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Purpose of review 

To identify similarities, differences and lessons to be shared from recent progress in HIV and 

HBV immunotherapeutic approaches.  

Recent findings 

Immune dysregulation is a hallmark of both HIV and HBV infection, which have shared routes 

of transmission, with approximately 10% of HIV positive patients worldwide being co-infected 

with HBV. Immune modulation therapies to orchestrate effective innate and adaptive immune 

responses are currently being sought as potential strategies towards a functional cure in both 

HIV and HBV infection. These are based on activating immunological mechanisms that would 

allow durable control by triggering innate immunity, reviving exhausted endogenous 

responses and/or generating new immune responses. Recent technological advances and 

increased appreciation of humoral responses in the control of HIV have generated renewed 

enthusiasm in the cure field.   

Summary  

For both HIV and HBV infection a primary consideration with immunomodulatory therapies 

continues to be a balance between generating highly effective immune responses and 

mitigating any significant toxicity. A large arsenal of new approaches and ongoing research 
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offer the opportunity to define the pathways that underpin chronic infection and move closer 

to a functional cure.   
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Introduction  

The lifelong treatment challenges and significant global health care burden of HIV and HBV 

infection have resulted in increased efforts to develop new approaches aimed at curing 

infection. Despite differences in the clinical course of HIV and HBV infection there are a 

number of similarities and shared hurdles to the development of eradication strategies (Table 

1). One of the main barriers to developing cure strategies for HBV and HIV is the elimination 

of covalently closed circular DNA (cccDNA) from hepatocytes and HIV viral reservoirs 

respectively. A new goal of therapy is therefore to overcome the persistent immune 

dysfunction, a defining characteristic of chronic viral infection, and achieve a ‘functional’ cure. 

This would represent  sustained loss of detectable HBV surface antigen (HBsAg) in serum for 

HBV, which is rarely achieved with NAs treatment alone, and effective viral control in HIV 

infection following termination of therapy (1, 2).  A strong rationale for immune based 

approaches is supported by the inherent ability of the majority of infected adults to resolve 

HBV infection and maintain residual virus replication under successful long-term immune 

control. Although far less common than in HBV infection, there are clear examples of 

individuals (elite controllers) who spontaneously control HIV for decades in the absence of 

treatment (3). These outcomes indicate that effective chronic virus immune containment, if not 

eradication, is achievable in both HBV and HIV. Here, we discuss recent advances in parallel 

therapeutic approaches and risks involved in augmenting effective antiviral immunity and 

redirecting immune responses to control HIV and HBV.  
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Rational for an immunotherapeutic approach  

Optimal elimination of virally infected cells requires a co-ordinated innate and adaptive 

immune response (Table 2). However, a common theme in HIV and HBV is the impairment 

of multiple components of the immune response. Approaches to stimulate innate immune 

populations represent potential strategies for the treatment of chronic HBV and HIV. However, 

the abundant innate immune cell populations within the liver, lacking specificity for only HBV 

infected hepatocytes, raise questions about potential toxicity. Virus specific adaptive 

responses offer a more targeted approach to therapeutics. The importance and efficacy of 

virus specific T cell responses in HIV and HBV infection has been highlighted in both animal 

and human studies. Depletion of CD8 T cells leads to rapid rebound of viraemia in the non-

human primate model of SIV infection (4). In humans, HIV- specific CD8 T cells develop 

promptly after infection mediating strong selection pressure at the time of post-peak viral 

decline (5-7), and potent and polyfunctional HIV-specific T responses have been described in 

a select group of elite controllers that maintain viral control in the absence of antiretroviral 

treatment (3). Equally there is clear evidence of the importance of CD8 T cells in HBV control 

in chimpanzees (8) and HBV-specific CD8 T cells are enriched in the infected liver and can 

direct their antiviral function towards HBV infected hepatocytes (8-10). However, it is 

increasingly clear that some of the same characteristics of CD8 T cell exhaustion, including 

epigenetic and metabolic changes coupled to the upregulation of multiple inhibitory receptors, 

are shared by both viral infections. With the emerging role of humoral immune responses 

against HBV and the induction of neutralising antibodies directed against HIV, there has been 

a renewed interest in the potential of antibody based strategies in both chronic infections (11, 

12••, 13).  

