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Abstract

We study how network structure affects the dynamics of collateral in presence of rehypoth-
ecation. We build a simple model wherein banks interact via chains of repo contracts and
use their proprietary collateral or re-use the collateral obtained by other banks via reverse
repos. In this framework, we show that total collateral volume and its velocity are affected
by characteristics of the network like the length of rehypothecation chains, the presence or
not of chains having a cyclic structure, the direction of collateral flows, the density of the
network. In addition, we show that structures where collateral flows are concentrated among
few nodes (like in core-periphery networks) allow large increases in collateral volumes already
with small network density. Furthermore, we introduce in the model collateral hoarding rates
determined according to a Value-at-Risk (VaR) criterion, and we then study the emergence
of collateral hoarding cascades in different networks. Our results highlight that network
structures with highly concentrated collateral flows are also more exposed to large collateral
hoarding cascades following local shocks. These networks are therefore characterized by a
trade-off between liquidity and systemic risk.
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1 Introduction

This paper investigates the collateral dynamics when banks are connected in a network of finan-

cial contracts and they have the ability to rehypothecate the collateral along chains of contracts.

Collateral is of increasing importance for the functioning of the global financial system. One

reason for this is that the non-bank/bank nexus has become considerably more complex over the

past two decades, in part because the separation between hedge funds, mutual funds, insurance

companies, banks, and broker/dealers has become blurred as a result of financial innovation and

deregulation (Singh, 2016; Pozsar and Singh, 2011). Another reason for the significant increase

in collateral volumes (comparable to M2 until the recent financial crisis, see e.g. Singh, 2011) has

been the diffusion of rehypothecation agreements. The role of collateral in lending agreements is

to protect the lender against a borrower’s default. Rehypothecation1 consists in the right of the

lender to re-use the collateral to secure another transaction in the future (see Monnet, 2011).

Rehypothecation of collateral has clear advantages for liquidity in modern financial systems

(see Financial Stability Board, 2017b). In particular, it allows parties to increase the availabil-

ity of assets to secure their loans, since a given pool of collateral can be re-used to support

different financial transactions. As a result, rehypothecation increases the funding liquidity of

agents (see Brunnermeier and Pedersen, 2008). At the same time, rehypothecation also implies

risks for market players. First, one risk associated with the additional funding liquidity al-

lowed by rehypothecation can be the building-up of excessive leverage in the market (see e.g.

Bottazzi et al., 2012; Singh, 2012; Capel and Levels, 2014). Second, rehypothecation implies

that several agents are counting on the same set of collateral to secure their transactions. It

follows that rehypothecation may represent yet another channel through which agents’ balance

sheets become interlocked2, and thus a source of distress propagation and of systemic risk. For

instance in the face of idiosyncratic shocks, some institutions may start to precautionarily hoard

collateral, which in turn constrains the availability of collateral and its re-use for the down-

stream institutions in chains of repledges. This may consequently lead to an inefficient market

freeze if participants lack the necessary assets to secure their loans (Leitner, 2011; Monnet, 2011;

Gorton and Metrick, 2012). The latter is the distress channel we focus on in this paper.

To analyze economic benefits and systemic consequences of rehypothecation, we develop a

model of collateral dynamics over a network of repurchase agreements (repos) across banks. To

keep the model as simple as possible we abstract from many features of markets with collateral,

and we assume that the amount of collateral available for repo financing is set as a constant

fraction of total collateral available to each agent. The latter includes the proprietary collateral

1Throughout this paper, the terms “re-use”, “rehypothecation”, and “re-pledge” are interchangeable.
2See for Battiston et al. (2016) for an account of the sources of banks’ interconnectedness in financial systems.
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endowment of each bank as well as the collateral obtained from other banks via reverse repos.

Although simple, our model allows us to highlight what features of rephypothecation network

topology determine (i) the overall volume of collateral in the market, and (ii) the velocity of

collateral (Singh, 2011). We show that both variables are an increasing function of the length of

open chains. However, for a given length, cyclic chains (i.e. those where banks are organized in

a closed chain of repo contracts) produce higher collateral than a-cyclic chains. Furthermore, we

show that the direction of collateral flows also matters. In particular, concentrating collateral

flows among few nodes organized in a cyclic chain allows large increases in collateral volume

and in velocity even with small chains’ length. Finally, we investigate total collateral under

some typical network architectures, which capture different modes of organization of financial

relations in markets, and in particular different degrees of heterogeneity in the distribution of

repo contracts and of collateral flows. We show that total collateral is an increasing function of

the density of financial contracts both in the random network (where heterogeneity is mild) and

in the core-periphery network (where heterogeneity is high). However, core-periphery structures

allow for a faster increase in collateral.

The above-explained model with exogenous levels of collateral hoarding rates is useful to

analyse the effects of network topology on collateral flows. At the same time it is unfit to

study the systemic risk implications of rehypothecation as hoarding behaviour could also reflect

the liquidity position of agents in the network. We thus extend the basic model, to introduce

hoarding behaviour that accounts for liquidity risk. More precisely, we assume that hoarding

rates are set according to a Value-at-Risk (VaR) criterion, aimed at minimizing liquidity default

risk. In this framework, we show that the equilibrium hoarding rate of each bank is a function

of the hoarding rates and the collateral levels of the banks at which it is directly and indirectly

connected. This introduces important collateral hoarding externalities in the dynamics, as an

increase in hoarding at some banks may indirectly cause higher hoarding at other banks even

not directly connected to it. We then use the extended model to study the impact on total

collateral losses of small uncertainty shocks hitting a fraction of banks in the network, and

how those losses vary with the structure of the rehypothecation networks. We show that core-

periphery structures are the most exposed to large collateral losses when shocks hit the central

nodes in the network, i.e. the one concentrating collateral flows. As, core-periphery are also the

structures that generate larger collateral volumes, our results highlight that these structures are

characterized by a trade-off between liquidity and systemic risk.

Our work contributes to the recent theoretical literature on the consequences of collateral

rehypothecation (see e.g. Bottazzi et al., 2012; Andolfatto et al., 2017; Gottardi et al., 2017;

Singh, 2016). This literature has highlighted the role of rehypothecation in determining repo

rates (e.g. Bottazzi et al., 2012), or in softening borrowing constraints of market participants
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and in shaping the interactions in repo markets (Gottardi et al., 2017; Andolfatto et al., 2017)

or, finally, it has contributed to evaluate some welfare aspects of policies aimed at regulating

rehypotheaction (Andolfatto et al., 2017). However, to the best of our knowledge, our paper is

the first to study the role of the structure of the network of collateral exchanges and to explore

how different network structures determine overall collateral volumes and velocity. Furthermore,

our work contributes also to the literature on liquidity hoarding cascades, and it is particular

related to the work of Gai et al. (2011). However, different from this work, our model introduces

hoarding rates that are responsive to the liquidity position of the single bank and to the position

occupied in the network. In addition, it shows that liquidity hoarding dynamics can have quite

different consequences depending on the particular structure of the network.

The paper is organized as follows. Section 2 introduces the basic definitions used throughout

the paper and the model with fixed hoarding rates. Section 3 studies in detail how the structure

of rehypothecation networks determines collateral volume and its velocity. Next, Section 4 ex-

tends the model to feature time-varyng hoarding rates determined according to a VaR criterion.

Section 5 uses the latter model to study collateral hoarding cascades in different rehypothecation

networks. Finally, Section 6 concludes, also by discussing some implications of our work.

2 A model of collateral dynamics on networks

In this section we build the network model that we then use the analyse the ability of the

financial system to generate endogenous collateral in presence of rehypothecation and, next,

to study the dynamics of collateral hoarding cascades in presence of shocks. We start with

basic definitions that we shall use throughout the paper. We then introduce the laws governing

collateral dynamics in presence of rehypothecation and of fixed hoarding coefficients by banks.

2.1 Definitions

Consider a set of N financial institutions (“banks” for brevity in the following). Banks invest

into an external asset, that yields an exogenously fixed return rEA, and that can also be used

as a collateral. In, addition they lend to each other by using only secured loans that involve

exchange of collateral as in Singh (2011).3 More precisely, we assume that all debt contracts

are “repo” contracts, they are thus secured by collateral. A “repo” or “repurchase agreement”,

is the sale of securities together with an agreement for the seller to buy back the securities at

a later date.4 A “reverse repo” is the same contract from the point of view of the buyer. The

3See also Aguiar et al. (2016) for a more comprehensive discussion of the structure of collateral flows.
4The repurchase price should be greater than the original sale price, the difference effectively representing

interest, and sometimes called the repo rate.
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haircut rate of a repo, that we denote as h , is a percentage that is subtracted from the market

value of an asset that is being used in a repo transaction.5 To collect funds via repo contracts

each bank i (1 ≤ i ≤ N) can use the collateral that has in its “box”. The box includes both

the proprietary collateral or the collateral obtained via reverse-repos, which can then be re-

pledged or rehypothecated for further repo transations. Repo transactions among banks using

proprietary and non-properietary collateral give rise to a directed network G, that we shall label
“rehypothecation network”. To explain in details the dynamics of collateral in each bank’s box

and the timing of the events occurring through the network G it is useful to define the following

notations:

• ACout

i : the total amount of collateral flowing out of bank i’s box at each step, i.e. the total

amount of collateral that the bank i uses to obtain loans from other banks.

• ACrm

i : the total amount of (re-pledgeable) collateral remaining inside the box.

• AC
i : the total amount of (pledgeable) collateral flowing into the box of the bank i. At

every step, the collateral that flows into the box must equal the collateral that remains in

the box plus the collateral that flows out of the box. Hence, we have AC
i = ACout

i +ACrm

i .

Notice that AC
i includes both proprietary as well as non-proprietary assets received from

other banks.

• A0
i : the value of the proprietary collateral of the bank i. This means the bank i is the

original owner of A0
i .

• Bi: the borrowers’ set of bank i, i.e. the banks that obtained funding from i via repos

and thus provided collateral to i. In the rehypothecation network, Bi is also the “in-

neighborhood” of i.

