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Abstract

Theoretical studies of low-energy positron collisions with various one-electron models of 

the helium atom have been made using the Kohn variational method in order to find out 

if such a model atom is capable of yielding accurate cross sections for elastic scattering, 

positronium (Ps) formation and annihilation.

For positron-helium scattering, comparisons are made with the accurate results ob­

tained from the ab initio variational calculations of Van Reeth and Humberston. All the 

models provide qualitatively accurate results over some energy intervals. Although one 

model gives excellent values for the elastic scattering cross section up to the Ps formation 

threshold, it is affected by a resonance near the threshold. None of the models yields 

very accurate results for the annihilation cross section, although a comparatively crude 

model reproduces the accurate distribution function for the Doppler broadening of the 

annihilation 7 -ray energy spectrum.

A correlation has been found by Van Reeth et al between the Ps formation cross 

section and the associated threshold energy for the noble gas atoms. A parameter in 

the correlation equation has been interpreted as the Ps formation cross section for an 

atom with a zero threshold energy, so Ps formation cross sections have been calculated for 

such a model atom. The results obtained compare reasonably favourably with the energy 

dependence of this parameter obtained from experimental data.

An adiabatic model has also been used to study hydrogen-antihydrogen collisions, and 

further studies may involve a model one-electron atom in the study of helium-antihydrogen 

collisions. The results are satisfactory, but further investigations are needed to include the 

rearrangement of the atom-antiatom system into positronium and protonium.
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Chapter 1

Introduction

1.1 Background

The experimental discovery of the positron by Anderson (1932) provided verification of one 

of the most im portant predictions arising from relativistic quantum mechanics. Dirac’s 

(1928) relativistic theory of the electron, predicted solutions corresponding to both positive 

and negative values of the total energy of the electron. The total energy of an electron, 

E,  is given by

(1 .1)

where p is the momentum of the particle, m  the rest mass and c is the speed of light in a 

vacuum. The positive root of this equation represents the total energy of an electron in 

everyday matter, between mcP' and +oo. But Dirac could not justify ignoring the negative 

root solution corresponding to energies in the range —mc^ and —oo. Dirac’s relativistic 

wave equation for an electron in an external electromagnetic field predicted the usual 

bispinor, representing two spin states of the electron (spin-up and spin-down), but also 

two others with negative energies.

Fundamental physics states tha t particles will naturally relax to the lowest available 

energy state. Therefore, if negative energy states are possible, why do we not see electrons 

making transitions down to such states? This question led Dirac to postulate that all the



States in the “sea” of negative energy electrons, with energies between —mc^ and —oo, are 

full so that, because of the Pauli exclusion principle, there are no empty negative energy 

states available into which a positive energy electron can fall.

In Dirac’s negative energy “sea” picture, it should be possible to excite a negative 

energy electron to a positive energy, leaving a negative energy “hole” . This “hole” in a 

sea of negatively charged particles should behave like a positively charged particle, the 

positron, moving in a vacuum. The promotion of an electron from a negative energy state 

to one of positive energy, leaving a hole in the sea of negative energy states, is the process 

of pair-production, which requires an input energy of at least 2m(?. The reverse process, 

in which a positive energy electron drops into an available hole, releasing energy of at least 

2 mc^, is electron-positron annihilation.

Subsequent theories have used different pictures to describe antiparticles such as the 

positron; for example, Feynman’s representation of antim atter involves reversing the di­

rection of the particle through time.

1.2 Positrons and Antim atter

Theoretically, the positron has the same spin, mass, magnitude of charge (but opposite 

sign) and gyromagnetic ratio as the electron, as a consequence of the CPT symmetry 

theorem; under the operations of charge conjugation (C), parity exchange (P) and time 

reversal (T) together, the laws of physics are invariant. The gyromagnetic ratio of the 

positron, for instance, has been found to be equal to tha t of the electron to within 2 parts 

in 10^  ̂ (Van Dyck et al 1987).

Since Anderson’s discovery of the positron, much theoretical and experimental work 

has been done to discover its properties. Initially most of the work was carried out to test 

the fundamental theories of antim atter, but recently positrons have been used as a tool 

in their own right, as a probe in atomic and molecular physics, and in solid state physics. 

They are also used in positron emission tomography, to map out the areas of the brain.

A significant consequence of the discovery of antim atter is the idea of the annihilation



of electrons and positrons in a vacuum, without violating any conservation laws. When 

annihilating in a vacuum, the electron and positron leave behind two or more 7 -rays, the 

number being dependent on the total spin of the annihilating pair. The most rapid decay 

channel is into two 7 -rays, when the electron and positron are in the spin singlet state.

The bound state of an electron and a positron was first predicted by Mohorovicic 

(1934), (although the details of his ideas about the system were incorrect) and this became 

known as positronium (Ps) (Ruark 1945). Although the positron is stable, the bound state 

of a positron with an electron is not, and positronium can annihilate with lifetimes of the 

order of 1 0 “ ^s or less, so their detection is by their subsequent annihilation.

Neglecting the hyperfine corrections and effects due to the finite mass of the proton, 

positronium has energy levels half those of the hydrogen atom. However, the hyperfine 

separations of the energy levels are very different from hydrogen due to the large magnetic 

moment of the positron compared to tha t of the proton and the contribution from QED 

effects.

The total spin state of positronium also has a very small effect on the separation of 

the energy levels. Positronium exists in two total spin states, S  — 0 (singlet state) where 

the spins are antiparallel, denoted para-positronium (para-Ps), and 5  =  1 (triplet state) 

where the spins are parallel, denoted ortho-positronium (ortho-Ps). These spin states also 

have a dramatic effect on the lifetime of the positronium. In order to conserve spin and 

parity, the annihilation route of (singlet) para-Ps has to be through an even number of 

7 -rays, and for (triplet) ortho-Ps, an odd number, where the lower order processes, two 

and three 7 -rays respectively, are overwhelmingly the most common. The lifetimes of 

these species in their ground states are 142 ns for ortho-Ps but only 125 ps for para-Ps 

(Charlton and Humberston 2001). From simple spin statistics, the ratio of creation of 

ortho-Ps to para-Ps is expected to be 3:1, which means that the ratio of annihilation rates 

of para-Ps to ortho-Ps is approximately 370:1.

Further bound states involving positronium exist, such as electron-positronium, de­

noted P s" (and its charge conjugate Ps"*"), predicted in 1946 by Wheeler (1946) but not
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discovered until 1981 (Mills 1981). The positronium “atom” can also form a bound system 

with another positronium, to form molecular positronium, Ps2 , as well as with hydrogen 

to form positronium hydride, PsH, and with other atoms (e.g. Ryzhikh and Mitroy 1997). 

Perhaps the most significant bound state involving a positron is antihydrogen, a positron 

bound to an antiproton. Experiments at CERN in Geneva (Baur et al 1996) and Fermilab 

near Chicago (Blanford et al 1998) have recently created the first antihydrogen atoms, 

however at high energies, approximately 90% the speed of light. If the antihydrogen can 

be created at low enough energies to allow an examination of its properties, the energy 

spectrum may be studied. It would provide an excellent test of CPT symmetry. If CPT 

symmetry holds then the antihydrogen atom should have exactly the same energy spec­

trum  as does the hydrogen atom. The availability of this antiatom will also enable tests 

to made of the interaction of antim atter with gravity and thus test the weak equivalence 

principle (WEP).

1.3 Positron-M atter Interaction

Electron-atom scattering has been studied in great detail for many years but only quite 

recently has it been possible to perform comparable experiments with positrons. One 

of the main problems holding back positron-atom scattering has been the creation and 

manipulation of slow positron beams.

At high collision energies the total cross sections for positron-atom and electron-atom 

scattering merge. Figure 1.1 shows the total cross-sections of electron-helium and positron- 

helium scattering, from 0 eV to 600 eV, from Kauppila et al (1981), where it can be seen 

that the differences are most pronounced at low energies. Positrons can be created in 

two main ways, either through pair production by sufficiently high energy photons or by 

the radioactive “/?"*"-decay” of certain radioisotopes. The most common isotope used in 

scattering experiments is ^^Na, where the branching ratio of the /3+-decay is 91% and the 

half-life is 2.6 years (Charlton and Humberston 2001). The positrons, or particles, are 

ejected with a wide range of energies, approximately 0.5 MeV, and so the positrons need

11
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Figure 1.1: Total cross-sections for electron-helium and positron-helium impact with re­

spect to different electron or positron wavenumber, k(l/ao) and energy (eV). From Kaup­

pila et al (1981)

to be slowed down to energies of a few electron-volts in order to study the more interesting 

aspects of positron-atom scattering.

During the 1970s and 1980s great advances were made in increasing the positron beam 

current, reducing the energy spread and improving the counting techniques. Combined 

with the general increase in computer power, this allowed more accurate investigations, 

both experimentally and theoretically, into the interaction of m atter and slow positrons.

In ab initio calculations, which can only be made for relatively simple systems, e. g. 

positron-hydrogen and positron-helium scattering, the calculations assume a system simi­

lar to electron-atom scattering but reverse the sign of the charge on the incident particle. 

This alone has a dramatic effect on the calculations. Electron-atom scattering has to take 

account of exchange between the incident projectile and the atomic electrons since they 

are identical. The positron and electron are not identical, however, so there is no exchange 

between the incident positron and atomic electrons. Another difference is the interaction 

potential between the incident particle and the polarizable target. The interaction between 

an electron and an atom has an attractive static part, which assumes an undistorted tar-

12



Table 1.1: A summary of the differences between the interactions and processes involved 

in electron-atom and positron-atom scattering.

In teraction / Incident Particle

C ollision P rocess positron electron

Static Repulsive Attractive

Polarization Attractive Attractive

Exchange X V
Positronium formation V X

Annihilation V X

get, and an attractive polarization potential which takes into account the distortion of the 

target: in the semi-classical picture the atomic electrons are repelled by the negative elec­

tron and so the positive nucleus is less well shielded, making the electron-atom potential 

more attractive. In the positron-atom system, the static potential is repulsive, since the 

sign of the charge is reversed, but the polarization potential is also attractive, since, in 

the semi-classical picture, the positron attracts the electrons around the atom, shielding 

the positive nucleus and thereby making the positron-atom interaction potential more a t­

tractive. The interactions and possible collision processes involved in electron-atom and 

positron-atom scattering are summarized in table 1 .1 .

There is also a difference in the convergence of the numerical methods used to study 

electron- and positron-atom collisions, which can be mainly attributed to the strong corre­

lation between the atomic electrons and the incident positron. In electron-atom scattering 

the incident electron is repelled by the atomic electrons, but an incident positron is a t­

tracted to the atomic electrons, so the positron-electron correlations have to be particularly 

well represented in any scattering calculation if accurate results are to be obtained.

This effect is most noticeable when considering the formation of positronium in positron- 

atom scattering, when the electron and positron can form a bound state and move away
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from the remaining atomic ion. Positronium formation is very much dependent on the type 

of target atom considered and the incident positron energy. For positronium to be formed, 

conservation of energy considerations mean th a t the incident positron energy, E q+, must 

be greater than the difference between the binding energy of one electron to the target 

atom, E\ (the single ionization energy threshold), and the binding energy of positronium, 

Eps — 6 .8  eV, so

E q+ > E{ — Epÿ. (1 .2 )

Certain atoms, for example the alkalis, such as lithium or sodium, have outer electrons 

bound so weakly tha t positronium can be formed even when the incident positron energy is 

zero, so tha t Eps > Ep In this situation the positronium formation process is exothermic, 

so the positronium is “kicked out” with more energy than tha t of the incoming positron.

Other atoms, such as the noble gas atoms like helium and neon, have tightly bound 

outer electrons so the incoming positron must have a positive amount of energy in order 

to liberate an electron from the target. In this situation E\ > Ep^ and the process 

is endothermie, so the positron loses energy as it picks up an electron. The amount of 

energy tha t the positron needs in order to form positronium is denoted by the positronium 

formation threshold energy, E'th- At incident energies above E'th positronium formation is 

possible, below it is not.

In this study the energy region in positron-atom collisions where we have considered 

positronium formation is between the positronium formation threshold and the next in­

elastic threshold, which is the first excited state of the target. This region is called the 

Ore gap.

The final major process considered here, with no comparable process in electron-atom 

scattering, is the annihilation of a positron and an electron. All positronium eventually 

annihilates and direct annihilation of an electron and a positron can occur at any energy. 

The total cross-section for this process is usually negligible relative to the elastic scattering 

and positronium formation cross-sections, so it is not considered as an explicit open channel 

in the collision process.
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1.4 Present Work

The aspects of positron collisions studies here are broken into two main areas: positron- 

atom scattering using one-electron models of atoms, and hydrogen-antihydrogen collisions.

The first system studied is low energy positron-helium scattering using a one-electron 

model of helium. One-electron models of atoms can be considered advantageous because a 

many electron atom is then reduced to two bodies: an electron orbiting an atomic ion core, 

so positron-atom scattering using one-electron models of atoms are automatically reduced 

to three body problems, where only three interparticle coordinates need be considered. As 

the number of electrons, N ,  in the target atom is increased, the number of interparticle 

coordinates which need to be considered increases as N { N  1)/2, so it is easy to see how 

the calculations for positron-helium and positron-lithium scattering, for example, become 

much more complicated than the positron-hydrogen scattering system.

One-electron models of helium have been used to investigate positron-helium collisions 

before, for example Hewitt et al, (1992), but this earlier work investigated the excitation 

of helium using incident positron energies between approximately 30 eV and 200 eV and 

the formation of excited states of positronium. We are interested in the low energy region 

between 0 eV and the first excitation threshold, 20.61 eV for positron-helium scattering, 

where annihilation and positronium formation are considered to be most important. Note 

tha t the first excitation threshold for electron-helium scattering is lower, 19.79 eV, because 

spin interactions cannot be ignored and exchange can take place between the incident and 

atomic electrons, and the 2^S excitation of the helium target is accessible. The general 

positron-atom scattering theory is described in Chapter 2. Three one-electron models of 

helium have been developed by Peach (1982 and 1998) and the author, the first of which 

has independently provided accurate spectroscopic data for the helium atom, the third of 

which has no empirically fitted parameters but is based on physical assumptions of the 

helium atom, and the second of which takes elements of each. These are described in full 

in Chapter 3.

Detailed ab initio calculations have been made of positron-helium scattering by Van

15



Reeth and Humberston (1999) with which the results obtained here are compared in 

Chapters 4 and 5. If the models successfully yield accurate results for positron-atom 

scattering, then it may be appropriate to use these and similar one-electron models to 

look at more complicated systems where ab initio calculations are very complicated, for 

example, positron-neon scattering or helium-antihydrogen collisions (see below).

In Chapter 8  a model one-electron atom with a binding energy of 6 .8  eV has been 

developed in order tha t positronium formulation can be investigated in positron collisions 

with an atom having a zero positronium formation threshold energy. Interest in this 

process arose from the empirical observation tha t in positron collisions with the noble 

gases the cross-section for positronium formation in single ionization, crpg, was strongly 

correlated with the threshold energy for the process, Eth, in the following way:

crps ^  (1.3)

where A  and B  are atom-independent functions of the energy of the positron in excess 

of the threshold (Humberston and Van Reeth 2000). Thus A  can be interpreted as the 

positronium formation cross section for an atom with Eth — 0 , i. e. a binding energy of 

6 .8 . eV.

Chapter 9 describes the final system investigated, that of hydrogen interacting with 

antihydrogen. A model has been used in which the relatively heavy nuclei are assumed to 

be fixed, and a total interaction potential energy is calculated variationally using a flexible 

trial wave function. Using this interaction potential, a two body scattering calculation 

can then be carried out to provide approximate hydrogen-antihydrogen scattering data. 

Other accurate and rigorous methods have been implemented, for example, Jonsell et 

al (2001), Armour et al (1998) and Chamberlain and Armour (2000), but our method 

should allow the modification of including the one-electron models of helium to provide 

preliminary results for helium-antihydrogen collisions, which along with hydrogen- and 

molecular hydrogen-antihydrogen scattering, is one of the most important processes when 

considering the trapping of antihydrogen.

In this work we have mainly used atomic units, a.u., where wavenumbers are given

16



in the reciprocal of Bohr radii, dg and the conversion of energy from atomic units to 

electron-volts is 1 a.u.=27.2 eV.
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Chapter 2

Theory

2.1 Introduction

In low-energy positron-atom collisions three processes are possible just below the first 

excitation threshold of the target; that is, there are three open channels:

e"^-h A —  ̂ e+-l-A  (elastic scattering) (2.1)

e"̂  -I- A —  ̂ A+ -f 2 or 3 7 -rays (annihilation) (2.2)

e"̂  -f A —  ̂ Ps +  A+ (positronium formation) (2.3)

The first two channels, elastic scattering and positron-electron annihilation respectively, 

are open at all incident positron energies. The third, positronium formation, is only 

open when the incident positron has an energy in excess of the threshold energy for 

positronium formation, where

Eth = E [ -  Eps (2.4)

and E\ is the ionization energy of the target atom and J5pg is the binding energy of 

positronium {Eps = 6 .8 eV or 0.25 a.u.). Annihilation has a negligible cross-section and is 

therefore considered to be a minor perturbation to elastic scattering. To begin with we 

will consider only single channel elastic scattering.

18



2.2 Single Channel Elastic Scattering Theory

We are considering a beam of low energy positrons incident on a target atom in its ground 

state. The time-independent Schrodinger equation is

i î)  — i î )  (2.5)

where ri is the position vector of the positron and the variable R  represents the coordinates 

of all the electrons on the target. In atomic units, the total Hamiltonian is

HT = - \ v l - ^ V l  + V{ruR),  (2.6)

where V  is the total interaction potential between all the particles and E t  is the total

energy of the system, the sum of the positron energy and that of the target atom,

E t  =  E{e+) + E(A) = y  + E a , (2.7)

where k is the wave number of the positron.

2.2.1 D eriving the Total Cross Section

Asymptotically, when the positron is a large distance away from the scattering centre, 

the total wave function is a product of the scattering function, ipsc, and the target wave 

function,

^  ( r i , A ) ( r  1 ) $A (A ). (2 .8 )

The asymptotic form of the scattering wave function is

.1 pikri
V^sc(ri) ~  -h/ei(6>,0)-------, (2.9)

r i —*oo 7*2

where the first term  on the right represents the incident positron plane wave, with wavenum­

ber /c, and the second, is the spherical outgoing wave with amplitude fei{0,4>).

Working in polar coordinates with k  as the z-axis and assuming a spherically symmetric 

potential, the scattering amplitude can be expanded into Legendre polynomials so that

oo

/ e l ( « ) = E / ' ^ ‘(cOS«), (2 .1 0 )
1=0
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where fi is the partial wave scattering amplitude, and the (axially symmetric) incident 

plane wave can be represented as

oo
gifc.ri _  ^ikz = Piicos e) j , ( k n )  (2.11)

/=0

where A i—{21 +  l)i^ and ji{kri)  is the spherical Bessel function, which is the regular 

solution of

I 7.2 +  1 )
T i dr I V  ̂dri

where

3 Z T  (2 .1 2 )

(" 'I

Similarly, the scattering wave function can be represented as a sum over all angular 

momentum state, denoted by /, as,

oo

V-sc =  E  f|(cos@) G,(fcri). (2.14)
1=0

where Bi are arbitrary constants and Gi{kri) is the regular solution to the radial Schrodinger 

equation of a particle in the field of the atom, tha t is

Here V{ri)  is short range, so tha t Gi satisfies the boundary conditions

G,(fcri) r{, (2.16)

where r]i is the phase shift. Substituting the equations (2 .1 1 ) and (2.14) into (2.9), the 

scattering amplitude can be expressed as

1 oo
fe\{d) — ^ ( 2 /  +  1) — l )  Pi{cos6). (2.18)

For simplicity later on, it is useful to introduce the scattering matrix, or 5-matrix, which 

for elastic scattering has only one element,

S, = (2.19)
1 — 1 tan  T)i
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47T
+  1) sin^ r// (2 .2 1 )

1=0

The total single channel elastic scattering cross-section, a^i, is given by

(Tel =  /  l/elW pdf^ (2.20)
Jfl
47T 
F

oo

~  jL2 “  ^ 1̂  • (2 .2 2 )
^ (=0

2.2.2 Calculating the Phase Shift

Experimentally, it is the cross-section tha t can be measured. In order to calculate this 

from theoretical considerations it is necessary to evaluate the phase shift. The powerful 

mathematical methods which are used for this task throughout this work are Variational 

Methods.

The variational method relies on the fact th a t an appropriately chosen functional, F , 

of the wave function, is stationary with respect to small changes in the wave function. So 

if a flexible trial wave function, is dependent on a finite set of parameters, for example 

Cl, C2 , C3 , ..., Cj,..., ĉ v, then the functional is stationary when

dF
^ ^  =  0, i =  1 ,2 ,3 ,..., F ” (2.23)

and an approximate wave function, may be found. The stationary value of the func­

tional found using is correct to first order errors in the wave function.

Another useful feature of the variational method is tha t frequently the value found

using the approximation constitutes a bound on the exact value. In the case of the ground 

state energy (described in the next chapter), any approximation to the exact wave function 

will result in a ground state energy more positive than the exact one, so the better the 

approximation, the lower the calculated energy, and a very good approximation to the 

exact value may then be obtained by extrapolation.

The Kohn variational method which we have used here, usually provides a lower bound 

on the phase shift, so tha t the more positive the phase shift the method provides, the more 

accurate it is.
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In the Kohn method, we start with the following functional I  of the exact wave function

/[^ ] =  I L I I 2{Ht - E t ) I = 0 .  (2.24)

The exact wave function is not known but we can relate it to a trial wave function, 

which differs slightly from ^  by the value

^  (2.25)

The application of the variational method means that the functional /[^^] becomes sta­

tionary as becomes negligible, i.e. ÔI = 0 to first order. Expanding 61 we see that

6I[^^] = -h (2.26)

=  { ^  \ L \ ^ )  + { ^  \ L \ 6 ^ )  + { 6 ^  \ L \ ^ )

+ { 6 ^  I T I 6 ^ )  -  ( '^  I T I ^ ) .  (2.27)

From equation (2.5), the first, third and fifth terms of equation (2.27) are zero, so we are 

left with

=  ( ^  I L I +  I L I 6 ^ ) .  (2.28)

The second term  is of second order in the error in the wave function and, in keeping with

the spirit of variational methods, can be assumed to be negligible. Using L | ^  > =  0, we 

can also write

(57[^^] ^ { ^ \ L \ Ô ^ ) - { Ô ^ \ L  \ ^ ) .  (2.29)

Green’s theorem states that

I  [ /V ^ 5  -  sV V ] dr = j  [ /V s  -  g V f]  .da- (2.30)

where r  is the volume enclosed by the surface a. In polar coordinates, the volume elements 

are given by

dr = dr sin 6 dO d(f) (2.31)

d(T = sin 9 d9 d(f) r , (2.32)
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and using Green’s theorem

W [$‘] =  f  [vP'V((53') -  {(5$) V $ ] , d ( T .  (2.33)
Ja

From equations (2.8) and (2.17) we know tha t the asymptotic form of the total scat­

tering wave function is

ri^oo ^ t ( R )  (2.34)

where Fî,o(^i, ^ i)  is the relevant spherical harmonic and ^ t(-R ) is the target wave function. 

The param eter ^  is a normalizing factor which can be chosen to be a constant or any 

function of rj. A case of special interest is A =  y/ksecrf, so the trial wave function is

$T (B ). (2.35)
’’1—̂00 \ kri kri I

Using (2.25), is

6 ^  ̂ 0 i)v T  (tanr)* — ta n 7/ ^ ---- , (2.36)

and, using Green theorem described above, we have finally,

= tan  77* — tan  77. (2.37)

Expressing the asymptotic functions in (2.35) in terms of the spherical Bessel and Neumann 

functions, the trial wave function is

-  tan77^77((A;7-i) ^ t ( R )

r^Zoo ^ ^ o (^ i,0 i)v ^  [iz(^n) -  ^*nz(/cri) $ t(-R ), (2.38)

and the variational estimate of the phase shift, 77̂ , becomes

tan 77̂  =  tan  77̂  — (^^  | L | ^^), (2.39)

or

= K ^ ~  IK (2.40)

The wave functions described above represent the scattering function at long range. In

order to represent the wave functions when the positron is close to the target atom, we use
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Hylleraas functions to represent the various interparticle correlations. These offer great 

flexibility and are also mainly dependent on linear variational parameters. So the full trial 

wave function is chosen to be

N

¥  = S  + K<^C + Y,0i4>i,
i=l

where

S = Yifi{9i,(l)i)Vkji{kri)^T{R),

C  = -Yin{8i,<l>i)Vkni(kri)^T;(R),

(2.41)

(2.42)

(2.43)

and 4>i are Hylleraas functions, which for a three-body system such as positron-hydrogen, 

have the form

^ki (2,44)

and the indices ki, li and mi take non-negative integer values related to a given positive 

integer, w, in such a way tha t

4" 4" TTli < W. (2.45)

By expanding (2.24) and differentiating with respect to the linear parameters Ci {i — 

1,..., N)  (see equation 2.23), we get a set of N-l-1 simultaneous equations which can be set 

out in matrix form such that.

(2.46)

(C ,LC )  . {C,L(j)j) (C ,T ^)

(4,i,LC) . ) ' ' ' Ci

or

A X  = - B . (2.47)

where a term  such as {C,LS)  means {C \ L \ S )  etc... The variational, or stationary, 

value of K'^ can be found from (2.40) and (2.47) by.

=  - 1
A  B X

B ^  {S,LS) 1

- B ' ^ X  - { S , L S ) .

(2.48)

(2.49)
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2.3 Schwartz Singularities

The Kohn method described above is a very useful method of calculating the phase shifts, 

and furthermore, it usually provides a lower bound. However, this bound is not rigorous 

but empirical, because for particular values of the non-linear parameters in the trial wave 

function, the phase shift may display an anomalous singularity.

The first analysis of this phenomenon was made by Schwartz (1961a), studying the 

phase shifts for electron and positron-hydrogen scattering. He found that at particular 

values of the non-linear parameter in the short range terms in the trial wave function, the 

tangent of the phase shift went through spurious jumps over ranges of energy. He also 

found tha t if the number of terms in the short range part of the trial wave function was 

increased, then the number of singularities would also increase but they would be narrower 

in the range of the non-linear parameter, so the range over which the results would be 

reliable would be greater.

Schwartz concluded tha t these singularities arose from the inversion of the matrix. 

If there are N  short range terms, this matrix will have N  eigenvalues of the operator L, 

one of which may vary continuously through zero as the energy is varied. In numerical 

calculations it is sufficient for one of these eigenvalues to be close to zero to create problems 

when inverting the matrix.

Further investigations (Nesbet 1980) established that the long range terms in the trial 

wave function were also im portant in contributing to the existence of these singularities. In 

the case of the Kohn method described above, singularities can arise from the inversion of 

the A  m atrix (see equation 2.47). Various methods have been developed to deal with this 

problem, but in this study three variants of the Kohn method have been used (described 

below), and a comparison is then made between the results of the three methods. A 

singularity arising in the results obtained using all three methods at the same energy for 

the same values of non-linear parameters is extremely unlikely, unless it is a genuine feature 

of the system, e.g. a resonance.
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2.4 Variants of the Variational M ethods

In addition to the standard Kohn variation method outlined above two variants of the 

Kohn method have been used in this work which provide a useful check on the accuracy 

of the results and identify Schwartz singularities. Both these methods have the advantage 

tha t they use the same m atrix elements as those calculated in the standard Kohn method, 

but different m atrix manipulations are needed to create the variational phase shifts.

2 .4 .1  In v erse  K o h n  M e th o d

In this case another value of the normalization parameter, A, given in (2.34), is chosen, 

A  =  y/k cosec rji, so the single-channel trial wave function for the inverse Kohn method is,

  N
'i* = K * S  + C + Y,Ci4,i (2.50)

i=l

where

K  — cot rji. (2.51)

This changes the functional and also the matrix structure in (2.46).

2 .4 .2  C o m p le x  K o h n  M e th o d

This method uses the same functional as in the Kohn method but the form of the wave 

function is changed. Instead of expressing the asymptotic form of the wave function 

in terms of spherical Bessel and Neumann functions, it is now expressed in terms of two 

irregular solutions to the differential equation (2.12). These are known as Hankel functions, 

and are the complex sums of the spherical Bessel and Neumann functions, so

h \^ \k r )  = ji{kr) ±  ini{kr). (2.52)

The Neumann function in the C  terms is replaced with ih \  \  and so the matrix A  

becomes complex. It was originally considered (McCurdy et al 1987) tha t the complex 

symmetric A-m atrix would never have a zero determinant, but Luchesse (1989) has shown 

that although unlikely, it is still possible. If the determinant is to be zero then the real
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Figure 2.1: The coordinates of the positron-one electron atom system.

and imaginary parts have to be zero simultaneously, which is possible when there is more 

than one non-linear parameter to consider.

2.5 Two Channel Scattering Theory

When the incident positron has an energy in excess of the threshold energy, 

Eps = E\ — 6 .8  eV, for positronium formation, there are two open channels to consider 

(see 1.1 and 1.3).

The two channel scattering formalism can be derived in a similar manner to tha t 

described previously for single-channel scattering but using a two component scattering 

wave function.

To begin with let us consider the Schrodinger equation (2.5) and, for convenience, a 

one-electron target, as shown in figure 2 .1 .

The Hamiltonian can be represented in terms of the positron-atom coordinates, r \  and
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r 2 , so tha t the Hamiltonian is

H t  — — (2.53)

or in terms of the positronium-ion coordinates,

H t  =  —^  V p  — +  ^ ( ^ 15^ 2 , ^ 12), (2 .54)

where p = ^ (^ 1  +  f'2 ) is the position of the centre of mass of the positronium relative to 

the target nucleus.

From conservation of energy,

1 2̂

E t  =  ——  E\ — —  E y>s (2.55)

where « is the positronium wavenumber, and E\ and E’ps are the single ionization energy 

of the atom and the positronium binding energy (=  6 .8  eV), respectively.