 

Efforts aimed at boosting immune control of HIV and HBV are an area of marked intersection 

in the current efforts aimed at functional cure, with many of the same approaches being tested 

in these two infections. Here we will briefly consider progress with each of the main classes 
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of immunotherapeutics currently being tested in preclinical/clinical phase trials for HIV & HBV 

in parallel, ending with a consideration of future approaches. 

 

TLR agonists  

Activation of components of both innate and adaptive immunity in patients with chronic HBV 

(CHB) can be achieved by agonists of pattern recognition receptors, such as Toll-like receptor 

7 (TLR7)/TLR8. These compounds can have a direct effect on innate populations  (myeloid 

cells, natural killer (NK) cells and mucosal-associated invariant T cells (MAIT cells) (TLR7/8) 

(14, 15). Despite promising pre-clinical results in animal models, administration of a low dose 

of TLR7 agonist (GS-9620) to patients with chronic HBV in a phase I/II clinical trial (CHB) was 

well tolerated but demonstrated little antiviral efficacy (16). An alternative double prodrug of a 

TLR7-agonist (RO7020531) is now being tested in combination with a novel capsid assembly 

inhibitor against HBV (preclinical trial (17)). New compounds in development with TLR8 

activity have the potential to robustly activate production of cytokines such as IL-12 and IL-18, 

triggering IFN-γ production from intrahepatic innate populations (18). IL-12 has been found to 

partially recover exhausted HBV-specific T cells (19), and therefore TLR8 agonists could have 

a dual effect through direct suppression of HBV replication, mediated by IFN-γ, but also 

through boosting intrahepatic HBV-specific T cell activity. These innate strategies need to be 

carefully balanced to limit any potential toxicity/detrimental effects though activation of NK 

cells, which can have a positive and a negative impact in HBV infection (20).  

 

The use of TLR agonists has shown encouraging results in HIV cure efforts either alone or in 

combination with other therapeutic modalities, due to their ability to reactivate latent HIV and 

enhance antiviral immune responses, and are currently under investigation both in pre-clinical 

models of HIV latency as well as in clinical trials (21). TLR-7 agonists were found to reduce 

the viral reservoir in SIV infected rhesus macaques, in line with the sustained viral control 

seen after interruption of ART in a subset of monkeys (22). TLR7 agonism in combination with 
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therapeutic vaccination or broadly neutralising antibody (bNAb) infusion has also been 

associated with lower viral DNA levels, improved virological control and delayed viral rebound 

in SIV/SHIV-infected rhesus macaques (23••, 24). This approach of combining more than one 

immunomodulatory and/or antiviral approach is similarly being explored in HBV trials. GS-

9620 is currently being evaluated in clinical trials in HIV infected controllers (NCT03060447) 

and in those on suppressive ART (NCT02858401), trials that will provide valuable information 

on safety, biological activity and impact on viral reservoirs, in HIV-infected patients. Additional 

research is warranted to understand how well TLRs can reach the sites of the viral reservoir, 

including their ability to reactivate HIV in different cell types. 

 

Therapeutic vaccination  

The goal of therapeutic vaccination is to prime new and/or boost pre-existing adaptive immune 

responses allowing for improved and durable viral control in the absence of therapy (25). 

Despite a number of vaccine trials undertaken in CHB patients, using new vaccine 

formulations alone or combined with antivirals, the effects have been limited (26-30, 31•, 32). 

However pre-clinical data support the concept that new more immunogenic therapeutic 

vaccines should form the backbone of future combination immunotherapy trials, helping to 

focus boosted responses towards HBV, as recently reviewed (33). For example, promising 

results were obtained from a small trial of therapeutic vaccination in combination with anti-

PD1 antibody infusions in woodchucks (34), in line with previous data from LCMV (35). 

