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When animal cells enter mitosis, they round up to become spherical. This shape change
is accompanied by changes in mechanical properties. Multiple studies using different
measurement methods have revealed that cell surface tension, intracellular pressure and
cortical stiffness increase upon entry into mitosis. These cell-scale, biophysical changes
are driven by alterations in the composition and architecture of the contractile acto-
myosin cortex together with osmotic swelling and enable a mitotic cell to exert force
against the environment. When the ability of cells to round is limited, for example by
physical confinement, cells suffer severe defects in spindle assembly and cell division.
The requirement to push against the environment to create space for spindle formation
is especially important for cells dividing in tissues. Here we summarize the evidence and
the tools used to show that cells exert rounding forces in mitosis in vitro and in vivo,
review the molecular basis for this force generation and discuss its function for ensuring
successful cell division in single cells and for cells dividing in normal or diseased tissues.
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INTRODUCTION

Cell division requires the separation and equal partition of DNA and cellular contents into two
daughter cells. To achieve this, animal cells undergo a remarkable series of structural changes when
they enter mitosis, which impact every cellular compartment. Chromosomes condense and enter
the cytoplasm following loss of nuclear envelope integrity. Centrosomes separate, and microtubules
form a bipolar spindle to array chromosomes at metaphase before pulling them apart to segregate
the genetic material at anaphase. However, mitosis is accompanied by an equally dramatic series of
morphological changes (reviewed in Ramkumar and Baum, 2016). In adherent cells, these begin in
early prophase when cells decrease substrate adhesion and round up to assume a characteristic
spherical shape. This process of cell rounding in early mitosis is a near universal feature of
animal cell division and is observed widely in many cell types in 2D and 3D culture as well as
in tissues. It has recently become appreciated that mitotic rounding also plays an important role
in facilitating successful cell division. By creating a spherical cell shape at metaphase, mitotic
rounding ensures that there is sufficient space within the cell to form a mitotic spindle (reviewed in
Cadart et al., 2014).

Changes in cell shape require force. In this review, we focus on the biophysical changes that
generate the forces required for mitotic rounding. We discuss how the forces generated by the acto-
myosin cytoskeleton change cell mechanics and act, along with loss of adhesion and changes in
intracellular pressure, to drive mitotic rounding. And we explore the function of mitotic rounding
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in enabling cells to exert force against their environment to aid
cell division in normal tissues and in diseases associated with
stiffened tissue.

FORCES ACCOMPANYING ENTRY INTO
MITOSIS

Adherent cells grown on an artificial substrate are usually spread
flat in interphase but round up to become spherical at mitotic
entry. Part of this shape change is caused by loss of adhesion
to the substrate. The classical integrin-containing focal adhesion
complexes that anchor cells to the extracellular matrix (ECM) are
disassembled at mitotic entry (Dao et al., 2009; Dix et al., 2018)
and cells remain loosely attached by beta1-integrin containing
retraction fibers (Cramer and Mitchison, 1997; Dix et al., 2018)
and atypical adhesions under the cell body (Lock et al., 2018).
However, mitotic rounding is not simply induced by loss of
adhesion causing the cell to adopt a spherical shape like a
liquid droplet due to its surface tension. Many studies have
demonstrated that it is, instead, a process involving the active
generation of forces. Multiple different techniques have been
applied to measure the forces associated with mitotic rounding,
which are summarized in Figure 1 and described in detail in
Box 1. Mechanical terms used throughout this review are defined
in the Glossary.

The forces exerted during cell rounding can be quantified
using atomic force microscopy (AFM). Here a flat cantilever
is positioned above a cell in prophase. As the cell rounds and
comes into contact with the cantilever, the forces exerted onto
the cantilever can be read out (Figure 1.3 and Box 1; Stewart
et al., 2011a). Using this method, changes in rounding forces
were monitored over the course of mitosis, revealing an increase
during progression from prometaphase to metaphase, before,
at cytokinesis, the cells loose contact with the cantilever when
elongating and flattening again (Stewart et al., 2011a).

Follow-up studies that combined AFM with confocal
microscopy enabled the measurement of surface tension and
intracellular pressure changes in mitotic cells that had been pre-
rounded by detachment from the substrate (Fischer-Friedrich
et al., 2014; Cattin et al., 2015; Ramanathan et al., 2015). Surface
tension and intracellular pressure were calculated by applying
Laplace’s law (see Glossary) which was found to be well suited
to describe the observed shapes under uniaxial compression
(Fischer-Friedrich et al., 2014; Ramanathan et al., 2015). Since
the contribution of membrane tension is considered to be
negligible (Clark et al., 2013; Chalut et al., 2014; Chugh and
Paluch, 2018), the observed changes in surface tension are mainly
due to changes in cortical tension arising from the cortical
acto-myosin network (see Glossary) (reviewed in Kelkar et al.,
2020). Uniaxial AFM confinement (Figure 1.4) of rounded, non-
adherent cells showed that cortical tension is greatly increased in
mitosis compared to interphase (Fischer-Friedrich et al., 2014;
Ramanathan et al., 2015; Chugh et al., 2017). In HeLa cells,
it was found to increase from 0.2 mNm−1 during interphase
to 1.6 mNm−1 in metaphase (Fischer-Friedrich et al., 2014).
Crucially, as this technique involves lowering an AFM cantilever

onto rounded, non-adherent cells either in interphase or arrested
in mitosis, these studies demonstrate that the cortical tension
increase observed at mitosis happens independently of cell shape
changes. These studies also revealed that entry into mitosis is
associated with an ∼10-fold increase in intracellular pressure
(Fischer-Friedrich et al., 2014; Ramanathan et al., 2015). A more
in-depth characterization of the mechanics of the mitotic cortex
by stepwise uniaxial compression under an AFM cantilever
(Figure 1.4) confirmed that the deformation response measured
is dominated by the cortical layer (and not the bulk of the
cytoplasm) so that it fits best a view of the cell as a visco-
elastic shell surrounding an incompressible bulk liquid cytoplasm
(Fischer-Friedrich et al., 2016).

In the simplest case, cortical tension and intracellular pressure
should be directly coupled (according to Laplace’s law – see
Glossary). As a result, an increase in cortical contraction will
raise intracellular pressure causing water efflux. This in turn will
cause an increase in the osmotic pressure difference between
the inside and outside. Nevertheless, because the osmotic forces
involved are orders of magnitude higher than those generated by
cortex contractility, the volume changes involved are expected
to be negligible (Clark et al., 2014; Fischer-Friedrich et al.,
2014). This is supported by data from experiments in which
induced changes in acto-myosin contractility did not change cell
volume (Stewart et al., 2011a; Zlotek-Zlotkiewicz et al., 2015;
Cadart et al., 2018).

