
1

Policy Rollout Action Selection in Continuous
Domains for Sensor Path Planning

Folker Hoffmann1 , Alexander Charlish1 , Matthew Ritchie2 , Hugh Griffiths2
1Fraunhofer FKIE, 2University College London

{folker.hoffmann,alexander.charlish}@fkie.fraunhofer.de
{m.ritchie,h.griffiths}@ucl.ac.uk

Abstract—Policy rollout is a method for the online computation
of future costs in approximate dynamic programming, and has
been utilized for various problems including sensor management.
In previous work, it has predominately been applied to the
selection of actions from discrete sets. In this paper we present
methods for action selection from continuous sets and analyze
their trade-offs. The methods are evaluated on the problem of
sensor path planning, with the intent of minimizing the time to
localize an emitter using bearing measurements.

Index Terms—policy rollout, stochastic optimization, ap-
proximate dynamic programming, sensor management, sensor
path planning, partially observable Markov decision process
(POMDP), Markov decision process (MDP), emitter localization

I. INTRODUCTION

Sensor management is the problem of controlling recon-
figurable sensors for optimized performance. An example for
sensor management is the problem of sensor path planning
for emitter localization. Using a direction finding sensor,
the localization performance is dependent on the sensor-to-
target geometry. The sensor path planning problem is then
to optimize the path of the sensor, based on the received
measurements. Because the path planning algorithm does not
yet know the position of the emitter, this can be seen as
a problem of decision under uncertainty. Almost all sensor
management problems deal with decisions under uncertainty,
due to missing knowledge before the sensing process.

A framework to model decisions under uncertainty is
stochastic dynamic programming. Problems can be modeled as
Markov decision processes (MDPs) if the state is observable
and only its transitions are stochastic. If the state is not fully
observable, the problem can be modeled as a partially observ-
able Markov decision process (POMDP). Due to this property,
POMDPs are a topic of wide interest in the sensor management
literature. Exact solutions for MDPs and POMDPs are only
viable in small dimensional problems. Therefore, commonly
approximate solution techniques are used.

One method to approximately solve MDPs and POMDPs
is the policy rollout method [1]. This method examines the
different actions available to the controller and simulates the
future outcomes of choosing this action. The simulations
are performed using realizations of random variables and a
base policy, which is an already existing, often heuristic,
policy for the system. The performance of this algorithm is
typically better than the performance of the base policy. In

0 25 50 75 100
x pos [m]

0

20

40

60

80

100

y
po

s [
m

]

Fig. 1. A UAV with a directional antenna rotates to create a bearing
(red) towards an emitter. Between measurements, it moves towards a new
measurement position (blue).

previous works, this algorithm has been predominantly applied
to discrete action sets, where the algorithm could exhaustively
evaluate the set. In this paper, we analyze methods to extend
the policy rollout algorithm to continuous sets.

As an application, we evaluate these methods on a sensor
management problem, which falls into the domain of sensor
path planning. We discuss a system where a directional
antenna is mounted on an unmanned aerial vehicle (UAV)
and bearing measurements can be derived by rotating the
UAV around its vertical axis [2]–[5]. Existing solutions for
this sensor management problem [2], [5] do not take into
account the probabilistic outcome of future measurements.
This uncertainty can easily be integrated into the policy rollout
algorithm. A schematic visualization of this problem can be
seen in Figure 1. An important aspect of the considered sensor
management problem is that measurement generation and
platform movement are mutually exclusive. Therefore, there
exists a trade-off in using time for generating measurements
and in moving to another location. The goal of the system is to
localize a stationary, ground-based emitter as fast as possible.

https://orcid.org/0000-0002-3306-9368
https://orcid.org/0000-0003-0511-2426
https://orcid.org/0000-0001-8423-8064
https://orcid.org/0000-0002-9947-5553

2

A. Policy rollout

A POMDP formalizes the problem of decision under uncer-
tainty: At time step k, the state of the system is denoted as
xk ∈ X , where X is called the state space. A controller can
act on this state via actions ak, which are part of the action
space A. An action ak leads to a transition between the states,
which is described via a transition function xk+1 = f(xk, ak).
Knowledge over the state is only known by a measurement
function zk = h(xk, vk), where zk is a measurement belonging
to the measurement space Z , and vk is the realization of a
random variable representing the noise of the sensor measure-
ments. Additionally, a real-valued cost function c(xk, ak) is
defined, which quantifies the costs of an action in a state.
Commonly the measurements are summarized into a belief
bk = p(xk), which is a probability distribution over the state
space. If the belief is a sufficient statistic of the state, i.e.
summarizes all available information, this problem can be
considered as a Markov decision process on the space of
possible beliefs, which is called the belief space B.

Given a POMDP formulation, a policy π : B → A is a
mapping from belief state to the action space. The problem
is then to find the optimal policy π∗, which minimizes the
expected cost:

π∗ = argmin
π

V π(b0) . (1)

The function V π : B → R is called the value function of π,
and the value V π(bk) is the expected total cost of following
policy π in belief state bk:

V π(bk) = E

T (bi)∑
i≥k

c(xi, π(bi))

 . (2)

This sum is to be interpreted as summing up all i ≥ k
until the termination criterion T (bi) is true. We introduce
this notation, as the total number of future steps varies for
different realizations of the unknown true states xi and future
measurements zi.

Given the value function V ∗ of the optimal policy π∗, an
optimal action selection would be to select the action that
minimizes the immediate cost and the future cost:

π∗(bk) = argmin
a∈A

E [c(xk, a) + V ∗(bk+1)] . (3)

The expected value represents the total expected cost of the
action, and is therefore called the action value:

Q∗(bk, a) = E [c(xk, a) + V ∗(bk+1)] . (4)

This framework for sequential decision processes is commonly
used in the literature on dynamic programming [6], [7].

The policy rollout algorithm is an online computation
method, which approximates the future cost. Its idea is to
replace the optimal value function V ∗ by the cost function
V πB of a base policy πB .

πR(bk) = argmin
a∈A

E [c(xk, a) + V πB (bk+1)] (5)

= argmin
a∈A

QπB (bk, a) . (6)

Here QπB represents the action value when following the base
policy. Computation of this value is also called evaluation of
action a. The policy rollout algorithm can be considered as a
single step of policy iteration [6, p. 110]. The resulting policy
is at least equal and typically better than the base policy. This
property is called rollout improvement property.

In the present literature on policy rollout, the search for the
optimal action, i.e. the argmin in (5), is commonly performed
by evaluation of each action. For each action the expected
value in (5) is computed, e.g. via a fixed number of Monte
Carlo samples. This not only requires a discretization in a
continuous action space, but also wastes computation time on
evaluating suboptimal actions. In this paper, we discuss the
problem of searching for the minimum in (5), which consists
of two subproblems: Selecting which actions to evaluate and
evaluating the expected value. This allows us to apply the
rollout procedure in a continuous action space. Some of the
methods also improve the action search in the classical setting
with discrete actions.

Since it is a generic method, the policy rollout algorithm
has been applied to a variety of problems. Early works
consider the problem of playing Backgammon by Tesauro
[8], combinatorial optimization by Bertsekas et al. [9] and
stochastic scheduling by Bertsekas and Castañon [1].

It has been used in several works in sensor management
[10]–[23], for example for the activation of nodes in a sensor
network [12]–[15] and sensor to target association [17], [18].
Other problem settings encompass vehicle routing [24]–[28],
inventory routing [29], revenue management [30] and schedul-
ing [31].

B. Computation of the action value

A main component of the rollout algorithm is the evaluation
of the expected value in (5). In some problem domains an
analytical solution can be performed [25]–[29], typically via
dynamic programming on the discrete state space. However,
in sensor management, an exact evaluation is only possible
in very specific cases [22], as the state space is commonly
continuous.

Often the expected value is computed via Monte Carlo
sampling, which is almost exclusively the case in sensor
management applications. One problem with Monte Carlo
methods to estimate an expected value is the variance of the
estimate, which is why techniques for variance reduction exist
[32]. One technique to reduce the variance of Monte Carlo
estimates is the use of common random numbers (CRN),
in which the evaluations of different actions use the same
realizations of random variables. In the rollout literature, this
is also known as sampling of the Q-factor differences [33].
Common random numbers have been used in several works
on vehicle routing [27], [28], however, have not been explicitly
reported in the sensor management literature in the context of
policy rollout. The works in [13]–[16] can be considered as
using a form of CRN, as they initialize their Monte Carlo
rollouts using the same particles from a particle filter, which
leads to the same initial underlying state in the rollouts for
different actions.

3

A different method is the evaluation of the expected value
via a set of representative fixed values for the random vari-
ables, also called scenarios [1]. One example for this approach
is the work reported in [17]. Here samples of the uncertainty
over the state space and the future measurements are deter-
ministically created using a method similar to the unscented
transform. The expected value is then computed using those
samples. However, this only works for Gaussian uncertainties.
In [34] a generic method to suboptimally discretize arbitrary
probability densities [35] was used to create a set of represen-
tative samples. As a special case of deterministic samples, the
expected values of the random variables can be taken [23].

In this work, we compare the effectiveness of random sam-
ples, common random numbers and the usage of deterministic
samples. While random samples are often used, common
random numbers are non-standard in sensor management, and
the evaluation with deterministic samples is only used in a
small number of works.

C. Search for the optimal action

Next to the computation of the expected value, another
main component in evaluating (5) is the procedure to compute
the argmin, i.e. to search for the action with minimal cost.
In the vast majority of the literature, this was performed by
evaluation of every action in a finite action set. When the
action values were determined via Monte Carlo sampling,
commonly an equal number of samples was used for each
action.