Therapeutic vaccination in a mouse model of HBV was more effective in animals with lower 

antigen load (36•), raising the possibility of enhanced immunogenicity of vaccines if new 

antivirals in development succeed in lowering the massive antigenic burden in CHB.  

 

Therapeutic vaccines are similarly yet to demonstrate long-term HIV remission following 

analytical treatment interruption (ATI) in randomised control trials (RCTs) (25). Therapeutic 

vaccines that elicit narrow immune responses have had little impact on viral rebound (37-41). 
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In contrast therapeutic vaccines that elicit broad responses have shown signs of efficacy, 

including results from RCT of HIVAX, a mutated HIV strain that expresses a wide range of 

HIV proteins, where vaccine recipients demonstrated a significant increase in the breath and 

polyfuctionality of gag-specific T cell responses and viral load reduction post ATI compared to 

pre-ART levels (42). Additional results of another lentiviral vector vaccine are awaited (RCT 

of THV01-1 and THV02-2 is currently underway, NCT02054286). The encouraging data from 

non-human primates on combination strategies with potent immune modulators e.g. 

Ad26/MVA (recombinant adenovirus 26 serotype (Ad26) prime/modified vaccinia Ankara 

(MVA) boost) with TLR7 (24), and novel approaches to harness broad and unconventional 

immune responses with CMV vector constructs, hold promise for the future (43, 44).  

 

Checkpoint inhibitors  

Immune checkpoint inhibitor (ICI) therapy targeting PD-1 and other major pathways 

upregulated in exhausted T cells during chronic virus infections represents a strategy to boost 

functional immune responses, following their success in cancer immunotherapy. HBV- specific 

T cells are characterised by high levels of PD1 expression (45, 46), and antibodies that block 

the interaction between PD1-PDL1 have been shown to partially restore the dysfunctional 

HBV-specific T and B cell responses in vitro (45-48). A small trial of a single low dose of the 

PD-1 blocking mAb Nivolumab in patients with virally suppressed HBeAg-negative CHB was 

well-tolerated and led to some HBsAg decline in most patients, with one patient having a 

hepatic flare accompanied by sustained loss of HBsAg (49••). This provides support for 

cautious further testing of ICI in CHB, in combination with more immunogenic therapeutic 

vaccines or other novel approaches. However, such attempts need to be tempered by the 

potential risk for toxicity and tailored to individual patients based on their virological and clinical 

features. 

 

The successful use of ICIs has not yet been realised in HIV infection despite data from the 

SIV macaque model demonstrating an increase in the magnitude and quality of adaptive 
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immunity (SIV-specific CD8 T cells and antiviral B cells) and decline in plasma viraemia (50, 

51). In limited case reports/studies ICIs used to treat malignancies in HIV infected patients 

have demonstrated overall modest immunological responses and inconsistent changes in the 

dynamics of the viral reservoir (52-56). A phase-I dose-escalation study performed to assess 

the safety of the anti-PD-L1 antibody in HIV infected patients without any malignancies (57) 

was halted due to observed retinal toxicities seen in concurrent macaque studies. Future 

approaches should therefore exercise caution regarding potential toxicity, especially as 

combination therapeutic approaches may be required for significant reactivation/effects on of 

the HIV reservoir (58).  

