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A bstract

The Kohn variational method has been used to study elastic scattering and positro

nium (Ps) formation in positron collisions with atomic hydrogen and lithium, in the 

energy region where only these two channels are open.

In common with other alkali metals, lithium is interesting in that its valence elec

tron is sufficiently weakly bound that positronium formation is exothermic, and hence 

an open channel for incident positrons of zero energy. For such a process, Wigner’s 

threshold theory predicts an 5-wave cross section which has an inverse dependence on 

the wavenumber, of the projectile as /: —>■ 0.

Using a model potential and very elaborate trial functions, a detailed investigation of 

s- and p-wave positron-lithium scattering has been made in the energy range 0-1.84eV, 

and preliminary results have also been obtained for d-wave scattering. The s-wave Ps 

formation cross section, as calculated variationally, appears to be in accordance with 

the Wigner theory, although this partial wave contributes negligibly to the Ps channel 

across most of the energy range considered. The p and d partial waves make a much 

more substantial contribution to the rearrangement process.

New cross sections for positron-hydrogen scattering have been calculated for the 

energy region close to the positronium formation threshold, and results have been com

pared with the predictions of i?-matrix threshold theory.
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C hapter 1 

Introduction

1.1 T he Positron

1.1.1 P red iction  and Observation

It was as a consequence of the publication of Dirac’s highly successful paper on the 

relativistic theory of the electron (1928) that the existence of the positron was first 

theoretically postulated. The relativistic wave equation contained in this publication 

explained several hitherto inexplicable quantum mechanical phenomena, including hne- 

structure effects in atomic hydrogen and electron spin, but had the apparent drawback 

of predicting states corresponding to negative solutions of the energy equation

E  =  +  rnld^ (1.1)

for which no physical explanation could initially be found. It was not understood why, 

when there existed an infinite number of these states into which an electron could fall, 

no such transitions from positive states had actually been observed to occur.

In an effort to account for the lack of any experimental evidence for the negative 

energy states, Dirac proposed his ‘sea of electrons’ theory, where it was supposed that 

free space was, in fact, composed of an infinite density of electrons occupying all the 

states of negative energy. Transitions from positive to negative states would thus be 

forbidden by the Pauli exclusion principle, although there still remained the possibility



of the reverse process, which would leave the ‘sea’ with a hole in it. It was quickly 

realised that such a hole would have the characteristics of a particle with a charge equal 

to that of the electron, but with opposite sign, although the firm prediction of a new 

type of elementary particle did not immediately follow—at a time when the proton and 

electron were the only known sub-atomic particles, and inextricably connected with the 

concepts of positive and negative charge, there was considerable opposition to the idea 

of the existence of a positive electron, and much effort was devoted to demonstrating 

that the holes would actually behave like protons. It was Weyl (1931) who conclusively 

refuted this latter interpretation, leading Dirac (1931) to identify the negative energy 

solutions with an ‘anti-electron’, or positron, remarking incidentally that there ought 

also to exist anti-protons, possessing a negative charge, corresponding to holes in a 

similar negative energy sea of protons.

The first experimental observation of the positron was made, completely indepen

dently of Dirac, by Anderson (1932), who photographed an anomalous ionisation track 

in a cloud chamber whilst investigating cosmic radiation. The range of the ionisation 

was that of an electron, but the curvature of the track, brought about by a magnetic field 

applied across the chamber, was in the opposite sense, leading Anderson to conclude 

that what had been witnessed was genuinely a positive electron. Not being conversant 

with Dirac’s theory of the positron, however, Anderson was unable immediately to make 

the connection between prediction and observation, and it remained for Blackett and 

Occhialini (1933), who recorded many more occurrences of positrons in a cloud chamber 

using more sophisticated techniques, to link the two. This confirmation, rejecting as it 

did the idea that protons and electrons were the sole constituents of m atter, marked 

the beginning of modern elementary particle physics.

The positron and the electron possess equal charges of opposite sign, and conse

quently opposite magnetic dipole moments, but in all other respects they resemble each



other. This fundamental difference between them, however, gives rise to some interest

ing differences in their behaviour in the presence of m atter. The distinguishability of 

the electron and positron also means that they are not subject to the Pauli exclusion 

principle when interacting with one another.

1.1.2 P ositron  Interactions w ith  M atter

In a vacuum, the positron is a stable particle with an infinite lifetime, but in the 

presence of atoms and molecules, where there is a high concentration of electrons, it is 

always prone to annihilate (the electron falling into the ‘hole’ of Dirac’s sea theory), 

resulting in the emission of electromagnetic radiation. When the positron and electron 

have parallel spins, triplet annihilation produces three gamma ray quanta with energies 

totalling 1022keV, the sum of the rest mass energies of the two particles. If the spins 

are anti-parallel, singlet annihilation may take place via the production of two gamma 

photons, each with an energy of 511keV. In each case, the number of photons emitted 

on annihilation is determined by the necessity for conservation of both momentum and 

angular momentum.

In positron scattering from atoms and molecules the cross section for direct anni

hilation is extremely small in comparison with that for other collision processes to the 

extent that it can effectively be disregarded in calculations of cross sections. Where 

energetically viable, it is much more likely that annihilation will take place via the 

formation of the bound state of a positron and an electron known as positronium (Ps). 

This purely leptonic ‘atom ’ has a reduced mass almost exactly one half that of the 

hydrogen atom, so that, neglecting fine structure effects, its energy eigenvalues are one 

half those of the corresponding hydrogenic eigenstates. The ground state thus has an 

energy of - 6 .8eV, although some fine structure splitting occurs between the singlet and 

triplet eigenstates, referred to as para- and ortho-positronium respectively. The most 

significant difference between these two types is in their mean lifetimes. Each decays



according to the exponential form

P  ~  exp—t / r ,  (1.2)

where for para-Ps, which decays via two gamma photons, r  =  1.25 x 10"^°sec. Ortho- 

Ps, decaying with the emission of three photons, has a much longer lifetime of r  =  

1.41 X  10“^sec, making experimental observation of its behaviour rather easier.

The characteristic decay rates for the two forms of Ps facilitate the investigation of 

positron behaviour in gases by means of lifetime studies, one of the earliest experimental 

techniques in positron physics. The lifetime of a positron is determined by detecting the 

gamma radiation given off on emission of the positron from a source (typically Na^^) 

immersed in the gas, and also that emitted on annihilation, the two types of radiation 

being distinguishable by their differing energies. By collecting data for many such 

events, a lifetime spectrum is built up, from which information can be extracted about 

the fraction of positrons annihilating freely, or via positronium formation, by a process 

of fitting and subtracting exponentials corresponding to the various components.

Despite the very small cross section for free annihilation, lifetime spectra usually 

exhibit a substantial component due to this process because some positrons slow down 

from the high energies with which they are emitted, by means of elastic and inelastic 

collisions, to energies where positronium formation is not possible. The Ps formation 

threshold, Ethri is the difference between the binding energy of the positronium in its 

ground state, Eps, and that of the atom or molecule under investigation, Eg, that is

E th r= E p s-E B >  (1.3)

Positrons with energies between zero and Ethr cannot form Ps, and must therefore 

ultimately annihilate freely. Such a region of the energy spectrum exists for many 

atoms with the notable exception of the alkalis, for which the atomic valence electron 

is less tightly bound than Ps, giving a negative value for Ethr- This is an interesting

1 0



feature of the present work on e+-Li scattering, since it means that Ps formation is 

an open channel even for positrons of zero energy. Connected with the weak binding 

energy of the lithium atom is its very high polarisability, which gives rise to a complex 

set of correlations and distortions when situated in the field of the positron, and the 

complicated nature of the positron-atom interaction thus provides a severe challenge 

for theoretical approximation methods.

For many atoms and molecules, the positronium formation threshold lies below the 

first excitation threshold, producing a region, known as the Ore gap, where Ps formation 

is the only possible inelastic process. This part of the energy spectrum is of particular 

interest for the studies reported here of both e'*'-H and e+-Li scattering.

Although lifetime experiments were previously an important tool for investigating 

positron behaviour in gases, the development of moderators capable of producing well 

collimated beams of positrons has enabled direct measurements of scattering cross sec

tions to be obtained, and most experimental interest now tends to focus on this latter 

method. Recently, Stein et al. (1985, 1988, 1990) have measured total cross sections 

for positron scattering from alkali metals, and this has, in part, provided the stimulus 

for the present theoretical investigations of positron-lithium scattering.

Total cross sections for positron scattering from a given atom or molecule at low 

energies tend to be smaller than for the corresponding case of electron scattering, owing 

to the cancellation, in the former case, of the static and polarization terms in the 

interaction potential, which are repulsive and attractive respectively. For electrons, the 

two components are both attractive, and combine to increase the overall strength of 

the interaction. The alkalis are again peculiar here, in that positron total cross sections 

are higher at low energies than in electron scattering and this is almost certainly due 

to the presence of the open positronium channel at all energies.

Electron and positron total cross sections are compared in figures 1.1 and 1.2, for a
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noble gas atom and for an alkali. Note that the two cross sections converge at higher 

energies, as the polarization and exchange components in the interaction become less 

significant.

1.2 Variational M ethods

1.2.1 Introduction

The work presented in this thesis has made extensive use of two variational techniques: 

the Rayleigh-Ritz method, for treating bound state problems, and the Kohn method 

for the calculation of scattering cross sections. The methods have in common that they 

each make use of stationary properties arrived at by considering how the functional

I  = < ÿ i f \ H - E \ ^  > (1.4)

changes with respect to variations in the trial wavefunction when ^  approaches the

correct solution of the Schrodinger equation.

The Rayleigh-Ritz variational principle considers the case where ^  tends to zero 

at infinity rapidly enough that it is normalisable, and the stationary property here 

is associated with the energy eigenvalues, of the Hamiltonian. The Rayleigh-Ritz 

method is particularly powerful since, in addition to the stationary feature, it also yields 

a rigorous upper bound on these eigenvalues.

The Kohn method, on the other hand, considers the case where the trial function 

is not normalisable, but has a given asymptotic form at long ranges. The stationary 

quantities here are the tangent of the phase shift, for purely elastic scattering, or the 

elements of the reactance matrix, for the multi-channel case. Except in the special

limiting case of collisions at zero energy, the Kohn method gives no rigorous bound in

the way that the Rayleigh-Ritz method does, since the stationary feature can, in general, 

be a maximum, minimum or point of inflection. In practice, though, a well-behaved 

set of results will often exhibit a local maximum for the tangent of the phase shift,

13



or the diagonal elements of the A^-matrix, under certain recognisable circumstances, 

producing what might be termed at least an ‘empirical’ lower bound. For reasons to 

be discussed, it is usually necessary to treat the results of a Kohn calculation with 

more caution than those of a Rayleigh-Ritz problem, although the method is capable 

of yielding cross sections of very high accuracy when used correctly.

1.2.2 T he R ayleigh-R itz Variational M ethod

Consider a Hamiltonian H  with eigenvalues En corresponding to the orthonormal set 

of eigenfunctions <̂ n, i.e. H<j>n =  En(j>n̂  and let I  be the functional

I  =  < ^ ^ ^ \ H - E n \ K > .  (1.5)

where 0  ̂ is a trial function which diifers from an exact eigenfunction <f>n by an amount 

6(j) such that

<  =  4>n + 6cf>. (1.6)

The above integral (1.5) can thus be written

I  — < (̂71 4" S(j) I H  — En I <i>n + >

= <  <f>n \ H  — En \ <t>n >  <  (̂i> \ H  — En \ (f)n >  -\- <  (̂i> \ H  — En \ S(j) >  (1.7)

where we have exploited the Hermiticity of the Hamiltonian operator. The first two 

terms on the right hand side are both zero, and so equating (1.5) and (1.7) the resulting 

identity is

< ^ i \ H - E n \ ^ i >  =  < 8 ( j > \ H - E n \ 6 c l > >  (1.8)

and hence the exact energy eigenvalue is given by

.  _  < K \ H \ K > - < H \ H \ 8 < i > >

< ^̂  > -  < I '

14



Dropping the terms < 8(f) \ H  \ Scj) > and < 8<f>\6(l> >, which are of second order in 6^, 

gives the well-known Rayleigh-Ritz functional:

Hence, we have a variational estimate of the energy of the system, which differs from 

the exact energy En by an amount which has a second order dependence on 6^, and thus 

has the required stationary property. A further useful property of the functional (1.10) 

is that it provides a rigorous upper bound on the lowest eigenvalue, E q̂  of H; that is to 

say, regardless of E^ > Eq. This may be demonstrated by expanding 0^ in terms 

of the complete set of orthonormal eigenfunctions of H:

( 1-11 )
j

The functional (1.10) therefore has the form

< Hi \ H  \ Hj  >
<  Hi o-i(f>i I  Hj aj(f)j > 

H i j  E j a j a j  <  (j)i I (f)j >  

H i , j  GjGt (f)i I (f)j !>
( 1. 12)

But < (f)i\ (f)j >= Sij, so

E" =  %  (1.13)

Subtracting E q from both sides gives

_  E ,  ajjEi -  Eq)
E l - E o  = %  . (1.14)

By definition Ej > Eo, and the coefficients aj are real, so it follows that E^ — E q > 0.

A Rayleigh-Ritz calculation, then, consists of selecting a form for the trial func

tion and varying its parameters in an attem pt to obtain the lowest possible value for 

the functional (1.10). Increasing the number of parameters on which a given form of

15



function depends allows a closer fit to the exact eigenfunction to be attained, and con

sequently a more accurate approximation to the exact eigenvalue to be found. A study 

of the rate of convergence of the eigenvalue estimates with respect to such systematic 

improvements can then provide information on how accurate the results are.

The form used for the trial function obviously depends to a great extent on the 

problem being solved, and should ideally contain as much previously known information 

as possible about the system under study—the better the general form, the fewer the 

number of variational parameters required to obtain satisfactory convergence. In the 

case of a Rayleigh-Ritz calculation, however, it is at least possible to say that the 

required eigenvalue lies below the one computed, no m atter how bad the trial function. 

For the Kohn variational method, on the other hand, no such rigorous bound exists 

and a sensible choice of trial function is important in order that useful information can 

be extracted.

1.2.3 T he K ohn Variational M ethod

Rigorous bounded variational methods do exist in scattering theory, but their theo

retical complexity makes them less attractive for practical purposes than the Kohn 

variational method (Kohn, 1948). Although unable to provide a bound on any param

eter in the sense in which the Rayleigh-Ritz method does, the Kohn method appears to 

produce a localised lower bound on the diagonal elements of the A'-matrix under cer

tain recognisable circumstances, and has been shown to yield results of high accuracy 

in a number of cases. In this section the one channel Kohn functional is derived by 

consideration of the asymptotic form of a wavefunction describing the elastic scattering 

of a monoenergetic beam of particles by a central potential.

Consider the case of particles, wavenumber A:, travelling in the positive 2-direction 

encountering a potential, V,  spherically symmetric with respect to the origin of coor-

16



dînâtes. The time-independent Schrodinger equation for such a system is

(_V2 +  2V(r))W(r) = (1.15)

Exploitation of the axial symmetry of the system allows the total wavefunction to be

expanded in terms of the complete orthonormal set of Legendre polynomials, P/(cos 0),

so

OO
^ (r)  =  J2Ri{k,r)Pi{cose)  (1.16)

1=0

where each term individually is a solution of (1.15). In spherical polar coordinates, the 

Laplacian operator is given by

where the second and third terms may conveniently be abbreviated as — L being 

the total angular momentum operator. Since the Legendre polynomials, P/(cos^), are 

eigenfunctions of with eigenvalues /(/ + 1) the Schrodinger equation is reducible to 

the radially dependent equation

+  =  k^R,{k,r)  (1.18)

which may be further reduced, via the substitution u/(fc, r) =  rRi{k,r),  to

( - ^  +  +  21/(r) j  ui{k, r) = k ‘̂ ui{k,r). (L19)

In order that Ri{k,r)  be finite everywhere, it is necessary that ui(k,r)  —> 0 as r  0. 

Provided that V{r) tends towards zero faster than 1/ r  as r  —>■ oo, asymptotic solutions 

to the above equation are of the form

ui{k,r) = Ni{k)kr[ji(kr) — temrji ni{kr)] (1.20)

where ji{kr) and ni{kr) are the spherical Bessel and Neumann functions, and i]i is the 

phase shift for the /th partial wave. Using the asymptotic forms of ji{kr) and ni(kr)

17



the above expression becomes

ui{k^r) ~  Ni(k) sin (kr  — — j +  tan 7// cos (kr  — — (1.21)

In order to derive the Kohn functional, we consider a trial function r) which is 

an approximation to ui(k, r) and necessarily has the same form of asymptotic boundary 

conditions i.e.

0 ) =  0

r~*̂oo sm I Kr — — j +  tan t]i cos I Kr — —

( 1.22)

(1.23)

where rjj is the trial phase shift. If the difference, between and ui is such that

0 / =  u/ +  6(f) (1.24)

then the asymptotic conditions require that

S(j){k,0) = 0 (1.25)

6(f){k,r) Ni{k) (tan//f -  tan///) cos ^A:r — . (1.26)

By analogy with the derivation of the Rayleigh-Ritz functional, consider now the func

tional

(1.27)

where H  — |  [—d ^ /d r^ -f / ( /+  l)/r^] +  y (r)  and E = k^/2. Using (1.24) this may 

alternatively be written

I  = < ui 6(f) \ H  — E  \ ui 6(f) >

= < u i \ H  — E \6 ( j )> - \ -< 6 ( f ) \H  — E\ 6( j )>

where we have used {H — E)ui =  0. Integrating by parts, twice, we have

(1.28)

/ ui— 6(pdr 
Jo dr^

U l  —  0 ( p
dr

dui d

18



which could also be obtained by use of Green’s theorem. Thus

< u i \ H  — E  \ 8(1) > =  <8<j)\H — E \ u i >  ——
dr . ,  dui

u i — 0 <p 0 0
d r  d r

(1.30)

The first term  on the right hand side is zero, and substituting the asymptotic forms of 

ui and 8(j) into the second we obtain

N?
< u i \ H  — E\8<l)> = s in  ^ r  — +  t a n / / /  c o s  — —

X ^ ta n  T)j — t a n  77/)  k  s in  ^

(u ( • (uc o s  \ k r  — — I — t a n  rji s in  i k r  — —

X ^tan T]j — tan rjij cos 

=  ^ / j  (tan 77/ — tan 77/j  (1.31)

whereupon

I  =
N?

k  (tan 77/ — tan 77/) +  < <̂ 0 | | ^0  > . (1.32)

Equating (1.32) with (1.27) gives an expression for the exact phase shift:

IV? IV?
A: tan 77/ =  ^ j k t a n 77; -  < 0 | | 7 7 - E | 0 | >  +  < 6 0 | . ^ - E | 6 0 >  .(1.33)

This result is known as the Kato identity and is analogous to equation (1.9), used in 

the derivation of the Rayleigh-Ritz functional. Similarly here, we drop the final term, 

of second order in 60, to obtain our variational estimate, so

N i k  tan 77̂  =  Nfkia,nr}j — 2 < ^] \ H  — E  \ ^ \  > (1.34)

This is a general form for the Kohn functional, where the normalisation of the wave

function may be chosen according to convenience. The more usual form, and the one 

most appropriate to the later generalisation to a /i-m atrix  formulation, is obtained by 

selecting Ni = 1/v T , thus

tan 77̂  =  tan 77/ — 2 < 0 } | 77 — E  | 0 } > . (1.35)

19



As in the  bound-state  case, the error in the variational estim ate  has a second order 

dependence on the  error in the tria l function, 6(j)̂  and thus has th e  required sta tionary  

property. Here, however, no further bound property  can be found associated w ith 

the  functional for Â: >  0, although the Kohn functional can be shown (Spruch and 

Rosenberg, 1960) to  give a rigorous upper bound on the scattering  length o:, which is 

defined by

a  =  (1.36)
k^o k  ̂ ^

By considering exact and trial wavefunctions w ith the asym ptotic  forms

u i { k , r )  ^cot sin ^  j  4- cos ^  j  j  . (1.37)

and

$ J (^ ,r )  Æ/(A;) ^cot sin ^ j  +  cos j  , (1.38)

which differ from (1.21) and (1.23) only by a phase factor, it is possible, by m eans of a 

sim ilar derivation, to obta in  the Inverse Kohn functional:

cot r}J =  cot 7/̂  4- 2 <  0} I 77 — E  I > (1.39)

which has a sim ilar s ta tionary  property. Both functional forms have been used in the

present work. There in fact exists a lim itless num ber of forms for the K ohn functional, 

since the  way in which the  phaseshift is included in the  asym ptotic  forms is arb itrary , 

provided the  m ultiplying factors for the  N eum ann and Bessel functions are in th e  ratio  

tan  7/;. This fact proves useful in avoiding some of the problem s presented by the  

irregular behaviour which is an inevitable feature of the  Kohn m ethod, described fu rther 

in section 1.2.4.

As in the  case of a Rayleigh-Ritz bound s ta te  calculation, the  tria l function for a vari

ational scattering  calculation is chosen carefully according to  physical considerations.
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Clearly, at points in space far removed from the scattering centre, the wavefunction 

must be of the form (1.23), to within an overall phase factor, so this determines the 

long-range structure. At short ranges, however, there are no strict constraints on the 

form of the wavefunction, and the usual procedure is to expand in terms of some flex

ible set of basis functions which become negligible as r  —>• oo, so that the overall 

structure of the wavefunction for a particular partial wave would be

N
= 0  +  ^  (1.40)

t=i

where, for the s-wave case (/ =  0), the long-range component is

1
a/ Î tt

sin . cos kr .
+  tani?‘- r  / ( r )

hr kr
(1.41)

which can be conveniently abbreviated as

0  =  5  +  ta n 7/‘C'. (1.42)

The function / ( r )  is a shielding factor which is included to prevent the wavefunction 

becoming singular at r  =  0.

From (1.35) the variational phase shift is thus given by

N N
tan = tan — 2 ^  CiRi — (5, LS)

i,j=l t=l
— tan 7/^(5 , LC) — tan t] \C ,  LS)  — tan^ t/^(C, T(7), (1.43)

where

Mij =  Mji = {(t>i,L(t>j), (1.44)

Ri =  (ÿ,-, T0), (1-45)

and L =  2[H — E), the brackets in (1.43), (1.44), and (1.45) signifying integrations 

over all space. The condition that tan is stationary with respect to variations in the
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trial phase shift and the linear parameters c, then yields the set of linear simultaneous 

equations

. . .  . . .

[(l)i,LC) . . .  ((j>i,L(f)j)

’ tan 77̂ ' - (C, LS)  ■

=  —

(4>i,LS) (1.46)

By expressing this as

A X  = —B

it is clear that the variational parameters are given by

% =  - A - 'B ,

(1.47)

(1.48)

and from here it is a straightforward m atter to evaluate the variational phase shift by 

substituting the linear parameters contained in X  back into (1.43). In general, the short- 

range basis functions will also contain non-linear parameters, which require optimisation 

for well converged results to be obtained. For the variation of these parameters, the 

whole calculation requires repeating.

1.2.4 Schwartz Singularities

Problems can arise, however, in the variational scattering calculation, owing to the 

nature of the eigenstates of the operator L. Since the Hamiltonian has a continuous 

energy spectrum, in which the total energy E  is embedded, it is evident that L = 

2{H — E)  also has a continuous set of eigenvalues which actually pass through zero. 

Although the matrix A  is, in practice, always of finite rank with only N-j-1 eigenvalues, 

it is possible for it to possess an eigenvalue very close to zero, making its inverse ill- 

defined. When this occurs, the variational parameters contained in X  also become 

badly behaved, and the tangent of the variational phase shift, instead of being in error 

by only a small amount, can actually lie anywhere in the region —oo to -foe.
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Figure 1.3: Variation of tan  77̂ /A: with respect to k, for s-wave e~-H  elastic scattering, 
where k =  0.8. The different lines correspond to different sizes of basis set. Taken from 
Schwartz (1961a).