If the action space contains a large number of discrete
actions, evaluating each might not be feasible. An option to
speed up the search is then to prune this space prior to the
evaluation, which has been performed in [18], [19].

When each action can be evaluated and sampling is used
to estimate the action values, the search can be improved by
non-uniformly allocating the samples between the different
possible actions. The idea is that it is more critical to estimate
the value of actions that are candidates of being the optimal
action, instead of improving the estimate of clearly inferior
actions. As this uses the results of previous action evalua-
tions to improve the allocation of future samples, it can be
described as adaptive action evaluation. Tesauro proposed to
stop evaluation of an action once it becomes unlikely that it is
the optimal one [8]. Optimization of the sample allocation has
been performed by [36], which uses the optimal computing
budget allocation (OCBA) [37] algorithm. OCBA computes
the sample mean and standard deviation of encountered action
rewards. Then it uses those statistics to determine how often
each action should be evaluated.

A method related to the online policy rollout method is
classification-based policy iteration, which uses policy rollouts
offline during training of a policy [38]. Here a multiple multi-
armed bandit method has been used to allocate the resources
between multiple decision problems of the type of (5).

Those approaches require a discrete action space and allo-
cate a number of samples to each action. An alternative is to
perform the action search directly on the continuous action
space. This has been performed for Monte Carlo tree search

(MCTS), which is a method related to policy rollout. MCTS
uses rollouts to steer the exploration in a search tree. For this
algorithm bandit algorithms for continuous action sets [39]
have been used to perform continuous action selection with a
discrete state space [40].

Except from the MCTS approach above, to the authors’
knowledge a continuous action set has not been considered
before in the context of policy rollout. In this work, we propose
and evaluate several methods to search for the optimal action
in a continuous action space, both by using a discretization,
as well as a direct search on the continuous action space.

D. Structure of the Paper

The remainder of the paper is structured as follows. In
Section II we formally describe the problem we want to
solve. In Section III we describe the main components of our
policy rollout based control algorithm, excluding the action
evaluation and action selection step. Those steps are described
in Sections IV and V. In Section VI we describe how we
evaluate the different optimization methods, and present the
results in Section VII. Section VIII evaluates how an improved
action selection correlates with improved performance of the
actual rollout algorithm. The results are discussed in Section
IX. A discussion of the robustness of this approach and
possible generalizations is done in Section X. Finally we
conclude the paper in Section XI.

II. PROBLEM DESCRIPTION

A. State space and transition

The state at the time step k is a 4-dimensional vector,
consisting of the stationary target position xt = (xt, yt), and
the current position of the platform xpk = (xpk, y

p
k):

xk = (xt,xpk)
T = (xt, yt, xpk, y

p
k)
T ∈ R4 . (7)

At each time step k the measurement is generated based on the
true bearing and additive Gaussian distributed measurement
noise:

zk = atan2(yt − ypk, x
t − xpk) +N (0, σ2) , (8)

with known standard deviation σ. Taking this measurement
takes an amount of time, denoted tM .

After each measurement a control algorithm chooses an
action ak ∈ R2 to move the platform to a position, where
the next measurement is performed. This leads to a distance
cost in time of

tD(x
p
k,ak) =

‖xpk − ak‖2
vp

, (9)

where vp is the speed of the platform. We assume here that the
effect of acceleration is negligible and that the platform takes
the direct path, however, this is not necessarily required. One
could model the distance cost as being different in different
directions to account for the influence of wind. It would also
be possible to take into account some obstacle avoidance
mechanism. However, to exclude those obstacles, this would
necessitate a change of the action space.

4

Given the preceding definitions, the transition function of
the state is the following:

xk+1 = f(xk,ak) = (xt,ak)
T , (10)

with an associated cost in time of

c(xpk,ak) = tD(x
p
k,ak) + tM . (11)

This cost is received each time the platform moves and takes
a measurement, thereby incentivizing it to localize the target
as fast as possible.

B. Belief state

The state is not directly available to the control algorithm,
but only indirectly observed via the received measurements.
The measurements can be integrated into a belief, i.e. a
probability distribution of the target position

btk(x
t) = p(xt | bt0,a0, z1,a1, ...,ak−1, zk) . (12)

bt0 denotes any prior knowledge about the target position
or assumptions like a uniform prior distribution. The full
knowledge of the state is the belief at time k, which includes
the fully observable platform position:

bk = (btk,x
p
k) . (13)

C. Optimization objective

The objective of the control algorithm is to minimize the
time until the target localization is sufficiently accurate. This
requirement on the localization accuracy is formalized by the
termination criterion T :

T (bk) = 1µ(bk)≤µT
(bk) . (14)

Here µ(bk) is the expected root-mean-squared error (RMSE)
of the current estimate, µT is a threshold on the localization
error, and 1 the indicator function.

Then the objective is to find a policy, which minimizes the
expected cost in time

argmin
π

E

T (bk)∑
k≥0

c(xk, π(bk))

 , (15)

where the sum goes over all k ≥ 0, until T (bk) is true. The
expectation goes over all future measurements zk≥1, as well
as the unknown, but stationary, target position xt.

III. STOCHASTIC CONTROL ALGORITHM

The control algorithm is based on the policy rollout frame-
work described in the introduction. Its basic components are
identical to the algorithm in [34]. In this section, we describe
in detail the used base policy, the localizer, as well as the way
the estimates of the Q-values are computed.

A. Localizer

In a similar way to the localization methods in [41] and
[2], we use a discrete grid-based Bayes filter to represent
the probability distribution over the target position. Each grid
cell represents the probability density of the target being
at the corresponding position. This is more computationally
demanding than e.g. a representation in form of a Gaussian
distribution, but allows us to capture the non-linearity in the
estimation process.

We denote the extension of the grid by xB , xB , yB , yB ,
which represent the minimum and maximum coordinate of
interest in the x and y axes. The grid is discretized into 100
cells on the longer axis, and a proportionally smaller integer
number on the other axis, which is chosen to make the grid
cells closest to a square. If a prior distribution of the target’s
position is available (as in the scenario used later), the grid is
initialized using this prior.

With successive measurements, the area of potential target
positions shrinks as parts of the region become more and more
unlikely. To focus the computation of the posterior on the re-
gions of interest, we assume that the target is not outside ±4σ
of each measurement. Based on all received measurements
we compute a convex hull, which encompasses the points that
are inside ±4σ of all encountered measurements. The belief
grid is then resized to the minimal rectangle containing this
convex hull. If due to this step the grid resolution in the larger
dimension becomes smaller than 40 cells, the resolution in
both dimensions is doubled. As the paper is focused on the
control algorithm instead of localization methods, we did not
implement an outlier detection step in the localization and
instead discarded and resampled outliers > 3σ.

A point estimate x̃k of the target position is derived from
the center of the cell with maximum likelihood. Based on
this point estimate and the grid estimate of the posterior,
we computed the expected RMSE µ(bk). Additionally, the
covariance P̃k is computed, which approximates the density
of the grid.

B. Base policy

The base policy selects greedily the next measurement
position with approximately the lowest expected root-mean-
squared error. For this, it follows the intuition that, if the belief
about the target position were Gaussian, the next measurement
should be perpendicular to the major axis of the corresponding
uncertainty ellipse.

Figure 2a visualizes this idea. Here the Gaussian approxi-
mation (x̃k, P̃k) of the belief is shown as ellipse. Assuming
one would only take a single measurement without considering
movement costs, it should be perpendicular to the major axis.
Then the next measurement position is determined by the
distance r to the target position estimate x̃k. There are two
possible measurement positions with distance r, which are
denoted by M1 and M2 in the figure.

The optimal distance r between the measurement position
and the target position estimate is dependent on the ratio of its
axes. The greater the major axis is in relation to the minor axis,
the further away a measurement should be taken to increase

5

0 10 20 30 40 50
x pos [m]

0

10

20

30

40

50
y

po
s [

m
]

12

M1

M2

Platform

r

(a)

0.0 2.5 5.0 7.5 10.0
1/ 2

0

2

4

6

8

10

12

N
or

m
al

iz
ed

 D
is

ta
nc

e
(b)

Fig. 2. Base policy for the policy rollout. (a) The next measurement point
is chosen perpendicular to the major axis of the uncertainty ellipse. (b) The
distance r is proportional to the ratio of the standard deviations. Note that
σ1/σ2 ≥ 1 by definition.

the chance of an approximate cross-bearing measurement. On
the other hand, the measurement contains less information
about the target position when taken from further away, as the
likelihood of the measurement spreads over a larger region.

We computed the optimal distance r offline by setting
the minor axis of a Gaussian shaped belief to a standard
deviation of σ2 = 1 and varying the major axis. For a given
length of the major axis, we computed the expected posterior
RMSE for each distance r, and selected the distance with the
lowest RMSE. The expected posterior RMSE was computed
by computing the posterior distribution for all possible mea-
surements based on the grid cells and the measurement noise.
For efficiency reasons the possible measurements were binned
into 1◦ bins. Figure 2b shows the resulting optimal distance r,
dependent on the standard deviation of the major axis. Values
higher than precomputed are linearly interpolated from the last
values.