Cells do undergo changes in volume though as they pass
into and out of mitosis. This they achieve by actively pumping
ions across the plasma membrane. Thus, when cell volume was
accurately measured during mitotic rounding using fluorescence
exclusion microscopy, cell volumes were found to increase by
10–30% over a period of several minutes following the transition
from prophase to prometaphase (Zlotek-Zlotkiewicz et al., 2015;
Cadart et al., 2018). A similar increase in cell volume that
depended on Na+H+ ion exchange was seen when single cells
were weighed in medium using a suspended microchannel
resonator (Son et al., 2015). Along with nuclear permeabilization,
this entry of water into the cell at mitotic entry may also
contribute to the dilution of cytoplasmic proteins (Mchedlishvili
et al., 2018). As a result, the mitotic cytoplasm is likely to be
less viscous and more homogeneous than in interphase, a process
that is also aided by fragmentation of subcellular compartments
such as mitochondria and endoplasmic reticulum (Champion
et al., 2017). This may be important for chromosome segregation
(Moulding et al., 2012). Osmotic pressure changes due to ion
fluxes across the membrane in the mitotic cell and concomitant
water influx have been suggested to drive intracellular pressure
increase in early mitosis to aid cell rounding, while the acto-
myosin cortex actively guides shape changes and controls surface
tension (Stewart et al., 2011b).

MITOTIC CELLS ARE CHARACTERIZED
BY A STIFFER CORTEX

The changes in cortical tension, the viscoelastic properties of
the cortex and its geometry all affect the response of the
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FIGURE 1 | Techniques that have been applied to measure mitotic cell mechanics. For detailed description of methods (see Box 1).

cell to deformation as revealed by probing the cell surface
locally using an indenter. Most studies use AFM, although
simple measurements such as cortical stiffness can also be
obtained by pushing calibrated microneedles (Figure 1.1 and
Box 1) onto the cell surface and measuring deflection of
the needle tip (Maddox and Burridge, 2003). The resulting
AFM force-indentation curves are then typically fitted with
the Hertz/Sneddon model (Hertz, 1882; Sneddon, 1965) to
derive an apparent Young’s modulus (see Glossary, Figure 1.2
and Box 1), thereby treating the cell as a homogenous
(visco)elastic material. Since the indentation depth reached
is typically less than 500 nm, the response to deformation
is dominated by the cell cortex, so the apparent Young’s
modulus (see Glossary) is usually taken as an indirect measure
of cortical stiffness (Radmacher et al., 1996; Matzke et al.,
2001; Salbreux et al., 2012). The measured cortical stiffness

includes but does not differentiate well the relative contributions
of cortex viscoelasticity and cortex tension, and is further
influenced by cortical thickness. However, in most of the studies,
changes in cortical stiffness correlate well with cortical tension
changes, because of the short time-scale of the deformation.
In this way, local surface mapping of fly cells using AFM
(Figure 1.2) revealed a ∼4-fold increase in apparent Young’s
Modulus when cells entered mitosis (Kunda et al., 2008), with
further stiffening observed at the furrow when cells divided
(Matzke et al., 2001; Kunda et al., 2008). Similarly, when
analyzing human breast epithelial cells using AFM, a 2–4-
fold increase in apparent elastic modulus between interphase
and mitosis was observed that was independent of cell shape
(Matthews et al., 2020; Figure 1.2).

This increase in cortical stiffness at the local level also
translates to a resistance to whole-cell deformation. Mitotic cells
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BOX 1 | Techniques to measure cell mechanical properties and force generation during mitotic rounding.
Over the past decades, various techniques have been employed to characterize cell mechanical properties or quantitate forces generated by cells (reviewed by
Moeendarbary and Harris, 2014; Wu et al., 2018) and many have been applied to probe mitotic cells or to mechanically manipulate them. These assays classically
apply local or global stress onto a cell and study the resulting deformation response to characterize the elastic or viscoelastic properties of the cell (Wu et al., 2018).
A simple assay makes use of microneedles to poke cells (Figure 1.1; Rappaport, 1967; McConnaughey and Petersen, 1980; Maddox and Burridge, 2003). Thereby
the shaft of a calibrated needle is laterally pushed against a cell by a certain distance and the resultant deflection of the needle tip is measured. Itabashi et al. (2012)
used a pair of vertically oriented microfabricated cantilevers to exert mechanical impulses on mitotic allowing for cell manipulation at various directions with respect
to the metaphase plate. A more precise force readout and manipulation is enabled by atomic force microscopy (AFM) (Binnig et al., 1986), which has become
the gold standard for the mechanical characterization of cells and tissue (Figure 1.2–1.4; Krieg et al., 2019). In the simplest application, a cantilever is lowered at
defined speed onto a cell through piezo elements while reading out at the same time the resultant force acting on the cantilever, from which a force-distance curve is
obtained (Figure 1.2). The force-indentation relationship can also be characterized in a time-dependent manner, e.g., by stress relaxation, creep compliance or
oscillatory measurements. Depending on the cell mechanical model (e.g., elastic solid, liquid droplet, poroelastic body), type of indentation (static, dynamic), different
mechanical parameters can be obtained, such as apparent Young’s moduli (Radmacher et al., 1996; Matzke et al., 2001), surface tension and/or intracellular
pressure (Rosenbluth et al., 2006; Krieg et al., 2008; Cartagena-Rivera et al., 2016), a poroelastic diffusion constant (Moeendarbary et al., 2013), and shear storage
and loss moduli (Alcaraz et al., 2003; Rother et al., 2014; Schierbaum et al., 2015). Moreover, cell generated forces can be measured at the onset of mitotic rounding
and along mitotic progression (Stewart et al., 2011a; Figure 1.3), where a more stable confinement can be facilitated by the use of wedged (Stewart et al., 2013) or
microfabricated (Cattin et al., 2015) cantilevers (Figure 1.4). AFM enabled uniaxial confinement has also been combined with confocal microscopy to accurately
determine the 3D contour of the deformed cell, which allows to calculate the associated pressure and surface tension according to the law of Laplace (Figure 1.4;
Stewart et al., 2012; Fischer-Friedrich et al., 2014; Ramanathan et al., 2015; Chugh et al., 2017; Toyoda et al., 2017). To obtain a more detailed description of the
rheological properties the cortex, the parallel plate assay can be modified by oscillating the wedged cantilever at pre-set frequencies. From the time-dependent force
and cantilever height information, the amplitudes of effective tension, surface area strain, phase shift and an complex elastic modulus are derived
(Fischer-Friedrich et al., 2016).

A widely used method to assess cortex tension is micropipette aspiration (Figure 1.5). Thereby a micropipette is brought into contact with individual cells and a
suction pressure is applied that draws the cell partly into the pipette as observed by light microscopy (Evans and Yeung, 1989; Evans and Robinson, 2018). The
pressure is stepwise increased until the aspirated length of the cell pulled into the pipette equals the pipette radius and resembles a hemi-circle. At that (critical)
pressure, the surface tension can be calculated applying Laplace law (Larson et al., 2010; Chaigne et al., 2013, 2015). Rising the suction pressure beyond that
critical value results in a liquid-like flowing of the cell into the pipette and allows for characterization of viscoelastic properties of the cell (Hochmuth, 2000; Reichl
et al., 2008). Micropipettes can also be used to manipulate the cortex of mitotic cells (Sedzinski et al., 2011).

A contact-free interrogation of the cell’s mechanical properties is enabled by the Optical Stretcher (Figure 1.6; Guck et al., 2001, 2005). This technique uses a
dual beam laser trap to trap and deform cells within a microfluidic channel. By increasing of the laser power above trapping power, stress is induced on the cell
surface due to momentum transfer, which results in cell deformation along the laser axis, quantified by the axial strain. Compliance can be calculated by dividing the
strain by the calculated optical stress, taking also a geometrical factor into account (Ekpenyong et al., 2012; Matthews et al., 2012). Also, viscoelastic properties can
be studied by fitting time dependent creep compliance curves to a mechanical models (Guck et al., 2001; Lincoln et al., 2007). While optical stretcher enables
trapping and manipulation of entire cells, optical tweezers present highly sensitive tools for probing forces within subcellular compartments (Ashkin et al., 1987;
Charlebois et al., 2011; Ferraro-Gideon et al., 2013) although their force range is rather limited.

