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November 24, 2020

Abstract

Given an arbitrary function in H(div), we show that the error attained by the global-best ap-
proximation by H(div)-conforming piecewise polynomial Raviart–Thomas–Nédélec elements under
additional constraints on the divergence and normal flux on the boundary, is, up to a generic constant,
equivalent to the sum of independent local-best approximation errors over individual mesh elements,
without constraints on the divergence or normal fluxes. The generic constant only depends on the
shape-regularity of the underlying simplicial mesh, the space dimension, and the polynomial degree
of the approximations. The analysis also gives rise to a stable, local, commuting projector in H(div),
delivering an approximation error that is equivalent to the local-best approximation. We next present
a variant of the equivalence result, where robustness of the constant with respect to the polynomial
degree is attained for unbalanced approximations. These two results together further enable us to
derive rates of convergence of global-best approximations that are fully optimal in both the mesh size
h and the polynomial degree p, for vector fields that only feature elementwise the minimal necessary
Sobolev regularity. We finally show how to apply our findings to derive optimal a priori hp-error
estimates for mixed and least-squares finite element methods applied to a model diffusion problem.

Keywords. best approximation, piecewise polynomial, localization, H(div) Sobolev space, Raviart–
Thomas–Nédélec space, minimal regularity, optimal error bound, commuting projector, mixed finite
element method, least-squares method, a priori error estimate.

1 Introduction

Interpolation operators that approximate a given function with weak gradient, curl, or divergence by a
piecewise polynomial of degree p are fundamental in numerical analysis. Typically, this is done over a
computational domain Ω covered by a mesh T with characteristic size h. The canonical interpolation
operators associated with the degrees of freedom commute with the appropriate differential operators
and they are projectors, i.e., they leave the interpolated function invariant if it is already a piecewise
polynomial; the term “commuting projector” is commonly used in the literature in such a case. They
are also local (defined independently on each element K of the mesh T ) and they lead to optimal
approximation error bounds with respect to the mesh size h. However, the canonical interpolation
operators have two main deficiencies. Firstly, they can act on a given function only if it possesses more
regularity beyond the minimal H1, H(div), or H(curl). And secondly, they are not well-suited to derive
approximation error bounds that are optimal in the polynomial degree p.
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1.1 Interpolation operators and hp-approximation

The projection-based interpolation operators, see Demkowicz and Buffa [18], Demkowicz [17], and the
references therein, lead to optimal approximation properties in the mesh size h and quasi-optimal approx-
imation properties in the polynomial degree p (up to logarithmic factors). They were derived under a
conjecture of existence of commuting and polynomial-preserving extension operators from the boundary
of the given element K to its interior which was later established by Demkowicz et al. in [19, 20, 21];
the approximation results are summarized in [21, Theorem 8.1]. Thus, these operators essentially lift the
second drawback of the canonical interpolation operators described above (up to logarithmic factors),
while still being local commuting projectors. However, they again require more regularity beyond the
minimal H1, H(div), or H(curl).

In the particular case of H(div), which constitutes the focus of the present work, the normal compo-
nent of the interpolate on each mesh face is fully dictated by the normal component of the interpolated
function on that face, which requires Hs(div) regularity with s > 0, which is slightly more than H(div).
Some further refinements can be found in Bespalov and Heuer [6] and Ern and Guermond [26]. Recently, a
local commuting projector that has optimal p-approximation properties (does not feature the logarithmic
factors) has been devised by Melenk and Rojik in [36]. To define the projector, though, higher regularity
is needed, with in particular Hs(div), s ≥ 1, in the case of interest here.

The issue of constructing (quasi-)interpolation projectors under the minimal regularities H1, H(div),
and H(curl) has been addressed before, cf., e.g., Clément [15], Scott and Zhang [44], and Bernardi and
Girault [4] in the H1 case, Nochetto and Stamm [38] in the H(div) case, and Bernardi and Hecht [5]
in the H(curl) case; see also the references therein. Stability and h-optimal approximation estimates in
any Lp-norm, 1 ≤ p ≤ ∞, has recently been achieved by Ern and Guermond in [25] in a unified setting
for a wide range of finite elements encompassing the whole discrete de Rham sequence. The arguments
used in [25] are somewhat different from those in the previous references: a projection onto the fully
discontinuous (broken) piecewise polynomial space is applied first, followed by an averaging operator
to ensure the appropriate H1, H(div), or H(curl) trace continuity. Unfortunately, all of the quasi-
interpolation projectors mentioned in this paragraph do not commute with the appropriate differential
operators and, moreover, they are only shown to be optimal in h but not in p.

1.2 Stable local commuting projectors under minimal regularity

Constructing projectors applicable under the minimal regularities H1, H(div), and H(curl) that would
in addition be commuting, stable, and locally defined represents a long-standing effort. Stability, commu-
tativity, and the projection property were obtained by Christiansen and Winther in [14] by composing
the canonical interpolation operators with mollification, following some earlier ideas in particular from
Schöberl [42, 43], cf. also Ern and Guermond [24] for a shrinking technique avoiding the need of exten-
sions outside of the domain and Licht [34] for essential boundary conditions only prescribed on a part
of the boundary of Ω. These operators are, however, not locally defined. This last remaining issue was
finally remedied in [31], where a patch-based construction resembling that of the Clément operator is
introduced. However, no approximation properties are discussed, and stability is achieved only in the
graph space of the appropriate differential operator, e.g., H(div) but not in L2 for the case of interest
here.

1.3 Equivalence of local-best and global-best approximations

In a seemingly rather unconnected recent result, Veeser [45] showed that the error in the best approxi-
mation of a given scalar-valued function in H1 by continuous piecewise polynomials is equivalent up to
a generic constant to that by discontinuous piecewise polynomials. This result is termed equivalence of
global- and local-best approximations. A predecessor result in the lowest-order case p = 1 and up to data
oscillation can be easily deduced from Carstensen et al. [12, Theorem 2.1 and inequalities (3.2), (3.5),
and (3.6)], see also the references therein; equivalences between approximations by different numerical
methods are studied in [12]. A similar result is also given in Aurada et al. [1, Proposition 3.1], and
an improvement of the dependence of the equivalence constant on the polynomial degree in two space
dimensions is developed in [11, Theorem 4].

This equivalence result might be surprising at a first glance, since the local-best error is clearly
smaller than the global-best one. The twist comes from the fact that any H1 function is continuous in
the sense of traces, so one does not gain in approximating it by discontinuous piecewise polynomials.
For finite element discretizations of coercive problems, this result in particular allows one to obtain
estimates without the passage through the Bramble–Hilbert lemma, see Gudi [32] or Carstensen and
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Schedensack [13] for examples of such tools in a priori error analysis. Another important application is
in approximation classes in a-posteriori-based convergence and optimality, cf. [45].

1.4 Main results of the manuscript

Our main results can be divided into three parts.

1) A simple stable local commuting projector defined under the minimal H(div) regularity
We define an interpolation operator on the entire H(div) space that is a projector, enjoys a commuting
property with the divergence operator, is locally defined over patches of elements, and is stable in L2

up to a hp data oscillation term for the divergence. It also takes into account essential (no-flux) bound-
ary conditions on only a part of the computational domain and it achieves, on each element, an error
equivalent to local-best errors over a patch of neighbouring elements. All these results are summarized
in Definition 3.1 and Theorem 3.2 below. Our main tool for defining the projector is the equilibrated flux
reconstruction. This technique has been traditionally used in a posteriori error analysis of primal finite el-
ement methods derived from H1-formulations, see Destuynder and Métivet [22], Luce and Wohlmuth [35],
Braess and Schöberl [9], Ern and Vohraĺık [28, 29], Becker et al. [3], and the references therein. We now
employ it here in the context of a priori error analysis of dual approximations in H(div).

2) Equivalence of local- and global-best approximations in H(div) under minimal regularity
In Theorem 3.3, we show that the global best-approximation error defined in (3.10) is, up to a generic
constant, equivalent to the local-best approximation errors defined by elementwise minimizations (3.11).
This actually results from the properties of the above projector. This extends the results of [1, 11, 12, 45]
to the H(div) case, where we are importantly able to remove constraints on both the normal trace inter-
element continuity and the divergence.

3) Optimal hp-approximation estimates in H(div) Our third main result is Theorem 3.6 where
we derive hp-approximation estimates. These estimates feature the following four properties: i) they
request no global regularity of the approximated function v beyond H(div); ii) only the minimal local
(elementwise) Hs-regularity, s ≥ 0, is needed; iii) the convergence rates are fully optimal in both the
mesh-size h and the polynomial degree p, in particular featuring no logarithmic factor of the polynomial
degree p; iv) no higher-order norms of the divergence of v appear in the bound whenever s ≥ 1. This
improves on [18, 17] in removing the suboptimality with respect to the polynomial degree, on [18, 17, 36]
in reducing the regularity requirements, and on approximations using Clément-type operators in removing
the need for regularity assumptions over the (overlapping) elemental patches while reducing it instead to
(nonoverlapping) elements.