At runtime the belief bk of the target position is represented
as a density on the belief grid. This density is approximated
by a Gaussian distribution, centered on the estimated position
x̃k. Based on the covariance P̃k of the Gaussian approxi-
mation, the base policy computes the range r between the
next measurement position and the estimated target position.
For this, the standard deviations of the principal components
are computed. Then, based on their ratio, a piecewise linear
interpolation of the precomputed values is performed:

r = σ2 · PLI
[
σ1
σ2

]
. (16)

As can be seen in Figure 2a there are two possible candidate
measurement positions M1 and M2 with range r. The base
policy selects the one that is nearer to the platform, which is
M2 in the figure. Then it moves to this position (red line in
the figure) and generates the next measurement there.

C. Rollout

Given the base policy, the policy rollout approximation of
the action value is the sum of the myopic cost c(xpk, ak) and
the expected value of V πB (bk+1). We approximate this expec-
tation by drawing samples of the state and the measurements
during the rollout. The rollout is executed until the termination

criterion T is true, which indicates that the target is sufficiently
localized. Then the action value is

QπB (bk,a) = c(xpk,a)+

Na−1∑
j=0

waj ·
T (baji)∑
i>k

c(xaji, πB(baji)) ,

(17)
where Na is the number of rollouts performed for action a
and waj is the weight of the j-th rollout. The rollout state

xaji = (x̂taj ,x
p
aji)

T = (x̂taj , ŷ
t
aj , x

p
aji, y

p
aji)

T (18)

consists of the sampled target position and the predicted
platform position. x̂taj , ŷ

t
aj is the target position sample for

rollout j, evaluating action a. We use the hat to denote that
an element is sampled, and specify the sampling method in
Section IV. The predicted platform position xpaji, y

p
aji varies

during the rollout and is therefore also indexed by the future
time step i. The belief baji is updated on measurements drawn
according to

zaji = atan2(ŷtaj − y
p
aji, x̂

t
aj − x

p
aji) + v̂aji , (19)

where v̂aji represents the realization of the normal distributed
noise in (8). With

Cj(bk,a) =

T (baji)∑
i>k

c(xaji, πB(baji)) (20)

we denote the result of the j-th rollout for action a and bk
and its computation is called the j-th rollout. This is a single
sample of the expected future cost.

D. Action search

The remaining steps of this algorithm are: First, the se-
lection of the samples to evaluate the rollout result of an
action (20). Second, to define how the search for the minimum
proceeds, i.e. which actions a are to be evaluated, and with
how many rollouts Na. Methods for this are described in the
following two sections.

An overview of the different combinations can be found in
Table I. The three columns denote three sampling methods
to evaluate the expected value: Plain Monte Carlo, common
random numbers, and deterministic samples. Those methods
are explained in the next section. The ways the search proceeds
are listed in the rows. Those methods are explained in Section
V. A combination of search method and sampling gives a
specific implementation of the rollout. Combinations which
are principally possible are denoted with a +. Those which
are evaluated in this paper are denoted with a

⊕
.

IV. COMPUTATION OF THE EXPECTED VALUE

We use a sampling based method to compute the action
value QπB (b,a). This is performed by executing multiple
rollouts, where the result Cj of each rollout is determined by
the chosen samples, i.e. the j-th sample path, which consists
of x̂taj , v̂aj(k+1), v̂aj(k+2), ... For the creation of the sample
paths, we compare three different approaches, plain Monte
Carlo, common random numbers, and a deterministic sampling

6

TABLE I
COMBINATIONS OF THE CONSIDERED METHODS

PMC CRN Det.

Uniform allocation
⊕ ⊕ ⊕

Sequential halving
⊕ ⊕

Quadrant search +
⊕ ⊕

Stochastic gradient descent +
⊕

BFGS +
⊕

Possible combination +
Evaluated combination

⊕

approach. The weights for each rollout result are identically
assigned waj = 1/Na to average the rollout results, except in
some cases of the deterministic sampling method.

A. Plain Monte Carlo

The plain Monte Carlo (PMC) approach is to create each
sample path by using independent random numbers, i.e. x̂taj
and v̂aji are drawn independently for each action a, rollout j
and future step i.

B. Common random numbers

Common random numbers (CRN) [32, p. 120] can be used
to compare alternatives. With this method, the same random
number sequences are used for each action, i.e. different
actions are evaluated using the same sample paths. This
induces a correlation between the rollouts, which reduces the
variance of the relative error in the action value estimates.
Note that the absolute error is not reduced, however, only the
relative error is important to make the right decision. Here we
implemented CRN, such that

x̂taj = x̂ta′j (21)

for the same rollout number j and different actions a and a′.
Note that x̂taj is still randomly sampled. Similarly, we chose
the measurement noise to be identical for different actions, but
the same rollout number and future time step

v̂aji = v̂a′ji . (22)

We refer to both CRN and PMC as Monte Carlo approaches.

C. Deterministic samples

Additionally, we evaluate a deterministic sampling ap-
proach, previously used in [34]. Here the uncertainty of the
state is represented using a deterministic set of samples x̂taj ,
which are computed with a density approximation algorithm
[35] from the belief grid. For each rollout j a different sample
is used, therefore Na samples are required. These samples
are used for each action, therefore (21) also describes this
approach. As with CRN this introduces a correlation between
the rollouts for different actions, but with the same rollout
number j.

The method works by splitting prior samples of the density
into two new samples each, both containing half of their
parent’s weight. Therefore, the weights of the samples are only

uniformly waj = 1/Na when Na is a power of two. In the
evaluation below, we only use powers of two.

The measurements are approximated without measurement
noise, i.e.

v̂aji = 0 . (23)

Also discretizing the measurements would impose a greater
computational demand, as measurement errors are assumed to
be i.i.d. and therefore the number of required discretizations
would increase exponentially with the number of measurement
steps. We therefore assume that the main source of uncertainty
lies in the position of the target.

V. SEARCH FOR THE OPTIMAL ACTION

In this section methods are described to search for the
optimal action a∗ ∈ A, which minimizes (17):

a∗ = argmin
a∈A

QπB (bk,a) . (24)

For a given action a, QπB (bk,a) can be evaluated by per-
forming a rollout based on a sample path as described above.
However, it is not necessarily required that each a is evaluated
using the same number of rollouts. In addition, with a contin-
uous action space it is not possible to evaluate each action.

To compare the methods, it is useful to consider their
performance based on the total amount of rollouts they require.
We denote the total number of rollouts as computational
budget N , with

N =
∑

a∈AE

Na , (25)

where AE ⊆ A is the finite set of evaluated actions.
None of the methods described below are novel, however,

with the exception of the uniform allocation method their use
in the policy rollout algorithm is novel.

A. Uniform allocation

The most straightforward method to search for the optimal
action is to estimate each action value using the same number
of samples and select the one whose estimate is best. In a
continuous action space, this requires a discretization of the
action set. We denote the discretized and finite action set by A.
Then the selected action is chosen by comparing the estimated
value for each candidate action:

πR(b) = argmin
a∈A

QπB (b,a) (26)

We use the same action discretization approach as previ-
ously in [34]. The assumption is that the optimal action is close
to the target estimate, and therefore the considered region is
centered on the belief grid. Additionally, we add the width
and height of the belief grid to each border and crop by the
scenario area xS , xS , yS , yS , resulting in the action space

xA = max
(
xS , xB − (xB − xB)

)
,

xA = min
(
xS , xB + (xB − xB)

)
,

yA = max
(
yS , yB − (yB − yB)

)
,

yA = min
(
yS , yB + (yB − yB)

)
. (27)

7

As described in Section III-A, xB , xB , yB , yB denote the
extension of the grid representation of the belief. This action
space is then discretized equally in both dimensions, leading
to an action grid.

The computation of the minimum is then performed by
evaluating each action, either by plain Monte Carlo, common
random numbers or using the deterministic samples.

B. Multi-armed bandits

Bandit algorithms follow the intuition of a gambler playing
at a slot machine with multiple arms, where each arm has
a different reward distribution. At each round, the gambler
can pull one of the arms, which leads to a sample from the
reward distribution. In its most common formulation, the goal
is to maximize the cumulative reward over time, leading to a
trade-off in using the arm with the currently highest reward
expectation (exploitation) or trying other arms (exploration).
A typical algorithm for this problem is the UCB algorithm
[42].

In recent years another problem formulation has gained
interest, the so called best-arm-selection problem or pure
exploration [43]–[47]. In this case, the exploration stops after
a certain number of rounds and the gambler commits to a
single arm. This single arm is the only one of interest; any
rewards previously obtained do not count. Therefore, there is
no exploration-exploitation trade-off, but instead the goal is to
explore the arms optimally to select the best one.

There is a clear connection between the best-arm-selection
problem and the problem of searching for the optimal action
in a sampling-based policy rollout algorithm. In both cases,
there are multiple candidate actions, and the value of each
action is only available by repeatedly performing a rollout or
repeatedly pulling an arm. Each additional rollout performed
gives a better estimate of the value of an action. Different
to the classical bandit formulation in the best-arm-selection
formulation, as well as in the policy rollout case, it is not
important how much cost or reward is gained during the
evaluation of the actions. Only the cost of the selected action
is important.

Compared to the uniform allocation described in the previ-
ous section, with these methods different actions a1,a2 might
get evaluated with a different number of samples Na1 6= Na2 .
Similar to the uniform allocation, a finite action set is required,
for which we used the same grid discretization A.