High throughput mechanical probing of suspended cells in a contact-free manner can be facilitated by real-time deformability cytometry (RT-DC) (Figure 1.7).
Using RT-DC, rates of higher than 100 cells/sec can be reached (Otto et al., 2015). Suspended cells are passed through a microfluidic channel, where they are
hydrodynamically deformed. Several parameters including deformation and area are analyzed on the fly. Post-processing using analytical or numerical models are
employed to calculate for instance an apparent elastic modulus (Mietke et al., 2015; Mokbel et al., 2017; Rosendahl et al., 2018; Matthews et al., 2020). Another
type of microfluidic assay makes use of a hollow microchannel resonator, oscillating at its resonance frequency, through which cells are passed. Depending on the
position within the channel, changes in the resonance frequency could be attributed to acoustic scattering correlating with changes in mechanical properties of
mitotic cells (Kang et al., 2019).

Non-invasive techniques that are also suitable to study mechanical properties of cells within a tissue or organoid are acoustic microscopy and Brillouin
microscopy. In acoustic microscopy (Figure 1.9) ultra high-frequency sound waves (MHz-GHz range) passing through cells and tissues are analyzed and
parameters such as sound velocity and attenuation and sample thickness are measured. The obtained sound velocity can be related to the compression modulus
and thereby reflects on the cell mechanical properties (Kundu et al., 2000; Bereiter-Hahn, 2005). Brillouin microscopy (Figure 1.8) relies on the effect of Brillouin
scattering, which occurs due to the interaction of incident laser light with acoustic phonons, causing a frequency shift that can be related to the longitudinal modulus
and therefore sample compressibility (Scarcelli and Yun, 2008, 2012; Prevedel et al., 2019). Both techniques have already been applied for the study of mitotic cells
(Pasternak et al., 2015; Liu et al., 2019).

were also found to be less compliant and therefore stiffer than
interphase cells using an Optical Stretcher (Matthews et al., 2012;
Figure 1.6 and Box 1). Similarly, using real-time deformability
cytometry (RT-DC), a high-throughput microfluidic technique
to assess cell mechanics (Figure 1.7), mitotic MCF10A cells were
found to be less deformable than their interphase counterparts
(Matthews et al., 2020). In fact, the difference between the
interphase and mitotic population was so pronounced that it
allowed for label-free high-throughput mechanical phenotyping
(Rosendahl et al., 2018). These studies all point to a clear
difference in the biophysical properties of cells between mitosis
and interphase that is independent of cell shape and adhesion:
cells in mitosis are stiffer and more able to resist deformation.

CHANGES IN CORTICAL ACTIN AND
MYOSIN ARCHITECTURE UNDERPIN
CHANGES IN MECHANICS

How are these forces and the changes in cortical mechanics
generated? This depends on the acto-myosin cortex, a network
of filaments and contractile elements that is coupled to the
plasma membrane (Chugh and Paluch, 2018; Kelkar et al.,
2020). Depolymerization of actin filaments completely removes
any mechanical difference between interphase and mitotic cells,
resulting in cells that are extremely compliant (Stewart et al.,
2011a; Matthews et al., 2012; Ramanathan et al., 2015; Fischer-
Friedrich et al., 2016; Chugh et al., 2017) while the disassembly of
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FIGURE 2 | The molecular basis of mitotic force generation. The transition from interphase (left) to mitosis (center) in a single adherent cell in tissue culture is
accompanied by loss of substrate adhesion, an increase in acto-myosin cortical tension and an increase in intracellular pressure due to water influx. The box shows
the molecular changes that control cortical tension. Activation of Ect2 by Cdk1 phosphorylation and nuclear export leads to the activation of RhoA, which leads to
the assembly of actin filaments (red) and myosin II mini-filaments (blue) at the cell cortex. The rigid, contractile acto-myosin cortex is attached to the plasma
membrane by ERM proteins (orange), activated in mitosis through phosphorylation by the kinase, Slik. A network of intermediate filament protein, vimentin (purple),
underlies the cortical actin network, which also contributes to cortical tension.

the mitotic spindle has little effect on cortical mechanics (Stewart
et al., 2011a; Fischer-Friedrich et al., 2016). The acto-myosin
network plays a fundamental role in controlling cell shape,
mechanics and the ability to exert force and resist deformation
in mitosis. But how is this orchestrated at a molecular level?

Recent studies have demonstrated that differences in cortical
architecture, contractility and protein composition likely
contribute to the differences in biophysical properties between
interphase and mitotic cells (summarized in Figure 2). In mitosis,
the cortex is thinner than in interphase, despite having higher
tension (Chugh et al., 2017). By perturbing actin regulators,
Chugh et al. (2017) suggested that a key factor determining
cortical tension was actin filament length. Treatments that
shortened filaments, such as knockdown of nucleator, Diaph1,
led to a thinner cortex (Chugh et al., 2017) and decreased cortical
tension in mitosis (Rosa et al., 2015; Chugh et al., 2017; Toyoda
et al., 2017). Conversely, lengthening filaments by removing
actin capping protein, CAPZB, or filament severer, cofilin, led to
a thicker cortex but also decreased tension (Chugh et al., 2017).
This suggests that the mechanical changes observed in mitosis
may in part be due to changes in filament length, achieved by
altering the balance between filament assembly, disassembly,
branching, severing and capping. Filament nucleation in the
cortex depends on the coordinated activity of Arp2/3, which
forms branched filaments, and Diaph1, which nucleates linear
filaments (Bovellan et al., 2014; Cao et al., 2020). Proteomics
studies have shown that the cortex contains numerous regulators
of filament assembly, severing, capping and bundling (Biro et al.,
2013; Bovellan et al., 2014; Serres et al., 2020). High through-put
mechanical screens have found that many of these are required
to generate cortical tension in mitosis (Toyoda et al., 2017;
Rosendahl et al., 2018). In addition, crosslinks are critical.
A computational simulation of the cortex structure predicts that
connectivity is key to achieving high tension across a network
in a way that depends on filament lengths, turnover rates and

crosslinks (Chugh et al., 2017). Network turnover and filament
cross-linking modulate network connectivity (Koenderink and
Paluch, 2018). Thus, the depletion of actin filament cross-linkers,
including fascin and alpha-actinin, decrease mitotic cortical
tension (Fischer-Friedrich et al., 2016; Toyoda et al., 2017).
Cortical recruitment, activation or de-activation of specific
proteins in mitosis can also profoundly alter the mechanical
properties of the network as a whole. For example, WDR1, a
protein that promotes actin filament disassembly is enriched
within the mitotic cortex (Serres et al., 2020) and is required for
mitotic rounding (Fujibuchi et al., 2005; Matthews et al., 2012).