• Li: the lenders’ set of bank i, i.e. the banks that obtained collateral from i and thus

provided funding to i. In the rehypothecation network, Li is also the “out-neighborhood”

of i.

• Unless specified otherwise, each of the above mentioned symbols written without indices

denotes the vector of the same variable for all the banks in the system, for instance

AC = [AC
1 , A

C
2 , ...A

C
i , ...A

C
N ], and similarly for the other quantities.

Furthermore, let the variable ai←j capture the direction of collateral flow from the bank j to

the bank i. In particular, for every pair of banks i and j, ai←j = 1 if bank j has given collateral

to bank i and ai←j = 0 otherwise. Two additional variables related to the direction of collateral

5The size of the haircut usually reflects the perceived risk associated with holding the asset.
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flows are the “out-degree” of a bank i, kouti , which measures the total number of outgoing links

of the bank, and thus the number of banks to whom bank i provided collateral to. Likewise, the

“in-degree” of a bank i, kini , is the total number of banks that provided collateral to i.

Finally, we assume that each bank hoards a fraction 1− θi of the collateral it has in the box.

More precisely, for every monetary unit of collateral, the bank i will keep (1− θi) inside its box

and give away θi. Moreover, to keep the model simple we assume that each bank homogeneously

spreads its non-hoarded collateral across its lenders. Let si←j be the share of bank j’s outgoing

collateral flowing into the box of the bank i. If Lj = ∅ (i.e. koutj = 0), then all shares si←j

are equal to zero. If the lender’s set is not void, Lj 6= ∅, that is if koutj > 0, then for the total

outgoing collateral pledged or re-pledged by bank j, ACout

j it holds:

ACout

j =
∑

i∈Lj

si←jA
Cout

j ,

since the shares si←j satisfy the constraint
∑

i∈Lj
si←j = 1. Notice, that this means that each

non-zero column of the matrix of shares S = {si←j}NxN associated with the network G is

summing to 1. In addition, recall that collateral is spread homogenously across lenders. This

implies that

sj =
1

koutj

.

and that the elements of the matrix S can be expressed as







si←j =
ai←j

koutj

, if koutj > 0,

si←j = 0, otherwise.
(1)

2.2 Collateral dynamics

To describe collateral dynamics in our model let us assume, in line with Bottazzi et al. (2012)

that the amount of collateral that can be re-hypothecated never exceeds the haircutted amount

of collateral. Furthermore, let us assume for simplicity that the haircut rate h ∈ [0, 1] is the

same for all banks. On these grounds, we can write the following expression for the dynamics

of ACout

i , the total amount collateral flowing out of the box of the bank i:

ACout

i = A0out
i + (1− h)δiθi

∑

j∈Bi

si←jA
Cout

j , (2)

where A0out
i = δiθiA

0
i is the proprietary amount of outgoing collateral of the bank i. The

parameter θi accounts for the fraction that is not hoarded. The second term of the equation
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captures the amount of collateral received by i from its borrowers j and that is re-pledged.

Notice that bank i can only re-pledge a fraction (1 − h)θi of what it receives, where (1 − h)

accounts for the fraction remaining after the haircut is applied, and θi accounts for what is not

hoarded. Finally, δi is an indicator equal to one if bank i engages in at least one repo contract

so that its out-degree is positive and equal to zero otherwise (i.e δi = 1, if kouti > 0, and zero

otherwise).

Similarly, the dynamics of the total amount of re-pledgeable collateral remaining inside the

box of the bank i is described by the following equation

ACrm

i = A0rm

i + (1− h)(1 − δiθi)
∑

j∈Bi

si←jA
Cout

j , (3)

where A0rm
i = A0

i −A0out
i = (1− δiθi)A

0
i is the initial remaining collateral.

Uses and re-use of collateral in our model are fully described by the recursive process explained

by the above two equations. Notice that both Equation (2) and (3) imply that at the initial

step every bank i gives away A0out
i of collateral to its outgoing neighbors and keeps A0rm

i inside

its box. In addition, for an amount of si←jA
Cout

j that the bank i receives from a neighbour j,

it re-pledges (1 − h)δiθisi←jA
Cout

j and hoards an amount [1 − (1 − h)δiθi]si←jA
Cout

j . However,

only the amount (1− h)(1− δiθi)si←jA
Cout

j of this hoarded collateral is further re-pledgeable to

obtain further funding later, because the haircutted amount of collateral, hsi←jA
Cout

j , is kept in

a segregated account that can be only accessed in the case of a credit event (see Bottazzi et al.,

2012, for details).

We can also determine the expression of total amount of re-pledgeable collateral flowing into

the box of each bank i:

AC
i = ACout

i +ACrm

i = A0
i + (1− h)

∑

j∈Bi

si←jA
Cout

j . (4)

The last equation makes clear that the total collateral flow in the box of a bank, AC
i in-

cludes the proprietary assets (i.e. A0
i ) as well as re-pledgeable non-proprietary assets (i.e.

(1 − h)
∑

j∈Bi
si←jA

Cout

j ) received from other banks via reverse repos. Notice that ACrm

i =

(1 − δiθi)A
C
i and that ACout

i = δiθiA
C
i . Substituting the latter expression in equation (4) we

obtain a system of equations in the variables AC :

AC
i = A0

i + (1− h)
∑

j∈Bi

si←jδjθjA
C
j . (5)
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So far we have not said anything about timing in our model. However, the possibility of

collateral use and re-use changes over time as the inflows and outflows of collateral in a bank’s

box change over time as a consequence of the different uses and re-uses of collateral made by

other banks in the network. In addition, the very possibility of re-using collateral is clearly

constrained by the maturity of a repo contract Trepo. In what follows, we shall assume that the

maturity of repo contracts is longer than the time scale of the rehypothecation process.6

Moreover we shall focus on equilibrium collateral. This equilibrium corresponds to the

amount of collateral flow generated by the system over an infinite amount of steps of collateral

uses and re-uses. Finally, we shall focus henceforth only on the equilibrium value of the outflow-

ing collateral ACout
(equilibrium collateral henceforth). Indeed, first, via Equation 4 remaining

collateral ACrm
is also determined in equilibrium once the amount of outflowing collateral ACout

and the initial proprietary collateral A0 are known. Second, outflowing collateral is a very inter-

esting variable in our model, as it captures each bank’s contribution to overall collateral flows,

and thus to overall funding liquidity in the market.

To find the equilibrium of outflowing collateral, let us start by writing equation (2) in matrix

form

ACout

= A0out + (1− h)MACout

(6)

where the the elements M is the adjacency matrix of the rehypothecation network G, with

elements mi←j defined as:







mi←j = δiθisi←j =
δiθiai←j

koutj

, if koutj > 0,

mi←j = 0, if koutj = 0.

Given the network of collateral flows G, the haircut rate h, and the vector of non-hoarding rates

θ = {θi}ni=1, we can obtain the equilibrium value of ACout
by solving equation (6) as follows:

ACout

= (I − (1− h)M)−1A0out = B1A
0out, (7)

with I is the identity matrix of size N , B1 = (I − (1− h)M)−1. The above equation indicates

that equilibrium collateral will in general be a function of the of the entire topology of the

rehypothecation network G and of the vector of non-hoarding rates θ = {θi}ni=1. In the next

sections we first study the role of the network topology in affecting collateral flows and in

determining different levels of equilibrium collateral.

6Notice that in many cases, the rehypothecation process ends already after a small number of steps, typically
smaller than the number of banks in the system. In addition, the effective duration of the rehypothecation process
exponentially decreases with the levels of the non-hoarding rates and of the haircut rates (see also next section).
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3 Rehypothecation networks and endogenous collateral

We shall now describe how the structure of the rehypothecation network affects collateral flows

and equilibrium collateral determined according to the model developed in the previous section.

To perform our investigation it is useful to define some aggregate indicators mesuring the per-

formance of a network in affecting collateral flows. The first one is the aggregate amount of

outgoing collateral, Sout, or “total collateral” henceforth, which is defined as:

Sout =

i=N
∑

i=1

ACout

i , (8)

In addition, we also introduce the multiplier of the aggregate amount of proprietary collateral7,

m, or “collateral multiplier”, henceforth. It is defined as:

m =

∑i=N
i=1 ACout

i
∑i=N

i=1 A0out
i

=
Sout

S0out
, (9)

where S0out =
∑i=N

i=1 A0out
i is the total outflowing proprietary collateral. Throughout the paper,

we shall focus on Sout and m when analyzing collateral creation allowed by a given network

G. Notice that Sout captures the aggregate flow of collateral provided by banks in the financial

system. A higher (lower) amount of this flow indicates a more liquid market, i.e. one where

agents can easily find collateral to secure their financial transactions. Furthermore, notice that

the denominator on the right hand side of equation (9) is the aggregate amount of initial ou-

flowing collateral. Accordingly, m captures the velocity of collateral when rehypothecation is

allowed (see also Singh, 2011). Again, a higher value of m indicates a more liquid market,

and in particular one where the same set of collateral can secure a larger set of secured lend-

ing contracts. In that respect, we shall also say that a rehypothecation network G generates

“endogenous collateral” whenever the collateral multiplier associated with it is larger (m > 1)

Clearly, both performance indicator are affected by the hoarding behavior of banks in the net-

work. To simplify the analysis in this section we shall assume the non-hoarding and hoarding

rates are fixed, so that θi = θ̄ and (1 − θi) = (1 − θ̄), ∀i. In Section 4, we shall remove this

restriction, and we shall discuss how banks set these coefficients endogenously, according to a

VaR criterion in presence of liquidity shocks.

We shall begin our analysis by providing stylized examples and by stating proposition that

show how the aggregate amount of collateral going out of the boxes of all banks, Sout, and

the multiplier of collateral, m, are influenced by some key characteristics of rehypothecation

7See Financial Stability Board (2017a) for discussions of other collateral re-use measures.
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networks, like the length of rehypothecation chains, the presence of cyclic chains, or the direction

of collateral flows. In additions, these results shed light on the core mechanisms driving the

generation of endogenous collateral and of collateral hoarding cascades in more complex network

architectures.