 

Immunostimulatory cytokines  

Therapies harnessing immunomodulatory cytokines aim to exploit their direct antiviral efficacy 

and/or effects on immune cell populations. IFN-α therapy is efficacious in a minority of CHB 

patients, exerts direct antiviral effects and boosts natural killer (NK) cell responses, but the 

frequency of virus-specific T cells is not increased (59, 60). An alternative cytokine, IL-12, has 

been shown to be effective in vitro in restoring HBV-specific CD8 T cells in combination with 

PD-1 blockade through metabolic reprogramming (61). There is therefore scope in directly 

targeting IL-12 to the liver or incorporating it into therapeutic vaccines, as exemplified by a 

DNA vaccine construct already in clinical trials for CHB (33). A recent study showed that the 

dysfunctional T cells resulting from hepatocyte priming can be rescued by IL-2 (62••), 

suggesting that this cytokine should be considered further in HBV immunotherapeutic 

approaches. There is also biological rationale for considering IL-15 in CHB, based on 

preclinical data showing complementary antiviral activity with IFN-, (63), along with the recent 

demonstration that IL-15 can induce liver-resident T cells with enhanced autophagy to combat 

mitochondrial depolarisation (64, 65).  
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IL-15 may likewise have pleiotropic effects in HIV infection, with the potential to drive a self-

renewing reservoir by promoting infection of stem-cell-like CD4 T cells in acute infection (66). 

On the other hand, the beneficial effects of IL-15 immunotherapy and IL-15 superagonist ALT-

803, capable of activating both NK cells and CD8 T cells, have been highlighted in vivo in non-

human primate models of HIV (67•). Heterodimeric IL-15 (hetIL-15) has been reported to also 

enhance the localisation of CD8 T cell in B cell follicles in LN (68), which addresses one of the 

key challenges of directing effector cells to sanctuary sites. The safety and tolerability of ALT-

803 is currently being tested in a phase I clinical trial to facilitate clearance of latent HIV-1 

reservoirs in HIV-infected people receiving potent and optimized antiretroviral therapy 

(NCT02191098). The ability of IL-15 to enhance ADCC and augment NK cell mediated killing 

of HIV-infected target cells ex vivo (69) may prove vital in the development of a functional cure 

for HIV. These findings, together with a recent report of IL-15  mediated metabolic 

reprogramming improving the efficacy of HIV-specific CD8 T cells from non-controllers (70••), 

highlight the complementary effects of such an approach to simultaneously re-invigorate 

multiple arms of the immune response.   

 

Adoptive cell therapy & ImmTavs  

The fixed epigenetic landscape of T cell exhaustion may preclude successful revival of 

endogenous responses with the above approaches in some patients with CHB and HIV 

infection. The selective administration of exogenous effector cells can instead provide a 

targeted treatment with the added benefit of avoiding bystander off-target effects. These 

approaches involve the use of TCR-redirected T cells and chimeric antigen receptor (CAR) T 

cells to confer viral specificity on patient-derived T cells for use in adoptive cell therapy (2, 71). 

CAR T cells transduced with an antibody-like receptor to recognize HBsAg on the surface of 

infected hepatocytes (72-74), and TCR-redirected T cells to respond to HLA-A2-presented 

HBV peptides (75) have shown potent antiviral potential in a preclinical model of chimeric 

humanized liver mice infected with HBV (76, 77••, 78). However, the scale-up of such 
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treatments currently remains impractical for widespread use in CHB. The ImmTAV molecules 

(Immunocore) offer an alternative approach, engineered from a T cell receptor with high 

specificity for target antigen in soluble form linked to a CD3 activating antibody fragment (anti-

CD3 scFv) to engage nearby T cells to activate effector function (79-81). These are being 

developed for HBV to bind and direct any CD3 expressing cell towards hepatocytes 

expressing the MHC/peptide complexes recognized by the TCR.  

 

An HIV-1 gag-specific ImmTAV has demonstrated promising proof of concept activity at low 

effector-to-target ratios when tested ex vivo with CD4 T cells from HIV-1 positive patients on 

ART (82). Additional work is, however, necessary to define the threshold of viral antigen 

expression required in the reservoir for this strategy to be effective, any potential toxicity and 

translation across HLA types. A number of in vitro and proof of concept studies in macaques 

have demonstrated the feasibility of developing virus specific CAR T cells with an increased 

ability to traffic to the GC which harbours a large fraction of the HIV reservoir (83-87). Further 

studies need to be conducted to evaluate their in vivo potential.  

