constitute a Schauder basis for s p a n { f n } ,  still assuming that the closure 

condition is not satisfied.

We collect a few definitions in the first chapter, and provide the motivation 

for this line of research.

In Chapter Two, we study the closure (completeness) of the normalised 

sequences {<̂ n(â }} =  {2x{ReZnlTrY^^{x^ +

{'ipn{x)} = {2\zn\{ReZnl'Ky^'^{x^ +  ffi the Lebesgue space ^ 2(0, 00),

where , 23, - - - are complex numbers in the right half-plane with separation 

\zn+i\ — \zn\ >  ̂ > 0; and Rez^ oc as n —> 00. It is shown that {^n} is



closed in ^ 2(0, 00) if, and only if Y^ReZn{l +  \zn\'^)  ̂ = 00. This condition is 

also shown to be necessary and sufficient for {ipn} to be closed in ^ 2(0, 00).

Now, suppose Y^ReZn{l +  < 00. We show that s p an{(pn}  consists of

the Laplace sine transforms of certain functions analytic in the right half-plane 

Rez > 0, restricted to the positive real axis. The closed span of the “sister 

sequence” {V'n} is shown to consist of the Laplace cosine transforms of these 

analytic functions. The chapter concludes with an outline of a proof that 

{<ipn} and {V’n} will each be a basis for the respective closed linear manifold of 

^ 2(0, 00) which they generate if, and only if

‘5̂  nk=l]k^n
°° Z k -  Zn = S > 0.

Zk +

Chapter Three is concerned with analogous results for the sequence of nor­

malised Cauchy kernels {kn{z)} = — in the Hardy space

JT^(A), (A =  {2: : \z\ < 1}). We prove, following Otto Szasz, that {kn{z)} is 

closed in H ^(A)  if, and only if ^ (1  — |zn|) =  00. When this condition is not 

satisfied, we show the closed span of this system to consist of the Laguerre 

transform of some analytic functions in the right half-plane, restricted to the 

positive real axis. A necessary and sufficient condition for {kn{z)} to be a

Schauder basis for span{kn} is again that the infinite Blaschke product

¥  n
fc=l;A:^n

Zk — Zr

be bounded away from zero.
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In Chapter Four, we investigate the closure of the kernels

z ) }  = {( 1— in the space Da (0 < a  < 1) of functions analytic in 

A and for which the norm ||/ |||,^  =  is finite. The results obtained

here are almost identical with those in Chapter 3. For example, a necessary 

condition for z)} to be closed in Da is that ^ (1  — \zn\) = oo. For

0 < < 22 <  - ' < 1, the necessary condition is also sufficient. The main

point of the chapter is to emphasise the uniformity and strength of the methods 

used throughout this thesis, viz., the computation of distances using the theory 

of reproducing kernel, characterisation of function spaces with the help of the 

hyperbolic metric, and the use of interpolation theory to solve bases problems.



C hapter 1

Prelim inaries

We define here, some of the function spaces in which our investigations will 

be carried out, and provide the motivation for the research contained in this 

thesis. The definition of the Laguerre transform is somewhat new, but all the 

results in this chapter are known.

1.1 iJî’-Spaces

Let A be the open unit disc {z : \z\ < 1}. H^[A) denotes the Hardy space of 

functions /  analytic in A such that the integral means

1 r^'-. .. ....
Mp I /(re* ) \̂  dOj , 0 < p < oo;

11



Preliminaries 12

remain bounded as r  ^  1. Each of the means Mp is a non-decreasing function 

of r. If /  G then it has radial limit /(e*®) = limr_^i f{re^^) for almost 

all 6.

Consider the half-plane = {in : Raw > 0}. If /  is analytic in P ^ , then 

/  is said to be in the class H^{P'^) provided that the integrals

/oo

I +  ty) 1̂ dy
-OO

are bounded for each æ > 0.

1 . 2  D o j - S p a c e s

Let (f){z) = ^  CnZ'  ̂ be an analytic function in A with Cq =  1, c„ > 0 and

^  <̂n—1 Cn+1 j ^  — 1 j 2, . . . .

(For example, Cn = l / n “ ,a  > 0.) Let be the Hilbert space of functions 

y(z) =  anZ^ analytic in A with the weighted norm

11/11̂  — S  — < OO-

If, as in the above example, c„ =  /(O) = 0 and a  =  1, then

00  ̂ r r
11/11̂  =  = “  / /  , , dxdy < CO,

1 TT J  J  \z \< l

SO Dfj, corresponds to the classical space of analytic functions in A with finite 

Dirichlet integral. These spaces, though of Dirichlet type, are sometimes called
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Bergman spaces.

If g{z) = XI G the inner product ( f ,g )  is given by

{f,g) = ' ^ — anbn-

As an example (and one which will be very useful for our purposes), consider 

the functions

0 < a  < 1, c e  A.

We denote by Da, the Hilbert spaces corresponding to these functions, and 

say that the Da are weighted Dirichlet spaces. In ([22], p. 227) Shapiro and 

Shields established the following isometric correspondence between Da and 

^ 2(0, 00);

where

^n-\- a \  {—t y
K { t )  =  E

are the associated Laguerre Polynomials. The left-to-right arrow of this corre­

spondence yields the isometry T  : ^ 2(0, 00) —> Da

^ { (1  -?)■*■“ exp (-«C /(l - ? ) ) }  =  (1 (1-1)

where G A is such that Re([l  — > 0. We refer to T  as the Laguerre

transform.
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1.3 C losure and C om pleteness

The sequence of functions {/„} is complete in a Hilbert function space H  if for 

all bounded linear functionals L ^  H* = H, L{fn) =  0, n =  1, 2,... imply that 

L = 0. Thus, for example, the sequence {/„} is complete in if the only

function g 6 H^{A) which is orthogonal to all of / i ,  / 2, . . .  is the zero function; 

that is, the vanishing inner products

rcx) ____
{ f n , g ) =  f n { t ) g { t ) d t  =  0 ,  n  =  1 , 2 , . . .

Jo

imply that g{t) =  0 in A.

The sequence of functions { / n }  is called total or is said to be closed in H  

if the subspace that it generates is everywhere dense in H] that is, if every 

element f  Ç: H  can be approximated arbitrarily closely by finite linear combi­

nations of the /n, so that given an. f  E H  and an £ > 0, we can find constants

Cnl J • • • J Cnn SUch that

f  Cm/A
U=1

< £
H

The fundamental theorem of closure and completeness says that a sequence 

is closed in a normed linear space if and only if it is complete. This is a 

consequence of the Hahn-Banach Extension Theorem. We will use both terms 

in this thesis so as to draw attention to the appropriate defining property. For 

closure, the defining property is transitivity. This means that if {/n} is closed 

in H, then a second system {gn\ is closed in H  if and only if is closed
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in { / n } ” - We say that {gn} is closed in {/„} if each /„  can be approximated 

arbitrarily closely by finite linear combinations of the gn- Lauricella gave an 

elegant proof of the transitivity of closure (see [9], p. 264-265).

T h eo rem  1.3.1 (M iin tz C losure T heorem ) The set of functions

{1, ' • •}, where 1 < A„ ^  oc is closed in (7[0,1] in the uniform norm

if, and only i fY ,{ l l \n )  =  oo.

This is a generalisation of the classical theorem of Weierstrass which asserts

that every continuous function f {x)  on the finite interval a < x < b can be

approximated by a polynomial to within an e, for each e > 0. In the termi­

nology of Functional Analysis, this says that the system {æ”} {n = 1 ,2 , . . . )  is 

closed (total) in C[a, b]. The proof of the Miintz Closure Theorem can be found 

in elementary texts on Approximation Theory. See for example, Akhieser [1], 

Cheney [7] or Davis [9].

On making the change of variable x = e ~ y , we can transform the Miintz 

Closure Theorem into a result concerning the closure of the sequence 

in 1 2̂(0, 00). In fact, it is well-known ([20], p. 99) that if {A„} is a sequence 

of complex numbers in P'^ satisfying |A„| oc, then is closed in

2,2(0) oc) if, and only if X)-^eA„(l +  |AnP)~^ =  oc. In [24], the closure and 

completeness of various sequences of rational functions are studied. Using a 

direct and elementary procedure, the following theorem is proved.
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T h eo rem  1.3.2 (Szasz) Suppose that Zn is a sequence of points in A . Then 

the system {(1 — Znz)~^}^ is closed in H^{A)  if, and only — kn|) =

oo.

Akhieser [1] gave a proof of Szasz’s theorem from which some information can 

be obtained about the closed span of the system {(1 — Znz)~^}^ . We shall 

elaborate on this in §3.4.

1.4 Free system s

A sequence of functions {/n} in a normed linear space is called free if it satisfies 

any one of the following equivalent conditions:

(1) No function fn belongs to the closed linear manifold generated by the re­

maining functions, i.e., /„  ^

(2) If
n

lim CLnufu = 0, n—►oo '

then lim^_Kx, am, =  0 for all u.

(3) For every representation

/  =  ^  , (1.2)
U=1

the limit lim„_.oo o,nu exists for all z/. If we set

hm ajii/ — Uj/, (1.3)
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then {a^} is determined for a given /  independent of the relation (1.2) as long 

as this makes sense; that is, as long as /  belongs to the closure of the subspace 

generated by {fn}- The symbolic representation is

OO

/  ~  Z ) (1-4)
U=1

We use ~  and not =  to emphasise that we are not exactly dealing with 

a sum, but with the limit of sums. (In general, the series Yi diverges in 

norm.) Furthermore, the representation Yo>ufu does not necessarily charac­

terise / ,  since many functions can have the same representation. If is a

free system and /  G s'pan{fi,} has the associated expansion /  ~  X) (^ufv  ̂ then

= L,y{f) can be seen as a linear functional on span{fu}. The significance of 

(1.3) will become clear in §1.5 when we define what it means for a free system 

to be a basis for the closure of the subspace that it generates.

Let Xn be a set of distinct positive integers with X)(l/'^n) < oo. De­

note by A{X),  the closure of the subspace of C7[0,l] that the free system 

{1, j. now generates. Suppose further that A„ satisfies infn(A„+i/A„) >

c > 1. Clarkson and Erdos showed in [8] that A(%) consists of the restriction 

to the unit interval, of functions analytic in A and of the form Ko-

revaar [16] extended the result to one where {A„} is any sequence of integers. 

Schwartz [19] obtained the same result with milder restrictions on the A„. We 

will say more on this later.

Consider again the system j  in ^ 2(0, 00). Denote by V, the closure
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in the If2-norm, of the linear manifold generated by this system. We follow 

Binmore [5] in calling the inequality

A  Re\n

the Müntz-Szâsz condition. If this condition is satisfied, then is not

total, i.e. V  ^  ^ 2(0, 00) (see [9] or [20]). Moreover is a free system

([19], p. 29). Thus, by (1.4) we can associate with each f  ^  V  a unique 

representation of the form

00

f {^ )  ~  1 ]  An exp(-A^æ). (1.5)
n = l

Schwartz [19] obtained upper bounds for |a„| when the sequence {A„} is real 

and satisfies certain conditions of regularity (for example, — A& > c > 0 for 

k = 1 ,2, . . . )  and showed that the formal series in (1.5) does in fact converge to 

f {x)  “normally” for all æ > £ > 0. (A series is normally convergent if the series 

of absolute values is locally uniformly convergent.) Furthermore, the function 

f{z) ,  for z G P"*" admits the “Dirichlet expansion” /(z )  =  X) exp( —Anz) for 

Rez > 0. Reciprocity results are also proved; for example:

T h eo rem  1.4.1 (Schw artz, 1943) Let {A„} be a sequence of real numbers 

with 0 < Ai < A2 < ' • • and A^+i — Â  > c > 0. Suppose that < 00.

I f  f [x)  G 1 2̂(0, 00) has the following properties;

(1) f {x)  is analytic in (0, 00) and can be extended by the holomorphic function 

f {z)  to P+,
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(2) f {z)  has the formal Dirichlet representation

the series being normally convergent, then f [x)  G V, and the an are the coef­

ficients of f  with respect to the free system {exp(—A„cc)}.

This theorem demonstrates that we have here a method of characterising func­

tions in the closed span of the exponentials when these constitute a free system. 

For the characterisation problems studied in this thesis, we find order-of- 

growth estimates for the coefficients of functions in the closed span of certain 

free systems, and prove results that are similar to those of Schwartz.

1.5 Schauder B ases

Let X  denote an infinite dimensional Banach space. A sequence {xn} in X  is

called a basic sequence if, for all x E span{xn\-, there exists a unique sequence 

of real or complex numbers {o:„} such that

n

^  ̂Oii/Xi/limn—Koo X

v = l
=  0 .