This type of behaviour, which is a very common feature of unbounded Kohn calcula

tions, was first considered by Schwartz (1961a). who observed such irregularities (now 

referred to as Schwartz singularities) in a variational trea tm en t of electron-hydrogen 

elastic scattering. In these investigations, he studied the variation of the phase shift 

with respect to a non-variational scaling param eter, ac, in the wavefunction. in order to 

m ap out the occurrences of singularities, and also experim ented with varying the total 

num ber of linear variational param eters, N . Some of the results of this analysis arc 

shown graphically in figure 1.3.

The im portan t em pirical conclusions to be drawn from Schwartz's work are th a t as 

N  increases, so, in general, do the num ber of singular points in a given range of the 

scaling param eter /c, but their region of influence, as a function of ac or as a function 

of energy, appears to decrease; and also, th a t as the size of the basis set is increased, 

the average value of the tangent of the phase shift between singularities tends to flatten
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out. This latter observation is very significant, since it means that the singularities 

become increasingly easier to distinguish as the size of the matrix A  grows.

Schwartz singularities are an important feature of this type of variational calculation, 

and the studies of Schwartz himself generated considerable interest in the subject. Fuller 

treatments are given by, for example, Nesbet (1968,1969), Brownstein and McKinley 

(1968), or Harris and Michels (1971). The irregularities are generally avoidable if results 

are obtained for various different values of some non-variational parameter, and the 

above considerations born in mind. Armour has successfully used a generalised form 

of the Kohn functional (see Armour and Humberston, 1991) which introduces a phase 

parameter r ,  such that

tan(r/" — r)  =  tan(7/̂  — r ) —< > . (1.49)

By selecting various different values of r , and discarding results which lie markedly out 

of line, the problem of Schwartz singularities is thus reduced considerably. The ordinary 

forms for the Kohn and Inverse Kohn functionals, (1.35) and (1.39), are reproducible 

within this formalism by selecting r  =  0 and ^tt respectively. For the present studies 

of positron-hydrogen and positron-lithium scattering, it has been found sufficient to 

consider only the Kohn and Inverse Kohn methods since, for a large enough basis set, 

it proves very unlikely that irregular behaviour will be encountered for both methods 

at the same energy.

1.2.5 T he M ulti-channel Kohn M ethod

The single channel formalism discussed above can readily be extended to treat situations 

where more than one scattering process is possible, by selecting appropriate asymptotic 

forms for the wavefunction. The stationary property here is associated with the elements 

of the A"-matrix, which is the natural generalisation of the tangent of the phase shift 

for the multi-channel case.
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For the purposes of the research presented here, a two channel formulation of the 

Kohn method is suitable, since at most two scattering processes are considered. The 

positron-atom collisions which have been investigated result either in elastic scattering, 

or in positronium (Ps) formation, that is

A +  e+ A +  (1.50)

^  A+ +  Ps. (1.51)

The total wavefunction for the system, however, is required to represent not only these 

reactions, but all energetically possible scattering processes associated with the system. 

Thus the additional reactions

A+ +  Ps A+ T P s  (1.52)

—► A. T cA (1.53)

must also be taken into account.

It is therefore convenient to express the total wavefunction in the two component 

form
■

^2

where represents the reactions (1.50) and (1.51), and ^2  describes (1.52) and (1.53). 

Defining the coordinate p to be the separation of the centres of mass of the positive

ion, and the positronium atom, the asymptotic forms of the two components are

given by

^  [ji(kr) -  Knni{kr)]

-Yifi(6p, <t)p)V^(l)psK2ini{Kp), (1.54)

^2  „ (f>p)\/ (̂f>Ps [ j i i ^ p )  -  K 2 2 n i { K p ) ]

-Yifi{6,(f))y/k(l)AKi2ni{kr), (1.55)

r —*oo

p—t’OO

p—foo

r —*■00
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where <j)A and <̂ Ps are the wavefunctions for the target and positronium atoms, and « is 

the wavenumber of the positronium atom, obtained by a simple consideration of energy 

conservation: if the binding energies of the target atom and positronium are E a and 

Eps respectively, then we require

(1.56)

The /^-matrix elements K{j (z, j  =  1,2) enable the cross sections for scattering between 

all combinations of the positron-atom and positronium-ion channels to be calculated. 

For scattering from channel u into channel the cross section <7^̂ / is given by

O'uu' -
4(2/ -f 1) K

(1.57)

where, if subscripts 1 and 2 refer to the positron-atom and positronium-ion channels 

respectively, then k\ — k and k2 = k. lî k and k are in units of a ô \  tbe units of the 

cross section thus evaluated are iraQ.

By taking trial functions with the correct asymptotic forms, but with trial values 

substituted for the various A^-matrix elements, a process of reasoning similar to that 

used in section 1.2.3 leads to a two channel version of the Kohn functional (Humberston, 

1982):

' KÛ %  1 _  \ K U  K U ] _ \ m , M \ )  .
A - J -  [ a <, j '   ̂  ̂ ^

All variational A"-matrix elements A',j now have the required stationary property with 

respect to variations in trial functions and the trial functions are again ex

panded in terms of a flexible set of basis functions, as in the one channel case, the 

requirement that each of the elements is stationary with respect to all linear varia

tional parameters in and leads to a set of linear simultaneous equations analogous 

to (1.46). Once these have been solved it is a simple m atter to evaluate K^.

The form of the two channel Kohn functional ensures that the variational A^-matrix 

is symmetric, providing the trial functions possess the correct asymptotic forms, al-
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though in general the trial A'-matrix is not. In solving a two channel Kohn problem 

using a computer, therefore, any discrepancy between K ^ 2  K 21 is a consequence

of numerical (or programming) errors, which provides a useful check on the accuracy 

of the calculation. The technicalities of the two channel Kohn method are discussed 

further in chapter 2, in the context of the positron-hydrogen problem.
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C hapter 2 

Positron-H ydrogen Scattering

2.1 Introduction

Because the lithium atom in the present work is represented as a hydrogenic model, 

the positron-lithium problem has been formulated in a very similar way to the previous 

work on positron-hydrogen scattering, the main differences being the use, in the case of 

Li, of a more complicated target wavefunction and interaction potential. In view of this 

similarity, and also of the greater simplicity of the e"*"-!! system, it seems appropriate 

first to discuss the Kohn method applied to the positron-hydrogen problem in some 

detail, making reference to the e"*"-Li system where appropriate, before introducing the 

modifications required for the latter, more complicated, problem in chapter 5.

The Kohn variational method was first applied to the positron-hydrogen problem 

by Schwartz (1961b), using quite a flexible trial function to calculate s-wave scattering 

phaseshifts at energies below the Ps formation threshold. With rather more sophis

ticated computational resources available, Humberston and Wallace (1972) were able 

to improve on these investigations using more elaborate trial functions. The results 

of these later studies compared very favourably with those obtained by Bhatia et al. 

(1971), which are believed to be the most accurate available in this energy region, and 

demonstrated the suitability of the Kohn method for this type of problem.

The theory was successfully modified for the positron-helium problem (Humberston
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1973, 1979, Campeanu 1977) and, later, further extended to enable the determination 

of both elastic scattering and Ps formation cross sections for energies up to the first 

excitation threshold of the hydrogen atom (Humberston 1982, 1986, Brown and Hum

berston 1984, 1985). The energy region between the Ps formation and first excitation 

thresholds, where elastic scattering and Ps formation are the only possible scattering 

processes, is known as the Ore gap which, for hydrogen, extends from 6.8 to 10.2eV. 

The present work on positron-lithium scattering has been developed from this later 

posit ron- hydrogen theory; the existence of the Ps formation channel at all energies of 

the incident positron makes its inclusion necessary for any complete theoretical treat

ment of positron-alkali atom collisions.

The following section describes the two-channel Kohn method as applied to e" -̂H 

scattering, and introduces some typical features of such a calculation. In chapter 3, 

some results are presented of new investigations of the e+-H system, undertaken in the 

light of recent interest in threshold phenomena.

2.2 Positron-H ydrogen 5-wave Scattering

2.2.1 Trial Functions

The two-channel Kohn functional, as discussed in chapter 1, takes the form:-

■ A7i Kl^ ■ ■ A'{, A Î2 ■ (W l,i1'2) '

■̂ 21 ^22 A 2̂ . ( $ 2,A » l) ( » 2,A $ 2) .

(2 . 1)

where the trial functions, and between them represent all possible scattering 

processes associated with the three-body system: 'Pi represents positron-hydrogen scat

tering, resulting either in elastic collisions or in Ps formation; 'P2 represents positronium- 

proton collisions, resulting in elastic scattering or in the formation of atomic hydrogen. 

The only strict constraints to be imposed on the trial functions are that they possess 

the correct asymptotic form, and remain finite at the origin of coordinates.
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Figure 2.1: The positron-hydrogen system

For 5-wave (/ =  0) positron-hydrogen scattering the trial functions devised were as 

follows:-

^ 1  =  yoo{0i , ( l>i )^H{r2)Vkf^jo{kr i )  -  K l ^ n o { k r i ) [ l - e x p { - X r i ) ] j

-Yoo{6p,(l)p)^Ps{r3)y/^Kl^ [no(«/9) +  exp(-///9)(l aphp^) l K, p
N

+ ioo (^ i,0 i)^H (r2) e x p ( - ( a r i  +  ^ r 2 +  ^  (2 .2)
*■=1

"^2 =  YooiOp, < f >p)^Ps { r 3) V^{ j o{ Kp)  -  K I 2 [no(Kp) i - e x p { - p p ) { l  +  a /7  +  6 / ? ^ ) / a c ^ ]  }

-yooi0i,(l>i)^Hir2)\^Kl2no{kri)  [1 -  exp(-A n)]

(2.3)
N

+ > 00(^1, 0 i)^h(t’2) exp ( - ( a n  d- f3r2 +  7 3̂)) ^  ,
j=i

where k and k. are the positron and positronium wavenumbers respectively. The coor

dinate nomenclature is illustrated in figure 2.1. The / =  0 spherical harmonic is simply
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given by

roo(0,^) =  (2.4)
V47t

and the zero order spherical Bessel and Neumann functions have the damped sinusoidal 

forms

io(^r) =  (2.5)

no{kr) =  (2.6)

Abbreviating the long-range components as

Si = }oo(^i, <^i)^H(r2)\Æ ;'o(^n) (2.7)

Cl =  -loo(^i,<?i>i)^H(^2)V ^^o(^n) [1 -  exp(-A ri)] (2.8)

5*2 =  yoo{0p,(f>p)^Psir3)\/^jo{Kp) (2.9)

C2 =  —Yoo{0p^(l)p)^Ps{r3)y/^^no{Kp)-\-exp{—/j.p){l-{-ap-\-bp^)/Kp^, (2.10)

and each short-range correlation term as

<A,' =  ioo(^i, <^i)^H(r2)rf‘>2 e x p (-(a r i +  (3 r2 +  7 ^3)), (2 .11)

leads to a more manageable form of notation for the trial functions:

N
=  S i - ^ K l , C i ^ K l , C 2 + J 2 ci(j>i (2.12)

1=1
N

^2  =  S 2 -{■ A 22(^2 +  K 1 2 C1 +  ^  dj(j)j. (2.13)
j=i

The forms of the S  and C terms ensure that the structure of the wavefunction is 

correct asymptotically, and the exponential factors contained in Ci and C2 shield the 

singularity in the Neumann functions at the origin. The forms for the shielding factors 

are determined by the requirements that the overall wavefunction behaves like r[ as 

Ti —> 0, and like as p —► 0. The differences between the Ci and C2 shielding terms
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are due to that fact that, as ► 0 there is no particle at the origin of coordinates, and 

thus the potential remains finite. This condition means that the second derivative of 

C2 must also remain finite as /? —>■ 0 , a constraint which does not exist for C\ as ri — 0 

(see Brown, 1986).

The Hylleraas functions (f>i constitute the short-range components of the wavefunc

tion, and represent the complicated distortions arising from the various polarization 

and correlation effects which occur when the three particles are in close proximity. The 

representation is improved accordingly as the number of such terms in the summation, 

TV, is increased. The exponential factor which multiplies the polynomial expansion 

causes the short-range functions to vanish in the limit as ?'%, T2 or tends towards 

infinity. The non-linear parameters a, /? and 7  determine how fast these functions are 

killed off, and are chosen so as to provide the best possible convergence of the scattering 

calculation.

The linear variational parameters are the trial -matrix elements and the coeffi

cients Ci{i = 1,..., Æ) and dj{j = 1,..., Æ), and the requirement that the elements of 

the variational A^-matrix are each stationary with respect to variations in all these 

parameters leads to the set of linear simultaneous equations

(Ci,A Ci) (Ci,AC2) . . .  (C i,W ;)
(C2,ACi) . . .  (C2,A<^;)

Expressing this in the form

r  A ' { ,

A l l

K 'n  1

A L

( C , , i 5 i )

( C 2 , L S , )

{ C u L S 2 )  ]  

{ C 2 , L S 2 )

Ci d i { ( j > i , L S i ) {( t>i ,  L S 2)

I

(2.14)

AX. — —B, (2.15)

it is thus possible to obtain the variational parameters contained in X  by formally in

verting the matrix A  and performing a matrix multiplication with B.  The variationally
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determined A^-matrix elements are then given (Armour and Humberston, 1991) by

=  - I (5',A5') ■ I  '
B  A X (2.16)

where

(S ,LS)  = (S^,LS,) (S^ ,LS 2 ) 
(5 2 ,i5 i)  {8 2 , 1 8 2 )

(2.17)

Arguments obtained by using Green’s theorem show that the matrices (S', LS)  and A  

are both symmetric (see Appendix B); this substantially reduces the number of matrix 

elements which require explicit evaluation and, in turn, ensures that the matrix is 

symmetric, although the trial A-matrix, A \  in general is not.

2.2.2 D eterm ination  o f the M atrix E lem ents

The main computational effort required in calculating the variational A-matrix lies 

in the determination of the individual elements of the matrices A  and A; the actual 

matrix operations are comparatively trivial. The elements to be computed fall neatly 

into three categories: long-range-long-range, long-range-short-range, and short-range- 

short-range. Before they can be integrated, it is first necessary to operate on both the 

short- and long-range terms with L. The fact that each term is expressed as a product 

including either the hydrogen or positronium wavefunction simplifies this. Consider, 

for example, the form of L S \ . We have

-V ?  - V l  + 2 l - -  — - - ] - 2 E o - k ^
n  V2 V3

Y o o M r 2 ) V k ^ - ^ , { 2 . 1 8 )

where Eq is the ground state energy of the hydrogen atom. Since Si is separable into 

functions of and V2 only, the relationship

^ V a )  = / v ' s  +  2V / .V ÿ + ÿ V V (2.19)
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enables (2.18) to be reduced to

LS\  — ^h(^2) V ^ ( “ ^1  "b 2 I  ) — A; j l c
1 1 \  , _ _ sin kvi

00Ti rzJ )  kri

+ K „ „ V î ! î ^ ( _ V | - l - 2Æ:o)$H(r2), (2.20)

where the dot product term of (2.19) vanishes for both V j and Vg. But the last term 

of (2 .20) is evidently zero, since is an eigenfunction of — corresponding to

the eigenvalue E q . Thus, the fact that is expressed in terms of a product involving 

the hydrogen wavefunction enables us to express LSi in a form which ignores the nature 

of the hydrogenic Hamiltonian and its eigenvalues. Hence, we have

LSi = $hV * ( - V ^ + 2 ( — - —) - p )  F o o - ^ ^ .  (2.21)

Since there is no angular dependence in loo, the derivatives with respect to the angular 

variables in V j vanish, and we find that

(2 .22)
kvi kT\

and thus (2 .21) reduces to simply

15 : =  (2.23)
Vri rg / kri

The form for LC\ can be simplified in a similar way, but here the presence of the 

shielding factor makes the operation of Vf rather more complicated. We find that

LC\  =  Yoo^}i{r2 ) y / k - ^  (2 kXs'm k r i c o s  kri^

^  ( n  "  ~  . (2.24)

When considering the operation of L on S 2 and C2, it is convenient to use the 

alternative form for the Hamiltonian,

H  =  +  1  -  1  -  1  (2.25)
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and to specify the total energy, in terms of the positronium binding energy, Epg, and 

wavenumber, /c. Consideration of conservation of energy shows that these are related 

to Eq and k by

—  E q — —  +  jE 'ps. (2.26)

For example, for L S 2 we have

l_ o  1 1 \  K?
L S n  = - 2V i - 5 V j +  2 ( ^ ^ - ^ - ^ j - 2£ p s - ^

X (2.27)
Kp

which, by a process of vector algebra similar to that used above, leads to

L S ,  =  $ p , ( r 3 ) Æ f - i v J  + 2 ( l - l ) - | ) r o o ^\  2   ̂ \ r i  r2 /  2  )  Kp

+ K o o ^ ^ v ^  f - 2V^ -  -  -  2£ p .)  $ p ,(r3). (2.28)
Kp \  rg /

Since —V 3 — rj^  is just the Hamiltonian operator for the positronium atom, and Eps 

is the eigenvalue corresponding to 0pg, the last term again vanishes. Also, S 2 is easily 

shown to be an eigenfunction of — V j, with eigenvalue /ĉ , so we are left with

L S ,  =  $ p , ( r 2 ) v ^ f l - l ' ) r o o ^ ^ -  (2.29)\ r i  r2 /  Kp

The form for LC 2 is again complicated by the presence of the shielding factor, but 

derivable by means of a similar procedure to give

LC, = Y o o M r 3 ) ' M — i ^ \ p ( > ^ ' ^ a - i X b  + aK^) + p^(X^ + KH)] (2.30)
Kp ( 2  ̂ •'

+2 [cos Kp — e~^^(l +  a/9 4- hp^) | . (2.31)

Making use of the symmetry properties of the integrals discussed in Appendix B, 

we now have all the information required to form the integrands for the long-range- 

long-range and short-range-long-range matrix elements. In order to compute the short- 

range-short-range elements, we consider the action of L on ÿ,-. Writing

ÿi =  ÿH(r2)x%(ri,r2,r3,^i,ÿi), (2.32)
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where

Xt(n,r2,r3,0i,<?^i) =  loo( î,<?i>i)7't’>’2 ^ r e x p [ - ( a r i + / ? r 2 +  7r3)], (2.33)

we have

L(j)i =  

Then, using (2.19), we get

- v ; - v ^  +  2 ( l
1
T2

1
--------------) — — 2 Eq (2.34)

L<f>i =  — <l>n^2Xi -  X i'^ l^ H  -  2(V2</>H*V2Xi)

+  ( ---------------------k^ — ‘2 Eq \ <f>uXi\r i  T2 T3 /

=  -<AH(r2)(VÎ +  V D x i  -  2 V ,< i> H -V 2 X i  + ( - - - - k A  <t>HXi, (2.35)\r i  T2 /
2 2 

T 1 T2

having again used the fact that (—Vg — — 2 Eo)(f)\{{r2 ) =  0. The form for a short-

range-short-range integral is thus

{<j)i,L<i>j) =  y  I  “ (Vj + V2)Xi <?!>H -  2V2<?̂ H’V2Xt' (2.36)

+  (  -----   ) Xi4>W \

In order to obtain a more convenient expression, we consider alone the term involving 

in the Laplacian operators V j and Vg, and integrate by parts, thus

J  Xt̂ H [-(Vj + V )̂xj] (t>Hdr =  J  [Vi(x,-0h)*' îXj + V2(xi<̂ H)*' 2̂Xj

= J  [<?^H( îXt-ViXj + V2Xt*V2Xi)

dr

(2.37)

+  2(?̂ HXi(̂ l<?̂ H’ViXj +  V 2<?i>H*V2Xj) dr

Substituting this form back into (2.36), and using the fact that V i^ h  =  0 , we find that 

{(f>i,L(t)j) =  y  ^(^iX i'^iX j + ^ 2Xt*^2Xj) +  — — X*X; dr. (2.38)

In this form, it is immediately obvious that interchanging i and j  has no effect on 

the value of the integral, and thus the short-range-short-range matrix elements are 

evidently symmetric in these two variables.
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Figure 2.2: The internal variables of the positron-hydrogen system.

2.2.3 Angular Integration

Since the spherical harmonics, I qo? have no azimuthal or polar dependence on the 

external angles which specify the orientation of the system, the angular integrations 

are very simple for s-wave scattering. The general form for an a-wave integral is

/  =  /  / /(ri,r2,r3)<iTidT2, (2.39)

where the integration is performed over all space for both the positron and electron. If 

spherical polar coordinates are used with the original set of axes for both integrations, 

the situation is complicated by the dependence of the integrand on the positron-electron 

separation, rg. Taking the r i  vector as the z-axis for the F2 integration (or vice versa) 

simplifies things, however, since has no azimuthal dependence in this coordinate 

system (see figure 2.2). Performing this azimuthal integration to give 2%, and using the
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original axes for the r i  integration, the form of the integral becomes

to o  fTT r 27T roo rn
/  =  27t /  r^dri /  sin^ic?^i /  /  rldr2 /  sin^i2C?^i2/(n,^2,^3), (2.40)

Jo Jo Jo Jo Jo

where 6 1 2  is the angle between the r i  and F2 vectors. The angular dependence for the 

r i  integration is also trivial, yielding a further factor of 4?r, whereupon the integral 

becomes

I  = Jroo roo rir
' r^dri /  r^dr2 /  sin0i2d^i2/(ri,T2,rs), (2.41)
0 Jo Jo

and the remaining integration is over only the internal coordinates of the system. Since 

the integrand is expressed as a function of the three interparticle distances, it is appro

priate to change variables so as to integrate over rather than Oi2 . From the cosine 

rule we find that

rzdrz = r i r 2 sin ^12^^12 (2.42)

and hence

roo roo f n + r g

/  =  Stt /  ridri /  r2 dv2 /  r^drzf(r i , r 2 ,rz). (2.43)
Jo Jo “'h i—r2|

2.2.4 N um erical Integration

Because of the simplicity of the hydrogen Is wavefunction and the zero-order spherical 

Bessel and Neumann functions, it is often convenient to evaluate the s-wave long-range- 

long-range elements analytically. For the remaining two categories it is much easier to 

use numerical integration techniques, such as Gauss-Laguerre quadrature. Here, the 

integral is reduced to a sum of weighted values of the integrand, evaluated at certain 

values of the integrating variable, such that

r<x> J L

/  f{r)e~"dr = (2.44)
t=i
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or, more generally,

r / ( r ) e - “’-rfr =  (2.45)
Jo o ^  \ o /

where the weights, w*, and abscissae, n , can be calculated, or obtained from library 

subroutines or books of tables. This procedure gives an exact result for the integration 

providing the function / ( r )  is a polynomial of degree no higher than 2n — 1, and can 

easily be generalised further to use for the multiple integrations required here.

Because the limits of the rg integration in (2.43) are dependent on the other two 

integrating variables, Gauss-Laguerre quadrature is not appropriate to this integral in 

its existing form. Instead, it is convenient to make a transformation of the variables r%, 

T2 and Tg into a set of coordinates where the limits on the integrating variables are all 

independent of each other. The perimetric coordinates x, y and z are defined such that

and thus

X = ri +  T2 — T3 (2.46)

y = T2 +  T3 -  ri (2.47)

z =  T3 +  ri — T2 (2.48)

n  =  5 (z +  z) (2.49)

r2 =  i  (y +  3:) (2.50)

rs = \ [ z  + y) . (2.51)

The Jacobian for the transformation is equal to so the integral (2.43) can be rewritten

S tT ^  y o o  roo roo
I  = —  / / / ( r i , r 2,rg )rir2rgdxdî/dz, (2.52)

4 Jx=0 Jy—O J zzzO

which is now in a form for which three-dimensional Gauss-Laguerre quadrature is ap

propriate.
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Aside from the exponential factor, the short-range-short-range elements are purely 

polynomial in form, and can thus be evaluated exactly; the other types, being partly 

sinusoidal, cannot, but it is still possible to obtain a very accurate estimate of the 

exact value of the integral if a large enough number of weights and abscissae is used. 