The asymptotic form of the scattering wave function given by (2.8) and (2.9) is modified 

such that, when positronium is formed, the scattering wave function as p —>• 0 0  is

^ (r i,7 '2 )^ ^ V '8 c (p )$ P s(ri2 ), (2.56)

where $pg =  jg exact positronium wave function, and the scattering wave

function now has no incoming positronium plane wave, so

J k p
■0sc(p) /p s (^ p ) -^ .  (2.57)

In order to indicate which processes are being described, a numerical subscript is used; 

positron-atom elastic scattering is denoted “1 1 ” , (or el), and positronium formation “1 2 ” 

(or Ps). The two asymptotic forms of the first component of the scattering wave function 

are then.

4̂ 1 ~
n —>00

y i i ( ^ i ) _ _ ^  ^ t(t* 2) (2.58)

J k p
-  /i2(^p)— $Ps(p). (2.59)p—>oo p

The complete picture needs to take into consideration the time-reverse processes, i.e. 

positronium-ion elastic scattering ( “2 2 ”) and atom formation, i. e. capture by the ion
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of the electron in the positronium ( “2 1 ”) with the release of the positron, so the second 

component of the wave function, ^ 2 , has the asymptotic forms

/  pikp\
^ 2  +  — j $ P 8(p) (2.60)

f2l{0l)------ ^ t ( î ’2). (2.61)
r i —>cx3 n

A similar analysis to that given from (2 .1 1 ) onward provides us with a two component 

real wave function with the asymptotic forms.

^^o(^i,0 i ) v ^ [ i / ( ^ n )  -  A îi nz(/cri)] $ t( î" 2), (2.62)

-yi,o{0p,(f>p)y/^Ki2ni{Kp)^Ps{ri2), (2.63)

^ 2  Yifi{ep,(l)p)V^[ji{Kp) -  K22ni{Kp)]^Ps{ri2), (2.64)

~^z,o(^i, 0 i) V^AT2in/(/cri)$T(î’2). (2.65)ri-+oo

Extending the S  matrix (see equations 2.19 and 2.22) to include the two channels, the K  

and S  matrix elements are related by

S  =  (2.66)

where 1 is the 2 x 2 identity matrix. The partial wave cross sections for each process are 

then

-P, =  (2.67)

47t(2Z 4 - 1) K
1 - i K  y pq

p ,g  =  l, 2, (2.68)

where k\ = k and k2 =  K. The positron elastic scattering cross section and the positro­

nium formation cross section are denoted by a n  and a u  respectively and are dependent 

on a coupling between the K  matrix elements.

The subsequent variational calculations are much like those for single-channel scatter­

ing except there are now four functionals to consider,

Ipq = { ^ p  \ L \ '^q ), (2.69)
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and the variational matrix is then found as an extension of (2.40) so that

6Ipq — Kpq — Kpq +  ( ô^p  | L  | )

and therefore

or

K h Ki l K\2

;i:22 ( ^ 2 , ^ ^ i )  ( ^ 2 , ^ 2 )

Suitable choices for the two components of the wave function are

N

^ 1  — S\ + K \ i C i  +  K 2 1 C2 +  Cj (f>i,
i=l
N

where

^ 2  — 'S'2 +  K 2 2 C2 +  K\2Ci  +  dj (pj,
j= i

51 =  yi,o{^i,4>i)y/kji{kri)^Ti'r2),

Cl = -Yi ô{ei,(l)i)\/kni{kri) fi{ri)^T{r2),

5 2 — V2 k J;(kp)$Ps(7*i2),

C2 = -Yi^o{6p,(j)p)V^ni{Kp) f2{p)^Ps{ri2),

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

and 4>i are Hylleraas-type short range correlation functions of the form given in equation 

(2.44). The functions / i ( r i )  and / 2 (p) shield the singularities in ni{kri)  and ni{Kp) at 

their respective origins. It is noticeable tha t the subscripts on the matrix elements in 

(2.73) and (2.74) differ from those in (2.62)-(2.65). This is because had the notation given 

in the asymptotic form been kept we would have arrived at a transpose of the variational 

K  matrix. This change is valid because of the symmetry of the exact and the variational 

K  matrix, tha t is, K 12 = K 2 1 , but not of K^.

The calculation of the matrix is similar to that given in (2.46) except that now 

the single column matrix becomes two columns and the elements {C,LC)  etc. are 2x2
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matrices, so tha t

( C i .L C i)  (C i.L C j)  . . (^1) ^ 0 j )  . . . K \ 2 (C i ,L S i ) { C u L S i )

( C 2 , L C i ) {C 2 ,L C 2 )  . . (^2) ^^j')  . . . K*22 (C 2 ,L 5 i ) { C 2 ,L S 2)

{<pi,LCi)  (<j>i,LC2) . . (* î) . . . Ci di {<l>i,LSr) {<t‘„ L S 2 )

or, with new notation.

Now,

A X  =  - B .

(2.79)

(2.80)

X
A  B X

B ^  S L S 1

= - B ^ X - S L S ,

(2.81)

(2.82)

where 1  is the 2 x 2 identity m atrix and the matrices C L C ,  C L S  and S L S  are of the 

form.

S L S  =
i S i , L S i )  ( S u L S 2 )  

{S2,LS i ) ( % , % )
etc. (2.83)

2 .5 .1  S in g u la r itie s

The two-channel scattering calculations are subject to similar anomalous singularities as 

described by Schwartz (1961a) (see Section 2.3) in the single-channel case. Singularities 

in the variational K  matrix elements can be pinpointed by comparing the results yielded 

by the inverse and the complex Kohn methods described in Section 2.4 applied to a two- 

channel scattering formalism.

The complex Kohn method is useful not only because Schwartz singularities rarely 

occur but also because, in the two channel case it provides a measure of its own reliability. 

Luchesse (1989) showed tha t the unitarity of the calculated S  matrix is a good measure
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of the reliability of the results of the complex Kohn method. If S  is unitary, then

S  =  1 (2.84)

and this relation is broken as a singularity is approached.
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Chapter 3

M odel Potentials

3.1 Introduction

The first scattering system under investigation in this work is tha t of positron-helium scat­

tering. Ab initio investigations of this system have four particles to consider (the positron, 

two electrons and the atomic nucleus). This means that, taking the nucleus as being 

infinitely massive, three particle vectors, or six interparticle coordinates and three Euler 

angles, are required to specify the configuration. Integration over the three Euler angles is 

straight-forward and consequently the various matrix elements tha t need to be evaluated 

involve six-dimensional integration which requires a large amount of computational time 

for a relatively simple system. Such calculations have been done with excellent results 

(Van Reeth and Humberston 1999) but they used a lot of computational time. Since the 

number of interparticle coordinates for an V-body system is N { N  — l) /2,  detailed ab initio 

studies of the collisions of positrons with heavier atoms are not realistic.

A possible way around this difficulty is to use a model in which the neutral target 

atom is represented as one electron orbiting an ion core. This turns the positron-atom 

scattering system into a three body problem, with only three interparticle coordinates 

and a great reduction in calculating time. The disadvantage with this method is tha t it 

is only a model so there may be real aspects of the system tha t a specific model cannot 

represent. W hether these are im portant or not in this case will be revealed by the current
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Figure 3.1: The coordinates of the positron-heliuin system.

investigations.

Helium is arguably the worst choice of atom to represent as a one-electron model. It 

has two equivalent electrons which should not allow either one to be treated as special. 

One electron models of alkali atoms have been successful, for example lithium (Watts 1994 

and W atts and Humberston 1994), since such an atom consists of one relatively loosely 

bound electron orbiting a core of tightly bound inner shell electrons, and so the system is 

physically similar to a hydrogenic atom. Noble gases on the other hand have filled outer 

shells, so the outer electrons are equivalent. Studies of one-electron models of helium are 

therefore a useful test of the validity of the models, and perhaps an extension to positron 

collisions with heavier noble gases can be made.
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3.2 Calculating M odel Potentials

3 .2 .1  H y d ro g e n ic  S ta tic  P o te n tia ls

The simplest construction of a one-electron model of helium is to create a ‘hydrogenic 

sta tic’ potential. Taking the full three body system of the helium atom, where the nucleus 

is taken to be of infinite mass at the origin, the electron-nucleus coordinates are denoted 

Va and r\) and the electron-electron coordinate is Vab- Let electron a be the ‘one-electron’ 

for which we want to find an interaction potential between it and the core  (the nucleus 

and the other electron) tha t is dependent only on Ta- The potential felt by a, Va, and the 

helium-ion wave function, $He+ both known exactly,

'  a  '  ab  '

r2-ïï fK  roo
y { r a ) =  /  /  I ^H e+ W  I Ti, d r  b s i n e  de d(f). (3.2)

J(h=0 J9=0 Jrh=0

and the static potential, V{ra), is given by

“2 7 T /"TT p o o  

'Tb'-

Evaluating this integral fully gives the static interaction potential between the electron 

and helium-ion core,

V{ra) =  - - - ( -  +  2 )  . (3,3)
ra  \ r a  J

As ra —̂ 0, the electron feels only the attraction of the doubly charged nucleus, and as 

Tq —> 0 0  only the Coulomb attraction of the singly charged ion core.

3 .2 .2  A c c u r a te  M o d e l P o te n tia ls

The problem with the static potential is tha t it represents a rigid helium ion core. The 

potential takes no account of distortion of the core by the bound electron and the low en­

ergy positron, and no account of exchange between the two physically equivalent electrons 

in the atom. An accurate electron-helium ion potential which does take account of some 

of these factors has been found by Peach (1998) with the form

V{r) — -  ^  ^  ( 1  + Sr + e — ^ ^ 2  (Pr)

^ X 3  iP'r) %4 {(3'r) -f ^ W 2 (pir) + {E-,) W2 (/?2r ) , (3.4)
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where the functions ujn and Xn shield the singularities as r  —> 0, so

=  lXn{x)Ÿ (3.5)

and
n rn

Xn(x) = 1 -  e ^ (3.6)
m =0

The potential given in equation (3.4) has been chosen to reproduce spectroscopic data  

accurately. The first term in the potential function is the long range Coulomb attraction, 

the second term  represents a static-type interaction with the core, with Z'  = \  (in general 

Z ' =  Z — 1, where Z is the total number of electrons in the atom). The third and fourth 

terms represent the dipole, a^, and quadrapole, polarizabilities of the core respectively, 

and the the last two terms are dynamical corrections to the dipole polarizability potential 

(/?d and 7 d), where E\ is the ionization energy of the atom corresponding to the potential, 

and the function /  {E\) is given by

/  {E\) =  —  tan   ̂ f ----E-^ . (3.7)
7 T  \  I E  J

Although only the parameters Z, ocq, I3di Id and E\ represent known physical properties

of the ion, the others are found empirically by fitting the potential to spectroscopic and

electron scattering data, so exchange effects and distortions of the atom are all taken into 

account in the potential as a whole.

3.3 Properties of M odel Potentials

Model potentials have been used to reproduce accurate spectroscopic results for the excited 

states of sodium. This is an alkali atom and therefore the excitation energy of the valence 

electron is much smaller than tha t of the inner shell electrons, so a one-electron model is 

quite appropriate. But although it reproduces these results very well, the model potential 

may also support other bound states which are not present in the physical system. For

example, in sodium the valence electron is in a 3s orbital and the Is, 2s and 2p shells are

filled by the other electrons. A good model sodium potential reproduces the real states
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Figure 3.2; Variation of electron-core model potentials with electron coordinate, V2 for 

helium. Thick line, ; thin line, ; dashed line, .

of the 3s electron to more than 99.9% accuracy but it also supports three bound states 

representing the Is, 2 s and 2p electrons, lying at energies well below the physically real 

ground-state.

Therefore, although a model potential may provide very accurate spectroscopic results, 

it may also produce unphysical properties as well. Later we shall see the effect these can 

have.

3.4 Properties of H elium  Potentials

In this work, three model helium potentials will be used, each with the same form as that 

given in equation (3.4). The three models are plotted in figure 3.2. The first, is the 

one provided by Dr Peach which reproduces spectroscopic data very well; the second, V2 

( also provided by Dr Peach), only contains the first three terms of equation (3.4), but 

the parameter 7  in the static part of the potential is closer to the value of the exponent in 

the hydrogenic static (see equation 3.3). It also reproduces the energy of the first excited
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State of helium more accurately. The third potential, , is the exact hydrogenic static 

potential with the core dipole polarizability term added; thus

V i { r )  =  -  ^  i  ( l  +  >5(i)r +  -  0 u ; 2  (/3r)

“  (/?'r) Xi (.P'r) +  (A r) +  (Ei) w; ( f t r ) , (3.8)

Vf{r)  =  -  -  -  -  ( l +  (5(2) r +  d(2)r^) (/3r), (3.9)

Vf{r)  =  +  2)  e -" ' -  g^W2 ( ^ r ) . (3.10)

The values of the parameters are listed in the appendix.

In order to use these potentials in the scattering calculations we need to determine 

the target wave function representing the model atom in addition to its ground-state 

energy. We can also calculate other properties of the model atom, in particular, the dipole 

polarizability and the first excitation energy of the electron.

It should be noted that there are differences between the descriptions of the energy 

levels when referring to one-electron model atoms or to real many-electron atoms. In 

helium, for instance, the ground state energy of the real atom is E q = —2.9077 a.u., 

i.e. the energy threshold for double (or total) ionization is 2.9077 a.u. However, a one- 

electron model can only be singly ionized by definition, so the ground state energy of our 

one-electron model helium atom should be the negative of the energy required to singly 

ionize the helium atom, —0.9069 a.u., and similarly for the excited states. In general, 

then, a real atom with ground state energy E'a, and its positive ion ground state energy 

Eji^+, will be represented by a one-electron model with a ground state energy E q where,

E q = E a  — E a +- (3.11)

and similarly the first excited state of the model, E\,  is related to the first excited state 

of helium, E a * , by

El = E a * — E a +- (3.12)

In this work, we are only interested in positron scattering up to the first excitation thresh­

old, so these are also calculated but only in order to  know up to which point the results 

are valid.
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3 .4 .1  R a y le ig h  R itz  M e th o d

A convenient method of finding the ground state energy of an electron in a model potential 

is the Rayleigh Ritz variational method. This provides a rigorous upper bound on the 

ground state energy E q. We start with the functional E  of the wave function

(3.13)

which yields the exact Eq  for the Hamiltonian, H,  for the model when #  is the exact ground

state wave function, 0Q. As with the Kohn functional, E  is stationary with respect to

small variations in the wave function away from the exact wave function $ . Taking the 

exact wave function to be equal to  the ground state wave function, i.e. 0  =  4>o, a trial 

function, can be defined as

+  60, (3.14)

and

ÔE =  E[^] -  E[^^] = E q -  E l  (3.15)

and we shall show tha t ÔE = 0 to first order in the error in the wave function.

We know tha t | 0  )=  E'o | 0 ), and taking into account the fact that the Hamiltonian 

is a Hermitian operator,

^  <»•«)

($  I 0 ) +  2 {0^ I $ ) +  (6 $  I (5$)

Eq  (0  I 0 ) +  2E q { 6 ^  I  0) +  (^0 I R  I  6 ^ )  
($  I $) 4- 2 {6^  I 0 ) +  {6^ I 6 $)

(3.17)

(3.18)

But

%  =  (3-19)

Eq  ( $ ! $ >  +  2Eq  I  0 )  +  E o  { 6 ^  I  6 ^ )  
(0  I  $) +  2  ((^0 I  0) +  (60 I  60)
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Substituting (3.18) and (3.20) into (3.15), we find the stationary condition,

I $<) ’ ^

SO 6E  ~  0 to first order in (5$.

The fact tha t Eq is a rigorous upper bound on E q can be proved by expanding the 

trial wave function into a complete set of orthonormal eigenfunctions, 0^, of H,  so

and since H ^ i  = E i^ i  (i = 0 , 1 ,...) then

EZ =
\ i =0

H
oo
E
J=o

so

K - E o - ^

/  oo oo \
E  9 $ ;  )

\ i = 0 3=0 /
oo
E  c * c , - ( $ i |  $ ,■ >£:,

i J - 0
oo
E  c*Cj (4>i 1 $ j )

i , j=0

E  1 Ci p  E .
J=o

OO
E  1 9  P

j= 0

oo
E  1 Cj 1 ( E j  -  E o )

_  j = o

j=o

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

but since Ej  is an eigenvalue of H,  it follows tha t for all j  Ej  > E q and therefore all 

> Eo.

In order to calculate the ground state energy of the model a Hylleraas-type trial wave 

function is used so that
N  N

$*(r) =  ^  Ci(j)i =  c*r\ (3.27)
*—0 z=0

The functional E q is stationary with respect to small changes in the wave function so that

dci =  0 (3.28)

40



which leads to a set of N  simultaneous linear homogeneous equations which can be ex­

pressed as a m atrix eigenvalue equation,

{H  -  E^A )  c =  0, (3.29)

where the m atrix elements of H  and A  are given by

Hij — {(f)i \ H  \ (f)j) , (3.30)

A j  =  (4>i I 4>j) , (3.31)

and c is a column matrix listing the optimum values of the linear coefficients in the varia­

tional wave function. Equation (3.29) is a standard matrix eigenvalue equation and many 

computational routines exist to solve it, giving us the optimized values of the coefficients 

(for a particular value of non-linear parameter, (3) and the eigenvalues, (n =  0,

Since the calculated value of E q is an upper bound on the exact value of the energy 

of the ground state, we can vary the non-linear parameter, /?, and the number of terms, 

N,  in the trial wave function to obtain the lowest value of E q. For a given value of /?, E q 

decreases (becomes more negative) as TV is increased. The minimum in E q with respect 

to variations in j3 is then found by repeating the calculation for different values of /?. It

is noticeable tha t as TV is increased, if E q is well converged in the range over which /5

provides an accurate value of E q, the minimum in figure (3.3) is broadened out.

There are TV solutions to the eigenvalue equation (3.29), each representing an approx­

imation to a state of the model atom, either the ground states or an excited state. The 

subsequent eigenvalues, denoted E\ ,  E 2 , ...Ej^, also follow the same bound rules as the 

ground state eigenvalue.

Since we are only considering positron collisions up to the first excitation threshold, it 

is necessary to consider only the energy of the first excited state, which can be determined 

reasonably accurately as the second eigenvalue, E’j , of the above eigenvalue equation.
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Figure 3.3: Variation of the lowest eigenvalue, Eq, using model , with respect to the 

non-linear param eter /3 in the trial wave function (see equation 3.27). As the number of 

terms, N  in equation (3.27), is increased the minimum value of Eq decreases, providing an 

improved upper bound on the exact ground state energy E q . Also the minimum becomes 

flatter.
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3.4.2 D ipole Polarizability

The dipole polarizability, a , is a measure of how easily the atom can be distorted by an 

applied electric field. If the atom is in a small uniform electric field of strength, e, then 

the dipole polarizability is defined by the difference between the perturbed ground state 

energy, E q, and the unperturbed energy, £'0 , as follows

2 { E q - E ' q)
a  = (3.32)

The perturbation produced by the applied electric field, is ercosd,  where 6 is the angle 

between the direction of the electric field and the position vector of the electron. The 

perturbed Hamiltonian for this system also has to take account of the polarization of the 

core by the electron so the perturbed Hamiltonian is

H' =  H  +  e (r -  ^ X 2 (A r)) cosO, (3.33)

where is the dipole polarizability of the core. The trial wave function has to be able 

to represent this dipole or p-type distortion so our new trial function can take one of two 

forms
N  M

COS 9
i=0  j=0

(3.34)

or, since $He is nodeless,

M
1 +  cos 6

j=0
(3.35)

where $He is the wave function using the optimized linear parameters. The perturbed 

ground state energy, Eq,  is also obtained using the Rayleigh-Ritz variational method with 

functional
/* '.  I W I

2 - 1 , 2 .  (3.36)
° I $ ')  ’

There is no bound on the dipole polarizability because it involves the difference of two 

energies, each of which is an upper bound on the corresponding exact energy. However, a  

is found to be stationary over a range of values of j3', and as M  and/or N,  are increased 

the region of stability increases.
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Figure 3.4: Convergence of the m atrix element iFio.io with respect to increasing the num­

ber of points, M , in the numerical integration with model . The inset shows the same 

results on a smaller scale.

It must be noted that the method described above yields the polarizability of the 

electron-core system only and the total dipole polarizability is equal to the sum of that 

calculated here and tha t of the helium ion core, the parameter in equations (3.4) and

(3.33), where ad — 0.28125 Gq for helium.

3.4.3 Integration Techniques

The m atrix elements of H  and A  are calculated using a numerical integration procedure 

called Gauss-Laguerre quadrature. The integral of the product of an exponential and a 

function, F (x), which can be approximated by a polynomial expressed as

Mpoo 1 ^
/  e~^^F{x)dx ^  - Y ^ W i F  

Jo
(3.37)

where a  is a constant and Wi are weights dependent on i and M . This procedure is exact 

if F{x)  is a polynomial of degree 2M  — 1 or less. This procedure works well, even for the 

potential energy component of each matrix elements, as can be seen in figure (3.4) where 

the value of the matrix elements ifio,io converges rapidly with respect to the number of
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Figure 3.5: Variation of the ground state energy E q with respect to the non-linear param­

eter /), for the three electron-core model potentials. Thick line, Vj” ; thin line, ; dashed 

line, ; dotted line parallel to the abscissa, exact value of E q for the helium atom. N=\Q  

in equation (3.27) for all models.

integration points, M.

3.5 Energy, Polarizability and Target Wave Functions

The accuracy of the representation of each model can be appreciated by looking at the 

energy levels and the model wave functions it provides. The results in figure (3.3) clearly 

show the rapid convergence of the lowest eigenvalue. These values are upper bounds but it 

seems highly likely that additional terms would only cause E q to decrease by a negligible 

amount. Figures (3.5) and (3.6) show how the three models compare in terms of the 

ground state energy they provide using the most accurate 10 -term trial wave functions. 

Models V\ and V2 both provide upper bounds which are extremely close to the exact value 

for helium, to at least 5 decimal places (see table 3.1).

The stable value of the dipole polarizability, a , for these two models also coincides
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Figure 3.6; Variation of the second lowest eigenvalue, E'l, with respect to the non-linear 

param eter /5, for the three electron-core model potentials. Thick line, V{~ ; thin line, V f  ; 

dashed line, ; dotted line parallel to the abscissa, exact value of Ei  for helium. jV= 1 0  

in equation (3.27) for all models.

with the exact value for helium. Model V3 does not provide such good agreement with 

the known properties of the helium atom, but this might be expected due to the relatively 

simple nature of this model.

W hether the good agreement with the binding energy and dipole polarizability pro­

vided by models V f  and V f  is sufficient to yield accurate positron scattering data can 

only be shown in the scattering calculations.

The target atom wave functions, #He, used in the scattering calculations are defined 

by the coefficients tha t constitute the eigenvector corresponding to the lowest eigenvalue, 

obtained by solving the matrix equation (3.29). Ideally, the value of the non-linear pa­

rameter (3 should be that which yields the minimum and the stationary variational values 

for the properties of the target. For a small number of terms in the trial wave function, 

the value of (3 which provides the lowest value E q may not be the same as tha t which 

provides a stationary value of a. However, if there are sufficient terms in the trial wave
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Figure 3.7: Variation of the dipole polarizability of the electron-core system, a, with re­

spect to the non-linear parameter j3 in equation (3.35), for the three electron-core model 

potentials. Thick line, V{~\ thin line, V2 ; dashed line, ; dotted line parallel to the 

abscissa, exact value of a  which is the full dipole polarizability of helium minus the con­

tribution from the He"  ̂ core. in equation (3.35) for all models.

function, the precise value of (3 becomes less im portant both in terms of the energies and 

polarizabilities calculated and the form of the wave function itself.

The electron density functions for each of the three models with /3=2.0 and N=10  

(see equation 3.27 and 3.29) are shown in figure (3.8). This reveals differences in the 

electron cloud density around the atom for the different models. Since we are considering 

low energy positron-atom scattering, where the positron has time to interact with the 

electron cloud, this may have an effect on the scattering results. However, all these results 

are derived from the model potentials so the sensitivity of the scattering results to the 

accuracy of target wave functions may or may not be important. This is investigated in 

the scattering calculations.

The electron densities corresponding to the various models cannot be directly compared 

with that of a two electron model of helium, but one of the electrons can be specified by
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Table 3.1: Properties of the model atoms (minimum or stabilized values): ground state 

energy (Eo), first excited state energy (Ei),  full dipole polarizability of the model atom 

(ckHe), dipole polarizability of the model neglecting the core dipole polarizability(o:) and 

the expectation value of the electron coordinate ((r)). N.B. The total dipole polarizability 

of the model helium atom is the sum of the polarizability of the single electron and the 

core polarizability.

Model £^o(a.u.) E l (a.u.) o^He(ao) a(ag) (r>(a.u.)

V f -0.90369424 -0.18785 1.38327 1 .1 0 2 0 2 1.0813

-0.90369322 -0.14658 1.38375 1.10250 1.1320

V3- -0.86873648 -0.15599 1.06659 0.78534 0.9658

exact -0.90369424“ -0.14597^ 1.38324“ - -

“Moore (1970)

^Martin (1960)

“Bhatia et al (1997)

integrating over the coordinates of the other. The accurate helium wave function created 

by Van Reeth and Humberston (1999), is a function of the two electron coordinates 

r 2 , and rg,
N

^VR(r2 , n )  =  ^  bj(r2 +  (r2 -  (3.38)
j-o

where r 2g is the inter-electron coordinate. A comparable one-electron cloud density can 

be calculated by integrating over either one of the electron coordinates, in this case rg

|^ v r (^ 2)|^ =  J  \^VRi'r'2,7’3)\'^dr3. (3.39)
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Figure 3.8: Variation of the electron density with electron-core coordinate T2 for the 

ah initio work of Van Reeth and Humberston (see text and equation 3.39) and the three 

models, using 10 terms in the trial function (see equation 3.27 with (3—2.Q) and calculating 

the coefficients from equation (3.29). Thick line, thin line, ; dashed line, ; chain 

curve. Van Reeth and Humberston (see equation 3.39).

3.6 Positron-Core and Electron-Core Potentials

The full potential function for the positron-target system, V (ri,T ’2), is the sum of the 

three interparticle potentials. The electron-helium ion core potential, V “ (r2), has been 

discussed above (see equation 3.4). The positron-core potential, V +(ri), is taken to be 

the exact hydrogenic static interaction between the positron and the helium ion, which is 

the negative of tha t calculated for the electron-helium ion (see equation 3.3) with a dipole 

polarizability term  added.

(3.40)

It is not valid to create a positron-core potential simply by taking the negative of the 

electron-core potential, i.e. V"''(ri) =  — (ri),  because the dipole polarizability
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term s are attractive in each and also the electron-core potential includes electron exchange 

contributions which are absent from the positron-core interaction.

Since the polarization potentials are attractive, independent of the sign of the charge 

of the particle, an additional ‘three-body’ potential term, V ,̂ must be included in the 

overall interaction potential to account for a reduced polarizing effect on the core when 

the two leptons are close to one another, and an increased effect when the leptons are on 

opposite sides of the helium ion. This three-body term is of the form

Ve ( n ,  7-2, ^12) =  COS012X2 (A n)X 2  (A r2) • (3.41)
^1^2

Including the electron-positron Coulomb attreiction,

K-e+(^12) = -------5 (3.42)
T’12

the total interaction potential in the positron-target system is

V { r i , r 2 ) =  V~{r 2 ) +  F + (n )  -h V;-g+(ri2) +  Vq ( n , 7-2 , 012) • (3.43)

The positron-atom scattering calculations will depend on the total interaction potential 

and not just the electron-core model potentials, hence from now on the three complete 

model potentials will be labelled Vi, V2  and V3 .
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Chapter 4

Positron-H elium  Scattering

4.1 Introduction

This chapter deals with how the methods described in Chapter 2 were applied to  positron- 

helium scattering and how the results were obtained. There are details to consider, such 

as the numerical integration techniques used and the analytical forms of the Hamiltonian

operating on the scattering wave functions. We also consider the extension to higher

partial waves.

4.2 Calculating the S-Wave M atrix Elements

4 .2 .1  In te g ra tio n  T ech n iq u es

In order to calculate the various matrix elements tha t arise in equations (2.46) and (2.79), 

the six dimensional integration needs to be reduced to integration over three interparticle 

coordinates and three external angles. The full six dimensional volume element including 

external coordinates is

dT\dT2 — dr\dr2 (4.1)

=  r\dr\sm6\d6\d(f)\r2dr2^iii02d62d(l)2^ (4.2)
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which, when integrated over the external Euler angles, becomes

dr = STT^ridrir2dr2r i 2dri2 , (4.3)

or

- 2 „ 2dr = 8tt ridriT2 dr2 sin OudOu, (4.4)

using the nomenclature of figure 3.1. Certain terms in the {4>i,L(j)j)  m atrix elements, for 

example, take the form

fo o  roo r r i + r 2 ,
/  /  /  e~ °̂‘̂ ^'^^^^^'^^^^^Pn{ri,T2 , r i 2 )Tidr ir 2dr2r i2dri2 , (4.5)

JO  J o  J \ r \ —r2\

where Pn is a polynomial of finite degree n in r i , r 2 , r \2 - The r i 2 integral is complicated 

as is stands, so perimetric coordinates are used, defined by

x =  n + r 2 - r i 2 , y = r 2 r i 2  -  r\,  ^ =  n 2 +  n - 7 ’2, (4.6)

the integral (4.5) then becoming

/•oo roo roo
/  /  /  y^^^^Qn{x ,y ,z )dxdydz.  (4.7)

Jo Jo Jo

This integral can be readily computed using the Gauss-Laguerre procedure described in 

the Section 3.4.3,
r o o  1 / r \
/  e-'":'F(a;)dT -  T  f ^  | . (4.8)

Jo O! ^

4 .2 .2  S c a tte r in g  W ave F u n ctio n

Since the single channel matrix elements in equation (2.46) are included in the two-channel 

formulation (see equation 2.79), we will consider a derivation of the forms of the two 

channel m atrix elements. The full form of the two-channel wave function is

N
«-i =  Si + K h C i  + K*2i C2 +  Y.Ci4>i, (4,9)

i = l
N

^ 2  — 'S'2 +  K 2 2 C2 +  7^12^1 -f ^^dj( f) j ,  (4.10)
j= i
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where

51 = Yo,o(0,<p)Vkjo{kri)^ue{r2) (4.11)

Cl = —Yofi(9,(j))Vkno{kri)fi^}ie{r2) (4.12)

5 2 = Yo^o{9,^)V^jo{Kp)^Ps{'f'i2) (4.13)

C2 = -Yo^o{9,(f))V^no{Kp)f2^Ps(ri2)  (4.14)

(4.15)

where f i  and /2  are functions which shield the singularities in the Neumann functions as 

r i —> 0  and p 0 , and

1̂ 0,0 (^, 0) = - 7 ^ -  (4.16)
V47r

These shielding functions have to ensure tha t the following boundary conditions are sat­

isfied,

^  ~  r l  (4.17)n ^ o   ̂ ^

^  ~  p \  (4.18)

so a suitable choice of f i  is

f l  = l - e - ^ ’-K (4.19)

The function /2  also has to take into account tha t as p ^  0 there is no particle at p =  0. 