X

If in addition, span{xn} =  X,  then we say that {xn} is a Schauder basis 

for X.

All the important function spaces that we study are infinite dimensional 

and we will not have occasion to refer to other type of bases, so the word 

Schauder will sometimes be omitted.
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We introduce a few notations.

=  [xi , . . . ,  Xn-i,Xn+i, ...] is the closed linear manifold generated by the 

sequence X i , , Xn-i, , ----

P^n) — [ ^ I j  '  • • 3 ^ n ]  —  f  3 ^ 3  • • • ) >

P^ )   ; 3ZT1+2 3 • • •]------- -- f 3 3̂ ' • '))

^(n) =  {a; G P(n) : ||a;|| =  1} (n =  1, 2, . . . ) ,

(j(") =  {x E : ||cc|| =  1} (n =  1,2, . . . ) .

The last two notations denote the unit spheres in the respective sub-manifolds.

The following is part of Theorem 7.1 in (Singer [23]). We shall make re­

peated use of it.

T h eo rem  1.5.1 Let X  be an infinite dimensional Banach space and {ccn} O' 

total sequence in X  with ^  0, n =  1,2 , . . . .  Then the following statements 

are equivalent

(a) {x„} is a Schauder basis for X.

(b) There exists a constant C with 1 < (7 < oo such that

Y^OLiXi
i= l

n+m

i=l

for all integers m, n and all complex numbers CKi, . . .  Om+n- 

(cl)

inf dist T -dl-, X H  > 0,
K n < o o  V \\xJ\

and
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(c2)

inf dist (a(n) , > 0.n.k^oo \ /l<n,fc<oo

Let {An} be a sequence of points in the right half-plane, with ReXn oo 

as n —> oo. For the space V  ^  -̂ 2(0, 00), the functions form a basis

for V  if for each /  G V, there exist a unique sequence a i , û2, • • • of complex 

numbers such that

lim
n —►OO / ( ^ )  -  E  O:/ exp(-A ^æ )

i/=i
=  0 . ( 1 .6 )

Now if the A„ are real, the Müntz-Szâsz condition is equivalent to ^(1/A n) < 

00. In this case, Gurarii and Macaev [13] showed that a necessary and sufficient 

condition for (1.6) to hold is that (An+i/An) > c > 1, c being independent of 

n. Anderson [2] proved the case when the A„ are complex numbers.

T h eo rem  1.5.2 (A nderson , 1975) Suppose that {A„} is a sequence in 

with ReXn —̂ 00 as n 00 and X) PeA„(l +  |A„|^)“  ̂ < oc. Set V  C ^ 2(6, 00), 

V  ^  2̂ 2(0, 00). Then the system j  constitutes a Schauder basis for V

if, and only if

^  !.. -  A_
=  6 >  0 .¥  n Aj/ +  A,

To prove Theorem 1.5.2, Anderson uses some results of Shapiro and Shields 

concerning Bessel sequences and interpolation in (See §1.7 for the

definition of Bessel and interpolating sequences.) We shall have occasion to
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expand on this theorem when attacking bases problems in the closed subspaces 

studied in this thesis.

1.6 R eproducing K ernel

H  will continue to denote a Hilbert function space and the elements of H  will 

be defined on some set Q endowed with the notion of measure (for example, 

the Euclidean n-space or the set of complex numbers). If the value of /  for 

each y E: Q is a bounded (continuous) linear functional of / ,  then, by virtue 

of the Riesz representation theorem, there is a unique element ky such that

i f  ,K) = f(y)-

ky is called the reproducing element for the point y. The totality of reproducing 

elements for all the points in Q is called the reproducing kernel (r.k.) of H. 

Another way of viewing the r.k. is as the map

[ t , y )  —  ̂ky{t),

from Q X Q to the set of complex numbers. k(t ,y)  will sometimes be used 

in place of ky{t) and ky will be loosely referred to as the reproducing kernel. 

Much of the material in this section is contained in (Aronszajn [3], [4]) and 

(Shapiro [20], pp. 82-85). The following are some basic properties of the 

reproducing kernel.
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(a) k{x,y)  =  {ky, L )

(b) k{x,y)  = k{y,x)

(c) k{x,x)  > 0. Since k{x,x)  = {kx, k^), then k{x,x)  = 0 ==> kx = Q and ail 

the elements of H  vanish.

(d) \k{x,y)\ < k{x,xY^'^k{y,yY^^.  This follows from (a), (c) and Schwarz’s 

inequality.

(e) k is 'positive definite on Q, i.e., for every n > 1 and every set of points 

Xi , . . .  ,Xn 6 Q, the quadratic hermitian matrix

^i)|| J i  =  1J 2 , . . . ,  71 

is positive semi-definite, or more precisely, the quadratic hermitian form

n

^  y k{x{, Xj^XiXj ^  0
»ij=i

for ail complex numbers Ai, . . . ,A„ and ail x i , . . . , Xn  G Q. From (a), the 

determinant of ||A;(cci, Xj)|| is the Gramian of k x i , .. •, or what is the same 

thing, the hermitian form associated with this matrix equals || X)?=i ^ikxilYy 

which is clearly positive semi-definite.

If i f  is a Hilbert function space, then so is every closed subspace J  of if . J  

therefore has its own r.k., since the bounded evaluation functionals of i f  will 

be bounded for every subspace thereof. The following simple result is of vital 

importance in the application of the theory of reproducing kernels to closure 

problems.
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L em m a 1.6.1 Let H  be a Hilbert space with reproducing kernel and let H* 

be a closed subspace of H  with reproducing kernel k̂ .̂ Then the function f* 

whose value at w E Q is given by the inner product

f W  = ( / , % ) ,  / e - f f

is an element of H*, and f* is the orthogonal projection of f  on H*. Also, k ,̂ 

is the orthogonal projection of k^ on H*.

Proof: Let f  E H  and let fo be the orthogonal projection of /  on H*, i.e., 

fo G H* and /  — foLH*. Then, since k* E H*, we have ioi w E Q

f * { w )  =  i f , k l )  =  { f  -  f o , k l ) P  { f o  , K )  f o i ' w ) ,

proving the first assertion.

Ai z E  Q, the orthogonal projection of ky, on H* takes the value

{kyj, kl) =  {k* , ky,) = kl{w) = k*,{z).

This proves the second assertion. □

C oro llary  1 I f  H* and H** are complementary orthogonal subspaces of H  

with reproducing kernels k* and k** respectively, then

k{x,y)  = k*{x,y) +  k**{x,y).

A useful consequence of the corollary is that if J  is a subspace of H, their 

reproducing kernels are related by the inequality k^{x,  x) < k^{x,  x). In order



Preliminaries 25

to compute the orthogonal projection of H  on H* by the formula 

f*{w) = ( / ,  it is not necessary that H  possess a reproducing kernel, but 

that H* does. This is important in applications where for example, H  may 

be ^ 2(0, 00), which has no r.k., as any talk of bounded evaluation functionals 

for classes of functions is meaningless. Our investigations in ^ 2(0, 00) will not 

however, be using the theory of reproducing kernels, but work in all the other 

Hilbert function spaces will draw on the theory.

1.7 B essel and Interpolating Sequences

A sequence of functions {/n} in a Hilbert function H  is called a Bessel sequence 

with bound M  if
0 0

n = l

for all f  ^  H.

Let be an n X n matrix { f i , f j)  ( i , j  = 1 ,2 ,...  ,n ) and a an n-tuple

CL — (# 1 ; • • • ) ^ n ) "

Let A be the inner product matrix [ f i , f j)  { i,j  = 1 ,2 ,...) . Then the matrix A  

is said to be bounded below by m if ||a|| < m||A„a|| for all n-tuples a, and all 

n. Here the norms are the 2̂-norm, where I2 is the space of all complex number 

sequences that are square-summable. The following theorem is given in ([21], 

p. 525). We provide the proof here because this is what we will need later.
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T h e o rem  1.7.1 The sequence { f n }  is a Bessel sequence with bound M  if and 

only i f  the matrix A  is a hounded operator on I2 with hound M.

Proof: Suppose the following statements hold: { f n }  is a Bessel sequence, {c„} 

is in I2, and /  =  c i/i +  • • • +  Cpfp for a fixed p. Then from the hypotheses,

<="(/ > /" )
n —1

< E W ^ E l ( / . / n ) r
n = l n = l

< M i i / i r E K i ' -
71=1

Thus,

71=1

On the other hand, \\f\\^ =  ( / , / )  = Ef,j=i CiCj{fi, f j) ,  and so

’ fj)
i,j=l n = l

giving the boundedness of the matrix A.

To prove the converse, suppose that A be a bounded operator with bound 

M  and let {e^} be a complete orthonormal sequence in H. First, we show 

that there is a bounded operator T  : H  H, such that Tcn = fn- Then we 

establish the Bessel property.

Let fi = and let T  be the infinite matrix (6nt)- Then T*T  =  A,

and so ||T||^ =  ||A|| =  M, (where T* is the conjugate transform of T). Also, 

TCn = fn-
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Now, the Bessel property. Let /  6 77 be given. Then ( / ,  /„) =  ( / ,  Te„) =  

( T V . e„), and so E  | ( / , /„ )p  =  ||T*/||" <  M ||/ | |^  □

The sequence of points {zn} in A is called an interpolating sequence if, given 

an arbitrary bounded sequence of complex numbers there is a bounded

analytic function /  such that

/(■2̂ n) — — Ij 2, . . .).

As is well-known, (see [21], p. 514) the set of points {zn} in A is the set of 

zeros of an /  G 77^(A) ( /  ^  0) precisely when ^ (1  — \zn\) < oo.

T h e o rem  1.7.2 (C arleson) A necessary and sufficient condition for {zn} to 

he an interpolating sequence is that there exist a positive 6 such that

n Zk Zj
1 Zj Zk

L em m a 1.7.1 Suppose that the sequence {zn} is in A and satisfies condi­

tion (1-7). Then there exists a constant M  such that

E  -  Iztf) < Mllsir
k=l

for all g G 77^(A).

Let r̂ nn — \^m •2'n|/|f ^m^n\ S'Hd

-Pn(A) — I I
m^n



Preliminaries 28

Hayman [14] showed that fh ( l)  > ^ > 0 (i.e., condition (1.7)) is necessary for 

{zn} to be an interpolating sequence and that f^(A) > 6̂ > 0 for some A < 1 

is sufficient. The necessity and sufficiency of (1.7) was settled by Carleson [6]; 

see also Newman [17], and Shapiro and Shields [21] (where we refer the reader 

for the proofs of the theorem and the lemma. Theorem 1.7.2 is Theorem 1, p. 

517, and Lemma 1.7.1 is the first part of Lemma 1, p. 519).

1.8 P arseval’s Identity

The following theorem establishes an isometry between the L 2 functions. The 

proof can be found in Titchmarsh ([25], pp. 70-76).

T h eo rem  1.8.1 Let f{x )  he a function in ^ 2(0, 00), and let

Fc{x,a) = ^ ^  f{y )  cos xydy.

Then, as a ^  00, F c { x , a )  converges in the mean over (0, 00) to a  function 

F c { x )  0/ 1 2̂(0, 00); and reciprocally

f c { x ,  a) = ] j~ ( ^  Fc{y) cos xydy

converges to f{x) . We have, almost everywhere.

and
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Moreover,
p o o  POO

/ |/(æ)| d x =  \Fc{x)\ dx.
Jo  Jo

It is this last equality that we refer to as ParsevaVs identity. The analogue 

of Theorem 1.8.1 for sine transforms holds, with cos xy  replaced by sinxy  and 

sin æy replaced by 1 — cosxy.

1.9 P aley-W iener Isom etry

T h eo rem  1.9.1 ( P aley  and  W iener) A complex-valued function f  in the 

right half-plane belongs to the class H^[P'^) if  and only i f  f  has the form

/ ( ^ )  =  /  f { t )e x p { -w t)d t  (1.8)
y  Ztt J o

for some unique f  m ^ 2(0, oo).

T h eo rem  1.9.2 I f  f  is in H ‘̂ {P^), then the function

^  ( 5 )
is in ff^(A).

Theorem 1.9.2 follows from the fact that the fractional linear transformation 

(1 T z ) /( l  — z) maps the disc conformally onto the right half-plane. For more 

details on Theorems 1.9.1 and 1.9.2, (see Hoffman[15], pp. 103-106 and pp. 