We implemented the successive halving method [47], which
focuses its evaluations over time on the most promising
actions. The basic idea is that the whole computational budget
N is split into

Nr = dlog2|A| e (28)

rounds. For each round the same amount of samples Ns is
used for each action:

Ns =

⌊
N

|A|Nr

⌋
. (29)

Note that due to the rounding to integers, in some cases the
budget is not exhaustively used. After each round half of the
actions, whose mean reward over all previous evaluations is

worst, are removed and the computational budget is focused
on the remaining actions. We use an implementation with plain
Monte Carlo sampling, as well as one with common random
numbers to compare the actions in each round. There is no
straightforward use of the deterministic sampling approach
with sequential halving. This is because the approach we
used splits and therefore modifies the existing and evaluated
samples, instead of simply adding new ones. In an adaptive
approach, this means that samples, which are already used
for the estimation of the action value, need to be thrown
away later together with the corresponding rollout results, and
replaced by two other samples. Therefore, the deterministic
sampling approach would waste a lot of the computational
budget and would therefore not be well suited for adaptive
action evaluation.

C. Quadrant search

Quadrant search is the method of restricting the search
iteratively into the most promising quadrant [48]. At the start
of the algorithm, actions are evaluated on a 3×3 action grid.
Then for each quadrant, the mean of the action values at the
four corners is computed. Based on these values, the search
focuses on the quadrant with the lowest mean action value.
In this quadrant, additional five samples are evaluated, in the
center and the middle of each border. Therefore, the quadrant
now contains a smaller 3×3 grid. Then a quadrant from this
smaller 3×3 grid is chosen. This step is repeated for a fixed
number of iterations or until convergence.

Figure 3 visualizes this progress. In the first step, actions are
evaluated at the positions A-I via rollouts. Then the quadrant
averages were compared and it was determined that

1

4

∑
a∈{B,C,E,F}

QπB (bk,a) (30)

was less than the corresponding averages for the other quad-
rant. Therefore, in the second step the action values at J-N
were evaluated. The next step would select a quadrant of
(B,C,E,F), for example (L,M,N,F), and repeat the subdivision.

We implemented this method in a variant with common
random numbers, as well as a variant based on deterministic
samples. The initial area on which the 3×3 grid is placed is
based on the same limits as the grid of the uniform allocation
and sequential halving approaches (27).

D. Gradient-based methods

Gradient descent is a classic method for optimization prob-
lems. If a function is continuous, following the gradient leads
to at least a local minimum. Figure 5 shows the true Q-
values, computed using a sufficient number of samples (see
Section VI), which appear sufficiently continuous under a
visual inspection, and typically have two local minima.

If the gradient computation is not deterministic (e.g. because
it is computed based on a random sample), the technique is
called stochastic gradient descent. In this case, the method
follows the sample of the gradient:

al+1 = al − ηl+1∇Q̂πB (b,al) , (31)

8

A B C

D E F

G H I

J

K L M

N

0 100 200 300
x pos [m]

0

50

100

150

200

250

300

y
po

s [
m

]

Fig. 3. Visualization of the quadrant search method.

where ∇Q̂πB is a sample of the true gradient ∇QπB , deter-
mined via execution of the rollout, l the iteration and ηl+1 the -
commonly decaying - step size. As the execution of the rollout
is not differentiable, we use a finite difference approximation
to the gradient, using two two-sided differences. Those four
evaluation points use CRN to reduce the variance of the
gradient estimate. However, the samples of the gradient at
different iterations are not correlated. This algorithm is derived
from stochastic approximation theory, especially the Kiefer-
Wolfowitz algorithm [49], [50] and is commonly used to
optimize machine learning models [51].

We also evaluate a version based on deterministic samples.
As the evaluation of the action value is then a deterministic
problem, standard optimization methods can be used, for
example BFGS, which is an effective quasi-Newton method
[52]. We used the implementation from JSAT [53], version
0.0.9.

VI. EXPERIMENTAL METHODOLOGY

We evaluated the different action search methods based on
how well they can find the minimum of the action value QπB .
For this, it was required to determine the true minimum, which
is not a-priori obvious. Therefore, a set of belief states was
sampled, for which a close approximation to the minimum was
computed offline. Then the optimization methods were tested
on this set of beliefs.

To create the belief set, we ran the planner from [34] 20
times with different random seeds, and saved at each decision
point the belief state. We used Scenario 2 from the prior work,
which can be seen in Figure 4. Here the target position is
drawn for each run from a Gaussian distributed prior, which
is known to the localizer. The parameters correspond to the
ones in the prior work, and are summarized in Table II. After
exclusion of the beliefs where the target had been localized
and only including the initial belief state once, this led to a
set B of 25 distinct belief states.

For an approximation of the true optimal action value, the
action space was discretized on the whole scenario area with
an 150×150 action grid, i.e. with 2m distance between the
actions. For each action a and belief b we estimated the
value of QπB (b,a), using sufficient random samples such

TABLE II
PARAMETERS OF THE SCENARIO

Symbol Parameter Value

vp Speed 5m/s
tM Measurement time 10 s
σ Measurement accuracy 4◦

µT Localization accuracy threshold 5m

0 50 100 150 200 250 300
x pos (m)

0

50

100

150

200

250

300

y
po

s (
m

)

Platform
1 ellipsoid
3 ellipsoid

Fig. 4. Scenario used for evaluation.

that the standard error of the mean was below 0.1. This
was around 2000 − 20 000 samples, depending on the action
and belief. The results of these computations can be seen in
Figure 5 for two exemplary beliefs. With qopt

b we denote the
minimal Q-value found in this step for belief b. While this is
only an approximation, under a visual inspection the function
QπB (b,a) appeared very continuous on the 150×150 action
grid, and therefore it is not expected that the true optimum is
significantly different.

It can be seen that the function QπB (b,a) has typically
two minima, which are approximately symmetric to the major
axis of the Gaussian approximation (x̃, P̃) of the belief. This is
similar to the points M1 and M2 in the base policy (see Figure
2a). However, the optimal action was sometimes nearer to the
target estimate x̃ than the action chosen by the base policy. In
addition, the optimal action was not always placed on a direct
extension of the minor axis.

We then executed the control algorithm on each belief,
using the combinations as indicated by Table I for action
selection. The deterministic methods were executed once, the
Monte Carlo based methods 100 times. For each selected
action during evaluation run r and belief b, we computed the
approximately true Q-value qbr of the selected action by linear
interpolation of the 150×150 action grid.

Therefore, for each method we can compute the mean
difference between the Q-value of the selected action to the

9

(a) Belief 0

(b) Belief 16
Fig. 5. Estimation of the Q-value using a sufficiently high number of samples.
The heat map shows the grid-based belief representation, while the contours
represent the Q-values. The ellipse shown is the Gaussian approximation
(x̃, P̃) of the belief.

optimum qopt
b of the corresponding belief:

1

‖B‖
1

Ne

∑
b∈B

Ne−1∑
r=0

qbr − qopt
b , (32)

where Ne is the number of evaluations of the method, which
was either 1 or 100, and qbr the Q-value for belief b and run r.
This mean distance to the optimum can also be considered as
the optimization performance of a method, taking the intuition
that the action search is a stochastic optimization problem to
find the action with minimal QπB (b,a).

VII. RESULTS

For improved clarity, the presentation of the results is
separated into three sections, where the first discusses the
uniform allocation and sequential halving, and the other two
the quadrant and gradient methods. The methods are split up
in this way, as the first set of methods considers each action
independently; therefore, these methods are also feasible for
arbitrary action spaces. The second set of methods assume that
the action value function is continuous, i.e. that evaluating an
action also gives information about nearby actions.

The results are shown as the optimization performance (32)
dependent on the required number of rollouts. A method is
considered Pareto optimal, if no other method achieves a better
optimization performance with less or an equal number of
rollouts.

A. Uniform allocation and sequential halving

Figure 6 shows the results of uniform allocation and sequen-
tial halving. The uniform allocation uses an 10×10 and 20×20
action grid, and the number of samples is varied over powers
of two. I.e. the first data point of each line corresponds to a
single sample and either 100 (= 10·10·1) or 400 (= 20·20·1)
rollouts. The following data points correspond to 2, 4, 8, . . .
samples.

The sequential halving algorithm is evaluated on the same
action grids with a computational budget N , i.e. total number
of rollouts, of 700, 1400 and 2100 for the 10×10 grid and
3600, 7200, 10 800 for the 20×20 grid. These are chosen as
multiples of 100 · dlog2 (100)e and 400 · dlog2 (400)e. Due
to the rounding, the actually used number of rollouts are
689, 1391, 2093, and 3589, 7191, 10 793.

For the uniform allocation, it can be seen that using common
random numbers is strictly better than plain Monte Carlo sam-
ples. It can also be seen that the approach with deterministic
samples achieves better results than using common random
numbers. However, while the Monte Carlo approaches improve
monotonically for increasing number of samples, the same
is not true for the deterministic approach. Sometimes it has
a worse result for a higher number of used samples. This
is likely because the deterministic samples are a suboptimal
approximation method for the density. It should be noted that
because of the deterministic nature of the algorithm it naturally
also misses the averaging effect that multiple runs have on the
Monte Carlo algorithms.

It can also be seen that for a small computational budget N
it is better to have a smaller action space, where the actions
are evaluated more often, than a bigger action space with
potentially better actions, but which cannot be evaluated that
often. However, for higher budgets the bigger action space
shows better results.

The sequential halving algorithm shows consistently better
results than uniform allocation, as it can focus on the most
promising actions. Here each evaluated configuration is Pareto
optimal. Uniform allocation with 64 deterministic samples on
the 20×20 grid shows approximately the same optimization
performance as sequential halving with common random num-
bers and a budget of 10 800. However, it required more than
twice the number of rollouts (25 600 vs 10 793).