CORTICAL MYOSIN

One of the major functions of actin filaments in the cortex is
to support myosin contractility. Myosin mini-filaments within
the network provide crosslinks but also act as motors to slide
filaments over each other. Myosin II accumulates progressively
at the cortex during mitotic rounding corresponding to an
increase in rounding pressure (Ramanathan et al., 2015). This
accumulation is essential for generating cortical tension as
myosin II depletion reduces the ability of cells to apply pressure in
mitosis by 90% (Toyoda et al., 2017). However, treatment of cells
with blebbistatin, which inhibits myosin motor activity but does
not affect its accumulation at the mitotic cortex (Ramanathan
et al., 2015) or cortex thickness or turnover rate (Ramanathan
et al., 2015; Chugh et al., 2017) has a more subtle effect. In
rounded cells confined under an AFM cantilever (Figures 1.3,1.4),
blebbistatin-treated cells were initially able to resist the applied
stress but not to sustain the pressure (Ramanathan et al., 2015).
Detailed rheological characterization revealed a more solid-
like but less stiff cortex with blebbistatin treatment (Fischer-
Friedrich et al., 2016). On the other hand, increasing contractility
using RhoA activator Calpeptin raises intracellular pressure and
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cortical tension and induces blebbing in mitosis (Ramanathan
et al., 2015). Blebs, which often form under conditions of high
contractility or cortical instability (Tinevez et al., 2009), are
rarely seen in early mitosis, suggesting that intermediate levels
of contractility are optimal for maximum cortical tension. It
seems likely that myosin is required to increase cortical tension in
mitosis through its dual roles in promoting network crosslinking
and in applying contractile forces to the network. In reality,
these two functions cannot be easily separated as network
connectivity also affects contractility (Ennomani et al., 2016;
Koenderink and Paluch, 2018).

CORTEX/MEMBRANE CROSS-LINKING

The mitotic cortex is also crosslinked to the plasma membrane.
By tethering these two structures, these crosslinks help to
generate the mechanically stiff cortex. While several proteins
have the ability to link the membrane and the actin cytoskeleton
in different contexts (e.g. spectrin in red blood cells), the
ezrin/radixin/moesin (ERM) family of proteins is likely to be
critical in mitosis. Members of this family are widely expressed
at high levels, bind both the actin cortex and transmembrane
proteins within the plasma membrane, and are activated by
phosphorylation and specifically recruited to the cell cortex in
mitosis in both fly and human cells (Carreno et al., 2008; Kunda
et al., 2008; Roubinet et al., 2011; Machicoane et al., 2014). In
fly cells, the mitotic activation of moesin (the single fly ERM
homolog) is essential for mitotic stiffening (Kunda et al., 2008).
While the picture in mammalian cells is less clear, partly because
of redundancy, ezrin silencing leads to a slight decrease in cortical
tension (Toyoda et al., 2017). ERM proteins are likely to play an
important conserved role in the regulation of cortical mechanics,
as there is additional evidence that they regulate membrane-
cortical interactions to maintain mammalian cell shape (Clark
et al., 2014), regulate bleb formation and contraction during
mitosis (Tinevez et al., 2009; Sedzinski et al., 2011) and become
polarized at mitotic exit to aid cell division (Roubinet et al., 2011;
Kunda et al., 2012).

THE ROLE OF VIMENTIN

The acto-myosin cortex is key to generating mitotic cortical
tension. However, two recent studies revealed the involvement of
a second network of the intermediate filament protein, vimentin,
which lies just beneath the actin cortex in mitotic cells. Serres and
colleagues compared the proteins bound to actin in interphase
and mitosis using mass spectroscopy and found that vimentin
was specifically enriched in mitosis in HeLa cells (Serres et al.,
2020). Duarte et al. (2019) showed that vimentin is recruited
to the acto-myosin cortex via its c-terminal tail region and
is required for normal mitotic progression. The presence of a
vimentin layer underlying the actin network appears to both
organize and strengthen the acto-myosin cortex, since vimentin
knockdown led to the formation of a thicker, more disorganized
cortex with lower tension (Serres et al., 2020). While this new
role of vimentin in modulating the mechanical properties of the

acto-myosin cortex during mitosis is interesting, many cell types,
including epithelial cells, do not express vimentin. Furthermore,
the over-expression of vimentin in MCF-7 cells, where it is
not normally expressed, was not sufficient to drive its cortical
localization (Duarte et al., 2019), hinting at different regulatory
mechanisms between different cell types.

WHAT TRIGGERS CORTICAL CHANGES
AT MITOSIS?

The mechanical changes associated with mitosis are striking in
that they occur over a rapid timescale (10 min) and reverse just as
quickly at mitotic exit (Stewart et al., 2011a). Increasing cortical
tension can be viewed as part of a suite of changes that occur
at mitotic entry and affect almost all cell structures including
DNA, internal membranes and organelles. All are driven by
the phosphorylation of multiple proteins by mitotic kinases,
including the master regulator Cdk1/Cyclin B. Cdk1 activity
rapidly ramps up during prophase at the same time as mitotic
rounding (Gavet and Pines, 2010). Mitotic stiffening is dependent
on Cdk1, as the addition of a Cdk1 inhibitor results in a rapid
decrease of intracellular pressure and cortical tension as cells exit
mitosis (Ramanathan et al., 2015). Cdk1 and other mitotic kinases
phosphorylate a huge number of substrates (Blethrow et al., 2008)
including many that have the potential to control cell shape
and mechanics. Cdk1 drives the disassembly of focal adhesion
complexes and associated non-cortical actin structures, such as
stress fibers, required for mitotic rounding (Dao et al., 2009;
Jones et al., 2018; Lock et al., 2018). Some cortical regulators are
directly phosphorylated by Cdk1 including vimentin (Yamaguchi
et al., 2005) and WDR1 (Fujibuchi et al., 2005). However, many
of the changes to acto-myosin organization are thought to be
driven by the activation of RhoA in mitosis (Maddox and
Burridge, 2003). Ect2, a RhoGEF, plays a key role in regulating
the changes in mitotic cell shape and mechanics that accompany
mitotic progression. In interphase, Ect2 resides in the nucleus
but as cells enter mitosis, it is exported into the cytoplasm
following phosphorylation by Cdk1, where it activates RhoA at
the plasma membrane to trigger mitotic rounding (Matthews
et al., 2012). AFM measurements have demonstrated that both
Ect2 and RhoA are required for cortical stiffening (Maddox
and Burridge, 2003; Matthews et al., 2012) and rounding force
generation (Ramanathan et al., 2015). Ect2 knockdown blocks
the accumulation of both actin and myosin at the cell cortex
in mitosis (Matthews et al., 2012; Toyoda et al., 2017), so
is likely to be required for both filament organization and
contractility during mitotic rounding. The Ect2-RhoA pathway
controls mitotic rounding and stiffening by multiple mechanisms
including driving contractility at the cell edge during mitotic
rounding (Ect2-depleted cells round up more slowly (Matthews
et al., 2012), promoting actin filament nucleation through the
activation of the formin Diaph1 (Rosa et al., 2015) and organizing
cortical filaments. In a parallel pathway, ERM proteins are
activated by phosphorylation by the kinase Slik to link the
cortical actin network to the plasma membrane, ensuring its
stability and rigidity (Carreno et al., 2008; Kunda et al., 2008;
Machicoane et al., 2014).
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Once cells reach anaphase, cyclin B degradation and the
resulting decline in Cdk1 activity coincide with the reverse
process as rounding pressure drops (Stewart et al., 2011a). In
preparation for cell division, the previously uniform cortex
becomes polarized, so that the furrow stiffens (Matzke et al., 2001;
Kunda et al., 2008) while the poles soften and relax – allowing
cells to elongate. This symmetry-breaking event is driven by a
rapid change in the localization of proteins controlling cortical
mechanics, which lose their uniform distribution at anaphase.
As cells exit from mitosis, Ect2 becomes localized to the
spindle midzone where it activates RhoA to assemble the acto-
myosin contractile ring (Somers and Saint, 2003; Yüce et al.,
2005; Su et al., 2011). At the same time, the chromosomes
move poleward carrying the kinetochore-localized phosphatase
PP1/sds22 (Rodrigues et al., 2015) which dephosphorylates
polar ERM proteins and RanGTP (Kiyomitsu and Cheeseman,
2013) allowing clearance of cortical actin and polar relaxation
(Roubinet et al., 2011; Kunda et al., 2012). Pressure is released
by membrane blebbing at the poles, which help to stabilize cell
shape during division (Sedzinski et al., 2011). In summary, the
structural changes to the mitotic spindle induce a symmetry
breaking event in the uniform mitotic cortex to polarize the
cell to divide in two. Actin re-arrangements at mitotic exit have
been comprehensively reviewed elsewhere (Green et al., 2012;
Ramkumar and Baum, 2016).