127-129). Moreover, it is a consequence of Parseval’s identity that, when (1.8)
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holds, we have

||/||iî2 (p + ) =  \ / ^ | | / | | l2(0,Oo)'

This equality is sometimes called the Paley-Wiener isometry, notwithstanding 

the incidental factor of



C hapter 2

C losure and C om pleteness in

^ 2 ( 0 , 0 0

2.1 Introduction

^ 2(0, 00) is the Hilbert space of complex measurable functions f ( x )  in the 

interval 0 < æ < 00 such that

r°°
L2 = d x < o o .

A metric d{., .) in i/2(0, 00) is defined by

3 A) =  ll/i -  3

for / i , /2 C -̂ 2(0, oc), and an inner product (., .) is defined by

/•oo -----------

i l l  3 A )  =  /  f i { x ) f 2 { x ) d x .Jo

31
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In this chapter, we study the closure and completeness in the 2-norm of 

the sequences

{V^n(aj)} =  ^2x(Jiez„/7r)^^^(x^ +  2:^)"^}

and

Wn(æ)} = \2\Zr,\{ReZr,l'Kff'^[x'^ +  ^n)"^} ’

These are unit vectors (functions) in ^ 2(0, oc), since for ReZn > 0 ,n  =  l ,2 , . . . ,

2 \ 1/2

dx I
1

I r
1

a;2 +  z 2 L2 \ J o +  z 2

dx 1/2

1 1/2

7T I Zji Zfi

0 \  4 -

1/2

dx

2|z„| \ReZn
7T 1/2

and

X
1

X
+  z 2 L2 \ J o X^ +  zJ

2 \  1/2

dx 1

x^dx 1/2

/o (a;2 +  22)(æ2 +  2:^2)

= i (2; '  -  z : ) - '

2
1 /  7T

1/2

0̂ \̂ x2 +  Z„  ̂ CC2 +  z2
1 /2

dx

2 \ReZr
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The closure and completeness of the sequences {x{x^ +  and

{[x^ +  were first considered by O. Szasz. In [24], Szasz showed that the

above sequences are closed in -^2(0, 00) if and only if X) Rezk{l +  =  00.

In §§2.2 and 2.3, we reprove Szasz’s Theorem for the normalised sequences 

{'-Pn{^)} and {V̂ nĈ c)}. Suppose now that the closed span $  of does

not contain all L 2 functions. §2.4 is concerned with describing some properties 

of functions in $  when the Müntz-Szâsz condition is satisfied, i.e., when the 

inequality ^  < 00 holds. In §2.5, we provide the necessary

and sufficient condition in order that will constitute a Schauder basis

for $. In fact, with the help of Parseval’s identity, our problem is almost solved 

by Theorem 1.5.2.

2.2 C losure and C om pleteness o f th e  sequence

{ ^ n { x ) }  in L2 (0 ,oo)

T h e o rem  2.2.1 (Szasz) Let {2̂ } be a sequence of distinct complex numbers 

in , ReZn > 0. The sequence

= {2x{ReZn/'n:y^^{x^ +  2̂ )“^} (n =  1, 2 ,.. .)

is closed m 2,2(0, 00) if, and only if

^  Rezk
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To prove this, we will need the following lemmata.

L em m a 2.2.1 Let {zk}, k = be any sequence of complex numbers.

Then the determinant

{RezjRezkY^'^
Zj +  Zk j,k=\

has value

n Rezk n n - %)(̂  - %)-
k=l 3,k—\ j>fc>l

Proof: The determinant

is just

{Rezi RezzY/^

(Rez2 ReziŸ^  ̂ 1
Z2+-21 2

(ReznReziY^  ̂ (ReznRez2)̂ ^̂
Zn-\-Zi Zn-\-Z2

I J  Rezj,
j/=i

Z l  + Z l  Z i  + Z 2

22+̂ 1 Z2+Z2

(Rezi Rezn.y/  ̂
Zl -\-Zn

{Rez2 ReznY!^
Z 2 -\-Z n .

Z \ + Z r

Z2-\-Zn

Zn-\-Zi Zn-\-Z2 Zn-̂ Zn

By Cauchy’s Lemma ([7], p. 195), with a{ = Z{, bj = i^j = 1 , . . .  ,n , the
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above determinant is given by

i,j=l j>»>l

This proves Lemma 2.2.1. □

A useful consequence of the lemma is the following:

C oro llary  2 For n < m, where n and m  are arbitrary integers, the ratio of 

the Gramians

{RezjRezkY^^{zj +
Â  —^Tn,n

j,k=l
[{RezjRezky/^[zj +  Zk) 

is given by

, _ i  fr

Proof: Consider the numerator Num{Am,n) of Am,n^ From Lemma 2.2.1,

(2 .1)

Num{Am,n) = {RezjRezkY^^{zj +  z&) ^
m
j,k=l

X

X

n Rezj n n - %)
j=l j,k=l j>k>l

n  Rezi
j=l J=1

n  ^k)i^n ^t) J J  {^j ^n){^j ~  ^n)
n>k j>n

j>k>l;j,k^n

Rearrangement with emphasis on and Zn gives
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JV«m(A„,„) =  +  J I  {zj + z i Y ^
j = l  j , k = l ; j , k ^ n

mX n (zn+%)"'(%
k= \- ,k^n

^  %% (■2'n ^ k'){^n  ^k') %% { ^ j  ^ n )
n > k  j > n

X n

U]Li ReZj -  (z„ -  Zk)[z;i -  %)
(^ n  +  ^ n )  fc=l;fc^n ^ k )

m mX n k+%)"' n
j , k = l ] j , k ^ n  j > k > \ \ j , k ^ n

The denominator of (2.1) reduces to

n Rezj n n
j = l ; j > ^ n  j , k = \ \ j , k ^ n  j f> A :> l; j ,A :^ n

and the corollary follows immediately. □

L em m a 2.2.2 Let zi, zg, zg, . . .  he a sequence in ^  z  ̂ for v ^  k. I f

{z„} has a limit point in , then the sequence

f  2x{ReZnl'Kyf‘̂ 
+  zt

is complete in 1 2̂(0, oo).

Proof: Since normalisation does not alter the closed span of {c^n} in 2/2(0; oo), 

it is enough to show that the sequence {x{x^ -\r is complete in ^ 2(0, 00);

that is, if g{x) G ^ 2(0, 00) is such that

Jo x^ 4- zj
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then g{x) vanishes almost everywhere. Define the function

xg{x)
'■w-i dx

x^ +

analytic in (actually, F  E P^(P"""), although we do not use this fact). Now 

suppose that F[zn) = 0 for all n, and {zn} has a limit point inside P+. Then 

F{z) = 0. In particular, for z real and positive,

f oo fOO
F{z) = xg{x)exp{—{x -\-z )t} dtdx

■/ 0 0

f O O

= / exp(—z^t)G{t) dt = Oj
Jo

where
fOO

G{t) = / xg{x) exp{—x^t) dx.
Jo

Let z^ =  X .  Then /  e~^^G(t)dt =  0 for x G (0, oo). Since the inverse Laplace 

transform is an isometry, we obtain G{t) = 0. Now set x^ = u. Then 

J  g{y/u)e~'^^du =  0 for t G (0, oo). By an earlier argument, g{x) = 0 for 

X  G (0, oo). □

It is known that closure and completeness are equivalent concepts in 7/2(0, cxd). 

Hence under the assumption of Lemma 2.2.2, given each e > 0 and each 

/  G 7/2(0, oo), there exists an integer n  and real or complex numbers {a^^}, 

V = 1 , . . . ,  n such that

£ / ( z )  -  Ë dx < e. (2.2)
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L em m a 2.2.3 Let zq he an arbitrary point in , and (Çq the corresponding 

kernel. The minimum distance, dm, in ^ 2(0, 00), from (f>o{x) to the closed 

suhspace generated by the functions (pi{x),. . .  ,(pm{x) is given by the Blaschke 

product

(2.3)— n
k—1 Zk +  Zq

Proof:

dm — niin —̂  
bk

x{ReZnY^^ ^  bkx{RezkY^^

2 E
+ 0̂ k=i

akx{RezkY^^

x^ +  zî L2

&=o L2

with Oq = 1 and the a* chosen to minimise dm- Thus,

E=  i r
7T J o  

4
= -  È  f7T Jo

akx{RezkY^^
fc=o x^ +  zl

dx

j,k=0
4

°° ajak{RezjRezkY^^^^ dx
(x2 +  z]){x^ +

4  /•c

= -  ajâü{RezjRezkY^^
x^ dx

j,k=0 + Zk^)

„ A  ajOkiRezjRezkY^^

k o  k  +  %) '

But from Gram’s Lemma ([9], Theorem 8.7.4), the minimum of this bilinear

quadratic hermitian form is given by

{ReZjReZkfl'^{zj +

[{ReZjReZkfl^Zj +  Zk) '

Hence from the corollary of Lemma 2.2.1,

,2 ^  g f l  f r  ( % - % ) ( % - % )
1 2 ; ^  (zo+  %)(% +  %*)
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n
fc=l

~  Zq

Zk +  Zq

which is (2.3). □

P roof of Theorem  2.2.1: N ecessity

A necessary condition for to be closed in ^ 2(0, 00) is that

lim f J
fc=l

Zk — Zq

Zk +  Zq
= 0;

that is, the function

'T  Z q

can be approximated by (̂ 1(2: ) , . . . ,  in the sense of (2.2). Now,

lim f i Zk  —  Z q

Zk  +  Zq

Zk  — Z q

Zk +  Zq

^  A ŒezkRezQ\

Since \zk +  zoP — |% — Zo|̂  =  iReZkRezo, we have

(2.4)

\ Zk Z q

Hence

^  f  ^RezkRezQ\

k = l

(  ^4 :R ezkR ezQ \

I.e.

^  ^RezkRezQ
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or.

^  Hezk

Now, the above equality holds for any choice of zq E f  in particular, for 

2o =  X > 0, we have

E Hezk
oo.

jÈi +  x f  +  Im z^

But \zk\^ +  < {Rezk 4- x Ÿ  +  Irnzl < 2 (|zk|^ +  x^). Thus,

^  Rezk
S s F î ï ï - ” '

Since x is at our disposal, there is no loss of generality in putting x =  1. 

W hat we have just proved then amounts to the following: Condition (2.4) is 

equivalent to

^  ReZk

S î T w ' ” '
and so this condition is necessary for completeness.

P roof of Theorem  2.2.1: Sufficiency

Suppose now that Rezk{l +  \zk\^)~^ = oo, and hence (2.4) holds for all 

z = X > Oj and x ^  Zk for all k; that is, (2.4) holds for z = xq ^  Zk for all k, 

and the function

2x(xo/7r)^/2
=  x ^ + x r

is in the closed span of the sequence Now, for g E i^2(0, oo) such that

yoo ________
/ ^(x)(/?„(x)dx =  0 for n =  l , 2 , . . . ,

Jo
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the continuity of the inner product yields

fOO ____
/ g(x)(p(x)dx = 0 for n =  l , 2 , ----

Jo

Thus the analytic function

"■w-i' X  ̂+

vanishes for all z = xq ^  Zk for any k. But such z have a point of accumulation 

in P"*" and F{z) = 0. As in Lemma 2.2.2, g = 0 and we obtain the completeness 

of {(^n}' In this case, if $  denotes the closure of the span of {(pn[x)}, then 

$  =  2̂ 2(0, 00).