3.1 Length of chains and network cycles

Let us start with simple examples of chains composed by three banks as shown in Figure 1:

panel (a) a star chain, panel (b) an open chain or “a-cyclic” chain, and panel (c) a closed chain

or a “cycle”.

Star chain Open chain Closedchain

1

2 3

1

2 3

1

2 3

(a) (b) (c)

Figure 1: Examples of rehypothecation chains among three banks.

Star chains

In the first case (i.e. the star chain in Figure 1 (a)), B2 receives collateral from B1 and

B3, and then it does not re-use it. We will show that without rehypothecation, there is no

endogenous collateral created in the system. Before discussing the example, we denote by ACout

i,T

the cumulated amount of collateral ougoing from the box of the bank i after T times. In addition,

Sout
a,T indicates total collateral after T times and ma,T the corresponding multiplier.8 At t = 1,

the initial total amounts of collateral outgoing from the boxes of B1, B2, B3 are



















ACout

1,t=1 = A0out
1 = θ1A

0
1 (going to bank 2)

ACout

2,t=1 = A0out
2 = 0

ACout

3,t=1 = A0out
3 = θ3A

0
3 (going to bank 2)

(10)

8Notice that ACout

i mentioned in equation (7) is equilibrium collateral, and it corresponds to the amount of
outflowing collateral when T → ∞.
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At t = T ≥ 2, ACout

i remains constant ∀i since there is no re-use of collateral. We can write







ACout

1,t=T

ACout

3,t=T

ACout

3,t=T






=







A0out
1

A0out
2

A0out
3






+ (1− h)Ma







A0out
1

A0out
2

A0out
3






, (11)

where

Ma =







0 0 0

0 0 0

0 0 0






.

It follows that total collateral in the example of Figure 1 (a) is always equal to the sum of the

initial prorietary collateral outflowing from banks’ boxes and thus, that there is no creation of

endogenous collateral. That is, we get:

Sout
a = Sout

a,T =

i=3
∑

i=1

ACout

i,T = A0out
1 +A0out

3 , (12)

and

ma = ma,T =

∑i=3
i=1A

Cout

i,T
∑i=3

i=1A
0out
i

= 1. (13)

A-cyclic chains

We now consider the second example represented by the open chain or a-cyclic chain in

Figure 1 (b). In this case B2 can re-use the collateral that it receives from B1. In presence

of rehypothecation the network generates endogenous collateral, Sout > S0out . However, the

possibilities of endogenous collateral creation are constrained by the length of the open chain

(and equal to 2 in the example shown in the figure). At t = 1, the initial amounts of collateral

outgoing from the boxes of B1, B2, B3 are



















ACout

1,t=1 = A0out
1 = θ1A

0
1 (going to bank 2)

ACout

2,t=1 = A0out
2 = θ2A

0
2 (going to bank 3)

ACout

3,t=1 = A0out
3 = 0

(14)

At t = 2, bank 2 will re-use a fraction θ2 of an additional (re-pledgeable) collateral that it has

received from the bank 1 at time t = 1. Therefore, the amounts of collateral outgoing from the
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boxes of B1, B2, B3 are


















ACout

1,t=2 = A0out
1

ACout

2,t=2 = A0out
2 + (1− h)θ2A

0out
1

ACout

3,t=2 = A0out
3

(15)

which in matrix form reads







ACout

1,t=2

ACout

3,t=2

ACout

3,t=2






=







A0out
1

A0out
2

A0out
3






+ (1− h)Mb







A0out
1

A0out
2

A0out
3






, (16)

where now

Mb =







0 0 0

θ2 0 0

0 0 0






.

Since all elements of M t
b are equal to zero for all t ≥ 2, we get that the equilibrium values of

total outflowing collateral and of the corresponding multiplier are:







ACout

1,t=T

ACout

2,t=T

ACout

3,t=T






=







ACout

1,t=2

ACout

3,t=2

ACout

3,t=2






(∀T ≥ 2).

In addition,

Sout
b = Sout

b,T =

i=3
∑

i=1

ACout

i,t=T = A0out
1 +A0out

2 + θ2(1− h)A0out
1 , (17)

and

mb = mb,T =

∑i=3
i=1 A

Cout

i,t=T
∑i=3

i=1A
0out
i

= 1 + θ2(1− h)
A0out

1

A0out
1 +A0out

2

. (18)

Notice that the above collateral multiplier is larger than 1 as long as h < 1 and θ2 > 0.

Cyclic chains

We now consider the third case when rehypothecation processes among banks create a closed

chain or a “cycle”, like the one in Figure 1 (c). Notice that in the above example every bank has

a positive out-degree, i.e. kouti > 0,∀i = 1, 2, 3 and accordingly, δi = 1,∀i = 1, 2, 3 (cf. Section

2.2). We will now show that the creation of endogenous collateral is no longer constrained by

the length of the chain, and thus that in the end total collateral and the multipliers are larger

than in previous example.
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At t = 1, the initial total amounts of outgoing collateral are:



















ACout

1,t=1 = A0out
1 = θ1A

0
1 (going to bank 2)

ACout

2,t=1 = A0out
2 = θ2A

0
2 (going to bank 3)

ACout

3,t=1 = A0out
3 = θ3A

0
3 (going to bank 1)

(19)

Furthermore, at t = 2, each bank i will re-use a fraction θi of the additional re-pledgeable

collateral that it has received from other banks at the previous time. We thus get:



















ACout

1,t=2 = A0out
1 + θ1(1− h)A0out

3

ACout

2,t=2 = A0out
2 + θ2(1− h)A0out

1

ACout

3,t=2 = A0out
3 + θ3(1− h)A0out

2

(20)

and in matrix form






ACout

1,2

ACout

3,2

ACout

3,2






=







A0out
1

A0out
2

A0out
3






+ (1− h)Mc







A0out
1

A0out
2

A0out
3






, (21)

where

Mc =







0 0 θ1

θ2 0 0

0 θ3 0






.

Notice that θ1(1−h)A0out
3 , θ2(1−h)A0out

1 , θ3(1−h)A0out
2 are respectively the additional amounts

of collateral that banks 1, 2, and 3 receive from all other banks. Moreover, at t = 3, each bank i

will again re-use a fraction θi of the additional re-pledgeable collateral that it has received from

other banks at time t = 2. Therefore,



















ACout

1,t=3 = A0out
1 + θ1A

0out
3 (1− h) + θ1(1 − h)θ3(1− h)A0out

2

ACout

2,t=3 = A0out
2 + θ2A

0out
1 (1− h) + θ2(1 − h)θ1(1− h)A0out

3

ACout

3,t=3 = A0out
3 + θ3A

0out
2 (1− h) + θ3(1 − h)θ2(1− h)A0out

1

(22)

which in matrix form reads







ACout

1,3

ACout

3,3

ACout

3,3






=







A0out
1

A0out
2

A0out
3






+ [(1 − h)Mc]

1







A0out
1

A0out
2

A0out
3






+ [(1− h)Mc]

2







A0out
1

A0out
2

A0out
3






. (23)

In general, at t = T + 1, i.e. after T times of collateral re-uses, the cumulated amounts of

13



outgoing collateral are:







ACout

1,T+1

ACout

2,T+1

ACout

3,T+1






= {I + [(1 − h)Mc]

1 + [(1− h)Mc]
2 + ...+ [(1 − h)Mc]

T }







A0out
1

A0out
2

A0out
3






. (24)

Expressed differently,







ACout

1,T+1

ACout

2,T+1

ACout

3,T+1






=







A0out
1

A0out
2

A0out
3






+ (1− h)Mc







ACout

1,T

ACout

2,T

ACout

3,T






. (25)

Clearly, the additional collateral in the system is now equal to

[((1− h)Mc)
1 + ((1− h)Mc)

2 + .....((1 − h)Mc)
T ]







A0out
1

A0out
2

A0out
3






.

Finally, when T → ∞, we obtain the equilibrium values for Sout
c and formc. Their expressions

are the following:

Sout
c = lim

t→∞
Sout
c,t = lim

t→∞

i=3
∑

i=1

ACout

i,t , (26)

and

mc = lim
t→∞

mc,t = lim
t→∞

∑i=3
i=1 A

Cout

i,t
∑i=3

i=1 A
0out
i

. (27)

To conclude, it is interesting to notice that, as long as {A0
i }i=3

i=1 and {θi}i=3
i=1 are homogenous

across banks, we have the following ranking Sout
c > Sout

b > Sout
a and mc > mb > ma.

3.2 Direction of collateral flows, collateral sinks and cycles’ length

The above examples have clarified what are the fundamental properties that a rehypothecation

network must have in order to create endogenous collateral, and thus additional liquidity in the

system. In particular, the second example (the a-cyclic chain) makes clear that the possibilities

of additional collateral creation are determined by the length of the repledging chains among

banks. However, the presence of cycles in networks, like the third example above, allows one to

go beyond that, and to maximize the amount of collateral creation. Furthermore, in presence

of cyclic networks the direction of collateral flows also matters. In particular, networks wherein

collateral flows all end up in a cycle will ceteris paribus create more endogenous collateral than
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networks where some collateral leaks out from cycles and sinks in some nodes of the system.

To better clarify the foregoing statement, we consider in Figure 2, three example networks of

five nodes with the same number of links. In addition, in these networks, all out-degrees are

positive, and consequently collateral from each node will flow into a cycle after going through

some directed edges9, and there is no leakage from the cycle. The only difference among the

three networks is in the length of cycles. Nevertheless, we will show that as long as non-hoarding

rates are constant and homogeneous, the three networks generate the same equilibrium total

collateral and the have the same equilibrium multiplier. This is summarized in the following

proposition.