Providing that this is the case, the limits on the accuracy of the final variational K-  

m atrix elements are determined chiefly by the number of short-range linear parameters, 

Æ, and the suitability of the non-linear parameters A, /? and 7 .

The number of matrix elements to be computed increases as approximately N { N  -f 

1), so it is worthwhile to spend some time on optimising the non-linear parameters a , 

and 7  for a small N.  The procedure for doing this is a m atter of trial and error, to a 

large extent, it being very difficult to predict, especially where positronium formation is 

involved, what the exponential fall-off in each of the inter-particle coordinates is likely 

to be. In the case of s-wave positron-lithium scattering, an attem pt was made, with 

some success, to devise a systematic method of optimisation and this is described more 

fully in chapter 5. For the new investigations of positron-hydrogen scattering, the values 

of a , /? and 7  have been set to those used for the earlier work.

2.2.5 Convergence Tests

In the case of positron-hydrogen scattering, where the formulation contains a complete 

description of the three-body system, there is no theoretical limit to the accuracy of the 

variational /i'-matrix, and it is possible to increase the number of linear parameters, 

obtaining continually better estimates, until the point where numerical precision leads 

to a breakdown in the calculation. In practice, however, considerations of time and 

expense involved in computation are also limiting factors, and therefore it is important 

to be able to determine how well converged the variational /i-m atrix  is, in order to 

know whether it is worth increasing N  further.

A systematic way of improving the trial functions 'Fi and ^2  is arrived at by defining
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a parameter w, which is a non-negative integer, and then including all Hylleraas terms 

in the short-range expansions of (2.2) and (2.3) which satisfy the condition

li -|- TTii ^  w, (2.53)

ki, li and m, also being non-negative integers. In this way, the highest power of any of 

the three inter-particle coordinates is equal to w, and there is a relationship between w 

and N,

+ +  +  (2.54)
6 0

such that LJ =  0 ,1 ,2 ,3 ,4 ,5 ,6 , . . .  corresponds to iV =  1,4,10,20,35,56,84, —

In regions of the non-linear parameter space in which the diagonal elements of the 

variational /f-m atrix  exhibit stability, they tend to converge upwards with respect to 

increasing w, in accordance with the empirical lower bound principle. Even where 

Schwartz singularities intrude, it is usually still possible to see a convergence trend 

when Kohn and Inverse Kohn results are considered together, because in practice the 

Schwartz singularities only affect one or other of the results, but not both.

A useful procedure for assessing the level of convergence in this type of calculation 

is to plot and K 22 a function of w""", where n is chosen (positive) by a process 

of trial and error, such that the elements lie a-s close as possible to a straight line—the 

better the convergence, the higher the value of n required to provide such a fit. An 

estimate of their fully converged values, corresponding to w =  00 , can then be obtained 

by extrapolating back to the intercept of the straight line with the y-axis. This may be 

expressed mathematically as

AT.,(w) =  Kii{oo) + ^ .  (2.55)

It is not really possible to evaluate fully converged cross sections using this method, 

since they depend on all of the A'-matrix elements, including the off-diagonals for which 

no empirical bound principle exists. The value of the method is therefore in determining
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Figure 2.3: plotted as a function of at k = 0.8 for s-wave positron-hydrogen
scattering. The numbers adjacent to the crosses are the values of w. The fully converged 
value of Kii ,  obtained by extrapolating back to the y-axis, is estimated here at —0.103±  
0 .001 .

the error margins within which the results lie, rather than in attem pting to predict an 

exact result. An example of a typical convergence characteristic for s-wave positron- 

hydrogen scattering is illustrated in figure 2.3 .

2.3 E xtension to H igher Partial W aves

In the two channel case, where only elastic scattering and positronium formation are 

considered, the collision energy is not sufficient to result in an overall change in the 

orbital angular momentum of the target atom. Conservation of angular momentum 

therefore means that the incident and outgoing positron or positronium atom must 

have the same value of the orbital angular momentum quantum number, /. When 

considering higher partial waves, therefore, the asymptotic components of the scattering 

wavefunction are simply the appropriate higher order spherical Bessel and Neumann
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functions.

At short-ranges, however, the extra total angular momentum is distributed between 

the positron and electron in a way which requires accounting for in the form of the 

Hylleraas expansion. In principal, there exists an infinite number of ways in which the 

individual angular momenta of the two particles, /i and /g, can be combined to yield a 

given total angular momentum, /, but Schwartz (1961c) has shown that the summation 

over all possible couplings is actually greatly reducible, so that an eigenstate of the 

total orbital angular momentum may be expanded as

^ ( r i , r 2 , / , m )  =  2̂,/, m)F/i/2(ri, T2, ra), (2.56)

where the summation only involves values of and Î2 such that

/1 +  /2 =  /. (2.57)

In general, / +  1 terms are required in the summation, so that / +  1 different symmetries 

of short-range term are needed in the Hylleraas expansion. For example, in considering 

p-wave scattering (/ =  1), two types of short-range correlation term are required, cor

responding to (/i =  l ,/2 =  0) and (/% =  0 , /2 =  1); in order that the correct boundary 

conditions are satisfied at the origin, it is also necessary that the wavefunction goes as 

r[̂  and rÿ as n , r 2 —*■ 0. The function ^  is given by

^ ( / i , / 2, / ,m)  =  ^  Yi^rnA^i^4>iWi2m2 i^2 ,(i>2 ) < h m i l 2 m 2 \lTn >, (2.58)
mi ,m2

where the summation is over all mi ,7712 subject to the conditions

mi -\-m2 = m  (2.59)

and

— h < m,- < li. (2.60)

The terms < / imi/2m 2|/m > are Clebsch-Gordan coefficients, the forms for which can

easily be found in textbooks on angular momentum. It is a straightforward m atter to
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show that, for p-wave scattering with the z component of the total angular momentum 

set to zero, ^  reduces to one term for each of the I symmetries, since mi and m 2 can 

only take on the value zero. The Clebsch-Gordan coefficients are thus conveniently 

absorbed into the overall normalisation of the Hylleraas expansion,and need not be 

explicitly evaluated.

A suitable form for a two component trial function for positron-hydrogen p-wave 

scattering, and the one actually used, is thus

=  ^u{r 2 )Yio{ei,<l)i)y/k[jiikri) -  I<l^ni{kri)[l  -  exp (-A ri)]^ }  

-^Ps(r3)V"io(^p, <I>p)V^K2 i^i{kp)  [1 -  exp(-/ip)]®

+^H(ï'2) e x p [ - (a ri 0 r2 -fvs)] ( Tio(^i, <?i>i)ri a trT rj'rJ '’

+ ^ 0(^2, <i!̂2)r2 ^ I , (2.61)

^2  =  ^Ps(r3)}1o(^p, (j>p)y/^ {j i i^p) -  / i 22«i(/cp) [1 -  exp(-pp)]®} 

- ^ H i r 2 )y\o{0 i, <f)i)\/lcKl2 'ni(kri) [1 -  exp(-A n)]^

+$H (7 '2)exp[-(ari + /3r2-{■-fr^)] Yio{6 i,<l)i)ri'^Cir^W^r^'
1=1

+)^o(^2, <62)̂ 2 ^  I • ( 2 . 6 2 )

The first order spherical Bessel and Neumann functions are now

h i k r )  =  ( 2 . 6 3 )

and

and the relevant spherical harmonics, Vio are given by

yioiS,<t>)  =  \ I - ^ C O S 0 .  ( 2 . 6 5 )
47T
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In the case of cf-wave (/ =  2) scattering, three different symmetries of short-range 

term are necessary, corresponding to (7% =  2 , /2 =  0), (l\ = I J 2 = 1) and (h =  0 , 2̂ == 2). 

For the first and third cases, we can only have mi =  m 2 =  0, so we have

V^(2,0,2,0) =  W ^ i,< 6i % % , ÿ 2) <  2 ,0 ,0 ,0 |2 ,0  > (2.66)

# , 2 , 2 , 0 )  =  roo(^i,0i)r2o(02,</>2)< 0 ,2 ,0 ,0 | 2 , 0 > .  (2.67)

Again, the Clebsch-Gordan coefficients and the zero order spherical harmonics Fbo,

which are independent of angle, are conveniently absorbed into the variational param

eters in the Hylleraas expansion. The second order spherical harmonics are of the form

l 2o ( ^ ,  (f>) =  ( 2  ^  ~  2 )  ’ ( 2 .6 8 )

For the second I symmetry (7% =  1,72 =  1) the situation is more complicated, as there 

are three sets of values of m which satisfy (2.59) and (2.60); we thus have

î / j ( l ,1, 2 , 0 ) =  y i ,_ i(0i, 0 i)Yi^+i(02, </>2) <  1, 1 , —1 , + 1 |2 , 0 >

+Fi,o(^i, (^i)Fi,o(^2, <̂2) < 1, 1, 0 , 0 |2 ,0  >

■fll,+i(^i, </>i)Ki,_i(^2, ^ 2) < 1 ,1 ,+1 , ~ 1 |2 ,0 > (2.69)

The Clebsch-Gordan coefficients required are

< 1,1, d-1, —1 > =  -ÿ= (2.70)

(2.71)

<  1,1,0,0 > =  (2.72)

and the three 7 =  1 spherical harmonics have the forms (2.65), for m =  0, plus

=  - J ^ s m ê e ' *  (2.73)
V OTT

=  + , / ^ s i n 0 e - ‘*. (2.74)
V 07T
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The form of ^  for the second symmetry can thus be shown to be

(2.75)
3

^ ( 1, 1, 2 , 0) =  —  (3cos^i cos ^2 — cos ^12)
1

LvÆJ

Since it is only necessary that the spherical harmonics are combined in the correct 

ratios, it is again simpler to absorb the common factor ^  into the normalisation of the 

linear variational parameters.

If, as in the s-wave case, the S  and C notation is used for the Bessel and Neumann 

terms respectively, the stationary condition for the higher partial wave trial functions 

yields a matrix equation whose form is identical to (2.14). The short-range terms in the 

matrices A  and B  are most conveniently ordered as they appear in the trial functions, 

although this is quite arbitrary.

For partial waves higher than / =  0, a centrifugal 1(14- l) /r^  term arises from the ac

tion of the kinetic energy operator in the Hamiltonian on the angular functions Yio(6  ̂<f)) 

in the trial function, and this may be considered to represent an additional repulsive 

component in the interaction potential. Indeed, as we move to higher partial waves, this 

term becomes increasingly effective at keeping the positron away from the inner regions 

of the atom, lessening the importance of the short-range correlations, and making the 

Born approximation an increasingly good representation of the scattering process. In 

the previous work of Humberston on posit ron- hydrogen scattering, predictions of cross 

sections summed over all partial waves used the Born approximation for / >  3.

The greater complexity of the higher order spherical Bessel and Neumann functions 

makes analytic integration of any of the matrix elements impractical, and numerical 

techniques have been used throughout for partial waves higher than / =  0. The more 

complicated angular dependence of the spherical harmonics Yiq makes integration over 

the external angles more complicated too, but this is still simple enough to perform 

analytically. The angular integration of a typical p-wave matrix element is described in 

detail in Appendix C.
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C hapter 3 

Threshold Effects in 
Positron-H ydrogen Scattering

3.1 Introduction

In the previous Kohn variational calculations of positron-hydrogen scattering cross sec

tions, the whole of the energy region below the first excitation threshold of hydrogen 

{Eex = 10.2eV) was investigated in some detail, but it remained for behaviour in the 

immediate vicinity of the positronium formation threshold {Ethr =  6 .8eV) to be exam

ined fully. This region is of particular interest, since it affords the opportunity of seeing 

the effect of the new Ps formation channel on the elastic and total cross sections, and 

of comparing results with the more general theories of threshold behaviour bajsed on 

the /^-matrix analyses of Wigner (1948).

In theoretical studies of other atomic and nuclear collision processes (e.g. electron- 

lithium scattering, see Nor cross and Moores (1972)), cusps have been predicted to occur 

in the elastic cross section when an inelastic collision process becomes energetically 

viable, as a consequence of the inelastic cross section starting with an infinite slope with 

respect to the wavenumber or kinetic energy in the incident channel. This situation 

derives simply from the linear dependence of the s-wave inelastic cross section on the 

wavenumber in the outgoing rearrangement channel.

In positron-hydrogen scattering the wavenumbers of the positron. A:, and positron-
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ium, /c, are related by

— + Eh — — +  Eps, (3.1)

where E h and Eps are the ground state energies of hydrogen and positronium respec

tively. Wigner’s E-matrix threshold theory predicts that, for energies close to threshold,

the inelastic cross section for a given partial wave / behaves like

< 7pg  OC (3.2)

and therefore

^  a  (2 /+ 1)k^'. (3.3)
an

The gradient of the cross section with respect to k is

and from (3.1) we have

so consequently

d c T p s  _  dcTpg dn
dk da dk ’

d/c 2 k 
dk K

(3.4)

(3.5)

(X 2k{2t + !)« " '- '.  (3.6)
dk

For s-wave scattering then, where / =  0, the linear dependence on /c of the inelastic 

cross section leads to an infinite derivative with respect to Ar as « —̂ 0 , although for all 

higher partial waves the slope is finite. The effect that the behaviour of the positronium 

formation cross section has on the elastic cross section is discussed later, in the context 

of the results obtained from these latest investigations.

Another stimulus to perform further calculations has been the recent experimental 

interest in threshold effects in positron-atom scattering. This follows an analysis of 

various e'^-He scattering measurements by Campeanu et ai (1987), which suggested 

the possibility of a cusp-like structure in the elastic cross section at the positronium 

formation threshold. Coleman et al. (1992) have since made measurements of elastic
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cross sections for this system more directly, but failed to observe any such anomalous 

feature. The negative findings here were also borne out by the investigations of Moxom 

(1993), who measured Ps formation cross sections for the noble gases from He through 

to Xe. The results of these latter investigations were fitted using i^-matrix threshold 

theory (Moxom et a i ,  1994), the fits then being used to predict the energy dependence 

of the elastic cross sections for these atoms. Although no cusp was predicted for He 

by this analysis, such structure was predicted to develop for the heavier atoms, as a 

consequence of the increasing strength of the positron-atom interaction.

Further, more detailed theoretical investigations of positron-hydrogen scattering also 

seem pertinent, in view of recent experimental advances in the study of this system. 

Sperber et a i  (1992) have now measured the total ionisation cross section, which, in 

the Ore gap, reduces to the Ps formation cross section. These results appear to be in 

reasonable accord with the theoretical predictions of Humberston (1986).

Positronium formation in positron-hydrogen scattering is possibly the simplest re

arrangement process which can be considered in atomic physics and, as such, is an ideal 

case for comparison with the predictions of threshold theory. In addition, the formula

tion of the Kohn calculation described in chapter 2 is essentially ab initio,  containing a 

full description of the interactions between the three bodies comprising the system, and 

thus should be able to reproduce any of the qualitative features predicted by theory, 

providing sufficiently elaborate trial functions are used.

3.2 R esults

Both the single- and two-channel versions of the Kohn formulation were used for calcu

lating S-, p- and d-wave cross sections at very small energy intervals on either side of the 

Ps formation threshold. The non-linear parameters were set to the values used for pre

vious work, and the e""'-H codes were used in essentially their original forms, although
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changes were made to allow larger matrices to be generated from more flexible trial 

functions, this time containing up to 220 linear parameters of each symmetry (w =  9).

Because the formalism is not analytically continuous in going across the Ps formation 

threshold (since the two-channel approach does not define imaginary values of n for 

energies below threshold), it is important to ensure that any anomalous behaviour which 

is observed to occur in the elastic cross section is not simply the result of differing levels 

of convergence for the two formulations. In all partial waves, in fact, some sort of step 

WEIS observed in cr[i when changing from the single- to two-channel calculation. One 

factor which particularly has to be taken into account above threshold is the behaviour 

of the long-range functions S 2 and C2 for very small values of k. The spherical Bessel- 

type S 2 terms always decay to a finite value as /c —» 0, but the Neumann-type C2 

functions have a behaviour close to the origin given by

lim n/(/cp) oc (3.7)
Kp-̂ O \^P)

and consequently become more singular as I increases. In the present formulation, a 

shielding factor is introduced into the C2 terms to keep the wavefunction finite as p —> 0, 

but the problem remains of C2 blowing up as /c —> 0 with resulting computational 

difficulties which grow more acute for the higher partial waves. Although it is a simple 

m atter to introduce an energy dependent shielding factor which causes C2 to vanish 

smoothly as /c —̂ 0, this amounts effectively to uncoupling the positronium channel at 

low Ps energies, and diminishes the accuracy of the representation. At the very low 

Ps energies encountered close to threshold, the range of the interaction also becomes 

long, and it is very likely that the short-range Hylleraas terms alone may be insufficient 

fully to represent the scattering process. For these reasons, convergence was studied 

carefully for values of k extremely close to threshold on either side.

Cross sections for the energy region close to threshold are illustrated for the s, p 

and d partial waves in figures 3.1, 3.2 and 3.3 respectively. In figures 3.4, 3.5 and
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Figure 3.1: Cross sections for elastic scattering and positronium formation in positron- 
hydrogen s-wave scattering.
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Figure 3.2: Cross sections for elastic scattering and positronium formation in positron- 
hydrogen p-wave scattering. Results obtained by Meyerhof (1994) using an R-matrix 
fitting procedure are included as the dashed line.
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Figure 3.3: Cross sections for elastic scattering and positronium formation in positron- 
hydrogen d-wave scattering.

53



0.045

0.040

0.035

% 0.030

0.025

0.020
0.0 0.005 0.01 0.015

1 / cd"

0.02 0.025

Figure 3.4: Convergence of the 5-wave elastic cross section for energies just below 
{k =  0.707106g0^5 x) and above {k = 0.707107aF\ +) the Ps formation threshold for 
positron-hydrogen scattering. For both plots, n =  3.5.
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Figure 3.5: Convergence of the p-wave elastic cross section for energies just below (x ) 
and above (+) the Ps formation threshold for positron-hydrogen scattering. The values 
of n are 3.2 and 2.7, below and above threshold respectively.
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Figure 3.6: Convergence of the cZ-wave elastic cross section for energies just below (x ) 
and above (+) the Ps formation threshold for positron-hydrogen scattering. The values 
of n are 2.0 and 1.2, below and above threshold respectively.
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3.6, convergence of the cross sections is illustrated as a function of an inverse power 

of w, using the method described in section 2.2.5. Below threshold the convergence 

corresponds to A; =  0.707106aôS and above threshold k =  0.707107aô^ has been used. 

It was believed justifiable to extrapolate the elastic cross sections in this way, rather 

than just the diagonal /i-m atrix  elements, since / i n  does not change sign in any partial 

wave when the number of linear parameters is increased, and thus the cross sections 

converge monotonically. Above threshold, it is true that K \ 2  and K 22 contribute to 

the elastic cross section but, being extremely small, they have very little effect on the 

convergence trend.

3.3 Threshold Theory

In considering the effect of the newly opened inelastic channel on the elastic cross 

section, we follow Meyerhof (1962,1963) and work with the 5-matrix, in terms of which 

the partial wave cross sections are given by

'el — +  1)|1 — (3.8)

(Tpg — ^ ( 2 /  -t- l)|5{2l^- (3.9)

Conservation of flux requires that

l‘SiiP +  |5j2p =  l, (3.10)

SO the expression for the positronium formation cross section may alternatively be 

written

~  (3.11)

whereupon the total cross section in a given partial wave is easily shown to be given by

^tot =  +  ^Ps = +  1)2(1 -  ReS[^). (3.12)
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So long as we take care to keep the different partial waves separate, it avoids unnecessary 

algebraic complexity to work in units of cross section ^ (2 /  +  1). Rearranging (3.11), 

we thus have

= 1 - 4 , (3.13)

and hence

At energies very close to threshold, where dp^ is still very small, we get a good approx

imation by using a binomial expansion on (3.14) and neglecting terms of second order 

and higher, so that

~  (3,15)

We make no assumptions yet about ûi, except to note that at threshold, where crps =  0, 

the 5-matrix is defined by

S[i = exp2i9i, (3.16)

which means that when E  = Ethri 9i is simply the scattering phaseshift in the /th partial

wave. The expression for 5{j, equation (3.15), can be made to apply below threshold, as

well as above, by replacing (jpg by a purely imaginary quantity, >̂̂ (/c), which is arrived 

at by considering Wigner’s threshold relation (3.2) for E  < Ethr- In this energy region 

we have k. = 2’|/c|, so if the constant of proportionality in (3.2) is C, we can write

^ (̂/c) =

=  z(-l)'(7|,g(|/c|). (3.17)

It should be noted, however, that, since this attempt to find a quantity which is an 

appropriate continuation of <jps below threshold already makes use of Wigner’s threshold
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rela tion , it can only be taken to  be stric tly  valid im m ediately below threshold. If we now 

take CTpg always to m ean (%pg(|/c|), then a suitable expression for S[i ,  which is continuous 

across threshold, is

=  . /  I ,  (3.18)
1 I j  1

w here the  upper line refers to  positron energies E  > Ethri and th e  lower line to  <  Ethr- 

If we abbrev iate  the  te rm  in brackets as F;, then  from  (3.8) th e  elastic cross section is 

given by

a l ,  =

=  (l -  (l -

=  1 -  -  Fi'e-^'^‘ +  |Fip (3.19)

Above threshold, where Fi is real, this becomes

ah = 1 — 2Ei cos 2 0 1  +  Ej^

= l - 2 E i ( l - 2 s m ^ 0 i ) - \ - F ^ ,  (3.20)

and it is soon found, substituting in the explicit expression for Ei and dropping the 

second order term in CTpg, that

ah = 4sin^ — 2 sin^ /̂(Tpg. (3.21)

Below threshold, on the other hand, we find that if we again ignore the term of second 

order in CTpg, then

(Jg/ =  1 — (cos 2^ /+  z sin 2^/) — —(7pgi( —1)̂ ^

— (cos 2$i — i sin 2^/) "h 1

=  2 — 2 cos 2$i — (7pg(—1)̂  sin 20i 

=  2 -  2(1 -  2 sin^ ^f) -  cTpg(-l)^ sin 26̂ /,

=  4sin^ — <jpg(—1)̂  sin2^n (3.22)

59



Combining (3.21) and (3.22), and reintroducing the factor ^ ( 2 / +  1), we thus get

3.4 D iscussion

Predictions about the physical behaviour close to threshold based on (3.23) clearly 

depend on the interpretation of the parameter Oi. At E  = Ethr we have

<7 ,̂ =  ^ ( 2 /  +  l)sin^0,, (3.24)

which is consistent with taking it to be the scattering phaseshift. Away from threshold, 

however, the above derivation leaves Oi with a somewhat arbitrary energy dependence. 

If we assume it to vary slowly enough with energy that it can be considered to remain 

constant over the region close to threshold, then the energy dependence of the first 

term in (3.23) is restricted to the k~^ factor, and the second term can be interpreted 

as essentially a correction to the elastic cross section at threshold. It is immediately 

obvious that such an interpretation requires to fall away immediately above threshold 

for all partial waves, with the behaviour below threshold dependent upon the value of 

the phaseshift at threshold and whether I is odd or even.