2.3 C losure and C om pleteness o f in

1 /2 (0 , 0 0 )

We subject the sequence {'^^(cc)} =  |2|2:„|(Pe2:„/7r)^/^(æ^ + z^)"^ j  

{ReZn > 0) to the same treatment as we did {<pn} in §2.2. To prove Lemma 

2.2.2 with {V'nĈ c}} in place of {^n(a^}}, we prove that the “un-normalised” 

sequence {{x^ +  is complete in 2/2(0,00). The proof proceeds in the

same manner as that of Lemma 2.2.2 with F(z)  replaced by the function 

f  g(x)(x^-\-z^)~^dx and G(t) by f  g(x)e~^^^dx. For the ipn equivalent of Lemma 

2.2.3, we consider again the minimum of

2 (  r  ^  a^\zt\{Rez^f/^ \
‘̂  =  ; ^ l y o  £  x^ + z l  " " j
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Now, for Rezj > 0, Rez^ > 0,

rc
cijâJ^lzjllzkl(RezjRezk)^^^

■ I  1 * '0

dx
{x^ +  z^){x^ +  Zk^)

_  4 ^  ajak\zjZk\{RezjRezk)^^^ f°° f  1

^ j,k=i Zk  ̂ -  Z- /: + zj x  ̂+
dx

=  2 Ej,A:=l
ajUk I ZjZjb I (iîezjiîezfc

ZkZj{Zj ^  Zk)

As before, the minimum of the hermitian form above is given by the ratio of 

the Gramians

\zjZk\{ReZjReZkyf' {̂zkZ~j{zj +
\ \ z jZk\{ReZjReZkyf^{zkZj {z j  + Zk)) yj^k=l:j,k^n 

The numerator of this ratio is the determinant

\zi Z2 \ {R e z iR ez 2 y ^ ^  
zi^(zi +I2)

\z2Z1 KRezzReziY^  ̂ 1
Z2̂ (Z2 +^) 2

\ẑ Zm\{ReziRezmŶ ^

\z2Zm\{ReZ2ReZnY 
■*2 ̂ m(z2 +‘Zm)

Izrngj | | ( Bezg ) ^̂
ZmZr(Zm+zT) Zm (̂Zm+ )̂

This reduces to

(l-Zil • • • l-̂ mDd-̂ il • • • \zm\) \ { R e z j R e z k f l ' ^ { z j  + Zk) ^

(•2'1 ' ' ' ZjTfi)(̂ Zi • • ’ Zjfi)

which is the numerator of the Gramian ratio in (2.1). Hence

<̂ = n
k=l\k^n

Zk -  Zr

Zk T ■2’t
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and we can apply exactly the same arguments as in §2.2 to conclude that the

system {V'n} is closed in ^ 2(0, oc) if and only if ^  =  00.

In this case, if ^  denotes the closure of the span of the sequence { ' i p n } ,  then

^  =  1 2̂(0, oc),

2.4 A pproxim ation  o f functions by sum s o f

{ V n { x ) }  and {il>n{x)}

A Characterisation of $

For the remainder of the chapter we assume that the Müntz-Szâsz condition 

holds, i.e., Y) +  \zk\^)~^ < 00 and try to say something about the

subspaces of ^ 2(0, 00) which $  and Ÿ now represent. Now, if the Müntz-Szâsz 

condition holds, then {<pu\ is not complete in i^2(0, oc). From Lemmata 2.2.2 

and 2.2.3 and the proof of Theorem 2.2.1, for an arbitrary zq G P"*", we have 

YjRezk{zl +  \zk\^)~^ < oc, or what is the same thing,

Zk ~  Zq
lim Yl771—+00fc=l Zk + Zq

Thus, ipo does not belong to the subspace generated by the remaining functions. 

The system is therefore free, and so we can find a sequence of complex numbers 

Ui, U2, • • • such that each /  G $  has the formal representation

, ,  , 2 ~  a^x(Rez„y/^
 c
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This representation means that for every e > 0, there exists an integer m  and 

a sequence aim, • • • ? o,mm such that

2 ^  anmx(ReZny^^
<

L2

and anm otn as m —> 00. This does not, of itself, imply that the series 

tends to any function in ^ 2(0, 00).

We will concern ourselves now with obtaining some order-of-growth estimates 

for I Uni under special conditions on the and from this, we will deduce that 

is the Laplace sine transform of a series which converges uniformly 

in the right half-plane to an analytic function.

L em m a 2.4.1 Let {zn} be a sequence in satisfying \zn+i \ — \zn\ > 6 > 0 

for all n, and suppose that +  \^n\^)~^ < 00, |a rg 2„| < A < tt/2

for all n, ReZn —>■ 00 as n —̂ oc. Then for each / (x )  E $  with the formal 

representation f{ x )  ~  X) we have

I a n  I — O eReZr as n 00

for all £ > 0.

Since /  E then for arbitrarily small e > 0 and for some constants aim, • • •, (^mm, 

we have for sufficiently large m, || ^kmTk ~  f\\ < E Therefore 

WYfk^iO^kmTkW < ll/ll + 6  < (1+ <̂ )II/II, where is an arbitrarily small number. 

Thus,

(1 +  &) ^ V ^kmTk 
k=l L2
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2 ^  akmx{Rezky/^

2

A

2

anm^{ReZnŸl'^ _
/̂ 2 _|_ y2 * ^^ ^  t=l;A:?6n a;2 +  z2

La
{ReZr^^l'^x _  g  CkTnx{RezkYl'^

+ z; a;2 +  z?
L a

k=l]k^n

with — hkm/cLnm — —(^km/cLnm- Slncc the above norm is at least the distance 

given in equation (2.3), Lemma 2.2.3 and the hypothesis that the Müntz-Szâsz 

condition is satisfied jointly imply that

(1 +  f) L g  —̂  l^nm n
k=l;^n

Zk — Zj

Thus,

k™i<(i+5)ii/iiL, n
fc=l;^n

^k + Zj

Z k  T  Z j i

Z k  -  Z j

From (1.2) and (1.3), Onrn ^  as m oo, and since 6 is arbitrarily small, 

we have

la«l <n | \\J \\L2 ^nPn = L a  n
k=l]k:̂ Tl

Zk + Zy
Z k  ~  Z j

(2.5)

Now, let r denote a rational function which is a finite linear combination of the 

ipji, and R  the set of all such linear combinations. From (2.5), |an| < Ikll-^n- 

Thus,

M l2
=  P n .

Since R  = ^ ,  the coefficients can therefore be considered as bounded linear 

functionals on the closed subspace of L2 spanned by the functions ^„(æ), n =  

1 ,2 ,3 ,.. ..
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P roof of Lem m a 2.4.1: We employ a technique by Gaier ([12], p. 252) to 

show that logP„ =  o{ReZn), i.e., that

P^ — 0  as n —> 00

for all E > 0, and the result will follow from (2.5).

Write Pn = III 112113, where IIi contains those factors for which \zk\ < \zn\, 

II2 those with \zn\ < \zk\ < 2|z^|, and I I 3  those with |z&| > 2\zn\.

For III we have, by virtue of the separation condition |zA;+i| — \zk\ > ^ > 0,

ZrHi = n
\zk\<\zn\

< n
\zk\<\zn\

< n
\̂ k\<\Zn\

Izjkl > (n — k)9. Thus,

Zk -  z,

\Zn\ d" \zk\ 
\zk Zn\

2|z.|
IZn ZkI

ni < n
hKIZnI

( 2 iz » i r '
(n -

V « J [("-!)!]'
Stirling’s theorem (Titchmarsh [26], p. 58) yields ri^/n\ < e" for n = 1 ,2 ,....  

This in turn yields

1 ^  /  e
[ ( n -  1)!] -  V n -  i j

Hence,

2W e  V " - ' '
(n — 1)^
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and

log III ^  ReZr  ̂ ^ l o g J ^  + A 
n — 1

(2 .6)
Rezr

where A  =  log(2e/0).

The Müntz-Szâsz condition is equivalent to Zn) < 00 for real if, as 

in the hypothesis, we assume that 00 as n 00, so that z„/n  —> 00

as n 00, and consequently (n — l)/z„  —>• 0. The restriction to real 

can be removed by assuming (in addition to the Müntz-Szâsz condition and 

the separation condition l-̂ n+il ~  \^n\ ^  ^) that the z^ lie in some angle with 

I argz| < A < 7t / 2 . Now, from |zn+i| —l-ẑnl > it follows that l^n+il > (n+ l)0 , 

and from I arg 2:1 < A < 7t / 2 , we get JîeZn > |2r„|cosA. Thus i7ez„(l-f |2:„|^)“  ̂ > 

(l^nl cos A)(2|z^|^)"^ =  cos\j2\zn\ for large n. Hence,

E
ReZfi \ 1

so that, since ReZn —> 00 as n ^  00, and therefore |z„| —> 00, we have that

2 ^ - 1 )  n— j— : > 0 as n ^  oc,
\̂ 'n\

Thus, from (2.6), we conclude that

log Hi =  o(i7ez„) as n ^  00, 

or what is the same thing.

Hi =  O as n ^  00 for all e > 0.
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For II2, assume that there are N  factors such that \zn\ < \zk\ < 2|zy 

(ri|z„|<|^k|<2|z„| =  1 if JV =  0.) Then, as above,

II2 =

<

<

<

<

n
h n  |< hfc |<2|Zti I

n
h n |< |- Z f c |< 2 |z n |

n
hn|<|'Zfc|̂ 2|zn|

V j  JV! 

[ 3 \ z n \ e y  
\ N e  '

Zk +  Zj

Z k  -  Z,

Zk I "h I Zji
\zk Zji\

3 Ur
\Z k  -  Zr

Thus,

log IÏ2 <  Rezr
N

ReZn
l o g ^  +  B = o{ReZn) as n —> 00,

since n N  = o{ReZn+N) = o{ReZn), hence N  =  o{ReZn) or ReZn/N  00. 

For I I 3 ,  we have

Hi = n
Nfc|>2|2n|

n
|2fcl>2|znl

Z k  +  Zy

Zk -  Zr

h - h - Z k  T Z j

Z k  -  Zr

n
/  ^RGZnRezk\

h k l > 2 | z n |

Thus,

2 log II3 =  I 1 +
|zfc|>2|zn.|

AReZnRezk
\ Z k -  Zr, |2
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< 4ReZn Rezk

\ k̂ I  > 2  | Z t i  I ■2'n

< IQReZn 53 Rezk

Nfc|>2|zn|

since \zk — Zn\ > \zk\ — \zn\ > |zt|/2 . Therefore

1 ^ < 8  n ^ o o

from the hypothesis that the Müntz-Szâsz condition holds. This gives

ÏÏ3 =  O j as n 00

for all e > 0.

Combining the above results, we obtain

Pn = O {eeReZr

and hence

a^l < Ilf IIP. =  O ^e^ReZn^ as n ^  00

for all £ > 0. □

We are now ready to prove

Theorem  2.4.1 Let Zi, Z2, 23 . . .  he a sequence in P+ such that

\zn+i \ — \zn\ > ^ > 0 for all n, and suppose that ^  PeZyi(l -f |2n|^)~^ < 00,

I arg Zn\ < \  < TTj2 for all n. Let F  he a function defined on (0, 00) with

limm—>00
F{x)  -  2 ^  anm{ReZjy,l'ïï'fl'^e -ZnX

n = l

=  0, a a . as m  ^  00.
La
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Then F  G 1,2(0, oo).

Furthermore, i f  Zn > 0 for all n, oo as n ^  oo, then, for some

/  G the series 2 ^  On^^n/vr exp(— converges locally uniformly in P+ to 

the function F[z), and f{x )  is the Laplace sine transform of F[z), restricted 

to the half-line æ > 0 .

Proof: From Lemma 2.4.1, if the Müntz-Szâsz condition is satisfied and 

\zn+i \ — |zn| >  ̂ > 0 for all n, then the coefficients in the formal represen­

tation of /  are such that |an[ =  O as n —> oo for all e > 0.

Let V  be the closed span of the sequence {e~^^}.  Since

F{x) -  2 ^  anm{ReZn/Trf^^e -ZnX
n = l

<  e

for large m  and for sufficiently small e, then F ^  V, thus F  G 1,2(0, oo).

If Zn is real, with —> oo as n —> oo, then, using the estimates for a„ and 

applying the root test to the series (for z G P^)

oo   oo

2 ^  an\lznl'KQyip{-Znz) = Y^  ex p (-z„2:),
n = l n = l

we obtain

lim sup hne
Zn—̂OO

IjZr '7re
l /a .

=  lim sup anJznI
Zn—*00

— lim sup e^‘̂ ”e2 ^n/^Tg ZnZ
Zn̂ OO

= I exp(c — z)|.

ijZr
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But I exp(£ — z)\ < 1 for all £ > 0 if, and only if Rez > 0, thus F[z) = 

2 Yj O'nsJ Zn I'K ^yip{—Znz) is analytic in P+. Restricting F{z) to the half-line 

cc > 6" > 0 and taking the Laplace sine transform yields

2 t°° j  r
—j=̂  / F{t) sin xt dt =  2 ^  anJznj'K /\/7r JQ do

oo

2i
d t

n = l +  z l

where the convergence of the above series to /  is such that

anmX{ZnlTv)^^^
/(%) -  2 5 ]

„ = 1  ® + 4

for arbitrarily small £ and for large m. □

<  £
L2

A C h arac te risa tio n  of Ÿ

The inequality (2.5) also holds for each /  G since for a given function 

V’n G the norm

V'n(æ) -  ^  ak'ipk{x)
k=l\k^n L2

is at least

n
k = l;k ^ n

Zk -  Zr
Zk  +

Thus, by a previous argument, the system {V’n} is free when the Müntz-Szâsz 

condition holds, hence each /  G Ÿ has the formal representation f [x )  ~  

Z) <̂ n'0n(̂ c). We now state the Ÿ analogue of Theorem 2.4.1.