1.5 Applications to mixed finite element and least-squares mixed finite ele-
ment methods

The above results can be immediately turned into fully optimal hp a priori error estimates for two
popular classes of numerical methods for second-order elliptic partial differential equations, the mixed
finite element methods and the least-squares methods, as we show in Lemmas 6.1–6.3. Note also that
an immediate application of the commuting projector of Definition 3.1 in the context of mixed finite
elements is the construction of a Fortin operator under the minimal H(div) regularity.

1.6 Organization of the manuscript

The rest of the manuscript is organized as follows. In Section 2, we introduce the setting and notation.
In Section 3, we state our main results, whereas Sections 4 and 5 are concerned with their proofs and
Section 6 with the application. A result on polynomial-degree-robust equivalence between constrained
and unconstrained best approximations in H(div) on a simplex is presented in Appendix A; it is of
independent interest. We present our results in two or three space dimensions only since this is the
current limitation of Lemma 4.4, building itself on [16] and [21]. Lemma 4.4, with the involved constant
independent of the polynomial degree p, is only crucial for Theorem 3.6; the other results actually hold
in arbitrary space dimension. Variable polynomial degrees can be taken into account by proceeding as
in, e.g., [23]. We avoid it here for the sake of clarity of exposition.
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2 Setting and notation

2.1 Domain Ω, space H0,ΓN
(div,Ω), and simplicial mesh T

Let Ω ⊂ Rd for d ∈ {2, 3} be an open, bounded, connected polygon or polyhedron with Lipschitz
boundary Γ. Let T be a given conforming, simplicial, possibly locally refined mesh of Ω, i.e. Ω =
∪K∈TK, where any K is a closed simplex and the intersection of two different simplices is either an
empty set or their common vertex, edge, or face. Let ΓD be a (possibly empty) closed subset of Γ, and
let ΓN := Γ \ ΓD be its (relatively open) complement in Γ, with the assumption that T matches ΓD and
ΓN in the sense that every boundary face of the mesh T is fully contained either in ΓD or in ΓN. Let
L2(Ω) := L2(Ω;Rd), and H(div,Ω) := {v ∈ L2(Ω), ∇·v ∈ L2(Ω)}. Furthermore, we define the space
H0,ΓN

(div,Ω) := {v ∈ H(div,Ω), v·n = 0 on ΓN}, where v·n = 0 on ΓN means that 〈v·n, ϕ〉Γ = 0 for
all functions ϕ ∈ H1(Ω) that have vanishing trace on ΓD; here 〈v·n, ϕ〉Γ :=

∫
Ω

[v·∇ϕ+ (∇·v)ϕ]. For an

open subset ω ⊂ Ω, let L2(ω) := L2(ω;Rd) and H(div, ω) := {v ∈ L2(ω), ∇·v ∈ L2(ω)}. We also denote
by (·, ·)ω and ‖·‖ω the L2-inner product and norm for scalar- or vector-valued functions on ω. In the
special case where ω = Ω, we drop the subscript, i.e. (·, ·) := (·, ·)Ω and ‖·‖ := ‖·‖Ω.

The diameter of ω is denoted by hω, and its outward unit normal by nω.

2.2 Elements, vertices, faces, and patches of elements

For any mesh element K ∈ T , its diameter is denoted by hK , and we set h := maxK∈T hK . Let VΩ

denote the set of interior vertices of T , i.e. the vertices contained in Ω. Let VΓ denote the set of vertices
of T on the boundary Γ, and set V := VΩ ∪VΓ. We divide VΓ into two disjoint sets VD and VN, where VD

contains all vertices in ΓD (recalling that ΓD is assumed to be closed) and VN consists of all vertices in ΓN.
For each vertex a ∈ V, define the patch Ta := {K ∈ T , a is a vertex of K} and the corresponding open
subdomain ωa := {∪K∈TaK}◦. The piecewise affine Lagrange finite element basis function associated
with a vertex a ∈ V is denoted by ψa. Let F denote the set of all (d − 1)-dimensional faces of T . By
convention, we consider faces to be closed sets. For an element K ∈ T , we denote the set of all faces of K
by FK, and the set of all vertices of K by VK . For each interior vertex a ∈ VΩ, we let F in

a denote the set
of all faces that contain the vertex a (and thus do not lie on the boundary of ωa). For boundary vertices
a ∈ VΓ, let F in

a collect the faces that contain the vertex a but do not lie on the Dirichlet boundary ΓD.
The mesh shape-regularity parameter is defined as κT := maxK∈T hK/%K , where %K is the diameter of
the largest ball inscribed in K.

2.3 Piecewise polynomial and Raviart–Thomas–Nédélec spaces

Let p ≥ 0 be a nonnegative integer. For S ∈ {K,F}, where K ∈ T is an element and F ∈ F is a face,

we define Pp(S) as the space of all polynomials of total degree at most p on S. If T̃ denotes a subset of

elements of T , Pp(T̃ ) := {vh ∈ L2(Ω), vh|K ∈ Pp(K) ∀K ∈ T̃ } is the space of piecewise polynomials of

degree at most p over T̃ . Typically, T̃ will be either the whole mesh T or the vertex patch Ta as defined
above. We define the piecewise Raviart–Thomas–Nédélec space RTNp(T ) := {ςT ∈ L2(Ω), ςT |K ∈
RTNp(K)}, where RTNp(K) := Pp(K;Rd) + xPp(K) and Pp(K;Rd) denotes the space of Rd-valued
functions defined on K with each component being a polynomial of degree at most p in Pp(K). Note that
with this choice of notation, functions in the space RTNp(T ) do not necessarily belong to H(div,Ω);
thus, RTNp(T )∩H(div,Ω) is a proper subspace of RTNp(T ) which is classically characterized as those
functions in RTNp(T ) having a continuous normal component across interior mesh faces. Moreover,
RTNp(T ) is a subspace of C1(T ) := {v ∈ L2(Ω), v|K ∈ C1(K) for all K ∈ T }, the space of piecewise
(broken) first-order component-wise differentiable vector-valued fields over T . To avoid confusion between
piecewise smooth and globally smooth functions, we denote the elementwise gradient and the elementwise
divergence by ∇T and by ∇T ·, respectively.

2.4 L2-orthogonal projection and elementwise canonical interpolant

For each polynomial degree p ≥ 0, let Πp
T : L2(Ω) → Pp(T ) denote the L2-orthogonal projection of

order p. Similarly, let Πp
F denote the L2-orthogonal projection of order p on a face F ∈ F , which maps

L2(F ) to Pp(F ). Let IpT : C1(T )→ RTNp(T ) be the elementwise canonical (Raviart–Thomas–Nédélec)
interpolant. The domain of IpT can be taken to be a (much) larger space than C1(T ), but not as large
as piecewise H(div) fields; the present choice is sufficient for our purposes. For any v ∈ C1(T ), the
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interpolant IpT v is defined separately on each element K ∈ T by the conditions

((IpT v)|K ·nK , qK)F = (v|K ·nK , qK)F ∀qK ∈ Pp(F ), ∀F ∈ FK ,
(IpT v, rK)K = (v, rK)K ∀rK ∈ Pp−1(K;Rd),

(2.1)

where v|K ·nK denotes the normal trace of v|K , the restriction of v to K. Note that (2.1) implies that
((IpT v)|K ·nK)|F = Πp

F ((v|K ·nK)|F ) for all faces F ⊂ FK. A useful property of the operator IpT is the
commuting identity:

∇T ·(IpT v) = Πp
T (∇T ·v) ∀v ∈ C1(T ). (2.2)

2.5 Spaces for patchwise equilibration

In the spirit of Braess et al. [8] and [28, 29, 27], we finally define the local mixed finite element spaces
Vp(ωa) by

Vp(ωa) :=

{
{ςa ∈ RTNp(Ta) ∩H(div;ωa), ςa·nωa = 0 on ∂ωa} if a ∈ VΩ ∪ VN,

{ςa ∈ RTNp(Ta) ∩H(div;ωa), ςa·nωa = 0 on ∂ωa \ ΓaD} if a ∈ VD,
(2.3)

where ΓaD contains those boundary faces from ΓD that share the vertex a. In particular, we observe that
when ∂ωa ∩ ΓN 6= ∅, then ςa·n = 0 on ΓN for any ςa ∈ Vp(ωa). As a result of the above definitions, it
follows that the zero extension to all of Ω of any ςa ∈ Vp(ωa) belongs to RTNp(T ) ∩H0,ΓN(div,Ω).

3 Main results

This section collects our main results.

3.1 A simple stable local commuting projector in H0,ΓN
(div,Ω)

We first construct a simple, local, and stable commuting projector defined over the entire spaceH0,ΓN
(div,Ω)

that leads to an approximation error equivalent to the local-best approximation error.
Recall the definition of the broken Raviart–Thomas–Nédélec interpolant IpT from (2.1) and that of

the piecewise polynomial patchwise H(div;ωa)-conforming spaces Vp(ωa) from (2.3). Recall also that
zero extensions of elements of Vp(ωa) belong to RTNp(T )∩H0,ΓN(div,Ω), and that ψa is the piecewise
affine Lagrange finite element basis function associated with the vertex a.