Proposition 1. Let θi = θ (∀i). For the networks in panels α = a, b, c of Figure (2) Sout
α,t =

∑i=5
i=1A

Cout

i,t , ∀t ≥ 1.

Proof. See appendix.

3

2 5

1

4 3

2 5

1

4 3

2 5

1

4

(a) (b) (c)

Figure 2: Different rehypothecation process among five banks: same number of links, different lengths of
cycles but same total amounts of equilibrium collateral.

Let us next consider three other examples of rehypothecation process among five banks, the

ones in Figure (3). The difference with examples of Figure 2 is that now in panels (a) and (b)

one node (i.e. node 5) has zero out-degree. In addition, the network structure in these two

panels imply that some collateral leaks out of a cycle and gets stuck at the node with zero

out-degree, which then plays the role of “collateral sink”. The consequence is that the three

networks will generate different amounts of total equilibrium collateral. This is stated in the

following proposition.

Proposition 2. Let θi = θ (∀i). For the networks in panels α = a, b, c of Figure 3, Sout
a,t <

Sout
b,t < Sout

c,t , ∀t ≥ 2.

9It is also possible to show that, as long as all agents have positive out-degree, collateral flows will end up in
a cycle after a finite number of steps. For the sake of brevity we do not report this proposition and the related
proof. However, it is available from the authors upon request.
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Proof. See appendix.

3

2 5

1

4 3

2 5

1

4 3

2 5

1

4

(a) (b) (c)

Figure 3: Different rehypothecation process among five banks: same number of links but different total
amounts of equilibrium collateral.

The above two propositions deliver interesting implications about the role of networks’ topol-

ogy in determining total collateral flows. First, Proposition 2 shows that the total amount of

collateral is maximized when the longest possible cycle in the network has been created (a cycle

of length 5 in example (c) of Figure 3). At the same time, proposition 1 shows that cycles’

length is irrelevant when collateral sinks are not present in the network and all banks have

positive out-degree, i.e. they have at least one repo with some other bank in the system. It

also follows that in that case, it might be advantageous frow the viewpoint of total creation

of collateral in the network to concentrate collateral flows among few nodes that have a cyclic

chain among them. These results provide key insights to understand the behaviour of collateral

flows in different network architectures that we shall discuss in the next section. They are also

central to understand some of the results about collateral hoarding cascades that we will expose

in Section 5.

The next two propositions generalize the above results to any network architecture. The

first of them shows that adding an arbitrary number of links to a cycle of length equal to the

size of the network does not change neither total collateral nor the value of the multiplier. The

second one identifies the upper bounds for the equilibrium values of total collateral and of the

collateral multiplier and shows that these upper limits are attained as long as every bank has

at least one outgoing link in the network.

Proposition 3. Consider a rehypothecation network G of size N . Let θi = θ and A0
i = A0 (∀i).

Adding arbitrary links to an initial cycle of sizeN does not change the values of Sout andm. More

in general, as long as there is the presence of the largest cycle, Sout and m remain unchanged

as the density inside that cycle increases.

Proof. See the appendix.
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Proposition 4. Consider a rehypothecation network G of size N . Let θi = θ and A0
i = A0 (∀i).

If kouti > 0 (∀i) then equilibrium values of Sout and m are equal to the following upper limits:

Sout =
θ

1− (1− h)θ
NA0,

and

m =
1

1− (1− h)θ
.

Proof. See the appendix.

3.3 Network architecture and collateral creation

We now address the issue of how does the network structure more in general affects collateral

creation. We shall focus on three very different classes of network structures. These classes

represent general archetypes of networks in the literature, and they also capture some idealized

modes of organization of financial contracts in the market. The first class consists of the closed

k-regular graphs of size N , Greg , wherein each node has k in-coming neighbors as well as k out-

going neighbors. This archetype corresponds to a market where repo contracts are homogenously

spread across banks, so that each bank has exactly the same number of repos and of reverse repos.

We consider different types of closed regular graphs of varying levels of density 1
N−1 < p < 1.

Special cases of this structure are the cycle of size N (where p = 1
N−1) and the complete network

(p = 1), wherein each bank has a repo with every other bank in the network (and vice-versa)

and where the number of incoming and outgoing links is the same for all banks and equal to

N − 1. The second class consists of the random graphs Grg, in which there is a mild degree

of heterogeneity in the distribution of financial contracts across banks. Here, the probability

of a directed link (and thus of the existence of repo) between every two nodes is equal to the

density p (0 ≤ p ≤ 1) of the network. Notice that as p → 1 the random graph converges to the

complete graph. Finally, the third class we examine here consists of core-periphery networks,

Gcp, where (i) the number of nodes in the core, Ncore, is fixed; (ii) each node in the periphery

has only out-going links, and all point to nodes in the core; (iii) nodes in the core are also

randomly connected among themselves with the probability pcore (0 ≤ pcore ≤ 1), and there are

no directed links from the core to the periphery nodes. Notice that the latter type of structure

exacerbates heterogeneity in the distribution of financial contracts and it centralizes collateral

flows among nodes in the core. This structure is also interesting from an empirical viewpoint as

high concentration of collateral flows is often observed in actual markets (see e.g. Singh, 2011).

We begin our analysis of the three structures by characterizing the behaviour of endogenous
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collateral formation in the closed k-regular graphs.

Proposition 5. Let θi = θ and A0
i = A0 (∀i). A closed-k regular rehypothecation network Greg

of size N , and a density p = k
N−1 , always returns the same equilibrium values of total collateral

Sout
reg and of collateral multiplier mreg for any density 1

N−1 < p < 1. The equilibrium values are

given by the limits stated in Proposition 4.

The above statement follows directly from Proposition 3 above. A closed k-regular of density
1

N−1 already embeds the longest possible cycle that is possible to create in a network of size

N . Accordingly adding further links does not bring any change in equilibrium values of total

collateral and of the multipliers, which are always equal to the upper bounds stated in Propo-

sition 4. In contrast to the close k-regular graph, the random network and of core-periphery

networks display some variation in total collateral and in the multiplier with for increasing levels

of density. The following proposition characterizes the behavior of the latter two variables in

these two network structures.10

Proposition 6. Let θi = θ and A0
i = A0 (∀i), then:

1. A random graph Grg of size N creates more equilibrium collateral and a higher multiplier

with higher level of density p.

2. A core-periphery graph of Gcp of size N creates more equilibrium collateral and a higher

multiplier with higher level of density pcore of the core.

3. For any graph density 0 ≤ p ≤ 1, ∃ pth = pth(N,Ncore, p) such that a core-periphery graph

of Gcp creates more equilibrium collateral and a higher multiplier than random graphs Grg

for any pcore > pth.

4. As the overall density p in the random graph (or the density pcore of the core in the core-

periphery graph) goes to 1, the equilibrium values of total collateral and the multiplier

converge to the limits stated in Proposition 4.

Proof. See the appendix.

10In the next proposition we determine the equilibrium for bank’s collaterals in the case of an average system,
that is instead of considering each single sample of collateral networks we consider the expected value of the
amount of collateral for each banks, and solve only for a single average system. For all cases, numerical evidence
strongly supports the analytical results.
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Figure 4: Total collateral (Sout) as a function of density under different network structures. Notice the
different scale for the overal density in panel (c).
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Figure 5: Collateral multiplier (m) as a function of density under different network structures. Notice
the different scale for the overal density in panel (c).

The plots in Figures 4 and 5 help to visualize the results contained in the last two propo-

sitions. The plots show equilibrium values of total collateral and of the multiplier resulting

from numerical simulations11 using each of the three network topologies examined above (closed

k-regular, random graph, and core-periphery) and with different levels density (of pcore for the

core-periphery). First, the plots show that both total collateral and the multiplier do not change

with the level of density in the closed k-regular graph (plot (a) in both figures). In contrast,

both variables increase with the level of density in the random graph and in the core-periphery

network (respectively, panels (b) and (c) of the two figures), before eventually converging to

the same value of the close k-regular graph (and determined by the expressions in Proposition

4). The main intuition for the latter result is that increasing the level of density (in the overall

network or in the core) increases both the number and the length of cycles in the network12.

These two factors have a positive impact on endogenous collateral creation in the network, as

we explained in Section 3.2. However, when the longest possible cycle in the network (for the

random graph) or in the core (for the core-periphery graph) adding further links does not longer

11The numerical simulation is implemented with N = 50, h = 0.1, 1− θ = 0.1, and A0 = 100 for all banks.
12In addition, for the random graph, the number of nodes with positive out-degree also increases with density.
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increase endogenous collateral. Furthermore, both the third statement of Proposition 6 and the

plots in the figures indicate the core-perihery network generates a much higher total collateral

than the random graph already with small increases in density. For instance the inspection

of Figure 6 reveals that already with N = 50 banks in the network a tiny increase in overall

density (from 0.02 to 0.03) has the effect of more than doubling the value of the multiplier (from

2 to almost 5). In contrast, a much larger change in density is required to produce a similar

effect in the random graph. This result generalizes the insights discussed in the previous section

(cf. Proposition 1). Once all banks have positive out-degree and they are thus all contributing

with outflowing collateral, concentrating all collateral flows in a small cycle (like the one in the

core) already generates the largest possible total collateral. This result has also implications for

markets organization, as it indicates that concentrating collateral flows among few nodes has

great advantages for the velocity of collateral and thus for the overall liquidity of the market.

At the same time, in the next section we shall show that - when liquidity hoarding externalities

are present - networks with highly concentrated collateral flows are also more exposed to larger

collateral hoarding cascades following small local shocks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
density in the core (for core-periphery graphs)

0.02 0.025 0.03 0.035 0.04 0.045 0.05
overall density

0

1

2

3

4

5

m

under random  and core-periphery graphs

core-periphery
random graph

Figure 6: Collateral multiplier (m) as a function of network the density in the random graph and in the
core-periphery network. Notice the double scale for the overall network density and the density of links
within the core of the core-periphery network.