T h eo rem  2.4.2 Let zi, Z2, zg ... 6e a sequence in such that 

|z„+i| — \zn\ > 6 > 0 for all n, and suppose '^ReZn{l +  \zn\^)~^ < oo,
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I arg I < A < 7t/2 for all n. Suppose that there is a function F  G 1^2(0, 00) 

with

lim
771—► 0 0

F{x)  -  2 x ;
n = l

I f  Zn > 0 for all n, Zn 00 as n 00, then, for some f  G ^  ^  ^ 2(0, 00)̂

— 0 ) ^nm  ̂ aS 771  ̂ OO.
L2

the series 2 ^  exp(— converges locally uniformly in to the

function F{z), and f [x)  is the Laplace cosine transform of F[z), restricted to 

the half-line æ > 0.

Proof: The proof is the same as that of Theorem 2.4.1, with sine replaced 

by cosine. □

2.5 A  B asis P roblem  for th e  closed  subspaces  

0  and ^

If a “lacunary trigonometric series”

a °°
— + ^^{cLk COS njct T bk sin njfct)

 ̂ k=i

is the Fourier series of a continuous function in the interval [0,27t], it is well- 

known (see, for example, Gurarh and Macaev [13]) that the series converges to 

this function uniformly. (The series is lacunary if {ti*} is a lacunary sequence, 

i.e., mik{rik+i/nk) > c > 1.) This is equivalent to saying that the lacunary 

sequence from the trigonometric system is a basic sequence in (7[0,1], say.
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(See §1.5 for the definition of a basic sequence.) The trigonometric system will 

then constitute a Schauder basis for (7[0,1] if it is total in this space.

The main purpose of this section is to obtain a necessary and sufficient 

condition for the sequences {y?n} and {V’n} to constitute a Schauder basis for 

their linear spans in Ü2(0,oc). The sequence forms a basis for $  if, for

each /  G there exists a unique sequence of complex numbers a i,a 2, . . .  ,an 

such that

f ( x )  - 2 ^ 2  =  0.limn—Koo
Liu=l

Note the difference between this condition and that of Theorem 2.4.1, where 

the coefficients may depend on n. We introduce some notations along the 

lines of §1.5, and then invoke Theorems 1.5.1 and 1.5.2.

$("•) — j ...] is the closure of the subspace generated by the

functions , . . . , l ? ^n+l ) • • • •

Pl(rij =  [ V ^ l j  '  • • 3 y ^ T l ]  ( ^  —  f  3 ^ 3  '  ) )

)  =  [ v ^ n + l  3 y ^ n + 2  3 • • ' ]  ( ^  —  f  3 ^ 3  '  -

^i(n) — { /  G Pi {t̂ ) : ||/|lx,2 — 1} (n =  1, 2 ,.. .) ,

=  { /  G : 11/ 11̂2 =  1} {n = l , 2 , . . .).

The main result here is the following:

T h e o rem  2.5.1 Suppose that the sequence {zn} is in P'^, ReZn —> oo as 

n  oo, and Y^ReZn{l +  |^n|^)~^ < oo. Let $  C ^ 2(0, 00) be the closed span 

in 2,2(0, 00) of the system {v^n(a )̂}, $  ^  ^ 2(0, 00). Then a necessary and
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sufficient condition for the system to be a Schauder basis for $  is that

■2'n (2.7)
•2'fc 4"

Consider just the Banach space properties of $. Since is total in the

space Theorem 1.5.1 gives rise to

T h e o rem  2.5.2 The following statements are equivalent

(a) {v^n} is a Schauder basis for  $.

(b) There exists a constant C\ with 1 < C\ < 00 such that 

ak{RezklirYl‘‘xEA:=l
< C i

L2

OLk^Rezkl'ïïY^'^x

fc=l + zl L2

for all integers m ,n  and all complex numbers 0=1, 0=2, ...,OLm+n- 

(cl)

inf dist (ifn , > 0,
l<n< oo  \ /

and

(cS)

inf dist > 0.
l<n,fc<oo

N ecessity

The necessity of condition (2.7) follows almost immediately, since we have 

already established that the minimum distance in the L2-norm, from the unit

vector ipn to the closed subspace is just

Zk -  Zrn
k=\\k^n Zk "h Zfi
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It is important always to bear in mind that $  ^  £ 2(0, 00). Thus,

inf dist ((pn, = TT
^  ^ k = l ; k ^ n

Zk -  Zr

Z k  +  >Zr

which gives (cl) above.

Sufficiency

We suppose (2.7) to be satisfied, prove (b) of Theorem 2.5.2, and then deduce 

the sufficiency in Theorem 2.5.1 from this. To be more precise, we show that 

there \s a ^  = (3(8) such that

m + n

^  ak(ReZk!'ïïf^'^x(x^ ^  zl)~'^ 
fc =  l

for every sequence of complex numbers {a^;} for which

Ÿ2 OLk(ReZk!'Kf^'^x(x^ 3- z l) ^
f c = l

=  1 .

La

Now since

poo
/  ^  ak(ReZkl'ïïf''^eyLp(-Zkt)^mxtdt =  'Y^ OLk(Rezkl'Kf''^x(x^-\-zl)~^,
^  f c = l  k= .\

Parseval’s identity gives

ak(Rezk!'Kf^'^x(x^ +  zl) ^
k = l

-  £ Y  ak(Rezkl7r)^^^exp(-Zkt)

La

2 \ 1/2

k = l

d tj

Y  Ckexp(-Zkt)
k = l L a
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where c* =  ak^Rezkj'KY^^.

This isometry enables the following restatement: We suppose (2.7) to be sat­

isfied and the sufficiency will follow if we can show that

m+n
E > m

L,

whenever

I ]  Cfce
k=l

—Zkt
=  1 .

L2

This is very close to the problem solved by Anderson in Theorem 1.5.2, except 

that y ,  the closure of the span of the exponentials is not the same as $ . 

However, it is easy to see that the isometry induced by Parseval’s identity will 

carry $  onto V . The concluding part of the proof of Theorem 2.5.1 is similar 

to that of Theorem 3.7.1, with the half-plane replacing the disc A and the 

Blaschke products

H  Zk -  Zr 

fc=l;A:̂ n

replacing the usual Blaschke products for the disc

n
k=\]k^n

Zk ~  Zr
1 ZfiZk

Since the full proof of Theorem 3.7.1 is given, we do not give this version of it 

here. □

In the above discussions, if we replace by $  by ^  and observe that

roo  ^   ̂ ^  ^
/  CLk{Rezkl'ïïY' ̂  e.yip[—Zkt) COS xt dt = ^

fc=l k=l

OLkZk{ReZkl'Ky/'^
-f zl
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then we will have no difficulty in concluding that condition (2.7) is necessary 

and sufficient for {'ipn} to be a basis for

As a closing remark on this chapter, we note that the two subspaces studied 

here are not identical, since $  contains those L2( —co,oc) functions vanishing 

at the origin while ^  does not.



C hapter 3

C losure and C om pleteness in 

th e  H ardy Space

3.1 Introduction

represents the Hilbert space of functions defined in §1.1 for p = 2. A  

metric d ( ., .) in this space is given by

( 1 /•2 ir  I . 2 \

^  Jo  j

and an inner product by

roo  __________

( A  ,  / 2 )  =  /  fi{e'‘ )Mei^)d0, f o r  £  i f = ( A ) .
Jo

In the first part of this chapter, we consider the closure and completeness

58
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of the sequence of normalised Cauchy kernels

in where {zi,Z2, . ..} is a set of complex numbers satisfying (for the

time being) |zi| < |z2| < - - - < 1.

The motivation comes again from the work of Szasz [24] where it is shown 

that the closed span of the system {(1 — Znz)~^}^ is dense in H^[A) if and only 

X)(l — \zn\) =  oo. We again prove Szasz’s Theorem (1.3.2) for the normalised 

kernels in §3.2 and §3.3. Following Akhieser, we give another proof in §3.4 

that sheds some light on the closed span of this system. In §3.5, a third proof 

is given, and this makes greater use of the fact that for (  running through A,

1 - Ç z

is the (normalised) reproducing kernel for H ‘̂ {A). This approach will prove 

useful in Chapter 4 dealing with weighted Dirichlet spaces and in which dis­

tances are otherwise not easy to compute.

In §3.6, we look at some properties of functions in the closed span of {kn{z)\ 

under the assumption that this system is not total. Then, using Bessel and 

interpolating sequences, we obtain in §3.7, a necessary and sufficient condition 

for to be a Schauder basis for the closed subspace of iJ^(A) which it

now generates. This subspace will be denoted by K. The basis problem here has 

important applications in Systems Control. Dudley Ward and Partington in
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[10] investigate rational decompositions of functions in a Hardy-Sobolev class. 

This is the space of analytic functions on some domain Q whose n-th derivative 

has bounded p-th integral means, 1 < p < oo. These functions are decomposed 

into atoms or molecules which are the Cauchy kernels. In the typical scenario, 

we have corrupted data from a transfer function and it is desired to model 

this data using rational wavelets, for example). When these wavelets

form a Schauder basis for their closed span, some very interesting results can 

be obtained on convergence rates (see their most recent paper [11] which deals 

with the decay of wavelet coefficients and error bounds for the approximation 

of functions in the Hardy-Sobolev class).

3.2 C om pleteness o f { k n { z ) }  in i7^(A)

Let /  be an function, {z^} a sequence of points in A, and let

5^(1 -  |z„|) =  oc. (3.1)
71=1

Suppose that

(^ n ,/)  =  /  ^n(e* )f{e^^)d6 =  0 for n =  1 ,2 ,-----
Jo

We need to show that /  =  0. Using the un-normalised system

{p„} =  {(1 — we suppose that ^ (1  — |z„|) =  oo, and that there is

some functional (., / )  ( /  G which vanishes for all n = 1 , 2 , . . . .
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Therefore f{zn) = { f , 9n) = {9n , f )  = 0 for all n, and hence the condition 

— \zn\) — oo implies that /  =  0, by the known properties of the zeros of 

an function, and so {9n\ is complete.

On the other hand, if
OO

^ ( 1  -  |z„|) < oo,
71— \

then there exists an function /  (indeed, a Blaschke product which is an 

H°° function), /  ^  0 in A whose zeros are Zi, Z2, . . . ,  so {9n\ is not complete.

3.3 D irect P roo f o f th e  C losure o f in

F 2 ( A )

L em m a 3.3.1 The minimum distance in the H^-norm, dm, from the function 

kn{z), n < m, to the closed subspace spanned by the functions

1 — Z{Z t=l

is given by the Blaschke product

dm — n
k=l]k:̂ n

Zk -  Zr
1 ZnZf̂

where we are assuming that the Zk are distinct.

(3.2)

Proof: We have.

kji ^  y a{k{
1 = 1
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= min
i/2

i/2

where a„ =  1 and the a{ are chosen to minimise dm- Thus,

1 ŷTT
27T 7o

-  <1.(1 -  |z ,ry / :
&  1 -  ZiZ

d 9

1 ^  _  (1  -  (1 -w  -

2’r io  (1 -  ( 1 -  zJe-")

I  (1 _  -  ^ e - " )
m  1

z  “iS-{(i -  iz^n(i -  ^
. 7 = 1  ^*lj=
m

E
*ij=i

aiôj{(l -  |% rxi -  |z ,f  )}1/^
Zi(zr'- -  zj)

The value of is determined by minimising this bilinear quadratic hermitian 

form. From Gram’s Lemma, we obtain

[{(1 -  i% n (i -  \ z i \ w \ z i { z T ^  -  ^ ) } - \
d t  = *ij=i

[{(1  -  IziT O l -  |z ,P )} i/2 {^ X ^ .r i _  5 J )}-1  

The numerator of di. is the determinant

771

(i-kP )
zi(z-'-IT)

{(i_izir)(i-iz,r)y/=
z2(z-'-ir)

{ ( l - k |2 ) g - |^ |2 ) } l / 2  { ( l - |z i |2 ) ( l - |^ |2 ) } l /2

Zi(Zi -̂Z2) 21 (̂ 1 -2m)

(i-h2p)
Z2(z-"-IF)

{(i-|z2p)q-|^p)}^/^
23(23 -̂Zra)

( d - | z ^ | 2 K l - | z i | 2 ) } l / 2  { d _ | z ^ | 2 ) d _ | z 3 | 2 ) } l / 2  ( l - ^ m P )
2 m ( 2 m  - Z l )

which reduces to

2 m  ( 2 m  2 2  ) 2 m  ( 2 m  2 m )
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"  1 - k j fn
k=l 3̂

 ̂—z\ Zy  ̂—Z2  ̂—Zm

1 1 1 
2̂ “ 1̂ 2̂ Zg —Zm

- 1  ----
-  ^iJ t,j=i j=i

Hence

d i  =

On putting =  Oi and — Zj =  bj in the proof of Lemma 2.2.1, one obtains

^  ^  1 -  |Z.|" 1 ^  ( ^ 7 '- ^ n * ) ( - ^  +  ^ )
^  i= iL „  -  ^ ) ( - ^ +Z

m (z„ Zj)(Zn Zj) 
=l;j^n ~  ^nZj){l ~  ZnZj)n
n

j= l;j>én

Zfi Zj

1 Zf Ẑj

which yields (3.2). □

Indeed, Lemma 3.3.1 holds for an arbitrary choice of z E A (in place of z„), z 

distinct from ẑ , z =  1 ,2 , . . . ,  m. Thus, for such z E A, we have

lim J J
z — z,-
1 -  Z Z j = n

So from
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it follows that

or that

4(1 — k l ) ^ ( l  — kjl) — oo,
J = 1

or what is the same thing, ^ (1  — \zn\) = oo. Thus, if {A;„} is closed, we do have 

lim^_oo dm — 0, and so X)(l — |^n|) =  oo is a necessary condition for closure.