Definition 3.1 (A simple locally-defined mapping from H0,ΓN
(div,Ω) to RTNp(T ) ∩H0,ΓN

(div,Ω)).
Let v ∈H0,ΓN

(div,Ω) be arbitrary. Let τT ∈ RTNp(T ) be defined elementwise by

τT |K := arg min
ςK∈RTNp(K)
∇·ςK=Πp

T (∇·v)

‖v − ςK‖K ∀K ∈ T . (3.1)

For each mesh vertex a ∈ V, let σa ∈ Vp(ωa) be defined by

σa := arg min
ςa∈Vp(ωa)

∇·ςa=Πp
T (ψa∇·v+∇ψa·τT )

‖ςa − IpT (ψaτT )‖ωa . (3.2)

Extending σa from the ωa to the rest of Ω by zero, we define P pT (v) ∈ RTNp(T ) ∩H0,ΓN(div,Ω) by

P pT (v) := σT :=
∑
a∈V

σa. (3.3)

The justification that the construction of P pT (v) is well-defined is given in Section 4.1 below. The first
step (3.1) considers the elementwise L2-norm local-best approximation that defines the discontinuous
piecewise RTN polynomial τT closest to v under the divergence constraint. At this step, crucially, the
minimal regularity v ∈ H0,ΓN

(div,Ω) is sufficient; note that we only work with v volume-wise and that
no normal component of v on a face is requested to exist, in contrast to common interpolation operators
discussed in Section 1. Essentially, this step brings us into a piecewise polynomial setting, where we will
stay henceforth, with τT being the best approximation on each mesh element K ∈ T .
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As τT from (3.1) is discontinuous from one mesh element to the other, the second step in (3.2)
can be seen as smoothing τT over the vertex patch subdomains ωa to obtain an H(div;ωa)-conforming
approximation σa with a suitably prescribed divergence. An important ingredient is the employment
of the elementwise canonical Raviart–Thomas–Nédélec interpolant IpT (this is well-justified, since the
argument ψaτT is a discrete object). The crucial role of IpT is to decrease the order of ψaτT , which
lies in RTNp+1(T ) because of the multiplication by the hat function ψa, back to RTNp(T ). A similar
construction below, see (5.3), will avoid the use of IpT and will be crucial for our hp-optimal approximation
estimates. Finally, in the third step (3.3), the approximations σa are summed into P pT (v), thereby
producing an H0,ΓN

(div,Ω)-conforming piecewise polynomial from the RTN space of order p. The overall
procedure is motivated by equilibrated flux reconstructions coming from a posteriori error estimation, as
in [22, 9, 28]. Here we adapt those techniques to the purpose of a priori error analysis.

Our first main result, whose proof is postponed to Section 4, is the following.

Theorem 3.2 (Commutativity, projection, approximation, and stability of P pT ). Let a mesh T of Ω and
a polynomial degree p ≥ 0 be fixed. Then, the operator P pT from Definition 3.1 maps H0,ΓN

(div,Ω) to
RTNp(T ) ∩H0,ΓN

(div,Ω) and

∇·P pT (v) = Πp
T (∇·v) ∀v ∈H0,ΓN(div,Ω), (3.4)

P pT (v) = v ∀v ∈ RTNp(T ) ∩H0,ΓN(div,Ω). (3.5)

Thus P pT is a projection from H0,ΓN
(div,Ω) onto RTNp(T ) ∩H0,ΓN

(div,Ω) such that the commuting
property (3.4) is satisfied; this can be cast into the commuting diagram

H0,ΓN(div,Ω)
∇·−→ L2(Ω)yP pT yΠp

T

RTNp(T ) ∩H0,ΓN
(div,Ω)

∇·−→ Pp(T )

.

Furthermore, for any v ∈ H0,ΓN
(div,Ω) and any K ∈ T , we have the local approximation and stability

bounds

‖v − P pT (v)‖2K+
[ hK
p+ 1

‖∇·(v − P pT (v))‖K
]2

(3.6)

≤ C
∑
K′∈TK

{
min

ς
K
′∈RTNp(K′)

‖v − ςK′‖
2
K′

+

[
hK′

p+ 1
‖∇·v −Πp

T (∇·v)‖K′
]2
}
,

‖P pT (v)‖2K ≤ C
∑
K′∈TK

{
‖v‖2

K′
+
[ hK′
p+ 1

‖∇·v −Πp
T (∇·v)‖K′

]2}
, (3.7)

‖P pT (v)‖2K + h2
Ω‖∇·P

p
T (v)‖2K ≤ C

∑
K′∈TK

{
‖v‖2

K′
+ h2

Ω‖∇·v‖2K′
}
, (3.8)

where TK := ∪a∈VKTa are the neighboring elements of K, and recalling that hΩ denotes the diameter
of Ω. The constant C above only depends on the space dimension d, the shape-regularity parameter κT
of T , and the polynomial degree p.

Property (3.7) readily implies that P pT is globally L2-stable up to hp data oscillation of the divergence,
since summing (3.7) over the mesh elements leads to

‖P pT (v)‖2 ≤ C

{
‖v‖2 +

∑
K∈T

[ hK
p+ 1

‖∇·v −Πp
T (∇·v)‖K

]2}
∀v ∈H0,ΓN

(div,Ω). (3.9a)

Similarly, from (3.8), we infer that P pT is H(div)-stable, since

‖P pT (v)‖2 + h2
Ω‖∇·P

p
T (v)‖2 ≤ C

[
‖v‖2 + h2

Ω‖∇·v‖2
]

∀v ∈H0,ΓN(div,Ω). (3.9b)

The projector P pT in Definition 3.1 and Theorem 3.2 improves on [14] in that the construction is local,
and on [31] in that it is, up to data oscillation, stable in L2 (i.e., with respect to ‖v‖), see (3.9a), rather

than only in H(div) (i.e., with respect to
[
‖v‖2 + h2

Ω‖∇·v‖2
]1/2

), see (3.9b). We note more precisely
that, for the divergence term, (3.7) improves the bound (5.2) of [31, Theorem 5.2] since, in particular,
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we have ‖∇·v − Πp
T (∇·v)‖K in place of ‖∇·v‖K , whereas (3.8) is similar to the combination of the

bounds (5.2) and (5.3) of [31, Theorem 5.2]. Additionally, the terms with ‖∇·v−Πp
T (∇·v)‖K are of “hp

data oscillation” type, containing the weight factors hK/(p+ 1), so that they tend optimally to zero for
both h→ 0 and p→∞. The projection operator P pT defined here also satisfies the commuting property
with the divergence operator (3.4), in contrast to [25].

3.2 Equivalence of local- and global-best approximations in H0,ΓN
(div,Ω)

For any function v ∈ H0,ΓN(div,Ω), we consider the global-best approximation error ET ,p(v) defined as
the best approximation, in a weighted norm, from RTNp(T ) ∩H0,ΓN

(div,Ω), subject to a constraint on
the divergence:

[ET ,p(v)]2 := min
ςT ∈RTNp(T )∩H0,ΓN

(div,Ω)

∇·ςT =Πp
T (∇·v)

‖v − ςT ‖2Ω +
∑
K∈T

[
hK
p+ 1

‖∇·v −Πp
T (∇·v)‖K

]2

. (3.10)

Note that the global minimization in (3.10) is subject to three constraints: the global minimizer ςT has to
have the normal trace continuous across the mesh faces, the normal trace on ΓN equal to zero (whenever
relevant), and the divergence equal to Πp

T (∇·v). We further consider the local-best approximation errors
defined on each element K ∈ T by

[eK,p(v)]2 := min
ςK∈RTNp(K)

‖v − ςK‖2K +

[
hK
p+ 1

‖∇·v −Πp
T (∇·v)‖K

]2

. (3.11)

Note that the local minimization in (3.11) is completely constraint-free: the local minimizer ςK is com-
pletely free on the faces of the mesh element K, including those in ΓN (whenever relevant), and neither
is a subject to any divergence constraint. Furthermore, since Πp

T is the L2-orthogonal projection onto
the broken polynomial space Pp(T ), we have ‖∇·v − Πp

T (∇·v)‖K = minq∈Pp(K)‖∇·v − q‖K . Thus the
local approximation errors eK,p(v) involve the local-best approximation errors in L2 plus a weighted L2

best approximation error of the divergence.
In a direct consequence of Theorem 3.2, we now show that the global-best error ET ,p(v) is in fact

equivalent to the root-mean square sum of the local-best errors eK,p(v) over all elements of the mesh.
This may seem surprising at a first sight, since the latter is (much) smaller.

Theorem 3.3 (Equivalence of local- and global-best approximations). There exists a constant C depend-
ing only on the space dimension d, the shape-regularity parameter κT of T , and the polynomial degree
p ≥ 0, such that, for any v ∈H0,ΓN(div,Ω),

[ET ,p(v)]
2 ≤ C

∑
K∈T

[eK,p(v)]
2 ≤ C [ET ,p(v)]

2
. (3.12)

Proof. The second inequality in (3.12) follows immediately from the definitions in (3.10) and (3.11):
indeed, the global minimization set is (much) smaller than the local ones. To prove the first inequality,
consider an arbitrary function v ∈H0,ΓN

(div,Ω). Then Theorem 3.2 shows that the projection P pT (v) ∈
RTNp(T ) ∩H0,ΓN

(div,Ω) satisfies the constraints of the global minimization set in (3.10) due to its
commuting property (3.4). Therefore, it suffices to pick the function P pT (v) from the minimization set,
sum the bound in the local approximation property (3.6) over all mesh elements, and invoke the shape-
regularity of the mesh which implies that the number of neighbors a mesh cell can have is uniformly
bounded from above.