While many of the molecular mechanisms driving mitotic
actin rearrangements are known, it is not so clear what
regulates the water influx to increase intracellular pressure at
mitosis. An RNAi screen that probed cell mechanics using
a wedged AFM cantilever (Figure 1.4) identified several ion
channels that when knocked down decreased cell rounding
force (Toyoda et al., 2017). This study also found an enzyme,
DJ-1, a glycoxylase involved in mitochondrial regulation and
stress response, required for osmotic pressure maintenance in
mitosis (Toyoda et al., 2017). There are reports that the Na+H+
antiporter required for mitotic swelling may be regulated by
RhoA (Hooley et al., 1996). However, much work needs be
done to identify the mechanisms that control mitotic swelling
and, given swelling alone is not sufficient for force generation,
to determine how these changes are coordinated with cortical
actin rearrangements. Given the role of cortical tension in
counteracting and balancing intracellular pressure, it may be that
the two pathways are interlinked and thus hard to separate.

THE FUNCTION OF MITOTIC
STIFFENING: GENERATING SPACE TO
DIVIDE

The mechanical changes in early mitosis allow cells to exert
force on their environment. In single adherent cells, this can be
measured as force on an AFM cantilever (Figure 1.4; Stewart
et al., 2011a; Cattin et al., 2015; Ramanathan et al., 2015). In a
non-polarized 3-dimensional (3D) environment, however, such
as a hydrogel, forces will act isotropically (Nam and Chaudhuri,
2018). Within a tissue, the directionality of the force depends
on tissue architecture. In a flat, stretched epithelium rounding
cells may pull on their neighbors, while in a dense crowded

tissue, they are more likely to have to push. Pulling and pushing
forces associated with mitotic rounding have been quantified
using traction force microscopy in epithelial monolayers (Uroz
et al., 2018) and by the deformation of micro-fabricated pillars
surrounding rounding cells (Sorce et al., 2015). Because of their
increased cortical stiffness, mitotic cells are more resistant to
cell deformation and therefore tissue-level forces. Indeed, in an
epithelial monolayer subjected to a constant stretch, interphase
cells became elongated while mitotic cells remained spherical
(Wyatt et al., 2015). But does the ability of mitotic cells to apply
or resist force serve a purpose during cell division? And do the
forces associated with mitotic rounding have a function in vivo
where cells divide surrounded by other cells and extracellular
matrix (ECM)?

LESSONS FROM CONFINEMENT
STUDIES

The function of mitotic rounding and stiffening is not
immediately apparent for cells dividing in tissue culture
conditions where space is unlimited, rather it is revealed under
crowded conditions. Various studies have used mechanical and
geometric constraints to limit the ability of cells to round up at
mitotic entry, including confining cells under AFM cantilevers
(Cattin et al., 2015), under a low (<5 µm) roof (Tse et al.,
2012; Lancaster et al., 2013) or in thin microchannels (Xi et al.,
2016; Cadart et al., 2018). In each case, confinement generates
multiple defects in mitosis. In flattened cells, the mitotic spindle
is unable to efficiently capture chromosomes due to an upper
limit in microtubule reach: the mitotic spindle cannot rescale
to account for the altered geometry and is unable to contact all
chromosomes (Dumont and Mitchison, 2009; Lancaster et al.,
2013). Since satisfaction of the spindle assembly checkpoint
requires attachment of every chromosome (Musacchio, 2015),
this leads to prolonged mitotic arrest (Lancaster et al., 2013;
Cattin et al., 2015). Cells confined in a low chamber also
have difficulty resolving their mitotic spindle to form a bipolar
structure, which frequently leads to pole splitting and cell division
into three or more daughter cells rather than two (Tse et al.,
2012; Lancaster et al., 2013). These catastrophic errors in spindle
formation reveal a role for mitotic rounding in generating space
in which to assemble a proper mitotic spindle, itself a bulky 3D
structure (Cadart et al., 2014). There appears to be a critical
threshold of cell height (5–10 µm, depending on cell type,
size & genome content) below which a proper mitotic spindle
is unable to form (Lancaster et al., 2013; Cadart et al., 2014;
Cattin et al., 2015). Mitotic cell rounding not only affects DNA
segregation but also the accurate partitioning of cytoplasmic
contents between two daughter cells. In cells confined in thin,
narrow microchannels, the mitotic spindle is unable to properly
position in the cell center resulting in asymmetrical cell division
(Xi et al., 2016; Cadart et al., 2018).

Confining cells under a rigid surface demonstrates the
function of mitotic rounding in creating a spherical space for
spindle assembly. However, the function of mitotic stiffening and
force generation becomes clear when cells are confined under
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a deformable material (Figure 1.10). Cells confined under soft
polyacrylamide gels (∼ 5 kPa) are able to generate forces to
deform the gel and create the space needed for spindle assembly
(Lancaster et al., 2013). However, under a stiff gel that resists
mitotic rounding (∼ 30 kPa), multiple errors ensue, similar to
those observed in limited height chambers (Lancaster et al.,
2013). Treatments that abolish the ability of the cell to generate
contractile forces such as actin depolymerization or ROCK
inhibition lead to chromosome segregation errors even under
softer gels (Lancaster et al., 2013; Matthews et al., 2020). Similarly,
in 3D, cells embedded in viscoelastic alginate hydrogels generate
forces in all directions as they round up, and stiff viscoelastic
gels characterized by slow stress relaxation disrupt cytokinesis by
preventing cell elongation (Nam and Chaudhuri, 2018). Thus,
the ability of mitotic cells to apply force is crucial in stiff and
confining environments to generate the space needed to divide.