On the other hand, if ^ (1  — \zn\) — oo, then we have limro-^oo =  0

for every choice of u; G A, i.e., (1 — wz)~^ G K. From §3.2, if we have a 

functional (., / )  with {kn , / )  =  0 for n =  1,2, . . . , then, by continuity of the 

inner product,

( —  ---- / )  = 0 for each in G  A.
V 1 - ü72’ V

Hence f {w)  = 0 for each in G  A, or /  =  0, which in turn implies that {A;„} is 

closed.

3.4 A k h ieser’s P roo f

The following theorem can be used to obtain condition (3.1) as well as con­

tribute slightly to the characterisation of functions in the closed span /C, of the 

Cauchy kernels, as we demonstrate below. The complete characterisation will 

be the object of §3.6.
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T h e o rem  3.4.1 (A khieser, 1953) Let {C }^i distinct complex numbers

in the exterior of A ,  |(’i| > 1. For any natural number n and any N  > n,

\ z ^ A n \ tj   ̂ /o
TBS' - s  KS-

and for  p > 0,

• 1 rm m —  /
■Aj ZTT J\z\=\

z ^  +  +  "  • +  AN

for arbitrary complex numbers A i , . . , ,  A^-

H i / I p )  (3-^) 
i = l  I s t i

Theorem 3.4.1 is a slight “adulteration” of a theorem of Akhieser ([1], p. 243). 

We can reformulate the identities in (3.3) as follows: For m =  0 ,1 , . . . ,

min max“i |z|=l
m-1

-  n  i ^ )  (3 5)i=l I Si Ii=l ^ -  (i

where O i,. . . ,  Om+n are arbitrary complex constants. The product on the right- 

hand side of (3.5) converges to zero as n ^  oo if and only if

£ ( 1  “  101 =  oo- (3.6)
1 = 1

Applying (3.5) and (3.6) we have

C o ro lla ry  3 (a) I f  (3.6) is satisfied then each algebraic polynomial is approx- 

imable with arbitrarily prescribed accuracy by linear combinations of 

I  i =  1, 2 ,.. . |  m the uniform norm on d A  = {z : |z| =  1}.

(b) I f  (3.6) is not satisfied then no algebraic polynomial is approximable by 

linear combinations of |  : z =  1 ,2 ,.. . |  m the uniform norm on dA.
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Similarly one derives Corollary 3 for 0 < p < oo from the identities in (3.4), 

Now let be an infinite sequence of distinct complex numbers in

A — {0}. On substituting =  1/'^  in Corollary 3, condition (3.6) is replaced 

by condition (3.1) and the functions l / ( z  — ^„) by kn(z), n = 1 ,2 , . . . .  (The 

factor (1 — was introduced purely to obtain in §3.3 as a “neat”

Blaschke product.) From Mergelyan’s Theorem ([18], p. 390 ), Corollary 3 

and the maximum principle for analytic functions, we obtain

C o ro lla ry  4 (a) I f  (3.1) is satisfied then each algebraic polynomial and thus 

each function in A(A) := { /  G (7(A), /  analytic in A} is approximable with 

arbitrarily prescribed accuracy by linear combinations of {kn :n  = 1,2, . ..}  

in the uniform norm on A  = {z : \z\ < 1}.

(b) I f  (3.1) is not satisfied then no algebraic polynomial is approximable by 

linear combinations of {kn : n = 1,2, . . .}  with the uniform norm on dA.

From the last corollary, similar results can be derived for other normed 

function spaces on the closed unit disc A.

Now we give a third proof using reproducing kernels. The usefulness of the 

proof will become apparent when we encounter weighted Dirichlet spaces in 

Chapter 4. In these spaces, the previous methods become largely redundant.
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3.5 R eproducing K ernel P roo f

This approach was inspired by Shapiro ([20], p. 97). He used it to obtain the 

condition for the completeness of the exponentials on a half-line (via the Paley- 

Wiener Theorem). We now obtain dm in Lemma 3.3.1 with the knowledge that

l - Ç z

is the normalised reproducing kernel for L7^(A).

Let JCm be the span of the functions {kzn}T i^Zn = For an arbitrary 

z G A, we wish to compute the minimum distance in the Lf^-norm, from 

/Cjg to /C771,.

Now, since Km C H ‘̂ {A), then Km is also a Hilbert space in possession of a 

reproducing kernel (r.k.). Call it This is none other than the orthogonal 

projection of k^[w) on Km (by Lemma 1.6.1). Also, the space of functions in 

H'^{A) orthogonal to all the elements of Km (the orthocomplement of Km) 

is a Hilbert space and has r.k. say. Thus,

€  = P» -  =  ( r l " ) , r-W) .

Consider the Blaschke product

Bm{w) = n  ^  ” fo r  w e  A.
1 -  z„w

For any fixed C G A, Bm{C)^miz)k({z) is a reproducing element for f  and lies 

in /C^. Furthermore it is identical with for (. To see this, suppose that
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f  e JC^. Then

[ f ( z ) , B^iC)B ,^{z)kdz)) = {b ^{C)B^{z) K z ) , kciz))

Therefore is identical with Bm{C)Bm{z)k({z) for all points in A, i.e.,

d l  =  ( r l " ) , r(-))

=  { B J X ) B A ^ ) k i ^ ) . BJT)B r.(z)kc(z))

=  |S m W ri|S 4 f)fc ,(O II^= .

Since

and =  1 on 5A, we obtain equation (3.2). Now, from §3.3, K  is dense

in H ‘̂ {A) if and only if linim-^oo =  0, or equivalently, ^ (1  — \zn\) = oo.

3.6 C haracterisation  o f K

If condition (3.1) fails to hold, the system {kn{z)} is not closed in if^(A ) and 

by the arguments of §3.3, the system is free. Hence we can associate with each 

g E JC, a formal expansion of the form

9{z) ~  ankn{z) (3.7)
7 1 = 0
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in which On is given by a„ =  Ln{g), G H^{A)* = H^{A). The can 

therefore be seen as the coefhcients in the series expansion of g in terms of 

the system {kn{z)}. We give some order-of-growth estimates for n =

1 , 2 , 3 , ,  as we did in §2.4 for the coefficients in the formal series expansion 

of functions in $.

L em m a 3.6.1 Let {zn} be a sequence of real and positive numbers in A  and 

set

Zfi+l ~  Zr
7n  = 1 ZnZn^i

We suppose that

(i)

^ ( 1  -  z„) < oo,
n = l

(ii)

inf7n > /o > 0.

Set K = span{kn{z)} C H^{A), K ^  if^(A). Then for each g ^  K with the 

formal representation

we have

l̂ nl = o I exp I Y ~ —  I I n oo

for all e > 0.
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Proof: Using the arguments in the proof of Lemma 2.4.1, we obtain the 1C 

equivalent of the inequality in (2.5); that is,

M  <  \ \ g \ \ Pn  =  I l l ' l l  n
k=l,k^n

The proof now reduces to showing that

1
Z k  -  Z r

(3.8)

° (r^) as n  oo.

(The condition that the Zn be real can be replaced by the condition that all 

the points Zn lie with increasing modulus along a ray, arg z =  6, say.)

Lemma 3.6.1 is the version for the unit disc A of Lemma 2.4.1. The function 

w =  {1 -\- z ) /{1 — z) maps A 1 — 1 conformally onto f +. If we set = 

(1 +  Zn)j{l — Zn), then the are real if and only if the are real and

, > _  1 +  ̂ n+l 1 +  -2̂ti _  ^{Zn+l ~  Zn)
^ 1 — Zn+l 1 — Zn (1 — Zn){l ~  Zn+l)

Now for Zn, real, (1 — Zn){l — Zn+i) < 1 — ZnZn+i, and so the condition

Z n + l — Zr

1 — ZnZn+1
> 8

implies that — An > 2^ which is the condition of Lemma 2.4.1. Also,

1 , 2 
< An <

1 — Z, 1 —  Z n

SO the condition ^ ( 1  — Zn) < oo corresponds to the condition X ) ( l / ‘̂ n) < oo. 

Moreover,

An — Afc _  (1 +  Zn)/(1 — Z n )  ~  (1 +  ^fc)/(l ~  Z k )

An +  Afc (1 +  Zn)/(1 — Z n )  +  ( l  +  ^:fc)/(l — Zfc)
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[1 Zn — Zk — ZkZn) — { l  ~\- Zk ~  Zn ~  ZkZn)
[ 1  Z n  —  Z k  —  Z k Z n )  —  { l  Z k  ~  Z n  ~  Z k Z n )

1 ZnZk

Thus the infinite Blaschke product for P'*",

n
k—\\k^n

corresponds, under the transformation A„ =  (1 +  Zn)/{1 — Zn), to the infinite 

Blaschke product for A, namely

nA:=l;A:̂ n
-2'n ^k
1 ZnZk

Since we have the estimate log Pn = o(A„) in P"'", we obtain the corresponding 

estimate

logPn = O

This completes the proof. □

1
as n —> oo.

T h eo rem  3.6.1 Let zi, Z2, . . .  he a sequence in the interval (0,1) with 

\zk+i — Z k \ / \ 1  — ZkZk- î\ > p > 0 for all k, and suppose that ^ (1  — Zk) < oo. 

For some fixed (  G A, t E (0, oo), and a  E [0,1), let T  : p2(0, oo) —  ̂ Da. be 

the Laguerre transform

^ { (1  exp ( - * ? / ( ! - ? ) ) }  =

Let 1C he the closed span of the system {A:n(z)} in H^(A).  Then for each 

g E 1C C H^{A),  1C ^  H ‘̂ [A), there exists a function f  E ^ 2(0, 00) such that

= 9{z).
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Furthermore, gi^z) is the Laguerre transform of the restriction to the half-line 

X > 8 > of a function h analytic in P'^, and of the form

^  “ n ( l  -  z i y / ^ e x p { - z „ z / { l  -  z „ ) )

~ h  1 -

Proof: That )C ^  follows from the inequality — Zk) < oo and the

arguments in §3.3. The separation condition \zk+\ — Zk\l\l — z&zt+i| > p > 0 

and Lemma 3.6.1 imply that |a„| = 0 (exp£(l — Zn)~^), where the are the 

coefficients in the formal series representation of g by the normalised Cauchy 

kernels, and correspond to the coefficients in the series representation of h 

above.

We prove that the function h{z) is analytic in P^  by showing that its series 

representation converges uniformly in P^.  Then we restrict h to the half-line 

æ >  ^ > 0 (call the resulting function / ) ,  and show that for a  =  0, the Laguerre 

transform of /  yields the function g E 1C.

As in the proof of Theorem 2.4.1, we employ a slight modification of the 

root test to the series

°° a n { l - z i y l ^ e x p { - X r i z )  °°

71=1 ^ 71=1
= ^  6nexp(-An^),

where =  Zn{l — Zn)  ̂ and bn = an{l — z^)/{l — Zn)  ̂ Since |u^| =  0 (ex p £ /(l 

Zn)), and Zn 1, Lemma 3.6.1 gives

lim sup
Ati—>00 A n —►OO
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= lim sup
An—►OO

= lim sup
A n —►OO

£

1/A.

exp

=  |exp(c — z ) \ .