Remark 3.4 (Necessity of the divergence error terms). Although the scaled divergence terms hK

p+1‖∇·v−
Πp
T (∇·v)‖K take an identical form in both ET ,p(v) and eK,p(v), they cannot be removed from the local

contributions eK,p(v). Otherwise, it would be possible to choose a sequence of functions v inH0,ΓN(div,Ω)
approaching a function τT ∈ RTNp(T ) but τT /∈H0,ΓN

(div,Ω) such that the middle term in (3.12) would
tend to zero, but ET ,p(v) would remain uniformly bounded away from zero.

Remark 3.5 (Equivalence with constraint on the right-hand side). Theorem 3.3 also straightforwardly
implies the slightly weaker property

[ET ,p(v)]
2 ≤ C

∑
K∈T

 min
ςK∈RTNp(K)
∇·ςK=Πp

T (∇·v)|K

‖v − ςK‖2K +

[
hK
p+ 1

‖∇·v −Πp
T (∇·v)‖K

]2


≤ C [ET ,p(v)]

2
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with the same constant C, where the minimization problems in the middle term include a constraint on
the divergence to mirror the divergence constraint in ET ,p(v).

3.3 Optimal-order hp-approximation estimates in H0,ΓN
(div,Ω)

We finally focus on functions with some additional elementwise regularity. For any s ≥ 0 and any mesh
element K ∈ T , let Hs(K) denote the space of vector-valued fields in L2(K) with each component in
Hs(K). Recall the definition (3.10) of ET ,p(v). Our third and last main result, whose proof is postponed
to Section 5, delivers hp-optimal convergence rates for vector fields in H0,ΓN(div,Ω) with the minimally
necessary additional elementwise regularity.

Theorem 3.6 (hp-optimal approximation estimates under minimal regularity). Let s ≥ 0 and let v ∈
H0,ΓN

(div,Ω) be such that
v|K ∈Hs(K) ∀K ∈ T .

Let the polynomial degree p ≥ 0. Then there exists a constant C, depending only on the regularity exponent
s, the space dimension d, and the shape-regularity parameter κT of T , such that

[ET ,p(v)]2 ≤ C
{ ∑
K∈T

[hmin(s,p+1)
K

(p+ 1)s
‖v‖Hs(K)

]2
+ δs<1

[ hK
p+ 1

‖∇·v‖K
]2}

, (3.13)

where δs<1 := 1 if s < 1 and δs<1 := 0 if s ≥ 1.

Notice that the above generic constant C is independent of p and that the bound (3.13) is optimal
with respect both the mesh size h and the polynomial degree p for arbitrary regularity index s ≥ 0.

4 Proof of Theorem 3.2 (commutativity, projection, approxima-
tion, and stability of P p

T )

The proof of Theorem 3.2 is split into several parts. First, in Section 4.1, we analyse essential properties of
the construction of the mapping P pT from Definition 3.1. We next establish the commuting property (3.4)
in Section 4.2. Then, in Section 4.3, we prove the statement (3.6) on the approximation properties of P pT .
This is the most technical part of the proof. Finally, in Section 4.4, we conclude by proving the remaining
three statements (3.5), (3.7), and (3.8) (the projection property, L2 stability, and H(div) stability).

4.1 Justification of the construction of P p
T

We start by showing that the operator P pT of Definition 3.1 is well-defined on H0,ΓN
(div,Ω). Recall the

notation from Section 2.2.

Lemma 4.1 (Discrete weak divergence of L2-projection). For any function v ∈H0,ΓN(div,Ω), let τT be
defined elementwise in (3.1). Then

(∇·v, ψa)ωa + (τT ,∇ψa)ωa = 0 ∀a ∈ VΩ ∪ VN. (4.1)

Proof. First, observe that for any vertex a ∈ VΩ ∪ VN, the hat function ψa belongs to H1
ΓD

(Ω) owing to
the conformity of T with respect to the Dirichlet and Neumann boundary sets. Therefore, (∇·v, ψa)ωa +
(v,∇ψa)ωa = 0, where we use the fact that ωa is the support of ψa. Since ∇ψa is a constant vector on
each element K, the Euler–Lagrange equations for (3.1) imply that

(τT ,∇ψa)K = (v,∇ψa)K ∀K ∈ Ta. (4.2)

Consequently, (τT ,∇ψa)ωa = (v,∇ψa)ωa , and (4.1) follows.

We now show that the local minimization problems (3.2) give well-defined local contributions σa.

Lemma 4.2 (Existence and uniqueness of local problems (3.2)). For each vertex a ∈ V, there exists a
unique σa ∈ Vp(ωa) satisfying (3.2).

8



Proof. The minimization problem (3.2) is equivalent to a mixed finite element problem in the patch
subdomain ωa. For Dirichlet boundary vertices a ∈ VD, this problem is well-posed with a unique
minimizer since the space Vp(ωa) of (2.3) does not impose the normal constraint everywhere on ∂ωa.
For interior and Neumann vertices a ∈ VΩ∪VN, the source term in the divergence constraint satisfies the
compatibility condition

(Πp
T (ψa∇·v +∇ψa·τT ), 1)ωa = (∇·v, ψa)ωa + (τT ,∇ψa)ωa = 0,

where the second equality follows from Lemma 4.1. Therefore, σa is also well-defined for interior and
Neumann vertices a ∈ VΩ ∪ VN.

It follows from Lemma 4.2 that P pT (v) ∈ RTNp(T ) ∩H0,ΓN(div,Ω) is well-defined for every v ∈
H0,ΓN

(div,Ω).

4.2 Proof of the commuting property (3.4)

We are now ready to establish:

Lemma 4.3 (Commuting property (3.4)). P pT satisfies (3.4).

Proof. Since the functions {ψa}a∈V form a partition of unity over Ω, i.e.,
∑
a∈V ψa = 1, and consequently∑

a∈V ∇ψa = 0, we find from (3.3) and (3.2) that

∇·P pT (v) =
∑
a∈V
∇·σa =

∑
a∈V

{
Πp
T (ψa∇·v +∇ψa·τT )

}
= Πp

T (∇·v). (4.3)

4.3 Proof of the approximation property (3.6)

Let us start with two useful technical results. For a given vertex a ∈ V, let the space H1
∗ (ωa) be defined

by

H1
∗ (ωa) :=

{
{ϕ ∈ H1(ωa), (ϕ, 1)ωa = 0} if a ∈ VΩ ∪ VN,

{ϕ ∈ H1(ωa), ϕ|∂ωa∩Γa
D

= 0} if a ∈ VD,
(4.4)

where we recall that ΓaD contains those boundary faces from ΓD that share the vertex a. Recall also
the discrete spaces Vp(ωa) defined in (2.3). The following result has been shown in Braess et al. [8,
Theorem 7] in two space dimensions and [30, Corollaries 3.3, 3.6, and 3.8] in three space dimensions,
crucially building on [16] and [21] to achieve the independence of the involved constant on the polynomial
degree p.

Lemma 4.4 (Stability of patchwise flux equilibration). Let a vertex a ∈ V be fixed, and let ga ∈ Pp(Ta)
and τa ∈ RTNp(Ta) be given discontinuous piecewise polynomials with the condition (ga, 1)ωa = 0 if
a ∈ VΩ ∪ VN. Then, there exists a constant C, depending only on the space dimension d and the mesh
shape-regularity parameter κT , such that

min
va∈Vp(ωa)
∇·va=ga

‖va − τa‖ωa ≤ C sup
ϕ∈H1

∗(ωa)
‖∇ϕ‖ωa=1

{(ga, ϕ)ωa + (τa,∇ϕ)ωa} .

We shall also use the following auxiliary bound for face terms based on the bubble function technique
of Verfürth, cf. [46], from a posteriori error analysis.

Lemma 4.5 (Bound on face terms). Let a mesh face F ∈ F be fixed, and let TF be the set of one or two
mesh elements K ∈ T to which F belongs, with ωF the corresponding open subdomain. Let hF denote
the diameter of F . Then, there exists a constant C, depending only on the space dimension d, the mesh
shape-regularity parameter κT , and the polynomial degree p, such that

h
1/2
F ‖qh‖F ≤ C sup

ϕ∈H1(ωF )
ϕ=0 on ∂ωF \F
‖∇ϕ‖ωF

=1

(qh, ϕ)F ∀qh ∈ Pp(F ).
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We are now ready to prove the statement (3.6) from Theorem 3.2, where we now employ the short-
hand notation eK,p(v) from (3.11). Let v ∈H0,ΓN

(div,Ω) be arbitrary. Since it follows from ∇·P pT (v) =
Πp
T (∇·v) that

hK
p+ 1

‖∇·v −∇·P pT (v)‖K ≤ eK,p(v),

it only remains to prove that

‖v − P pT (v)‖K ≤ C

 ∑
K′∈TK

eK′,p(v)2


1
2

∀K ∈ T . (4.5)

We proceed for this purpose in two steps.