4 Value at Risk and Collateral Hoarding

So far we have worked with the assumption that non-hoarding rates {θi}Ni=1 were constant across

time and homogeneous across banks. This has simplified the analysis and it has allowed us to

highlight the role of the characteristics of network topology in determining collateral flows in the

financial system. At the same time, this hypothesis is also quite restrictive as banks’ hoarding

and non-hoarding might be responsive to the liquidity risk situation of banks and, accordingly,
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also by the level of available collateral (see e.g. Acharya and Merrouche, 2010; Berrospide, 2012;

de Haan and van den End, 2013). In addition, recent accounts of collateral dynamics (Singh,

2012) have documented the sizeable reduction in velocity of collateral in the aftermath of the

last financial crisis as a result of increased collateral hoarding by banks. To account for these

important phenomena in this section we extend the basic model presented in Section 2 to

introduce time-varying non-hoarding rates determined by liquidity risk considerations.

Again, to keep the model as simple as possible we abstract from many important aspects

concerning the liquidity position of the banks. We assume that all funding is secured. For every

bank j let NLj be its net liquidity position. Recall that the amount of pledgeable collateral

of bank j that can be used to get external funds with a haircut h is AC
j . At the same time,

if Lj 6= ∅, a fraction θj of this amount of collateral is already pledged (i.e. an amount of

ACout
= θjA

C
j ). The net liquidity position of the bank j is thus given by:

NLj = (1− h)(1 − θj)A
C
j (θ1, θ2, ..., θN , A0,G) − ǫj, (28)

where ǫj are payments due within the periods, i.e. liquidity shocks, which are assumed to be

a i.i.d. normally distributed random variable with mean µj and standard deviation σj. The

notation AC
j (θ1, θ2, ..., θN , A0,G) emphasizes the fact that the total collateral position of a bank

depends also on the fractions of non-hoarded collateral of all banks in the network G. Notice

that the above equation implies that the more borrowers of j hoard collateral, the lower is the

value of collateral AC
j , and thus the higher the need to hoard collateral for j.

Let us start by observing that if the liquidity shock is large enough, bank j defaults (i.e.

NLj < 0). This occurs when

ǫj > (1− h)(1− θj)A
C
j .

Given the assumption on the random variable ǫj, the default of j is an event occurring with

probability

prob.(NLj < 0) = prob.(ǫj > (1− h)(1 − θj)A
C
j ).

Furthermore, following Adrian and Shin (2010) and Adrian and Shin (2014), we assume that

each bank j employs a Value-at-Risk (VaR) strategy to determine the fraction 1−θj of collateral

to hoard, so that the above probability of default is not higher than a target (1 − cj) (where

0 < cj < 1). If we assume that returns on external assets held by j are higher than the repo

rate, then each bank j will decide the optimal fraction 1− θj such that

prob.(ǫj > (1− h)(1 − θj)A
C
j ) = 1− cj . (29)
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Given that ǫj are a i.i.d. normally distributed random variable we have

prob.(NLj < 0) = prob.(ǫj > (1− h)(1 − θj)A
C
j ) =

1

2
[1− erf(

(1 − h)(1 − θj)A
C
j − µj

σj
√
2

)], (30)

where erf is Gauss error function defined as

erf(x) =
1

π

∫ x

−x

e−t
2
dt. (31)

Under the VaR constraint bank j sets the share of hoarded collateral at the level θ∗j such

that
1

2
[1− erf(

(1− h)(1 − θj)A
C
j − µj

σj
√
2

)] = 1− cj (32)

⇔
erf(

(1− h)(1 − θj)A
C
j − µj

σj
√
2

) = 2cj − 1 (33)

⇔
θj = 1− σj

√
2argerf(2cj − 1) + µj

(1− h)AC
j

, (34)

where argerf is the inverse error function defined in (−1, 1) → R such that

erf(argerf(x)) = x. (35)

Equation (34) indicates that θj is a decreasing function of the VaR target cj , of the uncer-

tainty about the liquidity shock (captured by σj), of the mean of the liquidity shock µj , and of

the haircut rate h. Moreover, it is an increasing function of value of the collateral AC as well as

of the shares of non-hoarded collateral of other banks in the network. Denote

c0j = σj
√
2argerf(2cj − 1) + µj , (36)

we then obtain the following final expression for the optimal θj under the assumption of normally-

distributed liquidity shocks.

θj = 1−
c0j

(1− h)AC
j (θ1, θ2, ..., θN , A0,G) . (37)

Notice that the endogenous level of non-hoarding, θj, depends now not only on the uncer-

tainty about ǫj but also on the haircut rate h, as well as on the value of the collateral AC
j . The

interdependence between θj and AC
j implies that each bank will adjust its hoarding preference
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(i.e. hold more or less collateral) in anticipation of expected “losses” or “gains” in its total

amount of collateral. It also follows that a change in hoarding rates at bank j will induce a

change in hoarding rates at banks to which j is connected to.

We now investigate the existence of equilibria in non-hoarding rates. Let us start by noticing

that Equation (37) indicates that, for every bank j, if Lj 6= ∅, its hoarding can in general be

expressed as:

(1− θj) =
c0j

(1− h)AC
j (θ1, θ2, ..., θN , A0,G) , (38)

where the variable c0j defined by equation (36) captures the effects of uncertainty in ǫj on (1−θj).

Since θj ∈ [0, 1], it follows that AC
j (θ1, θ2, ..., θN , A0,G) must be in [

c0j
1−h ,∞]. From equation (38),

it follows that

(1− h)θj =
(1− h)AC

j − c0j

AC
j

. (39)

Equivalently,

(1− h)
θj
koutj

=
(1 − h)AC

j − c0j

AC
j k

out
j

. (40)

Recall that under the assumption that banks homogenously spread collateral across their

lenders, we have

wi←j = θjsi←j =
θj
koutj

, ∀i ∈ Lj 6= ∅.

Therefore,

(1− h)wi←j =
(1− h)AC

j − c0j

AC
j k

out
j

, ∀i ∈ Lj 6= ∅.

Next, denote by W̃V aR = {w̃i←j} the matrix with size (NxN) where







w̃i←j =
(1−h)AC

j −c
0
j

AC
j koutj

, ∀i ∈ Lj 6= ∅

w̃i←j = 0, elsewhere
(41)

The level of collateral AC
i is then obtained by solving the following equation

AC
i = A0

i +
∑

j∈Bi

w̃i←jA
C
j ∀i = 1, 2, ...N. (42)

Finally, the non-hoarded rates θi can be obtained by substituting AC
i into equation (39).

In general, the solution to the system composed by the system of equations in (42) might not

be unique. However, the following proposition establishes sufficient conditions for the uniqueness
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of the solution.

Proposition 7. Let b̃ be a column vector size Nx1, given by

b̃ = A0 − SC0. (43)

Define the matrix Ã = {ãi←j} with size NxN as

Ã = I − (1− h)S. (44)

If 0 < h < 1 and Ã−1b̃ ≥ C0

1−h where C0 = [c01, c
0
2, ..., c

0
N−1, c

0
N ]T is the column vector capturing

the effects of the net liquidity shock on hoarding preferences, then the system (42) has the unique

solution13:

AC = Ã−1b̃. (45)

Proof. See the appendix.

Finally, by substituting AC in (45) into equation (39), we obtain the solution to the equilib-

rium rates of non-hoarded collateral as follows

θj = 1−
c0j

(1− h)Ã−1b̃
. (46)

In the next section, we use the results obtained from the above proposition about the determi-

nation of equilibrium banks’ collateral AC
j and non-hoarding rates θj to study the emergence

of collateral hoarding cascades under different network structures when some banks are hit by

uncertainty shocks, captured by an increase in the variable c0j .

5 Collateral hoarding cascades

We now use the VaR collateral hoarding model developed in the previous section to study how

different structures of rehypothecation networks react when a fraction of banks in the network

is hit by adverse shocks. In particular we focus on uncertainty shocks14 that cause the variable

c0i in Equation (37) to increase to c1i = c0i (1 + c̃0) for some banks i, where c̃0 ≥ 0. The rise

in uncertainty will lead those banks to increase their hoarding of collateral. In turn, this will

13Throughout this paper, for any two vectors X and Y of size n, then X ≥ Y if Xi ≥ Yi,∀i = 1, ...n.
14We also performed analysis of the impact of aggregate shocks to the value of collateral. However, results and

the dynamics were similar to the one reported in the paper.
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trigger a cascade of hoarding effects at banks that are either directly or indirectly connected to

the banks initially it by the uncertainty shock. Indeed, higher hoarding at bank i will also cause

a loss in the collateral flowing into bank’s i neighbors. As a consequence, the latter banks will

also increase their hoarding rates, causing further loss in collateral inflows at other banks in the

system and thus further adjustments in hoarding rates at other banks in the system. The final

result of the foregoing cascade will be a new equilibrium characterized, in general, by a lower

level of total collateral in the system. On the grounds of the results stated in Proposition 7 we

can determine the new equilibrium vector of collateral in the aftermath of the local uncertainty

shock. More formally, let C1 = [c11, c
1
2, ..., c

1
N−1, c

1
N ]T the new vector of uncertainty factors in the

aftermath of the local uncertainty shock. By substituting C1 into equations (45) and (43), we

obtain the new equilibrium solution, AC1
, to AC at the end of the hoarding cascade as

AC1
= Ã−1[A0 − SC1]. (47)
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Figure 7: Collateral multiplier and collateral losses following local uncertainty shocks, in different network
structures and for different overall density levels. In each panel, the left y-axis shows the ratio between
total outflowing collateral and total proprietary collateral Sout/S0 (solid line). The right y-axis shows
total collateral Sout after shock (relative to the pre-shock level, dashed line). Different network structures
are represented by different colors and markers: closed k-regular graph (black, no marker), random graphs
(green, squares), core-periphery graphs (magenta, diamonds).

Let us now investigate how after-shock equilibrium collateral of behaves in different networks.