THE MECHANICS OF DIVIDING IN A
TISSUE

Rounded mitotic cells, which deform their interphase neighbors
are commonly observed in vivo during development and
in many different adult tissues (Luxenburg et al., 2011;
Nakajima et al., 2013; Hoijman et al., 2015; Rosa et al., 2015;
Freddo et al., 2016; Chanet et al., 2017; Aguilar-Aragon et al.,
2020 see Figure 3 for examples). However, the mechanics of
mitosis has not been well studied in the tissue context. Cell

division within a multicellular organism adds an extra layer of
complexity: in culture, cells detach from the substrate to round
up (Dao et al., 2009; Dix et al., 2018), but in vivo, cells must
maintain attachment to their neighbors to ensure tissue integrity.
How exactly cells create space to divide while maintaining tight
attachment to their neighbors varies depending on tissue type,
density and organization. The majority of studies on mitotic
rounding in developing and adult proliferative tissues have
focused on epithelial tissues of different types. In simple epithelial
monolayers on glass, cells round up in mitosis, often appearing
to deform neighboring cells (Figure 3A) but adherens junctions
persist throughout to maintain epithelial integrity (Baker and
Garrod, 1993; Reinsch and Karsenti, 1994; Gloerich et al., 2017;
Hart et al., 2017). Similarly, in vivo, in simple cuboidal epithelia
in the developing fly (Figure 3B), mitotic cells use the forces
generated by acto-myosin to round up to the apical surface of the
epithelium (Rosa et al., 2015), and retain most of their apical cell-
cell junctions throughout mitosis (Aguilar-Aragon et al., 2020).
As in cell culture, these changes depend on release of Ect2 from
the nucleus at mitotic entry (Rosa et al., 2015) and the cortical
activation of the fly ERM protein moesin (Kunda et al., 2012).

Cells in other epithelial tissue types face different challenges
in rounding up to divide. Tall, thin cells in pseudo-stratified
epithelia undergo a process known as interkinetic nuclear
migration prior to mitosis where the nucleus and cell body
migrate to the apical surface (Meyer et al., 2011; Norden, 2017)
while maintaining attachment to the basal lamina via a thin basal
process (Kosodo et al., 2008). In the pseudostratified epithelium

FIGURE 3 | Mitotic rounding in tissues and tumoroids. Examples of mitotic cells rounding while surrounded by other cells (A) in a non-transformed confluent
epithelial cell monolayer (MCF10A) plated on a soft polyacrylamide hydrogel, stained with phalloidin-TRITC to visualize actin (cyan) and DAPI to visualize DNA (Gray)
(Image by HM), (B) in vivo in a mitotic sensory organ precursor cell (labeled with LifeAct-GFP in cyan) in the notum of the developing Drosophila pupa. The whole
tissue is labeled with tubulin (gray) to stain the mitotic spindle. (Image by Nelio Rodrigues) and (C) frozen section of an MCF-7 tumor spheroid grown for 14 days
within a PEG/heparin hydrogel in 3D, stained with phalloidin-TRITC (cyan)/DAPI(gray) for F-actin/nuclei (image by AT). Scale bars are 10 µm.
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of the fly wing disc, this process depends on accumulation of actin
and activated moesin at the cell cortex (Nakajima et al., 2013)
as well as local tissue tension (Kirkland et al., 2019). However,
in this system, unlike in cuboidal epithelia, adherens junctions
are disassembled during mitosis (Aguilar-Aragon et al., 2020).
Interestingly, in this case the loss of adherens junctions is co-
ordinated by the same pathways that control mitotic rounding,
including activation of Ect2 and RhoA at mitotic entry (Aguilar-
Aragon et al., 2020). This fits with observations that RhoA
and Ect2 can themselves control the stability and turnover of
cell junctions via endocytosis (Levayer et al., 2011; Ratheesh
et al., 2012). In the case of fly pseudo-stratified epithelia, tissue
integrity can be maintained even in the absence of adherens
junctions due to the persistence of septate junctions through
mitosis (Nakajima et al., 2013). These studies reveal that many
of the key molecular players, including actin, myosin, Ect2, and
ERM proteins, that control mitotic shape in single cells also
control mitotic rounding in tissue, although there are clearly
differences in their regulation that depend on cell type and
tissue architecture.

While mitotic rounding has been studied in vivo, there
have been few attempts to measure the associated forces. An
AFM-based, parallel plate approach has been used to measure
the forces applied by neuroblasts, isolated from fly brains,
when they entered mitosis, demonstrating that primary cells
exert rounding pressure (Pham et al., 2019). Alternatively,
monolayers of epithelial cell lines have been used to model
tissue. In MDCK monolayers on a soft substrate, traction
force microscopy shows that mitotic cells exert forces both
on neighboring cells and on the substrate as they round up
and divide (Uroz et al., 2018). Sorce and colleagues used the
deformation of soft micropillars to measure the outwards force
applied by MDCK cells as they entered mitosis. As with single
cells, they found that cells pushed outwards in mitosis with
a force that peaked at metaphase and required acto-myosin
contractility and osmotic pressure (Sorce et al., 2015). This
allowed cells to displace or escape the pillars, which otherwise
act as physical obstacles causing defects in spindle formation and
chromosome segregation (Sorce et al., 2015). A computational
model of this type of scenario in which cells round within
a crowded epithelial monolayer suggests that the expansion
of mitotic cells could reflect the difference in hydrostatic
pressure between mitotic cells and their interphase neighbors
(Nematbakhsh et al., 2017).

Measurement of the mechanical alterations of the cortex
during mitosis and their impact on spindle formation
and mitotic progression in a tissue context remain to be
addressed. This is, in part, because most assays used to
determine cell mechanical properties require cells to be in
suspension (micropipette, AFM, microfluidics), or use direct
contact with the cell surface (Cantilever, pipette or bead)
(see Figure 1). Thus, measuring mitotic mechanics in vivo
will require the appropriation and development of new
contact-free measurement techniques. For instance, acoustic
microscopy has been employed to map mechanical properties
of cells and tissues (Kundu et al., 2000; Bereiter-Hahn, 2005;
Figure 1.9). Pasternak et al. employed acoustic microscopy

to study MCF-7 cells through the cell cycle (Pasternak et al.,
2015). A drop in the mechanical properties (quantified as
adiabatic bulk modulus) from G1/G2 to metaphase was
detected, but this could not be directly related to specific
cellular components and requires further characterization.
Another new technique that is being used to measure
the mechanical properties of cells and tissues is confocal
Brillouin microscopy (Scarcelli and Yun, 2008, 2012; Box 1).
In those cases, the sample is scanned by a laser beam and
a frequency shift due to Brillouin scattering is detected
which is related to the mechanical properties of the sample
(Scarcelli and Yun, 2008, 2012). Thus far, in the context
of mitosis, Brillouin microscopy was applied to single cells
where differences in the Brillouin shift between interphase and
mitosis were observed (Liu et al., 2019; Figure 1.8), but the
technique has not yet been used to study mitotic cells within
complex tissues.