The elastic cross sections for the s, p and d partial waves in positron-hydrogen 

scattering (figures 3.1-3.3), however, all appear to violate these predictions, by rising 

immediately above threshold, and it therefore appears necessary to take account of the 

energy dependence of 6i, even for the purpose of making qualitative predictions. A 

more rigorous derivation from i?-matrix theory defines a phase parameter 6/, in terms 

of which the S'-matrix is shown to be given by

S'n =  « '" ' ( l -^4s{  ■ )- (3.25)

for / =  0 , and

S ‘n  = +  iB, -  )  , (3.26)
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for / > 1. The Bi term is due to Breit (1957), and is given by

^  f 1 ,0271
' 2'+> [;!/(2/!)2] (2/ -  1) 1 -1  ’  ̂ ^

where

R  =  /ca, (3.28)

a being the radius of the jR-matrix sphere, which defines the region of interaction outside 

which the wavefunction is taken to assume its asymptotic form. Within the i?-matrix 

formalism. Si is defined to be the phaseshift with the inelastic channel uncoupled, which, 

in the case of positron-hydrogen scattering, means a phase which has no component 

corresponding to positronium formation, either real or virtual. This definition holds 

for energies both above and below Ethr^ and hence Si varies smoothly across threshold. 

Since the S'-matrix reduces to exp 2 iSi at threshold, we also have the result that, at this 

particular energy, the uncoupled and fully coupled phases coincide.

In the Kohn formulation, it is impossible to calculate the uncoupled phase of the 

Æ-matrix formalism, because the presence of virtual positronium is implicit in the form 

of the total Hamiltonian for the system, and the trial functions will always attem pt to 

represent Ps, where it makes a contribution to the scattering process. Above threshold, 

it is possible to uncouple the real outgoing positronium channel, as described in chap

ter 5, but this does not suppress all reference to virtual Ps, as required by i?-matrix 

theory. In the absence of accurate i?-matrix data for the quantity Si in the case of 

positron-hydrogen scattering, we assume that at threshold it takes on the value of our 

fully coupled estimate of the phaseshift, and varies only slowly with k.

For 5-wave scattering, there is no Breit term, and thus the phase parameter Si of 

equation (3.25) is equal to 6 i in equation (3.18)—hence the form of (3.23), which gives 

the threshold effect in the elastic cross section, is unaltered. Since the positronium 

formation cross section varies with infinite slope at threshold, and is assumed only 

to vary slowly, we therefore expect the elastic cross section also to be varying with an
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infinite derivative. According to /^-matrix theory, then, the 5-wave elastic cross section 

must fall immediately above threshold. If 60 lies in the first or third quadrant, so that 

sin 2^0 is positive, then we also expect to be falling below threshold, as we move 

towards lower positron energies, giving rise to a distinct ‘Wigner cusp’. Otherwise, if 

60 lies in the second or fourth quadrants, <7°̂  rises below threshold.

In the Kohn variational investigations, we find that the s-wave phaseshift just 

below threshold lies in the fourth quadrant (at k =  0.7071, for w =  6 we have 

Sq =  —0.055rads), and so we would expect a rise in <7°̂  with decreasing k below thresh

old, rather than a fall. Referring to figure 3.1, we see that in the vicinity of the threshold 

<7pg reaches a maximum of approximately 0.0047rao, and hence the threshold effect in 

the elastic cross section for B  < Ethr’, which is proportional to CTp̂ sin 26o, is of the order 

of 4 X lO '^ T T U g. Above threshold, the drop in (7° as a consequence of the onset of the new 

channel is expected to be an order of magnitude smaller still (<7pg sin^ 60 ~  IO'^ttqo)- 

Such effects are much too small to be resolved within the accuracy of the present cal

culation, and certainly likely to remain unobserved experimentally.

The slight structure in the s-wave Ps formation cross section, in the form of a 

rounded maximum, had not been observed in the previous Kohn variational investiga

tions of positron-hydrogen scattering. More structure has been noted in this energy 

region in calculations using the reactive scattering method by Archer et al. (1990), 

although they calculate CTp̂ to be approximately 15% smaller. Recent investigations by 

Carbonell (1994) using the Fadeev technique, however, yield an 5-wave Ps formation 

cross section which is in excellent agreement with the present results for energy in the 

Ore gap, suggesting that the Kohn results are probably very reliable.

The variationally calculated s-wave elastic cross section illustrated in figure 3.1 

does exhibit a small downward step in going across threshold, which corresponds to the 

change from the single- to the two-channel Kohn formulation, but this is not believed to
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be a real physical feature. The sense in which cr̂ i converges, as illustrated in figure 3.4, 

indicates that the results above threshold are rather more accurate than those obtained 

below. This is probably because the presence of the positronium terms in the trial 

function in the two-channel formulation allows a better representation of the long-range 

interaction to be attained than do the Hylleraas terms alone.

For partial waves higher than / =  0, it is possible for the Breit term to be absorbed 

into the phase factor 6 i of (3.18), so that (3.23) may still be used to obtain the threshold 

effects, but it is easier to see how it affects the elastic cross section by using (3.26) as 

it stands. It is then found that the appropriate expressions for the elastic cross section 

above and below threshold are given by

= ÿ ( 2f +  1) sin ' 4  +  2B, sin 26, -  4 , { 26, ' (3 29)

For the partial waves of interest, the Breit term is given by

B, -  ^  {  i ,  (3-30)

»  -  3 & { - l  <“ *>

Since <7pg is proportional to close to threshold, the Breit term is always pro

portional to /ĉ , making it the dominant correction term in the immediate vicinity of 

threshold. The energy range over which it dominates the third term is governed, for a 

given partial wave, by the size of the i?-matrix radius, a. The sign of the correction is 

then given by the phase factor, 6 i—if 6 i lies in the first or the third quadrant, then the 

Breit term makes a positive contribution to the elastic cross section above threshold, 

and a negative contribution below. Otherwise, the reverse is true.

Assuming 6 i to remain constant in the region close to threshold allows a qualita

tive matching of ^-m atrix  theory with calculation. In the Kohn results for positron-

hydrogen p-wave scattering, the phaseshift lies well within the first quadrant for energies 

close to threshold (at k = 0.7071 and w =  6, the phaseshift is O.lSlrads), and thus the
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Breit term is expected to cause a rise in the elastic scattering cross section for E  > Ethr 

and a fall when E < Ethv’ When \k \ becomes sufficiently large, the third term in (3.29), 

which is of the opposite sign both above and below threshold for / =  1, overwhelms 

the Breit term ’s influence, and the trend ought to reverse. Both of these characteristics 

seem to be borne out by the present investigations, as is illustrated well in figure 3.2. 

The convergence plots in figure 3.5 show that the small discontinuity observed in going 

across threshold is almost certainly the result of differing levels of convergence, with 

results above threshold being marginally better converged. The small magnitude of 

these differences, however, would appear to indicate that the non-linear parameters in 

the wavefunction are well optimised.

Meyerhof (1994) has attempted to fit the above jR-matrix theory to the present 

Kohn elastic scattering data, and some of the results of his analysis are included in 

figure 3.2. This fit has used an energy-independent ^-m atrix sphere radius, fixed at 

a = 1.95^0• The energy dependence for the uncoupled phase, 6/, has been estimated 

from a fuller i?-matrix treatment, which Meyerhof has used to investigate the influence 

of the positronium formation channel over a wider energy range than is considered 

here. By definition, 6 i is made to coincide with the Kohn estimate of the phaseshift at 

E  = Ethr- It can be seen that above threshold the i?-matrix theory fits the Kohn data 

quite well, reproducing the distinctive hump in the elastic cross section, which is also, 

incidentally, a feature of the recent positron-hydrogen calculations of Higgins and Burke 

(1993). Below threshold, the trends of the Kohn and ^-m atrix  data are in qualitative 

agreement, but the energy dependences of the cross sections are very different. This 

may be due to the fact that the form for the quantity which replaces the Ps formation 

cross section below threshold (given by equation (3.17)), is only appropriate over a very 

small energy range. The indications are, therefore, that the theory discussed above, for 

a quantitative analysis, requires some modification for energies E  < Ethr-
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In the case of cf-wave scattering, the phaseshift again lies comfortably within the first 

quadrant (0.0835radians at A: =  0.7071 and w =  6 , converging upwards), suggesting that 

the sign of the Breit term ’s contribution to crh should be the same as for the / =  1 partial 

wave. Below threshold, however, the third term in (3.29), for / =  2, acts to reduce 

reinforcing rather than cancelling the effect of the Breit term. Again assuming 6 2  to 

be approximately constant in the threshold region, the present results seem to be in 

accord with these predictions.

Doubt must be cast, though, on the reliability of the Kohn d-wave results below 

threshold by the unphysical step which appears in the elastic cross section in going 

from the one- to the two-channel formulation. Although the convergence characteris

tics illustrated in figure 3.6 individually appear quite respectable, the above and below 

threshold cross sections seem to be converging to markedly different values. The scatter 

of the lower energy cross sections, however, makes a reliable extrapolation rather diffi

cult. The inverse power of w here is selected so that all the results lie as close as possible 

to a straight line, whereas it may be that the results for the higher values of w should 

be given more weight. Taking the points corresponding to the three highest values of 

w below threshold, for example, would enable an extrapolation to a value closer to our 

estimate of the cross section just above threshold.

A comparison with other work (for example. Register and Poe (1975)) shows that the 

present results are indeed rather poorly converged below threshold, suggesting that the 

non-linear parameters in the trial function are not very well optimised. Above threshold, 

on the other hand, results are well in accord with those of recent hyperspherical close- 

coupling investigations by both Zhou and Lin (1994) and Igarashi and Toshima (1994), 

despite the fact that the same non-linear parameters have been used as in the one- 

channel problem.

The reason for the inferior convergence is likely to be the same as for s-wave scat
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tering, namely that the positronium terms are able better to represent the long-range 

interaction than are the Hylleraas terms alone. The fact that the p-wave results are 

in much better agreement above and below threshold, however, would seem to indi

cate that the existing forms of trial function, with more suitably chosen non-linear 

parameters, would be capable of improving convergence, and further study is clearly 

warranted.
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C hapter 4 

T he Lithium  M odel A tom

4.1 Introduction

One of the major differences between the variational treatments of positron-hydrogen 

and positron-lithium scattering is the use, in the latter case, of a model to describe 

the system under investigation. In the positron-hydrogen work, the simplicity of the 

situation mahes an essentially complete representation possible—here there are three 

distinguishable particles, and thus three inter-particle interactions to consider, where 

the nature of the interactive forces is known completely. The distinguishability of the 

electron, proton and positron means that no allowance is necessary for exchange effects 

brought about by the Pauli exclusion principle, and the limits on the accuracy of the 

final cross sections are governed by the flexibility and form of the trial functions and, 

to some extent, computational precision.

In view of the completeness of the representation used for calculations of positron- 

hydrogen scattering, assessments of the accuracy of the theoretical cross sections are 

made on the basis of agreement between different techniques, and stability of results. 

Experimental investigations of the positron-hydrogen system have not yet reached a 

level of sophistication where a detailed comparison of low energy partial cross sections 

is possible, although measurements of cross sections are now becoming available (for 

example, Sperber et al. (1992), Zhou et al. (1994)). The theoretical results obtained
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using the Kohn method are very well converged and, below the Ps formation threshold, 

agree to high precision with those of Bhatia et al. (1971,1974), thought to be the most 

accurate available. Above threshold, the cross sections for both elastic scattering and 

positronium formation are also very stable and, as discussed in chapter 3, are seen to 

agree qualitatively with i?-matrix threshold theory.

The complexity and number of inter-particle interactions associated with the positron- 

atom system obviously increase as we move along the periodic table to higher atomic 

numbers. For the second simplest atom, helium, a complete representation of the scat

tering problem needs to account for six inter-particle interactions (treating the nucleus 

as a point charge) with the further complication of exchange effects between the two 

electrons. The results of positron-helium calculations so far using the Kohn method 

(Humberston 1973, 1979 and Campeanu, 1977) have utilised the ‘method of models’ 

approach for the calculation of elastic scattering cross sections below the Ps formation 

threshold. Here, an accurate, but not exact, target wavefunction was generated from 

a Rayleigh-Ritz variational calculation, and then assumed to be an eigenfunction of a 

very good approximation to the target Hamiltonian. Subsequently expressing all com

ponents of the scattering trial function as products of this model target wavefunction 

with appropriate other functions, simplified the formulation of the problem consider

ably, enabling the nature of the electron-nucleus and electron-electron interactions to be 

disregarded. (Further information on the method of models is contained in Appendix

A.)

The excellent agreement of experimental and theoretical data for elastic scattering 

cross sections for the positron-helium system indicates the strength of this approach 

for the one channel case. The treatment of Ps formation for energies above threshold, 

however, necessitates the abandonment of the method of models if the resulting He"*" 

ion is to be considered as having structure. Work is currently under way to investigate
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this more complicated problem.

A full representation of the positron-lithium system, effectively a five-body problem, 

would require the consideration of ten inter-particle interactions, but the lithium atom ’s 

physical structure makes it particularly amenable to treatment as a hydrogenic atom, 

and this is the approach which has been adopted. The tightly bound inner Is shell 

shields two units of nuclear charge very effectively from the 2s valence electron which 

is consequently very loosely bound. Exchange forces between the two shells are thus 

rendered very small, and a very good approximation to the real situation is obtained by 

making the assumption of a point core in the field of which the valence electron moves. 

The small influence of exchange effects is also convenient in that it allows the further 

assumption that the various components of the positron-core potential have the same 

form as for the electron.

4.2 The Lithium  M odel Potential

The potential used to represent the interaction between the electron and core is based 

on a phenomenological one developed by Peach et ai (1988). The full form of the 

Peach potential is

F ( r )  =  +  ( 4 . 1 )

where

(̂ 2{x) = [X2{x)Ÿ , X2{x) = l -e~^J2^'  
n=0

The first two terms represent the static component of the potential, and the third arises 

due to the polarizability of the inner shell electrons, ad being the dipole polarizability of 

the core which has a value of 0.1925flo- The parameters 7 , S and S' are chosen so as to 

provide a close fit to the observed energy spectrum of the lithium atom. Two different 

sets of values have been found to yield excellent agreement with experiment, and both
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have been used for the scattering calculations. The one on which most attention has 

been concentrated produces a 2s state, of the correct nodal structure, corresponding 

to the ground state of the real atom, and energies for the first three s and p states 

which are within 1% of experimental estimates. Inevitably, however, it also gives rise 

to a very tightly bound Is state which, of course, has no real existence. It has been 

assumed that the very large energy separation of the Is and 2s states of this potential 

{Els =  —51.5eV), in comparison with the collision energies under investigation, renders 

the former’s influence very small in the scattering problem.

As a check on this assumption, the second set of parameters causes the introduction 

of a short-range repulsive component into the electron-core potential, which prevents the 

formation of the tightly bound Is pseudo-state, but instead produces a Is state whose 

energy is in good agreement with experimental estimates of the lithium ground state. 

Although the energies of the higher eigenstates of this potential also correspond well 

with experiment, it has a drawback when considering scattering in that the structure 

of its eigenfunctions is unrealistic, since each has one less node than that which it is 

supposed to represent physically. Even so, except at short ranges, the ground-state 

eigenfunctions for the two different electron-core potentials seem to agree well, and it 

was felt that both models could be plausible representations of the atom, although the 

first type was clearly the more appealing. Henceforth, the two potentials are referred 

to as A  and B  respectively. Their short range forms are shown graphically in figure 4.1. 

The parameter values are given in Appendix D.

For the reasons mentioned above, exchange forces between the 2s valence electron 

and the electrons in the Is shell are taken to be very small. If this is the case, then 

it is reasonable to assume that very little allowance is made for these effects in the 

parameters of the model potential, and a very good approximation to the positron- 

core interaction can be obtained simply by reversing the sign of the static terms, the
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Figure 4.1: The electron-core model potentials A  and B.
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core polarization term remaining attractive. In doing this, the short-range repulsive 

component of potential B  becomes an attractive well for the positron, thus introducing 

the possibility of unphysical positron-core bound states. At the low positron energies 

considered here, however, tunnelling into this region is unlikely to exert much of an 

influence on the scattering process, although it provides another reason to consider 

potential A  the more reliable of the two.

In the scattering problem the inclusion of the core polarization component in the 

potential generates a slight complication, since the polarization of the core brought 

about by the presence of the electron alters the effect experienced by the positron, 

and vice versa; thus, for a full treatment, the problem requires the introduction of a 

three-body term into the total interaction potential of the form

y \ r i , r 2 ) =  cos )w(/?r2), (4.2)
^1^2

where r\ and r 2 are the radial coordinates of the positron and electron respectively, and 

0 i2 the inter-particle angle at the origin. In addition to increasing the complexity of the 

problem, the introduction of a term in the potential which is of the same sign for both 

electron and positron destroys certain symmetry arguments which prove very useful 

in checking on the numerical accuracy of the scattering calculation. The very small 

polarizability of the lithium core, however, suggested that this complication might be 

an avoidable one, and it was therefore decided to assess the effects on the energy level 

structure and polarizability of dropping the core polarization term altogether.

4.3 The Energy Spectra o f the L ithium  M odels

A Rayleigh-Ritz calculation was performed for both electron-core potentials, with and 

without the core polarization term, using lithium wavefunctions of the form

=  - L  z  (4.3)v47t ,=0 
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The stationary condition yields the set of N  linear simultaneous equations

N - l
(< MH\(f>j > - E  < 4>i\<j)j >) =  0 (4.4)

3=0

where

H  = +  y (r)  (4.5)

and

<t>i =  ^ r ‘e -“'.  (4.6)
V47t

The calculation thus reduces to the matrix eigenvalue problem

{ A - \ B ) C  = 0, (4.7)

the solutions to which can be obtained using any one of a number of ‘black box’ sub

routines. In this case, one of the Numerical Algorithms Group (NAG) Library routines, 

F02AEF, was used for the purpose—this routine returns both the N  solutions for the 

eigenvalues and the corresponding sets of eigenvectors Cj.

The eigenvalues and eigenvectors corresponding to the dilferent energy levels of the 

model atom were calculated for various Æ, and convergence was studied. The expo

nential parameter a was varied separately in order to obtain the lowest possible value 

for the ground state energy, Eq. Figures 4.2 and 4.3 show how the energy eigenvalues

for the 2s and 3s states of potential A  converge with respect to increasing N .  It is

interesting to note the pairing of the curves in these diagrams—in calculating the en

ergy of the 2s eigenvalue, for example, it is found that at the optimum value of a  for 

an even the variational estimate is hardly improved at all by the inclusion of an 

extra term in the expansion. Studying the eigenvectors of the expansion shows that the 

stationary condition seems to force the last c, to be zero, if i is even, although the other 

eigenvectors with even i are non-zero. A similar situation arises in the calculation of 

the 3s state, but here it is the final terms corresponding to odd i that are killed off.
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Figure 4.2: Convergence of the 2a state of potential A  with respect to increasing N.
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Figure 4.3: Convergence of the 3s state of potential A with respect to increasing N.

75



Potential A

N 2s 3s 4s
a b a b a b

5 -0.189401 -0.184340 -0.056594 -0.054657 0.012296 0.014753
7 -0.197227 -0.192986 -0.071986 -0.070905 -0.031969 -0.031264
9 -0.197902 -0.193767 -0.073993 -0.073064 -0.037651 -0.037235
11 -0.197950 -0.193823 -0.074206 -0.073301 -0.038501 -0.038148
13 -0.197952 -0.193826 -0.074223 -0.073320 -0.038619 -0.038279
15 -0.197952 -0.193826 -0.074224 -0.073322 -0.038636 -0.038300
17 -0.197952 -0.193826 -0.074224 -0.073322 -0.038639 -0.038304
19 -0.197952 -0.193826 -0.074224 -0.073322 -0.038640 -0.038304

Exptl. -0.19 8158 -0.074188 -0.038618

Table 4.1: Convergence of / =  0 states of the lithium model atom. The columns labelled 
a include the core polarization term. Those labelled h exclude it. All energies are in 
Hartree.

Potential A

N 2p 3p 4p
a b a b a b

5 -0.121288 -0.118409 -0.056240 -0.055540 -0.005833 -0.004352
7 -0.128669 -0.126337 -0.057169 -0.056518 -0.026850 -0.026288
9 -0.129984 -0.127787 -0.057232 -0.056581 -0.031031 -0.030686
11 -0.130187 -0.128019 -0.057240 -0.056588 -0.031839 -0.031549
13 -0.130214 -0.128051 -0.057241 -0.056590 -0.031963 -0.031686
15 -0.130218 -0.128055 -0.057242 -0.056591 -0.031978 -0.031703
17 -0.130218 -0.128056 -0.057242 -0.056591 -0.031979 -0.031704
19 -0.130218 -0.128056 -0.057242 -0.056591 -0.031979 -0.031704

Exptl. -0.13 0245 -0.057239 -0.03 1976

Table 4.2: Convergence of / =  1 states of the lithium model atom.
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Potential B

N Is 25 35
a b a b a b

5 -0.189486 -0.186568 -0.051279 -0.050150 -0.001962 -0.000942
7 -0.197402 -0.194904 -0.071531 -0.070901 -0.033673 -0.033312
9 -0.198110 -0.195665 -0.073929 -0.073390 -0.037949 -0.037720
11 -0.198155 -0.195715 -0.074170 -0.073645 -0.038541 -0.038342
13 -0.198158 -0.195717 -0.074187 -0.073664 -0.038607 -0.038413
15 -0.198158 -0.195718 -0.074188 -0.073665 -0.038615 -0.038422
17 -0.198158 -0.195718 -0.074188 -0.073665 -0.038617 -0.038424
19 -0.198158 -0.195718 -0.074188 -0.073665 -0.038618 -0.038424

Exptl. -0.198158 (2s) -0.074188 (35) -0.038618 (45)

Table 4.3: Convergence of / =  0 states of the lithium model atom.

Potential B

N 2p 3p 4p
a b a b a b

5 -0.097917 -0.096854 -0.050430 -0.050177 0.010914 0.011395
7 -0.111117 -0.110351 -0.051898 -0.051698 -0.021466 -0.021272
9 -0.113944 -0.113262 -0.051996 -0.051802 -0.027960 -0.027844
11 -0.114498 -0.113837 -0.052008 -0.051815 -0.029373 -0.029281
13 -0.114592 -0.113936 -0.052012 -0.051819 -0.029638 -0.029553
15 -0.114607 -0.113951 -0.052014 -0.051821 -0.029676 -0.029593
17 -0.114608 -0.113953 -0.052015 -0.051821 -0.029680 -0.029597
19 -0.114609 -0.113954 -0.052015 -0.051821 -0.029680 -0.029598

Exptl. -0.13 0245 -0.057239 -0.03 1976

Table 4.4: Convergence of / =  1 states of the lithium model atom.
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Figure 4.4: The ‘ground’ state eigenfunctions of potentials A  (solid) and B  (dashed).

The Rayleigh-Ritz calculations of the energies of the first three s and p states of 

each model, as shown in tables 4.1-4.4, yielded six figure accuracy for TV =  19 and a 

suitable choice of the non-linear parameter, a. For the ground states a value of TV =  15 

proved adequate for obtaining this level of convergence. Figure 4.4 shows the forms of 

the ground state eigenfunctions for both potentials. Figure 4.5 indicates the extent to 

which the form of the 25 eigenfunction of potential A  is affected by the exclusion of 

the core polarization term. Both sets of data, for the full form of the Peach potential, 

and also that excluding the core polarization term, are seen to agree well with the 

experimental estimates quoted, which are those of Johansson (1958). The exclusion
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Figure 4.5: The 2s eigenfunctions of potential A  with (solid) and without (dashed) the 
core polarization term.
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of the term has the effect of shifting the energy of the ground state of potential A  by 

about 2%, with its influence becoming smaller for higher states, as would be expected.