 

BnAbs  

Therapeutic antibodies have demonstrated promising results in HIV infection (88•, 89••)  and 

initial findings suggest that they may also hold therapeutic potential in HBV. Combinations of 

monoclonal antibodies against HBsAg exhibited transient viral suppression in non-human 

primate models of HBV infection and humans (90, 91). The development of next generation 

monoclonal antibodies has shown improved broadly neutralizing potential against different 

HBV strains and escape mutants (92, 93) and potent in vivo antiviral activity, reducing levels 

of HBsAg and HBV DNA in HBV-transgenic mice through Fc-dependent mechanisms (12, 

13). Moreover, genetic manipulation of therapeutic antibody constructs to recognize multiple 

domains (e.g. bispecific or trispecific antibodies) could increase their efficacy against HBV 

and/or HIV by simultaneous engagement of local effector cells as a future approach.  
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Over the last few years, the discovery of the ‘next-generation’ anti-HIV-1 bNAbs, with the 

ability to suppress viral replication, potential for Fc-mediated clearance of virus-infected cells 

and elicitation of a vaccinal effect through immune complex formation, makes them highly 

attractive for advancing cure strategies (94). These compounds have now entered the clinical 

arena, following proof-of-concept animal studies and dosing and safety/efficacy studies in 

humans. Early experiments suggest that passive immunotherapy with 3BNC117 (which 

targets the CD4 binding site) and 10-1074 (which targets the V3 loop) during acute 

simian/human immunodeficiency virus (SHIV) infection induces a T cell mediated remission 

of disease (95).  These two antibodies have been recently tested in humans alone (96) or in 

combination (88•) (NCT02825797). Infusions were generally well tolerated and in a further 

study, in which a combination of 3BNC117 and 10-1074 was administered, the nine enrolled 

participants with antibody-sensitive HIV maintained suppression for a median of 21 weeks in 

the absence of development of resistance to both antibodies (89••). Two individuals, who 

commenced ART during early HIV infection, maintained viral control for over eleven months 

(89••). An upcoming trial of a novel combination of long-acting bNAbs in participants initiating 

ART during primary HIV infection (PHI) will determine whether early intervention enhances 

the effect of bNAb administration (RIO).  

 

Future approaches  

A range of alternative approaches that are being tested in the cancer field could be considered 

to boost immune responses in HIV and HBV infection, including  different T cell inhibitory 

receptors, co-stimulatory pathways and immunomodulatory cytokines  (2, 33, 97, 98). Future 

innovative strategies for cure include manipulation of the metabolic machinery of immune 

cells. This approach could serve as a strategy to control viral persistence by metabolic 

repression of cells harbouring HIV proviral DNA (block and lock/starve the reservoir) or via 

metabolic rewiring to recover cellular immunity. Recent findings identify mitochondrial-

https://clinicaltrials.gov/ct2/show/NCT02825797
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centered dysfunction of CD8 T cells and NK cells (unpublished observations) in chronic viral 

infections as a key area for research and a promising target for future combined reconstitution 

therapies (61, 65, 70, 99). Mitochondrial antioxidants such as MitoTEMPO (99) and additional 

pharmacological inhibitors to modulate mitochondrial dynamics (100) in combination with 

cytokines (i.e IL-12 and IL-15) can rescue functional virus specific responses in patients with 

CHB and HIV infection. Additional approaches aimed at increasing mitochondrial biogenesis 

(101)  and boosting extracellular supplies of key fuels, such as arginine (102-104), to drive 

oxidative phosphorylation and survival of T cells could be considered as alternative cure 

strategies.  