These optimization methods are fundamentally limited, in
that they will not be able to select an action not on their
action set. The optimum is computed over an action grid with
a very high resolution (see Section VI). This optimum does
not necessarily have to be on the 10×10 or 20×20 action grid,
therefore these methods likely would not reach zero even with
a high amount of rollouts.

Finally, the base policy itself would score 2.98 on this chart,
which shows that the rollout improvement property cannot

10

10
2

10
3

10
4

Number of rollouts

0

1

2

3

4

5

6

7
M

ea
n

di
st

an
ce

 to
 o

pt
im

um
 [s

]

Method
Uniform (Det.)
Uniform (CRN)
Uniform (PMC)
Seq. Halving (CRN)
Seq. Halving (PMC)

Gridsize
20x20
10x10

Fig. 6. Results of the uniform allocation and sequential halving.

10
2

10
3

Number of rollouts

0

1

2

3

4

5

6

M
ea

n
di

st
an

ce
 to

 o
pt

im
um

 [s
]

Sampling
Deterministic
CRN

Iterations
3
6

Fig. 7. Results of the quadrant search.

be achieved when the estimation of the action values is too
inaccurate.

B. Quadrant search

Figure 7 shows the results of the quadrant search. For a
given number of iterations, we vary the number of samples,
again being powers of two. For example, the first point with
a single sample and three iterations corresponds to 9 + 3 · 5
rollouts. The algorithm is at the risk of selecting the wrong
quadrant, as the optimum is not guaranteed to be in the
quadrant whose corners have on average the best values.
Because the algorithm makes a hard decision on the quadrant,
it would not be able to recover from such a choice. Therefore,
even with perfect evaluation of the actions, the algorithm
would not necessarily converge to zero. However, this method
works surprisingly well, and achieves a good performance for
a low number of rollouts.

Similar as in the case of uniform allocation, we can see that
the approach with deterministic samples is better than the one
with common random numbers.

C. Gradient-based methods

Figure 8 shows the results of the gradient-based methods.
For the stochastic gradient descent (SGD) the number of
iterations N l is varied, with a fixed number of samples to
estimate the gradient. As an example, SGD with one sample
and 25 iterations would require a total number of 100 rollouts,
as it uses two two-sided finite differences.

We used a finite difference size of ±20 and an exponential
decay of ηl with

ηl = 20 · exp
(
−4 l

N l − 1

)
. (33)

With iteration l = 0, 1, . . . N l−1, the above step size schedule
interpolates between η0 = 20 and ηN l−1 = 20 · exp(−4) ≈
0.366. We did not perform an explicit hyperparameter opti-
mization of the step size. The algorithm was initialized with
the action selected by the base policy, which seems to be a
reasonable choice in the policy rollout case.

For BFGS the same initialization and finite difference size
was used, and the gradient was computed using the deter-
ministic samples. We terminated the algorithm once a limit
of evaluations of QπB (b,a) (including those to estimate the
gradient) was reached, and varied this limit. The total number
of rollouts then consists of this limit multiplied by the number
of samples used to estimate the Q-value.

The stochastic gradient descent method shows very good
results, being Pareto optimal to BFGS, except in a single case
where the BFGS method is better. It also shows a monotonic
improvement of the optimization performance with increasing
number of iterations. For a high number of rollouts, it achieves
a lower error as the previous methods. However, a convergence
to the optimum is not guaranteed as those methods can become
stuck in local optima.

Interestingly, BFGS shows almost no improvement when
a higher number of rollouts is used. A likely explanation is
that the estimate of the Q-values with deterministic samples
is not as smooth as the true Q-value function. An example
of computing the Q-values of the initial belief with two
deterministic samples can be seen in Figure 9. One should
note that the same holds true for estimating the Q-value with a
small number of Monte Carlo samples. However, the stochastic
gradient descent performs a new sampling in each iteration,
therefore approximating gradient descent on the true value.

D. Comparison

Each of the considered methods in this section has several
degrees of freedom in their parameters. The choice of search
method, sampling method, number of samples, and other
method specific parameters gives a specific rollout implemen-
tation. The number of rollouts we can execute in practice will
be limited by computational power of the platform. Therefore,
when we use this algorithm in an actual system, we likely will
have a computational budget of possible rollouts and want
to select the algorithm components, such that we can make
the best use of this computational budget. Figure 10 shows a
subset of the results in a single figure, for direct comparison.
This figure gives the optimization performance we can achieve

11

10
2

10
3

10
4

Number of rollouts

0

1

2

3

4

5

6
M

ea
n

di
st

an
ce

 to
 o

pt
im

um
 [s

]

Method
SGD
BFGS

Samples
1
4
8
16

Fig. 8. Results of the gradient based methods.

with a given number of rollouts and lets us compare the rollout
implementations with a common measure. A method is Pareto
optimal if no other method achieves a smaller mean distance
to the optimum with lesser rollouts. It can be seen that the
stochastic gradient descent approaches are almost everywhere
Pareto optimal to the other approaches.

VIII. CORRELATION WITH ROLLOUT PERFORMANCE

In the previous section, we evaluated the different methods
to search for the optimal action on a sampled set of beliefs,
where for each belief we had computed the approximately
optimal action value. This gave us a way to quantify the
optimization performance of a method, i.e. how close it comes
to selecting the optimal action.

However, it is not self-evident whether this performance
measure correlates with the performance of the resulting con-
trol algorithm. While one could expect that such a correlation
exists, the base policy is only an approximation of future
behavior. Therefore, non-minimum actions might be actually
optimal. The rollout improvement property only guarantees
that when the true minimizing action is chosen, the resulting
control algorithm is at least as good as the base policy.

To evaluate how much the optimization performance cor-
relates with the performance of the control algorithm, we
evaluated the scenario with each action search configuration
for 20 000 MC runs. Figure 11 shows the correlation between
the optimization performance and the performance of the
resulting control algorithm, given as mean time until localiza-
tion. It can be clearly seen that a correlation exists (Pearson:
r=0.775). The gradient-based algorithms show several outliers
from this correlation, where the time until localization is worse
than expected. The worse performance of the gradient-based
methods is due to the initial belief. Here the base policy selects
an action far from the optimal action. As this is used for the
initialization for those methods, the optimal solution cannot
be reached when the number of iterations is small. The grid-
based methods and the quadrant-based method do not have this
problem, as they do not require an initialization. We previously
considered the initial belief as an independent belief. However,
as it appears at the start of every simulation it appears more

(a) True value of QπB (b0,a) for different a

(b) Approximation with two deterministic samples
Fig. 9. Comparison of the approximately true Q-values of the initial belief
and its estimate via two deterministic samples.

10
1

10
2

10
3

10
4

10
5

Number of rollouts

0

1

2

3

4

5

6

M
ea

n
di

st
an

ce
 to

 o
pt

im
um

 [s
]

Method
Uniform (Det.)
Uniform (CRN)
Seq. Halving (CRN)
Quadrant Search (3, Det.)
SGD (1)
SGD (8)
Gridsize
20x20
10x10
Continuous

Fig. 10. A selected subset of the plots in Figure 6, 7, and 8.

12

0 1 2 3 4 5 6 7
Mean distance to optimum

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Ti
m

e
un

til
 lo

ca
liz

at
io

n
[s

]
Uniform (PMC)
Uniform (CRN)
Uniform (Det.)
Seq. Halving (CRN)
Seq. Halving (PMC)

Quadrant (CRN)
Quadrant (Det.)
SGD
BFGS

Fig. 11. Correlation between the optimizer performance and the rollout-
algorithm performance.

frequently than the other beliefs. When correcting for this fact
by weighting belief zero by the factor 20, the number of runs
used to sample the beliefs, the correlation increases to r=0.965.

Figure 12 shows the actual performance of the same meth-
ods as shown in Figure 10. It can be seen that the optimization
method in [34], denoted by a star, is not on the Pareto front.
When compared to Figure 10 it can be seen that the stochas-
tic gradient descent algorithms need a higher than expected
number of samples to achieve reasonable performance, and the
quadrant search algorithm dominates for a small computational
budget time. This can be explained due to the initial belief, as
described before. However, for a high computational budget,
the best results are achieved by the stochastic gradient descent
and sequential halving, as one would expect from Figure 10.
Interestingly, the uniform allocation via deterministic samples
achieves comparable results on the actual performance when
using enough samples, even though it has a lower optimizing
performance in Figure 10.

To compare these results with classic sensor management
methods, we simulated the performance of a myopic entropy-
based planner, similar to the one used in [2] for the same
problem. This planner evaluates at each step the possible next
positions by computing the expected entropy of the posterior.
It does this by updating the current target estimate with a
hypothetical noise-free measurement based on the mean of
the target position estimate. Then the position with minimal
entropy is chosen as the next measurement position. We chose
a 60×60 action grid for the possible measurement positions.
For the given scenario, this planner results in a time until
localization of 67.07 ± 0.17 seconds. While some of the
configurations are worse than this, e.g. stochastic gradient
descent with a minimal number of steps, in most cases the
rollout-based planner shows a clear improvement.

Figure 13 shows two exemplary paths found by the methods.
This figure should give an intuition about how the resulting
paths look like. The exact shape is dependent on the target
position (which is here close to the expected value), the
measurements, and the random components of the planner.