4.4 D eterm ination  o f Polarizabilities

In addition to generating an energy spectrum which is in good agreement with experi

ment, a further desirable property of the lithium core-electron model potentials is that 

they should yield suitable values of the dipole polarizability, for their respective 

ground states. In order to determine it is necessary to consider the atom situated 

in a uniform electric field, e, so that the Hamiltonian for the system becomes

H  =  —^V^ + V(r)  — £rcosÛ, (4.8)

the electric field being chosen, without loss of generality, to lie along the 2-axis. Pertur

bation theory shows that there is no first order correction to the unperturbed eigenvalues 

of the atomic spectrum as a consequence of the presence of the field, but that second 

order effects are important, so that for weak fields the correction, A E ,  is quadratic in 

£, and is such as always to make the energies more negative. The dipole polarizability 

is then given by

a ,  =  (4.9)

To compute the perturbed energy spectrum of the lithium models in the presence of 

a polarizing field, a further Rayleigh-Ritz calculation was performed using the Hamil

tonian (4.8), and a new form of trial function. Since the electric field destroys the 

spherical symmetry of the system, it is necessary to introduce an angular dependence, 

in the form of a p-state character, into the polarized wavefunction. A suitable form for 

the new trial function is thus

(f>Poi =  e '

N - l  M - l
aiv" -f ^  cos 6 

1=0 j=0

8 0

(4.10)



Potential A

M Dipole polarizability, ad
a b

5 160.91 171.86
6 164.75 176.50
7 165.16 177.07
8 165.29 177.23
9 165.29 177.24
10 165.29 177.24
11 165.29 177.24
12 165.29 177.24

Exptl. 163.98

Potential B

M Dipole polarizability, ad
a b

5 120.05 124.28
6 133.38 138.91
7 136.93 142.91
8 138.16 144.30
9 138.38 144.56
10 138.44 144.63
11 138.45 144.65
12 138.45 144.65

Exptl. 163.98

Table 4.5: Convergence of polarizabilities of the lithium models, in Gq, with respect to 
increasing the flexibility of the polarized wavefunction. Again, the columns a and b 
refer to the core polarization term being included and excluded respectively.

With the number of ‘5-type’ terms fixed at Æ =  15, and the electric field strength set 

to £ =  O.OOOlau, convergence of the polarizabilities of the 2s state of potential A  and 

the Is state of potential B  was studied with respect to increasing M, the number of 

‘p-type’ terms. The results of these investigations are shown in table 4.5.

The experimental estimate for the dipole polarizability of lithium, quoted in the 

tables, is that of Miller and Bederson (1977). In comparison with this, the Rayleigh-Ritz 

estimate for the full form of potential A  is in very good agreement, being rather less than 

1% larger. Removing the core polarization term does have quite a pronounced effect, 

however, and increases the overall polarizability, making the error on the experimental 

estimate nearer to 8%.

Using potential R, the agreement between variational and experimental estimates 

is much poorer, which is not surprising in view of the relatively poor representation of 

the lithium p-states produced by this potential. With the full form, the Rayleigh-Ritz 

value is too small by approximately 16%, although removal of the core polarization 

term does have the effect of improving the agreement somewhat, yielding a value which
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is in error by about 12%.

On the strength of the variational calculations of the energies and polarizabilities of 

the two lithium models, it was felt justifiable to proceed with the scattering calculation 

omitting the core polarization term. Its exclusion in the forms for the electron- and 

positron-core potentials, as mentioned earlier, simplifies the formulation of the scatter

ing problem by preserving certain symmetry arguments, and dispensing with the need 

for the inclusion of a further three-body interaction term. The discrepancy between the 

theoretical and experimental estimates of arising as a consequence of ignoring the 

polarization of the core, is likely to affect very low energy scattering most markedly, 

since polarization effects are at their most important here, and this has to be borne in 

mind when assessing the accuracy of the scattering cross sections.
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C hapter 5 

Positron-L ithium  Scattering

5.1 Introduction

As mentioned previously, the alkalis are unusual in positron-atom scattering in that 

the positronium formation channel is open for all energies of the incident positron; 

thus, in considering positron-lithium collisions at any energy, there are at least two 

scattering processes to be considered. In the investigations reported here, studies have 

been confined to the energy region below the 2p excitation threshold of the lithium 

atom (1.844eV), where only elastic scattering and Ps formation are possible, i.e.

e"̂  4- Li — e"*" -f Li elastic scattering

—*■ Ps 4- Li"̂  positronium formation.

An extension of the two channel Kohn method, used previously for the hydrogen prob

lem, is thus appropriate for the energy range considered here for positron-lithium scat

tering, and the basic structures of the existing e"*"-!! codes have been used as the starting 

point for the present calculations.

For systems where an inelastic channel is open from zero energy, as is the case here, 

Wigner’s threshold theory can be used to predict the k dependence of the cross section 

for this process at very low energies. At zero positron energy, we are at the threshold
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for the endothermie process

Ps +  Li+ e+ + Li. (5.1)

If we denote the partial cross sections for this reaction by then, from equation (3.2), 

we can express in terms of the outgoing positron wavenumber as

liincr^i oc . (5.2)

The positronium formation cross section, crj ,̂ is easily expressible in terms of In

terms of the 5-matrix we have

crjj =  ^ ( 2 /  +  1) 5(2 (5.3)

and

(J21 — -^(2/ 4-1) 521 ? (^-4)
7T

.2

but since 5(2 =  5^1, we find

and thus, from (5.2)

^ [ 2  = (5.5)

lim crjg oc \  (5.6)

For 5-wave scattering, therefore, we have the result that the positronium formation 

cross section becomes inversely proportional to k at very low positron energies, and is 

infinite at /: =  0. For the higher partial waves, crp̂  (= <7(2) is zero when the incident 

positron energy is zero. These features should be reproducible in the Kohn calculation.

In considering e'*'-Li scattering in the context of e‘*’-H interactions, one of the major 

differences to be noted is that between the dipole polarizabilities of the two targets: 

for atomic hydrogen, ad =  4.5(Zo, &s compared with 163.98oq for lithium. The very 

high polarizability of the lithium atom inevitably puts great demands on the scattering 

trial functions, particularly at low energies, since the valence electron is very easily
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drawn away from the core by the field of the positron. For this reason, it is important 

that these wavefunctions be sufficiently fiexible in form to allow for the complicated 

interactions which arise when the particles are close to one another. The best test 

of the suitability of the forms is the rate at which results converge with respect to 

systematic improvements in flexibility, and two slightly different forms of short-range 

function have been used in an effort to find the most satisfactory convergence.

5.2 Positron-Lithium  5-wave Scattering

5.2.1 Old Form of Trial Function

The original forms which were used for the lithium 5-wave trial functions are identical 

to those used for hydrogen, (2.2) and (2.3), but with the hydrogen wavefunction ^h(^2) 

replaced by the lithium target function </>Li(r2), calculated in chapter 4, thus

^1  =  Yoo{6i, (j)i)^u['r2 ) \/k  [jo(kri) -  I<l^no{kri) [1 -  exp(-A ri)]}

-Yoo(Op, (j)p)^Ps{r3 ) \ / ^ K l ^  no{Kp) -f exp(-///?)(! -\- ap + hp^)/Kp
N

+Foo(^i, (f>i)^u{r2 ) exp ( - ( a n  -f -f 7 rs)) ^  (5.7)

^2  =  Yoo{0p, <Ap)0 Ps(r3) V ^  {jo(i^p) -  K *22 [^o(Kp) + exp(-//p )(l +  ap +  bp'^)//cp] }

->oo(^i, (l>i)^Li{r2 )V k K l 2 no{kri) [1 -  exp(-Ari)]
N

+loo(^i, <̂ i)0 Li(r2)exp (-(o^n -j- /9r 2 +  ^^ ŝ)) (5.8)
j=i

The formulation then proceeds on the assumption that the lithium eigenfunction evalu

ated in the Rayleigh-Ritz calculation of chapter 4 is an exact eigenfunction of the model 

Hamiltonian, so that the expressions for L operating on the various terms in the trial 

function have the same forms as those derived for hydrogen in chapter 2 .

The elements of the matrices A, B  and (5, LS)  of equation (2.14) are built up using 

numerical integration methods throughout, since the presence of <̂ Li(̂ 2) in all compo

nents of the scattering wavefunction makes analytic integration impractical, even for
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the simpler long-range-long-range terms. Once these matrices have been generated, 

however, the operations performed to evaluate the variational /\-m atrix  and cross sec

tions are the same for lithium as for hydrogen. The major modifications made to the 

hydrogen codes are thus the incorporation of the lithium model potentials in place of 

the pure Coulombic form, and the inclusion of the ground state wavefunctions of the 

new target.

5.2.2 C hoice o f N on-linear Param eters

At first sight, it would appear that the choice of the non-linear parameters a , ^  and 7 

in (5.7) and (5.8) would not be of great importance, provided they were selected so as 

to suppress the Hylleraas terms in the wavefunction effectively at ranges greater than a 

few atomic radii. However, whilst it is true that a large enough basis set can compensate 

for a poor choice of non-linear parameters, it is also the case that rates of convergence 

can be improved greatly by selecting a suitable set of values of these parameters. In 

fact, it was found in earlier work on positron-hydrogen scattering that, particularly for 

the higher partial waves, results are actually very sensitive to the values of the non

linear parameters. This situation arises because of the necessity for the wavefunction 

to represent all possible scattering processes, real and virtual, which might take place; 

for the higher partial waves in hydrogen (/ > 1), the positronium formation and elastic 

scattering cross sections are comparable in magnitude, and the choice of a , ^  and 7 

has to suit the two different channels simultaneously. It is to be expected, therefore, 

that in positron-lithium scattering, results and rates of convergence will be very much 

dependent on a suitable set of values for these exponential parameters, particularly 

since we know, in the 5-wave case, that positronium formation is the dominant channel 

close to zero energy.

The parameters o:, (3 and 7 determine the exponential fall off in the positron-core, 

electron-core and electron-positron coordinates respectively. Without knowing very
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much, however, about the relative importance of the two possible scattering processes 

over most of the energy range considered, it is difficult to predict suitable values for 

them in advance. Broadly speaking, one might suppose that, since the positron will 

tend to attract the outer electron away from the core, the wavefunction will be stretched 

out in the V2 coordinate more than the lithium target function is, making a negative 

value for ^  appropriate. Since, also, the ground state positronium eigenfunction has a 

simple e“ 2^3 dependence, it might be assumed that a value of 7  greater than 0.5 would 

be physically unrealistic.

Although these considerations provide a very general guide to the choice of parame

ters, they are rather too simplistic to be of very much use. When the exponential factor 

is multiplied by the polynomial expansion in the three inter-particle coordinates, n ,  

and T3, the resulting rate of decay of the short-range wavefunction changes, particularly 

as higher powers are included, in a way which is very difficult to predict. Problems are 

compounded by the fact that the optimum values of the non-linear parameters are likely 

to alter with respect to the number of Hylleraas terms, and also to be energy dependent 

although, from the point of view of studying convergence and deriving cross sections 

which vary continuously with energy, it is desirable to have a single set of exponential 

parameters with which to work.

The inclusion of a loop structure within the positron-lithium code, allowing one 

non-linear parameter to be varied, keeping the others fixed, enabled the dependence of 

the /i-m atrix  on the non-linear parameters to be studied for a given energy and a small 

number of linear parameters, typically 20 (w =  3). With a  and 7  fixed, ^  could be 

varied to find a region where the diagonal A^-matrix elements displayed either a local 

maximum, or at least reasonable stability, for both Kohn and Inverse Kohn methods. 

With /9 fixed at this stable value, one of the other parameters could then be varied, 

followed by the remaining one. The cycle was repeated in an attem pt to find a region
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of the non-linear parameter space which was stable with respect to variations in all 

three parameters. Extensive searches were carried out in this way for an energy which 

was intermediate in the range considered; a sample of the graphical output from this 

procedure is contained in figures 5.1-5.3.

Although this method provided some useful information, the search for suitable 

values for a , /3 and 7 proved problematical because of their strong interdependence, 

at least for a low w. The method could conceivably be used for a larger number of 

linear parameters, but would obviously be considerably more time consuming. The 

values eventually settled on for the original form of s-wave trial function were a  =  0.17, 

(3 =  —0.40 and 7  =  0.20.

5.2.3 R esu lts U sing Old Form of Trial Function

W ith this original type of wavefunction, calculations were performed using up to 165 

linear parameters (w =  8), for wavenumbers of the incident positron ranging from 

k =  O.OIoq  ̂ up to A; =  0.36uô\ the first excitation threshold of potential A. A rea

sonably smooth set of results was obtained for the elastic scattering cross section, with 

good agreement between the Kohn and Inverse Kohn calculations, but the positronium 

formation cross sections were generally not in such good agreement, although a trend 

could be observed which seemed to support Wigner’s predictions close to zero energy. 

Convergence of the /i-m atrix  at low energies was also found to be rather poor, as illus

trated in figure 5.4. Rather better convergence was obtained at intermediate energies, 

as in figure 5.5, where the positronium formation cross section was small in comparison 

to that for elastic scattering.

5.2.4 N ew  Form o f Trial Function

Bearing in mind the large distortions that an atom as polarizable as lithium is likely 

to undergo when experiencing the field of the incoming positron, it is evident that the

91



-0.03 Potential A

inverse-
Kohn-0.04

-0.05

Kohn

-0.06

k=0.01

-0.07
4 65 7 8

CÛ

CÛ

Potential A

0.5

Inverse-
KohnK22 0.0

Kohn

-0.5

-1.0
4 7 a5 6

Figure 5.4: Positron-lithium s-wave scattering, potential A. Convergence of the diagonal
/i-m atrix elements for the old style of wavefunction. k =  0.01

92



-1.0

Potential A

-1.2
Inverse-Kohn

Kohn-1.3

-1.4

k=0.15

-1.5

CO

2.0

Potential A

Inverse-Kohn0.5

k- -
K„ 0.0

-0.5 Kohn

-1.0

-1.5 k=0.15

-2.0

Figure 5.5: Positron-lithium s-wave scattering, potential A. Convergence of the diagonal
A'-matrix elements for the old style of wavefunction. k =  0.15

93



main drawback with the original style of wavefunction is the restrictive nature of the 

product form of short-range component. By multiplying every term in the Hylleraas 

expansion by the lithium target function, a form for the scattering wavefunction is sug

gested which may not be appropriate when the particles are in close proximity to one 

another, especially where positronium formation eventually results. For potential A, in 

particular, the node in the 2s eigenfunction forces a node in the scattering wavefunction 

at the same value of the V2 coordinate, which is an inappropriate restriction. Although 

the inclusion of enough Hylleraas terms should ensure a reasonably good result, the 

convergence rate will be much worse if the overall form of trial function is unsuitable. 

In the positron-hydrogen calculation, this problem does not really arise in the same way, 

because of the simple exponential form of the nodeless target wavefunction. Any con

straint that the product form of short-range function imposes here can be compensated 

by an appropriate choice of the non-linear parameter /?, which governs the exponential 

fall-oif in T2.

It was therefore felt that convergence was likely to be improved substantially by 

removing all reference to (j>u{‘f'2 ) in the short-range correlation terms, thus giving more 

freedom to the form of scattering wavefunction.

The new trial functions thus take the form

^1  =  ^ 0(^1, <l>i)^u{r2 )y/k {io(^n) -  Khno(kr i)  [1 -  exp(-A ri)]}

-yoo{Op, (j>p)^Ps{r3)V^K2i [no(«p) +  ex p (-//p )(l -f ap -f bp^)/Kp
N

+loo(^i, ÿi) exp ( - ( a r i  -f (3r2 +  'jrs)) ^  (5.9)
1=1

^2  =  yoo{Op, ÿp)#ps(r3) v ^ {joif^p) -  ^ <2 2  +  exp(-/zp)(l -f- ap +  «/>]}

^i)^Li(^2)''/^A"Î2no(^^i) [1 — exp(—Ari)]
N

+Yoo{0i,(l)i)exp{-{ari A  ^ r 2 +  i^rs)) ^  , (5.10)
j=i

the product forms of the long-range terms being retained, in order that the correct
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asymptotic conditions are satisfied.

Because there is no reference to the lithium target function in the short-range terms, 

it is necessary to change the way in which the short-range-short-range terms in the 

matrix A  of (2.15) are evaluated. Thus, where the operator L = — E)  operates on

the functions </>{, explicit reference is now made to the electron-core interaction and the 

ground state energy of the target model atom. The form of a short-range-short-range 

matrix element for the new style of trial function is

{(f)i,L<f)j) =  J  V i — V 2 +  2K"^(ri) +  2y  (^2) —   — 2Eq̂  (j)jdT{d.ll)

where

01 =  >00(^1,01 ex p [-(a r i -f- (3r2 +  -yn)]. (5.12)

Integrating by parts, as we did for the hydrogen short-range elements, we find

{4>i,L4>j) = y  + V2(^rV2<^j]

+  (2V+ + 2 V -  -  -  2Eo) j  dr, (5.13)

which is the same in form as (2.38) for the product type of short-range term, but 

contains no reference to the target atom wavefunction, whilst including the full form of 

the interaction potential.

A further search of the non-linear parameter space showed that the optimum values 

of the parameters a  and 7  were not greatly affected by the change in form of the 

trial function. With the removal of the lithium target function, however, and the 

exponential dependence on T2 contained therein, it was necessary to adjust the value 

of /? considerably to compensate. The most suitable values found for s-wave scattering 

with the new style of wavefunction were a  =  0.13, (3 =  0.74 and 7  =  0.17.
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5.2.5 R esu lts for 5-wave Scattering

Both of the lithium model potentials were used with the new style of wavefunction to 

perform calculations over the energy range from close to zero, up to the slightly differing 

excitation thresholds of the two potentials. As with the original form of trial function, a 

maximum of 165 linear parameters, corresponding to w =  8 , was used. The non-linear 

parameters used were the same for both potentials.

It was immediately apparent that agreement between the Kohn and Inverse Kohn 

results for positronium formation was much improved, as were rates of convergence 

of the diagonal A'-matrix elements, as shown in figures 5.6-5.9. In nearly all cases, 

the values of K n  and K 22 obtained with the new type of trial function were more 

positive, and hence probably more accurate (according to the empirical lower bound), 

than corresponding results using the old style.

Tables 5.1-5.4 show the most accurate estimates obtained, for both potentials, of the 

variational K-matrix and cross sections at four energies across the range considered. 

Figures 5.10 and 5.11 show plots of the variation of the elastic scattering and positron

ium formation cross sections with k\ the results here are sampled from both the Kohn 

and Inverse Kohn calculations, in order to circumvent the problem of Schwartz singu

larities. The cross sections obtained using the ordinary Kohn functional are used as 

the starting point, with Inverse Kohn results being substituted wherever irregular be

haviour is encountered. Also included in figures 5.10 and 5.11, for comparison, are the 

results of McAlinden, Kernoghan and Walters (1994a), who have performed the most 

sophisticated close-coupling calculation to date of positron-lithium scattering, using up 

to nine states/ pseudostates of Ps, and up to five states of Li; these results supersede 

those of Hewitt et al. (1992) who use fewer states in their close-coupling calculation. 

The curves included on these graphs use the expansion Ps(ls,2s,3s,4s,2p,3p, 4p, 3d,4d) 

plus Li(2s,2p,3s,3p,3d), where the Ps pseudostates are appropriately scaled versions of
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the hydrogen pseudostates of Fon et al. (1981), and the lithium states are taken from 

Weiss (1963). Figure 5.12 shows how fast the close-coupling results change (particularly 

the Ps formation cross section) as more states are included. The full legend for these 

plots is:

5 state: Ps(ls,2s,2p) +  Li(2s,2p)

8 state: Ps(ls,2s,2p) +  Li(2s,2p,3s,3p,3d)

11 state: Ps(l6,2a,3s,4.s,2p,3p, 4p, 3d,Ad) +  Li(25,2p)

14 state: Ps(l5,25,35,4s,2p,3p, 4p, 3d,Ad) +  Li(2s,2p,3s,3p,3d), 

where the 5 and 8 state results are those published in McAlinden et al. (1994b). Note

that results shown for crps obtained using only three states of Ps are scaled down by a

factor of one thousand.

In figure 5.13, the elastic cross section is again plotted as a function of k, but here 

the positronium channel is suppressed. This amounts to removing all the matrix ele

ments in equation (3.16) which contain reference to the long-range positronium terms, 

S 2 and C2. Although virtual positronium formation may still be represented through 

the short-range Hylleraas terms, this formulation artificially forces all scattering to take 

place via the elastic channel. Thus, in regions where the positronium formation cross 

section is normally of large magnitude, it is to be expected that the trial function will 

be under considerable strain to represent the scattering process. Though physically un

realistic, it is interesting to see the effect of preventing scattering into a channel which is 

energetically viable, particularly since several of the earlier close-coupling calculations 

of positron-alkali scattering ignored Ps formation (e.g. McEachran et al. (1990)). It 

should be noted, however, that uncoupling the Ps channel in a Kohn variational calcu

lation is somewhat different from excluding states of Ps in the close-coupling formalism, 

since in the latter case virtual Ps formation is also suppressed.
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-0.000473
-0.000481

0.143458
0.143436

0.10 -0.547425
-0.547824

0.001483
0.000861

0.001629
0.000996

0.088526
0.087628

0.20 -2.357052
-2.253357

0.012639
0.028032

0.012535
0.028160

-0.049412
-0.052214

0.30 6.460034
6.428105

-0.016368
-0.013708

-0.016329
-0.013622

-0.243272
-0.237123

Table 5.1: A^-matrix elements for positron-lithium s-wave scattering, potential A, lj =

k(aô^) (Til (7i2 (J21 <722

0.01 4.62613
4.60165

0.00877
0.00905

0.00001
0.00001

0.35866
0.35855

0.10 92.23037
92.33377

0.00081
0.00030

0.00003
0.00001

0.12712
0.12457

0.20 84.74191
83.52405

0.00239
0.01301

0.00032
0.00169

0.03190
0.03529

0.30 43.40388
43.39391

0.00026
0.00018

0.00006
0.00004

0.55243
0.52628

Table 5.2: Cross sections for positron-lithium s-wave scattering, potential A  in ttoq, 
w =  8 .
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Ü 'i i K \ 2 A 21 A 22

0 .0 1 - 0 . 0 2 4 0 9 0

- 0 . 0 2 4 1 4 0

0 . 0 0 6 6 6 7

0 . 0 0 6 6 7 0

0 . 0 0 6 5 6 4

0 . 0 0 6 5 9 8

0 . 1 6 5 9 7 6

0 . 1 6 5 5 3 0

0 . 1 0 - 0 . 6 0 3 1 3 0

- 0 . 6 0 2 4 2 9

0 . 0 1 8 3 5 7

0 . 0 1 8 3 6 6

0 . 0 1 8 4 1 3

0 .0 1 8 2 4 1

0 . 1 1 1 3 0 0

0 . 1 1 1 5 9 5

0 . 2 0 - 2 . 6 0 4 3 8 1

- 2 . 6 0 6 4 2 8

0 . 0 3 9 4 8 7

0 . 0 3 9 6 7 6

0 . 0 4 0 4 4 2

0 . 0 3 9 7 9 8

- 0 . 0 2 2 2 9 5

- 0 . 0 2 4 4 2 4

0 . 3 0 5 . 5 7 6 5 0 8

5 . 4 6 2 9 9 0

- 0 . 0 7 5 1 0 0

- 0 . 0 8 1 6 2 5

- 0 . 0 7 5 5 2 4

- 0 . 0 8 0 0 8 4

- 0 . 1 9 5 9 6 9

- 0 . 1 9 3 3 8 6

Table 5,3: -matrix elements for positron-lithium s-wave scattering, potential =

k ( ü Q ^ ) (%ii <Ji2 <721 <722

0 .0 1 2 3 . 2 1 0 4 6

2 3 . 3 0 7 6 6

1 . 6 7 6 1 5

1 . 6 9 3 9 0

0 . 0 0 0 8 0

0 . 0 0 0 8 0

0 . 4 9 3 4 0

0 . 4 9 0 8 2

0 . 1 0 1 0 6 . 6 5 1 9 9

1 0 6 . 4 7 0 5 4

0 . 0 9 8 1 7

0 . 0 9 6 4 0

0 .0 0 4 1 1

0 . 0 0 4 1 2

0 . 2 0 6 8 5

0 . 2 0 7 9 3

0 . 2 0 8 7 . 1 1 5 1 2

8 7 . 1 3 3 1 2

0 . 0 2 1 0 0

0 . 0 2 0 3 0

0 . 0 0 2 6 9

0 . 0 0 2 7 2

0 . 0 0 6 3 7

0 . 0 0 7 6 8

0 . 3 0 4 3 . 0 4 5 6 4

4 2 . 9 8 6 5 8

0 . 0 0 7 6 0

0 . 0 0 8 9 0

0 . 0 0 1 7 0

0 . 0 0 2 1 0

0 . 3 7 5 9 9

0 . 3 6 7 1 6

Table 5.4: Cross sections for positron-lithium s-wave scattering, potential B  in ttoq,
uj =
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Figure 5.10: Variation of the 5-wave positron-lithium elastic scattering cross section 
with respect to wavenumber k for potentials A  and B.  The first excitation thresholds of 
the two potentials are labelled a and b. The 14 state close-coupling results of McAlinden 
et al. (1994a) are included as the dashed line.
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Figure 5.11: Variation of the 5-wave positron-lithium positronium formation cross sec
tion with respect to wavenumber k for potentials A  and B.  The first excitation thresh
olds of the two potentials are labelled a and 6. The 14 state close-coupling results of 
McAlinden et ai  (1994a) are included as the dashed line.
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Figure 5.12: Close-coupling results of McAlinden et ai (1994a,b) for positron-lithium 
5-wave scattering, showing elastic scattering (top) and positronium formation (bottom) 
cross sections. Note that the 5 and 8 state positronium formation cross sections are 
scaled down by a factor of 1000.
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Figure 5.13: Variation of the 5-wave positron-lithium elastic scattering cross section 
with respect to k for potential A, but with the positronium channel uncoupled. The 
solid and dashed lines correspond to Kohn and Inverse-Kohn results respectively. The 
crosses correspond to results obtained from McEachran (1992) using eight states of 
lithium in a close-coupling expansion. These latter cross sections are scaled down by a 
factor of ten.
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5.2.6 Conclusions for 5-wave Scattering

Using the new style of trial function, without the product form of short-range cor

relation term, satisfactory elastic scattering and positronium formation cross sections 

were calculated across the energy range from zero up to the first excitation threshold of 

lithium, although convergence at very low energies was not completely ideal. Here, the 

correlations and distortions of the highly polarizable system are really too complicated 

to be represented by the present form of trial function, and a more accurate inves

tigation close to Ar =  0 would require the introduction of medium range polarization 

terms into the wavefunction, of the type used in previous studies of very low energy 

e^-H and e"^-He scattering (Humberston and Wallace (1972), Humberston (1973)). For 

intermediate energies, results were good enough for the convergence of A^n to be fitted 

as an inverse power of w, in the way described in section 2.2.5, Graphs of such fits are 

shown for A; =  0.15 in figure 5.14.