Step 1. Bound on σa. Recall that σa is defined in (3.2) with τT defined elementwise in (3.1).

Lemma 4.6 (Bound on σa). There exists a constant C, depending only on d, κT , and p, such that

‖σa − IpT (ψaτT )‖ωa ≤ C

{ ∑
K∈Ta

[eK,p(v)]2

} 1
2

∀a ∈ V. (4.6)

Proof. First, since IpT (ψaτT ) ∈ RTNp(Ta), we can apply Lemma 4.4 to σa, with the choices τa :=
IpT (ψaτT ) and ga := Πp

T (ψa∇·v +∇ψa·τT ) ∈ Pp(Ta) to obtain

‖σa − IpT (ψaτT )‖ωa ≤ C sup
ϕ∈H1

∗(ωa)
‖∇ϕ‖ωa=1

{(ga, ϕ)ωa + (IpT (ψaτT ),∇ϕ)ωa} , (4.7)

where the space H1
∗ (ωa) is defined in (4.4). Let hωa denote the diameter of ωa and recall the Poincaré

inequality ‖v‖ωa ≤ Chωa‖∇v‖ωa on H1
∗ (ωa), with a constant C depending only on the dimension d and

on κT . Moreover, note that the shape-regularity of the mesh implies that hωa ≈ hK ≈ hF for all K ∈ Ta
and all F ∈ F in

a .
Define for any ςT ∈ C1(T ) the jump JςT K on an interior face F shared by two mesh elements K+ and

K− by JςT K := (ςT |K+)|F − (ςT |K−)|F ; here nF := nK− = −nK+ is the unit normal to F that points
outward K− and inward K+. Similarly, if F is a boundary face, then we define JςT K := ςT |F . To bound
the right-hand side of (4.7), consider an arbitrary ϕ ∈ H1

∗ (ωa) such that ‖∇ϕ‖ωa = 1. Then, using
integration by parts elementwise, we find that(

IpT (ψaτT ),∇ϕ
)
ωa

=
∑
F∈F in

a

(
JIpT (ψaτT )K·nF , ϕ

)
F
−
∑
K∈Ta

(
∇·IpT (ψaτT ), ϕ

)
K

=
∑
F∈F in

a

(
Πp
F (ψaJτT K·nF ), ϕ

)
F
−
(
Πp
T (∇T ·(ψaτT )), ϕ

)
ωa
.

Here, in the first identity, the set of faces can be restricted to F in
a ; indeed, for interior vertices, this follows

from the fact that ψa vanishes on ∂ωa, whereas for boundary vertices, ϕ ∈ H1
∗ (ωa) vanishes on ΓaD. The

second identity is then obtained from the definition of the elementwise canonical interpolant IpT in (2.1)
and the commutation identity (2.2). Expanding ∇T ·(ψaτT ) = ∇ψa·τT +ψa∇T ·τT and simplifying gives

(ga, ϕ)ωa + (IpT (ψaτT ),∇ϕ)ωa = (Πp
T (ψa∇T ·(v − τT )), ϕ)ωa

+
∑
F∈F in

a

(
Πp
F (ψaJτT K·nF ), ϕ

)
F
. (4.8)

We now bound the two terms on the right-hand side of (4.8) separately.
To bound the first term, we consider first the case p ≥ 1: using the divergence constraint on τT in (3.1),

the orthogonality of the L2-projections, the approximation bound ‖ϕ− Πp−1
T ϕ‖K ≤ C hK

p+1‖∇ϕ‖K (note

that 1
p ≤

2
p+1 for all p ≥ 1), along with ‖ψa‖∞,ωa = 1 and ‖∇ϕ‖ωa = 1, we find that there is a constant
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C, depending only on d and κT , such that

(Πp
T (ψa∇T ·(v − τT )), ϕ)ωa =

(
∇·v −Πp

T (∇·v), ψaΠp
T (ϕ−Πp−1

T ϕ)
)
ωa

≤ C

{ ∑
K∈Ta

h2
K

(p+ 1)2
‖∇·v −Πp

T (∇·v)‖2K

} 1
2

≤ C

{ ∑
K∈Ta

[eK,p(v)]2

} 1
2

.

For p = 0, we instead apply the Cauchy–Schwarz inequality, the stability of the L2-projection, the
Poincaré inequality on H1

∗ (ωa), and ‖∇ϕ‖ωa = 1 to get

|(Πp
T (ψa∇T ·(v − τT )), ϕ)ωa | ≤ C‖∇T ·(v − τT )‖ωahωa‖∇ϕ‖ωa

≤ C

{ ∑
K∈Ta

[eK,p(v)]2

} 1
2

,

where C depends only on d and κT .
To bound the second term on the right-hand side of (4.8), we recall the trace inequality

‖ϕ‖2F ≤ C
(
‖∇ϕ‖K‖ϕ‖K + h−1

K ‖ϕ‖
2
K

)
,

for any ϕ ∈ H1(K) and F ∈ FK , where C depends only on d and κT . Combined with the Poincaré
inequality on H1

∗ (ωa) and ‖∇ϕ‖ωa = 1, this gives

∑
F∈F in

a

|
(
Πp
F (ψaJτT K·nF ), ϕ

)
F
| ≤ C

 ∑
F∈F in

a

hF ‖JτT K·nF ‖2F


1
2

,

with C depending only on d and κT . Finally, we invoke Lemma 4.5, yielding, for each F ∈ F in
a ,

h
1/2
F ‖JτT K·nF ‖F ≤ C sup

w∈H1(ωF )
w=0 on ∂ωF \F
‖∇w‖ωF

=1

(JτT K·nF , w)F , (4.9)

where now the constant C depends on the polynomial degree p in addition to d and κT . Fix w ∈ H1(ωF )
such that w = 0 on ∂ωF \F and ‖∇w‖ωF

= 1. By definition, F ∈ F in
a means that F is either an internal

face shared by two simplices, or a Neumann boundary face. Then, the zero extension of w to Ω belongs
to H1

ΓD
(Ω). Since v ∈H0,ΓN

(div,Ω), we infer from the definition of the weak divergence that

(∇·v, w)ωF
+ (v,∇w)ωF

= 0.

Consequently, developing (JτT K·nF , w)F shows that

|(JτT K·nF , w)F | = |(∇T ·τT , w)ωF
+ (τT ,∇w)ωF

|
≤ |(∇T ·(τT − v), w −Πp

T w)ωF
|+ |(τT − v,∇w)ωF

|
≤ ‖∇T ·(τT − v)‖ωF

‖w −Πp
T w‖ωF

+ ‖τT − v‖ωF
‖∇w‖ωF

≤ C
∑
K∈TF

{
‖v − τT ‖2K +

h2
K

(p+ 1)2
‖∇·(v − τT )‖2K

}1/2

,

owing to the Cauchy–Schwarz inequality, the orthogonality of the L2-projection, and the approximation
bound ‖w −Πp

T w‖K ≤ C
hK

p+1‖∇w‖K . Hence, Lemma A.1 below implies that

∑
F∈F in

a

(
Πp
F (ψaJτT K·nF ), ϕ

)
F
≤ C

{ ∑
K∈Ta

[eK,p(v)]2

} 1
2

,

where the constant C depends only on d, κT , and the polynomial degree p via (4.9). Combining these
bounds implies (4.6).
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Step 2. Bound on ‖v − P pT (v)‖K . Let K ∈ T . In this second and last step, we first show that

‖P pT (v)− τT ‖K ≤ C

 ∑
K′∈TK

[eK′,p(v)]2


1
2

. (4.10)

Recalling that VK denotes the set of vertices of the element K, using the partition of unity
∑
a∈VK ψa|K =

1 and the linearity of the elementwise canonical interpolant IpT (2.1) as well as definition (3.3) of P pT (v)
and the fact that τT = IpT (τT ), we find that

(P pT (v)− τT ) |K = (P pT (v)− IpT (τT )) |K =
∑
a∈VK

(σa − IpT (ψaτT )) |K .

Thus,

‖P pT (v)− τT ‖2K =

∥∥∥∥∥ ∑
a∈VK

(
σa − IpT (ψaτT )

)∥∥∥∥∥
2

K

≤ (d+ 1)
∑
a∈VK

‖σa − IpT (ψaτT )‖2ωa
,

and Lemma 4.6 then yields (4.10).
Finally, having obtained (4.10), the main bound (4.5) then follows from the triangle inequality and

Lemma A.1, since

‖v − P pT (v)‖K ≤ ‖v − τT ‖K + ‖τT − P pT (v)‖K ≤ C

 ∑
K′∈TK

[eK′,p(v)]2


1
2

.

This completes the proof of the approximation property (3.6) from Theorem 3.2.