The plots in Figure 7 show the pre-shock levels of the ratio between equilibrium total outflowing

collateral Sout and total proprietary collateral S0 (left scale). Moreover, they show equilibrium

total ouflowing collateral after the shock relative to its pre-shock value (right-scale). The two

variables are plotted as functions of network density and for the three different structures exam-

25



ined in Section 3.3, namely the closed k-regular network Greg, the random network Grg, and the

core-periphery network Gcp. The plots refers to numerical investigations of equilibrium collateral

before and after a fraction f = 20% of banks in the network experiences a 50% increase in the

uncertainty factor (so that c̃0 = 0.5) and are performed under two different shocks scenarios.

In the first of them (“random attack”, left-side plots) the banks hit by the uncertainty shock

are randomly selected. In the second scenario (“targeted attack”, right-side plots) the shocked

banks are selected according to their centrality15 in the network (in descending order).16 Notice

that the second scenario is relevant only for the random network and for the core-periphery, as

all nodes have the same centrality in the closed k-regular network.

The analysis of Figure 7 reveals first that - before the shock - the behaviour of total collateral

under the three network structures is the same as the one discussed in Section 3.3 for the case of

constant hoarding rates17. Second, the effects of the local uncertainty shock vary with density

only in the random network and in the core-periphery network. In contrast, the loss in total

collateral does not change with density in the closed k-regular graph. Third, the overall impact

of the shock is very different across the scenarios considered. In particular, the maximal impact

is quite small (only a 10% loss) for all the three structures in the random attack scenario. In

addition, all the structure generate the same total loss as overall density converges to 1. In

contrast, in the targeted attack scenario, the total loss generated in presence of a core-periphery

network is much larger than in the other network structures (up to 50% of the initial total

collateral value) and increases with density.

Thus, the core-periphery network generates very large losses in collateral when central nodes

are hit by local uncertainty shocks. Recall that those nodes are precisely the one concentrating

collateral flows, and thus generating the large increases in endogenous collateral stressed in

Section 3.3. It follows that the core-periphery network displays a trade-off between liquidity

and systemic (liquidity) risk. On the one hand, concentrating collateral flows generates large

gains in market liquidity already with a low density of the network. On the other hand, high

concentration produces large liquidity losses when small local shock come across. Indeed, by

concentrating collateral flows, more central nodes have also a larger impact on collateral at

the peripheral nodes that have connections with them, and they thus trigger a must stronger

adjustment in hoarding rates thereafter. Notice that these concentration effects underlying the

large liquidity losses in the core-periphery network are much smaller in the random graph (where

15We use “PageRank” centrality (see Newman, 2010; Battiston et al., 2012, for more details). However, the
main conclusions still hold when the degree centrality is employed.

16The other parameters of the simulation where set so that the number of banks is N = 50, and h = 0.1,
A0

i = 100, 1− θi = 0.1 and c0i = 1 for all banks.
17Indeed, all the results of Propositions 5 and 6 hold also in the model where hoarding rates are determined

according to a VaR criterion. For the sake of brevity, we do not report here these propositions and the related
proofs. However, they are available from the authors upon request.
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link heterogeneity is small). In addition, they are completely absent in the closed k-regular graph,

where all nodes have the same centrality.

To conclude, it is useful to stress that the presence of liquidity hoarding externalities is

central for the above results about the trade-off observed in the core-periphery networks. In

other terms, targeted local shocks would have a small impact in core-periphery networks if

hoarding rates were not responsive to changes in the liquidity positions of banks. To understand

why, notice that with constant hoarding rates a loss in collateral value or an exogenous increase

in hoarding rates at one bank i will only have a nth-order effect at other banks directly or

indirectly connected to it. And this is because the initial shock is dampened by haircut rates

and hoarding rates at other banks along the chain. For instance, in the very simple case of

the cycle (i.e. closed chain) displayed in Figure 1 (c) a shock to outflowing collateral at node

1 (A0out
1 ) will have an effect only of order θ3(1 − h)θ2(1 − h) on outflowing collateral at node 3

(see also Equation (22)). In contrast, in the case of VaR-determined hoarding rates, the effect

can be large because it is reinforced by the process of agents’ revising their hoarding rates at

each step along the rehypothecation chain.18

6 Concluding remarks

We have introduced and analyzed a simple model to study collateral flows over a network of

repo contracts among banks. We have assumed that, to obtain secured funding, banks may

pledge their proprietary collateral or re-pledge the collateral obtained by other banks via reverse

repos. The latter practice is known as “rehypothecation” and it has clear advantages for market

liquidity as it allows banks to secure more transactions with the same set of collateral. At the

same time, re-pledging other banks’ collateral may also raise liquidity risk concerns, as several

banks rely on the same collateral for their repo transactions. We have focused on investigating

which characteristics of rehypothecation networks are key in order to increase the velocity of

collateral flows, and thus increase the liquidity in the market. We have first assumed that

banks hoard a constant fraction of their collateral. Under this hypothesis we have shown that

characteristics of the network like the length of re-pledging chains, the presence of cyclic chains

or the direction of collateral flows are key determinant of the level of endogenous collateral in the

system, defined as a overall level of collateral larger than the initial proprietary endowments of

banks. In particular, we have shown that the level of endogenous collateral increases with chains’

length. However, cyclic chains allow, ceteris paribus, for a larger endogenous collateral than a-

cyclic chains of the same length. Finally, we have shown that endogenous collateral is large

18In particular, in the example of Figure 1 (c) with VaR-based hoarding rates the effect of a shock to A0out

1 on

the outflowing collateral of node 3 be of the order (1− h)2
(

θ3θ2 + θ3
∂θ2

∂A0out

1

+ θ2
∂θ3

∂A0out

1

)

.
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already with small cyclic chains if the banks involved centralize collateral flows. The foregoing

features of network topology underlie the results about the determination of total collateral

in more general network architectures. In particular, we showed that total collateral increases

with density in the random network (displaying a mild heterogeneity in collateral flows across

banks) and in the core-periphery networks (displaying high concentration of collateral flows).

Nevertheless, core-periphery networks generate larger collateral than random networks already

with smaller increase in the density of the network. The foregoing results have implications

for the micro-structure of markets where collateral is important, as they highlight a new factor

besides network density - i.e. concentration in collateral flows - that allows for significant gains

in market liquidity. A market with highly concentrated collateral flows generates higher velocity

of collateral, as it is thus more liquid, even if banks are not tied by a dense network of financial

contracts.

Furthermore, we have extended the model to allow for endogenous levels of hoarding rates

that depend on the liquidity position of each bank in the network. More precisely, we assumed

that banks set their hoarding rates by adopting a Value-at-Risk criterion aimed at minimizing

the risk of liquidity defaults. We have shown that, in these framework, hoarding rates of each

single bank are in general dependent on other banks’ rates and collateral levels, a feature which

introduces important collateral hoarding externalities in the analysis. We have then used the

above framework to study the overall impact on collateral flows of local adverse shocks leading

to an increase in payments’ uncertainty at some banks in the market, in particular investigat-

ing how the response may vary with the topology of the rehypothecation network. We have

highlighted that core-periphery networks generate larger losses in overall collateral compared

to other network structures (closed k-regular network, random network) when the nodes ex-

periencing the shock are the most central nodes in the network, i.e. the ones concentrating

collateral flows. This result has interesting implications for the regulatory analysis of markets

with collateral, as it shows that the same network structures allowing for the largest increase

in collateral velocity - i.e. core-periphery networks - are also the ones more exposed to largest

collateral hoarding cascades in case of local shocks. A trade-off between liquidity and systemic

(liquidity) risk thus emerges in those networks. In addition, our results also suggest that - in

the presence of rehypothecation - regulatory liquidity and collateral requirements imposed to

banks need to account for the structure of the network of lending contracts across banks. In

particular, such requirements should both account for the systemic role (e.g. centrality) of the

banks in the collateral flow network, as well as account for the whole topology of the network

(e.g. for the presence of hierarchical structures such as the core-periphery architecture).

Our work could be extended at least in three ways. First, in these work we have abstracted

from many important aspects of real-world secured lending markets, such as heterogeneous col-
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lateral quality and endogenous haircut rates. Introducing these elements could probably enrich

our results. In particular, in the model the haircut rate affects the extent of rehypothecation.

Accordingly, endogenous haircut rates that reflect different levels of counterparty risk can be

an additional source of externalities in the model. Second, we have used the Value at Risk

criterion to determine hoarding rates in our model. However, hoarding rates may also result

from liquidity requirements imposed to banks. It would then be interesting to extend the model

to study how different requirements that have been proposed so far may impact on market liq-

uidity in presence of rehypothecation, and how these requirements should be designed in order

to minimize the liquidity-systemic risk trade-off that we highlighted above. Finally, we have

focused on bilateral repo contracts. However, it would be interesting to study how our results

might change in presence of try-party repo structures, and in the presence of central clearing

counterparties that interact with banks re-using their collateral.
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Guido Caldarelli, for valuable comments and discussions that helped to improve the paper. We also thank
participants to the various conferences where earlier versions of this paper were presented. These include the
Second Conference on Network Models and Stress Testing for Financial Stability, Banco de México, September
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7 Appendix: Proofs of Propositions

Proof of proposition 1

Let us start by remarking that, in all cases shown in Figure (2), we have kout
i > 0 (∀i = 1, 2, 3, 4, 5), and thus

δi = 1 (∀i = 1, 2, 3, 4, 5) and






























ACout

1,t=1 = A0out

1 = θ1A
0
1

ACout

2,t=1 = A0out

2 = θ2A
0
2

ACout

3,t=1 = A0out

3 = θ3A
0
3

ACout

4,t=1 = A0out

4 = θ4A
0
4

ACout

5,t=1 = A0out

5 = θ5A
0
5

(48)

In the case of Figure 2 (a), the dynamics of {ACout

i,T }5i=1 will follow































ACout

1,T+1 = A0out

1

ACout

2,T+1 = A0out

2 + (1− h)θ2A
Cout

1,T

ACout

3,T+1 = A0out

3 + (1− h)θ3A
Cout

2,T + (1− h)θ3A
Cout

5,T

ACout

4,T+1 = A0out

4 + (1− h)θ4A
Cout

3,T

ACout

5,T+1 = A0out

5 + (1− h)θ5A
Cout

4,T

(49)

We obtain














ACout

1,T+1

ACout

2,T+1

ACout

3,T+1

ACout

4,T+1

ACout

5,T+1















= {I + [(1− h)Ma]
1 + [(1− h)Ma]

2 + ...+ [(1− h)Ma]
T }
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2

A0out
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A0out
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
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, (50)

with

Ma =













0 0 0 0 0
θ2 0 0 0 0
0 θ3 0 0 θ3
0 0 θ4 0 0
0 0 0 θ5 0













.