MITOTIC ROUNDING IN TISSUE
HOMEOSTASIS AND DEVELOPMENT

It is becoming increasingly clear that the mitotic shape
changes in a tissue context often serve a wider purpose,
beyond space creation for spindle assembly, by contributing
to morphogenesis. For example, the shape of dividing cells
often plays a role in polarizing the division axis. In a
tissue, the position of the mitotic spindle determines the
division axis, which is crucial for cell packing. Cell divisions
within the plane of the epithelium maintain tissue integrity
and homeostasis, while perpendicular divisions can drive the
formation of new layers and cell differentiation (Williams
and Fuchs, 2013; Ragkousi and Gibson, 2014). Disruption of
acto-myosin in mitosis to prevent mitotic rounding leads to
mis-orientation of the spindle and therefore the cell division
axis in fly epithelia (Chanet et al., 2017; Lam et al., 2020)
and in the mouse epidermis (Luxenburg et al., 2011). In
the developing fly wing disc, acto-myosin-dependent mitotic
rounding is essential to keep division within the epithelial
plane to prevent cell delamination and apoptosis (Nakajima
et al., 2013). Similarly, in the mouse epidermis, reduced
acto-myosin contractility leads to impaired spindle orientation
and biases divisions toward the perpendicular axis, forcing
ectopic differentiation (Dias Gomes et al., 2019), Interestingly,
in this study disruption of mitotic rounding also led to
defects in spindle formation including lagging chromosomes
and tripolar divisions (Dias Gomes et al., 2019), similar to
those seen in confined single cells (Lancaster et al., 2013).
In addition to parallel/perpendicular division orientation, the
angle of division within the epithelial plane can also affect
tissue morphology, for example by promoting uniaxial growth
and elongation or to relieve tissue tension (Wyatt et al.,
2015). Spindle orientation in symmetrically dividing cells relies
on a combination of sensing of cortical cues, cell junctions
and cell shape as well as mechanical factors and has been
comprehensively reviewed elsewhere (di Pietro et al., 2016;
van Leen et al., 2020). In addition, changes in cell shape
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and mechanics during division play a role in asymmetrical
cell division, where unequal segregation of cytoplasmic or
cortical factors results in two daughter cells of different fate
and also, frequently, of different size. The size asymmetry
in dividing Drosophila neural stem cells was found to be
generated by an unequal re-distribution of force-generating
molecules at anaphase: the larger daughter cell had increased
hydrostatic pressure, while the smaller had increased myosin
localization and contractility (Roubinet et al., 2017; Pham
et al., 2019). In Zebrafish neural progenitors, daughter cell
fates depended on the asymmetrical interphase localization of
membrane ligands being maintained during mitotic rounding
(Akanuma et al., 2016).

Finally, there have been multiple examples of mitotic rounding
contributing to morphogenesis during embryonic development.
The forces exerted by cells as they round up in mitosis are
able to deform epithelial sheets to produce new structures,
for example, to drive the invagination required to produce
tubular structures in the developing fly trachea (Kondo and
Hayashi, 2013) or for lumen formation during Zebrafish inner
ear development (Hoijman et al., 2015). In the developing mouse
epithelium, an invagination produced by a cell rounding up
at mitosis patterns the tissue by marking the position where a
villus will form (Freddo et al., 2016). During gastrulation in the
early chick embryo, cortical acto-myosin during division can
drive the cell intercalations required for tissue scale movement
(Firmino et al., 2016). In early Zebrafish morphogenesis, cell-
cell contact weakening during mitotic rounding has the effect
of fluidising the tissue, which is essential for blastodermal
spreading (Petridou et al., 2019). These studies reveal that
mitotic rounding plays diverse roles in both maintaining force
balance and integrity in homeostatic tissue and in driving
morphogenetic movements during development. However, the
relative contribution of cell mechanics has not been addressed,
due to the difficulty of making mechanical measurements in vivo.
It is likely that the mechanical differences between mitotic
cells and their interphase neighbors are an important factor in
many of these processes and one that will be the subject of
future work.

MITOTIC ROUNDING AND STIFFENING
IN DISEASED TISSUE

The ability of cells to apply force on their surroundings and
maintain a stable round shape during mitosis is likely to
be more important, the stiffer the extracellular environment.
Indeed, cells dividing in extremely stiff, elastic 3D gels suffer
multiple division defects (Nam and Chaudhuri, 2018). Many
disease states result in changes to tissue mechanics. Tissue
damage-induced fibrosis in many inflammatory conditions
results in tissue stiffening and is also a risk factor for the
development of cancer (Boyd et al., 1998; Paszek et al., 2005).
Although, at the individual cell level, invasive cancer cells
are typically less stiff than their non-transformed counterparts
(Guck et al., 2005; Rother et al., 2014; Lekka, 2016; Alibert
et al., 2017), tumors are normally far stiffer than healthy tissue

due to cell over-proliferation, extracellular matrix deposition
and fluid accumulation (Plodinec et al., 2012; Stylianopoulos
et al., 2012; Nagelkerke et al., 2015; Brauchle et al., 2018).
The altered mechanical micro-environment in tumors affects
multiple processes including cell invasion (Levental et al., 2009;
Acerbi et al., 2015) and phenotypic state (Wei et al., 2015),
but likely also impacts the cell division process. We have
previously proposed that completing cell division in such an
altered mechanical environment presents a challenge that could
be overcome by enhanced mitotic rounding in cancer cells
(Matthews and Baum, 2012). This is supported by the frequent
observation of highly rounded mitotic cells in cancer samples
and tumoroids (Figure 3C). In addition, some of the key genes
required for mitotic rounding, including Ect2 and Ezrin are
frequently over-expressed in human cancers (Bruce et al., 2007;
Fields and Justilien, 2010).

Several recent studies by us and others have revealed
that molecular changes that occur during oncogenesis can
alter the ability of cells to apply force at mitosis. Work by
Hosseini and colleagues reports that epithelial-mesenchymal
transition (EMT), a phenotypic transformation commonly found
in many epithelial-derived cancers and frequently associated
with invasion and metastasis (Yang et al., 2020) alters the
mechanical properties of the mitotic cortex and the ability of
cells to round up in stiff 3D environments (Hosseini et al., 2019).
The observed changes in cortex mechanics were associated with
changes in RhoA and Rac1 activity induced by EMT (Hosseini
et al., 2019). Since surrounding interphase cells also become
more compliant when undergoing an EMT, mitotic rounding
may be further enhanced. There is also evidence that loss
of E-cadherin expression, a change associated with EMT can
directly alter mitotic cell mechanics: mitotic epithelial cells in
a monolayer were found to have increased cortical contractility
and elasticity after E-cadherin knockout, as measured by AFM
(Rhys et al., 2018). Vimentin, which is induced by EMT and
has recently been found to regulate cortical tension in mitosis
(Duarte et al., 2019; Serres et al., 2020), may also contribute.
Thus, there are likely multiple pathways by which EMT affects
the ability of cells to exert force during mitotic rounding that
may play critical roles in the ability of cells to proliferate and
invade out of tumors.