The positronium formation cross sections obtained close to zero energy are in accor

dance with Wigner’s prediction of a k~^ dependence, falling very sharply, with increas

ing energy, from infinity to values negligibly small in comparison with the elastic cross 

section across most of the range considered. There are significant discrepancies between 

CTps for the two different potentials, with that for potential B  falling away much more 

slowly than for potential A. Of the two characteristics, the latter is likely to be more 

reliable since the short-range form of potential A  is more physically realistic. For s-wave 

scattering, this is particularly significant since the /(/-f l) /r^  centrifugal barrier is zero, 

allowing the positron to penetrate the regions close to the core to a greater extent than 

for the higher partial waves. It is interesting to note that the Ps formation cross section 

for each of the two potentials displays a definite upturn as the first excitation threshold 

is approached.

The elastic cross sections appear to be converging downwards with increasing u , as
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Figure 5.14: Positron-lithium a-wave scattering. K n  fitted as a function ofcu " for 
k =  0.15. For Potential A  (top), n =  5, and for Potential B  (bottom), n =  4.
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K\i  becomes less negative, but it is possible that this convergence trend may actually 

reverse at low energies if the latter matrix element eventually passes through zero. This 

would almost certainly give rise to a minimum in the elastic cross section, close to zero 

energies, which would be compatible with that illustrated in the 14 state close-coupling 

results. It should be noted that the infinite value of crpg at&  =  0 does not imply a zero 

elastic scattering cross section here, since the Ps formation rate, proportional to 

is always finite.

The elastic cross sections for both potentials reach a maximum of approximately 

IOOttOo at A: ~  0.15aô^. For k < 0.23aô^ the results for potential B  yield a larger value 

of (JeZ than they do for potential A —again, the latter set is probably more reliable. 

Above this energy, the two potentials provide good agreement for elastic scattering.

The close-coupling results of McAlinden et ai,  in their most sophisticated approxi

mation, agree very favourably with the Kohn variational results, particularly for elastic 

scattering and, in the way that they appear to be converging, lend weight to the as

sumption that potential A  provides the more accurate representation of the electron- 

and positron-core interactions. The effect that the inclusion of more states of Ps has 

on the magnitude of the close-coupling Ps formation cross section is very striking, and 

indicates well the complicated nature of the scattering process. It seems highly likely 

that the inclusion of further states in the expansion would result in a further reduction 

in this cross section, yielding even better agreement with crps as calculated variationally 

using potential A.

Close-coupling calculations have the advantage that cross sections can be calculated 

for scattering into any of the states explicitly incorporated into the scattering wave

function, making the technique applicable over a wide energy range, but they also have 

a drawback in that these states also represent the only allowed virtual transitions in the 

scattering process. The Kohn method, whilst only strictly applicable over an energy

1 1 0



range where asymptotic components are specified for all channels, allows implicitly for 

any im portant virtual transitions, providing the Hylleraas expansion is flexible enough. 

Thus, where convergence is satisfactory, as it is here except at very low energies, the 

Kohn positronium formation cross sections for potential A  can probably be taken to be 

more accurate than the close coupling results obtained so far.

At energies where the Ps formation cross section is very much smaller than the 

elastic cross section, uncoupling the positronium channel has a negligible effect on the 

elastic cross section for potential A. At very low energies, however, the calculation 

clearly breaks down, as the trial function attempts to represent a scattering channel 

whose cross section is tending towards infinity, but which is disallowed by the formalism.
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5.3 Positron-L ithium  p-wave Scattering

5.3.1 Trial Function

The modifications which require making to the positron-lithium s-wave codes to treat 

the / =  1 partial wave are basically analogous to those for hydrogen which were de

scribed in section 2.3. Again, two different symmetries are required for the short-range 

correlation terms, so that the two components of the trial function for p-wave positron- 

lithium scattering have the form

= ^Li(^2)^io(^i, <t>i)Vk {ji(kri)  -  Kl^ni{kri)  [1 -  e x p ( -A r i) f}

-^Ps(r3)]^o(^p, (f>p)\/^Klini{Kp)  [1 -  exp(-pp)]^
/  N,

- f e x p [ - ( a r i  2 3 )] ( yio(<?i, XI

+ lio (^2, <̂2)^2 ^  j  , (5.14)

^2  =  ^Ps(r3)> îo(^p, (f>p)V^ {ji{i^p) -  AT22«i(«/3) [1 -  exp(-pp)]^}

-$ L i(r2)yio(^i, (pi)\/kKl2 ni{kri) [1 -  exp(-Ari)]^
/  Ni

+ exp [ - ( a r i  -f + 7 r3)] ( Tio(^i, <Ai)n XZ ATi'rg'r^'

N2 \
+î^io(^2, <̂2)^2 ^  . (5.15)

i=i /
The angular dependence of the p-wave scattering functions is given by the the spherical 

harmonics, Kio, given by

Tio(^,(^) =  \ -—COS0 , (5.16)
V 47T

which again makes the angular integrations more complicated than for s-wave, although 

no more complicated than for positron-hydrogen scattering. The procedure for perform

ing them is decribed in Appendix C.

Although it arises from the kinetic energy part of the Hamiltonian, the /(/ +  l)/r^

term, which becomes non-zero for partial waves higher than s-wave, effectively adds a

112



repulsive component to the positron-core potential, which tends to keep the positron 

away from the inner regions of the atom. Whilst this probably makes the short-range 

distortions less complicated than in s-wave scattering, the previous studies of hydrogen 

indicated that it was likely that a much larger contribution to positronium formation 

could be expected in p-wave scattering, making it necessary still to retain maximum 

flexibility in the trial functions. For this reason, no attem pt was made to include the 

lithium target function in the Hylleraas expansions, as in the original forms of the 

s-wave trial functions.

5.3.2 R esu lts for p-wave Scattering

A similar procedure to that used for s-wave scattering was adopted to attem pt to 

locate the optimum values of the non-linear parameters, a , ^  and 7 , in the scattering 

wavefunction. The best set of values found was a  =  0 .2, =  0.7 and 7  =  0.2.

These values gave rise to quite good convergence for each potential, at both low and 

intermediate energies in the range under study, as shown in figures 5.15-5.18,

Using 165 terms in the Hylleraas expansion for each of the two angular momentum 

symmetries, calculations were performed for both potentials over the same energy range 

as for 6-wave scattering. For four energies, A'-matrix elements and cross sections are 

presented numerically in tables 5.5-5.8 , and cross sections are plotted as a function of k 

in figures 5.19 and 5.20, where results are again compared with the close-coupling data of 

McAlinden et al. Figure 5.21 illustrates the convergence of these p-wave close-coupling 

results with respect to the inclusion of more states in the close-coupling expansion. In 

figure 5.22 the elastic cross section for both potentials is plotted as a function of k with 

the positronium channel uncoupled.
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Figure 5.15: Potential A. Convergence of the diagonal /C-matrix elements for p-wave
positron-lithium scattering, k =  0.01
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Figure 5.17: Potential B. Convergence of the diagonal /i-m atrix elements for p-wave
positron-lithium scattering, k =  0.01
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k{aô^) K u A i2 A21 K 22

0.01 0.000483
0.000458

-0.005892
-0.005968

-0.005901
-0.005975

1.038902
1.038578

0.10 0.024363
0.025127

-0.129534
-0.129083

-0.129652
-0.129209

0.987039
0.987922

0.20 -0.305067
-0.305150

-0.174105
-0.173758

-0.174106
-0.173756

0.812414
0.810352

0.30 -0.837268
-0.837350

-0.194916
-0.194980

-0.194981
-0.195044

0.602159
0.602668

Table 5.5: A'-matrix elements for positron-lithium p-wave scattering, potential A. w 
8 .

k(a^^) 0-11 <7i2 <̂21 (J22

0.01 0.02604
0.02324

2.00944
2.06075

0.00089
0.00091

27.69600
27.68766

0.10 0.38607
0.41652

10.04318
9.96696

0.40969
0.40653

23.78933
23.81370

0.20 27.03774
27.04168

4.80881
4.79944

0.63129
0.63008

15.35687
15.31099

0.30 54.51348
54.52065

2.08294
2.08314

0.46292
0.46297

7.99973
8.00940

Table 5.6: Cross sections for p-wave positron-lithium scattering, potential A. w =  8 .
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k{aô^) K n A i2 A 21 K 22

0.01 0.000372
0.000368

0.006677
0.006675

0.006686
0.006684

0.955657
0.955858

0.10 0.001952
0.002180

0.149026
0.148012

0.149172
0.148128

0.917305
0.920933

0.20 -0.338811
-0.339156

0.216699
0.216596

0.216717
0.216613

0.754776
0.753473

0.30 -0.897224
-0.897230

0.267004
0.267104

0.267063
0.267165

0.552291
0.554133

Table 5.7: 7\-matrix elements for positron-lithium p-wave scattering, potential B. w =  8 .

k{aô^) cm CTi2 (J21 (J22

0.01 0.01477
0.01439

2.80344
2.80137

0.00129
0.00129

26.35524
26.36102

0.10 0.26819
0.25457

14.15592
13.91394

0.59580
0.58584

22.58500
22.69071

0.20 33.11405
33.16421

7.53458
7.53523

1.01415
1.01425

14.28206
14.25157

0.30 58.34417
58.35238

3.69458
3.69153

0.83692
0.83621

7.35275
7.38770

Table 5.8: Cross sections for p-wave positron-lithium scattering, potential B. u; =  8 .
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Figure 5.19: Variation of the p-wave positron-lithium elastic scattering cross section 
with respect to k iox uj = 8 . The first excitation thresholds of potentials A  and B  are 
labelled a and b respectively. The 14 state close-coupling results of McAlinden et ai 
(1994a) are included as the dotted line.
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Figure 5.20: Variation of the p-wave positron-lithium positronium formation cross sec
tion with respect to k for lj = S. The first excitation thresholds of potentials A  and B  
are labelled a and b respectively. The 14 state close-coupling results of McAlinden et 
al. (1994a) are included as the dotted line.
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Figure 5.21: Close-coupling results of McAlinden et ai  ( 1994a,b) for positron-lithium 
p-wave scattering, showing elastic scattering (top) and positronium formation (bottom) 
cross sections. Note that the 5 and 8 state positronium formation cross sections are 
scaled down by a factor of 10.
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Figure 5.22: Variation of the p-wave positron-lithium elastic cross section with respect 
to A; for w =  8 with the positronium channel uncoupled. The crosses correspond to 
results obtained from McEachran (1992) using five states of lithium in a close-coupling 
expansion. These latter cross sections are scaled down by a factor of ten.
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5.3.3 C onclusions for p-wave Scattering

The p-wave elastic scattering results, shown in figure 5.19, illustrate well the importance 

of selecting a good set of non-linear parameters for the positron-lithium problem, since 

the minimum feature close to A: =  0.1 can easily be missed if they are not well optimised. 

Tables 5.5 and 5.7 show how / in  is positive for low k, but passes through zero and 

becomes negative for higher A;-values. The elastic cross section, which is closely related 

to /^ij, consequently contains a minimum, which is a feature of both potentials. Since 

the diagonal //-m atrix  elements converge from below, however, and below k ~  0 .1, K n  

is only slightly positive, the minimum is only reproducible beyond a certain level of 

convergence, being initially situated at A: =  0 and moving steadily to the right with 

the inclusion of more terms in the trial function. The graphs in figure 5.23, where 

K n  is plotted as an inverse power of w for k =  0.1, show how this matrix element 

converges upwards, from negative to positive values, with respect to increasing the 

number of linear parameters in the scattering wavefunction. A comparison with the 

p-wave results of McAlinden et al. reinforces the authenticity of this feature in the 

elastic cross section.

As in the case of hydrogen, p-wave scattering contributes much more substantially to 

the positronium formation cross section than does s-wave, except at very low energies, 

with CTps rising to a maximum at approximately the same A;-value as the elastic cross 

section reaches its minimum. As illustrated in figure 5.22, the uncoupling of the positro

nium channel produces a very pronounced effect on the elastic cross section, resulting in 

the introduction of an artificial resonance, for both potentials, close to k =  0.3. Below 

this energy, and in fact where the p-wave Ps formation cross section is much larger, 

the uncoupled elastic cross section surprisingly agrees well with the fully coupled cal

culation, although the resonance amply demonstrates the hazards of ignoring an open 

scattering channel.
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5.4 Positron-L ithium  d -w a v e  Scattering

5.4.1 Trial Function

The modifications to the trial functions required to treat 1 = 2 positron-lithium scat

tering are analogous to those made by Brown and Humberston (1984) for the positron- 

hydrogen problem. The long-range components of the wavefunction are the second- 

order spherical Bessel functions, and Neumann functions appropriately shielded at the 

origin. At short ranges, three different symmetries of correlation term are required, 

following the discussion of section 2.3, to allow the two units of angular momentum to 

be suitably distributed between the positron and electron. Thus:

=  ^Li(7’2)^2o(^i, (j>i)\/k { i2(A:n) -  K h n 2 (kri)[l  -  exp(-Ari)]®}

— $ P s ( r 3 ) l2 o ( ^ p ,  (I>p ) \ / ^ K 2 \ ' ^ 2 { î P) [1 — 6 X p ( —

/  N,
H -ex p [-(a ri +  ^ r 2 n̂ rg)] ¥2 0 (6 1 , ( f)i)rl'^ahr^^r^r'^^

\  A=1
^2 , , , , \

+J^2o( î,<?!>i,^2,<̂ 2) r ir2 ^ 6t r i 'r 2‘rJ '‘ ¥  ¥2 0 (6 2 , (5.17)
i= l  j = l  /

^2 =  ^Ps(rz)¥2o(6p, ( j )p ) \ /^  { i2 (M  -  I<l2^2(i^p) [1 -  exp (-//p )]’'}

-^Li(?^2) i 2o(^i,</>i)v^A'{2^i(/:ri) [1 -  exp(-Ari)]^
/

-b e x p [- (a r i  ¥  /3 r2 ¥  ^rs)] 42o(^i, <^i)ri ^
\  h=l

+)^2o(^i, ^2, <̂2) n r 2 ^  e,Ti'r2' r r  ¥  ¥2 0 (6 2 , <j>2 ) r l ^  (5.18)
i= l  j = l  )

The angular functions are given by

^2o(^, <?i») =   ̂~  2 )  ’ (5.19)

and

3 2̂0(^15 6 2 , <̂2) =  -—(3 cos 6 \ cos 6 2  — cos ^12). (5.20)
47T
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5.4.2 R esu lts for cf-wave Scattering

Only rather preliminary investigations were carried out for the d-wave problem, owing 

to time constraints, and the cross sections presented here are not as well converged 

as it is hoped they could be. As with the earlier I =  2 studies of positron-hydrogen 

scattering, it was found very difficult to locate suitable values of the non-linear param

eters a , ^  and 7 , with the problems of optimisation compounded further in this case by 

the very high polarizability of the lithium atom. Because of the time-consuming task 

of generating matrices involving three different symmetries of short-range function, a 

detailed search of the non-linear parameter space was not practicable. A limited inves

tigation, along the lines of that described for s-wave scattering in section 5.2.2, gave 

rise to reasonable agreement between Kohn and Inverse Kohn data for a =  0.5, (5 =  0.7 

and 7 =  0.4, and the cross sections obtained for w =  8 (165 short-range terms of each 

symmetry) are illustrated in figures 5.24 and 5.25. Again included, for comparison, are 

the close-coupling results obtained by McAlinden et al. (1994a) using their 14-state 

close-coupling expansion. Although the general trends of both sets of data are similar, 

further optimisation is clearly warranted in the variational investigations in order to 

produce smoother and better converged cross sections.

These preliminary studies, however, appear to indicate that the d-wave contribution 

to the elastic cross section is smaller than for s- or p-wave scattering, but that quite a 

large contribution is made to the positronium formation cross section for this partial 

wave.
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Figure 5.24: Variation of the d-w&ve positron-lithium elastic scattering cross section 
with respect to k for w =  8 , potential A. The first excitation threshold of potential A  is 
indicated. The 14 state close-coupling results of McAlinden et al. (1994) are included 
as the dotted curve.
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Figure 5.25: Variation of the (/-wave positron-lithium positronium formation cross sec
tion with respect to k for w =  8 , potential A. The first excitation threshold of potential 
A  is indicated. The 14 state close-coupling results of McAlinden t t ai  (1994) are 
included as the dotted curve.
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C hapter 6 

C onclusions

Results have been reported here of variational investigations of positron scattering from 

atomic lithium and hydrogen at low energies, for the partial waves / =  0 , 1 and 2 . 

Trial functions using up to 220 terms of a given angular momentum symmetry have 

been used to obtain cross sections for elastic scattering and positronium formation, to 

varying levels of convergence, in the energy region where only these two channels are 

open.

In both the calculations of positron-lithium scattering, and in the generation of 

ground-state target wavefunctions and eigenvalues for the lithium atom, two phe

nomenological potentials have been employed to represent the interaction of the weakly 

bound valence electron with the well localised positive core. The one deemed the more 

reliable, referred to throughout as potential A, produces a 2s eigenfunction with a realis

tic nodal structure whose energy (-0.193826 Hartree), as calculated using the Rayleigh- 

Ritz method, agrees with the experimentally determined estimate of the ground-state 

energy of lithium (-0.198158 Hartree) to within 2.5%. It also has a drawback in pos

sessing a very tightly bound Is pseudostate (at approximately -1.8 Hartree), but it was 

hoped that in view of the large energy separation between this and the 2s state, the 

scattering calculation would not be adversely affected by its presence.

One of the main reasons for introducing a second potential was to see whether the
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absence of the tightly bound pseudostate resulted in the removal or introduction of 

any particular features of the positron-lithium scattering calculation. Potential B  has 

a short-range repulsive component which prevents the formation of the very tightly 

bound state, instead producing a I5 state whose energy (-0.195718 Hartree) is in good 

agreement with the experimental estimate of the energy of the 2a state, but whose 

nodal structure is incorrect. In fact, all the a-states of this latter potential have one 

less node than the states to which they physically correspond. Although the p-state 

eigenfunctions have the correct forms, their energies are in markedly poorer agreement 

with experiment than are those of potential A.

In both cases, the effects were assessed of including a term in the potentials which 

allowed for the polarization of the atomic core. The inclusion of this term  in the 

scattering calculation represented a complication which, it was felt, was best avoided 

initially if possible. Its introduction altered the position of the ground state energies 

by only about 2%, with its effects growing smaller still for the higher eigenstates. The 

forms of the eigenfunctions themselves were affected very little.

The polarizabilities of the model atoms generated using the two potentials were 

evaluated by means of a further Rayleigh-Ritz calculation which introduced a perturb

ing electric field into the Hamiltonian for the system. Again the effects of introducing 

the core polarization term were studied. With the term included, the polarizability 

calculated for potential A  was in excellent agreement with the experimental estimate, 

being rather less than 1% larger. Excluding it had the effect of increasing the polar

izability of the model, leaving it in error by approximately 8%. With or without the 

term, the calculated polarizability using potential B  was in markedly worse agreement 

with experiment, reflecting the poor representation of the lithium p-states produced by 

this potential. Including the polarization of the core gave rise to an overall polariz

ability which was too small by about 16%, although its exclusion improved agreement
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with experiment somewhat, giving a value within 12% of the measured estimate. On 

the strength of the calculations of the energies and polarizabilities, it was felt that po

tentials A  and B,  with the core polarization term excluded, still provided a very good 

representation of the lithium atom.

For the purposes of the positron-lithium scattering calculation, the interaction be

tween the positron and core was taken to have the same form as the electron-core 

potential (without the core polarization term), but with the sign reversed. This in

volved the assumption that exchange effects had a very small effect on the form of the 

electron-core potential, which was reasonable on account of the valence electron being 

so weakly bound.

For s-wave positron-lithium scattering, two types of trial function were used, which 

differed only in the forms for their short-range components. The original form was 

essentially the same as that used in previous positron-hydrogen calculations, but with 

the simple Is hydrogen target function replaced by the 15 term lithium wavefunction 

generated in the Rayleigh-Ritz calculation. The presence of this target wavefunction 

as a multiplicative factor in the short-range Hylleraas expansion proved, however, to 

be too restrictive for such a polarizable target atom, and convergence was found to 

be poor. Removing it, though, produced a marked improvement, giving rise to more 

positive values for K u  and K 221 and more stable cross sections. For the remainder of 

the lithium calculations (for the higher partial waves also) this latter type of scattering 

trial function was used throughout.

After some time spent optimising the non-linear parameters, trial functions contain

ing up to 165 linear parameters were used to calculate s-wave cross sections for elastic 

scattering and positronium formation for energies between zero and the respective first 

excitation thresholds of the two potentials. Close to zero energy, Wigner’s prediction 

of a k~^ dependence for the Ps formation cross section was seemingly confirmed for
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both potentials, although this rearrangement channel contributed negligibly over most 

of the range considered, elastic scattering being, in general, the dominant cross sec

tion by several orders of magnitude. Unsurprisingly, uncoupling Ps formation as an 

outgoing channel in the calculation produced only a very small effect on the elastic 

scattering cross section, although discrepancies between the present results and those 

of McEachran indicated that virtual Ps formation probably still plays a large part in 

the scattering process.