Considering the situation in positron-hydrogen scattering when p —> 0, then ri r2 so in 

this limit, the total interaction potential reduces to

V  = -  —  (4.20)
r i 2

with no 1 /p  singularity in the potential function at p =  0  as there is in the ri coordinate. 

The Schrodinger equation (equation 2.54) provides us with the condition that, in the limit 

as p —>■ 0

V^C2 =  (4.21)

and so the choice of /2  is limited by

C2 oc J  (4.22)
p—>0

53



and

p—>0

A suitable form of /2 for s-wave scattering is

V^C2 a „ p '.  (4.23)

h  = l -  e -""  ( l  +  y )  ■ (4.24)

4 .2 .3  M a tr ix  S y m m etry

The total Hamiltonian,

H t  = - x V 2 ^ - - V ? . ,  +  y-(r-2) +  F + (n )  +  F '- ''" ( n 2 )  +  V é(ri.r2 ,012) (4.25)

=  - \ v l - V l ^ ^  + V-(r2) + V ^ [ n )  + V ‘' ‘* (n^ )  + V e{rur2 ,9n ) ,  (4.26)

2 
1

4

produces a symmetric square m atrix in equation (2.79) and so it is not necessary to 

calculate all the elements explicitly. The following symmetry rules can be exploited,

(Si ,LS2) = (S2,LSi)  (4.27)

(C i ,L52) =  (52,LC i ) (4.28)

(S i ,LC'2) =  (C2,LS i ) (4.29)

(C i ,LC2) =  (C2,LC'i ) (4.30)

(S'r.LCi) =  (C i,L S i) +  l  (4.31)

(% ,TC2) =  (C2,T% ) +  1 (4.32)

(<t,i,LSi) = (Si,L4,i) (4.33)

(* ,T C i)  =  (C i,T ÿi) (4.34)

(<j>i, L S 2 ) = (S 2 , L<j>i) (4.35)

i<j>i,LC2) = {C2,L4>i) (4.36)

i<Pi,L<t>j) = (4.37)
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which can all be proved by applying Green’s theorem with the appropriate boundary 

conditions at infinity.

4 .2 .4  L on g-ran ge  T erm s

Although not all of the terms in the matrices S L S ,  S L C ,  C L S  and C L C  have explicit 

exponential fall-offs in all three coordinates, these terms can nevertheless be evaluated 

using the Gauss-Laguerre procedure with perimetric coordinates by introducing an ex­

ponential fall-off in the appropriate coordinate which must then be compensated for by 

multiplying by the corresponding positive exponential factor. Thus, in comparison with 

equation (3.37),

foo roo 1 / r \
/  F{x)dx = /  e-^^F{x)e+^^dx ^  - y w i F i ^ ]  e+“^. (4.38)

Jo Jo a  ^  \ a  /

If the value of a  is chosen appropriately, and the function F{x) is finite everywhere and 

decreases faster than 1/x , as we have here, this approximation still provides sufficiently

accurate results. For example, this technique is used when calculating part of the {Si, LSi)

term  which contains no exponential term explicitly (see equation 4.46),

2 k j o i k r i )  r f dr i .  (4.39)

In deriving the analytic forms of the integrands which include the operator, some 

explicit terms cancel, since the spherical harmonics and the Bessel and Neumann functions 

are eigenfunctions of the operator. Using the full radial and angular parts of V^,

V^Y,fl{e)ji{kr) = (4.40)

V^».o(9)n,(fcr) =  - k ‘̂ Y,fi{e)ni(kr). (4.41)

The calculations can be further simplified by reducing some three-dimensional integrations 

to one-dimensional integration. This reduces the computational time needed for the single­

channel elastic scattering calculations. The (S i ,L S i) ,  {C i,LS\) ,  {S \,LC i)  and (C 'i,LCi) 

matrix elements can all be reduced by making use of the fact the the target wave function
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created from the model potential is a very good approximation to an eigenfunction of the 

target Hamiltonian. Furthermore,

r  $H« ( v j ,  +  2V~ -  2Eo) $He r \  dr i  =  0, (4.42)

even for an inexact wave function for the model potential, since equation (4.42) is satisfied 

because E q is the expectation value of the model Hamiltonian, i. e.

and $He is normalized so that

roo
47T /  | $ H e |  ^ 2  d r 2  =  1. (4.44)

Vo

The (iSi, L 5i) matrix element, for example, can be reduced by substituting from equation 

(4.40), and the remaining terms in (5 i,L 5 i)  are

roo roo rir
/  /  \ $ H ^ f j i ( 2 V +  +  2 V ^ ) r l d r i 4 d r 2 s m $ u d e i 2 .  (4.45)

Vo Vo Vo

Then, using equation (4.44),

{Si,LSi) =  2A;^ joikri) +  2^ -

roo roo rir / I  1 \
+  47t/c /  /  / -----|$He(r2 )| j o { k r i ) [ ------------) d n  rg dr2 s in ^12 (4.46)

Vo Vo Vo xr i  r i 2 /

The first term can be readily calculated using the Gauss-Laguerre procedure and equation

(4.38). The second term can be reduced by exploiting the relationships relating to the

Legendre polynomials, Pi{cos6 ),

 ̂ =  —  =  T  f ;  ( I I y  F ,(cos0), (4.47)
TI -  T2 | r i 2 r-> ^  \ r >

f  Pi Pi! sin 6  dO = 6i i>, (4.48)
J Q ZL I

where r< and r> are the lesser or greater values, respectively, of r\  and r 2 . The second 

term in equation (4.46) becomes

f  f  J o i k n )  |$ H e (r 2)|^  ( — -  — )  r? dri  r \  dv2
.Vo Vo \ T\  r \ J

roo roo  / I  1 \
+  /  /  Vo(^n) |$He(r2)| ( ----------- \ r \ d r i r l d r 2

Vo Vri \ Tl  T2/
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fOO r roo roo
Stt/c /  j o i k r i )  /  |$ H e (r 2 )| ^2 c?r2 -  n  /  |$ H e(r2 )| r 2 d r 2

Jo Ur-i Jri

fOO rjl

r idv i .  (4.50)
U r i  Jri  J

Since $He(?^2) is a product of an exponential term  and a polynomial in r 2 , this term can

be reduced to an integral involving ri by using the relation

"OO M l

e - “’'^ r j d r 2 =  ^
’’•1 k = o

SO equation (4,46) is reduced entirely to a one-dimensional integral. A similar method can

analytically reduce the other remaining single-channel long-range - long-range terms to 

one-dimensional integrals.

The long-range - long-range matrix elements relating solely to the two-channel case 

need three dimensional integration since the terms are too complicated to reduce analyti­

cally. However the eigenvalue relations in equations (4.40) and (4.42) can still be used to 

simplify these matrix elements.

The calculation of the long-range - short-range matrix elements (e. g. (5 i,L 0 j) , 

(C ijL ^ j), etc.) makes use of the symmetry relations in equations (4.33) - (4.36). Only 

the matrix elements on the left hand side of equations (4.33) - (4.36) need to be evaluated.

4 .2 .5  S h o rt-ra n g e  - S h o rt-ra n g e  M a tr ix  E le m en ts

The m atrix elements {(pi,L(f)j) are evaluated by first using Green’s theorem, so the full 

matrix element is

(0i,L0j) =  [  ( - V ^  -  +  2 F ( r i , r 2 )  - -  2Eo) d r i  dr2 (4.52)
J v i , r 2   ̂ ^

— I [Vi</>i • -f V 20i • V 20j
J r i , r 2

+  (2V  ( r i , r 2 ) - k ^  -  2Eq)] d r \ d r 2 . (4.53)

Noting tha t V  is a vector operator, which in polar coordinates is

V  =  +  +  i =  i ,2  (4.54)

where f i, 6 i and 0  ̂ are the radial, polar angle and azimuthal angle unit vectors respec­

tively, and

Ti2 — rf + rl — 2riT2 cosdi2 , (4.55)
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then

• Vi(/)j +  V20Z • V20J = { ( - < ^  +  ^ )  ( - Q ! + + c o s ^ i , i 2  ( - 7 +

+  +  c o s ^ 2 , i 2 ( - 7 + ^ )

+  ( - ^ + S )  [2 ( - 7  +  ^ )  +  cos0 i,i2 ( - a  +  ^ )

+  cos ^2,12 ( — /? +  ^ ) ]  } <t>i<t>ji (4.56)

=  Cij(t)i(l)j, (4.57)

where ^1^12 and ^2,12 are the internal angles between r\ and r i 2 , and r2 and r i 2 respectively.

4.3 Convergence and Optimizing Non-linear Parameters

The wave function in the single channel case has four non-linear parameters, a , /?, 7  and 

A, which need to be optimized. Theoretically all four parameters should be varied for each 

incident positron energy, and for a particular number of terms in the short-range part 

of the wave function. The values which give the most positive value of the phase shift, 

77, are chosen, whilst neglecting those that correspond to Schwartz singularities. Figures 

4.1-4.3 show the phase shifts in two dimensional parameter space. The choice of parameter 

should usually be the one which provides the most positive 77, however, figure 4.2 shows a 

singularity at 7  ~  0.7, A ~  0.02 in the complex Kohn calculations. Although a singularity 

in the complex Kohn is highly unlikely, the choices of parameters also need to fit the 

physics of the problem since the lower bound on 77 is not rigorous. For example, below jFth 

the positron cannot bind with the electron to form positronium so the exponent associated 

with the r i 2 coordinate should be smaller than that for positronium, 0 Ps oc exp(—0 .5 r i 2 ), 

since the correlation between the two leptons is quite extended. Consequently 7  ~  0.7 

is too high to be considered a realistic choice of parameter. Similarly, choosing A ~  0.02

would shield the Neumann function in the scattering wave function for too large values

of r i , so this is also not a suitable choice of parameter. Looking at the parameter space 

within reasonable limits shows a less dramatic maximum in the phase shift (see figure 

4.3). However, the convergence of the phase shift with respect to increasing the number
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Figure 4.1: Variation of the s-wave phase shift, r/, with respect to variations in the choice 

of non-linear parameters a and (3 with fixed 7  =  0.3, A =  1.0 and /c =  1.0 with uj — A. 

Notice there are two peaks in the phase shift corresponding to optimal choices of a  and (3.

of short-range terms is generally good enough for one set of non-linear parameters to be 

chosen for all energies.

The optimization of the two channel scattering calculations is complicated, not only by 

an extra parameter, /i, but also because the two channel Kohn method provides empirical 

lower bounds on ivji and Â 22- One set of non-linear parameters may be an optimal set 

for one of the diagonal K  matrix elements but not necessarily, and usually not, for both.

Because of the empirical lower bound on and K 221 the calculated values converge 

on to the exact ones as the non-linear parameters are optimized, and also as the number of 

short-range terms in the wave function, expressed in terms of the parameter uj in equation 

(2.45), is increased. It is most likely that above a small number of short-range terms in 

the wave function, any subsequent terms will make increasingly smaller corrections to the 

calculated variational FT-matrix element.
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Figure 4.2: Variation of the s-wave phase shift, r/, with respect to variations in the choice 

of non-linear parameters and A with fixed q =  0.6, (3— 1.2 and k — 1.0 with w =  4. The 

singularity in parameter space exists in the complex Kohn method, however, at choices of 

1 and A which seem imphysical.
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0,50.2
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Figure 4.3: Variation of the s-wave phase shift, ry, with respect to variations in the choice 

of non-linear parameters 7  and A. Same as figure 4.2 but a smaller region of parameter 

space is chosen. Notice the peak in the phase shift is almost independent of A.
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Figure 4.4: Variation of the s-wave phase shift, 77, with respect to a  and w, with fixed 

(3 = 1 .2 , j  = 0.3, A =  1.0 and k = 1.0 Oq Notice, the w — 4 curve has the same double 

peak structure shown in figure 4.1. As u> is increased the number of peaks increases but 

it fiat tens out over parameter space.
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Figure 4.5: Convergence of the s-wave phase shifts for increasing uj at k = 1.0 . The

straight line is the line of best fit when n = 2.97.
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A useful, empirical method of finding the value on to which the results with higher 

values of cu converge is to plot the variational values of the phase shift r) (or K '^ i  or K 2 2 ) 

for different values of w, against 1 /uj'^. A fit to the curve has the form

KUoj) = K l { u  = œ )  + ^ ,  (4.58)

or

= 7]^{uj = 0 0 ) (4.59)

where A  and B  a parameters to be determined by fitting to a straight line. The parameter 

n  can be found using curve fitting algorithms as tha t value which gives the best straight line 

fit to the values of r]{u), and the intercept of this line with the l/c j” — 0  axis corresponds 

to T]{cj =  0 0 ), the fully converged phase shift (see figure 4.5).

In these investigations we are not creating results for a previously uninvestigated sys­

tem, but we are comparing the results obtained in this work with the previous accurate 

data of Van Reeth and Humberston (1999). The variations between the three models vary 

more than any subtle optimization or convergence calculations, so the above methods need 

only be used to check the accuracy of the calculations rather than rigorously to extract 

the exact data  from these models.

4.4 R esults - S-Wave

The s-wave elastic scattering phase shifts are shown in figure 4.6. These results are for 

w =  8  for each of the three models. Figure 4.5 shows the convergence of the phase shifts 

with respect to cu. The line of best fit through the points provides an approximation to 

the converged value of rj{cu = 0 0 ). The error in the intercept is about 5x10” .̂ Table

4.1 shows how well these results are converged for model Vi at A; =  1.0 and similar 

convergence patterns exist for the other two models. The value oi r){u = 8 ) only differs 

from 77(0 0 ) by a factor of 0 .1 %.

The s-wave elastic phase shifts for model Vf show excellent agreement with the results 

of Van Reeth and Humberston (1999), except for a a slight anomaly at k = 1.13 ûq ^
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Table 4.1: Convergence of the s-wave phase shifts for model Vi with respect to the number 

of terms in the trial wave function at /c =  1.0 The value of rj{oo) is taken from the 

intercept in figure 4.5.

w(Af) T](UJ)

2 (1 0 ) -0.20623

3(20) -0.19504

4(35) -0.19197

5(56) -0.19150

6(84) -0.19072

7(120) -0.19061

8(165) -0.19038

9(220) -0.19030

10(286) -0.19026

a; =  00 -0.19018

as can be seen in figure 4.6. This is discussed in greater detail in Chapter 6 . All the 

models show a similar energy dependence to tha t of the accurate data, and contain the 

im portant feature of passing through 77 =  0  as the attractive dipole polarizability becomes 

less dominant at higher positron energies.

The resonant feature in the s-wave phase shift for model V\ is not a Schwartz singu­

larity, because the feature appears in all three variants of the Kohn method. The precise 

nature of this resonant feature is discussed in full in Chapter 6 , but we shall see that it 

will affect the cross sections for the higher partial waves above and below the positronium 

formation. Models V2 and V3 do not reveal a similar resonant structure but the phase
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Figure 4.6: The variation of tlie s-wave elastic scattering phase shift with respect to the 

positron wavenuniber, k for uj — 8 . Thick line, Vi; thin line, V2 ; dashed line, V3 ; *, accurate 

results of Van Reeth and Humberston (1999). Note: the results are only plotted up to the 

positronium threshold, /cth, for each model.

shifts, although following a similar energy dependence, do not fit the accurate ab initio 

data as well as do those of model V\.

4 . 4 . 1  V i r t u a l  P o s i t r o n i u m

When the incident positron energy is close to, but less than, the positronium forma­

tion threshold, positronium cannot be formed but the positron and electron become 

highly correlated as if positronium was trying to be formed, but cannot quite succeed. 

This structure has been called virtual positronium, as it does not relate to an open chan­

nel of positronium formation.

The work of Humberston et al (1997) used this picture to explain a feature in the 

single-channel s-wave elastic scattering cross section very close to T'th- The single-channel 

elastic scattering cross section, cTgi, falls very slightly to match the two-channel elastic 

scattering cross section at the boundary.
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Figure 4.7: The variation of the s-wave elastic scattering cross section with respect to 

for model V3 and w — 8 . The dotted line parallel to the ordinate marks the positronium 

formation threshold, solid line below T’th, single channel elastic scattering cross sec­

tion, with (̂ vpg term included; solid line above E’th, two channel cTgi; dashed line, single 

channel â ] without 0 vps term included.

In the work of Humberston et al (1997), an extra term, 0vpsi was added to the trial 

wave function to provide an explicit representation of virtual positronium. For s-wave 

scattering this is of the form

,-Kp
0 vp.s — CoV0,o (p )0 Ps(^12) p  ̂ ’ (4.60)

where cq is the associated linear parameter and k is the wavenurnber of positronium for 

the equivalent incident energy above Eth, i.e.

kp.
K, = \ l 4 E q — Eps +  — (4.61)

As an example of the effect of including this term, figure 4.7 shows the improvement 

in the s-wave above and below hi model V3 , as the elastic cross section below 

JFth matches that above when the 0vps term is included. A similar feature was noted in 

the ab initio work of Van Reeth and Humberston (1999) and (1998) both for positron-
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helium and positron-hydrogen scattering. This term produces a very narrow feature in the 

elastic scattering cross-section but it is im portant very close to the positronium formation 

threshold. We will also see its importance in calculating the positron-electron annihilation 

rate in Chapter 5, and its effect on the resonance supported by model Vi, in Chapter 6

4 .4 .2  T w o  C h a n n el S -W ave S c a tte r in g  R e su lts

The two-channel scattering cross section results shown in figures 4.8-4.12 do not reveal 

such good agreement between any of the three models and the accurate results of Van 

Reeth and Humberston (1999). As with the single channel elastic scattering phase shifts, 

the results which are shown are well converged, and they are plotted against positronium 

wavenumber K so tha t the different positronium formation thresholds for the different 

models all correspond to =  0. Also, the results are only plotted as far as the first 

excitation threshold for each model, beyond which the excitation of the target needs to  be 

taken into account, which is a three-channel scattering problem.

The results for models V2 and V3 follow the energy dependence of the accurate ab 

initio results of Van Reeth and Humberston (1999) satisfactorily, with only very slight 

differences in magnitudes as may be seen in figures 4.8 and 4.9. The threshold features 

in the elastic and positronium formation cross sections (cTgi and crps respectively) are well 

represented. The sharp rise in aps for all three models is apparent at k =  0, followed 

by the abrupt change of slope. The rise is a consequence of Wigner’s threshold theory 

(Wigner 1948) which predicts that, for the partial wave, K 12 oc as can be seen

in figure 4.10. Since, at low energies upg oc| K u  P /A; ,̂ then crpg oc As ac —+ 0, A:

tends to a finite constant and then crpg 0 as At 0. However, the slope of crpg is infinite 

at At — 0  as can be established by the following derivation:

^  =  +  (4.62)

and

do'ps dcTps dK . .
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Figure 4.8: The variation of the s-wave elastic scattering cross section with respect to 

for uj =  8 . Thick line, Vi; thin line, V2 ; clashed line, V3 ; chain curve, accurate results of 

Van Reeth and Humberston (1999). Note; the results are only plotted up to the excitation 

threshold, ex, for each model.

since

then

and therefore

^ 0  + y  =  y  -  ^Ps,

cicrps ^oc —:—
dk

(4.64)

(4.65)

(4.66)

cicTps
For s-wave scattering {I — 0) and when k =  0, /c is finite and non-zero, y y  oc 1/k so the 

slope is infinite at the threshold.

This feature was noted both in the positronium formation cross section for positron- 

helium and positron-hydrogen scattering in the ab initio work of Van Reeth and Humber­

ston (1998).
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Figure 4.9; The variation of the s-wave positronium formation cross section with respect 

to for u; == 8 . See caption to figure 4.8 for legend.

Alodel V\ does not reproduce these features in such detail, despite quantitatively being 

very good; in fact a^\ seems to have a slight fall at the threshold. The lack of the threshold 

features in this model is believed to be caused by the resonance feature below E'th-

The K  matrix elements plotted in figures 4.10 to 4.12 show the similarity between the 

results for models V2 and V3 despite the difference in the potentials and the properties of the 

model atoms. In the expression for the full trial scattering wave function in equation (4.10), 

K 22 plays a somewhat similar role to the tangent of the phase shift in the single channel 

scattering wave function, but is associated with the elastic scattering of positronium by 

a helium ion target. Figure 4.12 shows how K 22 has a similar energy dependence to the 

elastic scattering phase shift below the threshold. However for model Vi there is another 

resonance feature above the positronium formation threshold at k, % 0 .2  .
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Figure 4.10: The variation of the s-wave K \2  m atrix element with respect to for 

oj = 8 . See caption to figure 4.8 for legend.
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Figure 4.11: The variation of the s-wave K u  m atrix element with respect to k for oj 

See caption to figure 4.8 for legend.
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Figure 4.12: The variation of the s-wave K 22 matrix element with respect to /t for w =  8 . 

See caption to figure 4.8 for legend. Note tha t the results for models V2 and V3 are very 

similar to each other on the scale used.

4.5 Higher Partial Waves

In order to calculate the scattering parameters for higher partial waves, changes need to be 

made to the scattering wave function. Since, at low energies, the positron cannot im part a 

change of angular momentum to the target atom, the long-range parts of the wave function 

representing the incoming positron and outgoing positron or positronium must have all 

the spherical harmonics, Bessel and Neumann functions, and the appropriate shielding 

functions, appropriate to the same angular momentum, I. The short-range parts need to 

represent all the necessary couplings of the angular momentum of the positron with the 

electron, where the angular momentum is shared between the two particles at close range, 

although overall the total angular momentum must also be I.

There are, in theory, an infinite number of combinations of positron and electron 

angular momenta which result in a total angular momentum Z, but Schwartz (1961b) 

showed tha t the number of terms needed to represent this coupled state can be significantly
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reduced by introducing the vector-coupled state Z2 ; Z,m), where

V^(/l,m i,/2 ,W2 ; / ,m) =  ^  (Zl,?T%l,f2,?7l2 | Z,m). (4.67)
m i,m2

The terms ( / i , m i , / 2 , m 2 | / , m)  are the Clebsch-Gordon coefficients, and the sum is con­

strained by

m i + m 2 — m, (4.68)

and

I 'mi |<  2 =  1 , 2 . (4.69)

The eigenstate of total angular momentum, ^ ( r i , r 2 , / , m), is expressed as an expansion 

in -0 , so tha t

4 f ( n , r 2 , / , m)  =  ^  V'(fi, 2̂ ; f, ni)^i,Z2 (n ,  r 2 , r i 2), (4.70)
h,h

where represents the short-range spherically symmetric terms in r%, T2 and r i 2 , each 

corresponding to a combination of k  and I2 called a symmetry. This summation can be 

restricted so that

/i +  ^2 — k (4.71)

and

I /1 - Z 2 |<Z. (4.72)

For each value of I there are I -f 1 symmetries of a given parity. The short-range terms

must also satisfy the boundary conditions

^ ( r i , r 2 , / ,m)  -  r^, (4.73)
r i —+Ü

’F(ri,T*2 , / ,m)  -  rg. (4.74)
r 2 —>0

4 .5 .1  P -W a v e  W ave F u n ctio n  and  M a tr ix  E le m en ts

For p-wave scattering, Z =  -|- Z2 =  1 and exploiting the axial symmetry so tha t we can

take m =  0 , we have the vector-coupled states '0 (Zi, m i, h-, m 2 )

# ,0 ,0 ,0 )  =  Yi,0 (^1, (^i)lb,0 (^2 ,W (1 ,0 ,0 ,0 | 1,0), (4.75)

# ,0 ,1 ,0 )  = }^,o(^i,<Ai)yi,o(^2,(;62)(0,0,l,0| 1,0). (4.76)
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The two components of the two-channel p-wave scattering wave function therefore have 

the forms

=  yi,o(^i)V^ [ ji{kn) -  K h n i ( k r i ) f ^  $H e(r2 )

+ ̂ 2 1  Yi^o{ep)V^ni (k p ) / | $p s(t’12)
N  M

+  y i,o (^i)n  E  +  yi,o(^2) r2 E  ci 4̂ *, (4-77)
i—l  i= l

^ 2  =  Ti,o(6»p)V ^ jl{Kp) -  i^2 2 ^l(«^P)/2 ] ^Ps{ru)  

+  ^ 1 2  V ^ n i(/c r i) /f  $He(T-2)
N M

+  ^ 'l ,o (^ l)? ’l 4>j +  ^ l ,o (^ 2 )^ 2  ^  d'j 4>j,
j = l  j = l

(4.78)

_  ^-{ari+Pr2+nfri2) j.k j.mi (4.79)

where

(f>i =  e ' 1 ' 2 ' 12 5

and the Clebsch-Gordon coefficients have been absorbed into the linear coefficients. The 

shielding functions f \  and /2  given in equations (4.19) and (4.24) are raised to the power 

3 and 5, respectively.

The m atrix elements are calculated as for s-wave scattering, but the new matrix ele­

ments are ordered by the following notation,

N M
^  = Si + Kh Cl + K h  02 + Yi,o(0i)n x ;  Ci «Si +  yi,o(«2 )r2 E  (4.80)

z=l i=l
N M

» 2  =  %  +  K i^ C 2 + K \^C i + Y i f l (e i) r iY ,d i^ i+ Y i f i (e 2 )T 2 Y ,d 'i4 ' i ,  (4.81)
i = l i = \

where

Cl

-?2

C2

Y\ ,0 {Oi ) y/k j i  {kri ) $He (^ 2  ) 

-Y i f i{9 i)V k n i{k r i ) f f ^ n e { r2 )  

Yifl{0p )V ^ j i iK p )^ P s { r i 2 ) 

-Y i f i { e p )V ^ n i{ K p ) f l ^ P s{ r i 2 )

The p-wave spherical harmonic is

Yi,o(6 ) = \ J Y c o s e ,

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)
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and the first order Bessel and Neumann functions are

. , sinA;r cos kr
j i (k r )  =

(fcr)2 kr ’
- cos kr sin kr

ni[kr) — -

(4.87)

(4.88)
(kr)^ kr

The analytical calculations are complicated by the powers of the shielding functions as­

sociated with the Neumann functions and the angular part of the wave function, which 

is a function of the external angles. The integration of the products of p-wave spherical

harmonics over the external angles are.

[  yi,o(^l) yî,o(^2) =
J Text

27TCOS 012, (4.89)

f  ^l,o(^l)^l,o(^p)<^'Text =
''Text

_ / n  -k r2 COS 012 \
2 p ) ’

(4.90)

f  yi,o{^2 )yi,oi^p)dTç^t =
•7 Text

_ f r 2 + ri cos 012 \
2 p j- (4.91)

f  yi,o(Oi)yi,o{Oi)dText =
•̂ Text

27t, 2 =  1 , 2 ,3, (4.92)

where O3 — 6p.

The short-range - short-range square matrix can now be split into four matrices rep­

resenting the different symmetries. Let

Fi =  y\fi{Oi) r\ 0 Î, (4.93)

Gi =  yi,o(^2) T2 (t>û (4.94)

= Fi, l < i < N , (4.95)

^i+N = Gi, (4.96)

— (4.97)

so the total square matrix the square matrix with size {N  +  M ) and elements

becomes

F L F  F L G  

G L F  G L G

Although the matrices F L F  and G L G  are symmetric, F L G  and G L F  are not.