10
1

10
2

10
3

10
4

Number of rollouts

56

58

60

62

64

66

68

70

Ti
m

e
un

til
 lo

ca
liz

at
io

n
[s

]

Method
Uniform (Det.)
Uniform (CRN)
Sequential Halving (CRN)
Quadrant Search (3, Det.)
SGD (1)
SGD (8)
Gridsize
20x20
10x10
Continuous

Fig. 12. Rollout performance for different number of rollouts, for a selected
subset. Star denotes the method used in [34]. The error bars denote the 95%
confidence interval.

0 50 100 150 200 250 300 350
x pos [m]

0

50

100

150

200

250

300

y
po

s
[m

]

Sequential
Halving
Uniform
Target

Fig. 13. Exemplary paths for sequential halving (using CRN with a 20× 20
grid and a budget of 7200) and uniform allocation, on the same grid using 1
plain Monte Carlo sample per evaluation.

IX. DISCUSSION

In this section, we discuss which conclusions we can take
from our results. First, we note that the usage of common
random numbers should be preferred to plain Monte Carlo
when comparing action values.

A deterministic approximation to the uncertainty in the
target estimate improves the performance of some methods,
however, not necessarily. A likely explanation is that it im-
proves the results in cases where the search is almost global
(uniform allocation or quadrant search), however, leads to
worse results in cases where the search is local (BFGS), as it
might produce local minima. Different to the Monte Carlo
methods, it did not produce a monotonic improvement in

13

optimization performance and performance of the resulting
control algorithm.

For the given problem, there were two sources of uncer-
tainty: uncertainty in the current state estimate and uncertainty
in the future measurements. The deterministic samples only
considered the first source of uncertainty and used the expected
value for the second one. The implicit assumption is that it is
more important to capture the uncertainty in the current state
estimation than the uncertainty in the future measurements.
This seems to work for the given problem, however, does not
necessarily need to generalize to other problems where the
future measurements might have a higher influence.

Sequential halving is an effective method to search for
the optimal action with discrete or discretized action sets.
This is likely to extend to other methods of adaptive action
evaluation. As it uses Monte Carlo samples of the state and
measurements, it does not need to make any assumptions
about the uncertainty. An additional advantage is that given
the action set, the only hyperparameter to be determined is
the computational budget. A disadvantage is that it requires at
least a computational budget of N = |A|dlog2|A| e.

Quadrant search works well and is worth considering when
the computational budget is low. As it focuses on a single
quadrant after evaluating only 9 actions, it has the possibility
to focus the search on the wrong quadrant, however, this seems
not to be an issue for the considered problem.

Stochastic gradient descent shows the strongest results
when considering its optimization performance on the belief
set. For a small computational budget, the resulting control
algorithm is less effective than expected. However, with a
high computational budget, the control also shows a strong
performance, and its strong optimization performance makes
it worth considering. In this work, we only evaluated a single
step size schedule. This parameter has likely a significant and
potentially problem dependent influence on the performance.
Therefore, a higher performance might be possible, however,
at the cost of more intensive hyperparameter tuning.

While we did not consider any additional constraints on
the action space, this is an important consideration. It is
easy to incorporate constraints into uniform allocation and
sequential halving, as actions could simply be excluded from
the action set. The gradient-based approaches could either use
a regular reprojection into the action space if they move to a
forbidden action or a method as L-BFGS-B [54] which allows
for constraints could be used. The quadrant search could use
the allowed action space to place its initial 3×3 action grid if
the constraints are rectangular, however, it is not clear whether
this would work for arbitrary constraints.

X. ROBUSTNESS AND GENERALIZATION

In this section, we perform a robustness analysis of the
discussion in the last section. We vary parameters in the
scenario and planner and determine whether our findings still
hold.

In a first analysis, we analyze the algorithm performance for
several choices of the action grid size. Figure 14 shows the
time until localization for different grid sizes Ng and 20 000

5 10 15 20 25 30 35 40
Action Grid Size

56

58

60

62

64

Ti
m

e
un

til
 lo

ca
liz

at
io

n
[s

]

Uniform [PMC]
Uniform [CRN]
Uniform [Det]
Seq. Halving [PMC]
Seq. Halving [CRN]

Fig. 14. Variation of the action grid size. A fixed budget of 16 samples per
grid cell is chosen. The x-axis gives the number Ng of an Ng × Ng grid.
The error bars denote the 95% confidence interval.

MC runs. The computational budget is set to a fixed number of
16 samples per action for the uniform method. The sequential
halving method receives an equivalent budget of 16 ·Ng ·Ng .
The performance strongly improves until a grid size of 10.
After this, we see diminishing returns for higher grid sizes. For
small grid sizes, we also see alternating behavior for even and
odd sizes, as they contain different actions. For all action grid
sizes, we can see that common random numbers are preferable
to plain Monte Carlo sampling. We can also see that for the
same budget sequential halving shows better results. Finally,
we can also see that the deterministic sampling shows a non-
monotonic behavior. This is similar as observed previously,
e.g. in Figure 12.

Figure 15 shows the time until localization for different
required times for a single measurement with 20 000 MC
runs. Different measurement times lead to different trade-
offs between taking a measurement and moving to another
measurement position.

We compare the stochastic gradient descent method with
four steps and one sample per gradient computation (40 roll-
outs in total), the quadrant search with deterministic sampling,
three iterations, and one sample per action (24 rollouts in total)
and the sequential halving method with a sampling budget
of 3600. For comparison, we also added the myopic entropy-
based method. The figure shows that the advantage of quadrant
search to stochastic gradient descent for small number of
rollouts is robust over different scenario instantiations. We can
also see that for a small number of rollouts, the entropy method
performs approximately as well as the rollout method with
stochastic gradient descent for action selection. However, the
better performing quadrant search and the sequential halving
with a higher budget outperform the entropy-based method for
all variations of the measurement time.

Finally, we evaluate the methods on a different scenario than
in the main part of the paper. Figure 16 shows the geometry of
this scenario. The targets now appear uniformly in space on a
ring around the platform, with a distance of 30−300m. In this
scenario, the platform makes an initial measurement directly at
the beginning from its starting position, after which the initial

14

0 5 10 15 20 25 30 35 40
Measurement time [s]

40

60

80

100

120

140

160
Ti

m
e

un
til

 lo
ca

liz
at

io
n

[s
]

Rollout: SGD
Rollout: Quadrant Search
Rollout: Sequential Halving
Entropy

Fig. 15. Variation of the required time for a measurement. The stochastic
gradient descent and quadrant search use a small computational budget with
40 and 24 rollouts. The sequential halving has budget of 3600 and a 20×20
grid. The error bars denote the 95% confidence interval.

300 150 0 150 300
x pos [m]

300

150

0

150

300

y
po

s [
m

]

Platform
Uniform prior

Fig. 16. Scenario with a uniform prior.

estimate is determined. Contrary to the previous localizer, the
estimate is made using the expected value of the estimated
probability density, instead of the maximal likelihood. The
remaining parameters are kept at the same values.

Figure 17 shows the results of 20 000 MC runs on this
scenario. It shows the same methods as in Figure 10. As in
the previous scenario, we evaluated an entropy-based planner
as comparison, resulting in an average localization time of
98.22± 0.2 seconds. While there are differences in the abso-
lutes of the numbers, both figures show the same behaviors:
The rollout-based approaches are in most cases better than
the myopic entropy-based planner. The quadrant search is the
best for a low number of rollouts. The methods based on
deterministic samples show a non-monotonic improvement.
Sequential halving is the best method for selecting from a finite
set. We also see a fast improvement with additional samples in
the stochastic gradient. This effect is even more pronounced
in this scenario.

10
1

10
2

10
3

10
4

Number of rollouts

85

90

95

100

105

110

Ti
m

e
un

til
 lo

ca
liz

at
io

n
[s

]

Method
Uniform (Det.)
Uniform (CRN)
Sequential Halving (CRN)
Quadrant Search (3, Det.)
SGD (1)
SGD (8)
Gridsize
20x20
10x10
Continuous

Fig. 17. Rollout performance for a different number of rollouts for the
scenario with a uniform prior. The error bars denote the 95% confidence
interval.

In this paper, the altitude of the UAV was not considered.
The algorithms would extend straightforwardly to a three-
dimensional case, where the sensor platform is able to change
its altitude. As long as the target remains stationary and on
the surface, the main adaption would be a search through a
three-dimensional action space, instead of a two-dimensional.
The methods considered in this paper would still be feasible,
with the quadrant search then becoming an octant search.
However, due to the higher dimension of the action space
we would expect that methods that intelligently evaluate the
actions (i.e. sequential halving, octant search, and stochastic
gradient descent) become more useful with more dimensions
than a uniform allocation.

Generalization to a moving emitter would also be feasible,
however, would lead to additional challenges not considered
in this paper. The first is the addition of a prediction model,
which would expand the uncertainty in the target localization
over time due to the target movement. The second would be
the drawing of the samples. For a stationary emitter only a
single position is sufficient, for a moving emitter its path need
to be sampled. Especially, this sampling of the path needs
to correspond to the true probabilities of target movement to
approximate the expected future cost properly. An assumption
that the target moves uniformly in its possible movement
space, is likely not correct. Finally, the termination criterion
of the rollout needs to be changed. In the presented algorithm,
the rollout terminates once the emitter is localized. However,
even if a moving emitter is localized, it will move away from
this localization again. In this case, a rolling horizon approach
would be more useful.