But |exp(e — z)| < 1 for all c > 0 if, and only if Rez > 0.

Now, A restricted to the half-line æ > ^ > 0 yields the function

/(®) =  S
Ot.(l -  exp(-A „i)

n=l 1 — Zr
(3.9)

Setting a  =  0 and applying the Laguerre transform to the series in (3.9), we 

have

7 1 =  J

° n ( l  -

A  1 -n=l

g(z),

where the convergence of the above series to g is such that

jy=l ZryZ
<  £

for large n  and for sufficiently small £.□



Chapter 3: Closure and Completeness in H^[A)  74

3.7 B asis P roblem  for K

The main result in this section is the following:

T h eo rem  3.7.1 Suppose that {zn} is a sequence in A with |zyi|) < oo.

Let K he the closure of the span of the system {kn{z)}^,  K C JC ^

i ï ’̂ (A). A necessary and sufficient condition for {A:n(>z)}J° to he a Schauder 

hasis for K is that

—  ' Hk - Z n  (3.10)n
k=l,k:^n 1 ZjiZf̂

Note that for this particular theorem, we do not require the Zn to be real.

We introduce a few more notations along the lines of §1.5 with a view to 

invoking Theorem 1.5.1.

=  [All, Aj2, . . . ,  kn - i , kn+i,...] is the closed linear manifold of H^{A)  spanned 

by the functions k i , k2, . . . ,  kn -i, kn+i, .

P 2(n) — [ Îj • ' ' 3 kfi] {tL =  1,2,...),

= [^n+l, n̂+2, . . •] (n = 1, 2, . . .),

<̂ 2(n) =  { /  G P2(n) : ||/ | | =  1} (n =  1, 2, . . .),

4 ”  ̂ =  { /  G : ll/ll =  1} (n = 1 ,2,...) .

We can therefore restate Theorem 3.7.1 as

T h e o rem  3.7.2 The following statements are equivalent:

(a) {kn{z)}'^ is a Schauder hasis for K.
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fbj There exists a constant C2 with 1 < C2 < 00 such that

n Tn-\-n

^  aiki < € 2 ^ 2
1=1 t=i

for all positive integers m,n and all complex numbers a i, « 2} • • • 5 Qtm+n- 

(cl)

inf dist (k„ , >  0,
l<n<oo \ /

and (c2)

inf dist (o-2(n), > 0.
l<n,fc<oo \ /

P roof of Theorem  3.7.1

From Lemma 3.3.1, the minimum distance in the if^-norm from a unit vec­

tor kn for example, to the vector (function) space spanned by all the remaining 

vectors is just

= n
k = l ,k ^ n

Zk -  Zr
1 ZjiZ]̂

so the necessity immediately follows from (cl). Part (c2) is not relevant in this 

proof, since it is implied by (cl) in the spaces considered above.

To prove the sufficiency, we proceed as follows.

Define the function F  by

fc=i

The if^-norm of F  will not be altered by multiplying by the finite Blaschke

product
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Thus,

k=l t = l  J

This new function now belongs to the Hardy class of the exterior of the unit 

disc, but on replacing z by 1/z , and setting G{z) = ( l/z )Q (l/z ) , this is 

equivalent to considering the disc A rather than its exterior, so that

n  (3.11)fc=l ^kZ J

where 9jy are factors of modulus 1 required to make the infinite Blaschke prod­

ucts converge. Thus, ||i^||iî2 =  ||(?||^2. Now, write G{z) = Gi{z) +  ^ 2(2), 

where Gi{z) is the sum in (3.11) from A; =  1 to n and (?2(z) is the correspond­

ing sum from k = n +1 to m + n . Suppose that ||Gi(z)|| =  1. Then we will show 

that ||(7(z)|| > (3 for some j3 = P{6), assuming that the inequality in (3.10) 

holds; that is, we prove Theorem 3.7.1 by showing that (c) ==> (6) ==  ̂ (a) in 

Theorem 3.7.2. This method is due to Anderson (loc. cit.).

We now apply some results in the theory of interpolation by Shapiro and 

Shields (loc. cit.). Lemma 1.7.1 and the first part of the proof of Theorem 

1.7.2 give rise to the next theorem. We have replaced M{6) by M {6Y  for 

reasons which will soon be clear.

T h eo rem  3.7.3 Let {zn} satisfy condition (3.10). Then there is a constant 

M(6) such that
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(i) the inequality

I 9{zk) r  (1 -  W\^) <
k—\

holds for all g G H^{A), 

(ii) if

then

J=a

for any s and t.

First suppose that ^  where A is a constant to be chosen

later. Apply Theorem 3.7.3 (i) to the function G in (3.11) to obtain

m+n I oo

E 1 n
A=1 yu=l\u^k

Zk Zi,
1 — ZjyZk

Hence,
m+n

E  i% r <  M e m o i r ,
k=\

I.e.,

M { S ) 2 ’

or

(3.12)
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Now suppose that 1̂ *1̂  < Then ||G|| > ||G i|| — HG2II, and by

Theorem 3.7.3 (ii),

m +n

IIGaf <M(5)2 É  < A^M(S) .̂
k = n + l

From the hypothesis that ||(j i || =  1, we have

||G|| > 1 - A M ( S ) ,  (3.13)

But A  is at our disposal, so we can take the optimal value

A  = { M { 6 )^ 6 lM { 8 )) - \

So in each case, (3.12) or (3.13), we have

||G|| >/3(5) =  ( l  +  M (5 )V « ) - '.  

and the proof of Theorem 3.7.1 is complete. □



C hapter 4

C losure P roblem s in W eighted  

D irichlet Spaces

4.1 Introduction

Da is the space of functions /  analytic in A with norm ||/||^  — X] < oo,

for 0 < q: < 1. We shall continue to call these spaces of Dirichlet type Dirichlet 

spaces for economy of presentation. But in fact, for a  > 0, modern usage calls 

these spaces Bergman spaces rather than weighted Dirichlet spaces.

In §4.2, we employ the methods developed in the previous chapter to show thai 

a necessary (and sometimes sufhcient) condition for the sequence of kernels 

{in{a, z)}  — {(1 — to be closed in Da is that X)(l — |>2̂n|) =  oo. This

is evident for a  =  0, since Dq = or equivalently,

79
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^n(0, z) = 11(1 —^z)~^\\kn{z). For Zn are real and positive, we use some results 

of Shapiro and Shields to demonstrate that the necessary condition also is 

sufficient.

Let Ca denote the closed span of the system z)}. In §4.3, we provide

a characterisation of Ca that makes use of the Laguerre transform. Finally, we 

employ Theorem 1.7.1, Lemma 1.7.1, and a succession of isometries to provide 

a necessary and sufficient condition for the system {ln{oLj z)} to be a basis for 

Ca, assuming that the Zn lie in the unit interval and ^(1 — Zn) < oo.

4.2 C losure o f  z ) }  in D a

This section is concerned with providing a necessary condition for the closed 

span Ca of {in{oi, z)} to be dense in Da- Again, the crucial step in the proof 

is computing the minimum distance (with the Da topology) from an arbitrary 

function to the span Cm of the system {^1̂(0;, We employ the fact that

z) = [1 — (z)*"i is the reproducing kernel for Da-

L em m a 4.2.1 For an arbitrary z G A, the minimum distance dm in Da, from  

lz{oL,w) to the span Cm of the functions ■ A zm i^^'^)

i^Zni^j'^) — ^n{d,w), z ^  Zk for any k) satisfies the inequality

> (1 -  n  • (4.1)
n = l ^
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Since Cm is a closed subspace of then, from §1.6, Cm has a reproducing 

kernel, and this is the orthogonal projection of on Cm- By the same argu­

ment, the orthocomplement of Cm has reproducing kernel 

The concluding part of the proof is not quite as straightforward as in the 

case (corresponding to o: =  0). In that case, the reproducing kernel for

is just Bm{C)Bmiz)ic{z), where

m________

= n  r  («' G A),
n = l

for

( / ( z ) , =  { B ^ i C ) B ^ { z ) f { z ) , i^{z))

In the general case, we must use the fact that Ç for 0 < a  < 1. The 

additional factor (1 — arises from the fact that

( ____ !:____   1____ j  =  (1 -

The conclusion of the lemma is obtained by using the arguments on p. 68 with 

the appropriate norm.

Now, Ca. is dense in Da if lim^-^oo dm ~  0- Thus,

lim   n
m —>cx) (2  — |z |  ) J

Z — Zr

1
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Z — Zr

I(1 -  |z |2) l - “ ^

We use the same arguments as in Chapters 2 and 3, approximating first the 

kernels ^^(a, z), z ^  for a set of values z having a limit point in A. From

-  ( T T , ^  n  ( .  -  "  -  \ f %  = 0 ,

it follows that

or that
OO

4(1 -  \ z \ )  X l ( l  -  l^nl) =  OO, 
n = l

or what is the same thing,

OO

Z ) ( l  -  l^nl) =  OO. 
n = l

Thus the condition ^ (1  — \zn\) = oo, which is condition (3.1), is necessary for 

completeness.

Sufficiency

We use the following theorem ([22], p. 225) to illustrate that condition (3.1) 

is sometimes sufficient for {^„(a, 2)} to be closed in Da- This is particularly 

the case for real and positive.
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T h eo rem  4.2.1 (Shapiro  and  Shields, 1962) Let f  be analytic in the unit 

disc A , and let 0 < zi < Z2 ^  • be the real zeros of f  in A. I f

\f{z)\ < cexp (4 2)

for some a  < 1/2 and some c > 0, then

OO

^ ( 1  -  Zr , )  <  OO.
TL—1

The proof uses elementary results in Nevanlinna Theory to show that /  is of 

bounded characteristic relative to the disc |z — 1/2| < 1/2. One can replace 

a  < 1/2 in Theorem 4.2.1 by a  < 1, f {z)  by the function F{z) = F (l/2 - |-z /2 ), 

and the disc |z — 1/ 2 | < 1/2 by any region making a lower order of contact 

with the unit circle (e.g. a region enclosed by the two straight lines making 

an angle r  at d A  in Figure 4.1). If f ( z )  satisfies (4.2) for 0 < a  < 1, then it 

is a straightforward m atter to show that the function F{z) = F( l / 2  z/2)  is

of bounded Nevanlinna characteristic in \z\ < 1, i.e., loosely speaking, we may 

say that f [z )  has bounded characteristic in the disc |z — 1/2| < 1/2. If all 

the Zn are real and positive (or more generally lie in a Stolz angle at z =  1 as 

shown in Figure 4.1), then we have that

y ^ ( l  — Wn) < oo where F{wn) = 0.
n—1

But Wn =  1/2 +  Znj2 for Zn real, and so in this case.

^ ( 1  -  W n )  < oo ^ ( 1  -  Z n )  < OO.
n—1 n = l
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Figure 4.1: Manner in which the approach dA

Now

1 — U t

COS e (4.3)

if 1 — Un I < |1 — Zn| COS 6 for some 0 < 0 < t t /2, so if the zeros are not all 

real, then using (4.3) we can still conclude that — Unj) < oo, since

OO OO

53 (U ~  ^‘n.\) oo < V 53 Ufi|) ^  oo.
n=l n=l

Note that it is precisely here that we have used the fact the lie in a Stolz 

angle at z =  1. If the zeros approach z =  1 tangentially as shown in Figure 4.1, 

then the argument breaks down. Thus, it is also here that essential use is made 

of the fact that the Zn are real. The importance of the requirement that the 

z„ be real is that it may not be possible to find a function in Da. having 

zeros z i, Z2, . . .  if {z„} is any set of points in A. In this case, {.^n(z,a}} will 

not be complete in Da-, since completeness requires that we find a function
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/  G D* =  Da such that the vanishing inner products

/(<^j ^n) — ^)) — 0; n =  1, 2, , . .

imply that f ( z , a )  =  0 in A. To be more precise, consider the analytic func­

tions in A satisfying

^  (1 -  |2 |)f

where z E A, c is some constant, and 0 < /3 < 1. The class of functions satisfy­

ing (4.4) is identical with the class of Taylor series satisfying X) < oo,

for some suitable e > 0, i.e., those functions in D^. Now we state a theorem 

which asserts that functions in Da cannot vanish at infinitely many points in 

A, chosen arbitrarily.