Convergence of the s-wave results was satisfactory, although the very high polariz

ability of the lithium atom imposed much greater demands on the trial functions than 

had been the case for the hydrogen problem, for which they were originally devised. 

As > 0 , in particular, convergence deteriorated to such an extent that attem pts to 

extrapolate to fully converged values of the diagonal /i-m atrix  elements were imprac

ticable. In order to obtain very reliable results for k < 0.05uo it would be necessary 

to introduce medium-range polarization terms into the wavefunction. To make this 

modification worthwhile would also require the inclusion of the core polarization effects 

in the electron- and positron-core potentials, since it is at these energies that they are 

likely exert their greatest influence. It should be noted, however, that the infinite Ps 

cross section at zero energy is always liable to cause convergence problems in this type 

of calculation. The complicated nature of the positron-atom interaction is well illus

trated by the close-coupling results of McAlinden et a/., which require the introduction 

of many states to yield s-wave Ps formation cross sections of even the same order of 

magnitude as the present Kohn variational data.

For p-wave positron-lithium scattering, the two types of short-range correlation 

term, arising from the two different angular momentum symmetries, made the cal

culations more time consuming than for s-wave collisions, and it was not possible to 

go into as much detail optimising the non-linear parameters. W ith sufficiently many
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linear parameters included in the trial functions, however, it was not difficult to find a 

set of values which gave rise to smooth cross sections, where agreement between Kohn 

and inverse Kohn results was generally good. The results obtained indicated a zero p- 

wave Ps formation cross section at zero energy, again in accord with Wigner’s threshold 

theory, but a much larger contribution to the scattering process from this channel than 

for s-wave over most of the energy range. The p-wave Ps formation channel, in fact, 

dominates the elastic channel at the lower end of the energy spectrum.

Although, for a low value of w, no structure was observed in the p-wave elastic cross 

section, a minimum was observed to develop, close to k = O.Iuq^, as the number of 

linear parameters in the trial function was increased, as a consequence of K u  converging 

upwards from negative to positive values. This was a feature of both potentials, and also 

of the close-coupling results of McAlinden et al. Uncoupling the positronium channel 

in the p-wave scattering calculation had the effect of introducing a spurious resonance 

in to the elastic cross section, and illustrated the necessity for including all scattering 

channels in the formalism, if reliable results are to be obtained.

fn neither the s- nor the p-wave calculations were any significant qualitative differ

ences observed between results for the two different potentials. This would appear to 

lend weight to the assumption that the Is pseudo-state of potential A  exerts a rather 

small influence. Since the higher eigenstates and the polarizability of this potential 

are in better agreement with experiment than are those of potential B, and its eigen

functions have a more realistic structure, the scattering cross sections obtained using 

potential A  are always taken to be the more accurate.

Only preliminary investigations have so far been undertaken for d-wave scattering, 

and further optimisation of the non-linear parameters in the trial functions is required. 

Results obtained exhibit a similar trend to the close-coupling data of McAlinden et a/., 

and suggest contributions to the elastic and positronium formation cross sections similar
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in magnitude to those obtained for p-wave scattering. When more fully converged 

results have been calculated, it will be possible to embark on an evaluation of differential 

cross sections for positron lithium scattering, which, for scattering from channel v in to 

channel v' are given by

2

(6 . 1)

in units of a^.

Further possible extensions to the present work on positron-lithium scattering might 

include excitation of the lithium atom in to its 2p state, requiring the development of 

a three-channel Kohn functional. Such a modification would also necessitate more 

complicated trial functions to allow for more scattering channels and for the possibility 

of differences in the angular momentum of the incoming and outgoing positron.

New investigations were also performed on the positron-hydrogen system, for the 

purpose of studying threshold phenomena. Expressions were derived, using i^-matrix 

threshold theory, for the effect on the elastic cross section of the newly opened positro

nium channel. The infinite slope of the 5-wave positronium formation cross section was 

predicted to give rise to a sharp drop in the elastic cross section, but on a scale which 

would be unresolvable within the limits of the present calculation. The expression giv

ing the threshold effect in the p-wave elastic cross section was shown to yield quite a 

good fit to the Kohn results above threshold, by assuming a slowly varying value for the 

uncoupled phaseshift. Si. For both s- and d-wave positron-hydrogen scattering, partic

ularly the latter, the lack of continuity in the elastic cross section in going across the Ps 

formation threshold indicated that the trial functions were under considerable strain in 

this energy region. The smoothness of the p-wave cross section, however, indicated that 

things might be improved by varying the non-linear parameters in the wavefunction, 

and this would seem the next logical step for these investigations.

Continuing developments in the field of experimental positron physics constantly
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provide a renewed stimulus to perform accurate theoretical calculations of positron 

scattering from atoms, and it is hoped that the results of the investigations reported 

here will, conversely, help to sustain interest in precise measurements of cross sections 

for the positron-hydrogen and positron-lithium systems.
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A ppendix  A  

T he M ethod  o f M odels

The method of models is a convenient way of simplifying the positron-atom problem, 

which takes advantage of the fact that there is no exchange of the positron with the 

atomic electrons. This approach has been used successfully in the Kohn variational 

studies of positron-helium elastic scattering.

Consider the exact Hamiltonian for an atomic target:

H o — — +  Kt om,  ( A . l )

where the sum of the Laplacian operators for all the atomic electrons. It may

be possible to derive an exact ground state wavefunction, 0 0 , for this system, such that 

Ho^o =  EO0 O; this would be the case if, for example, the potential Vatom were purely 

Coulombic, as in atomic hydrogen. In general, though, such an exact evaluation is not

possible and it is usually necessary to make do with some approximation, to the

exact wavefunction. The assumption of the method of models is that this approximate 

eigenfunction can still be considered an exact eigenfunction of some model Hamiltonian, 

which represents a good approximation to Hq  ̂ such that

H m  =  (A.2)

and thus

Hm^m =  Em^rn, (A.3)
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where Em is the approximate energy eigenvalue which corresponds to Eq.

In considering positron scattering from a target with the Hamiltonian Hm-, the total 

Hamiltonian becomes

H t  =  (A .4 )

where Vint is the positron-atom interaction potential. Since the total energy of the 

model system is given by E t = -{■ Em-, where k is the positron wavenumber, the

operator L = 2{Ht — E t ) can be written

L — — Vg+ — ^Itom +  2 Vint +  2I4i — k^ — 2Em- (A.5)

Generating the matrix elements needed for the variational scattering calculation requires 

L to operate on all components of the scattering wavefunction. Since the positron 

and electron are distinguishable particles, there is no requirement for the scattering 

wavefunction to be antisymmetric with respect to exchange of the scattered positron 

with the electrons of the target. Thus for elastic scattering all terms in the total 

wavefunction can be expressed in the form

E  =  /0 m , (A.6)

where /  is in general a function of all the inter-particle separations. We therefore have

L F  =  ( — V g +  —  ' ^ ^ a t o m  +  2V i n t  +  2 V m  ~  k^ ~  2Em) / 0 m

=  0 m  d" 2 % 'n f  — ~  ‘̂ ^ a t o m f ' ' ^ a t o m ^ m

+ /  +  2%n — 2Em) 0m- (A-7)

The final term in (A.7) disappears, however, since 0 m  satisfies (A.3), so the expression 

reduces to

L F  — 0m (—Vg+ — 4- 2Vint — /  — 2Vatom/’Vatom0m- (A.8)
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Hence by making the assumption that 0 ^  is an exact eigenfunction of Hm-, we arrive 

at a form for L F  in which there is no explicit reference to either the model potential, 

Vm, or the energy eigenvalue, Em- Thus, in calculations of purely elastic scattering, the 

nature of the model Hamiltonian and its eigenvalues can effectively be ignored, once the 

model target wavefunction has been calculated. The method of models thus provides 

an elegant, self-consistent means of simplifying the formulation of the elastic scattering 

problem, when the target wavefunction is not known exactly. When Ps formation is 

also considered, however, this approach has to be abandoned, since it is then necessary 

to consider explicitly the interaction of the electron in the outgoing positronium with 

the residual ion.

In the positron-lithium studies reported here, assumptions are made which are sim

ilar to those used in the method of models, to allow the simplification of the integrands 

for the matrix elements where L operates on terms involving the lithium target wave

function. The precision of the Rayleigh-Ritz calculation used to generate this wave

function, however, is sufficient that the Hamiltonian of which is to be considered 

an exact eigenfunction, differs only very slightly from the full target Hamiltonian. The 

inconsistency introduced by making explicit reference to the electron-core potential in 

the other matrix elements is therefore small enough to be negligible.
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A ppendix  B 

Sym m etry A rgum ents

The number of matrix elements which require evaluating in order to form the matrices v4, 

B, and (5, LS)  of equations (2.15) and (2.17) can be reduced considerably by symmetry 

arguments and the application of Green’s theorem. In practice, it is often not very 

much trouble to evaluate some of the extra elements and, when this is the case, doing 

so provides a useful check on the numerical accuracy of the calculation.

Consider two functions, /  and g, which could correspond to any of the terms, short

er long-range, in the scattering wavefunctions, and now consider the functional F, which 

is such that

F  = i f , L g ) - { g , L f )  (B .l)

where L =  (—V j — Vg +  2V — 2E)^ and the integrals denoted by the brackets extend

over all space for both the positron and electron. It is evident that { f ,{ V  — E)g) =

~  since V  and E  operate in a purely multiplicative way, so we are left with

F  =  - ( / ,V ^ ^ ) - i - ( ^ ,V ; / ) - ( / ,V : ^ )  +  (^ ,V :/) .  (B.2)

Green’s theorem states

f  (f)iV̂ <j)2dT =  f  (j){V(j)2*da — f  V(̂ i*Vç!>2<̂ 7'5 (B.3)
JV JA JV

whereupon

^  ~  dr =  (f>2 ~  ^2^^ 4̂ i] *d(T ̂ (B.4)
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where A  is the closed surface which forms the boundary of the volume V. Applying 

this to (B.2), we find that, in the limit as r 2 —>• oo.

^  ^  I v Ua 1̂ ^  {g '^2 f -  f'^29)-d(T2 dri. (B.5)

It is therefore the case that, if the surface integrals vanish in the limit as ri —»> oo for 

the first term and T2 —> oo for the second term, then F  = 0 and { f,L g)  = (g ,L f) .  If 

the surfaces are taken, without loss of generality, to be spheres of infinite radius, then 

the surface elements have the form da  =  sin 6d9d(j)r and, in order that the surface 

integrals vanish, it is necessary that their integrands tend to zero faster than r~^. The 

exponential dependence of the short-range correlation terms (j)i on all three interparticle 

coordinates r%, T2 and ensures that F  =  0 if /  or ^ corresponds to one of these. Thus,

{ ^ i i  dj(f>j) — ((f)j ,L(f)i) (B.6)

((/>,-, T 5 i )  = (B.7)

(<f)i,LCi) - (C i,W ,) (B.8)

{<f>i,LS2) = {S2,L(t>i) (B.9)

{(f)i,LC2) = (C2,F * ) . (B.IO)

If /  is equal to 5i or Ci, whilst g is equal to S 2 or C2, then all the surface integrand 

terms in (B.5) have a decaying exponential dependence on T2 and rg, since they depend 

on both the positronium and lithium wavefunctions. As ri —>■ 00 , keeping T2 fixed, the 

decay of rg kills off the first term, and the second term vanishes as T2 —̂ 00 because of 

the exponential fall-off in the electron coordinate, so we also have

{Su LS2) =  (S'2,T5i) (B .ll)

(Ci,FC2) =  (C2,FCi) (B.12)

(5'i,FC2) =  (C2,F6'i) (B.13)

(C i,F^2) =  (^2,Z/Ci). (B.14)
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If we now consider the case where

/  =  Si =  Yio{6i,(f)i)(l)T{r2) /̂kji[kri) 

g =  Cl = Yio{9u(i>i)(})T{r2)y/kni{kri){l -  e x^ -g .r i)

(B.15)

(B.16)

then the exponential dependence on T2 in the target function ensures that the

second surface integral in (B.5) vanishes. The first term remains, however, and since 

we are considering surface elements normal to r i  we can ignore the angular dependence 

of V i to obtain

(Si ,LCi)-(Ci ,LSt)  = sinê deid<i>,

As we are considering the limiting case of an integral over the spherical surface Ai as 

ri - 4. 00, we require the asymptotic forms for Si and Ci, which are

1 sin (^kri -
lim Si = Yio<I>t - prri-oo ^ Tl

lim Q  =  1 f ü È l Z Î ln^oo ri

(B.18)

(B.19)

The partial derivatives are thus given by

a;; =

dCx _  ^  , I
lim —--- — YlQ(pT—rf

ri-^00 i jn  y /k

whereby the integrand reduces to

k cos (^kri — y ) sin (^kri — y )

ri

A; sin (^kri — y )  cos (^kri — y )

ri

(B.20)

(B.21)

dri dri
(B.22)

We therefore find, simply, that

( S , , L C : ) - ( C u l S , )  = J lM r '2 ) fd T 2 j lV ,o (0 u M fs in 0 :d 0 :d < ^ t

=  1. (B.23)
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Thus

(S u L C i)  =  (C i,T 5 i) +  l. (B.24)

When L operates on S 2 and C2 it is convenient to use the form

L = (_ 2 V | -  iV j  +  2K -  2£), (B.25)

and similar arguments to those above can be used to show that

(^2,Z/C2) = (C2,T6'2) + 1. (B.26)
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A ppendix  C 

A ngular Integration

As the complexity of the spherical harmonics, in the scattering wavefunction in

creases as we consider higher partial waves, so the angular integrations become more

complicated. The problem is simplified considerably, however, by the spherical symme

try of the s-state target system, and also the azimuthal symmetry of the scattering.

As a typical case, consider the evaluation of a p-wave matrix element involving a 

type 1 and a type 2 long-range term (e.g. (5 i ,T 52), {C2 ^LS\)). The general form of 

the integration would be

/  =  y  J  yio{0i,(f>i)Yio{0p,(l)p)f{ri,r2,r3)dT2dTi. (C .l)

For / =  1, the spherical harmonics are given by Fio(^, <l>) =  cos 0 so

I  = J  J  cos 0 1  cos Opf{ri,r2 , r3 )dT2 dri. (C.2 )

From the cosine rule we have

(ri cos (9i-fra cos ^2)cosfĉ p =      (L.d)
Zp

whereupon a substitution gives

I  = J  J - ^ { r  loos‘d 0 1 -\-r 2 cos 0 1  cos 0 2 ) - ^ f ( r  I, r 2 , r3 )dT2 dTi. (C.4)

Here we have an expression which depends on two external angles, 0i and 02. Although

it would be possible to carry out the integration using these coordinates, this would
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Figure C.l: The coordinates of the positron-atom system

require us to consider the complicated variation of the interparticle distance as we 

integrate about the first azimuthal angle. Instead, it is much better to select one of 

the two position vectors as a 2-axis to perform the integration for the other vector, 

whereupon this complication is avoided. Here, it is most convenient to choose the 

r i  vector as the 2-axis for the T2  integration, although the alternative choice would 

eventually yield the same result.

The coordinates of the positron-atom system for an effective one-electron target 

are shown in figure C .l. The azimuthal symmetry has allowed us, without any loss of 

generality, to rotate the x and y axes about the 2-axis until r i  lies in the x-z  plane. 

If we now rotate about the y-axis until the 2-axis lies along r i ,  then we have a new 

set of axes (x'^y'^z') in which the F2 vector has the coordinates (r2, ^12, <̂2)* now 

need to express O2 in terms of the new coordinates, which is most easily done by finding 

the components of the unit vectors of the original 2-axis (k) and F2 in the new system.
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Simple trigonometric considerations show that these are given by

k =  (—sin ^1, 0 , cos ^i) (C.5)

F2 =  (sin ^12 cos sin^i2 sin cos ^12), (C.6)

and therefore

cos ^2 =  k*r2 =  cos cos ^12 — sin sin 012 cos ^ 2* (C.7)

Substituting this back into (C.4) we obtain

3 r r, /’”■ /"27T /
/  =  —  y dTi y r 2^r2 j  sin 012^012 J  d<f>2 (ri cos 0%

+ r 2 cos^ 01 cos 012 — T2 cos01 sin01 sin012 cos ; ^ / ( n ,  ^2, ^3)- (C.8)
I p

Since none of the other variables depends on (f>2 this can be integrated over 2tt imme

diately to give
3  r roo fTT \

I  =  2 y i)  ̂ Jo ®^^^i2d0i2 Cos 01 ( r i -f T2 COS012) — Z (ri,r2 ,r3). (C.9)

The integration over the remaining external angles 01 and 0i can be done using 

dri =  r^dri sin0id0id^i, giving
fOO y o o  yTT %

/  =  27t / r^dri /  r 2<ir2 /  sin0i2^0i2 (ri +  T2 cos 0i2) — / ( n ,  r 2, ra), (C.IO)
J o  J o  J o  I p

which depends only on the internal coordinates of the system. The angle 012 can be

expressed in terms of ri, T2 and using the cosine rule:
^2 I 2 _  2

cos012 =   ̂   - .  (C .ll)
2rir2

If T\ and T2 are kept fixed and the variation of 012 with rz is considered, we find

sin 012^012 =  —— drs (C.12)
riT2

and thus the integral becomes

too too y r i+ 7 -2  %

I  =  27t /  ridri r2 drz ^3Ĉr3( r i T 2 cos0i2)— / ( n ,  T2, ra). (C.13) 
J o  J o  '^\t \ —T2\ J 'P

Numerical integration of this expression is simplified further by the substitution of the 

perimetric coordinates, described in section 2.2.4.
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A ppendix  D  

Param eter Values

D .l  Lithium  m odel potentia l

The lithium model potentials are of the form

(D.l)

Potential 7 S 6' «d(ao) 13
A 4.049689462 2.447656964 0.245046253 0.192456 3.910776273
B 3.640580350 -29.204733320 -0.779876393 0.192456 3.910776273

D .2 N on-linear Param eters 

D .2.1 Positron-H ydrogen Scattering

Partial wave a /3 7
s 0.40 -0.60 0.35
P 0.40 -0.60 0.35
d 0.60 - 0.20 0.25

D .2 .2 Positron-L ith ium  Scattering

Partial wave a 7
s 0.13 0.74 0.17
P 0.20 0.70 0.20
d 0.50 0.70 0.40
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A bstract A detailed investigation has been made of low energy s-wave positron-lithium 
scattering using the Kohn variational method in the energy range in which only elastic 
scattering and positronium formation are possible (0-1.84 eV). The positronium formation 
cross section is infinite at zero energy, but then falls to be several orders of magnitude 
smaller than the elastic scattering cross section, which has a peak value of approximately 
100 irog. The elastic scattering cross sections are almost unaffected by the uncoupling of 
the positronium channel, but the resulting phaseshifts are significantly more positive, and 
therefore probably more accurate, than those obtained in the most sophisticated previous 
study using the uncoupled approximation.

Positron scattering by the alkali atoms has been studied theoretically for several years 
(see Ward et al (1989) and McEachran et al (1990) for references to earlier work), 
but the recent experimental measurements o f total cross sections by Stein et al (1985, 
1988, 1990) have stimulated renewed theoretical interest in such systems.

The experimental results show that, unlike for other target atoms, the total scattering 
cross sections for the alkali atoms are slightly larger at low energies for positrons than 
for electrons, most probably because of a significant positronium formation component 
in the case o f the former projectile. A further interesting feature is that positronium 
formation is possible even at zero energy because the ionization energies of all the 
alkali atoms are less than the binding energy of positronium (6.8 eV). Most previous 
theoretical studies of low-energy positron-alkali-atom scattering have, however, neglec
ted the positronium formation channel and concentrated instead on elastic scattering 
and excitation. Even where positronium formation has been included, the methods of 
approximation have been somewhat crude (for example, the Bom and coupled static 
approximations (Guha and Ghosh 1981) and the distorted-wave approximation 
(Mazumdar and Ghosh 1986)), yielding possibly rather inaccurate results (see note 
added in proof). There is clearly a need for a much more detailed study of low-energy 
positron-alkali-atom scattering, and the initial results of such a study are presented here.

It is a reasonably good approximation to consider the alkali atom as a single valence 
electron moving in the modified Coulomb field of the core. Positron-alkali-atom 
scattering therefore reduces to a three-body system, not unlike the positron-hydrogen 
system which has been studied in great detail using elaborate variational methods 
(Humberston 1979, 1986). Similar techniques should also give very accurate results 
for positron scattering by the alkali atoms. We first consider the simplest alkali atom, 
lithium, even though no experimental results are yet available for this target.

0953-4075/92/190491+06$04.50 © 1992 lOP Publishing Ltd L491
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A good representation of the electron-core potential is provided by the form (Peach 
et al 1988)

V_(r)= - ^ - ^ ( 1  + ar+hr^) ® w(vr) (1)

where the first two terms represent the static interaction with the core, and the third 
term arises from the polarization of the core, the core polarizability o f Li^ being 
otc = 0.192. The values o f the parameters in V_ are chosen to reproduce the correct 
binding energy for the electron in the 2s state as well as all excited states, and the fit 
to the observed spectrum is excellent. This potential also supports a tightly bound Is 
state o f the electron with an energy o f -51.5 eV which has, o f course, no existence in 
the real atom and should therefore be projected out of the scattering wavefunction. 
Instead, we choose simply to ignore this state, assuming that its large separation in 
energy from the 2s target state o f interest implies a small influence on the scattering 
process.

The positron-core potential V+ is derived from V_ by merely changing the sign of 
the static component in equation (1) to give

V+(r) =  ^ + ^ ( l  +  ar+br^) w{vr). (2)

This procedure is not entirely justified because exchange of the valence electron with 
the electrons in the core is implicitly included in VL, whereas there is, of course, no 
exchange in the positron-core system. A further approximation which is being made 
initially is to drop the core polarization terms from V_ and V+ because is so small.

We have thus far confined our attention to the energy region below the first excitation 
threshold of lithium (1.84 eV), where only elastic scattering and positronium formation 
can occur. Thus we have the two-channel scattering process: 

e"̂  +  Li -* e"̂  4- Li elastic scattering ^
-> Ps + Li  ̂ positronium formation.

The problem is formulated as a two-channel version of the Kohn variational method, 
and the Kohn functional for the K  matrix takes the form

K U _ r ( % ,L Ÿ ,)  (% , 1^2)1  
i K l r  Kl^i  L(^2, (% ,L W J   ̂ ^

where L = 2 (H — E).  This formulation automatically ensures a symmetric variational 
K-matrix; that is, K \ 2  = even though K \ 2 T̂ K 2 1 . For s-wave scattering the trial 
functions are taken to be

= - ^ ^ ^ u ( r 2 )y^{joiLri) -  K%no(^n)[l -exp (-A r,)]}

- ^ ^ =^ P s{r 2 )y/2 KK\i[no{Kp) + e \ p { - \ p ) { l  +  ap + bp^)fp]

+ exp[ -  (ar, -I- (3r2 + r̂ 'a)] Z c.rf' r”'

1   (4)
" ^ 2  = - ^ = ^ p s { r 3 )y/^{jo{Kp) -  K 2 2 [«o(«p) +  exp(-A p)(l +  ap + bp ) / p]}

<I>Li(^2)Vk^i2«o(^^i)[l-exp(-Ar,)]
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where r ,, r2  and p are the coordinates of the positron, electron and the centre o f mass 
of the positronium relative to the core respectively. The lithium function representing 
the 2s orbital o f the valence electron is chosen to be

4>Li(r) = exp(-5r) f  (5)
7 = 0

where the variational parameters are chosen to minimize the energy subject to the 
polarizability being close to the correct value, 165.5.