The matrices F L F  and G L G  are similar to the ((;6%, matrix elements in the s-wave
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calculations, the main difference being the inclusion of the repulsive centrifugal potential

barrier, l{l +  l ) / r^.  The matrix elements can be expressed in terms of Cij (see

equation 4.57) as,

FiLFj — ^Cij +  ^  — 2Eq̂  ^ i^ j i  (4.98)

G{LGj = ( ^ i j  — 2 ~  ^  ~  ^-^0^ GiGj^ (4.99)

FiLGj = ^ “I— 2 ~  ~  cos ^12

^ - 7  +  f - 7  +  sin^ 6 i2 \  FiLGj, (4.100)
J 2r i2 \  r u J  r i r \2  \  r u  

= GiLFj .  (4.101)

4 .5 .2  D -W a v e  W ave F u n ctio n  and  M a tr ix  E le m en ts

The d-wave, 1 = 2, trial wave function has three symmetries corresponding to the combi­

nations {Zi = 2 ,1 2  = 0}, {/i = 0 , l2 = 2 } and {/i = l , l 2 = 1 }. As in the p-wave case, the 

z component of I can be chosen to be zero, so the first two symmetries listed here have 

m i — m 2 — 0. Using the same formalism as with the p-wave,

V;(2,0,0,0) =  }^,o(^i,<;!,i)}^,o(^2,</'2)(2,0,0,0|2,0), (4.102)

V (0,0,2,0) =  Tb,0 (^1 ,(^1)}^,0 (^2 , (A2)(0,0,2,0|  2,0),  (4.103)

but the third combination, or mixed symmetry, is

# , i ; 2 ,o) =  Yi,_i(^i,</>i)yi,+i(^2 , 0 2 ) ( i , - i , i , + i | 2 ,o)

+  yi,o(^i, <^i)yf,o(^2 , (̂ 2)( 1 , 0 , 1 , 0 1 2 , 0  )

+  Fi^+i(^i, 0i)Yi^_i(^2? 02)( 1 )+ I 515 —1 I 2 ,0) .  (4.104)

Using the spherical harmonics

Y2,o{9, = (4.105)

5^1,±i(«.0) =  = F y ^ s in « e ± ^ , (4.106)

(4.107)
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and the Clebsch-Gordon coefficients, the mixed symmetry vector coupling is given by

'0 (1 ,1 ;  2 ,0 )  =    ÿ= (3  co s  6\  co s  92 — co s O12) • (4 .1 0 8 )
47t v 6

The full d-wave trial wave function is

=  Y2,o{$,)Vk [j2 {kri) -  n 2 (fcri)/=] $He{r2)

+  ^ 2 1  i 2,o (^ p )V ^n 2 (K/2) / 2 $ P s(ri2 )
N  M  N

+  >2,0(^1)7*? Y^Ci(t)i + Y2 fi{d2 )rl di +  0(1,1; 2 ,0)nr2  Y  4 ' (4.109)
i—1 i=l i—1

^ 2  =  >2,o (^p)V ^ [j2 ( M  -  ^ 2 2  ^ 2 ( ^ / 2 ] $ P s(ri2 )

+  i^ l2 >̂2,0 (6»1 ) n 2 (fcri )/ i  $He(^2)
N  M  M

+  > 2,o(<9i ) r ?  Y  4  3̂ +  >2,0(^2)^2 Y  4  +  V;(l,  1; 2 , 0 ) n r 2  Y  4  (4 .110)
j = l  j = l  j = l

where the Bessel and Neumann functions for / =  2 are

=  (0 + 5 “ y
As with the p-wave calculations, the m atrix elements are complicated by the integration 

of the spherical harmonics over the external angles, and the high powers of the Neumann 

shielding functions. The integration of the spherical harmonics over the external angles

are

'7’e x t

where 63 = 9p.

j  >2,0 (^ 1) 1 2̂,0 (̂ *2 ) <iText =  2ir ( 1  -  I  sin^ <*12)  , (4.113)

I  Y 2 ,o {0 i )Y2M )dT ^ t  =  2,r f l  -  (4.114)

I  Y2,o{02)Y2,o{ep)dr,,t = 27t 1̂ 1 -  V  (4.115)

f  i2 ,o ( ^ i )  </>(!, 1; 2 , 0 )d T ext =  2 7 r y + c o s ^ i 2 ,  (4.116)
3  T e x t  '

f  > 2 ,o ( ^ 2 ) 0 ( l , l ; 2 ,O ) d T e x t  =  2 7 r y ^ c o s 6 > i 2 ,  (4.117)
3  T e x t  '  t)7T

[  Y2,o{9i)Y2fi{9i) dText = 27t, 2 =  1,2,3, (4.118)
J Tfivf.
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4.5.3 F-W ave and the Born Approxim ation

As the angular momentum is increased the centrifugal barrier term  becomes more and more 

im portant in keeping the positron away from the core of the target atom, so the short- 

range terms become less and less important. This is useful in determining the contribution 

of higher partial waves to the total scattering cross sections. In the single channel case, s- 

wave scattering is the dominant contribution at low energies, and higher partial waves are 

successively less im portant as a proportion of the total elastic scattering cross-section. As 

the projectile energy is increased, however, the higher partial wave contributions become 

more important.

The f-wave contribution is calculated in a similar way to the p- and d-wave contribu­

tions, with the appropriate spherical harmonics, Bessel, Neumann and shielding functions, 

except tha t the vector coupling terms in the short-range part of the wave function have 

not been calculated in full. There should be four symmetries, representing (Zi =  3, ^2 =  0), 

(/i — 2 ,1 2  = 1), (^1 =  1,^2 =  2) and (/i — 0,^2  =  3). The second and third are mixed 

symmetries, but the external integration and the Hamiltonian operations on these would 

be rather difficult compared with the increase in accuracy gained by their inclusion. So 

only the first and fourth symmetries are included, and the trial wave function looks like 

this;

[j3{kn) -  Kl , r i3{kn) f j ]  $He(r2)

+  i f l l  ^3,o(^p) V ^n 3 (/tp )/2  $Ps(ri2)
N M

+  Y.Ci<t>i +  y'3.o(«2)ri E 4  (4.119)
Z=1 Z=1

^ 2  =  F3,o(6»p)V ^ h{np)  -  Ar̂ 2 ^̂ 3 («/o)/|] $ P s(ri2)

+  K {2 y^,Q{Oi)\/kn^(kri)fl4>He(»’2)
N  M

+  ^ ^  d: (4.120)
j= i i - i
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where the I — 3 Bessel and Neumann functions are

and the spherical harmonic is,

^ 3,o(^) =  ^ 2  ^ -  -  cos . (4.123)

In order to calculate the / >  3 partial wave contributions to the cross sections, the 

Born approximation can be used. This assumes tha t the incident particle does not distort 

the target atom, and the positron wave function is a plane wave. Thus, the trial wave 

function in the Born approximation has no variational parameters, and the partial wave 

elastic scattering cross section is

=  (4.124)

This approximation is rather poor even for higher partial waves but there is an analogous 

approximation for the positronium formation cross-section for the I > 3 partial wave 

contributions,

ag{ l)  = +  I i S u L S i )  I" . (4.125)

A slightly more accurate approximation within the spirit of the Born approximation, 

which includes the coupling between the two open channels, uses the full two-channel 

cross section formula given in equation 2.68, but with the full K  m atrix is replaced by the 

S L S  matrix so that.
_  47t(2/ +  1)
~  /j.2

S L S
1 - i S L S y p g

(4.126)

The accuracy of these procedures can be measured by comparing the results of the Born 

approximations with those of the complete s-, p-, d- and f-wave calculations. As I increases, 

(7ps(Z) should become a much better approximation to <Jps(/).
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4.6 R esults - P-W ave and Higher Partial Waves

The single channel elastic scattering phase shifts for the p-, d- and f-partial wave contribu­

tions can be seen in figures 4.13-4.15. As with the s-wave contribution, the results yielded 

by the three models are qualitatively good, and again, model Vi agrees excellently with 

the accurate results of Van Reeth and Humberston (1999) except near the positronium 

formation threshold where the resonant feature again affects the results. One noticeable 

effect of the higher partial waves is that the resonance becomes broader and occurs at 

higher energies. This is consistent with the introduction of the centrifugal barrier for the 

higher partial waves which restricts the interaction of the positron close to the atom. For 

I > 1 partial waves the resonance does not actually occur below and the small rise 

just below is not obviously part of a resonance unless the behaviour above is noted. Al­

though the phase shifts are calculated for single-channel scattering, the results above the 

threshold clearly define the presence of the resonance.

As —)■ 0, ry —> 0 for all three models. The behaviours at low energies closely follows 

O’Malley’s formula (from O ’Malley et al 1962) relating the dipole polarizability of the 

atoms to the low energy phase shift,

^  ( 2 / - l ) ( 2 / - f - l ) ( 2 / - H 3 )

Figures 4.13-4.15 clearly show the low energy phase shifts following the O ’Malley formula, 

which remains accurate over a larger energy range for progressively higher partial waves. 

The results for model V3 appear not to fit the formula so well, but this is because the 

dipole polarizability for this model is significantly different from the other two. The V3  

results are consistent with the formula if the dipole polarizability for V3  is substituted into 

equation (4.127).

The elastic scattering and positronium formation cross sections for the higher partial 

waves are shown in figures 4.16-4.20. The first noticeable feature in both cross sections for 

p-wave scattering is the enormous resonant feature and the steep rise in cTgi and crps at the 

threshold for model Vi. This occurs because figure 4.13 shows the resonance sitting right
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Figure 4.13: The variation of the p-wave elastic scattering phase shift with respect to 

for u; =  8 . Thick line, Vi; thin line, 12 ; dashed line, V3 ; *, accurate results of Van Reeth 

and Humberston (1999); dotted line parallel to the ordinate, marks /cthi dotted curve, line 

fit to O’Malley formula (see equation 4.127). Note: the results are only plotted up to /cth 

for models Vo and V3 .

at tlie thresliold itself. In the d-wave cross section for model V\ the cross section is still 

greatly affected by the resonance but at higher energies, and the effect of the resonance 

is significantly broader for the higher partial waves. F-wave contributions to the cross 

sections have not been calculated above the threshold for these three models because 

the matrix elements become very large and manipulation of the matrices becomes more 

susceptible to errors. This is especially noticeable in model V\ where the effect of the 

resonance is expected to be broad enough to span a significant fraction of the range of the 

Ore gap.

Models V2 and V3 show excellent energy dependence for both the elastic scattering 

and positronium formation cross sections for all the higher partial waves. Figure 4.20 

shows the sum of the partial wave positronium formation cross sections and there is a 

good agreement between the results for these two models and the accurate results of Van
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Figure 4.14: The variation of the d-wave elastic scattering phase shift with respect to 

for uj =  8 . See caption to hgure 4.13 for legend.

Reeth and Humberston (1999).

Although we have only included s-, p- and d-wave contributions in the sum of the 

partial wave positronium formation cross sections, higher partial waves are believed to 

contribute a relatively small fraction of the sum (see Van Reeth and Humberston 1999) 

compared with the discrepancies between the different models. The model which fits best 

is, perhaps surprisingly, model V3 which is comparatively crude and yields rather poor 

values of the ground state energy, the energy of the first excited state and the polarizability 

compared to the other two models. Despite its success in recreating the results for crpg 

it cannot do the same for a^i above or below the threshold, with the added difficulty of 

recreating the threshold at the wrong energy.

Not one of the three models reproduces the accurate cross section results of the ab 

initio calculation of Van Reeth and Humberston (1999) but all three do have elements of 

success. The results from this chapter are discussed in more detail in Chapter 7.
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Figure 4.15: The variation of the f-wave elastic scattering phase shift with respect to /ĉ  for 

cj — 8 . Thick line, Vi; thin line, V2 ; dashed line, V3; o, accurate results of Van Reeth and 

Humberston (1999) including estimated errors; dotted curve, line fit to O’Malley formula 

(see equation 4.127). Note: the results are only plotted up to the positronium formation 

threshold, /cth, for models V2 and V3.
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Figure 4.16: The variation of the p-wave elastic scattering cross section with respect to 

for ùj = 8 . Thick line, thin line, kg"; dashed line, \'3~ ; chain curve, accurate results 

of Van Reeth and Humberston (1999). Note: the results are only plotted up to the first 

excitation threshold for each model.
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Figure 4.17: The variation of the p-wave positronium formation cross section with respect 

to H? for uj — S. See caption to figure 4.16 for legend.
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Figure 4.18: The variation of the d-wave elastic scattering cross section with respect to 

for LU = S. See caption to figure 4.16 for legend.
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Figure 4.19: The variation of the d-wave positronium formation cross section with respect 

to for oj =  8 . See caption to figure 4.16 for legend.
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Figure 4.20; The variation of the sum of the s-, p- and d- partial wave positronium 

formation cross sections with respect to for a; =  8 . Thick line, Vi; thin line, V2 ; dashed 

line, V3 ; chain curve, accurate results of Van Reeth and Humberston (1999) including 

I > 3 partial waves in sum. Note: the results are only plotted up to  the first excitation 

threshold for each model.
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Chapter 5

Annihilation in e^-He Scattering

5.1 Introduction

One of the most interesting features of positron-atom scattering is the possibility of 

electron-positron annihilation. Many theoretical (e.g. Van Reeth et al 1996) and experi­

mental (e.g. Coleman et al 1975) studies of positron-electron annihilation have been made, 

and the comparisons between experiment and theory have generally been favourable. Re­

cent advances in experimental techniques, such as the use of Penning traps, have provided 

a source of positrons with sufficiently well defined energies to enable detailed comparisons 

to be made with theoretical calculations (Gilbert et al 2 0 0 2 , Gribakin 2001, Van Reeth 

et al 1996). The annihilation of positrons with atomic electrons can reveal a great deal 

about the electronic structure of the target system in general, and so a simple model of 

an atom which could be used to simulate annihilation in positron-atom scattering would 

be advantageous.

The annihilation process of positrons with electrons occurs mainly by the production 

of two or three 7 -rays, with a combined energy of 1022 keV (in the rest frame of the 

positron-electron pair). Decay into four or more 7 -rays is possible but highly unlikely. The 

positron-electron pair in a singlet spin state annihilates into two 7 -rays and the triplet 

spin state into three. In positron-atom scattering, with an unpolarized positron beam, 

25% of the annihilating positron-electron pairs are created in the singlet state and 75% in
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the triplet state. However, annihilation into three 7 -rays is much less likely than for two 

7 -rays. The ratio of the singlet to triplet annihilation rates is found to be approximately 

370:1, taking into account the fact that there are three triplet states to one singlet state. 

Because of this, we shall only look at the contribution from singlet spin state annihilation.

Since the cross section for direct annihilation is negligible compared with the elas­

tic scattering cross section, the present study has not treated annihilation as an open 

channel. We have extracted two pieces of information relating to annihilation from the 

scattering wave functions derived from the model potential, both of which involve the 

direct annihilation of positrons with electrons. The first is the annihilation rate and the 

second is the Doppler shift in the energy of the two 7 -rays resulting from the motion of the 

electron-positron pair at the moment of annihilation. Because all positronium eventually 

annihilates, direct annihilation is difficult to measure above the positronium formation 

threshold, so our analysis will be confined to the single channel elastic scattering region.

5.2 Annihilation R ate and Ẑ ff

For a low-energy, unpolarized beam of electrons, the annihilation rate, A&, and the anni­

hilation cross section, for the production of two 7 -rays, are

Aa =  TrrgciVZeff, (5.1)

^  ÎW; ^  (5.2)

where N  is the number density of target atoms, ro(= e^/mc^) is the classical radius of the 

electron, v is the speed of the positrons, and the parameter Zgff is the effective number 

of electrons per atom. Because the low energy positron distorts the target atom as it 

approaches it, the effective number of electrons with which the positron can annihilate is

generally not equal to the actual number of electrons in the target atom, Z, and the value

of Zgff is dependent on the energy of the incident positron. All noble gases except neon 

have a value of Zgff which is greater than Z.

Zgff is a measure of the probability of the incident positron being at the same position
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as one of the electrons, so for a general target with Z  electrons, each with coordinate r^, 

(z =  2 , • • •, Z  +  1 ), Zeff is defined as

Z-\-\ »

^  r z ) \ ^  s  (r i -  n) d r i d r 2  • • • d r z + u  (5.3)
i=2

where ^  is the scattering wave function for the positron-atom system which is normalized 

to unit positron density as r\ —̂ oo. It can be seen from equation (5.3) that this definition 

is only applicable in the single channel scattering formalism. Above the positronium for­

mation threshold, that part of the scattering wave function which represents positronium 

formation has the asymptotic form given in equation (2.63)

^  -^ ,o (^p , <^p)V^A'i2?2((Kp)$Ps(ri2), (5.4)

and since we are looking at the condition when r \2  = 0 , it is clear tha t the integrand 

in equation (5.3) would remain finite as r i —>• oo, resulting in an infinite value of Zgff. 

The conclusion from this result is not that there is an infinite electron density, but that 

the total annihilation cross section essentially becomes the cross section for positronium 

formation, which is very much larger than normal annihilation cross section.

For our one-electron model, the partial wave contribution to Zgff is

Z[s = y  (n ,7 'i =  T2 , r i 2 =  0 ) |d n ,  (5.5)

but since we are representing a two-electron atom as a one-electron model system, it is 

not clear how many electrons should be represented in our calculation of Zgff. In the Born 

approximation, where the target atom is not distorted, the scattering wave function, 

for our general Z-electron atom is

' • iTz+l) 1 (5.6)

where is the incident plane wave and {T2 i "  ' ■,f'z+\) is the Z-electron target

wave function The Born approximation therefore yields the result Zgff =  Z. In our model 

system, which only contains one electron, the Born approximation to the value of Zgff is 

therefore Z ^  =  1 .
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The determination of Zgff provides a stringent test of the accuracy of the total wave 

function because the error in the expression for Zgg is of first order in the error in the 

wave function, whereas the error in the Kohn phase shift is of second order, as was shown 

in the derivation of the Kohn method in Chapter 2. This means tha t any slight numerical 

errors tha t appear in the calculations of the phase shift are magnified in Zgff; for example, 

a 1 % error in the phase shift may appear as approximately a 10% error in Zgff. Similarly, 

Schwartz singularities appear broader, and the convergence for Zgff will be slower than for 

the phase shift.

5.3 Results for Z q q

The results of the calculations of Zgff are shown in figures 5.1-5.4. The three models 

display a similar energy dependence to tha t calculated by Van Reeth et al (1996) for the 

S-, p- and d-wave contributions. At the higher energies, close to the positronium formation 

threshold, models V2 and V3 , which do not support resonances, reproduce the sharp rise 

in Zgff very close to found by Van Reeth et al (1996). This, however, is only apparent 

with the inclusion of the virtual positronium term (see Section 4.4.1) in the scattering 

wave function. If this is not included, there is no observable increase. As discussed above, 

Zgff cannot be calculated above £̂ th since the integral in equation (5.3) becomes infinite. 

We would therefore expect Zgff to approach infinity from below ^th, as the electron and 

positron do not quite form positronium but become increasingly highly correlated.

There are however significant discrepancies between the present calculated values of 

Zgff and the accurate results of Van Reeth et al (1996), especially in the s-wave contribution 

which dominates Zgff at low energies. The value of Zgff at A: =  0 is for most noble gas 

atoms (except neon) larger than the value of Z, and the most accurate experimental data, 

Coleman et al (1975), gives a value of Zgff =  3.94 ±  0 .0 2  for helium, in good agreement 

with the accurate theoretical result Zgff =  3.93 obtained by Van Reeth et al (1996). None 

of the three models reproduce this value. Although the error in Zgff is only of first order 

of the error in the wave function, the discrepancy between the results of this work and
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Figure 5.1: The variation of the s-wave contribution to Zeff with respect to k for w =  8. 

Thick line, ; thin line, 14; dashed line, V3 ; chain curve, accurate results of Van Reeth et 

al (1996). Note: the results are only plotted up to the positronium formation threshold 

for each model.

those of Van Reeth and Humberston (1999) is too large to be explained by errors in the 

trial scattering wave function.

One immediate difference is that in the Born approximation the present calculations 

yield Zjp =  1 , compared to the Born value of 2 for the real system. One might therefore 

think that the calculated result for Zeff should be multiplied by 2 before comparing with 

the accurate value. However, because two of the one-electron models of helium used here 

have the correct value of the dipole polarizability, «He =  1.383 Uq, and there is known 

to be a fairly good correlation between the dipole polarizability of a target atom and the 

value of Zeff at low positron energies (Osman 1965; Davies et al 1989), one might expect 

a reasonably accurate value of Zgff to be obtained without multiplication by a factor of 

2. Using the most accurate elastic scattering wave function generated here, the value 

obtained for Zgff at essentially zero energy (1.4 x 10“  ̂ eV) is 2.56 (for model 1), which is
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Figure 5.2: The variation of the p-wave contribution to Zeff with respect to k for ca =  8. 

See caption to figure 5.1 for legend.

significantly smaller than the accurate value of 3.93 obtained by Van Reeth et al (1996) at 

the same energy; however, multiplying by 2 gives Zgff — 5.12 which is significantly larger 

than the accurate value. It would therefore seem that we are not justified in multiplying 

by 2 .

Part of the discrepancy may be due to the fact that the polarizability of our single 

electron model differs from the exact value by the polarizability of the helium ion core, 

0.28125 ÜQ. Accordingly, because of the above mentioned correlation between Zgff and 

the dipole polarizability, we should probably expect the calculated value of Zgff to be 

approximately 2 0 % smaller than the correct total value, i.e. Zgff ~  3.1. On this basis 

the present value is only 18% smaller than it might be expected to be. Furthermore, in 

the real two-electron helium atom the total Zgff is the sum of two (equal) contributions, 

each one corresponding to positron annihilation with a single electron. In our one-electron 

model of helium the ‘second’ electron is in a sense in the core, and therefore we should 

perhaps add a contribution arising from positron ‘annihilation’ with the core, i.e.

=  47T J \ ^  0 , r 2 , r  1 2  =  T2 )\^ r l d r 2 . (5.7)
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Figure 5.3: The variation of the d-wave contribution to with respect to k for uj 

See caption to figure 5.1 for legend.
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Figure 5.4: The variation of the sum of the s-, p- and d- wave contributions to Zeff with 

respect to k for w =  8 . See caption to figure 5.1 for legend.
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This contribution to Zgff is, however, zero at zero incident positron energy, and is small 

at all energies, having a maximum value of 0.12. It therefore has a negligible effect on 

the results and we must accept that the one-electron models used here do not provide as 

accurate a representation of annihilation as they do of elastic scattering

Despite the reasonable agreement between the accurate ab initio results and the present 

results with respect to the scattering phase shifts and cross sections, it seems tha t accurate 

calculations of Zgff using a one-electron model of helium may not be possible and are a 

limitation of using a one-electron model.

5.4 Doppler Broadening of 7 -Ray Spectrum

In the frame of reference in which the annihilating electron-positron spin singlet pair is 

at rest, the two 7 -ray are emitted back-to-back (the angle between them is tt radians) 

each with an energy of 511 keV. In the laboratory frame of reference, however, the centre 

of mass of the lepton pair is moving with a velocity v  and the momentum of the pair is

p  =  2mv, so the two 7 -rays detected in the experiment are Doppler shifted to energies

depending on the velocity of the electron-positron pair and the orientation of the emitted 

photons.

Figure 5.5 shows a greatly exaggerated example of the kinematics of the annihilating 

positron-electron pair and the emitted 7 -rays. The electron-positron pair has a momentum 

p  in the laboratory frame shown at an angle a  to  the a:-axis. The two 7 -rays are shown 

emitted back-to-back in the centre-of-mass frame, traveling along the positive and negative 

y-axis each with a momentum Pq. In the laboratory frame of reference the two Doppler 

shifted 7 -rays have momenta Pi and P2 where

Pi — m c j + m v  and P2 — m v  — m cj,  (5.8)

where j  is the unit vector along the y-axis. At very low incident energies, the energy 

imparted to the lepton pair by the positron is negligible compared to tha t from the atomic

92



y

P  = 2 m  V

P„

Figure 5.5: Illustration of the relationships between the momenta of the two annihilation 

7 -rays and the momentum of the positron-electron pair in the rest frame of the pair and 

in the laboratory frame of reference.

electron, so u /c 1 and the magnitude of the 7 -ray momenta, are 

Pi =  Po + Tun sin a  and P2  = Po — "rfiv sin a. 

Therefore, the Doppler shift in the energy of one of the 7 -rays is

/ \ E  = E \ -  Ea = c{pi -  me) = -  py,

(5.9)

(5.10)

where py — 2 mv  sin a  is the y component of the electron-positron pair momentum in the 

laboratory frame of reference.

As well as looking at the Doppler shift in the energy of the 7 -rays, the same information 

can also be obtained by measuring the angle between the two 7 -rays. In the rest frame of 

the electron-positron pair the angle is t t ,  and in the laboratory it is ( tt  — Û )  where

2 mv  cos a px
0 — 9\ 8 2  = me me

(5.11)

Px being the x-coniponent of the electron-positron pair momentum in the laboratory frame 

of reference.
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We have described the electron-positron annihilation occurring in the x — y plane, 

but this is an isotropic system in which all directions of the momentum of the electron- 

positron pair are equally probable and each of the components of the momenta have the 

same distribution function, so the relationship between the Doppler shift in energy, A E ,  

and the angle 6  can be written as

. „  2 O c 
A E  — me  — — —Pz" (5.12)

Since the relationship between the energy shift and the angular shift is trivial, we shall

choose to only look at the Doppler shift in energy.

The Doppler-broadened annihilation spectrum is given by the probability distribution

function for one of the 7 -rays being emitted with an energy shift AE^

/ oo roo / 2 A E  \
/  ^ ( p x  =  ,Py,Pz I dpydpz, (5.13)

-cx) J —00 \  C /

where F is the momentum distribution function for the annihilating electron-positron pair, 

which for our model positron-helium scattering system is

2r(p) = J e [n,r2) 6 {ri — r2) dridr2 (5.14)

where p — ^{ri + V2 ) in the position of the centre of mass of the annihilating electron- 

positron pair. Thus,

2
F(p) =

=  27T

=  27T

J e  ^  ( n , 7-2 = ri, r \2  = 0) r\dr\dOid(f)\

J  e - ^ P ^ ^ ^ ^ ^ ^ ^ ^ { n ) r l d r i d e i

/
2
-  sin (pri) ^  (ri) r^dri

(5.15)

(5.16)

(5.17)

We have arbitrarily chosen to fix p^ so we are restricted to the py — pz plane. To do the 

double integral in equation (5.13), we can change to polar coordinates.

and

Py,Pz — >p',P

dpydpz = p'dp'd(3. 
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Since p' — equation (5.13) can be rewritten as

roo r2TT
F{p) oc /  /  T{p')p'dp'd^. (5.20)

Vo Vo

Integrating over the polar angle j3 and using the substitution

(5.21)

the probability distribution function of one of the 7 -rays emerging with momentum px is

roo
F{px) OC 27t / T{p)pdp. (5.22)

Jpx

Experimental measurements suffer from small inefficiencies in the 7 -ray detectors, and 

in order to compare theory with experiment it is necessary to take account of the finite 

response function of the 7 -ray detectors. Deconvoluting the experimental data in order

to compare directly with theory is well known to provide spurious results, so it is easier

and more reliable to convolute the theoretical data  with the known response function, 

g{E,E ') ,  of the detectors. In terms of the 7 -ray energy, E, the response function is taken 

to be
( E - E ' f

g{E, E')  =  A  exp (5.23)
A2

where A  and A are known constants, so the convoluted theoretical results are given by

roo
G (E) =  /  g(E ,E ')F (E ')dE '.  (5.24)

Vo

The experimental Doppler-broadened annihilation spectrum is not normalized, but we 

are only interested in the width and the shape of our theoretical curves, which can be 

normalized to the experimental data of Sur ko et al (1989) and Greaves et al (1994) or to 

the accurate results of Van Reeth et al (1996). Hence any constants carried through the 

calculation of G{E) can be ignored. The integrations in equations (5.13)-(5.24) can be 

carried out using the simple but effective trapezoidal rule.

The formulae given in equations (5.13)-(5.24) provide the momentum distribution func­

tions F{E)  and G{E) which are centred about E  =  0 in atomic units. The energy and
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momentum of a 7 -ray are trivially related, so to convert from atomic units of momenta to 

the more usual units of energy, electron-volts,

1 a.u. =  }-chaQ^ eV =   ̂ eV, (5.25)
2  ° 2 eoh  ̂ ^

=  1.8645 keV, (5.26)

where ao is the Bohr radius of the hydrogen atom. The results of the calculations of F{E)  

and G{E) are shown in electron-volts and are shifted along the horizontal axis by 511 keV 

- the rest energy of an electron or positron - so what is plotted is the Doppler shifted 

energy spectrum of one of the 7 -rays.

5 .4 .1  D o p p ler  S h ift R e su lts

The annihilation 7 -ray spectra for the three models are compared with the accurate ab 

initio results of Van Reeth et al (1996) in figures 5.7 and 5.8. The first two models, Vi and 

V2 , which reproduce the spectroscopic properties of the helium atom most accurately, pro­

vide relatively poor spectra, yet the comparatively crude model, V3 , matches the accurate 

results best. Since at k — 0  the momentum of the electron-positron pair is mainly from 

the momentum of the orbiting electron, the width of the spectrum is, in the semi-classical 

picture, a measure of the speed of the electron within the atom. Some understanding 

of the differences between the annihilation 7 -ray spectra for the various models can be 

obtained by examining the electron density functions for the respective atoms. Figure 5.6 

shows the electron density functions for the three models compared with the correspond­

ing functions obtained by Van Reeth and Humberston (1999). This clearly shows that the 

electron density of model V2 , and to a lesser extent tha t of model Vi, is peaked further 

out in T2 than that of model V3  and, perhaps more importantly, the tails of the electron 

density functions in Vi and V2 are more extended than those of V3  and of the ab initio 

calculations. This corresponds to the electron in model V3  spending more time closer to 

the atomic core and hence having a greater speed and contributing more momentum to 

the positron-electron pair in the annihilation. This similarity between the wave functions
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Figure 5.6: Variation of the electron density with electron-core coordinate T2 for the ah 

initio work of Van Reeth and Humberston. This is a repeat of figure 3.8. Thick line, 

thin line, V2 ; dashed line, V3 ; chain curve. Van Reeth and Humberston (see equation 3.39).

of model F3 and the results of Van Reeth and Humberston (1999) may also explain the 

success of this model when describing the positronium formation processes discussed in 

Chapter 4.

The present investigations of the annihilation phenomena have revealed some of the 

limitations and accuracies which can be expected from one-electron models of many elec­

tron atoms. In the real helium atom both electrons are equivalent, but in these models 

the positron can only interact with one electron. Annihilation involves such an extreme 

interaction between the positron and electron that a one-electron model may not be able 

to represent it accurately. The study of the Doppler-broadening has revealed the relevance 

of the electron density functions, but this has not led to more accurate results for Zeff.
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Figure 5.7: Annihilation -y-ray spectrum from the unconvoluted theory (see equation 5.13). 

Thick line, Vi; thin line, V2 ; clashed line, F3 ; chain curve, accurate results of Humberston 

and Van Reeth (1997).
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Figure 5.8: Annihilation 7 -ray spectrum from the convoluted theory (see equation 5.24). 