XI. CONCLUSION

In this paper, we propose and evaluate methods for the
action selection step in a policy rollout algorithm, which have
not been used for this purpose before. We compared the
methods based on their ability to reach the minimal Q-value
in comparison to the required number of rollouts, as well as
by the performance of the resulting control algorithm. Our
evaluation problem was to control a UAV, equipped with a

15

bearing only sensor, which should localize an emitter as fast
as possible.

With this work, we made the following contributions:
• We have shown the application of policy rollout in a

problem with a continuous action space. Prior work was
mostly focused on discrete action spaces.

• We evaluated multiple methods to find the optimal action
in a rollout. Prior work commonly chose Monte Carlo
sampling with a fixed and equal number of rollouts for
each action. We have shown that with successive halving
also for a discrete action space methods that are more
effective exist. To the authors’ knowledge, this is the first
time stochastic gradient descent was considered in the
policy rollout context.

• We have shown that the optimization performance of
the action selection algorithm correlates with the actual
performance of the policy rollout. This seems to be intu-
itively clear, however, enforces our belief that optimizing
this algorithmic component is important.

• Finally, we have described different variants with im-
proved results of the UAV control algorithm previously
presented in [34].

Due to space constraints, this analysis of optimization
methods is only partial and some interesting methods have
been omitted. It would be interesting for future work to
evaluate other best-arm methods from the bandit literature,
generalizations of bandits into continuous spaces [39], simu-
lation optimization methods [37] or response surface modeling
[55]. The strong optimizing performance of stochastic gradient
descent also indicates that a further exploration of this method
in the context of policy rollout would be worthwhile. Research
in stochastic gradient descent led to several improved variants,
mostly in the context of training machine learning models. It
would be interesting to consider methods like e.g. Adam [56]
or AdaGrad [57] in the context of policy rollout.

REFERENCES

[1] D. P. Bertsekas and D. A. Castañón, “Rollout Algorithms for Stochastic
Scheduling Problems,” Journal of Heuristics, vol. 5, no. 1, pp. 89–108,
1999.

[2] O. Cliff, R. Fitch, S. Sukkarieh, D. Saunders, and R. Heinsohn, “Online
Localization of Radio-Tagged Wildlife with an Autonomous Aerial
Robot System,” in Robotics: Science and Systems XI. Rome, Italy:
Robotics: Science and Systems Foundation, 2015.

[3] K. Vonehr, S. Hilaski, B. E. Dunne, and J. Ward, “Software Defined
Radio for Direction-Finding in UAV Wildlife Tracking,” in IEEE Inter-
national Conference on Electro Information Technology. Grand Forks,
ND, USA: IEEE, 2016, pp. 464–469.

[4] J. T. Isaacs, F. Quitin, L. R. Garcı́a Carrillo, U. Madhow, and J. P.
Hespanha, “Quadrotor control for RF source localization and tracking,”
in International Conference on Unmanned Aircraft Systems (ICUAS).
Orlando, FL, USA: IEEE, 2014, pp. 244–252.

[5] J. Vander Hook, P. Tokekar, and V. Isler, “Algorithms for Cooperative
Active Localization of Static Targets With Mobile Bearing Sensors
Under Communication Constraints,” IEEE Transactions on Robotics,
vol. 31, no. 4, pp. 864–876, 2015.

[6] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II
Approximate Dynamic Programming, 4th ed. Belmont, Massachusetts,
USA: Athena Scientific, 2012.

[7] W. B. Powell, Approximate Dynamic Programming, 2nd ed. Hoboken,
New Jersey: John Wiley Sons, Inc., 2011.

[8] G. Tesauro and G. R. Galperin, “On-line Policy Improvement using
Monte Carlo Search,” in Advances in Neural Information Processing
Systems 9, Denver, CO, USA, 1996, pp. 1068–1074.

[9] D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu, “Rollout Algorithms for
Combinatorial Optimization,” Journal of Heuristics, vol. 3, no. 3, pp.
245–262, 1997.

[10] E. K. P. Chong, C. M. Kreucher, and A. O. Hero III, “Monte-Carlo-
Based Partially Observable Markov Decision Process Approximations
for Adaptive Sensing,” in Proceedings of the 9th International Workshop
on Discrete Event Systems. Göteborg, Sweden: IEEE, 2008, pp. 173–
180.

[11] E. K. P. Chong, C. M. Kreucher, and A. O. Hero, “Partially Observ-
able Markov Decision Process Approximations for Adaptive Sensing,”
Discrete Event Dynamic Systems, vol. 19, no. 3, pp. 377–422, 2009.

[12] A. Saksena and I.-J. Wang, “Dynamic Ping Optimization for Surveil-
lance in Multistatic Sonar Buoy Networks with Energy Constraints,” in
47th IEEE Conference on Decision and Control. Cancun, Mexico:
IEEE, 2008, pp. 1109–1114.

[13] Y. He and E. K. P. Chong, “Sensor Scheduling for Target Tracking in
Sensor Networks,” in 43rd IEEE Conference on Decision and Control.
Atlantis, Paradise Island, Bahamas: IEEE, 2004, pp. 743–748.

[14] Y. He and E. K. Chong, “Sensor scheduling for target tracking: A Monte
Carlo sampling approach,” Digital Signal Processing, vol. 16, no. 5, pp.
533–545, 2006.

[15] Y. Li, L. Krakow, E. Chong, and K. Groom, “Approximate stochastic
dynamic programming for sensor scheduling to track multiple targets,”
Digital Signal Processing, vol. 19, no. 6, pp. 978–989, dec 2009.

[16] L. W. Krakow, E. K. P. Chong, K. N. Groom, J. Harrington, Y. Li,
and B. Rigdon, “Control of Perimeter Surveillance Wireless Sensor
Networks Via Partially Observable Marcov Decision Process,” in Pro-
ceedings of the 40th Annual International Carnahan Conference on
Security Technology, Lexington, KY, USA, 2006, pp. 1–8.

[17] Z.-n. Zhang and G.-l. Shan, “Non-myopic sensor scheduling to track
multiple reactive targets,” IET Signal Processing, vol. 9, no. 1, pp. 37–
47, 2015.

[18] M. K. Schneider and C. Chong, “A rollout algorithm to coordinate mul-
tiple sensor resources to track and discriminate targets,” in Proceedings
Volume 6235, Signal Processing, Sensor Fusion, and Target Recognition
XV, I. Kadar, Ed., Orlando (Kissimmee), Florida, 2006, p. 62350E.

[19] R. Zahedi, L. W. Krakow, E. K. P. Chong, and A. Pezeshki, “Adaptive
Estimation of Time-Varying Sparse Signals,” IEEE Access, vol. 1, pp.
449–464, 2013.

[20] S. Ragi, H. D. Mittelmann, and E. K. P. Chong, “Directional Sensor
Control: Heuristic Approaches,” IEEE Sensors Journal, vol. 15, no. 1,
pp. 374–381, jan 2015.

[21] S. Beyme and C. Leung, “Rollout Algorithms for Wireless Sensor
Network-Assisted Target Search,” IEEE Sensors Journal, vol. 15, no. 7,
pp. 3835–3845, 2015.

[22] D. Jun and D. L. Jones, “The value of sleeping: A rollout algorithm
for sensor scheduling in HMMs,” in 2013 IEEE Global Conference on
Signal and Information Processing. Austin, TX, USA: IEEE, dec 2013,
pp. 181–184.

[23] A. Charlish and F. Hoffmann, “Anticipation in cognitive radar using
stochastic control,” in 2015 IEEE Radar Conference (RadarCon), Ar-
lington, VA, USA, May 2015, pp. 1692–1697.

[24] M. W. Ulmer, J. C. Goodson, D. C. Mattfeld, and M. Hennig, “Of-
fline–Online Approximate Dynamic Programming for Dynamic Vehicle
Routing with Stochastic Requests,” Transportation Science, vol. 53,
no. 1, pp. 185–202, feb 2019.

[25] N. Secomandi, “Analysis of a Rollout Approach to Sequencing Problems
with Stochastic Routing Applications,” Journal of Heuristics, vol. 9,
no. 4, pp. 321–352, 2003.

[26] ——, “A Rollout Policy for the Vehicle Routing Problem with Stochastic
Demands,” Operations Research, vol. 49, no. 5, pp. 796–802, oct 2001.

[27] C. Novoa and R. Storer, “An approximate dynamic programming
approach for the vehicle routing problem with stochastic demands,”
European Journal of Operational Research, vol. 196, no. 2, pp. 509–515,
2009.

[28] J. C. Goodson, J. W. Ohlmann, and B. W. Thomas, “Rollout Policies for
Dynamic Solutions to the Multivehicle Routing Problem with Stochastic
Demand and Duration Limits,” Operations Research, vol. 61, no. 1, pp.
138–154, feb 2013.

[29] L. Bertazzi, A. Bosco, F. Guerriero, and D. Laganà, “A stochastic
inventory routing problem with stock-out,” Transportation Research Part
C: Emerging Technologies, vol. 27, pp. 89–107, 2013.

[30] D. Bertsimas and I. Popescu, “Revenue management in a dynamic
network environment,” Transportation Science, vol. 37, no. 3, pp. 257–
277, 2003.

16

[31] A. McGovern and E. Moss, “Scheduling straight-line code using re-
inforcement learning and rollouts,” in Advances in Neural Information
Processing Systems, Denver, CO, USA, 1999, pp. 903–909.

[32] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo
Method. Wiley, 2016.

[33] D. Bertsekas, “Differential training of rollout policies,” in Proc of
35th Allerton Conference on Communication, Control and Computing,
Allerton Park, Illinois, USA, 1997, pp. 1–10.