The wavenumbers o f the positron and positronium, fc and k respectively, are related 
by energy conservation, so that

2 E  =  k ^ - 0 3 9 6  =  W - i  (6)

All terms with Jq +  /, +  ^  w are included in the summations in and ^ 2 , equation
(4), the number o f terms, N, being 4 ,10 ,20 ,35 ,56 ,84  and 165 for w = 1(1)8 respectively. 
This formulation and form of the trial functions is similar to that used by Humberston 
(1982) and Brown and Humberston (1984, 1985) (see also Armour and Humberston 
(1991) for further details) in their very detailed investigations of positronium formation 
in positron scattering by atomic hydrogen.

At each energy, results have been obtained for = 4(1)8 and the convergence of 
K ii, K 2 2  and the elastic and positronium formation cross sections with respect to w
has been investigated. Apart from the occasional Schwartz singularity, K u  and K 2 2

both increase monotonically with a) and the convergence pattern is quite well represen
ted by

A((o) = A(o o)+-^ .  (7)

The elastic scattering and positronium formation cross sections obtained with the most 
elaborate trial functions, with = 8 (TV = 165), are plotted as the curves labelled A in 
figures 1 and 2 respectively. Positronium formation is an exothermic process in positron- 
lithium scattering, and the formation cross section is oc l/fe at sufficiently low energy, 
and is therefore infinite at zero positron energy. It then falls rapidly with increasing 
positron energy to values which are negligibly small compared with the elastic scattering 
cross section. There is however a significant increase in the positronium formation 
cross section just below the 2p excitation threshold.

The elastic scattering cross section appears to be converging to a value close to 
zero at zero incident energy, although the extrapolation o f to infinite suggests 
that the fully converged value o f the elastic scattering cross section may be slightly 
larger than that shown in figure 1. As the positron energy increases, the elastic scattering 
cross section rises rapidly to a peak value o f approximately 100 ttqI at k =  0.15 and 
then falls to approximately 30 v a l  at the next inelastic threshold. At energies for which 
k >  0.1 the convergence of the elastic cross section with respect to w is sufficiently 
rapid that we are confident that the results plotted in figure 1 are accurate to within 
a few per cent. For fc<0.1, and particularly for values of k just above zero, the 
convergence shows a marked deterioration although the results still converge smoothly 
according to equation (7), but with a lower value of p. This deterioration occurs because 
the trial functions and ^ 2  only contain short-range correlation terms whereas 
long-range dipole terms should also be included if well converged results are to be 
obtained (Humberston and Wallace 1972). The need for such terms is particularly 
acute because o f the large polarizability of the lithium atom.



L494 Letter to the Editor

120

2 100

80

40

20

0.0 0.1 0.2 0.3 0.4
k (oo l

Figure 1. The s-wave positron-lithium elastic scattering cross section obtained with 165 
term = 8) trial functions. A, with the electron-core potential which yields a 2s wavefunc
tion for the lithium atom; B, with the electron-core potential which yields a Is wavefunction 
for the lithium atom. The two dotted lines, a and b, give the position of the lowest inelastic 
threshold, 2p, for each of the potentials A and B respectively.
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Figure 2. The positronium formation cross section in s-wave positron-lithium scattering.
The meanings of curves A and B are given in the caption to figure 1.

The generally small size of the positronium formation cross section in relation to 
the elastic scattering cross section might be thought to indicate a weak coupling between 
the elastic scattering and positronium formation channels. However, comparisons with 
positron-hydrogen scattering (Humberston 1986), where the s-wave positronium for
mation cross section is also very small, suggest that the p- and d-wave contributions 
to positronium formation in positron-lithium scattering will be much larger, implying 
a strong coupling between the two channels.

As previously mentioned, most other studies of positron-lithium scattering have 
ignored the positronium formation channel, and we have therefore repeated our 
calculations with the two channels uncoupled so that we can make direct comparisons
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with the results o f  some other previous studies o f elastic scattering. The present 
uncoupled results for the elastic scattering cross section are very similar to those with 
the coupling present, and, indeed, the two sets o f results cannot be resolved on the 
scale o f figure 1.

It is instructive to compare the present uncoupled elastic scattering results with 
those o f Ward et al  (1989) and McEachran et al (1990) who used the close coupling 
approximation with up to five states o f the target lithium atom (results with eight target 
states have recently been provided for us by McEachran (private communication)). 
This is the most sophisticated o f all the previous studies in which positronium formation 
has been neglected. The present phaseshifts are more positive, and therefore probably 
more accurate, than those of McEachran et nf, as can be seen in table 1, although it 
should be borne in mind that the model potentials used in the two investigations are 
not identical.

Tabic 1. Values of the s-wave phaseshift for positron-lithium scattering in the uncoupled 
approximation.

k ( a ô ^ )

Phaseshift (rad)

Present
McEachran e t a l '  
(8 term)

McEachran e t a l '  
(5 term)

0.01 3.123 2.987 2.963
0.1 2.638 1.787 1.703
0.2 1.969 1.046 0.9794
0.3 1.413 0.5815 0.5281

* These results have been supplied by McEachran (private communication).

It was mentioned earlier that we have simply ignored the tightly bound Is state 
supported by the electron-core potential, equation (1). This problem may be avoided 
altogether by using as the wavefunction of the lithium atom the ground state o f the 
electron in a modified form of VL such that this ground state has the correct lithium 
ground state energy, namely -5.386 eV. Such a potential has been devised by Peach 
(private communication). Clearly the radial dependence o f this nodeless Is orbital is 
not the same as that of the 2s orbital, and neither does the polarizability of the modified 
lithium atom have the correct value o f 165.3 (instead it is 138.5), but this new model 
system is now free o f the formal complication of the unphysical tightly bound ground 
state. The elastic scattering and positronium formation cross sections with this modified 
form of V_, and the consequentially modified V+, are also plotted in figures 1 and 2 
as the curves labelled B. The new elastic scattering cross sections are quite similar to 
those obtained with the original potential, but the new positronium formation cross 
sections are an order of magnitude larger than the former values, although still very 
small compared with the elastic cross section except when k^O.  Here also there is a 
pronounced rise in the cross section just below the next inelastic threshold. It is unlikely 
that the differences between the positronium formation cross sections for the two 
potentials will be as large for higher partial waves because the centrifugal barrier will 
then tend to exclude the wavefunction from the short-range region where the differences 
between the two potentials are most pronounced.



L496 Letter to the Editor

We are currently improving these calculations by introducing the core polarization 
terms into the electron- and positron-core potentials, and we are also extending the 
investigations to higher partial waves.

We wish to thank Dr Gillian Peach for providing details of her electron-lithium core 
potentials and for several useful discussions. We also wish to thank Professor R P 
McEachran for sending us additional unpublished close coupling results for elastic 
scattering.

N ote added in proof. The positronium channel has recently been included in a more satisfactory manner 
within the close coupling approximation by Hewitt et al (1992) and by Basu and Ghosh (1991).
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Positron-lithium scattering with the inclusion of 
positronium formation

J. W. Humberston and M.S.T. Watts
Department o f  Physics and Astronomy, University College London,

Gower Street, London WC1E6BT, UK

Detailed studies have been made of elastic scattering and positronium formation in low 
energy collision of positrons with lithium atoms for the two partial waves / =  0,1. For this sys
tem, as for all alkali atoms, the positronium formation channel is open even at zero positron 
energy. A two-channel version of the Kohn variational method is used with trial functions con
taining many variational parameters, and reasonably well converged results are obtained. 
The s-wave positronium formation cross section is infinite at zero positron energy but it then 
falls rapidly to become several orders of magnitude smaller than the elastic scattering cross sec
tion which has a maximum value of approximately 100 at a positron energy of 0.5 eV. 
For p-wave scattering the positronium formation cross section rises to a value of approxi
mately 10 tMq at an energy of 0.1 eV, with the elastic scattering cross section rising to a maxi
mum of approximately 60 just below the first excitation threshold at 1.84 eV.

1. I n t ro d u c tio n

Low energy positron scattering by the alkali atoms is of particular interest 
because the positronium formation channel is open even at zero incident positron 
energy. Furthermore, recent experimental measurements [1] have shown that, 
unlike for other targets, the total scattering cross section is larger for positrons than 
for electrons. This latter feature is very probably a direct consequence of the for
mer, with positronium formation making a significant contribution to the total 
cross section.

Tie alkali atom may be accurately represented as the single valence electron 
interacting with the core via a local central potential, and the positron-alkali atom 
system therefore reduces to the equivalent three-body system shown in fig. 1.

Numerous theoretical studies have previously been made of positron-alkali 
atom scattering using a variety of approximation methods. The positronium for
mation channel was frequently neglected in some earlier studies, for example Ward 
et al. [2] and McEachran et al. [3] and references therein, but it has been included 
in more recent calculations by Basu and Ghosh [4], Hewitt et al. [5], and Walters [6] 
which have all employed some form of the close coupling approximation.

.Although no experimental results are yet available for lithium, we have chosen 
10 investigate this system tlrst, and we describe here a very detailed investigation of

5  J.C. Baitzer A G . Science Publishers
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Fig. 1. The positron-lithium system and its energy levels.

lithium scattering by positrons in the low energy region between zero and the first 
excitation threshold of the hthium atom where only elastic scattering and positro
nium formation are possible (see energy spectrum in fig. 1 ); that is

o'*" + Li -► e"*" -f Li elastic scattering
-+Ps 4- Li"*” positronium formation.

2. M e th o d  o f  c a lc u la tio n

A two-channel version of the Kohn variational method is used in a manner simi
lar to that employed by Humberston [7] and Brown and Humberston [8,9] to 
obtain very accurate results for elastic and positronium formation cross section in 
low energy positron-hydrogen scattering. The Kohn functional takes the form

(1)

with L =  1{H — E), and the trial functions for a given orbital angular momentum 
/, using the nomenclature of fig. 1, are

-KIi

-  K\^ni{krxY\{r\)]

-  ^Ps(/'3)V2kÎ"i,o(p)^21”/(«^P)/2(p) + ,

^2 =  (rg) \/2j{T/,0(p){//(Kp) -  K\̂ jii{kpY2(p))

-  ^(ri)\^kYiQ{pi)K\^ni{krxYi(r\) + Ei ,

(2)

(3)
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w here  th e  functions ^  and  are the  g round  s ta te  w ave fu n c tio n s  o f  lith ium  
a n d  po sitro n iu m  respectively, an d  the functions f \  a n d f i  a re  included  to  shield th e  
sin g u la rity  in ni{x) a t  % =  0. These tw o functions, a n d  (^2, rep resen t e ^ -L i elas
tic  sca tte rin g  plus positron ium  fo rm ation , an d  P s-L i+  e lastic  sca tte rin g  p lus 
lith iu m  fo rm atio n  respectively. T he wave num bers o f  th e  p o s itro n  a n d  p o s itro 
n iu m , k  an d  k  respectively, are re la ted  by energy co n serv atio n  such  th a t

^  ~  5 ) (4)

w here  th e  lith ium  energy E u  =  -0 .3 9 6 . S hort range co rre la tio n s  are  represen ted  
by  th e  functions F\ and  Fi, the precise form s o f  which are  g iven  la te r  in  eqs. (8) an d  
(10).

In  te rm s o f  the K  m atrix  the p artia l cross section (in un its  o f  na^) is

4 ( 2 /+ 1 )
CTna =

K
(5)

w here k \  = k , k i  =  k  an d  ct\ i is the  elastic p o s itro n -lith iu m  sca tte rin g  cross section  
a n d  <712 is the positronium  fo rm ation  cross section.

A  g o o d  represen ta tion  o f  the e '- L i+  core po ten tia l is g iven by  (P each  e t al. [10])

1 , _ Û-
V-{ri) = ----------2 ------- (1 +  (5f2 +  (5 /j )  -  T-^w(f/r2), (6)

w here th e  first, tw o term s constitu te  the sta tic  in teraction  a n d  th e  la s t term  arises 
from  th e  po larization  o f the core. The e+-Li'*' core p o ten tia l, V +{ri) ,  is derived 
fro m  F_ by m erely changing the sta tic  p a r t  o f  the po ten tia l. T h is  p roced u re  fo r gen
e ra tin g  V+ is n o t entirely  justified  because K_ includes th e  effect o f  exchange o f 
the valence electron w ith the electrons in the core w hereas th e re  is, o f  course, no 
exchange effect fo r the positron . T hus fa r in these investigations we have neglected 
the co re  p o lariza tion  term s in V -  and  V+ because the p o la rizab ility  o f  the core is 
so m u ch  sm aller th an  the polarizability  o f  the lithium  a to m , a n d  a lso  because the 
core  p o la riza tio n  term s, when com bined w ith the th ree -body  te rm  p o ten tia l w hich 
m u st be added  to  the to ta l three-body H am ilton ian , tend  to  cancel w hen the elec
tro n  a n d  po sitro n  are  close together as in positronium .

A  very  accura te  approx im ation  to  the wave function  o f  th e  elec tro n  in  the p o ten 
tia l F_, ou r represen ta tion  o f the lith ium  atom , o f the fo rm

V̂o
^ L i ( r 2 ) = e - '^ ^ £ e / ,  (7)

j=0

was g enerated  using the R ay le igh -R itz  m ethod. This w ave function  has the 
req u ired  ch a rac te r o f  the 2s o rb ita l o f the valence electron  w ith  th e  co rrec t energy, 
an d  it therefo re  represents the electron  in the first excited  s ta te  in  th e  po ten tia l
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V -.  The ground state, which has no real physical significance bu t is present in this 
m odel we are using for the lith ium  atom , has an energy o f  - 5 0  eV. This fictitious 
state is so fa r below the energy region o f a few electronvolts being considered in  the 
scattering calculation th a t it can  probably  be ignored. Nevertheless, we have also 
used ano ther m odel o f the lith ium  atom  which avoids this problem  by having the 
valence electron in the g round  state  o f a modified form o f F_ (Peach, private com 
m unication). This state  has the correct lithium  energy b u t the wave function is 
nodeless and does no t have the correct radial dependence for sm all values o f ri .  I t  
does, however, give a reasonably  good fit to the spectroscopic d a ta  for lithium . W e 
shall call the original and  m odified form s o f F_, and the associated form s o f PV, 
potentials A and B  respectively, and  the corresponding tw o form s o f ^ u i r i )  are 
given in fig. 2.

The m odification m ade to  F_ to achieve the required Is ground state  energy 
takes the form  o f a repulsive sho rt range barrier which is generated by choosing 
appropriate values for the param eters 6 and 6̂  in eq. (6). But, because we have 
taken the positron-core  po ten tia l V+ to be -  K_, this repulsive barrier becomes a 
short range attractive po ten tia l well for the positron. H owever, the in term ediate 
and long range character o f  the positron-core  potential is still repulsive and a t  the 
low positron energies being considered here there will be very little penetration  o f 
the positron wave function in to  the short range attractive well. Nevertheless, it 
m ust be adm itted th a t in try ing  to rem ove an unsatisfactory feature o f the original 
electron-core potential we have introduced an unsatisfactory feature into the posi
tron -co re  potential. O verall we believe that potential A  provides a m ore reliable 
model of the electron (and p ositron )-co re  potential, but we present results for bo th  
A and B in order to convey som e im pression of the sensitivity o f the results to  the 
assum ed form  of interaction.

0 .6 -

2s wave tn. tor potential A

1 s wave tn. tor potential B0.4

0 .3 -

0 2 -

0.0
20

-0.1

-0.2

Fig. 2. Lithium wave functions. Plotted here are rj versus for the two forms o f the electron-
core p o tentia l. A  and B.
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3. R esu lts  a n d  d iscussion

Results have thus far only been obtained for s- and p-wave scattering.
For s-wave scattering the short range correlation terms in the trial functions 

and ̂ 2  are

Fi =  roo(ô) exp [-(ari 4- /?r2  4- -yrg)] ^

y=i
(8 )

with a similar form for Fi, but with different linear variational parameters. All 
terms with

(9)

where kj, nij and w are non-negative integers, are included in the summation, 
and results have been obtained for w =  1(1 )9, corresponding to 4 ,1 0 ,2 0 ,3 5 ,5 6 ,8 4 ,  
120,165,220, respectively.

Details o f  the method of calculation and the investigation o f the convergence o f  
the /T-matrix elements with respect to w have been given by Armour and 
Humberston [11].

The most accurate values o f the elastic scattering and positronium formation 
cross sections, with w =  9, are given in figs. 3 and 4. For 0.2 the results are prob
ably within 10% o f the exact, or fully converged, values, but there is some deteriora
tion in the convergence with respect to w  for values o f k  very close to zero and also 
to 0.36, the first excitation threshold o f lithium. Longer range correlation terms

120

100

0.45:.o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ma,')

Fig. 3. The / =  0 elastic scattenng cross section: (------ ) present results for potentials À  and B) the first
excitation threshold is marked a and b respectively); (+ ) McEachran, x 10"' (private commumca- 
tion, see also refs. [2,3]); ( x) .  Hewitt (private communication and ref. [5]); Walters (private

communication, and also ref. [6]). '
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O.OSr

0.04

1

i°
0.01

0.25 0.3 0.350.05 0.1 0.15 0.20.0 0.4 0.45
k(a.’)

Fig, 4. The / =  0 positronium formation cross section: (----- ) present results for potentials A and B;
(x) Hewitt, X10“  ̂(private communication and ref. [5]); (A) Walters, x 10“  ̂(private communication

and also ref, [6]).

need to be added to the trial functions in order to improve the convergence, particu
larly because the dipole polarizability of lithium is so large.

At very low positron energies the elastic scattering cross section is quite small, 
but it then rises rapidly with increasing energy to a maximum value of approxi
mately 100 tzoq before falling away again. Similar elastic scattering cross sections 
are obtained for the two potential models, and they agree well with the recent 
results of Hewitt et al. [5] and Walters [6]. Both of these calculations employ the 
close coupling approximation with pseudostates and they extend over a much 
wider energy range than that being considered here.

Positronium formation, being an exothermic reaction in positron-alkali atom 
scattering, has a cross section crps which, according to the Wigner threshold laws, is 
oc I /k  for sufficiently small k when 1 = 0, and is therefore infinite at =  0. The 
rate of positronium formation is, however, proportional to kap^ and is finite. The 
positronium formation cross section rapidly falls to a value several orders of mag
nitude smaller than the elastic scattering cross section and it remains very small 
throughout the energy range under consideration. Unlike for elastic scattering, the 
positronium formation cross sections obtained with the two potential models are 
rather different. This difference is exaggerated by the abnormally small magnitude 
of the s-wave positronium formation cross section which makes the results depend 
very sensitively on the model and the method of approximation being used. For 
both potential models the positronium formation cross section decreases as the 
flexibility of the trial functions is increased by increasing the parameter w in eq. (9), 
and the results in fig. 4 are probably upper boimds on the fully converged results. 
Much larger positronium formation cross sections are obtained for smaller values
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o f  w  a n d  it  m ay, th ere fo re , be th a t  th e  significant discrepancies betw een th e  p re sen t 
resu lts an d  those  o f  H ew itt e t al. [5] an d  W alters [6] arise fro m  the lack  o f  co n v e r
gence in  th e  close coup ling  calculations.

W e considered  th e  possibility  o f  a  po sitro n -lith iu m  b o u n d  s ta te  by  exam in ing  
the  eigenvalues o f  th e  to ta l H am ilto n ian  m atrix  ob ta ined  using  th e  sh o rt ran g e  c o r
re la tio n  functions con stitu tin g  F i, eq. (8), as a  basis. U n fo rtu n a te ly , because  o f  
the  very  tigh tly  b o u n d  sta te  o f  th e  electron in po ten tia l A  th e re  a re  several energy  
eigenvalues o f  the  th ree-body  system  below the  energy o f  the  lith ium  a to m , b u t 
none o f  them  p rov ides evidence o f  a  tru e  bound state.

F o r  p-w ave sca tte rin g  there a re  tw o types o f  sh o rt range co rre la tio n  te rm , a n d  
the overall co rre la tio n  function  in  eq. (2) for / =  1 is

N

F\ =  F i,o (h )n  e x p [ - ( a n  +  P ri  +  7 ^3)] ^
;=i

N

+  y i ,o { h ) r 2 e x p [ - ( a r i  +  0 r2 +  7 n ) |  ^
;=i

(10)

w ith a  sim ilar fo rm  fo r  Fi. Each sum m ation  is the  sam e as fo r  th e  s-w ave tr ia l fu n c 
tion  so th a t  fo r a  given w  there are  now  twice as m any  sho rt ran g e  co rre la tio n  fu n c
tions. T he m o st accu ra te  results fo r the elastic sca tte ring  an d  p o sitro n iu m  
fo rm atio n  cross sec tions are given in  figs. 5 an d  6. C onvergence w ith  respect to  w is 
ra th e r less good th a n  fo r s-wave scattering an d  the results m ay  differ by as m u ch  
as 15% from  the  ex ac t values. A s in  s-wave scattering, there  is ag a in  good  ag ree
m ent betw een the p resen t p-w ave elastic scattering  cross sections a n d  the c o r re 
sponding  resu lts o f  H ew itt et al. [5] and  W alters [6]. N o w  the  p o sitro n iu m

60 h

!> 30 j-

0.450.350.15 0.3 0.40.0 0.05 0.20.1

M a,')

Fig. 5. The / = I elastic scattering cross section. See caption to fig. 3.
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4 0 -

0.  10

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

k (a. ')

Fig. 6. The I =  1 positronium formation cross section: (------) present results for potentials A  and B ;
( X ) Hewitt (private commumcation and ref. [5]); ( A ) Walters (private communication and ref. [6]).

formation cross section is a significant fraction o f the total cross section, and is 
very much larger than the s-wave positronium formation cross section except very 
close to /t =  0. A similar pattern in the relative magnitudes o f  the s- and p-wave con
tributions to the positronium formation cross section has been observed in posi
tron-hydrogen scattering [12].

The present positronium formation cross sections are now in better agreement 
with the results o f  Hewitt et al. [5] and Walters [6], being only approximately three 
times smaller whereas the s-wave results are several orders o f magnitude smaller. 
Again, the discrepancy may be due to the lack of convergence o f the close coupling 
results.

As mentioned in the introduction, the positronium formation channel has been 
neglected in several previous investigations o f positron-lithium  scattering [2,3] and 
we have therefore calculated the elastic scattering cross section with the positro
nium chaimel suppressed. In this approximation the Kohn functional becomes

r ,,  = K\, -  , (11)

where

= T/,o(h)^i(r2)[//(A:n) -  4-fi (12)

and F\ is the same short range correlation function as was used in the two-channel 
formulation (eqs. (8) and (10)).

The resulting elastic scattering cross sections differ only rather slightly from  
those obtained in the coupled channel formulation, except for the introduction o f a 
narrow resonance into the p-wave cross section at A: «  0.2, but they differ signifi
cantly from the uncoupled results o f  Ward et al. [2] and McEachran et al. [3] (and 
McEachran. private communication), particularly at very low energies, as may be
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seen in  figs. 3 an d  5. These au th o rs  used  th e  close coup ling  ap p ro x im a tio n , b u t 
on ly  inc luded  the g round an d  excited  states, a n d  pseudosta tes, o f  lith ium , w ith  no  
s ta te s  o f  positron ium . In  ou r p resen t uncoupled  ca lcu la tions w e still im plicitly 
include po sitro n iu m  states in the sh o rt range co rre la tion  fu n c tio n  F\ even th o u g h  
th e re  is n o  outgoing  positronium  w ave, a u d i t  w ould  seem th a t  th e  inclusion o f  posi
tro n iu m  term s in  the  closed channel is sufficient to  yield m o d era te ly  good  results 
fo r  e las tic  scattering .

O u r investigations are being co n tin u ed  to  h igher p artia l w aves a n d  will also be 
ex ten d ed  to  som ew hat higher energies w here m ore o pen  channels becom e 
accessible.
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