4.4 Proof of the projection property (3.5), L2 stability (3.7), and H(div) sta-
bility (3.8)

To prove (3.5), we observe that if v ∈ RTNp(T )∩H0,ΓN
(div,Ω), then it follows from the definition (3.11)

that eK,p(v) = 0 for all K ∈ T , and thus (3.5) follows immediately from (3.6).
To prove (3.7), we observe that, for any K ∈ T , the triangle inequality yields

‖P pT (v)‖K ≤ ‖v‖K + ‖v − P pT (v)‖K .

The first term is trivially contained in the right-hand side of (3.7). Bounding the second one by (3.6),
the definition (3.11) of eK,p(v) implies that

eK,p(v) ≤ ‖v‖K +
hK

(p+ 1)
‖∇·v −Πp

T (∇·v)‖K .

This shows that (3.7) holds true.
Finally, from (3.7), the bound in (3.8) follows immediately since hK

p+1 ≤ hΩ and since both terms

‖Πp
T (∇·v)‖K and ‖∇·v −Πp

T (∇·v)‖K are bounded by ‖∇·v‖K .

5 Proof of Theorem 3.6 (hp-optimal approximation estimates
under minimal regularity)

We present here a proof of Theorem 3.6. First, in Section 5.1, we derive an unbalanced but polynomial-
degree-robust bound in Proposition 5.1. Then, in Section 5.2, we combine it with Theorem 3.3.

5.1 Polynomial-degree-robust one-sided bound

We present here an auxiliary result which gives a bound where the global-best approximation error (3.10)
is bounded in terms of the sums of local-best approximation errors (3.11) with a constant that is robust
with respect to the polynomial degree, but where the polynomial degree in the local approximation errors
is (p− 1) instead of p. As a result, in contrast to Theorem 3.3, this is a one-sided inequality and not an
equivalence, and it is valid only for p ≥ 1 and not for p ≥ 0.
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Proposition 5.1 (Polynomial-degree-robust bound). There exists a constant C, depending only on the
space dimension d and the shape-regularity parameter κT of T , such that, for any v ∈H0,ΓN

(div,Ω) and
any p ≥ 1,

[ET ,p(v)]2 ≤ C
∑
K∈T

[eK,p−1(v)]2. (5.1)

Let us stress that (5.1) is similar to the first inequality in (3.12) but the constant C above is indepen-
dent of the polynomial degree p.

The rest of this section is devoted to the proof of Proposition 5.1, performed in the spirit of that of
Theorem 3.3. We start by adapting Definition 3.1 as follows.

Definition 5.2 (Alternative locally-defined mapping from H0,ΓN(div,Ω) to RTNp(T )∩H0,ΓN(div,Ω)).
Let v ∈H0,ΓN

(div,Ω) be arbitrary. Let τT be defined elementwise by

τT |K := arg min
ςK∈RTNp−1(K)

∇·ςK=Πp−1
T (∇·v)

‖v − ςK‖K ∀K ∈ T . (5.2)

For each mesh vertex a ∈ V, the patchwise contributions σa are now defined as

σa := arg min
ςa∈Vp(ωa)

∇·ςa=Πp
T (ψa∇·v)+∇ψa·τT

‖ςa − ψaτT ‖ωa , (5.3)

with the spaces Vp(ωa) still defined in (2.3). Finally, after extending each σa from ωa to the rest of Ω
by zero, the equilibrated flux reconstruction σT ∈ RTNp(T ) ∩H0,ΓN

(div,Ω) is defined as

σT :=
∑
a∈V

σa. (5.4)

The prescription (5.2) is similar to (3.1) up to the employment of the polynomial degree p−1 in place
of p. Likewise, (5.3) is similar to (3.2), up to two subtle differences: the canonical interpolant IpT is no
longer used (since from (5.2), ψaτT already lies in RTNp(T )), and the projection Πp

T in the divergence
constraint only concerns the term ψa∇·v. Definition 5.2 is also well posed. In particular, existence and
uniqueness for the local minimization problems (5.3) follows as in Lemma 4.2, since the orthogonality
property (4.2) also holds here, implying that (4.1) is satisfied with the above definitions. Also, just as
in (4.3), we deduce that

∇·σT = Πp
T (∇·v).

We continue with the following lemma.

Lemma 5.3 (Bound on σa). Let τT be given by (5.2) and let σa be given by (5.3). Then, there exists
a constant C, depending only on d and κT , such that

‖σa − ψaτT ‖ωa ≤ C

{ ∑
K∈Ta

[eK,p−1(v)]2

} 1
2

∀a ∈ V. (5.5)

Proof. Fix a vertex a ∈ V. We rely on Lemma 4.4, where we take τa := ψaτT and ga := Πp
T (ψa∇·v) +

∇ψa·τT in order to apply it to our construction (5.3) from Definition 5.2. This yields

‖σa − ψaτT ‖ωa ≤ C sup
v∈H1

∗(ωa)
‖∇ϕ‖ωa=1

{(ga, ϕ)ωa + (τa,∇ϕ)ωa} ,

where the involved constant C is crucially independent of the polynomial degree p. Let ϕ ∈ H1
∗ (ωa)

with ‖∇ϕ‖ωa = 1 be fixed, where we recall that the space H1
∗ (ωa) is defined in (4.4). Then, the product

ψaϕ ∈ H1
ΓD

(Ω) for any a ∈ V and thus the definition of the weak divergence implies that(
v,∇(ψaϕ)

)
ωa

+
(
∇·v, ψaϕ

)
ωa

= 0.

Then, the product rule and the orthogonality of the L2-projection give

(ga, ϕ)ωa + (τa,∇ϕ)ωa =
(
Πp
T (ψa∇·v), ϕ

)
ωa

+ (∇ψa·τT , ϕ)ωa +
(
ψaτT ,∇ϕ

)
ωa

=
(
∇·v, ψaΠp

T (ϕ)
)
ωa

+
(
τT ,∇(ψaϕ)

)
ωa

=
(
∇·v, ψa(Πp

T (ϕ)− ϕ)
)
ωa

+
(
τT − v,∇(ψaϕ)

)
ωa

=
(
ψa(∇·v −Πp−1

T (∇·v)),Πp
T (ϕ)− ϕ

)
ωa

+
(
τT − v,∇(ψaϕ)

)
ωa
,
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since ψaΠp−1
T (∇·v) is a piecewise polynomial of degree at most p. Therefore, we have

|(ga, ϕ)ωa + (τa,∇ϕ)ωa | ≤ C
∑
K∈Ta

[hK
p
‖∇·v −Πp−1

T (∇·v)‖K
]
‖∇ϕ‖ωa

+ ‖v − τT ‖ωa‖∇(ψaϕ)‖ωa

≤ C (1 + ‖∇(ψaϕ)‖ωa)

{ ∑
K∈Ta

[eK,p−1(v)]2

} 1
2

,

where we have used ‖ψa‖∞,ωa = 1, the hp approximation bound ‖ϕ − Πp
T (ϕ)‖K ≤ C hK

p+1‖∇ϕ‖K ≤
C hK

p ‖∇ϕ‖K , the Cauchy–Schwarz inequality, the scaling ‖∇ϕ‖ωa = 1, and Lemma A.1 below applied

with (p−1) in place of p. Finally, the bound (5.5) follows from the inequality ‖∇(ψaϕ)‖ωa ≤ C‖∇ϕ‖ωa ≤
C for all ϕ ∈ H1

∗ (ωa), owing to the Poincaré inequality on H1
∗ (ωa) and ‖∇ϕ‖ωa = 1.

We are now ready to complete the proof of Proposition 5.1. Let v ∈ H0,ΓN(div,Ω) and let σT be
given by Definition 5.2. The triangle inequality gives

‖v − σT ‖ ≤ ‖v − τT ‖+ ‖τT − σT ‖,

and Lemma A.1 below applied with (p − 1) in place of p allows to bound the divergence-constrained
minimization in (5.2) as

‖v − τT ‖ ≤ C

{∑
K∈T

[eK,p−1(v)]2

} 1
2

,

where C only depends on d and κT . Finally, we obtain (5.1) from the estimate

‖σT − τT ‖2 =
∑
K∈T

∥∥∥∥∥ ∑
a∈VK

(
σa − ψaτT

)∥∥∥∥∥
2

K

≤ (d+ 1)
∑
a∈V
‖σa − ψaτT ‖2ωa

,

Lemma 5.3, and picking σT in (3.10).

5.2 Proof of Theorem 3.6

The proof of Theorem 3.6 hinges on the bounds from Theorem 3.3 and Proposition 5.1. Recall the
definitions (3.10) of ET ,p(v) and (3.11) of eK,p(v). Recall also the notation δs<1 := 1 if s < 1 and
δs<1 := 0 if s ≥ 1. We proceed in two steps.

