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Inherited retinal diseases (IRDs) are a diverse and variable group of rare human disorders.
The common theme between IRDs is that individuals develop visual impairment as a result of
dysfunction or degeneration of the retina, a highly specialised tissue at the back of the eye which
enables vision through the conversion of light energy into neuronal signals. However, the spectrum of
disorders included within the IRD umbrella is extremely diverse, ranging from severe and early onset
blindness (e.g., Leber Congenital Amaurosis, MIM #204000) through to late onset disorders which
have noticeable but mild changes to visual acuity or visual field (e.g., late onset macular dystrophy,
MIM #153700). IRDs can also be a part of multi-systemic disorders, including disorders which
involve hearing loss (MIM #276901), renal failure (MIM #609254) and malfunction in development
(MIM #209900). The IRDs are extremely genetically heterogeneous, with over 270 genes characterised as
a cause of disease when disrupted by pathogenic genetic variation (RetNet, https://sph.uth.edu/retnet/).

A large portion of the variability in phenotypic presentation associated with IRDs can be attributed
to the specific gene carrying the disease-causing variation. For example, individuals with pathogenic
dominant variants in BEST1 are expected to have central visual acuity impairment as a result of the
build-up of fatty yellow deposits in the retina (lipofuscin), which results in a stereotypical appearances
of the retina when visualised through microscopic and photographic techniques [1], whereas pathogenic
variants in IQCB1 are expected to cause congenital or early childhood blindness followed by end-stage
renal failure during adolescence of early adulthood [2,3]. This is largely due to the specific function
and expression of these genes in various tissues throughout the body. For some genes associated
with diverse phenotypes, e.g., ABCA4 and USH2A, allelic hierarchy models exist, whereby specific
variants and combinations of variants can be classified as ‘mild’, ‘moderate’, ‘severe’ (ABCA4 [4]),
or ‘syndromic’ versus ‘non-syndromic’ (USH2A [5,6]). Understanding the nature and the intricacies
of these phenotypic and genotypic correlations in individuals with IRDs is vitally important for the
management and counselling of patients. Such understanding can help individuals prepare for how
their disease will progress and to understand at an early age if extra-ocular complications may be a
concern in later life.
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A major theme of the papers presented in this guest issue of Genes is to characterise some of the
ethnic and genetic factors which impact variable expressivity in gene-phenotype associations. The authors
of these articles make significant efforts to characterise phenotypic differences and similarities between
individuals carrying pathogenic genetic variants in the same IRD genes. Examples of the interesting
conclusions drawn from these analyses include the variability in phenotypes associated with the
same genetic variant, and descriptions of the most prevalent disease-causing variants in certain ethnic
groups. For example, Motta et al. [7] describe clinical findings in Brazilian patients with LCA caused
by the RPE65 missense variants, c.247T > C (p.Phe83Leu) and c.560G > A (p.Gly187Glu). They show
that the increased frequency of these RPE65 missense variants in Brazilian patients with early onset
blindness clarifies variant interpretation in that the apparent enrichment of these alleles in the disease
population can alter the classification from ‘variants of uncertain significance’ to ‘likely pathogenic’.
Moreover, Ur Rehman et al. [8] describe how the genetic architectures of IRDs can differ between
distinct regions of Pakistan. The authors attribute the presence of two founder mutations (ABCA4
p.Gly72Arg and NMNAT1 p.Val9Met) in north-west Pakistan due to different ancestral histories
between different parts of the country, which remain largely isolated today due to cultural, linguistic
and geographical reasons. Both studies further reinforce the need for increasingly diverse reference
genome datasets to more accurately identify and interpret genomic variants in the context of rare
disease. Other studies in this issue describe genotypic findings from specific ancestral cohorts, including
a large genotypic study from Irish patients [9], descriptions of macular genetic disease associations in
defined populations [10,11], and the description of detailed phenotypic presentations associated with
specific genetic variants [12,13].

Interestingly, two of the studies in this issue describe findings that the same genetic variant can
lead to extreme variability in phenotypic presentation. Zupan et al. [14] focus on the diverse clinical
presentation associated with a nonsense variant in USH2A (p.Trp3955Ter), which is the most frequent
cause of USH2A-related Usher syndrome in Slovenia. The authors construct four distinct haplotypes
associated with p.Trp3955Ter homozygous variants in Slovenian patients and describe a range of
clinical findings in these patients. This includes a range of ages at which visual impairments were first
diagnosed (4–42 years) and a broad range of disease manifestations in later life, ranging from good
central vision at the age of 62 to severe blindness at this age. Green et al. [15] focus on variants which
show incomplete penetrance. Through the comparison of disease and ‘healthy’ population genomic
datasets, the authors show that in some cases the same genetic variant may result in disease, whereas in
other individuals it causes no obvious signs of eye disease. The authors go on to demonstrate that
variants in IRD genes may be modulated by the impact of other factors that alter the expression
levels of these IRD genes. For example, their analyses show that 125 unique genomic variants are
described in a disease database for PRPF31, a gene known as a cause of autosomal dominant retinitis
pigmentosa [16]. They identified that a considerable number of PRPF31 pathogenic variants also exist
in ‘healthy’ populations, and demonstrate that the level of variability in expression profiles of PRPF31
in retinal tissue is higher (72.6 local coefficient of variation, LCV) than is detected on average for genes
that do not show significant levels of incomplete penetrance (67.8 LCV). It is well described that the
severity of disease in PRPF31 is correlated with the level of expression of the wild-type allele, and that
other factors, such as non-coding regulatory region variants, may influence the expression levels of
PRPF31 [17].

The concepts of variable expressivity and incomplete penetrance are fascinating and important
revelations in hereditary eye diseases. Whilst some well-known examples exist, including PRPF31,
unpicking the additional factors which impact how and whether disease manifests in the presence of
specific genetic variants is likely to be a fast moving area of study over the coming years. Incorporating
factors such as the percentage splice inclusion of exons that carry pathogenic variants, particularly
for genes showing biases towards tissue-specific isoforms, e.g., DYNC2H1 [18], may help elucidate
the variable expressivity and the tissue-specific presentation of some genetic variants. Furthering
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understanding in this area may begin to pave the way for novel diagnostic, treatment and patient
management approaches.
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