Most cancers are driven by mutations in a handful of
oncogenes, and we recently addressed the role of one such
oncogene, Ras, in regulating mitotic mechanics (Matthews
et al., 2020). We found that Ras activation led to an
acceleration of mitotic rounding and increased cortical stiffness
at mitotic entry. These changes were observed only a few
hours after Ras activation, pointing to an early, direct
mechanism by which oncogenic mutations affect mitotic
mechanics that requires downstream MEK/ERK signaling and
acto-myosin contractility (Matthews et al., 2020). Activation
of the oncogenic Ras/MEK/ERK signaling pathway has been
shown to modulate the actin cytoskeleton during oncogenesis
to promote cell motility and invasion (Choi and Helfman, 2014;
Logue et al., 2015; Mendoza et al., 2015; Schäfer et al., 2016)
and similar mechanisms may be in play during mitotic
stiffening. These changes in mechanics following oncogene
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activation have consequences. A function for Ras-induced
mitotic stiffening was revealed when cells were placed in
confinement under a stiff gel: Ras-activated cells were able to
stiffen enough at mitosis to deform the gel and make space
for functional spindle assembly, while normal cells suffered
multiple mitotic defects (Matthews et al., 2020). This suggests
that genetic mutations that drive cancer progression such as
Ras-activation can promote accurate cell division in stiff or
confined environments. Another example of mitotic stiffening
supporting accurate cell division was observed in the centrosome
clustering in cells with centrosome duplication, an abnormality
frequently seen in cancer cells (Godinho and Pellman, 2014).
Cells with increased cortical elasticity following E-cadherin
knockdown were more efficient at clustering supernumerary
centrosomes, facilitating bipolar spindle formation and division
(Rhys et al., 2018). The idea that enhanced mitotic rounding can
minimize mitotic errors in cancer is somewhat paradoxical, as
cancers are often characterized by a high degree of aneuploidy,
generated through errors in chromosome segregation in mitosis
(Sansregret and Swanton, 2017; Nelson et al., 2020). However,
some of the mitotic errors observed when mitotic rounding is
compromised such as tripolar division are unlikely to result
in viable daughter cells. Thus, the ability of cancer cells
to apply force to divide in stiff environments may allow
continued cell proliferation and survival, while at the same time
allowing introduction of occasional chromosome segregation
defects, contributing to the development of aneuploidy in
the longer term.

Finally, as well as promoting faithful spindle formation in
mitosis, there may be mechanisms whereby mitotic rounding
and stiffening in cancer contributes to disease progression.
There have been several reports of mitotic rounding driving
changes in tissue structure. Mitotic rounding of individual cells
within a monolayer of breast cancer cells triggers a 2D to
3D tissue transformation (Lee et al., 2018). Individual mitotic
rounded cells are also able to bud out of epithelial acini in
3D culture, although only when the surrounding interphase
cells are stiffened due to centrosomal aberrations, hinting at
a role for mitosis in cancer cell dissemination (Ganier et al.,
2018). Mitotic rounding may even affect the response to therapy:
mitotic arrest following treatment with the chemotherapy agent
paclitaxel led to a prolonged cell rounding that resulted in mitotic
cells being targeted for engulfment by entosis (Durgan et al.,
2017). These intriguing studies hint at a role for changes in cell
shape, specifically in mitosis, in promoting a variety of other
cancer cell behaviors including invasion and dissemination.

OUTLOOK

A wealth of work using different techniques has demonstrated
that cells change their mechanical properties when they
enter mitosis. In recent years, we are beginning to form an
understanding of how this happens in single cells, downstream
of mitotic kinases, through the formation of a high tension
acto-myosin cortex and an increase in intracellular pressure.
However, there remain many unanswered questions about

the molecular regulation of mitotic rounding. For example,
how molecular changes to the architecture of actin networks
result in a mitotic cortex, which is both stiffer and thinner
than in interphase. Although there is clear evidence that
water enters the cell to increase intracellular pressure, the
mechanisms that control the underlying changes in osmolarity
are as yet unknown. The function of mitotic stiffening has
been revealed by confinement studies using single cells. By
exerting pressure against their environment, cells create space
for spindle formation and faithful cell division. However,
mitotic stiffening is likely to be of greater importance for
cells dividing in tissues, but little is known about the extent
of mechanical changes during mitosis in vivo, nor how acto-
myosin contractility is regulated in a co-ordinated way to
allow mitotic rounding while ensuring tissue integrity by
maintaining cell/cell adhesion. Finally, several recent studies
have revealed that changes associated with cancer, such as
oncogene activation or EMT, can directly impact mitotic
mechanics hinting at a role for mitotic rounding in facilitating
cell division in tumors. Studying this further will rely on
non-invasive techniques that allow the mechanical properties
of living tissues under normal and diseased conditions to
be interrogated.
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GLOSSARY: TERMS TO DESCRIBE CELL MECHANICS

Surface/cortical
tension

Surface tension: Tension resulting from forces acting in the plane of the surface of a liquid tending to
minimize its surface area. In the context of a rounded cell, both cortical tension and membrane tension
contribute to the cell’s effective surface tension, with cortical tension dominating (Tinevez et al., 2009;
Fischer-Friedrich et al., 2014). Contractile elements of the cortical acto-myosin cytoskeleton are cause of
the tension generation in the cortex.

Intracellular pressure In a fluid-filled spherical object like a cell (or balloon) at steady-state, the pressure difference between the
external and internal pressure is related to surface tension and curvature according to Laplace law (see
below). Tension-build up in the cortex results in an increase in (hydrostatic) pressure. In the cell,
intracellular pressure changes can also arise from water flux across the membrane (due to ion fluxes across
the membrane).

Cortical stiffness Resistance of the cell cortex to bending under force. This depends on its viscoelastic properties, cortical
tension, geometry and experimental settings. Also referred to as cortex rigidity.

Laplace law Describes the relationship between surface tension T, the pressure difference between the inside and
outside 1P and the radius of curvature R (e.g., for a sphere) in a fluid-filled spherical object (such as a
rounded cell) (Yeung and Evans, 1989).

Stress Defined as force (F) per unit area (A). The type of stress depends on how forces act, e.g., normal stress
(σ = F/A) (perpendicular on surface, either compressive or tensile) or shear stress (τ = F/A)
(parallel to surface).

Strain Ratio of deformation in direction of the force (1L) relative to initial length (L), e.g., normal strain
ε = 1L/L or shear strain γ = δ/L (both dimensionless).

Elasticity Ability of a material to resist a deforming force and to return to its initial shape upon force removal.
Elastic modulus Ratio of stress and strain, quantifies the resistance of an object to elastic deformation upon stress

application. There are three moduli defined depending on force direction application: the Youngs modulus
E, the shear modulus G, and the compression/bulk modulus K (see below). These moduli are related for a
linear-elastic isotropic material as: E = 2G(1+ν) = 3K(1-2ν) = 9KG/(3K+G) (ν: Poisson ratio); two of them
are sufficient to capture the elastic behavior of a material (Landau and Lifshitz, 1986).

Young’s modulus E Relates normal stress σ and normal strain ε (or how much stress is applied to obtain a certain level of
strain), e.g., for simple case of uniaxial deformation σ = Eε (Hook’s law for one-dimensional case).

Shear modulus G Relates shear stress τ and shear strain γ, τ = Gγ.
Bulk/compression
modulus

Describes how much change of pressure is needed for a certain volume change (volumetric elasticity).

Viscoelasticity Property of a material displaying both elastic and viscous mechanical behavior. Viscoelastic materials
display a frequency dependent stress-strain response. Therefore, the timescale at which they
are probed matters.

Complex, storage &
loss modulus

The complex moduli G∗ or E∗ can be defined for viscoelastic materials (analogous to the elastic moduli,
Shear and Young’s moduli, for elastic materials). G∗ = G′+iG

′′

(or E∗ = E′+iE′′, respectively) with its real
part, the storage modulus G′ (E′) and its imaginary part, the loss modulus G”(E”). The storage modulus
relates to the ability of a material to store energy elastically, while the loss modulus is related to the ability
of a material to dissipate energy. Can be measured in oscillatory measurements, as in phase (storage) and
out of phase components (loss) of the stress to strain response (Jacobs et al., 2012).
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