In the case of Figure 2 (b), the length of the closed cycle is 4, and now the dynamics of {ACout

i,T }5i=1 is governed
by the following system
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(51)

We obtain
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with

Mb =













0 0 0 0 0
θ2 0 0 0 θ2
0 θ3 0 0 0
0 0 θ4 0 0
0 0 0 θ5 0













.

In the third case, with the the closed cycle of length 5 (Figure 2 (c)), the dynamics of {ACout

i,T }5i=1 is governed
by the following system
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2

A0out

3

A0out

4

A0out

5















, (54)

with

Mc =













0 0 0 0 θ1
θ2 0 0 0 0
0 θ3 0 0 0
0 0 θ4 0 0
0 0 0 θ5 0













.

It can be easily shown that given {θi}i = θ (∀i) (i.e. under the condition of homogeneous hoarding), all panels

α = a, b, c in Figure (2) create the same amount of Sout
α,t =

∑i=5
i=1 A

Cout

i,t for all t ≥ 1. This is because in all cases
of α we have the same dynamics Sout

α,t+1 = Sout
α,1 + (1− h)θSout

α,t and they also all have the same initial aggregate

amount of outgoing collateral, i.e. Sout
α,1 = θ

∑i=5
i=1 A

0
i . In addition, in all panels of Figure (2) we have that

limt→∞ Sout
α,t =

∑i=5
i=1

A0
out

i

1−(1−h)θ
=

θ
∑i=5

i=1
A0

i

1−(1−h)θ
. Thus, at the fixed point solution to ACout

, m is equal to 1
1−(1−h)θ

.

Proof of proposition 2 In the case represented by Figure 3 (a), kout
5 = 0 → δ5 = 0, therefore































ACout

1,t=1 = A0out

1 = θ1A
0
1

ACout

2,t=1 = A0out

2 = θ2A
0
2

ACout

3,t=1 = A0out

3 = θ3A
0
3

ACout

2,t=1 = A0out

4 = θ4A
0
4

ACout

3,t=1 = A0out

5 = 0

(55)
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The dynamics of {ACout

i,T }5i=1 will follow



































ACout

1,T+1 = A0out

1 + (1− h)θ1
ACout

3,T

2

ACout

2,T+1 = A0out

2 + (1− h)θ2A
Cout

1,T

ACout

3,T+1 = A0out

3 + (1− h)θ3A
Cout

2,T

ACout

4,T+1 = A0out

4 + (1− h)θ4
ACout

3,T

2

ACout

5,T+1 = 0

(56)

It follows that















ACout

1,T+1

ACout

2,T+1

ACout

3,T+1

ACout

4,T+1

ACout

5,T+1















= [I + [(1− h)Ma]
1 + [(1− h)Ma]

2 + ...+ [(1− h)Ma]
t]















A0out

1

A0out

2

A0out

3

A0out

4

0















, (57)

with

Ma =













0 0 θ1
2

0 0
θ2 0 0 0 0
0 θ3 0 0 0

0 0 θ4
2

0 0
0 0 0 0 0













.

In the case represented by Figure 3 (b), we still have that































ACout

1,t=1 = A0out

1 = θ1A
0
1

ACout

2,t=1 = A0out

2 = θ2A
0
2

ACout

3,t=1 = A0out

3 = θ3A
0
3

ACout

2,t=1 = A0out

4 = θ4A
0
4

ACout

3,t=1 = A0out

5 = 0

(58)

The dynamics of {ACout

i,T }5i=1 will follow



































ACout

1,T+1 = A0out

1 + (1− h)θ1
ACout

4,T

2

ACout

2,T+1 = A0out

2 + (1− h)θ2A
Cout

1,T

ACout

3,T+1 = A0out

3 + (1− h)θ3A
Cout

2,T

ACout

4,T+1 = A0out

4 + (1− h)θ4A
Cout

3,T

ACout

5,T+1 = 0

(59)

We obtain















ACout

1,T+1

ACout

2,T+1

ACout

3,T+1

ACout

4,T+1

ACout

5,T+1















= [I + [(1− h)Mb]
1 + [(1− h)Mb]

2 + ...+ [(1− h)Mb]
t]















A0out

1

A0out

2

A0out

3

A0out

4

0















, (60)
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with

Mb =













0 0 0 θ1
2

0
θ2 0 0 0 0
0 θ3 0 0 0
0 0 θ4 0 0
0 0 0 0 0













.

Furthermore, in the case represented by Figure 3 (c), as shown in (48) and (54), we have































ACout

1,t=1 = A0out

1 = θ1A
0
1

ACout

2,t=1 = A0out

2 = θ2A
0
2

ACout

3,t=1 = A0out

3 = θ3A
0
3

ACout

2,t=1 = A0out

4 = θ4A
0
4

ACout

3,t=1 = A0out

5 = θ5A
0
5

Thus














ACout

1,T+1

ACout

2,T+1

ACout

3,T+1

ACout

4,T+1

ACout

5,T+1















= {I + [(1− h)Mc]
1 + [(1− h)Mc]

2 + ...+ [(1− h)Mc]
T }















A0out

1

A0out

2

A0out

3

A0out

4

A0out

5















,

with

Mc =













0 0 0 0 θ1
θ2 0 0 0 0
0 θ3 0 0 0
0 0 θ4 0 0
0 0 0 θ5 0













.

We can see that the main difference between Figure 3 (a) and Figure 3 (b) is mathematically expressed by the
difference between Ma and Mb: in the former case, a part of the initial outgoing collateral from the bank 4 is
flowing into the cycle, while in the later case all outgoing collateral from the bank 4 will stuck in the box of the
bank 5 and can not be re-used. In addition, comparing these cases to the one represented by Figure 3 (c), we
can see that in Figure 3 (c) the initial outgoing collateral from each bank can be re-used infinitely. Defining Sout

a,t ,
Sout
b,t , and Sout

c,t are respectively the total amount of outgoing collateral of all banks in Figures 3 (a), (b), and (c)
after t times of using and re-using collateral, it can be proved by induction that Sout

a,t < Sout
b,t < Sout

c,t (∀t ≥ 2). This
implies that in contrast to the example illustrated in Figure (2), now longer cycles will generate more endogenous
collateral.

Proof of proposition 3.

To illustrate this proposition, without loss of generality we show an example of closed cycle of length N = 5
in Figure (8). We can add arbitrary links or cycles of length k = 3, 4 to the initial graph. In all examples shown
in Figure (8), we always have that kout

i > 0 for every bank i. Proposition (3) is therefore just a special case of
Proposition 4, of which we will provide the proof later.
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(a) Add closedcyclesof length3 

(b) Add closedcyclesof length4 

Figure 8: Add different cycles (with length k = 3, ...N − 1) to an initial closed graph of size N . An
example is illustrated with N = 5 nodes. In the panel (a), we add cycles of length 3. In the panel (b),
we add cycles of length 4.

Proof of proposition 4.

First, since kout
i > 0, hence δi = 1 (∀i). Accordingly, we have ACout

i = θAC
i and A0out

i = θA0
i . Therefore,

m =

∑i=N

i=1 ACout

i
∑i=N

i=1 A0out

i

=
θ
∑i=N

i=1 AC
i

θ
∑i=N

i=1 A0
i

=

∑i=N

i=1 AC
i

∑i=N

i=1 A0
i

.

In addition, since each column19 of the matrix of shares S = {si←j}NxN is summing to 1 and thus (1 −
h)

∑

i6=j
wi←j = (1− h)θ (∀j), at the fixed point solution to AC , we always have

i=N
∑

i=1

A
C
i = (1− h)θ

i=N
∑

i=1

A
C
i +

i=N
∑

i=1

A
0
i .

Equivalently,
∑i=N

i=1 AC
i

∑i=N

i=1 A0
i

=
1

1− (1− h)θ
.

Hence,

m =

∑i=N

i=1 ACout

i
∑i=N

i=1 A0out

i

=
1

1− (1− h)θ
. (61)

Proof of proposition 6.