Step 1. Case p ≤ s. We first suppose that p ≤ s and let t := min(s, p+ 1). Here, we will employ The-
orem 3.3. Since Pp(K;Rd) ⊂ RTNp(K), well-known hp-approximation bounds, see e.g. [2, Lemma 4.1],
imply that

[eK,p(v)]2 ≤ C
{[ htK

(p+ 1)s
‖v‖Hs(K)

]2
+ δs<1

[ hK
p+ 1

‖∇·v‖K
]2}

, (5.6)

for each K ∈ T , with C depending only on s, d, κT . Note that for s < 1, we applied here the trivial
bound ‖∇·v −Πp

T (∇·v)‖K ≤ ‖∇·v‖K as v|K ∈Hs(K) is insufficient to improve the bound on the error
of the divergence. Combining (5.6) with the first bound in (3.12) of Theorem 3.3 then implies that there
exists a constant Cs,d,κT ,p depending only on s, d, κT , and p, such that

[ET ,p(v)]2 ≤ Cs,d,κT ,p
∑
K∈T

{[ htK
(p+ 1)s

‖v‖Hs(K)

]2
+ δs<1

[ hK
p+ 1

‖∇·v‖K
]2}

.

Define then the constant C?s,d,κT := max0≤p≤s Cs,d,κT ,p, so that, for all p ≤ s,

[ET ,p(v)]2 ≤ C?s,d,κT
∑
K∈T

{[ htK
(p+ 1)s

‖v‖Hs(K)

]2
+ δs<1

[ hK
p+ 1

‖∇·v‖K
]2}

.

This implies (3.13) for any p ≤ s with constant C = C?s,d,κT .
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Step 2. Case p > s. Now consider the case p > s; since p is an integer, this implies that p ≥ 1. Here
we rely on Proposition 5.1. The approximation bounds, similarly to in (5.6), imply that there exists a
constant C, depending only on s, d, and κT , such that

[eK,p−1(v)]2 ≤ C
{[hsK

ps
‖v‖Hs(K)

]2
+ δs<1

[hK
p
‖∇·v‖K

]2}
,

for all K ∈ T . Note that p + 1 ≤ 2p for all p ≥ 1, so that the terms ps in the denominators above can
be replaced by (p+ 1)s at the cost of an extra s-dependent constant, and similarly for 1/p ≤ 2/(p+ 1).
Hence, the inequality (5.1) of Proposition 5.1 and summation over the elements of T shows that there

exists a constant C]s,d,κT depending only on s, d, and κT such that (3.13) holds with constant C = C]s,d,κT
for all p > s.

Conclusion. Combining Steps 1 and 2 shows that (3.13) holds for general s ≥ 0 and p ≥ 0 with a

constant C that can be taken as max{C?s,d,κT , C
]
s,d,κT

}, which then depends only on s, d, and κT .

Remark 5.4 (Full hp-optimality). Theorem 3.6 shows that optimal order convergence rates with respect
to both the mesh-sizes hK and the polynomial degree p can be obtained despite the unfavorable depen-
dence of the constant C on the polynomial degree p in Theorem 3.3 and unbalanced polynomial degrees
in Proposition 5.1.

6 Application to a priori error estimates

In this section we show how to apply the results of Section 3 to the a priori error analysis of mixed finite
element methods and least-squares mixed finite element methods for a model diffusion problem.

6.1 Mixed finite element methods

Let us consider the dual mixed finite element method for the Poisson model problem, following Raviart
and Thomas [40], Nédélec [37], Roberts and Thomas [41], or Boffi et al. [7]. Let f ∈ L2(Ω) and ΓN = ∅ for
simplicity, so that H0,ΓN(div,Ω) becomes H(div,Ω). Consider the Laplace problem of finding u : Ω→ R
such that

−∆u = f in Ω, (6.1a)

u = 0 on ∂Ω. (6.1b)

The primal weak formulation of (6.1) reads: find u ∈ H1
0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (6.2)

The dual weak formulation of (6.1) then reads: find σ ∈H(div,Ω) and u ∈ L2(Ω) such that

(σ,v)− (u,∇·v) = 0 ∀v ∈H(div,Ω), (6.3a)

(∇·σ, q) = (f, q) ∀q ∈ L2(Ω). (6.3b)

Classically, u from (6.2) and (6.3) coincide and σ = −∇u. The dual mixed finite element method of
order p ≥ 0 for the problem (6.3) then looks for the pair σM ∈ RTNp(T ) ∩H(div,Ω) and uM ∈ Pp(T )
such that

(σM, ςT )− (uM,∇·ςT ) = 0 ∀ςT ∈ RTNp(T ) ∩H(div,Ω), (6.4a)

(∇·σM, qT ) = (f, qT ) ∀qT ∈ Pp(T ). (6.4b)

It is immediate to check from (6.3b) and (6.4b) that ∇·σM = Πp
T (∇·σ). Furthermore, the following a

priori error characterization is classical, cf. [7]. We include its proof to highlight the precise arguments.

Lemma 6.1 (A priori bound for mixed finite element methods). Let σM be the first component of the
dual mixed finite solution solving (6.4), approximating σ from (6.3). Then

‖σ − σM‖ = min
ςT ∈RTNp(T )∩H(div,Ω)

∇·ςT =Πp
T (∇·σ)

‖σ − ςT ‖.
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Proof. Subtracting (6.4a) from (6.3a), we have

(σ − σM, ςT )− (u− uM,∇·ςT ) = 0 ∀ςT ∈ RTNp(T ) ∩H(div,Ω). (6.5)

Let σT ∈ RTNp(T ) ∩H(div,Ω) be such that ∇·σT = Πp
T (∇·σ). Taking ςT = σT − σM in (6.5), we

obtain, since ∇·ςT = 0,

(σ − σM,σT − σM) = 0.

Now clearly

‖σ − σM‖2 = (σ − σM,σ − σM) = (σ − σM,σ − σT ) ≤ ‖σ − σM‖ ‖σ − σT ‖,

and hence ‖σ−σM‖ ≤ ‖σ−σT ‖. Since σT is arbitrary subject to the divergence constraint and can be
taken as σM, we obtain the assertion.

Thus, ‖σ − σM‖ can be readily estimated by using Theorems 3.3 and 3.6.

6.2 Least-squares mixed finite element methods

In this subsection, we showcase the application of our results to the least-squares mixed finite element
method discussed in Pehlivanov et al. [39], Cai and Ku [10], and Ku [33], see also the references therein.

Let again ΓN = ∅ for simplicity and f ∈ L2(Ω). Let σ ∈H(div,Ω) and u ∈ H1
0 (Ω) be such that

(σ, u) := arg min
(p,v)∈H(div,Ω)×H1

0 (Ω)

{
h2

Ω‖∇·p− f‖2 + ‖p+∇v‖2
}
,

where we recall that hΩ is a length scale equal to the diameter of Ω. Then σ ∈H(div,Ω) and u ∈ H1
0 (Ω)

solve the following system of equations:

(σ +∇u,∇v) = 0 ∀v ∈ H1
0 (Ω), (6.6a)

h2
Ω(∇·σ,∇·p) + (σ +∇u,p) = h2

Ω(f,∇·p) ∀p ∈H(div,Ω). (6.6b)

Again, σ and u coincide with the solutions of (6.2) and (6.3). Let p ≥ 0 and q ≥ 1 denote two fixed
polynomial degrees. The least-squares mixed finite element method for the problem (6.6) consists of
finding σLS ∈ RTNp(T ) ∩H(div,Ω) and uLS ∈ Pq(T ) ∩H1

0 (Ω) such that

(σLS +∇uLS,∇vT ) = 0 ∀vT ∈Pq(T )∩H1
0 (Ω), (6.7a)

h2
Ω(∇·σLS,∇·pT ) + (σLS +∇uLS,pT ) = h2

Ω(f,∇·pT ) ∀pT ∈RTNp(T )∩H(div,Ω). (6.7b)

Similarly to Lemma 6.1, we can obtain the following a priori error characterization.

Lemma 6.2 (A priori bound for least-squares mixed finite element methods). Let (σLS, uLS) be the
least-squares mixed finite solution pair solving (6.7), approximating (σ, u) from (6.6). Then there exists
a generic constant C, at most equal to 17, such that

‖σ − σLS‖+ ‖∇(u− uLS)‖ ≤ C

 min
ςT ∈RTNp(T )∩H(div,Ω)

∇·ςT =Πp
T (∇·σ)

‖σ − ςT ‖+ min
vT ∈Pq(T )∩H1

0 (Ω)
‖∇(u− vT )‖

 .

Proof. Define the bilinear form A on (H(div,Ω)×H1
0 (Ω))× (H(div,Ω)×H1

0 (Ω)) by

A(σ, u;p, v) := (σ +∇u,∇v) + h2
Ω(∇·σ,∇·p) + (σ +∇u,p).