T h eo rem  4.2.2 Let f  be analytic in A and satisfy condition (4-4)■ n(r) 

he the number of zeros of f  in the disc \z\ < r  (r <1) .  Then

n{r) = o ( z ^ — log —̂ 1 as r  ^  1. (4.5)
\1  — r 1 —r /

This is a minor adaptation of Theorem 5 in ([22], p. 225), where we refer

the reader for the proof. (We have replaced the constant k > 0 there by a

for 0 < a  < 1.) The relevance of this theorem for our consideration is that 

the estimate (4.5) is best possible. This shows that the Blaschke condition 

X](l — \zn\) < oo need not be satisfied for the zeros of a function satisfying 

(4.4). This again emphasises the need to take the to be real or, at least, to
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lie at a Stolz angle at z =  1. Note that (4.4) with any /? > 0 implies (4.2) for 

any a  > 0.

For the remainder of the chapter, we will assume that the z„ lie on the unit 

interval, and study the closed subspaces of Da that the system z)}

generates when the Blaschke condition X^(l — z„) < oo holds.

4.3 A study o f th e  closed subsets Ca

Coefficient estim ates for functions in Ca

Let {zfc} be a sequence of numbers in the interval (0,1). Suppose that Blaschke

condition holds. Then from the arguments in §4.2, ^„(a, z) ^ span{ijy[a^ z)}^ 

and so the system {^n(o:, z)} is free. Thus, each g ^  Ca has the formal 

expansion
OO

9{z) -  O'dnioL.z), (4.6)
n—1

where, as before, a„ is a linear functional of g. We employ the methods devel­

oped in the last chapter to show that the coefficients a„ in (4.6) are such that 

|on| =  (1 — , n =  1, 2,3 , . . .  for all e > 0.

Lem m a 4.3.1 Let zi, Z2 . . .  6 (0,1) satisfy

in f7„ =  inf ----—  > p > 0,
" 1 -  n̂-Zn+l
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and suppose that S ( l  — < oo. Let he the closed span in Da of the system  

{^„(a, z)}. Then for each g G Ca with the formal representation

OO

9(2) ~  Ë
r  (1

we have

H  (r^))
^  (1^ ) )  ' as n  — > 00

for all e > 0.

Proof: Since p G £«, then for arbitrarily small £ > 0 and for some constants 

h i m , . • . ,  h m m ,  we have for sufficiently large m, ||p(o', z) -  anm4 (a, z)|| <

e. Therefore || En=i z)\\ < ||^|| +  £ < (1 +  <^)|| |̂|, where 6 is an

arbitrarily small number. Thus,

^ k m

S  (1 - Dc
h^nm

(1 -  "(1 -  z k z y - “ Dc

  Clr» \1—a 53
^km

Dc(1 Z n Z Y  “  k = l \k i in  ^ k z )^

With C] f̂fi — h]c ĵYijOfiffi — ^ k m j ^ n m , '

The norm above is at least the distance from in{oL̂  z) to the closed span of 

the functions £i(ct, z ) , . . .  z),£n+i(oi, z ) , . . .  ,£m(o^, z). Lemma 4.2.1 and

the hypothesis that ^(1 — Zn) < 00 together imply that

( 1  +  <^) l | 5 ' | |  >  | O n m | ( l  -  I I
fc=l,A:7̂n

Zn ~ Zk
1 ZfiZk
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Thus,

k = l,kjf:Tl

From (1.2) and (1.3), Unm —̂ an as m  oo, and since 6 is arbitrarily small, 

we have that

kn |(l -  < \\g\\Pn,

where

P" = n
k=\,k^n

1 — ZnZk
Zn Zk

Note that we are only using the inequality (4.1) instead of the equality (3.2). 

The proof now reduces to showing that

as n  — > oo

which was the object of Lemma 3.6.1. □

C h a rac te r isa tio n  of Ca

The following theorem provides a characterisation of Ca and emphasises the 

fact that Ca is a rather tiny subspace of Da when ^ (1  — Zn) < oo. In fact, Ca 

does not even contain functions of the form (1 — when Zi ^ {zi, Z2, . .

the Zi being real and positive. The theorem is analogous to Theorem 3.6.1 of 

Chapter 3, where a  =  0.

T h e o rem  4.3.1 Let Zi,Z2,Z3 • • • be a sequence in (0,1) with \zn+i — 2n |/ |l  — 

ZnZn+i\ > S > 0 for n = 1,2, —  Suppose that ^ (1  — Zn) < oo. For some fixed
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C G A, t G (0, oo), and an cl in the interval [0, 1), let T  : Z,2(0, oo) — > Da, be 

the Laguerre transform

 ̂ (“ ^C/(l -  C))} =

Let Ca be the closed span in Da of the system 2:)}, Ca ^  Then for

each g G Cai there exists a function f  G i/2(0,oo) such that

Furthermore, g is the Laguerre transform of the restriction to the half-line 

X  > 6  > 0  of a function h analytic in and of the form

K ^ )  =  I Z  n  K =  Z r , l { l -  Z r f ) .

n = \  I-*-

Proof: That Ca i=- Da follows from the inequality ^ (1  — Zk) < 00 and the 

arguments in §4.2. The separation condition \zk+i — Zk\/\1 — ZkZk+i\ > ^ > 0 

and Lemma 4.3.1 imply that |an| =  (1 -  2:^)(^““ /̂^0 (expe(l — z„)“^), where 

the On are the coefficients in the formal series representation of g by kernels 

ln{cL,z), and correspond to the coefficients in the series representation of h 

above.

We prove that the function h(z) is analytic in P ^  by showing that its series 

representation converges uniformly in P"*". Then we restrict h to the half-line 

æ > 5 > 0 (call the resulting function / ) ,  and show that the Laguerre transform 

of /  yields the function g £ Ca-
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As before, we apply the root test to the power series

7 / \ GXp( —

■  5

=  ^  6nexp(-A „2:),
n = l

and show that the function h(z) is analytic for Rez > 0. Thus

\  - 1/A„
lim sup

An—►OO
= lim sup

An—,00
&n(l — Z n )  exp( —A„2)

=  lim sup
An—>00

< lim sup
An—►OO

= lim sup
An—►OO

1/A,

( 1  -  2 ; 2 ) ( i - = ) / 2 e i _ z n ( l  -
1/A,

1/A,

exp
An(l •̂ n)

— Z

= |exp(c — z ) | .

This proves that h(z) is analytic in P^,  since |exp(c — z)| < 1 if, and only if 

Rez > 0 for all e > 0.

Now, h restricted to the half-line æ > 6̂ > 0 yields the function

Ufi GXp̂

Applying the Laguerre transform to the series in (4.7), we have

= E {(1 - ( - 3 ^ )  }
-  V  °n

^  (1 -  

~  g (a ,a),

(4.7)
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where the convergence of the above series to g is such that

-  £ < e
Dcu=l ~

for large n  and for sufficiently small e, i.e., the convergence is in the appropriate 

Hilbert space norm. □

4.4 B asis P roblem  for C a

We will continue to assume that the Zn are real. Our objective in this section 

is to obtain a necessary and sufficient condition for {ln{oL  ̂z)}  to be a basis for 

Co. in the case when £« ^  Da-

T h eo rem  4.4.1 Suppose that 0 < < Z2 < - - < 1 and /et X) (1 ~ ^n) < oo.

Let Ca. he the closed linear manifold of Da generated by the system 2;)},

Ca C Da) Ca 7̂  Da- A necessary and sufjicient condition for the functions 

z)} to he a Schauder basis for Ca is that

II
fc=l,À:^n

Zk — Zr
1 ZfiZk

=  K, > 0. (4.8)

As before, we introduce some notations in anticipation of a reformulation of 

Theorem 1.5.1.

C^^ = - - - J ^n-i, -^n+i, • • •] is the closed linear manifold of Da spanned

by the functions , ^2, • • •, ^n -i, ^n+i, ----

P 3(n) — [-^1J • • • J ■̂ n] (n- =  1 , 2 , . . . ) ,
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= [4 +1, 4 +2, •. •] {n=  1,2 , . . . ) ,

0-3(n) = { f  ^  ^3(n) • ||/ || = 1 }  (n =  1, 2, . . .),

4 ”  ̂ = { f  ^  ^ 3"̂  : ll/ll =  1} {n = l ,2 , . . .).

T h e o rem  4.4.2 The following statements are equivalent:

(a) {in{oi, z ) } ^  is a Schauder basis for Ca-

(b) There exists a constant Cs with 1 < C3 < oo such that

<  C 3

m+ n

1 = 1 Da 1 = 1

for all positive integers m,n and all complex numbers a \,a 2, . . . ,  Om+n-

, inf dist > 0,
l<n< oo  \  /

and

inf dist (ct3(„) , > 0.
I<n,r<cx5 \ /

For our present purpose, the second part of (c) above is again dysfunctional, 

since it is implied by the first part.

P roof of Theorem  4.4.1

Recall that the norm of the function f {z)  — X! G is given by

where the Q in this case, are the coefficients in the series expansion of the 

function <̂ «(2:) =  (1 — Znz)°'~^, 0 < a  < 1. Hence a*- = Ci = (“7^)
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a unit vector ln{oL^z)l\\ln{oL^z)\\ in Ca is

ln{0L,z)

( E ” i

_ in{cL,z)
~  (1

The minimum distance from this unit vector — z) to the vector

space spanned by all the remaining vectors is such that

°° Z k - Z r
«(%») > (1 -  n

fc=l,fc^n 1 — ZnZk

(from Lemma 4.2.1), so the necessity immediately follows from the first part 

of (c).

To prove the sufficiency, we apply a succession of isometries to transfer the 

problem to the Hardy space of the unit disc and then apply the techniques 

developed in §3.7.

Let
m +n

9{z) = X ) ^r(l -  ZrZy-^
T — \

be a function in Ca- From (1.1), the inverse Laguerre transform takes g E Ca 

to the function
m +n

/ ( i )  =  g  a , ( l  -
r = l

in 7̂ 2(0, 00), with Ar = 2^/(1 — Z r ) .

For w E P"*", the Paley-Wiener isometry now takes /  to the function

/•oo ->
F{w) = /

T =  1
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-=1  ^(1 “  r̂) +

in H^{P+).

Now for 2: E A, we have the fractional linear transformation 

1Ü =  (1 +  z) /{ l  — z). So

f  ( . ) .  f ( ( i  t  . ) / ( ■ - . ) ) .  I '  .

F{{1 +  z) / ( l  — z)) being a function in H^{A).

Now, the norm of F (( l  +  z ) /( l  — z)) will not be altered by multiplying by 

the finite Blaschke product

'  z -  z.

JJ.(r —

so

\ \ F \ \ h ^ p +)  =  ||G||ij2(A),

where

( S ) } -  <“ >

Write G{z) = Gi{z) +  G2{z), where Gi{z) is the sum in (4.9) from r  =  1 to n 

and G2{z) is the corresponding sum from r  =  n + 1 to m +  n. As in the proof of 

Theorem 3.7.1, we will show that if ||Gi(z)|| =  1, then under condition (4.8), 

||G(z)|| > /3 for some ^  = /3(/c). From Theorem 1.7.1 and Lemma 1.7.1, we 

can state
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T h e o rem  4.4.3 Let {zn} be a sequence of numbers in the interval (0,1) sat­

isfying condition (4-8). Then there is a constant M  such that

(i) the inequality
OO

E} I 1̂ (1 -  4 )  <
r = l

holds for all g G

(ii) if

then

for any s and t.

Again, we have replaced M  in Lemma 1.7.1 by for convenience.

First suppose that

where B is a constant to be chosen later. Apply Theorem 4.4.3 (i) to the 

function G in (4.9) to obtain

k r |^ ( l  — Z r ) { l  -  Z r )  “ ( l  -  Z ^ )  (

.=1 1 + Zr-2Z2
Zj- Zjy

1 — ZifZr

Thus,

^rf(i z y - - ( i  4) < m ^\\g {z)\\\
r=l ^ ~r Zr ZZj.
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I.e..

,2

or

||G(z)|| >  B k/M.  (4.10)

Now suppose that

\ a r \ ^ { l  -  Z r Y  ^  2

Then ||G(z)|| > ||(7i(z)|| — ||(j2(2)||, and by Theorem 4.4.3 (ii) (on replacing 

H{z)  in this part of the theorem by G2{z)),

T = n + 1  ^  Z r

Thus, since by the hypothesis ||(7i(z)|| =  1,

||G(z)|| (4.11)

But B  is at our disposal, so we can take, for example, the optimal value

B =  (M  + /c /M )-\

Therefore in each case (4.10 or 4.11),

||G (z ) ||> ,0(A)) =  ( l +  M ^ M -: 

which is what we wanted to prove. □
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