Recall that under the basic model with homogeneous θ we have

A
C
i = A

0
i + (1− h)θ

∑

j∈Bi

si←jδjA
C
j ,

19Now all columns are non-zero since kout
i > 0 for all i.
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where
{

δj = 1, if kout
j > 0

δj = 0, if kout
j = 0

Therefore,

E[AC
i ] = A

0
i + (1− h)θ E[

∑

j∈Bi

si←jδjA
C
j ], (62)

where the notation E[X] stands for the expectation of X. With the shares si←j defined as in equation (1) in the
main text, we have

E[AC
i ] = A

0
i + (1− h)θ

∑

j∈Bi

P (kin
j > 0)E[

ai←j

kout
j

A
C
j ], (63)

with P (kout
j = 0) is the probability that kout

j = 0 and P (kout
j > 0) is the probability that kout

j > 0.
Under random graphs with a probability p of a link between any two nodes (i.e. P (ai←j = 1) = p), for every j

it is easy to show that P (kout
j = 0) = P (kin

j = 0) = (1−p)(N−1) and P (kout
j > 0) = P (kin

j > 0) = 1−(1−p)(N−1).
In addition, E[kout

j ] = E[kin
j ] = p(N − 1). That leads to

E[AC
i ] = A

0
i + [1− (1− p)(N−1)](1− h)θ

∑

j 6=i

E[P (ai←j = 1)
ai←j

kout
j

A
C
j ]. (64)

From equation (64) we have20

E[AC
i ] ≈ A

0
i + [1− (1− p)(N−1)](1− h)θ

1

N − 1

∑

j 6=i

E[AC
j ] (65)

and the following approximation21

E[

N
∑

i=1

A
C
i ] ≈

∑N

i=1 A
0
i

1− [1− (1− p)(N−1)](1− h)θ
. (66)

Thus,

lim
p→1

E[
∑N

i=1 A
C
i ]

∑N

i=1 A
0
i

=
1

1− (1− h)θ
. (67)

Note that
{

E[ACout

i ] = P (kout
i > 0)θ E[AC

i ] = (1− (1− p)(N−1))θE[AC
i ]

E[A0out

i ] = P (kout
i > 0)θA0

i = (1− (1− p)(N−1))θA0
i

(68)

Consequently,

E[

N
∑

i=1

A
0out

i ] = [1− (1− p)(N−1)]θ

N
∑

i=1

A
0
i (69)

and

E[
N
∑

i=1

A
Cout

i ] ≈
[1− (1− p)(N−1)]θ

∑N

i=1 A
0
i

1− [1− (1− p)(N−1)](1− h)θ
. (70)

Hence,

E[m] ≈
E[
∑N

i=1 A
Cout

i ]

E[
∑N

i=1 A
0out

i ]
=

1

1− [1− (1− p)(N−1)](1− h)θ
(71)

and

lim
p→1

E[
∑N

i=1 A
Cout

i ]

E[
∑N

i=1 A
0out

i ]
= lim

p→1

1

1− [1− (1− p)(N−1)](1− h)θ
=

1

1− (1− h)θ
. (72)

20We use the approximation E[XY ] ≈ E[X]E[Y ].
21We use the approximation E[X

Y
] ≈ E[X]

E[Y ]
.
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Moreover, we can easily show that the approximations for E[
∑N

i=1 A
C
i ], E[

∑N

i=1 A
0out

i ], and E[m] are increasing
functions of the network density p. In addition, given p in (0, 1], these measures are also increasing functions of
the size of the network, N .

We now proceed with proving the second part of the proposition. We consider a core-periphery graphs in
which: (i) the number of nodes in the core, Ncore, is fixed; (ii) each node in the periphery has only out-going
links, and all point to nodes in the core; (iii) each node in the core are also randomly connected to each other
with the probability pcore, and there are no directed links from the core to the periphery nodes.

To begin, we first consider the behavior of nodes in the periphery part (Per). For every node j in the periphery,
we have

{

kout
j ≥ 1

δj = 1

and
{

ACout

j = A0out

j = θA0
j

AC
j = A0

j

Therefore,
∑

j∈Per

A
Cout

j = θ
∑

j∈Per

A
0
j (73)

and
∑

j∈Per

A
C
j =

∑

j∈Per

A
0
j . (74)

Equations (73) and (74) imply that the aggregate amounts of in-flowing and out-going collateral of all nodes in
the periphery remain constant during rehypothecation process. This observation is intuitive since we assume that
periphery banks are purely borrowers and therefore they do not receive collateral from other banks.

Moving on to the core part, for every bank i in the core part (Core) we have

A
C
i = A

0
i + (1− h)θ

∑

j∈Per

si←jδjA
C
j + (1− h)θ

∑

j∈Core

si←jδjA
C
j . (75)

Taking the expectation from both sides, we have

E[AC
i ] = A

0
i + (1− h)θ

∑

j∈Per

si←jA
0
j + (1− h)θ E[

∑

j∈Core

si←jδjA
C
j ]. (76)

Defining

Ã
0
i = A

0
i + (1− h)θ

∑

j∈Per

si←jA
0
j , (77)

then we have
E[AC

i ] = Ã
0
i + (1− h)θ E[

∑

j∈Core

si←jδjA
C
j ]. (78)

Equations (77) and (75) respectively imply two important characteristics of the rehypothecation of collateral
under the considered core-periphery structure, i.e. the concentration into the core part and the reuse of collateral
among banks in the core.

In addition, since each non-zero column of the matrix of shares S = {si←j}NxN is summing to 1, it is easy
to show that

∑

i∈Core

Ã
0
i =

∑

i∈Core

A
0
i + (1− h)θ

∑

j∈Per

A
0
j . (79)

Since nodes in the core are assumed to be randomly connected with the density pcore, using the results
obtained from random graphs we have

E[
∑

i∈Core

A
C
i ] =

∑

i∈Core Ã
0
i

1− [1− (1− p)(Ncore−1)](1− h)θ
. (80)
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Equations (74) and (80) lead to

E[

N
∑

i=1

A
C
i ] = E[

∑

i∈Per

A
C
i ] + E[

∑

i∈Core

A
C
i ] =

∑

i∈Per

A
0
j +

∑

i∈Core Ã
0
i

1− [1− (1− pcore)(Ncore−1)](1− h)θ
. (81)

Note that, for every node i in the core part
{

E[ACout

i ] = P (kout
i > 0)θ E[AC

i ] = [1− (1− pcore)
(Ncore−1)]θ E[AC

i ]

E[A0out

i ] = P (kout
i > 0)θA0

i = [1− (1− pcore)
(Ncore−1)]θA0

i

(82)

Therefore

E[
∑

i∈Core

A
Cout

i ] =
[1− (1− pcore)

(Ncore−1)]θ
∑

i∈Core Ã
0
i

1− [1− (1− pcore)(Ncore−1)](1− h)θ
(83)

and
E[

∑

i∈Core

A
0out

i ] = [1− (1− pcore)
(Ncore−1)]θ

∑

i∈Core

A
0
i . (84)

From (73) and (83) we have

E[
N
∑

i=1

A
Cout

i ] = E[
∑

j∈Per

A
Cout

j ] + E[
∑

i∈Core

A
Cout

i ] = θ
∑

j∈Per

A
0
j +

[1− (1− pcore)
(Ncore−1)]θ

∑

i∈Core Ã
0
i

1− [1− (1− pcore)(Ncore−1)](1− h)θ
, (85)

which can be simplified as

E[
N
∑

i=1

A
Cout

i ] =
θ
∑

j∈Per A
0
j + [1− (1− pcore)

(Ncore−1)]θ
∑

i∈Core A
0
i

1− [1− (1− pcore)(Ncore−1)](1− h)θ
(86)

by substituting Ã0
i in equation (79) into equation (85).

Moreover, the expectation of the aggregate amount of initial out-going collateral is

E[
N
∑

i=1

A
0out

i ] = E[
∑

j∈Per

A
0out

j ] + E[
∑

i∈Core

A
0out

i ] = θ
∑

j∈Per

A
0
j + [1− (1− pcore)

(Ncore−1)]θ
∑

i∈Core

A
0
i . (87)

As results,

E[m] ≈
E[
∑N

i=1 A
Cout

i ]

E[
∑N

i=1 A
0out

i ]
=

1

1− [1− (1− pcore)(Ncore−1)](1− h)θ
(88)

and

lim
pcore→1

E[
∑N

i=1 A
Cout

i ]

E[
∑N

i=1 A
0out

i ]
=

1

1− (1− h)θ
. (89)

Again, it can be shown that E[
∑N

i=1 A
C
i ], E[

∑N

i=1 A
0out

i ] and the approximation for E[m] are increasing
functions of the density of the core pcore. In addition, these three measures are also increasing functions of the
size of the core part, Ncore, given pcore in (0, 1]. Comparing the multiplier estimated for core-periphery graphs,
as in equation (88) and with the one estimated for random graphs as in equation (71), we notice that the former

is always larger than the latter, as long as pcore > 1− (1− p)
N−1

Ncore−1 = pth, thus verifying the third part of the
proposition. Finally, by inspecting equations (72) and (89) we verify the fourth and final part of the proposition.

Proof of proposition 7.

We will now provide detailed derivations for the equilibrium existence to non-hoarded parameters determined
under the Value-at-Risk strategy. To begin, let us start with the following definitions:

Definition 1. For each column vectorX = [X1, X2, ..., XN−1, XN ]T ∈ R
N
+ , X ≥ 1

(1−h)
C0 (where C0 = [c01, c

0
2, ..., c

0
N−1, c

0
N ]T ),
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the elements of the matrix W̃VaR(X) (size NxN) is defined as






W̃VaR
i←j =

(1−h)Xj−c0j

Xjk
out
j

, ∀i ∈ Lj 6= ∅

W̃VaR
i←j = 0, elsewhere

(90)

We now show that the following system of equations

X = A
0 + W̃VaR(X)X (91)

has a single unique solution if 0 < h < 1 and Ã−1b̃ ≥ C0

1−h
, where b̃ is a column vector size Nx1, with

b̃ = A
0 − SC0 (92)

and
Ã = I − (1− h)S , (93)

with the matrix of shares, S , is defined as in equation (1) in the main text.
Notice that

X = A
0 + W̃VaR(X)X

⇔
Xi = A

0
i +

∑

j 6=i

ai←j

kout
j

[(1− h)Xj − c
0
j ],∀i = 1, 2, ...N (94)

⇔

A
0
i −

∑

j 6=i

ai←j

kout
j

c
0
j = Xi −

∑

j 6=i

(1− h)ai←j

kout
j

Xj ,∀i = 1, 2, ...N. (95)

Equivalently,
b̃ = ÃX. (96)

If Ã is an invertible matrix, system (96) has a single unique solution

X = Ã−1
b̃. (97)

We now show the invertibility of Ã by reductio ad absurdum. Suppose that Ã is not invertible, then det(Ã) = 0.
Note that Ã = I − (1− h)S therefore det(Ã) = 0 if and only if 1

1−h
(> 1) is an eigenvalue of S . However, since

each non-zero column of S is summing to 1, according to Perron-Frobenius theorem, the largest eigenvalue of S
can not be larger than 1.
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