 

A novel strategy compared to traditional bi- and trispecific antibodies is the generation of bi- 

and tri-specific killer engager (BiKEs and TriKEs) platforms (GT Biopharma) aimed at directing 

Fc dependent function of key immune cell populations, such as NK cells, against infected 

target cells. In the preclinical setting a BiKE construct containing the Fab fragment of an HIV 

bnAb combined with an anti-CD16 component eliminated HIV-infected targets expressing the 

HIV envelope on their surface. TriKEs with an IL-15 linker that could potentially target HIV 

infected cells and eliminate the viral reservoir are currently under development.  

The success of NK cells in cancer immunotherapy and selective harnessing of NK cells with 

adaptive features is emerging as an exciting field in augmenting therapeutic approaches 

against chronic viral infection (105). The potent ADCC activity of adaptive NK cells, which are 

expanded during chronic HIV (106) and HBV infection (107), represents a new goal of 

vaccination approaches utilising specific cytokines and targeted adjuvants. However, such 

attempts need to be carefully balanced to avoid any undesirable effects resulting from the 

potential of NK cells to regulate  humoral and virus specific T cell responses  (108••, 109).  

 

Conclusions  

Despite a considerable amount of progress, additional work is required to fully unravel all the 

facets of adaptive and innate immunity especially within critical tissue environments. A better 
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understanding of immune dysfunction will aid the rational development of immunotherapies 

for the treatment of both HIV and HBV and requires co-ordinated efforts from researchers in 

both fields. Such attempts are likely going to require a multipronged approach to achieve broad 

and durable immune responses with a trade-off between potential toxicity and resolution.  

 

Key points: 

• HIV and HBV infections share routes of transmission and lead to multiple humoral and 

cellular immune defects that bear similarities.  

• The immune system is a critical component to achieving a functional cure. 

• The same classes of immunotherapies are being tested for HIV and HBV.  

• Directed immunotherapeutic strategies require rational combinations of immunological and 

virological approaches for different patient groups. 

• Need for community engagement, advocacy, partnership with countries for increasing 

prevention, diagnosis and treatment of HIV and HBV infection.  
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Table 1 Differences and Commonalities in HIV and HBV infection 

Differences in HIV and HBV infection  
HIV HBV 

Primary infection rarely cleared Acute infection frequently cleared in adults but 
less frequently in the context of HIV co-infection 

Replication in T cells and macrophages Hepatotropic infection 

Establishes latency HBV persistence is propagated by episomal, 
covalently closed circular (ccc) DNA within the 
nuclei of infected hepatocytes 
 
 

Viral escape common  Viral escape less common 

No prophylactic vaccine Effective prophylactic vaccine  

No current available biomarker for a functional 
cure 

Available biomarkers for functional cure limited 

Commonalities 
• Similar route of transmission; HIV/HBV co-infection accounts for 5-20% worldwide 

depending on geography and route of infection 
• Establish chronic infections 
• Virus replication requires a reverse transcription step creating high viral heterogeneity 
• Antivirals, some with dual efficacy against HIV and HBV, control viraemia but are not 

curative 
• Functional cure will require eradication of HIV provirus and immune control of residual HBV 

cccDNA  
• Shared difficulties in accessing tissue reservoirs in HIV infection and HBV reservoir in 

hepatocytes 
• CD8 T cells play a key role in viral control but increasing recognition of other players (B 

cells, NK cells) 
• Shared pathways of immune dysfunction/exhaustion 

 



Table 2 Immunotherapeutic approaches in HIV and HBV 

Shared goal of immunotherapeutic approaches 
HIV HBV 

Harness innate and adaptive immune 
responses to enhance viral elimination and 
maintain HIV control in the absence of ART 

Clear circulating viral antigen (HBsAg) and limit 
reactivation from residual cccDNA 
Limit carcinogenesis from integrated DNA 

Approaches 

• Trigger endogenous responses (TLR agonists, immunoregulatory cytokines) 
• Re-invigorate exhausted endogenous responses (checkpoint inhibitors, co-stimulation) 

• Generate new endogenous responses (therapeutic vaccination) 
• Supplement with exogenous responses (adoptive cell transfer, antibody infusions) 
• Combination approaches 
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