We have the following orthogonality from (6.6) and (6.7):

A(σ − σLS, u− uLS;pT , vT ) = 0 (6.8)

for all pT ∈ RTNp(T ) ∩H(div,Ω) and for all vT ∈ Pq(T ) ∩H1
0 (Ω). Moreover, the following coercivity

is known from [39]: there exists a constant C such that

A(p, v;p, v) ≥ 1

C

(
‖p‖2 + h2

Ω‖∇·p‖2 + ‖∇v‖2
)

∀(p, v) ∈H(div,Ω)×H1
0 (Ω)). (6.9)
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Indeed, owing to the Cauchy–Schwarz and Young inequalities, we have, for any 0 < ε < 2,

A(p, v;p, v) = ‖∇v‖2 + (2− ε)(p,∇v) + h2
Ω‖∇·p‖2 + ‖p‖2 + ε(∇v,p)

≥ ‖p‖2 + ‖∇v‖2 − 2− ε
2

(‖p‖2 + ‖∇v‖2) + h2
Ω‖∇·p‖2 − ε‖∇·p‖‖v‖

≥ ε

2
(‖p‖2 + ‖∇v‖2) + h2

Ω‖∇·p‖2 − εCPFhΩ

(
CPFhΩ‖∇·p‖2 +

1

4CPFhΩ
‖∇v‖2

)
=
ε

2
‖p‖2 +

ε

4
‖∇v‖2 + ‖∇·p‖2

(
h2

Ω − εC2
PFh

2
Ω

)
,

where we have also employed the Green theorem (∇v,p) = −(∇·p, v) and the Poincaré–Friedrichs in-
equality ‖v‖ ≤ CPFhΩ‖∇v‖ (here hΩ is the diameter of Ω and CPF ≤ 1 a generic constant). The
assertion (6.9) follows by choosing, e.g., ε = h2

Ω/(2C
2
PFh

2
Ω). Note that, employing CPF = 1, the constant

C in (6.9) can be taken as 8.
Let now ςT ∈ RTNp(T )∩H(div,Ω) be such that ∇·ςT = Πp

T (∇·σ) and vT ∈ Pq(T )∩H1
0 (Ω) be an

arbitrary function. Set qT = vT − uLS and pT = ςT − σLS. Then using (6.8) and (6.9), we find

1

C

(
‖pT ‖2 + ‖∇qT ‖2

)
≤ A(ςT − σLS, vT − uLS;pT , qT )

= A(ςT − σ, vT − u;pT , qT )

= (ςT − σ +∇(vT − u),∇qT ) + h2
Ω(∇·(ςT − σ),∇·pT )

+ (ςT − σ +∇(vT − u),pT ).

Since ∇·ςT = Πp
T (∇·σ) and ∇·pT ∈ Pp(T ), we have (∇·(ςT −σ),∇·pT ) = 0. Using the Cauchy–Schwarz

and the Young inequality, we then obtain, with the constant C from (6.9),

‖pT ‖+ ‖∇qT ‖ ≤ 2C (‖σ − ςT ‖+ ‖∇(u− vT )‖) ,

which proves the claim owing to the triangle inequality and since ςT and vT are arbitrary.

The two terms in the error bound from Lemma 6.2 are uncoupled. For the first one, we can again
straightforwardly use Theorems 3.3 and 3.6. For the second one, the result of Veeser [45] yields

min
vT ∈Pq(T )∩H1

0 (Ω)
‖∇(u− vT )‖2 ≤ C

∑
K∈T

min
qK∈Pq(K)

‖∇(u− qK)‖2K ,

where the constant C depends only on the space dimension d, the shape-regularity parameter κT of T ,
and the polynomial degree q, which is again optimal.

Finally, a localized estimate for the error ∇·(σ−σLS) follows by the combination of the above results
with the following lemma.

Lemma 6.3 (A priori bound on the divergence for least-squares mixed finite element methods). Let
(σLS, uLS) be the least-squares mixed finite solution solving (6.7), approximating (σ, u) from (6.6). Then

h2
Ω‖∇·(σ − σLS)‖2 ≤ h2

Ω‖∇·σ −Πp
T (∇·σ)‖2 + ‖∇(u− uLS)‖2

+ min
ςT ∈RTNp(T )∩H(div,Ω)

∇·ςT =Πp
T (∇·σ)

‖σ − ςT ‖2.

Proof. Again let σT ∈ RTNp(T ) ∩H(div,Ω) be such that ∇·σT = Πp
T (∇·σ). Using (6.6b) and (6.7b),

we have

h2
Ω‖∇·(σ − σLS)‖2 = h2

Ω(∇·(σ − σLS),∇·(σ − σLS))

= h2
Ω(∇·(σ − σLS),∇·(σ − σT )) + h2

Ω(∇·(σ − σLS),∇·(σT − σLS))

= h2
Ω(∇·(σ − σLS),∇·(σ − σT )) + h2

Ω(∇·(σ − σLS),∇·(σT − σLS))

−A(σ − σLS, u− uLS;σT − σLS, 0)

= h2
Ω(∇·(σ − σLS),∇·(σ − σT ))− ((σ − σLS) +∇(u− uLS),σT − σLS)

= h2
Ω(∇·(σ − σT ),∇·(σ − σT ))− ((σ − σLS) +∇(u− uLS),σT − σLS),
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where we used that (∇·σLS,∇·(σ−σT )) = (∇·σT ,∇·(σ−σT )) = 0 since both ∇·σLS and ∇·σT belong
to Pp(T ) in the last equality. Adding and subtracting σ in the second term on the right-hand side above
and applying the Cauchy–Schwarz and Young inequalities implies that

h2
Ω‖∇·(σ − σLS)‖2 + ‖σ − σLS‖2

= h2
Ω‖∇·σ −Πp

T (∇·σ)‖2 − (∇(u− uLS),σ − σLS)

− (∇(u− uLS),σT − σ)− (σ − σLS,σT − σ)

≤ h2
Ω‖∇·σ −Πp

T (∇·σ)‖2 + ‖∇(u− uLS)‖2 + ‖σ − σT ‖2 + ‖σ − σLS‖2.

We infer that

h2
Ω‖∇·(σ − σLS)‖2 ≤ h2

Ω‖∇·σ −Πp
T (∇·σ)‖2 + ‖∇(u− uLS)‖2 + ‖σ − σT ‖2.

This finishes the proof since σT is arbitrary.

A p-robust constrained–unconstrained equivalence on a simplex

We present in this appendix a way to remove the divergence constraint on a single simplex, and we do
this in a polynomial-degree-robust way. This equivalence of constrained and unconstrained local-best
approximations is an important consequence of the result of Costabel and McIntosh [16, Corollary 3.4].

Recall the notation eK,p(v) from (3.11), where RTNp(K) = Pp(K;Rd) + xPp(K) is the Raviart–
Thomas–Nédélec space of degree p on the simplex K, as well as that hK denotes the diameter of K and
%K the diameter of the largest ball inscribed in K.

Lemma A.1 (Local p-robust constrained–unconstrained equivalence). Let a simplex K ⊂ Rd, d ≥ 1,
and v ∈ H(div;K) be fixed. Let τT be defined as in (3.1). Then, there exists a constant C, depending
only on the space dimension d and the shape-regularity parameter κK := hK/%K of K, such that

eK,p(v) ≤ ‖v − τT ‖K +
hK
p+ 1

‖∇·(v − τT )‖K ≤ CeK,p(v). (A.1)

Proof. Since ∇·τT = Πp
T (∇·v) from (3.1), the first inequality in (A.1) is obvious, so we show the second

one. Therein, hK

p+1‖∇·(v − τT )‖K ≤ eK,p(v) trivially holds true for the same reason, so it remains only

to bound ‖v − τT ‖K .
Let τ̃T be the elementwise L2-projection of v into RTNp(T ), so that

[eK,p(v)]2 = ‖v − τ̃T ‖2K +
h2
K

(p+ 1)2
‖∇·v −Πp

T (∇·v)‖2K .

It follows from [16, Corollary 3.4] that there exists ςK ∈ RTNp(K) such that ∇·ςK = Πp
T (∇·v) and

‖ςK − τ̃T ‖K ≤ C sup
ϕ∈H1

0 (K)
‖∇ϕ‖K=1

{(Πp
T (∇·v)−∇·τ̃T , ϕ)K} , (A.2)

where C only depends on d and κK . Since (∇·v, ϕ)K + (v,∇ϕ)K = 0, and since also (∇·τ̃T , ϕ)K +
(τ̃T ,∇ϕ)K = 0 for all ϕ ∈ H1

0 (K), we see that

(Πp
T (∇·v), ϕ)K − (∇·τ̃T , ϕ)K = (Πp

T (∇·v)−∇·v, ϕ−Πp
T (ϕ))K − (v − τ̃T ,∇ϕ)K ,

where we have also freely subtracted Πp
T (ϕ). Therefore, the inequality (A.2) combined with the approx-

imation bound ‖ϕ− Πp
T (ϕ)‖K ≤ C hK

p+1‖∇ϕ‖K , with a constant C depending only on d and κK , implies
that

‖ςK − τ̃T ‖K ≤ C
{
‖v − τ̃T ‖2K +

[ hK
p+ 1

‖∇·v −Πp
T (∇·v)‖K

]2} 1
2

= CeK,p(v).

Finally, owing to the triangle inequality ‖v − ςK‖K ≤ ‖v − τ̃T ‖K + ‖τ̃T − ςK‖K , we infer that
‖v − ςK‖K ≤ CeK,p(v). Consequently, the definition of τT as the minimizer in (3.1) implies that
‖v − τT ‖K ≤ ‖v − ςK‖K , and this yields the second bound in (A.1).
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