See caption to figure 5.7 for legend.
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Chapter 6

Resonance in Positron-H elium

Scattering

6.1 Introduction

The results shown in figure 4.6 reveal a resonance-type structure in the s-wave elastic 

scattering phase shift at an energy just below E^h for the model potential Vi, As mentioned 

in Chapter 3, it is quite possible for a model potential representing a real atom to contain 

an unphysical feature in the cross section such as a resonance. However, it is necessary 

to test whether this resonance-type feature in the phase shift is indeed a resonance and 

not just a numerical anomaly such as a Schwartz singularity. As discussed in Section 4.4, 

the results yielded by the Kohn, complex Kohn and inverse Kohn variational methods all 

show this resonance-type feature. Although a Schwartz singularity in all three methods 

is highly unlikely, it is possible, but in this chapter we shall show that there are other 

tests tha t can be made on the wave function and the model potentials tha t support the 

case tha t the resonance is a true feature of the model, but not of the real positron-helium 

system. However, we shall see tha t this feature of the model verifies a mechanism believed 

to be responsible for the very high annihilation rates obtained in some positron-molecule 

scattering experiments.
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6.2 Stabilization M ethod

This method, described by Bhatia and Drachman (1990), has been used quite successfully 

to study resonances in positron-atom and electron-positronium scattering.

The stabilization method provides a means of detecting resonances by looking at how 

the energy eigenvalues of a system on a square-integrable basis change as the number of 

terms in the trial wave function is changed. The energy eigenvalues are found by solving 

the m atrix eigenvalue equation

{H t  — E t  A )  c =  0 (6.1)

where the matrix elements of i f x  and A  are given by

HT,ij = {(pi I Ht  I (pj), (6 .2 )

Aij = {(pi I (pj), (6.3)

where H t  is the total Hamiltonian of the projectile-target system given in equation (4.25), 

(pi are the short-range Hylleraas type terms in the trial wave function in equation (4.15),

<t>i =  (6.4)

and c is a column matrix listing the optimum values of the linear coefficients in the 

variational wave function. All the matrix elements required for the stabilization method 

have already been calculated for use in the evaluation of the scattering parameters.

Figure 6.1 shows how the first several eigenvalues converge as the number of terms, N , 

in the tria l wave function is increased. The lowest eigenvalue, E'o, is seen to converge to the 

ground state energy of the helium atom, with the wave function attem pting to  represent 

a zero energy positron interacting with the ground state helium atom. The higher energy 

eigenvalues also converge to the ground state energy of the helium atom, with the wave 

function representing a very low energy positron interacting with the helium ground state. 

The fifth energy eigenvalue for % 50 does not change significantly from % —0.25 a.u.

as more terms are added, until A  % 65, where it starts to fall again, but the sixth energy
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Figure 6.1: Variation of the lowest eigenvalues of the Hamiltonian of the model positron- 

helium system with respect to increasing N, the number of short-range correlation func­

tions in the basis. Thick line, Ei] fine lines, E 2 , Es and E{ {i >  7); medium lines, F?4 , 

Es, Eg and E 7 ] dotted line parallel to the abscissa is at the exact positronium formation 

threshold: =  —0.25 a.u .=  —6 .8  eV.

eigenvalue then takes its place and holds the same value and is stable until N  % 120 where 

the seventh energy eigenvalue takes its place, a succession of ‘avoided crossings’. The 

stabilization method is revealing an energy region where the energy eigenvalues stabilize 

at a value just below -0.25 a.u., implying a structure for the system of positronium weakly 

bound to the residual ion. This is further evidence tha t the resonance in the scattering 

problem is a real feature of the model and not a numerical anomaly produced by the 

method used in the scattering calculation.

6.3 Virtual Positronium

When the incident positron energy is close to, but less than, the positronium formation 

threshold, positronium cannot be formed but the positron and the electron nevertheless
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Figure 6.2: The variation of the s-wave elastic scattering cross section with respect to 

for different cu both with and without the virtual positronium term, 0 vps? included in the 

trial wave function. Thick line, w =  8  with 0vps term; thin line, cu = 7 with 0vps term; 

thick dashed line, w =  8 without 0vps term; thin dashed line, uj — 7 without 0vps term.

show a strong correlation as if positronium was trying to be formed, but cannot quite 

escape. This configuration has been called virtual positronium^ as it does not constitute 

an open positronium formation channel. Virtual positronium formation is represented by 

the term

(6.5)(Avps =  coYo^o{p)(pPs{ri2 )—^  ( l  -  e .

Adding such a term to the scattering calculations using model Vi will show if such a term 

is required, and may possibly reveal information about the mechanism responsible for the 

resonance. If it is not required the Kohn variational method would yield a value of the 

coefficient cq close to zero.

Figure 6.2 shows that by adding the virtual positronium term to the trial wave function, 

the position of the resonance feature in k converges much faster with respect to u  than 

without this term. In addition, the resonance becomes narrower, although the coarse grid
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of energy points in the figure may not make this obvious, so the term is useful. This 

supports the idea of the feature representing a Feshbach resonance with the configuration 

of positronium bound to the residual ion. Further evidence of this configuration being 

responsible for the resonance is given below.

6.4 Expectation Values of the Total Potential

Since the total interaction potential varies with respect to three variables, r i ,  r 2 and r i 2 , it 

would be difficult to view any attractive potential wells in a straightforward way. Picking 

out specific configurations of the three particles and finding how the total potential varies 

with respect to one variable is possible but not very useful since it is would not provide 

any information about the likelihood of any particular configuration arising.

However, it is possible to view the expectation value of the total interaction potential 

with respect to the virtual positronium, for a given incident particle energy. This repre­

sents the interaction between the helium core and the ‘positronium’ in one dimension, for 

a less specific configuration of the three particles. The expectation potential, Vfc, with

respect to the positronium coordinate p is calculated by fixing p and integrating the to­

tal scattering wave function and the potential between the ‘positronium’ and the core, 

{y ~ (r 2 ) +  over the coordinates defining the positronium, rg and ^pg,

y M  = J  r i2 ,^ p s)  +  V ~ )  ^(p ,ri2,6>Ps)r?2dri2sin0Psd6>pg. (6 .6)

The integration was carried out using a Gauss-Laguerre procedure (described in Section 

3.4.3) for the radial part, and a Gauss-Legendre procedure for the angular part, so that

PTT r+ 1
/ Pn{cos6)sm6d9 = / Pn(t)dt ^  ^ P n ( U ) w i ,  (6.7)

Jo J - 1  %=1

where Pn is a Legendre polynomial of degree n, and U and Wi are the abscissa and weights,

respectively, readily provided by the Fortran NAG libraries.

We can similarly calculate expectation values of the potential with respect to the
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Figure 6.3: Variation of F% with respect to p (see equation 6 .6 ), with the virtual positro­

nium term included, at three incident positron energies. Thick line, Vk at resonance 

(A: — 1.132 «0 ^); dotted line, just above resonance {k =  1.133 dashed line, 14 just 

below resonance {k =  1.131 Gg )̂; solid line, at k — 10"^

positron and electron coordinates, V/,-(ri) and Vk{r2 ) respectively,

Vkir-i) =  y ( V+- f  V12) T(p, r i 2 , 6'ps)r^dr2 sin(?i2d6>i2 , (6 .8 )

Vk{r2 ) =  y  T (p ,r i2 , 6>Ps) (V~ + V12) T(p, r i2 , 6'ps)r?dri sin (9i2d0 i2 - (6.9)

The integral in equation (6.9) is complicated slightly by the fact that there is no explicit 

exponent in ri, but the Gauss-Laguerre procedure can still be used by including a false 

exponent in the integration as described in equation (4.38).

It can be seen in figures 6 .3-6.5 that at energies very close to the resonance, deep

potential wells are apparent. Figure 6.3 shows that Vk{p) has two local minima, at p ~

0.5 a.u. and a shallower one at p ~  4 a.u. Figure 6.4 shows a similar potential curve in 

y k{f’i), but the deepest minimum is at r\ ~  2.5 a.u and a shallower one at p ~  7 a.u. 

These minima show that the positron is likely to be trapped in this complicated potential 

structure at the energy of the resonance found in the elastic scattering phase shift.
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Figure 6.4: Variation of \\. with respect to r\ (see equation 6 .8 ), with the virtual positro­

nium term included. See caption to figure 6.3 for legend.
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Figure 6.5: Variation of Vk with respect to T2 (see equation 6.9), with the virtual positro­

nium term included. See caption to figure 6.3 for legend.
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W ithout the term included in the scattering wave function, the expectation values 

of the potentials show simple wells at 3 a.u. and 4 a.u. in the positronium and positron 

coordinates respectively, but since 0 vps has such a dramatic effect on the resonance shape 

and position, the interaction potential is likely to have the more complicated structure. 

Figure 6.5 does not show any minimum, since one is not expected in the electron coordinate 

because it is already bound to the core by the model potential V{' but at the resonance, 

the potential is much more attractive. At energies away from the resonance these potential 

wells do not appear.

6.5 Behaviour of the Phase Shift in passing through Reso­

nance

A resonant feature is characterized by a rapid jum p in the phase shift through tt as an 

extra node is added to the scattering wave function. This cannot be seen directly in the 

plot of the s-wave phase shift against k since the Kohn method directly calculates the 

tangent of the phase shift and the subsequent inverse tangent operation yields a modular 

value of the phase shift with the limits |  < 77 < | . The feature is analogous to Levinson’s 

theorem. Levinson’s theorem is usually presented in terms of the number of bound states, 

n/, supported by an interaction potential in a particular partial wave, such that

\ i m  rii — uiTT. ( 6 . 1 0 )
A;—>0

W ith a potential just unable to support an (n + 1)*  ̂ bound state, the phase shift reaches 

a maximum value of

=  (^z +  ^ )  T’’- (6 .1 1 )

Although the resonance discussed above occurs at a non-zero energy, the reasons for the 

phase shift passing through tt close to the resonance are similar to those involved in 

Levinson’s theorem in the limit of zero energy.

Further evidence of this can be seen with the eigenphase sum above the positronium 

formation threshold. In two-channel scattering there is no such thing as a single phase
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Figure 6 .6 : Variation of the eigenphase shifts, A^, and the sum of the eigenphase shifts, 

A t  =  Ai +  A 2 with positronium wavenumber, above the the positronium formation 

threshold for model V3 .

shift; instead, the corresponding quantity above £̂ th is the eigenphase sum. The eigenphase 

shifts are found by diagonalizing the S  matrix described in Chapter 2 (see equation 2.66) 

and the diagonalized matrix, 5 , has the elements

Sij — 0{j€ (6 .12)

where Af are the eigenphase shifts.

Figure 6 .6  shows how the eigenphases and the eigenphase sum. A t  =  Ai +  A 2 , vary 

with positronium momentum for model V3 , with no resonance.

The plot in figure 6.7 shows the eigenphase and eigenphase sum for the model Vi with 

the resonance just below the positronium formation threshold, and there is a very distinct 

jump in the eigenphase sum from ~  |  up to ~  This occurs in exactly the same

energy region as the resonances in the individual K  matrix elements. It is believed tha t 

this jump in A t  is due to the fact that A t  — tt  at k — 0 , and therefore a more appropriate 

plot of the eigenphases, A%, and their sum. A t,  is as indicated by the dotted lines. This
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Figure 6.7: Variation of the eigenphase shifts, A*, and the eigenphase sum, A t  with 

positronium wavenumber, above the the positronium formation threshold for model Vi. 

The dotted lines indicate the more appropriate interpretation of what happens to the 

eigenphases and their sum.

is analogous to with Levinson’s theorem tha t the phase shift should start at tt if there is 

one bound state. That is why the resonance feature in the individual K  matrix elements 

shown in figures 4.11 and 4.12 do not yield a resonance feature in the two-channel cross 

sections.

6 . 6  Annihilation R ate at the Resonance

The plot in figure 5.1 shows a dramatic feature in Zeff for model Vi at the position of the 

resonance. This occurs with or without the virtual positronium included, although the 

position of the resonance converges more slowly without it (see Section 6.3). This feature 

is shown in greater detail, together with the elastic scattering cross section, in figure 6 .8 , 

with the virtual positronium term included. The resonance feature in Zgff is narrower and 

much more sharply peaked than is the elastic scattering cross section, with Zeflf > 1 0 ^ !̂,
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Figure 6 .8 : Variation of the s-wave contribution to Zeff (thick line) and (thin line) with 

k a t the resonance, with the 0 vps term included for model Vi.

although a el peaks at the same energy as does Zeflf.

Larger noble gas atoms and some molecules can have Zeff ^  Z, for example positron- 

xenon scattering yields Zgff > 300 (e. g. Iwata et al 1995, Wright et al 1985), and these 

high values are believed to be caused by the positron forming a weakly bound state with 

the target. The work of Gribakin (2001) has shown that the large values of Zeff (Zeff =  

1.2 X 10  ̂ for positron-hexane collisions) which arise in many positron-molecule collisions 

can be explained qualitatively by positron capture into vibrationally-excited states of 

the positron-molecule system. Although no such mechanism can occur with helium, the 

evidence discussed above suggests that the positron is nevertheless trapped for much longer 

than the usual collision time in a resonant state with the model atom.

Although the real positron-helium system has no resonances below F7th, the evidence 

presented above suggests that such a feature is a real feature of the model. We have shown 

tha t the resonance feature in model Vi arises from a virtually bound state, where, in the 

semi-classical picture, the positron can be trapped for a relatively long period of time on
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the model atom.

This unphysical feature is found in some other model potentials (see Peach 1982) which 

can cause problems in calculations of, for example, the elastic scattering and positronium 

formation cross sections in the Ore gap.
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Chapter 7

Conclusions from the

Positron-H elium  Collision Study

In Chapters 4, 5 and 6 we have investigated the low energy collision processes involved 

in positron-atom scattering using one-electron models of the helium atom. The success of 

these one-electron models has been varied and some very accurate results from other low 

energy positron-helium collision studies have been reproduced comparatively well, both 

qualitatively and quantitatively.

The three model atoms used to represent the helium atom showed a mixed rate of 

success. Initially, from examining the elastic scattering phase shifts for the first model 

potential, Vi, provided by Peach (1998), the results compare excellently with the results 

of Van Reeth and Humberston (1999). However, the presence of a resonance just below 

£ t̂h) and across it for the I > 1 partial waves, unfortunately creates inaccurate results 

for the two-channel scattering cross sections, both qualitatively as well as quantitatively. 

Model V2 , also provided by Peach (1998), despite reproducing the same ground state 

energy, first excited state energy and dipole polarizability of the real helium atom does not 

reproduce the elastic phase shifts as well as model V i , although the qualitative agreement 

was good. However, this model does not support a resonance,and the energy dependence 

of the elastic scattering and positronium formation cross sections is similar to that of
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the accurate results of Van Reeth and Humberston (1999) above E'th- The third model 

potential, V3 , represents a simple comparative model, and although the ground state 

energy, the first excited state energy and the dipole polarizability of the model atom are 

not the same as those of the real helium atom, the model yields reasonably qualitatively 

accurate results compared with the crude nature of the model, for both elastic scattering 

below Eth (for this model) and for the positronium formation cross section above. The two 

channel elastic scattering cross sections are significantly too low, although this is expected 

from looking at the elastic scattering phase shifts, 77, just below Et^. The elastic cross 

section, â ] is proportional to sin^?7, and it can be seen from figures 4.6, 4.13 and 4.14, 

tha t the results using model V3  have phase shifts significantly lower in magnitude at the 

higher energies resulting in lower elastic cross sections just above assuming that the 

elastic cross section is continuous across the positronium formation threshold. Figure 4.7 

shows tha t when virtual positronium formation is not included in the trial wave function 

the apparent discontinuity at this threshold is small.

The study of the annihilation processes reveals some problems which may be associated 

with the nature of one-electron models as a whole. Only direct annihilation was studied 

here. Although the cross section for direct annihilation was assumed to be too small 

for this process to be considered as an open channel, the annihilation cross section was 

examined as a function of the value Zeff, the effective number of electrons in the vicinity 

of the positron. We saw, in the results in Section 5.3, tha t the results provided by the 

one-electron models do not fit the accurate results of Van Reeth et al (1996) which agreed 

very well with the experimental results. The value obtained for Zgff at zero energy is 

Zgff =  2.56 (for model Vf), compared with the accurate value Zgff =  3.93, but the energy 

dependence of Zgff is similar to that obtained by Van Reeth et al (1996). The Doppler 

shifts in the energies of the annihilation 7 -rays were also calculated but model V3  provided 

the best agreement with the results of Van Reeth et al (1996). The success of model Vs in 

reproducing the Doppler shift in the 7 -ray energies and the positronium formation cross 

section calculated by Van Reeth et al (1996) and Van Reeth and Humberston (1999) may
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be attributed to the close agreement between the electron density functions of model V3 

and that of Van Reeth and Humberston.

Overall the three models have provided varied degrees of success in reproducing the 

accurate results of the ab initio calculations of Van Reeth and Humberston (1999). No 

single model represents both the elastic and inelastic collision process accurately but each 

has its advantages. Model V3 , especially, despite its comparatively crude nature, represents 

elements of the collisions processes rather well, and it is therefore believed tha t a one- 

electron model of helium may be found which can reproduce the elastic scattering and 

positronium formation cross sections, the Doppler shifts in the energies of the annihilation 

7 -rays, and the one-electron density function reasonably accurately without supporting a 

resonance.
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Chapter 8

Zero M odel A tom

8.1 Introduction

The work described in this chapter is related to a correlation found in positron-atom 

scattering by Humberston and Van Reeth (2000) between the positronium formation cross 

section, crps, and the positronium formation threshold, Eth, of tha t atom. At a given 

incident positron energy in excess of E’th, a log-linear plot (see figure 8 .1 ) of crpg against 

Eth for noble gas targets, yields a straight line implying a relationship between these 

quantities of the form

(7ps =  (8.1)

where A  and B  are atom-independent parameters which are functions of the excess energy 

of the positron. The parameter A  can therefore be interpreted as the positronium forma­

tion cross section for an atom with a zero positronium formation threshold energy. No 

such atom exists, but considering the qualitative successes of the helium models discussed 

in the previous chapters, it is possible to create a model atom with £̂ th =  0. The only real 

‘atom ’ which has an ionization energy of 6 .8  eV is positronium itself, and electron- and 

positron-positronium scattering has been studied previously (Ward et al 1987), so use­

ful information about the energy dependence of A  may possibly be obtained from these 

investigations.
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Figure 8.1: Variation of the positronium formation cross sections in single and double 

ionization of the noble gases with respect to Er (see text for definition) for three incident 

positron energies, x, single ionization; o, double ionization; superscripts and N  refer to 

degree of ionization, x at = 0  are extrapolated points of the single ionization data, 

ignoring neon.
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Figure 8.2: Variation of the dipole polarizability of noble gas atoms with respect to the 

ionization energies. Dotted line parallel to the ordinate marks the ionization energy of 

positronium.
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8 . 2  Correlations between crps and £?th

The correlations referred to above were first discovered whilst considering the phenomenon 

of the suppression of positronium formation in the double ionization of atoms by positron 

impact, i.e. the process

c+ + A — ^Ps +  A ^ + + e " . (8 .2 )

Experimental studies by Bluhme et al (1998) of positron-impact double ionization of he­

lium and neon atoms showed an almost complete suppression of positronium formation 

in the 6 .8  eV wide energy interval below the threshold for double ionization, where dou­

ble ionization can only occur in conjunction with positronium formation. This interval is 

known as the second Ore gap. The initial explanation for this suppression was a process 

called the electron recapture model. W ithin the second Ore gap, when the positronium 

is formed and the other electron is ejected, the positronium will be moving slowly in the 

field of a doubly charged ion. This makes it likely that the electron in the positronium 

will be recaptured by the ion, resulting in the highly exothermic reaction

Ps +  He^+ — > He+ +  e+. (8.3)

The positron will emerge with a kinetic energy close to A E  — (Ef'^ — E ^  — 6 .8  eV), 

where Ef~^ and E ^  are the double and single ionization energy thresholds respectively. 

For increasingly heavier noble gases, the value of A E  becomes smaller, and since this 

represents the strength of the electrostatic forces responsible for electron recapture, the 

probability of electron recapture become smaller and crpg increases.

A similar relation between the energy liberated to the positron, Er, and crps is expected 

for positronium formation in single ionization. The relationship for both single and double 

ionization has the form

=  (8-4)

where E^ — {E^ — 6 .8  eV) =  Eth and E  =  1 for single ionization and Ep =  (E?^ — E ^  — 

6 .8  eV) =  A E  and N  =  2 for double ionization. N  is an ad hoc parameter but the values
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given above give the best fit to the experimental data. Figure 8.1 shows a good correlation 

between crps and Er for different atoms.

The coefficients A  and B  are dependent on the excess energy of the positron but are 

atom-independent. This pattern also holds for the alkali atoms as well, with a different 

set of coefficients A  and B  and the modulus of Er being substituted in the exponent, so 

tha t the lighter alkalis (e.g. lithium and sodium) have the higher crpg than the heavier 

alkalis. Because of the fit to the alkali atoms, it seems tha t the mechanism behind this 

(jps suppression is due to the kinematics of the positron in the field of the atom.

Positronium formation in noble gas atoms is an endothermie process, that is, the 

incoming positron loses energy by capturing the electron and forming positronium. The 

outgoing positronium moves away from the atomic ion with less energy than the incoming 

positron, which must therefore be slowed enough to form positronium. This is less likely 

in the tightly bound light noble gas atoms, resulting in lower positronium formation cross 

sections, but is more likely in the heavier gas targets with more extended electron clouds.

Conversely, positronium formation in the alkali atoms is exothermic, so the incoming 

positron must gain energy and speed up to form positronium which is ejected from the 

atomic ion. This is more likely in relatively tightly bound light alkali atoms where the 

positron can interact strongly with the positive atomic core, resulting in higher positron­

ium formation cross sections than for the heavier alkalis with better shielded nuclei.

This is a semi-classical qualitative argument with no explanation for the form of equa­

tion (8.4). More studies need to be made, but similar relationships also hold surpris­

ingly well between ionization cross sections and ionization threshold energies in electron-, 

proton- and antiproton-atom collisions above the ionization thresholds, with a different 

set of A  and B  coefficients for each projectile and target atom group (Van Reeth et al 

(2001).

The work that follows is the construction of a model atom with a binding energy equal 

to tha t of positronium for which crps should approximate to the parameter A  in equation

(8.1). The positronium formation process is then neither endothermie nor exothermic. We
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will also discuss the electron- and positron-positronium scattering calculations made by 

Ward et al (1987).

8.3 M odel Atom  with E t \ i =  0

When creating the model atom we have to recognize the limitations in the model itself. 

We only have two pieces of data with which to fit this model atom, the ground state 

energy, Eo, and the dipole polarizability, a. Figure 8.2 shows how the dipole polarizability 

increases as the single ionization energy of the atom approaches 6 .8  eV. Extrapolating 

the points to fit an atom with an ionization energy of 6 .8  eV gives an estimated dipole 

polarizability a  % 100 Ug. It seems appropriate, therefore, to construct a model atom

with a ground state energy E q — —0.25 a.u. and a dipole polarizability of approximately

a  — 100 o,Q.

In order to provide a comparison of the positronium formation cross section for this 

model atom with the energy dependence of A  derived from the experimental noble gas data, 

calculations must be carried out up to an incident positron energy of a few electron-volts. 

Therefore the lowest inelastic threshold of this model atom, the first excitation threshold 

with energy E \ , must be high enough above the ground state to provide a sufficient energy 

range.

Since the model is not representing any real atom we can start with a potential similar 

to the first two terms in the one-electron model potential used in Chapter 3, equation 

(3.4). It seems justifiable to start with an electron-core potential of the form

l / - ( r )  =  -  i  -  ( i  +  (5 +  <5'r) (8.5)

or an even simpler model,

F - ( r ) =  (8 .6 )

which, by comparison, might be helpful in determining the validity of any other model.

Using the Rayleigh-Ritz variational method, described in Chapter 3, the parameters J, 

5' and 7  can be varied to fit the required ground state energy and the dipole polarizability.
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We must now consider the choice of a positron-core potential. The easiest choice will 

be to use the negative of the electron-core,

v + ( n )  =  - v ~ ( n )  =  i +  f l  +  5 +  f r d  (8.7)
ri \ r i  J

and the electron-positron potential is

. (8 .8 )
r \2

The limitations mentioned above mean that any results obtained with these models cannot 

accurately represent the limiting case of an increasingly massive noble gas atom for which 

E q would approach -0.25 a.u., but the comparison of a few models may at least provide 

adequate data  to compare with the data derived from the correlation plots.

The positronium formation cross-section is calculated in the same way as has been 

described in Chapters 2 and 4, using the Kohn variational method with a similar form of 

the two-channel wave function to that used in Chapter 4.

Three model potentials have been created, split into two types. The first type, which 

uses the electron-core potential from equation (8.5), are models V-^  and and the 

second, which uses the electron core potential given in equation (8 .6 ), is model . All 

the model potentials reproduce a ground state energy of E q = —0.25 a.u. to 4 decimal 

places. Only model atoms of the first type, equation (8.5), contain enough parameters to 

fit both the ground state energy and the required dipole polarizability, a = 1 0 0 .0  ûq- The 

properties of the three models are given in table 8 .1  and the potential parameters, 6 , 5' 

and 7 , are given in appendix A.

8.4 Electron- and Positron-Positronium  Scattering

Detailed ah initio studies of the elastic scattering of electrons and positrons from positro­

nium were made by Ward et al (1987). Because positronium, by definition, has a positro­

nium formation threshold at /c =  0 , the results from this work may be used to provide 

some data  comparable to those obtained from the model atom described above. Although
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Table 8 .1 : Properties of three model atoms with E q = —0.25 a.u.: ground state energy 

(£^o) J first excited state {E\)^ the wavenumber of the incident positron at the first excitation 

threshold k (ug ^), full dipole polarizability of the model atom (a).

Model Eo(a.u.) E l (a.u.) Al(Oĝ ) «(ag)

-0.2499993 -0.07715 0.597 10 0

-0.2499861 -0.05778 0.620 10 0

-0.2499943 -0.08987 0.566 43

there are similarities which make the work of Ward et al (1987) useful for this study, there 

are also some im portant differences which need to be taken into account.

The first obvious difference is the mass of the target ‘atom ’. The lepton-positronium 

system has no particle at its centre of mass whereas in the positron-atom scattering system, 

the centre of mass is taken to be at the position of the target atom core. The second 

difference is that the incident particle has an indistinguishable partner in the target, 

which means tha t exchange between the incoming particle and the identical particle in 

the target needs to be taken into consideration. Because of charge conjugation symmetry, 

electron-positronium scattering has exactly the same cross section as positron-positronium 

scattering.

The work of Ward et al (1987) provided the singlet and the triplet phase shifts for elastic 

scattering, using the Kohn method, with s-, p-, d- and f-partial waves contributions being 

evaluated. The asymptotic forms of the s-wave singlet and triplet trial wave functions, for 

example, are

r) ^ Y o , o V k ^ { l ± P u )
sin kp  I cos/cp

+  tan 77̂ (8.9)
kp kp

where P12 is the space exchange operator, p is the coordinate between the centre of mass 

of the positronium and the incoming lepton and p"*" and 77“ are the singlet and triplet
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trial phase shifts respectively. The positronium wave function is known exactly, 0pg =

These wave functions can be manipulated into the form we require, where we need 

no exchange contribution, since all the particles are assumed to be distinguishable, but 

a rearrangement channel (positronium formation) is required. If we define our system 

to be an incoming positron scattering from a positronium target where the particles are 

distinguishable, then the required trial wave function is related to and by

®±(p,r) =  ( l± P i2 ) ' i ' ‘, (8.10)

SO

=  +  (8 .11)

In order to calculate the elastic and rearrangement channel cross-sections, we need a two 

component wave function where the first component is as above, i. e. and

the second component represents the time reverse situation. So the two-component wave 

function has the asymptotic forms

sinkp  / , coskp'
kp $P a(r)

Vb,o (tan?7t+ -  tan%  ) $ P s(r ') , (8.12)
—> oo '  ' kp^

Tt Tr \sm kp' / , coskp'
+

cos kp
p—>oo V” J kp

$P s(r ')

>0,0 (tani)!" -  tan?/, ) î ^ ^ $ P s ( r ) ,  (8.13)

where p' is the coordinate between the outgoing lepton and centre of mass of the positro­

nium in the rearrangement channel, and r' is the coordinate between the positronium 

leptons in the rearrangement channel.

Now we have a trial wave function comparable to the two channel wave function de­

scribed in the derivation of the Kohn method in equation (2.65), where the new variational 

K  matrix elements are simply related to the singlet and triplet variational phase shifts 

calculated by Ward et al (1987) in such a way that

K \\  — K 22 =  tauT/'*' H- ta n 77“ (8.14)
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i^2i =  ^ 1 2  =  tanTy"  ̂— ta n ?7 , (8.15)

and the elastic (cru) and rearrangement (cri2) cross sections are given by

_  47t(2/ +  1) f  K  \
1 -  i K  / pq

(8.16)

8.5 Results

The positronium formation cross sections obtained from the various positron-model atom 

scattering calculations, and also from the modified positron-positronium scattering results 

of Ward et al (1987) are shown in figures 8 .3-8.9. The main features of the cross sections 

are the differences close to k = 0  and the convergence pattern of the results for the different 

potentials at higher energies, k > 0 .2  a g  At these energies the results within each model 

are well converged within the accuracy required to fit to the data fit shown in figure 

8.1. The low energy discrepancies are believed to arise from the high polarizability of the 

models.