[34] F. Hoffmann, H. Schily, A. Charlish, M. Ritchie, and H. Griffiths, “A
Rollout Based Path Planner for Emitter Localization,” in Proceedings
of the 22nd International Conference on Information Fusion (Fusion
2019), Ottawa, ON, 2019.

[35] V. Klumpp and U. D. Hanebeck, “Dirac Mixture Trees for Fast Subopti-
mal Multi-Dimensional Density Approximation,” in IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Sys-
tems. Seoul, Korea: IEEE, 2008, pp. 593–600.

[36] Tao Sun, Qianchuan Zhao, P. Luh, and R. Tomastik, “Optimization of
Joint Replacement Policies for Multipart Systems by a Rollout Frame-
work,” IEEE Transactions on Automation Science and Engineering,
vol. 5, no. 4, pp. 609–619, oct 2008.

[37] C.-H. Chen and L. H. Lee, Stochastic Simulation Optimization - An
Optimal Computing Budget Allocation. Singapore: World Scientific
Publishing, 2011.

[38] V. Gabillon and A. Lazaric, “Rollout Allocation Strategies for
Classification-based Policy Iteration,” in ICML 2010 Workshop on
Reinforcement Learning and Search in Very Large Spaces, Haifa, Israel,
2010, pp. 0–3.

[39] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári, “X-armed bandits,”
Journal of Machine Learning Research, vol. 12, pp. 1655–1695, 2011.

[40] C. Mansley, A. Weinstein, and M. L. Littman, “Sample-based planning
for continuous action Markov decision processes,” in ICAPS 2011 - Pro-
ceedings of the 21st International Conference on Automated Planning
and Scheduling, Freiburg, Germany, 2011, pp. 335–338.

[41] L. Dressel and M. J. Kochenderfer, “Pseudo-bearing Measurements for
Improved Localization of Radio Sources with Multirotor UAVs,” in
IEEE International Conference on Robotics and Automation (ICRA).
Brisbane, Australia: IEEE, 2018, pp. 6560–6565.

[42] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[43] S. Bubeck, R. Munos, and G. Stoltz, “Pure exploration in multi-
armed bandits problems,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 5809 LNAI, pp. 23–37, 2009.

[44] J.-Y. Audibert and S. Bubeck, “Best Arm Identification in Multi-Armed
Bandits,” in COLT - 23th Conference on Learning Theory, Haifa, Israel,
2010, p. 13 p.

[45] V. Gabillon, M. Ghavamzadeh, and A. Lazaric, “Best Arm Identifica-
tion: A Unified Approach to Fixed Budget and Fixed Confidence,” in
Advances in Neural Information Processing Systems 25. Lake Tahoe,
Nevada, USA: Curran Associates, Inc., 2012, pp. 3212–3220.

[46] A. Garivier and E. Kaufmann, “Optimal Best Arm Identification with
Fixed Confidence,” in COLT - 29th Conference on Learning Theory,
New York, USA, 2016, pp. 1–30.

[47] Z. Karnin, T. Koren, and O. Somekh, “Almost optimal exploration in
multi-armed bandits,” in Proceedings of the 30th International Confer-
ence on Machine Learning (ICML), vol. 28, 2013, pp. 1238–1246.

[48] M. L. Hernandez, “Optimal Sensor Trajectories in Bearings-Only Track-
ing,” in The 7th International Conference on Information Fusion (FU-
SION). Stockholm, Sweden: IEEE, 2004, pp. 1–8.

[49] J. Kiefer and J. Wolfowitz, “Stochastic Estimation of the Maximum of
a Regression Function,” The Annals of Mathematical Statistics, vol. 23,
no. 3, pp. 462–466, 1952.

[50] H. J. Kushner and G. G. Yin, Stochastic Approximation and Recursive
Algorithms and Applications, 2nd ed. New York, NY, USA: Springer,
2003.

[51] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[52] J. Nocedal and S. J. Wright, Numerical Optimization. Springer New
York, 2006.

[53] E. Raff, “Jsat: Java statistical analysis tool, a library for machine
learning,” Journal of Machine Learning Research, vol. 18, no. 23, pp.
1–5, 2017.

[54] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A Limited Memory
Algorithm for Bound Constrained Optimization,” SIAM Journal on
Scientific Computing, vol. 16, no. 5, pp. 1190–1208, sep 1995.

[55] D. R. Jones, “A Taxonomy of Global Optimization Methods Based on
Response Surfaces,” Journal of Global Optimization, vol. 21, no. 4, pp.
345–383, 2001.

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, 2015.

[57] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization,” Journal of Machine
Learning Research, vol. 12, pp. 1–40, 2011.

Folker Hoffmann Folker Hoffmann received his
M.Sc. in computer science from the University of
Bonn and is currently enrolled as a Ph.D. student at
University College London. Since 2014 he works as
a research associate in the Sensor Data and Infor-
mation Fusion (SDF) Department at the Fraunhofer
Institute for Communication, Information Process-
ing and Ergonomics (FKIE). His research interests
include the use of stochastic control methods applied
to sensor management problems.

Alexander Charlish Alexander Charlish (SM’19)
obtained his M.Eng. degree from the University of
Nottingham and received his Ph.D. degree from
University College London on the topic of mul-
tifunction radar resources management. In 2011,
he joined the Sensor Data and Information Fu-
sion (SDF) Department at the Fraunhofer Institute
for Communication, Information Processing and Er-
gonomics (FKIE), where he now leads the Sensor
and Resources Management Group. In this role, he
leads a group of scientists conducting research on

intelligent sensing with a focus on cognitive radar and resources management
for sensor systems. Additionally, he is a visiting lecturer at RWTH Aachen
University. He is currently serving as an Associate Editor for Radar Systems
for IEEE Transactions on Aerospace and Electronic Systems, and as Subject
Editor for Radar, Sonar and Navigation for IET Electronic Letters. He is
currently an elected member of IEEE AESS Radar Systems Panel and the
AESS Board of Governors. He is also active in the NATO community and
received the NATO SET Panel Excellence Award in 2019 and the NATO SET
Panel Early Career Award in 2020.

Matthew Ritchie Dr. Matthew Ritchie received an
MSci degree in physics from The University of
Nottingham, in 2008. Following this he completed
an Eng.D degree at University College London
(UCL), in association with Thales U.K., in 2013.
He continued at UCL as a postdoctoral research
associate focusing on machine learning applied to
multi-static radar for micro-Doppler classification.
In 2017 Dr. Ritchie took a Senior Radar Scientist
position at the Defence Science and Technology
Laboratories (Dstl) which also involved working as

the Team Leader for the Radar Sensing group in the Cyber and Information
Systems Division. During his time at Dstl he worked on a broad range of
cutting edge RF sensing challenges collaborating with both industry and
academia. As of 2018 he has now taken a lectureship role at UCL within the
Radar Sensing group. Currently he serves as the Chair of the IEEE Aerospace
and System Society (AESS) for the United Kingdom & Ireland, is a Subject
Editor-in-Chief for the IET Electronics Letters journal and a Senior Member
of the IEEE.

http://www.deeplearningbook.org

17

Hugh Griffiths Hugh Griffiths (Fellow, IEEE) re-
ceived the M.A. degree in physics from Oxford
University in l975, and the Ph.D. and D.Sc. (Eng.)
degrees from University College London in 1986
and 2000, respectively. He holds the THALES/Royal
Academy Chair of RF sensors with the Department
of Electronic and Electrical Engineering, University
College London, U.K. From 2006 to 2008, he was
Principal of the Defence Academy of Management
and Technology, Shrivenham. From 2001 to 2006, he
served as Head of Department at University College

London. He has published more than 500 papers and technical articles in
the fields of radar, antennas, and sonar. His research interests include radar
and sonar systems, signal processing (particularly synthetic aperture radar and
bistatic radar), and antenna measurement techniques. He carried out some of
the first experiments in passive radar.

Dr. Griffiths was elected to Fellowship of the Royal Academy of En-
gineering in 1997. He was a member of the IEEE AES Radar Systems
Panel since 1989. He is a Fellow of the IET. He received the IEEE AESS
Nathanson Award in 1996, the IET A F Harvey Research Prize in 2013, and
the IEEE Picard Medal in 2017. He has also received the Brabazon Premium
of the IERE and the Mountbatten and Maxwell Premium Awards of the IEE.
He served as the President of the IEEE AES Society from 2012 to 2013.
He chaired the working group which revised the IEEE Radar Definitions
Standard P686 and reaffirmed the Radar Letter Band Standard in 2008. He
was appointed as Officer of the Order of the British Empire (OBE) in the
2019 Queen’s New Year’s Honours List.

	Introduction
	Policy rollout
	Computation of the action value
	Search for the optimal action
	Structure of the Paper

	Problem Description
	State space and transition
	Belief state
	Optimization objective

	Stochastic Control Algorithm
	Localizer
	Base policy
	Rollout
	Action search

	Computation of the expected value
	Plain Monte Carlo
	Common random numbers
	Deterministic samples

	Search for the optimal action
	Uniform allocation
	Multi-armed bandits
	Quadrant search
	Gradient-based methods

	Experimental Methodology
	Results
	Uniform allocation and sequential halving
	Quadrant search
	Gradient-based methods
	Comparison

	Correlation with Rollout Performance
	Discussion
	Robustness and Generalization
	Conclusion
	References
	Biographies
	Folker Hoffmann
	Alexander Charlish
	Matthew Ritchie
	Hugh Griffiths