At low energies the model atom is most susceptible to distortion by the incident 

positron, so extra intermediate-range terms which account for the p-type distortions of 

the atomic target or the positronium should be included in the trial wave function. The 

new terms called polarized orbital terms (see Temkin and Lamkin 1961) are of the form

$pol =  ^ , 0  (^i,(^ i)cos^i2 +  ^ ^ ^ ^ (^ H e (r2) (8.17)

^poi =  ^1,0 (^P, (l>p) cos6>Ps ^2ri2 +  ^ -̂■g-̂  ̂0Ps(n2), (8.18)

where the functions pi {i — 1,2) represent either the Bessel or Neumann functions in 

the appropriate coordinates, i. e. gi(kri) — ji{kri)  or ni{kri)fsh {fsh is the appropriate 

shielding function for the Neumann function) and g2 {i^p) = 3 l{i^p) or ni{K,p)fsh- The effect 

of these terms on the convergence of the positronium formation cross sections can be seen 

in figure 8.10. Notice that the polarized orbital terms do not greatly affect the results at 

higher impact energies.
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Figure 8.3: Variation of the s-wave positronium formation cross section aps with respect 

to the positron wavenumber k for various model atoms with E q = JFpg with a; =  8 . Thick 

line, thin line, dashed line; chain curve, results obtained using data of

Ward et al (1987) for positron-positronium scattering (see Section 8.4).
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Figure 8.4: Variation of the p-wave (Tp*, with respect to k for model atoms with E q =  Ep^ 

with UJ = S. See caption to figure 8.3 for legend.
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Figure 8.5: Variation of the p-wave crpy, with respect to k for model atoms with Eq — 

with cj =  8 . See caption to figure 8.3 for legend.
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Figure 8 .6 : Variation of d-wave aps, with respect to k for model atoms with E q 

with cj =  8 . See caption to figure 8.3 for legend.
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Figure 8.7: Variation of f-wave ctph, with respect to k for model atoms with E q 

with cj = 8 . See caption to hgnre 8.3 for legend.

=  -Fps

The behaviour of the s-wave contribution to crpg close to k = 0 should be sensitive to 

the precise value of the ground state energy of the model atom. Wigner’s threshold theory 

(see ec}uations 4.62-4.6G) predicts the energy dependence of crps for endothermie processes, 

however a more appropriate method of finding the threshold energy dependence for crpg 

for this system is using the fact that the energy dependence for inelastic processes is given 

by the first Born approximation (see for example Bardsley and Nesbet 1973) where

(8.19)

Therefore, since crpg a |  K \2 then crpg oc hz/k. In exothermic reactions, such as

positronium formation from positron-lithium scattering, k Q as k tends to a finite 

constant and the threshold energy dependence is crpg oc 1/k. In this system, with a target 

atom with a ground state energy ecpial to that of positronium, k is directly proportional 

to K and hence as k 0 , crpg tends to a finite constant.

The results plotted in figure 8.3 indicate that crpg tends to infinity as k ^  0 and are 

consistent with the values of the ground state energies of the models in 8 .1  which show that
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Figure 8 .8 : Variation of the sum the of s-, p-, d- and f-partial wave positronium formation 

cross section contributions, (7ps, with respect to the positron wavenumber k for model 

atoms with E q — with w =  8 . Thick line, thin line, dashed line; ]

chain curve, results for calculations using data of Ward et al (1987) (see Section 8.4); o, 

extrapolation from experimental data (see parameter A  in equation 8.1 and ÔT7 in table 

8 .2).

positronium formation from these model atoms is a slightly exothermic reaction. However, 

these threshold effects occur over a narrow energy range.

Another feature of all three of these models is the existence of a bound state of the 

positron-atom system lying below the ground state energy, which provides another close 

analogy with positron-positronium scattering. Figure 8.11 shows the eigenvalues for model 

(see Section 6 .2 ), and it can be seen that there is a bound state with an energy between 

-0.26 a.u. and -0.28 a.u. This state draws a parallel with the bound state of a positron 

or electron with positronium called the positronium ion. The most recent calculations of 

Ho (1993) and Frolov and Yeremin (1989) provide a binding energy of the positron to the 

positronium of 0 .0 1 2  a.u., so the positronium ion has a ground state energy of -0.262 a.u.
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Figure 8.9: Variation of sum of s-, p-, d- and f-partial wave positronium formation cross 

section contributions, crps, with respect to the positron wavenumber k for model atoms 

with Eq — Ep^ with u  — 8 . See caption to 8 .8  for legend.

The bound state of the positron and the model atoms has an energy comparable to this 

and, as with the positronium ion, there are no excited bound states of the positronium 

ion system.

These states do not seem to affect the cross sections noticeably but the FT-matrix 

elements do pass through zero due to the eigenphase sum starting at tt when /c =  0  and 

passing through tt/ 2  at higher energies (see the discussion in Section 6.5).

The results gained from the data of Ward et al (1987), show a very similar energy 

dependence in each of the partial wave contributions to crps to those of our model atoms. 

In order to compare the results more precisely a scaling factor would need to be introduced 

to account for the difference in the masses of the particles and the dipole polarizability of 

the targets involved in positron-positronium scattering, and positron-atom scattering.

The sum of the s-, p-, d- and f-wave contributions to crpg plotted in figures 8 .8  and 8.9 

provide a reasonably good fit to the energy dependence of the parameter A in equation
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Figure 8.10: Variation of the s-wave positronium formation cross section, crps, with respect 

to the positron wavenumber, k for model Thick solid line, four Tpoi terms included, 

w =  8 ; thin solid line, four terms included, w =  G; thick dashed line, no Tpoi terms 

included, uj =  8 ; thin dashed line, no Tpoi terms included, a; =  6 .

(8 .1 ), this being the extrapolation to E'th =  0  of the experimental data shown in figure 

8.1 and in table 8.2. An average value of crps between the three models are taken, cTp̂ , 

and compared with the extrapolated experimental points, The agreement between 

the results for the model atom and the extrapolated experimental results is not all that 

good quantitatively, but there is satisfactory qualitative agreement. Note that the f- 

wave contributes significantly, hence so may higher partial waves. This could explain the 

differences with the experimental results.

8.6 Conclusion

The positronium formation cross sections obtained using models to represent the atoms 

with a zero energy positronium formation threshold, E^h =  0 , are reasonably consistent 

with the observed correlation of the positronium formation cross sections, aps, at different
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Figure 8.11: Variation of the lowest eigenvalues of the Hainiltonian matrix for the positron- 

model atom system with Eq = Ep^ for model with respect to increasing N, the number 

of short-range correlation functions in the basis. The ground state energy of the model 

atom is £" =  —0.25 a.u., but the lowest eigenvalue of the positron-atom system converges 

to a value below this, establishing the existence of a bound state of the positron-model 

atom system.

energies for different noble atoms with the value of for each of the these atoms. Despite 

the limits of the one-electron models discussed in Chapter 7, the relatively simple nature 

of the models used, and the crude assumptions made about them, regarding positron- 

core interactions, dipole polarizability, the angular momenta and number of the actual 

orbiting electrons represented by the model, these models have proved to be reasonably 

successful. Each of the three models studied in this work have different forms of crps at 

or near zero incident positron energy but all merge to similar values at higher energies 

(see figure 8 .8 ). The results yielded by the models at the threshold all fit the threshold 

law for an exothermic reaction, described in equation (8.19), but have forms which are 

dependent on the detailed structure of the potentials and the precise value of the ground
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Table 8 .2 : Comparison of the sum of the s-, p-, d- and f-wave positronium formation cross 

sections at different energies, labelled in electron-volts (E), and positron wavenumbers 

(/c). cr^ is the mean of the positronium formation cross section for the three model atoms;

is the extrapolated value of crps from the experimental data for the noble gases for an 

atom with E q =  Eps (see figure 8.1).

E(eV) A: (Go )̂ cr^ (1 0  ^®cm )̂ cTps (1 0  ^®cm )̂

1 0.27 94±10 67±4

3 0.47 47±1 77±10

5 0.60 27±5 60±6

state energy for the model. We also investigated three other models which did not violate 

any threshold laws but the expected threshold behaviour was over such a narrow energy 

range that the necessary behaviour would not be noticeable compared to the range and 

structure of crpg for the other models. An interesting feature of all these models was a 

bound state of the positron-model atom system at an energy just below the ground state of 

the model atom, revealed by the stabilization method (see figure 8.11). This bound state 

lies at a similar energy to tha t of a positron bound to positronium forming Ps"^. Analogies 

were made between the nature of these model atoms and the positronium atom. Indeed, 

the structure of our approximations to crps obtained from the phase shifts calculated by 

Ward et al (1987) for positron-positronium scattering, show a similar energy dependence 

to those calculated using the model atoms, with an expected energy rescaling related to 

the differences in the relative masses of the two systems.

It can be seen in table 8.2 that, although the agreement between the results for the 

models and the extrapolated experimental results is not all that good quantitatively, there 

is nevertheless satisfactory qualitative agreement. The results from our calculations of the

130



positronium formation cross section for an atom with a binding energy equal to tha t of 

positronium itself can therefore be considered as providing support for the interpretation 

of the parameter A  in equation (8 .1) as the positronium formation cross section for an 

atom with a zero threshold energy for this process.
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Chapter 9

H ydrogen-Antihydrogen Collisions

9.1 Introduction

Dirac’s (1928) prediction of the positron, and subsequent discovery, lead also to the postu­

lation th a t for every particle in nature there is a corresponding antiparticle. The ATHENA 

project at CERN aims to create the simplest antim atter atom - antihydrogen consisting 

of a positron orbiting an antiproton. The production of antihydrogen should enable the 

most rigorous tests to be made so far of OPT symmetry and the W EP (see Chapter 1). 

Antihydrogen atoms have been made at very high energies (moving close to the speed of 

light) but they have not yet been trapped and subjected to detailed investigation. How­

ever, with the ability to cool antiprotons to very low energies, it should soon be possible 

to form, and trap, cold antihydrogen. It is therefore im portant to understand how anti­

hydrogen will react with ordinary m atter within the experimental apparatus at very low 

temperatures (< 1 K). The main cause of loss of antihydrogen from the trap is expected 

to be collisions with molecular hydrogen (H2) and atomic helium, so it is of interest to 

study the collisions with these atoms. It has also been proposed tha t elastic collisions with 

hydrogen may be used to cool the antihydrogen (Jonsell et al 2001).

The theoretical study of hydrogen-antihydrogen collisions is far from comprehensive 

or complete, though this system has been studied in reasonable detail. The purpose 

of the present work is to investigate the viability of using techniques developed by Van
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Reeth and Humberston (1999), and used successfully by them for investigating the four- 

body positron-helium scattering problem, to investigate the four-body system of hydrogen- 

antihydrogen scattering. Similar techniques might then be used to investigate helium- 

antihydrogen scattering using a one-electron model of helium.

9.2 Theory

Hydrogen-antihydrogen scattering is a four body system, but there is no particle at the 

centre of mass of the system. There have been several previous studies of the hydrogen- 

antihydrogen system, most notably by Kolos et al (1975), Armour et al (1998) and Jonsell 

et al (2001). All these studies have used the Born-Oppenheimer approximation, and the 

molecular-like interaction energy of the hydrogen-antihydrogen system has been calculated 

using the Rayleigh-Ritz variational method (described in Chapter 3). An accurate inter­

action potential energy curve between the two atoms can be found and one-dimensional 

elastic scattering calculations can be made. However, in these previous works the configu­

ration of the system was expressed in spherical prolate coordinates, which tend to provide 

a somewhat less transparent representation of the system than do the interparticle coor­

dinates.

If we consider the hydrogen-antihydrogen system when the proton and antiproton are 

very close together, i. e. the internuclear coordinate R ~  0 , it is obvious tha t the electron 

and positron are no longer bound to the nuclei and are free to form positronium. This 

process of rearrangement is energetically favourable when R  is less than a critical distance. 

Re- The hydrogen-antihydrogen system can then rearrange itself in to positronium and a 

bound proton-antiproton system called protonium (Pn), so

H +  H — ^Pn-f-Ps.  (9.1)

At very low temperatures the positronium is formed in its ground state and the protonium, 

to conserve energy, is formed in the Rydberg state of n =  24. Previous studies of hydrogen- 

antiproton and proton-antihydrogen (e.g. see Fermi and Teller 1947, Armour and Brown
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1993) systems suggest th a t 0.639 üq < Rc < 0.8 üq. For values of Rc < 0.639 ao the two 

leptons can certainly not bind to the proton and antiproton.

The results presented here have been obtained only from preliminary work, so the 

inelastic rearrangement channel is not included, although below a certain temperature 

the rate of inelastic collisions is expected to be greater than the elastic collision rate, 

and consequently annihilation will ultimately be the dominant collision process. W ith 

the method described below we can calculate a bound on the critical distance, Rc, below 

which positronium will be formed, and also calculate the variation of the electron-positron 

annihilation rate with internucleon separation R. This should provide a basis on which to 

comment on the success and the limitations of the model.

In order to simplify the model we have used the adiabatic Born-Oppenheimer approx­

imation. This is a valid approximation because the mass of the electron is so much less 

than that of the proton and therefore the speeds at which the leptons are moving are 

much greater than those of the nucleons. All the interparticle interactions are taken into 

consideration but the nuclei are set at a fixed distance R  from each other and the total 

energy of the system is calculated using the Rayleigh-Ritz variational method. The nuclei 

are fixed at different values of R  and an adiabatic approximation to the atom-antiatom 

interaction potential can then be calculated.

9 .2 .1  In te ra c tio n  E n erg y

The total interaction potential, V y , is the sum of the six interparticle Coulomb potentials, 

so that, using the nomenclature of figure 9.1

V'Y = ------- 1-----------------------1---------------, (9.2)
n  r2 rs ri2 ns  V23

and, since we are working in the adiabatic approximation, the total Hamiltonian can be 

expressed as

H  — - ~ V r ^  - + Vt . (9.3)
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Figure 9.1: Coordinates of the hydrogen-antihydrogen system

The total energy of the system at a given proton-antiproton separation i?, E{R), is given 

by

E{R) (9.4)($1 $ )  ’

where ^  is the wave function of the system. The interaction potential V(R)  between the 

hydrogen and antihydrogen is trivially related to E{R) by

V(R)  -  E{R) - E a - E ^  = E{R)  +  1, (9.5)

where En{=  —0.5 a.u.) and E^{=  —0.5 a.u.) are the ground state energies of the hydrogen 

and antihydrogen atoms, respectively. Consequently, V{R) 0 as i? —» oc.

The trial wave function, is chosen to be of Hylleraas form,

N

i=0

where

4>i = e “’■3 e T2‘ r^‘ r ^ ‘ rj’j

(9.6)

(9.7)

and the non-negative integer indices, k, /, m, p and q, are chosen such tha t the sum is
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equal to or less than the positive integer co, i.e.

ki li -\- rrii Pi Qi < a;. (9.8)

The variational energy of the system at a particular value of R  is found by solving the 

matrix eigenvalue equation,

( H  -  E ^A )  c =  0 (9.9)

where the matrix elements of H  and A  are given by

H ij =  {(f)i \ H  \ (f)j) , (9.10)

■^ij — {4*i I 5 (9 11)

and c is a column matrix listing the optimum values of the linear coefficients in the vari­

ational wave function. Since the system under study is symmetric between the hydrogen 

and antihydrogen atoms, we can establish a symmetry to reduce the number of terms 

which need to be calculated, and the new variational trial wave function is extended as 

follows;

(pi ^  4>i +  (pii (9.12)

where (p̂  = P[2,,\2)4>î  and 12) is an exchange operator which exchanges the coordinates 

of the hydrogen with those of the antihydrogen. We therefore have symmetry under the 

interchanges

rg ri2, (9.13)

T2 ^  ns- (9.14)

In addition, since there is no explicit difference between the two atoms, it is reasonable to 

set the two non-linear variational parameters a  and 7  in the correlation functions, equation 

(9.7), to be equal, i.e. a  =  7 .

9 .2 .2  In te g ra tio n  T ech n iq u es

The evaluation of all the matrix elements Hij and Aij requires integration over the five 

interparticle coordinates, r 2 , rg, r i 2 , ng  and 7-23 for fixed R. The volume element dr  for
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integration over the vectors 7*2 and rg for fixed R  is

dr  =  d r 2drs, (9.15)

=  27rr2dr2 sin ̂ I2<i^i2 î̂ 3 dr3 sin ̂ 13^^13^023, (9.16)

where 023 is the angle between the two planes defined by r i,  rg and rig and r i ,  r 2 and 

r i 2 . But

^12 =  +  ^2 “  2Hr2 COS012, (9.17)

so

r i 2d ri2 =  i^r2 sin 012^^12, (9.18)

and similarly rigdrig =  i^rg sin^igd^ig, so the volume element can also be expressed as

dr = T2dr2r i 2drI2r3dr3ri3drigd023. (9.19)

Hij

The ff-m atrix  elements, for example, have the form

2 t]- roo rri+r2 roo rri+rs r2'n
=  -^2 / ^2dv2 /  r i 2d ri2 /  rgdrg /  rigdrig /  0 7̂ 7 0 ^^0 2 3 . (9.20)

Vo V |n —T2| Vo V |n —ral Vo

The integrations over the coordinates rg and rg are performed using the Gauss-Laguerre

numerical procedure (see equation 4.38), and those over the coordinates r i 2 and rig are

performed using the Gauss-Legendre procedure,

pl) M
/ F{ x ) d x  ^  ^ W i F { x i ) ,  (9.21)

i=i

where the limits a and b are mapped on to the range —1 and + 1  to  match the formula 

given in equation (6.7). The integral over the planar angle 023  is also performed using a 

form of Gauss-Legendre quadrature procedure,

D { c o s e ) d e  =  ^  è - D  (cos ^ ^ ^ ^ ^ )  . (9.22)

which is exact if D is a polynomial of degree (2n — 1) or less. The minimum and maximum

values of r 2g with 023 — 0  and 023  =  tt respectively can be calculated from the relationships

^ 2 3 min = ^ 2  + ^ 3  “  2 r 2 rg  (sin 6*12  sin ̂ 1 3  -f cos ^ 1 2  cos 6» ig ) , (9.23)

r 2 3 max =  ^ 2  +  ^ 3  "  2 ^ 2 rg  ( -  sin 6*12 sin 6 *ig +  cos 6*12 cos 6 *1 3 ) . (9.24)
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The integration over the angle 023 is only exact when calculating even powers of r 2s, but 

if enough integration points are used then integrals of odd integer powers of r 2s can also 

be evaluated to a sufficient degree of accuracy.

This procedure is not sufficiently accurate when evaluating the matrix elements which 

include the l / r 2s term in the Hamiltonian. For these integrals, the planar description^ of 

the interparticle coordinates are shifted such tha t the two planes are now defined by r 2 , 

r i and r i 2 and r 2 , rg and r 2g and the angle between them is 0 1 3 . Then,

dr  =  r2dr2ri2dri2r3dr3r23dr23d0i3, (9.25)

and the integrations are modified accordingly.

9.3 Results

9 .3 .1  In te ra c tio n  E nergy, E ( R )

We have calculated the total interaction energy at various interbaryonic distances R  down 

to the lowest bound on the critical distance. The results given in table 9.1 reveal that 

there is a significant improvement in the upper bound on E{R) when the odd powers of 

T23 are included in the trial wave function. This is also noticeable in the convergence of 

E{R)  as the number of terms in the wave function is increased. The critical distance, R ^  

can be found by finding the distance at which the total interaction energy, neglecting the 

Coulomb attraction between the baryons, is equal to the binding energy of positronium, 

i.e.

E ' { R , )  = E { R , )  + ^  = Eps,  (9,26)
lie

= —0.25 a.u. (9.27)

where the function E'{R)  represents the leptonic energy of the system.

Figure 9.2 shows how E'{R)  becomes more negative as the number of terms in the

wave function is increased. As with the scattering phase shifts and the K  m atrix elements
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Table 9.1: Comparison of hydrogen-antihydrogen interaction energies, E{R), at R  = 

1.0 a.u. for different values of u j  and numbers of terms, N  in the trial wave function. 

Superscript a refers to both even and odd powers of V23 included in the wave function, 

and superscript b refers to only even powers of r 2s included.The estimates of the converged 

values are shown as ‘W  =  oo” .

UJ jya E°- E^

0 1 1 -1.156200 -1.156200

1 4 3 -1.238685 -1.215525

2 13 10 -1.263628 -1.235083

3 32 22 -1.271341 -1.241927

4 70 48 -1.273505 -1.247981

5 136 8 8 -1.274130 -1.251835

Extrapolated oo oo -1.278323 -1.275071

calculated in Chapters 4 and 8 , there is an empirical regular pattern in the convergence 

of the value oî Rc as uj is increased (see figure 9.4).

The values of E{R)  were determined by solving equation (9.9), but the calculations 

were not as straightforward as those described in Chapter 3 for the ground state energy of 

helium. The solutions of the matrix eigenvalue equations for the hydrogen-antihydrogen 

system were subject to numerical errors which resulted in two problems; for large matrices 

(i.e. w > 4) and for values of R  close to Rc. Firstly, the results output by the numerical 

routines used to solve the matrix eigenvalue equations sometimes yielded eigenvalues which 

were too negative to compare with the results of previous studies. These spurious results 

are believed to arise from numerical inaccuracies in solving the large m atrix eigenvalue 

equations because numerical anomalies arise when the eigenvalues are recalculated using
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Figure 9.2: Variation of E' with respect to R  for different nuinbers of terms in the wave 

function, with l)oth even and odd powers of 7-23 included. Thick line, u  — 5, thin line, 

UJ — A] dotted line, a; =  3; dot-dashed line, cu =  2; short dashed line, a; =  1; long dashed 

line, UJ =  0 .

the eigenvector of the coefficients. The equation

E* = c ^ H A - ' c (9.28)

where E* is the eigenvalue recalculated from the calculated coefficients, c, sliould be 

satisfied exactly, i.e. E* =  E. However, for the lowest few eigenvalues, E* c=: E  only to 

the order of only 1 part in 10^. The values of the interaction potential, E{R), which we 

have quoted in this work may actually be the fifth or sixth eigenvalue, but then E* = E  

to 1 part in 1 0  ̂ or better.

The second numerical problem wfiicli arises is that the eigenvalues and eigenvectors 

obtained are sometimes complex, even though the matrices H  and A  are real and sym­

metric. This can occur because the matrices are not positive-definite. These problems 

should not arise in an exact calculation, but we are using numerical tecliniques which are 

subject to errors.
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Table 9.2: Comparison of the H — H potentials, E{R)^ given by this work with w =  5, the 

results of Armour et al (1998), Jonsell et al (2001), Kolos et al (1975) and Chamberlain 

and Armour (2000).

R{a..\i.) This Work Armour Jonsell Kolos Chamberlain

0.80 -1.499230 -1.5006 - - -1.500376

0.85 -1.430018 -1.4289 -1.428121 - -1.430612

0.90 -1.370210 -1.3682 -1.368924 - -1.370514

0.95 -1.318604 -1.3174 -1.317803 -1.314522 -1.318835

1 .0 0 -1.274130 -1.2723 -1.273695 -1.271095 -1.274369

Table 9.2 shows the most accurate results of the present work compared with the results 

of Kolos et al (1975), Armour et al (1998), Jonsell et al (2001) and the most recent accurate 

results of Chamberlain and Armour (2000). Kolos et al used a total of 77 basis functions 

containing all integer powers of the interlepton coordinates (r23 in this work) between 0 

and 2 . Armour et al used 32 basis functions of effectively the same form as those of Kolos 

et al but they included a term in the wave function representing virtual positronium, in 

a very similar manner to tha t used in the positron-helium scattering described in Section 

4.4.1. The results in table 9.2 show how effective this term is. Even with less than half 

the basis functions, the results of Armour et al provide a lower value of the interaction 

energy than do those of Kolos et al, which is especially noticeable at values of R  close to 

Rc- Jonsell et al (2001) have used a more restricted form of basis function with only two 

non-linear variational parameters instead of the four used in the two previous references, 

but 908 basis functions were used containing all integer powers between 0 and 3 of the 

interlepton coordinates. Although no explicit virtual positronium term  was included in 

the wave function, the addition of the extra power of r 2s more than makes up for it, 

providing even lower values of the energy at higher values of R. The work of Chamberlain
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and Armour (2000) has built on the work of Armour et al (1998) but 426 basis functions 

have been used, with all integer powers of the interleptonic coordinates between 0  and 6 

included. This has provided the lowest bounds on the interaction energy yet obtained for 

values OÎ R >  Rc.

In this work we have used up to 136 terms, with all integer powers of r 2s between 0 

and 5 included, and this has yielded a value of the interaction energy somewhere between 

the results of Jonsell et al (2001) and those of Chamberlain and Armour (2000). It can be 

seen in table 9.2 tha t the results of this work provide lower values of E{R)  compared to 

Jonsell et al (2001) and Kolos et al, and tha t this improvement gets better at lower values 

of R, indicating th a t in our methods the higher powers of r 23 represent virtual positronium 

reasonably well close to Rc-

Using the empirical extrapolation method described in Section 4.3, we can see how 

E{R)  converges for a particular value of R  and estimate the values of E{R)  for an infinite 

number of terms in the trial wave function, i.e. u j  — oo. Above the known upper limits of 

Rc (<  0 .8  a.u.) the convergence seems reasonable (see table 9.1), particularly when the 

odd powers of ^23 are included in the wave function.

There is, however, a problem when using this extrapolation method to estimate the 

value of E'  for R  ~  Rc. Equation (9.27) shows that, for values oî R  < Rc, then E'{R) > 

—0.25 a.u. As R  is decreased to values below R  = 0.8 a.u., the calculated values of E'{R) 

for finite u j  are all above -0.25 a.u., but their extrapolated values remain below, even for 

R  =  0.639 a.u. which is known to be the lower bound on Rc. The extrapolated values 

of E'  for R  < 0.8 a.u. imply that the positronium is not quite free from the proton 

and antiproton even when R  — 0.639 a.u. The Rayleigh-Ritz variational method provides 

upper bounds on the energy eigenvalues and cannot be violated, tha t is, for any given wave 

function the calculated value of E'{R)  cannot be below the exact value of E'(R)  for the 

model. This leads to one of two conclusions; either the critical distance Rc is even lower 

than the lower bound oî R  = 0.639 a.u., or the extrapolation method is not valid in the 

region where the system is more appropriately described as a free positronium-protonium
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system. Since the trial wave function used here is really only suitable to describe the 

hydrogen-antihydrogen system, we to assume that it is the extrapolation method which is 

not valid, for R  Rc

In order to represent the system close to (and just above) Rc accurately, a representa­

tion of virtual positronium must be explicitly included. This is described in greater detail

below in Section 9.4.

9.3.2 Annihilation

The rate for direct annihilation of the positron and electron has been evaluated as a 

function of R. Annihilation occurs at the point when r 23 =  0, so tha t rg =  V2 and 

r i 2 =  r i 3 , and the annihilation rate, is

r(A) =  2,»^ ( ^ )  l - » ( ^ - ^ )  ZefF =  100.617Zeff, (9.29)

where

=  (9-30)

and is the total wave function for a given value of R. The results of the Zgfr calculations 

in this work have been plotted in figure 9.3. In this system it is not appropriate to 

interpret Zgff as the effective number of electrons in the vicinity of the electron, as described 

in Chapter 5. Instead, it is the probability of the positron and electron being at the 

same position in space. However, we will continue to describe the annihilation using the 

param eter Zgff since it has an analogous mathematical form (compare with equation 5.3), 

and T{R) and ZgAf are trivially related by equation (9.29).

When the hydrogen and antihydrogen atoms are quite far apart the overlap of the 

electron and positron wave functions is small, and the value of Zef[{R) is therefore very 

small. As the atoms come closer together Zgff increases, but as R  approaches Rc :̂̂ 0.8 a.u. 

Zgff starts to decrease. This is not what would be expected for the system, but there is no 

variational bound on the calculated value of Zgff although in practice the value of Zef[{R) 

usually increases as to increases, as can be seen in figure 9.3. The decrease in the value of
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Figure 9.3: Variation of %eff witli respect to R  for different numbers of terms in the wave 

function, with both even and odd powers of T23 included. See caption to hgure 9.2 for 

legend.

Zeff could arise because of the inexact wave function of the total system used in evaluating 

the interaction energy. As the system rearranges to form positronium-protonium, Zgff 

would be expected to become infinite near Rc since all positronium that is formed eventu­

ally annihilates. A similar argument has been used by Van Reeth et al (1996) to explain 

the sharp increase in Zgff just below the positronium formation threshold in positron-atom 

scattering (see Section 5.3). However, the wave function used here makes no allowance 

for the formation of real positronium and the representation of virtual positronium by the 

usual short-range correlation functions may not be very efhcient. In our system, where no 

positronium is allowed to be formed, the repulsion of the electron by the antiproton and 

the positron by the proton may be enough to keep the leptons further apart from each 

other than they should be when R  ~  Rc- This limitation in the form of the wave function 

is expected to have a significantly larger effect on Zgff than on the energy because the 

error in Zgff is of hrst order in the error in the wave function whereas tlie error in the 

energy is of second order. Recent results obtained by Chamberlain (2002) do not show
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this decrease in Zeff{R) close to Rc-

In the ATHENA experiments, the hydrogen and antihydrogen will be kept in magnetic 

traps, and the spins of the leptons will be aligned parallel to each other. Consequently 

all annihilation of electrons and positrons should be via three photon decay which, as 

explained in Chapter 5, occurs at a rate approximately 400 times slower than two photon 

decay. Jonsell et al (2001) have concluded tha t the rate for annihilation in flight of the 

proton and antiproton is faster than the estimated direct lepton annihilation via three 

photons, which cannot be taken into account in the Born-Oppenheimer approximation 

used here.

9 .3 .3  T h e  C ritica l D is ta n c e  Rc

Chamberlain and Armour (2000) have calculated the value of Rc directly by solving the 

energy eigenvalue equation for a range of values of R, searching for the specific value of 

E ' { R )  =  E { R )  + 1 / R  = —0.25 a.u.. W hat is probably a more accurate estimate of the 

critical distance has been obtained in the present work by looking at the convergence of 

the values of the energy at a given value of R  for wave functions with particular w and 

using a similar pattern of convergence to tha t described previously (see Sections 4.3 and 

9.3.1). Although the extrapolated values of E { R )  for a given R  seem to be lower than 

expected, the values of R  for which E ' { R )  — —0.25 a.u. used to calculate the convergence 

of Rc are not. Extrapolation to infinite co should then give a lower, and more accurate, 

value of Rc, as can be seen in figure 9.2, so the extrapolated value of Rc{uJ — oo) could be 

a reasonable approximation. The convergence of Rc with respect to w is found to be well 

represented by

Rc{u j )  = R c { o o ) — y ï K̂  (9.31)
LÜ

as can be seen in figure 9.4, and the converged value of this work gives Rc — 0.7519 a.u. 

A similar calculation has been carried out by the author on the data of Chamberlain and 

Armour (2 0 0 0 ), yielding a value of Rc =  0.7724 a.u. compared with their best direct result 

of Rc = 0.7937 a.u.
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Figure 9.4: Convergence of the critical distance Be for increasing to. The straight line is 

the line of bc'st ht when n — 1.15 (see equation 9.31)

9.4 Further Studies and Conclusions

The objective of the work reported in this chapter has been to investigate the feasibility of 

applying similar techniques to those developed for investigating the full four-body positron- 

helium scattering system to the four-body system of hydrogen-antihydrogen scattering. 

Here, the trial wave fnnction has been expressed directly in terms of the hve interparticle 

coordinates (for a given hxed value of R) instead of the somewhat less intuitive spheroidal 

coordinates employed by other workers (e. g. Kolos et al (1975), Armour et al (1998) and 

Jonsell et al (2001)). It has therefore been easier to construct terms in the wave function 

which represent specihc configurations of the system such as virtual positronium, which 

becomes progressively more important as the value of R  approaches the critical separation 

Rc when positronium can be formed and escape from the vicinity of the residual protonium. 

The present results obtained for the hydrogen-antihydrogen interaction potential within 

the Born-Oppenheimer approximation compare well with previous results.
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9.4.1 Rearrangem ent Cross Section

A complete treatm ent of low energy hydrogen-antihydrogen scattering should include the 

open channel of rearrangement into positronium and protonium, but this is a more sub­

stantial task than we had time to complete. This rearrangement channel is likely to have 

a profound effect on the possibility of trapping antihydrogen for any reasonable time in­

terval because once positronium is formed it will certainly undergo annihilation with a 

lifetime of at most 142 ns (for ortho-positronium), followed by annihilation of the pro­

tonium, resulting in the complete destruction of the antihydrogen atom. Estimates have 

previously been made by Jonsell et al (2001) of the cross section for positronium formation 

by calculating the T-m atrix element for the rearrangement. The T-m atrix is related to 

the S-  and X -m atrices (see equation 2.66), so tha t

% _ _  K
T

and hence, by equation (2 .6 8 ), the partial cross section cr̂ g is directly proportional to

\T j ^ -

The T-m atrix  is usually represented as a function of final and initial states, denoted 

by subscripts /  and i respectively. So, for instance, a system in the initial state and 

final state with an interaction potential V  has the T-m atrix element Tfi given by

= (9.33)

where V  = V{R),  is the atomic interaction potential as calculated above (see equation 

9.5). To calculate the T-m atrix element representing the rearrangement channel in the 

hydrogen-antihydrogen system, 4>/ is the wave function representing the outgoing plane 

waves of positronium and protonium, and should be the full wave function representing 

both incoming hydrogen-antihydrogen plane waves and outgoing hydrogen-antihydrogen 

and outgoing positronium-protonium plane waves.

However, in the work of Jonsell et al (2001), instead of using the full wave function 

representing elastic and rearrangement channels, an approximate form of was used
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which represented only elastic hydrogen-antihydrogen scattering. This function was ob­

tained by solving the one-dimensional Schrodinger equation for the baryonic wave function 

(as a function of R) representing scattering by the adiabatic potential V(R)  i.e.

a"
M dR ?

f(R )  + V ( R ) f iR )  = E ^ f(R ) ,  (9.34)

where M  is the mass of the proton and is the total energy supported by the baryonic 

system and then multiplying the function f{R )  by the previously determined function 

^ / ( t ’2 , rg; R) involving the leptonic coordinates. Given that the rearrangement channel is 

exothermic, and therefore the cross-section for the rearrangement process tends to infinity 

at zero incident energy, its neglect in the wave function may have a significant effect 

on the cross section for rearrangement, and therefore on the probability of annihilation in 

a collision between hydrogen and antihydrogen.

W hat is required is a full two-channel formulation of hydrogen -antihydrogen scattering, 

with the elastic scattering and rearrangement channels included in a similar manner to 

that employed in the determination of positronium formation in positron-helium collisions 

(see Chapter 4).

Using the K ’-matrix formulation, in which we deal with a real two-component wave 

function similar to tha t described in Chapter 4, the asymptotic forms of the two compo­

nents of the wave function are

^1 r i —>oo
elastic H — H scattering (9.35)

p—»oo
Ps — formation (9.36)

4/2 ri-^oo
elastic Ps — Pn scattering (9.37)

p—»oo
H — H formation. (9.38)

9 .4 .2  H e liu m -A n tih y d ro g e n  S c a tte r in g

The residual gases in the trap in which the antihydrogen atoms are confined are likely to be 

molecular hydrogen and helium rather than atomic hydrogen, and so investigations need
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to be made of antihydrogen collisions with these targets, both of which are substantially 

more difficult to consider than atomic hydrogen.

As a first attem pt at considering collisions of antihydrogen with helium, it is probably 

appropriate to consider the one-electron model of helium which has been employed in 

previous chapters of this thesis. Clearly there are similarities with hydrogen-antihydrogen 

collisions, although there is now no symmetry between the two atoms. Considering the 

single channel process for atom-antiatom collisions as we have described above, the forms 

of the basis functions in of the trial wave function do not have to be modified since a flex­

ible trial wave function may adequately represent the distorted helium and antihydrogen 

target wave functions. However, since there is no node in the models of the helium wave 

function described in Chapter 3, equation (9.7) may be multiplied by the helium target 

wave function in order to more adequately represent the helium-antihydrogen system. An 

appropriate form of basis function is therefore

Now there is no symmetry between the two atoms, so generally a 'y, and there is no 

exchange operation between any of the coordinates (see equations 9.12-9.14).

The total interaction potential, Vr needs to be modified to include the electron-helium 

core model potentials, V~,  described in Chapter 3. The electron-positron interaction is 

the pure Coulomb attraction and the positron-helium core potential , is the hydro- 

genic static plus the dipole polarizability terms as used in the positron-helium scattering 

calculation (also described in Chapter 3). We presently have no two-body potential to 

represent the interaction of an antiproton with a helium ion core, but since the proton 

and antiproton are stationary in the adiabatic calculation of E{R)^ initial calculations 

may use V'+ as the antiproton-helium ion core potential. However, this potential term  

is constant for a particular value of R  and can therefore be neglected when calculating a 

value of Rc for the helium-antihydrogen scattering system.

As with the positron-helium scattering calculation, we also have to consider a potential 

term which represents the polarization of the helium ion core by the positive and negative
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leptons. In this case, in analogy with equation (3.41) we have a four-body term, Vg, which 

takes into account the polarization of the helium core by the electron, positron and also 

the antiproton, even though there is no overall helium core-antiproton interaction included 

in the total potential, Vt- The total potential function, apart from the dependence on R, 

is therefore

Vt' — V  (rg) +  y ^ ( r 2) --------- 1-----------------1" V0 (iî, T2 , rs, ^12, ^13, ^23)) (9.40)
f'12 'T13 2̂3

where

and / i ,  / 2  and fs  are functions which appropriately shield Vq as V2 and rs approach zero.

It may be necessary to add a virtual positronium type term to the wave function

to represent the electron and positron weakly bound to the proton-antiproton system. 

Armour et al (1998) used a function which was similar to the form used in positron-helium 

scattering close to the positronium formation threshold (see Section 4.4.1 and equation 

4.60). A suitable form of virtual positronium term  for this system is

0vps =  0Ps(^23)—^  (1 -  , (9.42)

where (ppg is the exact positronium wave function and the coordinate p is the distance

between the centre of mass of the atom-antiatom system and the centre of mass of the 

weakly bound positronium, so tha t the vector p  is defined generally as

where M\ and M 2 are the masses of the two nuclei and R  is the vector from M\ to M 2 . 

In our method we have not needed to define the position of the centre of mass, but if the 

interbaryonic separation is small enough it may be sufficient to approximate the coordinate 

p as

P =  ^ (^3 +  r i2 ) . (9.44)
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Chapter 10

Summary and Conclusions

In this work we have investigated various low energy collision processes associated with 

positron-atom scattering using one-electron models of atoms and a simplified model of 

hydrogen-antihydrogen scattering. The success of these one-electron models has been var­

ied and some results from other positron-atom studies have been reproduced comparatively 

well both qualitatively and quantitatively.

To study low energy positron-helium collisions we used three one-electron models and 

compared the results with those of Van Reeth and Humberston (1999) who provided 

accurate results from ab initio calculations. At energies below the positronium forma­

tion threshold, Eth, all three models yielded reasonably accurate elastic scattering cross- 

sections, and one in particular, Vf, reproduced the results of Van Reeth and Humberston 

to an excellent degree. This model has shown the remarkable accuracy which can be 

obtained from using these models, but also some adverse side effects (see Chapter 4 and 

Chapter 6 ). Model Vi supports a resonant state at an energy just below E’th which affects 

the elastic scattering and positronium formation cross-sections above £ t̂h- The other two 

models reproduced the energy dependence of the results calculated by Van Reeth and 

Humberston (1999) reasonably well as well as the cusp-like feature in the positronium 

formation cross-section just above £̂ th- Although no one of the models studied here can 

accurately reproduce all the features of the scattering cross sections, these results have
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provided evidence th a t a single one-electron model of helium can be found which might 

provide reasonably accurate scattering results.

The study of positron-electron annihilation in this system, however, did not yield such 

satisfactory results (see Chapter 5). Although the energy dependence of Zgff calculated 

here was similar to tha t calculated by Van Reeth et al (1996), the results are too low. 

This is considered to be a limitation of one-electron models generally, since this particular 

process is heavily dependent of the interaction between the single electron and the positron, 

although the model attem pts to reproduce the effect of a two electron atom.

Despite the poor results from the Zeff calculations, the study of the Doppler shift in 

the energy of the 7 -rays produced in the electron-positron annihilation revealed mixed 

success. Despite the comparatively crude nature of model V3 , which effectively neglected 

any electron exchange contributions to the potential, it was this model which reproduced 

the results of Van Reeth et al (1996) most accurately. It is believed tha t this can be 

attributed to the form of the electron density function (see figure 3.8), where tha t for model 

V3 agrees most closely with tha t calculated from the two-electron helium wavefunction of 

Van Reeth and Humberston (1999). This correlation may be useful in finding a one- 

electron model of helium with greater overall reliability.

If a model helium atom can be found with the correct positronium formation threshold 

energy, and which does not support a positron-helium resonant state, then it may be 

possible to study helium-antihydrogen collisions using the method described in this work, 

and reasonably accurate results could be expected.

In Chapter 8 , use of the one-electron models was extended to create an entirely artificial 

model atom with a binding energy of 6 .8  eV and a dipole polarizability compatible with 

the observed correlation between dipole polarizability and binding energy for the noble 

gases. Positronium formation cross sections were then calculated to test the hypothesis 

proposed in the correlation study of Humberston and Van Reeth (2000), tha t the coefficient 

A  in equation (8.1) was the positronium formation cross section for an atom with a zero 

positronium formation threshold. The calculated cross-sections did not provide an exact
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fit to the energy dependence of the parameter A  derived from the experimental data, but 

the three models provided results of the same order as the cross sections extrapolated from 

the experimental results. This, again, shows how useful the one-electron models of noble 

gases can be.

An adiabatic approximation was used in studies of hydrogen-antihydrogen collisions 

using a basis set of Hylleraas type functions somewhat similar to those employed in 

the positron-helium scattering calculations. Using the Rayleigh-Ritz variational method, 

which provides a rigorous upper bound on the interaction energy between the hydrogen 

and the antihydrogen, E{R), this study yielded values of the atom-antiatom interaction 

potential which are improvements on three of the main studies previously undertaken (Ko­

los et aZ, 1975, Armour et al (1998) and Jonsell et al, 2001). Recently more accurate studies 

have been undertaken which have provided even better values of this potential function 

using more terms and a virtual positronium term (Chamberlain and Armour 2000), but 

our investigations have shown that the technique used here is rather good. From this point 

it should be feasible, without too many complications, to use our one-electron models of 

helium to provide information about low energy helium-antihydrogen system collisions.

There are complications arising from the method, however, which relate to the rep­

resentation of the open channel of the positronium and protonium formation below the 

critical distance, Rc, as well as the limitations of the one-electron models of helium de­

scribed above. But an initial investigation, at least into upper bounds on Rc and the form 

of the interaction potential at large values of R, is certainly possible.

The models studied here have shown th a t representing a noble gas atom as a one- 

electron atom can sometimes provide accurate results. Considering the mixed quality of 

the results of the scattering cross sections and annihilation spectra from the positron- 

helium collision study, we believe it is possible to create a model which represents the 

helium atom rather well in positron-helium scattering for the one and two open channel 

scattering processes. A one-electron model atom has been devised for neon, although 

it is not trivial to calculate neon-positron scattering cross sections since a positron-neon
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ion core potential needs to be designed, even if just based on a hydrogenic static type 

of potential with an additional dipole polarizability interaction term. Also, in neon, the 

“outer” electron would be in a 2p state so there is an additional complication regarding 

the coupling of the angular momentum of the positron to tha t of the electron.

Given the measure of success achieved in this work using one-electron models to repre­

sent both real and non-existent atoms, and the promising prospects for successful further 

studies, it is apparent that such models can be useful in providing at least preliminary 

results to back up early studies of low energy collisions or correlations theories. More 

accurate results may then be achieved by other methods.
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A ppendix A

Potential Param eters

A .l One-Electron M odels of Helium

The model interaction potential, V, between the electron and the helium ion core is 

a function of r, the distance between them, and is described by equations (3.4-3.6 ) in 

Chapter 3;

V{r) =  - l - i ( l  +  f r  +  S'r^) e-T"- -  (/3r)

-  (/3V) X4 {0’r) + ( f tr )  +  (Bj) wg ( f t r ) , (A.l)

where the functions and Xn shield the singularities as r  ^  0 , and are such that

^n{x) =  [Xnix)f (A.2)

and

and the function

OO
XnW  — 1 -  e  ̂ ^  (A.3)

m=0

/  ( E \ )  — —  tan   ̂ r  E -^  . (A.4)
7T \  lE  J

The parameters oij, dg, 7  ̂and E\ are known exactly because they represent measurable

physical properties of the positively charged helium ion. The parameter (3 is the same in

V2 1 and F+ . The parameter /3a in the shielding function of the “three-body” 

potential, Vq (see equation 3.41), also takes this value when V{' is used, but /3a =  2.2012848
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Table A.l: Parameters in the three model electron-helium ion core potentials.

Parameter Vi ^ 2' ^3”

6 -1.787276 -39.76972 2 .0

(5' 1.627833 99.52617 0

7 1.238589 4.5605785 4.0

Otd 0.28125 0.28125 0.28125

P 2.967346 2.967346 2.967346

aq 0.234375 - -

P' 2.317501 - -

Pd 0.0839844 - -

Pi 2.16761 - -

Id 0.02596029 - -

71 2.540849 - -

P2 1.560583 - -

E; 0.90369424 - -

when using the other models. The parameters in all three model potentials are shown in 

table A .l.

A.2 Potentials for the Zero E t h  M odel Atom

The general forms of these model potentials are similar to those described above in equation 

(A.l) but with only the long-range Coulomb attraction and a term representing the static 

interaction between the electron and the ion core. The electron-core potentials and 

have the form

V(r) =  -  i  -  ( ^  +  >5 +  iJV) e-T"-, (A.5)
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Table A.2 : Parameters of the three one-electron model atom core potentials for an atom 

with a zero positronium formation threshold energy.

Parameter P3M

6 -10.3 -88.46098 -1.99

6' 4.69321 48.0 -

7 1.24 2 .0 1.5

and model has an even simpler form,

V(r) = -  - -  6 e-T"'. (A.6 )
r

All the parameters are found empirically by fitting the properties of the model atoms 

described to the value of the ground state energy and the dipole polarizability if possible 

(see Section 8.3). The values of these parameters are shown in table A.2 .
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A bstract. Low-energy positron-helium  scattering is investigated using three different one- 
electron m odels o f helium in order to find out if such a model is capable o f  yielding accurate results 
for elastic scattering, positronium formation and positron-electron annihilation. Comparisons are 
made with the accurate results obtained from ab  in itio  variational calculations o f  Van Reeth and 
Humberston (Van Reeth P and Humberston J W  1999 J. Phys. B: At. M ol. Opt. Phys. 32  3651). 
The m ost elaborate helium model used here gives accurate values for the elastic scattering phase 
shifts throughout most o f  the energy range up to the positronium formation threshold. However, 
near-threshold resonances associated with this model have substantial effects on all the partial wave  
contributions to the positronium formation cross section that have been investigated. The other 
two helium models yield rather less accurate elastic scattering phase shifts but the positronium  
formation cross sections are in good qualitative, and even reasonably good quantitative, agreement 
with the accurate results. N one o f  the models yields very accurate results for the annihilation cross 
section.

1. Introduction

Due to the complex nature of many-body collision processes, very detailed ab initio studies 
of positron scattering by atoms have been made only for hydrogen and helium. In positron- 
hydrogen scattering there are three particles to consider, and hence only three inter-particle 
coordinates, whereas in positron-helium scattering there are four particles, and therefore six 
inter-particle coordinates. Also, the wavefunction of the helium target is not known exactly. 
These factors complicate the calculations by several orders of magnitude in comparison with 
those for positron-hydrogen scattering and it would therefore be desirable to find out if accurate 
results can be obtained for positron-helium scattering using a one-electron model of helium. 
If such a model can be found, it may be possible to generate similar one-electron models for 
heavier atoms, for which ab initio studies are even more difficult, greatly simplifying the task 
of calculating positron scattering parameters.

One-electron models of helium have been used previously to study positron-helium 
scattering (Hewitt et al 1991), but these studies were mainly at intermediate energies. In 
the present work we are interested in low-energy positron scattering up to the threshold for the 
first excited state of the target atom (in positron-helium scattering this is the 2 'S state, with 
a threshold energy of 20.61 eV), and we consider elastic scattering, positronium formation 
and electron-positron annihilation. Below the positronium formation threshold, the energy of 
which is

Eth = Ei — Eps, (1)

0953-4075/00 /132589+ 15830 .00  ©  2000 TOP Publishing Ltd 2589
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where E\ and Eps are the single ionization energy of the atom and the binding energy of the 
ground state positronium respectively, only elastic scattering and annihilation are considered. 
In the Ore gap, the energy interval between Eth and £'2 ‘s> the two channels of positronium 
formation and elastic scattering are studied. Accurate variationally determined results have 
recently been obtained by Van Reeth and Humberston (1999), hereafter referred to as VRH, 
for the parameters describing elastic scattering, annihilation and positronium formation in 
low-energy positron-helium collisions, and these provide the standard by which we judge 
the quality of the results obtained using the various one-electron models of helium under 
investigation.

Previous equivalent one-electron models of helium have been of a simple form and have 
not provided particularly accurate results for positron-helium scattering (Hewitt et al 1991). 
Here, we are attempting to find a model which is capable of yielding accurate results and 
reproducing some of the detailed features found in the more accurate ab initio investigations. 
Equivalent one-electron models for other atoms have been used in other positron scattering 
calculations, but most successfully for alkali atoms (e.g.. Watts and Humberston (1992)) which 
consist of a valence electron weakly bound to a compact core. In contrast, helium is perhaps 
the most inappropriate atom to consider in this way since the two electrons are in completely 
equivalent Is orbitals, and neither electron can be considered as being more tightly bound to 
the nucleus than the other. Nevertheless, such a model would be very useful if it could be 
found.

2. Electron-core and positron-core potentials

In this work we consider three model electron-core potentials;

V| ( r2 ) =  — ( — + 5 4- 5^2^ e ---------
V i  )  r2 2rj

l'-2) + ^ /(E i) f f l2 ( fc o ) , (2)
2^2 ^2 r

ri J r2 2r
1 . A 1

^ 2  (̂ 2 ) — — ( — + 5 + 5 V2 I e  -------;^o) 2 (^or2 ), (3)

—  -I- (5 I e  ----------------------------------------------------------------------------------------------------------------- ( 4 )
r2 J r2 2r^

where the coordinate K2 is defined in figure 1, and is the dipole polarizability of the core. 
The functions C0 2 , X3 and X4 shield the singularities at r2 =  0 in the various components of the 
potential function, and are defined by

û>«(>’) =  [Xn(>’) f ; Xn(y) =  1 - e  (5)
/■ = o

f  (E\) — — tan  Ej j . (6)
^  \  y\ J

The potentials and which have been provided by Peach (1982), have been generated 
by fitting the general forms of the potentials to spectroscopic data, and they give very accurate 
values of the ground state energy and dipole polarizability of the helium atom. The potential 

is a simplified version of V,” but with the range of the ‘static’ component more similar 
to the range of the hydrogenic static potential. However, the electron-core potentials V[' and 
V2~ both give stable and very accurate values of the ground state energy, Eq, and the dipole
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„ +

He^ core

Figure 1. The coordinates o f the model positron-helium system.
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Figure 2. Variation with respect to the nonlinear parameter /Ihc in the helium atom wavefunction 
(see equation (7)) o f (a) the ground state energy; (h) the dipole polarizability. Note that the full 
dipole polarizability o f the atom has the core value, =  0.281 25 </q, added to it. The number o f  
terms in each helium wavefunction is ten. Thick curves, V|“ ; thin curves, V,” ; dashed curves, Vj” ; 
dotted lines parallel to the abscissa are the exact data.

polarizability, «He, as shown in figure 2 and tabulated in table 1. The electron-core potential 
^3“ with ( 5 = 2  and y =  4 is simply the hydrogenic static potential for the He^ ion, added to 
which is the core dipole polarization potential. This potential gives significantly less accurate 
values of the energies of the bound states and the dipole polarizability. It may be noted that 
only 8, 8 \  y ,  and yi are free parameters. The values of the parameters in these potentials are 
listed in the appendix.

Before scattering calculations can be carried out, a target electron-core ‘helium ’ 
wavefunction is required and so a variational Rayleigh-R itz calculation was performed using
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Table 1. Properties o f  the model atoms (minimum or stabilized values): ground state energy ( E q),  

first excited state (E \) ,  full dipole polarizability o f  the model atom («He), dipole polarizability o f the 
model neglecting the core dipole polarizability (a ). N ote that the total dipole polarizability o f  the 
model helium atom is the sum o f the polarizability o f  the single electron and the core polarizability. 
A lso note that E-, =  |Eol in equation (1).

Model £ 0  (au) E \ (au) « H e  ( O q ) a  ( O q )

- 0 . 9 0 3  6 9 4 2 4 - 0 . 1 8 7  8 5 1 . 3 8 3  2 7 1 . 1 0 2 0 2
- 0 . 9 0 3  6 9 3  2 2 - 0 . 1 4 6  5 8 1 . 3 8 3  7 5 1 . 1 0 2  5 0

^ 3" - 0 . 8 6 8  7 3 6 4 8 - 0 . 1 5 5  9 9 1 . 0 6 6 5 9 0 . 7 8 5  3 4

Exact - 0 . 9 0 3  6 9 4 2 4 ' - 0 . 1 4 5  9 7 * ’ 1 . 3 8 3  2 4 ^ —

® M oore (1970).
Martin (1960).

 ̂ Bhatia et a l (1997).

a very flexible trial wavefunction of the form,

E
f = 0

ciri ' 2 - (7)

The dipole polarizability of the target system was calculated by perturbing the system 
with a very small electric field. There is no bound on the value of the polarizability but a 
stable region with respect to varying the nonlinear parameter in the one-electron helium 
wavefunction implies a suitable choice of /Shc- A detailed description of this method for 
determining the dipole polarizability has been given by Thomas and Humberston (1972). The 
full polarizability of the model atom is defined as the polarizability of the single electron plus 
that of the hydrogenic core, 0.281 25 a^.

The positron-core potential, V^, is assumed to be the exact hydrogenic static potential, 
together with a core dipole polarization term, so that

-  + ( — +2^  e -  : ^ ( 0 2 (Pori).
1 \ r \  J 2rf

y+ (n ) =  -  + | - + 2  
ri

(8)

The total potential function of the three-body system, Vj, also contains the positron-electron 
interaction, V\2 , and a ‘three-body’ potential term, V^, which exactly cancels the polarization 
potentials when the positron and electron are at the same position (see Peach (1983)), so that

Vf _  V ( 2̂ ) + V^(ri) H- V]2(/'i2) + V0(ri, T2, ^12), (9)

where

^ 12(^12) = ------,
r 12

Ve{r\,r2, 6*12) = Cid
COS ^l2X2(/3ofl)X2(A/"2).

( 10)

( 11)

3. Scattering calculations

Above the positronium formation threshold, only two processes are considered as open 
channels: elastic scattering and positronium formation. The positron-electron annihilation 
channel is also open, but the cross section for this process is negligible in comparison to the
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cross sections for the two other processes. The total Hamiltonian, / / t ,  and the total energy, 
E j ,  are given by

(12)

=  + (13)

E l  = + Eq =  + fps, (14)

where p  is the coordinate from the core to the centre of mass of the positronium (see figure 1) 
and k and k are the positron and positronium wavenumbers respectively.

We use the Kohn variational method (see VRH) which provides a variational K  matrix, 
described by the stationary functional,

K n  = K n  -  « | 2 ( H t  -  (m, n = \,  2). (15)

The trial wavefunction has two components to represent fully the two scattering channels, and 
they have the form

N

VI/, = 5 i + E {iC i + E ' iC2 + ^ c/0,- (16)
(=1

N

^2 =  S2 + K[2C i + K\^C,  (17)
j=i

where

Si =  Y,,o(f ,)Vk 't’H,(r2 )j,(krO  (18)

C l  =  - l ) , o ( r i ) V r < t > H e ( r 2 ) H i ( ^ / - | ) / s h ( / - i )  ( 1 9 )

Sz =  y,.o(p)Æ<I>ps(ri2);,(<f/9) (20)

C2 =  -r,,o(p)Æ<t>Ps('-|2)ni(<r/»)/,'h(iO). (21)

A  =  y i A n , , (22)

where y/,o is an appropriate rotational harmonic (see equations (30)-(32)). The functions 
fsh and shield the Neumann functions at the origins (r, =  0, p =  0), Ops(r,2 ) is the 
positronium wavefunction, and the short-range distortions represented by 4>i are summed over 
all terms with non-negative powers of r ,, r2 and r ,2  such that

ki-i-li + mi ^  CO, (23)

where co is a positive integer. Increasing the value of o) then provides a convenient means of 
systematically improving the trial function. Exploiting the stationary properties of the elements 
of the Kohn functional with respect to variations of the linear parameters, K lj( i ,  j  = I, 2),
Ci{i =  1 , . . . ,  V ), d j{ j  = , N ),  a set of linear simultaneous equations is obtained which,
when solved, ultimately yields and hence the two-channel partial wave cross sections 
which are given by

2
a ,

I 4Tt(2l + \)
k l I  -  iK'^

(24)

where I  is the unit matrix, a , , and a  12 are <%/ and aps respectively and Â:, =  k and k2  =  k.
Below the positronium formation threshold, the trial wavefunction is reduced to a single 

component representing a single channel, i.e. all terms relating to positronium are dropped.
The Kohn method does not provide a rigorous bound but there is an empirical lower bound 

on the diagonal Hf-matrix elements, K^^ and K 2 2 , so that they usually increase and converge 
toward the exact values, as to is increased (see table 2). However, for particular values of the
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Table 2. Convergence o f  the s-w ave positron-helium  scattering phase shifts with respect to the 
number o f short-range correlation terms in the scattering wavefunction, TV, at & — 1.0 These 
are to be compared with the accurate value o f  t]o =  —0.189  from VRH.

N  (co) V'f ^2“ ^3'

8 4 (6 ) -0 .1 9 1 0 -0 .1 7 9 2 -0 .1 7 1 9
120 (7) -0 .1 9 0 7 -0 .1 7 8 6 -0 .1 7 1 7
165 (8) -0 .1 9 0 5 -0 .1 7 8 5 -0 .1 7 1 6
220 (9) -0 .1 9 0 3 -0 .1 7 8 3 -0 .1 7 1 4
286 (10) -0 .1 9 0 3 -0 .1 7 8 2 -0 .1 7 1 4

nonlinear parameters, can become singular (Schwartz 1961a). Using the ‘inverse Kohn 
method’, a variant of the Kohn method, singularities can be shown to be either Schwartz 
singularities or actual features of the model, since a Schwartz singularity is very unlikely to 
be obtained with both methods. The complex Kohn method is also used in order to reduce 
further the possibility of confusion between Schwartz singularities and actual singularities of 
the models (Miller and Jansen op de Haar 1987, Rescigno et al 1995).

4. Single channel elastic scattering

4.J. S-wave phase shifts

Below the positronium formation threshold the calculated phase shifts were compared with 
the accurate results of VRH. The most accurate s-wave scattering phase shifts for all three 
models are shown in figure 3. The data shown are for w =  10, which provides very well 
converged phase shifts for each model. The results for model 1 compare favourably with those 
of VRH, especially at low energies. However, just below the positronium formation threshold 
a resonance-like structure appears. This feature appears in the results obtained using all three 
variations of the Kohn method and is therefore not considered to be a Schwartz singularity. 
Its existence has been confirmed using the ‘stabilization method’ described by Drachman and 
Houston (1975) and Bhatia and Drachman (1989). This feature is therefore considered to be 
a ‘true’ resonance within the model potential being used.

The principle behind the stabilization method is that a scattering resonance will manifest 
itself as a stabilized eigenvalue of the matrix eigenvalue equation

{cP,\iH -  EtM j ) = 0, (25)

in a square integrable basis of functions 0, (/ =  1 , . . . ,  V). Provided the basis is large enough, 
one of the eigenvalues will be found close to the position of the resonance. As the size of 
the basis is increased the position of a resonance can usually be easily identified as a series of 
avoided crossings of the lines joining corresponding eigenvalues, as shown in figure 4. These 
eigenvalues were obtained using the basis functions

0,. =  (26)

An avoided crossing of successive eigenvalues is observed in figure 4 just below the positronium 
formation threshold, E j  = E* =  —0.25 au.

In order to understand better the mechanism responsible for the resonance, we plotted the 
potential function (Vj — V12) as a function of r\ when ri =  r 2 , and therefore ri2 =  0. The 
potential function for a coalescent positronium, with ri2 =  0, interacting with any other system 
should be zero for all r 1, but this is not the case here. Instead, a shallow but rather wide minimum 
is found which arises because, in our model, the static interaction between the positron and
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Figure 3. The variation o f the s-wave elastic scattering phase shift with respect to the positron 
wavenumber. k for w =  10. Thick curve, F,"; thin curve, Vj ; dashed curve, ; *, accurate results 
of VRH; dotted line parallel to the ordinate marks the exact positronium formation threshold, t,h. 
Note; the resonance in model 3 which lies below the exact positronium formation threshold is not 
a true resonance because it lies above the positronium formation threshold for this model.

helium ion core does not exactly balance the electron-core static interaction. The positron-core 
static potential was chosen to be that for a hydrogenic core, whereas the electron-core static 
potential has a rather different functional form, and is of longer range, because it incorporates 
some allowance for exchange between the two electrons. Consequently, the structure of the 
resonance appears to arise from positronium temporarily weakly bound to the helium ion 
core. The expectation values of the interaction potentials of either the electron, positron or 
‘positronium ’ near the resonant energies also shed light on the nature of the resonance. By 
calculating

= /V k { p ) =  /  ^ i P , r i 2 , e p ) ( V ^  -V V ) ^ (p, r \ 2,0p) r l 2dr i 2&i n0pde^,

=  j  ^ ( p , r i 2 , 0 p ) ( V ^  +  V \ 2 ) ^ i p ,  r n , 0 p ) i j 2 d r i 2 S i n 0 p d 0 p ,  

2 ) =  j  ^ { p , r i 2 , P p ) ( V ~  - v V i 2 ) ^ i p , r i 2 , 0 p y i 2 d r \ 2 S \ n 0 p d 0 p ,

(27)

(28)

(29)

it can be shown that at energies very close to the resonance, deep potential wells are apparent 
which have minima approximately 2, 3 and 4 au from the core, when expressed in the electron, 
positronium and positron coordinates, respectively. Away from the resonance these potential 
wells do not appear.

Despite this model supporting a resonant state which is not found in the real system, there 
is very favourable agreement between the results for model 1 and those of VRH. The other two 
models do not support resonant states below their respective positronium formation thresholds, 
but they provide less accurate s-wave phase shifts.
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4.2. Higher partial waves

At large distances from the target system only the positron has non-zero angular momentum, 
and the long-range parts of the trial wavefunction involve the appropriate spherical Bessel 
functions and spherical harmonics. At short range, however, the total angular momentum 
can be ‘shared’ with the electron, so the sum of the short-range correlation functions in the 
trial wavefunction, <!>(/), is modified from the s-wave form to become a set of Hylleraas trial 
functions multiplied by appropriate harmonic functions (Schwartz 1961b); thus,

N  N

<Î>(1 =  1) =  F io (f|)n  ' ^ a i (p i  + Y io { r2 ) r2 ^ b j(p j ,  (30)
/= !  j= \

N  N  N

<!>(/ = 2) =  F2o(ri)rf ^ a , 0 ,  + i/f(l, 1 ,2 , C)rir2 + ^2 0 (^2 )^! (31)
1 = 1  j = \  k= \

where
+1

îKl, 1 ,2 ,0 )=  y ,,„(n)F |,-„(f2){l,m; l,-m |2 ,0 ). (32)
m ——l

As with the s-wave calculations, the results for the model potential agree well with 
the results of VRH, except near the positronium formation threshold (see figure 5). Although 
a resonance now appears in the p-wave just above the threshold (possibly due to the effect of 
the centrifugal barrier) the phase shift is affected below, as the resonance is noticeably broader 
than the s-wave resonance. As for the s-wave, model Vj” gives phase shifts which are slightly 
too positive in both the p- and d-waves. However, the values of the low-energy phase shifts
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for / > 0 should be related to the dipole polarizability of the target atom, «He, by the formula 
(O ’Malley et al  1962)

_  ______ TTaHek-______
( 2 / - l ) ( 2 /  + ])(2/ + 3)'

The results for models 1 and 2, both of which provide accurate values of «He, ht this low-energy 
approximation very well, at least for sufficiently low positron energies (see figure 5), Note 
that «He is the full dipole polarizability of the atom because the core polarization potential is 
included in the total potential.

4.3. Annihilation

An additional process in positron-atom  scattering, which has no counterpart in electron-atom  
scattering, is positron-electron annihilation. This channel is open at all incident positron 
energies, but the cross section for annihilation is usually very small compared to the cross 
sections for all other processes, although annihilation is the ultimate fate o f all positrons. 
Below the positronium formation threshold the annihilation cross section can be expressed as

— triQCZçf(/v, (34)

where rg is the classical radius of the electron {=e~/ ni^c~), v is the speed of the positrons, and 
Zetf is an energy-dependent effective number of electrons per atom with which the positron 
can annihilate. This is defined for an atom with Z electrons by

-eff
Z-t-l /.

^ 5 /
|4 ^ ( r i ,  T2 , . . . ,  r z + \ ) \ ~ 8 { r i  -  r , ) d r i  d r ?  . . .  d r z + i . (35)
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curve. thin curve, VÇ; dashed line,

where r\  is the positron coordinate and r, (/ =  2, . . . ,  Z + 1 ) are the coordinates of the Z 
electrons in the target atom. The total elastic scattering wavefunction must now be normalized 
to unit positron density at infinity. In the Born approxim ation, in which there is assumed to be 
no distortion of the wavefunctions of either the incident positron or the target atom, Zetf =  Z, 
independent of the incident positron energy. In reality, however, the total wavefunction is 
distorted so that the value of Zeff is usually enhanced, sometim es by a substantial factor.

The determination of Zety provides a stringent test o f the accuracy of the total wavefunction 
because the error in the expression for Zety, equation (35), is of first order in the error in the 
wavefunction, whereas the error in the Kohn phase shift is of second order. It is of interest 
to compare the values of Zgf, obtained using the wavefunctions for the present one-electron 
model of helium with the accurate values obtained by VRH. One immediate difference is that 
in the Bom approximation the present calculations yield Z^y =  I, compared with the Bom 
value of two for the real system. One might therefore think that the calculated result for Zety 
should be multiplied by two before comparing with the accurate value. However, because 
two of the one-electron models of helium used here have the correct value o f the dipole 
polarizability, «He — 1 383 a^, and there is known to be a fairly good correlation between the 
dipole polarizability of a target atom and the value o f Zety at low positron energies (Osman 1965, 
Davies et al 1989), one might expect a reasonably accurate value of Zgyy to be obtained without 
multiplication by a factor of two. Using the most accurate elastic scattering wavefunction 
generated here, the value obtained for Zety at essentially zero energy (1 .4 x 10“  ̂ eV) is 2.56 
(for model I), which is significantly smaller than the accurate value of 3.88 obtained by Van 
Reeth et al  (1996) at the same energy; however, multiplying by two gives Zety — 5.12 which 
is significantly larger than the accurate value. It would therefore seem that we are not justified 
in multiplying by two, and we must accept that the one-electron models used here do not 
provide as accurate a representation of annihilation as they do o f elastic scattering. Part of the
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discrepancy may be due to the fact that the polarizability of our single-electron model differs 
from the exact value by the polarizability of the helium ion core, 0.281 25 o j. Accordingly, 
because of the above-mentioned correlation between Zety and the dipole polarizability, we 
should probably expect the calculated value of Zety to be approximately 20% smaller than the 
correct total value, i.e. Zety ~  3.1. On this basis the present value is only 18% smaller than it 
might be expected to be. Furthermore, in the real two-electron helium atom the total Zety is the 
sum of two (equal) contributions, each one corresponding to positron annihilation with a single 
electron (see equation (35)). In our one-electron model o f helium the ‘second’ electron is in 
a sense in the core, and therefore we should perhaps add a contribution arising from positron 
‘annihilation’ with the core, i.e..

Ẑ y = 47T j  |4>(/-] = 0,/2,ri2 = r2)|Vf df2. (36)
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This contribulion to Zeff is, however, zero at zero incident positron energy, and is small at all 
energies, having a maximum value of 0. 12. It therefore has an negligible effect on the results. 
The dependence of the s-wave contribution to 2^,- (neglecting Z^^y), and the sum of the first 
three partial wave contributions to Zeff, on the incident positron wavenumber is plotted in 
figure 6 for each of the three models.

5. Results above the positronium formation threshold

Above the positronium formation threshold results have been obtained for the s-, p- and d-wave 
contributions to the elastic scattering and positronium formation cross sections for a range of 
energies up to, and even exceeding, the lowest positron-im pact excitation threshold of the 
target atom for each o f the potential models defined previously. The most accurate s-wave 
results, obtained with co =  6, are plotted in figures 7 and 8 as functions of i.e., four times 
the kinetic energy of the positron in excess of the threshold energy for positronium formation. 
In this way we ensure that the position of this threshold is the same on all the plots. Note
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that the data shown are terminated at the hrst excitation threshold for each model, since higher 
energy results do not take all the open channels into account. Also plotted in figures 7 and 8 are 
the accurate s-wave results of VRH. Although the differences between the model 1 results and 
those of VRH for elastic scattering are rather larger above the threshold than below, the overall 
level of agreement is nevertheless reasonably good, except very close to the threshold where 
the influence of the near-threshold resonance is still felt. The values of ag|(/ =  0) for the other 
two models are significantly smaller, although both display a rather flat energy dependence 
similar to that for model 1.

In the case of the positronium formation cross section, the values of cTps(/ =  0) for 
model 1 are significantly different from those of VRH just above the threshold, where the 
accurate results display an abrupt rise to quite a pronounced peak. In contrast, the model 1 
results, although having the infinite slope at the threshold required by W igner’s threshold law, 
rise smoothly to a gently rising plateau of similar magnitude to the corresponding feature in 
the results of VRH. The absence o f a near-threshold peak in aps(/ — 0) for this model may 
be due to the influence of the resonance below the threshold, since the corresponding results 
obtained with the other two models, neither of which supports a below-threshold resonance, 
display near-threshold peak structure in ctps(/ =  0) rather similar to that of VRH, and similar 
energy dependence thereafter, although somewhat lower in magnitude.

The p- and d-wave contributions to crp̂  obtained using model 1 are both in poor agreement 
with the corresponding accurate results because of the influence of resonances within the Ore 
gap. A very narrow p-wave resonance just above the positronium formation threshold causes 
aps(/ — 1 ) to have a large peak in its vicinity. The d-wave contribution to crps is affected by a 
much broader resonance whose influence extends throughout the Ore gap. Therefore, the sum
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of the first few partial wave contributions to aps calculated with model 1 is very different from 
the accurate results of VRH, as may be seen in figure 9. The other two models do not support 
p- or d-wave resonances in the positron-atom system at energies within or below the Ore gap, 
and the results display a similar energy dependence to that of the accurate results. Indeed, the 
results for the simplest model, model 3, are in reasonably good agreement with the accurate 
values of VRH.

6. Comments and conclusions

We have investigated low-energy positron scattering by three one-electron models of helium 
with a view to finding out if any of them is capable of providing reasonably accurate cross 
sections for elastic scattering, annihilation and positronium formation. None of the three 
models considered here provides good agreement with all the accurate theoretical data, 
although model 1 gives an excellent fit to the elastic scattering data below the positronium 
formation threshold. However, the quality of the positronium formation data is much less good 
because of resonances close to the positronium formation threshold in this particular model 
of the positronium-helium system. The other models, which do not support resonances, 
yield rather less accurate elastic cross sections but reasonably good positronium formation 
cross sections, particularly in respect of the energy dependence. Indeed, the comparatively 
crude model 3 yields very good results for aps. In an attempt to obtain more accurate results 
for the scattering parameters we have modified the parameters in model 3 from their exact 
static values, but there is no significant improvement overall. Nevertheless it might be 
possible to construct a one-electron model of helium incorporating some of the features in 
model 1, but without the resonances, which would yield accurate results for low-energy elastic 
scattering and positronium formation. It is doubtful, however, whether the elastic scattering 
wavefunction for such a system would give a correspondingly accurate value of the annihilation 
rate parameter Zeff.

Equivalent one-electron models have been devised for other atoms, including other noble 
gases (Leo etal  1995, 2000), and we are currently investigating low-energy positron scattering 
from these. Unfortunately, unlike for helium, no very accurate results of ab initio calculations 
are available with which to compare, although theoretical results of moderate accuracy do 
exist. (A comprehensive review of positron-atom scattering, together with an extensive list 
of references, has been written by Walters et al (1997).) These, and available experimental 
data, will hopefully provide reasonably stringent tests of the qualities of various one-electron 
models.
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Appendix

The parameters a^, fid and yj are known exactly because He^ is hydrogenic. The parameter 
fio is the same in V ^ ,  and The parameter fio in the shielding function of the ‘three-
body’ potential, Vq, also takes this value when V f  is used, but

f io =  2.201 2848

when using the other models. The parameters of all three model potentials are shown in 
table A.I.
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Table A .I . Parameters o f  the three model potentials.

Parameter Vi~ ^2" ^3"

S -1 .7 8 7  276 -3 9 .7 6 9  72 2 . 0

S' 1.627 833 99 .526  17 0

Y 1.238 589 4 .5 6 0 5 7 8 5 4.0

ad 0 .28125 0 .28125 0 .2 8 1 2 5

Po 2.967 346 2.967 346 2 .967 346

CCq 0.234 375 — —

h ' 2.317 501 — —

Pd 0.083 9 8 4 4 — —

Pi 2 .16761 — —

Yd 0.025 9 6 0 2 9 — —

Yi 2.540 849 — —

P i 1.560583 — —
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positronium formation
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A bstract. Strong correlations between the cross sections and threshold energies for positronium  
formation in positron-impact single ionization o f noble gases are shown to exist over a wide energy 
range. These correlations also extend to higher degrees o f  ionization, and they can be used as an 
empirical tool for predicting such cross sections within the relevant Ore gaps. Sim ilar correlations 
are shown to exist for the exothermic positronium formation process in positron-impact single 
ionization o f  the alkali atoms. All the single ionization data are consistent with the hypothesis 
that the magnitude o f the positronium formation cross section is determined by the modulus o f  the 
difference between the kinetic energies o f  the incident positron and the emerging positronium. An 
explanation is given for the qualitative difference between the alkali atoms and the noble gases in 
the magnitude o f  the ratio o f  the cross sections for positronium formation into the ground and first 
excited states.

In a recent letter, Humberston and Van Reeth [1] proposed a model of positronium (Ps) 
formation in positron-atom collisions in which the initial formation process is followed by 
the possible recapture of the electron in the Ps by the residual ion. This two-stage process, 
which was initially devised to explain the suppression of Ps formation in the double ionization 
of helium and neon [2,3], predicts a correlation between the Ps formation cross section, crps, 
and Er, the energy liberated to the positron when the electron is recaptured. At a given energy 
slightly in excess of the relevant Ps formation threshold, the experimental values of ops for 
both double and single ionization of the noble gases were found to be highly correlated with 
Er, the relationship being of the form,

(̂ 1̂  = ^ e x p ( —EEr), (1)

where Ê  = (E^ — E/ — 6.8) eV and V =  2 for double ionization, Ê  = (Ej — 6.8) eV and 
V =  1 for single ionization (E ^  is the Nth  ionization threshold of the atom), and A and B 
are energy dependent parameters, the same for all noble gases. The value of Er for single 
ionization is also the threshold energy for Ps formation, Eps. In this letter we present further 
data which reveal a similar correlation between (Tp̂  and Er for the alkali atoms, and also for 
the noble gases at high energies.

In figure 1 we present a log-linear plot of the cross sections for Ps formation in single 
ionization of the noble gases at five different positron energies in excess of the Ps formation 
threshold, each incident energy being less than the ionization energy, E-j. The correlation can 
be seen to hold over nearly two orders of magnitude, although the data for neon are somewhat 
out of line. The slope of the fit to equation (1), the parameter —B, becomes less negative as the 
excess energy of the incident positron increases, which corresponds to the fact that the peak 
in (7pj is closer to the threshold for the heavier noble gases (see [4]).

0953-4075/00/200669+08$30.00  © 2000 TOP Publishing Ltd L669



L670 Letter to the Editor

Xe

,010

5eV 
4eV .10
3eV

2eVNe

lev
He

10
10 155

^Ps(eV)

F igure 1. Ps formation cross sections in positron-impact single ionization o f  the noble gases plotted 
against £ps at five excess positron energies within the Ore gap. He, [5]; N e, [6 J; Ar, Kr and X e, [4] 
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F igure 2. Ps formation cross sections in positron-impact single, double and triple ionization o f  the 
noble gases plotted against £r (see text for references; superscripts indicate degrees o f  ionization). 
The results at Er =  0 are for Ps formation in single ionization o f  a model one-electron atom.
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In figure 2 we present the scaled cross sections, i.e. for the noble gases in both
single and double ionization [3]. The data for double ionization are found to fit equation (1) 
very well, indicating a strong correlation between and and also the validity of the 
factor. The double ionization data for Ne again do not fit quite so well but one should note that 
the magnitude of o-p̂  is very small for this atom and the fractional error is large, the absolute 
error being of the same order of magnitude as the data points (for clarity, only the error bar at 
one energy is shown). Equation (1) can be used to predict at energies within the so-called 
Ore gap (for a definition see [1]) for degrees of ionization which have not yet been measured, 
or to confirm the validity of experimental results. As an example, recent measurements by 
Moxom [7] of the positronium formation cross section in the triple ionization of Xe within the 
third Ore gap have been found to be in very satisfactory agreement with our predicted values, 
as may be seen in figure 2.

An interesting feature of the form of equation (1) is that the only atom-dependent term 
is the parameter E^ in the exponent. The equation can be interpreted as the coefficient A, 
which gives ap̂  for an atom with Eps =  0, i.e. 6.8 eV ionization energy, multiplied by a term 
exp(—BEr), which specifies by how much this cross section is reduced in an actual atom. 
There is no real atom with Eps =  0 except for Ps itself, but we have developed a model 
atom with this energy, based on a one-electron model of He, which has been shown to give 
quite accurate results for positron-helium scattering [8]. The preliminary results of a Kohn 
variational calculation of ap̂  for this model are included in figure 2 and they agree very well 
with the extrapolation to Eps =  0 of the data for the noble gases. Further details of the model 
will be discussed in a future paper, where we will also consider the mechanisms of Ps formation 
and the energy dependence of the coefficients A  and B in equation (1).

In the previous letter [I] we mentioned that an extrapolation of the noble gas data at 
4 eV excess energy fitted well with the experimental data for magnesium obtained by Stein et 
al [9]. This choice of energy was somewhat fortuitous, however, since at higher energies the 
magnesium and noble gas data are less consistent with each other. Instead of a single universal 
curve for all atoms, it is more probable that there is a curve for each group of atoms with 
similar shell structure. Therefore one might expect atoms belonging to a given column of the 
periodic table to fit a relationship similar to that in equation (1) but with different values for 
the A and B coefficients. Unfortunately, there are not sufficient experimental or theoretical 
data to verify the correlation for the alkalines.

The alkali atoms, however, have been studied in some detail, both theoretically [10-14] 
and experimentally [9]. An important difference between these atoms and the noble gases is 
that in the former case the ionization energy is less than 6.8 eV, so that Eps <  0, and therefore 
ground state Ps formation is an exothermic process. A naive assumption that equation (1) 
might apply for negative Eps without any modification would imply that the cross section for 
ground-state Ps formation, ap̂  (IS), should be smaller for Li than for Rb, which is contrary to 
the data. In figure 2>{b) we see that ap̂  (IS) decreases as Er (=  Ep&) becomes more negative 
(i.e. as the process becomes more exothermic). An endothermie process which is more closely 
related to Ps formation in the noble gases is the formation of neutral alkali atoms in collisions 
of Ps with alkali positive ions. The cross section for this process, o \ ,  is simply related to ap̂  
(IS) by (see [15])

<̂A = j^oTp^(lS), (2)

where the wavenumber of the Ps atom, k , is related to that of the positron, k ,  hy k  = 
2{0.5k^ + 0.25 — Ej* ) (au) and the threshold energy for atom formation is Ejh =  0.25 — Ej 
(au).
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Figure 3. (a ) Cross sections for atom formation in Ps collisions with singly ionized alkali atoms. 
(b) Ground state Ps formation cross sections in positron collisions with alkali atoms, for Rb and 
Cs flO], for Na f l l ] ,  for K fl2 ]  and for Li [13]. a p s(ls )  is not plotted for Cs as it is very small and 
the relative error is large.

Figure 3(a) clearly shows the correlation between a/^ and the positive threshold energy 
(here Er = Ej^)  for atom formation. The behaviour is similar to that found for (IS) in the 
noble gases, i.e. cta decreases exponentially as the threshold energy increases.

The results shown in figure 3(b) for Ps formation in single ionization of the alkali atoms 
also reveal a strong correlation between ops and Er, the relationship being of the form

Op3 =  A e x p ( - B | E r | ) . (3)

This equation therefore applies equally to both endothermie and exothermic Ps formation 
processes in single ionization, albeit with rather different values of A and B from those 
appropriate for the noble gases data.

The energy Er, which we have previously considered to be the energy liberated to the 
positron when the electron in the Ps atom is recaptured, is also, for single ionization, the 
difference, whether positive or negative, between the kinetic energies of the incoming positron 
and the outgoing Ps. The fit of so many data to equation (3) leads us to formulate the hypothesis 
that, at a given incident positron energy above the Ps formation threshold, the larger the 
difference between the kinetic energies of the incoming positron and the outgoing Ps atom, 
the smaller is the Ps formation cross section. A large energy difference implies a large change 
in the speed of the positron and therefore a large impulse on the positron during the collision. 
For Ps to be formed the positron must change its average speed so as to match that of the 
outgoing Ps. An atom with a large value of Eps, such as He, has a relatively compact electron 
cloud surrounding the nucleus. Consequently, a close encounter between the positron and the 
nucleus, as is required if the positron is to be slowed down sufficiently for Ps formation to 
occur, is relatively improbable. In contrast, an atom with a smaller value of Eps has a more 
extended electron cloud and the positron may more easily penetrate sufficiently close to the 
nucleus to achieve the required reduction in speed, thereby increasing the probability of Ps 
formation.
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For the alkali atoms, however, the situation is reversed. Now the average speed of the 
positron must be increased during the collision if Ps is to be formed, and the positron must 
therefore interact more strongly with the attractive electron cloud than with the nucleus. But 
if the atom has a very low ionization energy, e.g. Rb, the positron may easily penetrate close 
to the nucleus and be slowed down, the opposite of what is required for Ps formation to take 
place. Therefore, according to this model we would expect the cross section for Ps formation 
in single ionization to be smaller for He than for Xe, and to be larger for Li than for Rb, as is 
indeed the case.

An advantage of the above hypothesis over the previously described electron recapture 
model is that it provides qualitative agreement with observed results for Ps formation in 
single ionization of the alkali atoms directly, without requiring the atom formation process 
in positronium-ion collisions to be considered first. Also, the emphasis is now more on 
the initial Ps formation process rather than on the subsequent destruction of Ps by electron 
recapture.

The cross sections for Ps formation into the 2S and 2P states in positron collisions with 
alkali atoms are shown in figure 4 and they too are found to be correlated with the threshold 
energy for excited state Ps formation, E\ — \ . l  eV, in a similar way to that given in equation 
(3). Also, as was shown by Campbell et al[\6'\, the sum of the cross sections for positronium 
formation into excited states is a larger fraction of the total Ps formation cross section for alkali 
atoms with lower E \ , while the ground state positronium formation cross section is a larger 
fraction of the total for alkali atoms with higher E \ . These features are entirely consistent 
with the form of equation (3), although possibly with different values of the parameters A 
and B for the ground and the excited states. Thus Li, with E\ =  5.392 eV and therefore 

I — I Ej' — 6.81 eV = 1.402 eV, would be expected to have a larger ground state Ps formation 
cross section, (IS), than does Rb with E\  =  4.177 eV; and this is so. However, — 2) 
is smaller for Li than for Rb because E^ (= E\ — 1.7 eV for the n = 2 excited states) has the 
value 3.692 eV for Li and 2.477 eV for Rb. These threshold energies for ground state and 
excited state Ps formation, E] and are presented in a schematic manner in figure 5, together
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Figure 5. Threshold energies; E]  for Ps formation into the n =  1 state and for Ps formation 
into the 71 =  2 state for Li, Rb, He and Xe.

with the corresponding values for He and Xe. Stein et al [9] had previously speculated that the 
magnitudes of the cross sections for Ps formation into the ground and excited states might be 
correlated with the proximities of the corresponding Ps formation threshold energies to zero, 
but here we have a more quantitative explanation of this phenomenon in the form of equation 
(3).

A significant difference between the positronium formation cross sections for the alkalis 
and the noble gases is that the relative contributions of the cross sections for formation into 
excited states are substantially greater for the alkali atoms than for the noble gases. In the 
results for the noble gases presented above we have considered the formation of Ps into all 
states because there are almost no data available for formation into individual Ps states. Only 
for He are such data available [16], which indicate that the sum of crp^(n) (n > 1) contributes 
at most 20% to the total ap̂  at energies close to, or greater than, the peak in ap̂ . We believe 
that it is possible, using equation (3), to estimate the relative contributions of Op̂ Cn) (n > 1) 
for the heavier noble gases by considering the ratio, R = cTp̂ {n = 2)/ap^{n =  1). For a given 
atom, X, this ratio will be /?(X) =  (A2/A 1) exp(—fî2 |£'r̂ l + ^ 1  \E} I), where the superscripts 1 
and 2 on refer to formation into the ground state and the n =  2 excited states respectively. 
Using this result, it is now possible to find the ratio of the ratios for two different atoms. We 
first consider two alkali atoms, Li and Rb for instance, and find

/?(Li, Rb) =
/((Li)
R(Rb)

=  exp(-[E;'(Li) -  El(Rh)][B 2 + fiij), (4)

where E^ (Li) and El (Rb) are the single ionization energies of Li and Rb. The ionization 
energy of Li is larger than that of Rb and B\ and B 2 are always positive, so that R(Li, Rb) <  1 
and the ratio of Op^ (n =  2) to (Tp̂  (n — 1) is therefore expected to be smaller for Li than for 
Rb. This is indeed the case; at 5 eV excess energy R(Li) % 0.1 and R(Rb) % 1, and at 10 eV 
excess energy R(Li) % 0.25 and R(Rb) % 2.5.

For the noble gases, e.g. He and Xe,

R(He,Xe) =  e x p (-[£ /(H e) -  £j'(Xe)][fi2 -  5 ,]) . (5)

Unfortunately, we do not have any data from which to extract the individual values of B\ and 
B2 , and we cannot therefore make a precise prediction of the value of R(He, Xe). However, 
the data for the alkali atoms seem to indicate that at the higher energies B\ % B2 . If we assume 
a similar pattern for the noble gases we could conclude from equation (5) that R(He, Xe) % 1,
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Figure 6 , Ps formation cross sections in positron-impact single ionization o f  the noble gases plotted 
against Eps at six excess positron energies beyond the Ore gap. He, [16]; N e, [17]; Ar, Kr and 
X e, [9],

SO that the ratio of o^^{n = 2) to =  1) is approximately the same for all the noble gases, 
with a value of approximately 20% obtained from the data of Campbell et al [16] for He.

The usefulness of equation (3) in predicting Ps formation cross sections would be greatly 
enhanced if it were shown to be valid at positron energies significantly higher than the top 
of the Ore gap. At energies more than 6.8 eV in excess of the threshold energy for ground 
state Ps formation, direct ionization of the target is also possible, and the opening of another 
channel for ionization might be expected to result in CTp̂ being less well correlated with Ep^. 
However, this is not so, at least in single ionization of the noble gases, as can be seen in figure 6, 
where values of cTp̂  at excess energies of up to 90 eV are plotted against Ep^. With increasing 
excess positron energy between 6.8 eV and 30 eV, the slope of the best straight line fit to the 
data changes as the Ps formation cross sections for the various atoms reach their peak values; 
but above approximately 40 eV the slope becomes fairly constant. Although the correlation 
extends over only one order of magnitude, and the uncertainties in the data are estimated to 
be on average at least 25%, these results, and similar ones for ap̂  for the alkali atoms (see 
figure 4), suggest that the mechanism responsible for the correlation between ap̂ , and Ep^ at 
low excess energies also acts at higher energies. As no reliable data are yet available for Ps 
formation in double ionization above the second Ore gap, we have not been able to investigate 
the correlation of these cross sections with Er.

In this letter we have presented several examples which suggest that the correlations 
between aps and Er given by equations (1) and (3) are of fundamental importance. The 
correlations are shown to hold for a wide energy range and different degrees of ionization, and 
the equations are found to be useful empirical tools for predicting Ps formation cross sections 
which have not yet been measured or calculated. Further investigations are being undertaken 
and hopefully these will help us to obtain a better understanding of these interesting phenomena.

We would like to thank Dr J Moxom for supplying us with the results for the triple ionization 
of Xe before publication. This work was supported by the UK EPSRC on grants GR/L38431 
and GR/L96837.
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