
 

Page 1 of 33 
Brain Connectivity 

© Mary Ann Liebert, Inc. 

DOI: 10.1089/brain.2020.0808 

1 

B
ra

in
 C

o
n

n
ec

ti
vi

ty
 

R
es

ti
n

g-
St

at
e 

Fu
n

ct
io

n
al

 C
o

n
n

e
ct

iv
it

y 
D

is
ru

p
ti

o
n

 a
s 

a 
P

at
h

o
lo

gi
ca

l B
io

m
ar

ke
r 

in
 A

u
to

so
m

al
 D

o
m

in
an

t 
A

lz
h

e
im

er
 D

is
ea

se
 (

D
O

I:
 1

0
.1

0
8

9
/b

ra
in

.2
0

2
0

.0
80

8
) 

Th
is

 p
ap

er
 h

as
 b

ee
n

 p
ee

r-
re

vi
ew

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
e

rg
o

 c
o

p
ye

d
it

in
g 

an
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

Resting-State Functional Connectivity Disruption as a Pathological 

Biomarker in Autosomal Dominant Alzheimer Disease 

Robert X Smith PhD1, Jeremy F. Strain PhD1, Aaron Tanenbaum BA1, Anne M. Fagan PhD1, 

Jason Hassenstab PhD1, Eric McDade DO1, Suzanne E. Schindler MD, PhD1, Brian A. Gordon 

PhD2, Chengjie Xiong PhD3, Jasmeer Chhatwal MD, PhD4, Clifford Jack Jr MD5, Celeste 

Karch PhD10, Sarah Berman MD, PhD6, Jared R. Brosch MD7, James J. Lah MD, PhD8, Adam 

Brickman PhD9, David M Cash MD11, Nick C. Fox MD11, Neill R Graff-Radford MD12, 

Johannes Levin MD13, James Noble MD9, David M. Holtzman MD1, Colin L. Masters MD14, 

Martin R. Farlow MD7, Christoph Laske16, Peter R. Schofield MD15, Daniel S. Marcus PhD2, 

John C. Morris MD1, Tammie L. S. Benzinger MD, PhD2, Randall J. Bateman MD1, Beau M. 

Ances MD, PhD1 for the DIAN Network 

1 Department of Neurology, Washington University in Saint Louis, St. Louis, MO 63110 

2 Department of Radiology, Washington University in Saint Louis, St. Louis, MO 63110 

3 Department of Biostatistics, Washington University in Saint Louis, St. Louis, MO 63110 

4 Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114 

5 Department of Radiology, Mayo Clinic, Rochester, MN, 55905 

6 Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15260 

7 Department of Neurology, Indiana University, Indianapolis, IN, 46202 

8 Department of Neurology, Emory University, Atlanta, GA, 30329 

9 Department of Neurology, Columbia University, New York, NY, 100310 

10 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 

63110. 

11 Dementia Research Centre, Department of Neurodegenerative Disease, Institute of 

Neurology, University College London, London, UK. 

12 Department of Neurology, Mayo Clinic, Jacksonville, FL, USA 

13 German Center for Neurodegenerative Disease (DZNE) Munich, Munich, Germany 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

25
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Page 2 of 33 
 
 
 

2 

B
ra

in
 C

o
n

n
ec

ti
vi

ty
 

R
es

ti
n

g-
St

at
e 

Fu
n

ct
io

n
al

 C
o

n
n

e
ct

iv
it

y 
D

is
ru

p
ti

o
n

 a
s 

a 
P

at
h

o
lo

gi
ca

l B
io

m
ar

ke
r 

in
 A

u
to

so
m

al
 D

o
m

in
an

t 
A

lz
h

e
im

er
 D

is
ea

se
 (

D
O

I:
 1

0
.1

0
8

9
/b

ra
in

.2
0

2
0

.0
80

8
) 

Th
is

 p
ap

er
 h

as
 b

ee
n

 p
ee

r-
re

vi
ew

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
e

rg
o

 c
o

p
ye

d
it

in
g 

an
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

14The Florey Institute, University of Melbourne, Parkvile, VIC, Australia 

15 Neuroscience Research Australia, Sydney, NSW, Australia 

16 Eberhard Karls University of Tubingen, Tubingen Germany 

17Hope Center for Neurological Disorders, Knight ADRC, Washington University, St. Louis, 

MO, USA 

Brief Running Title: Functional Connectivity Disruption in Autosomal Dominant Alzheimer 

Disease 

Abstract Word Count: 250 

Manuscript Word Count: 4,655 

  

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

25
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Page 3 of 33 
 
 
 

3 

B
ra

in
 C

o
n

n
ec

ti
vi

ty
 

R
es

ti
n

g-
St

at
e 

Fu
n

ct
io

n
al

 C
o

n
n

e
ct

iv
it

y 
D

is
ru

p
ti

o
n

 a
s 

a 
P

at
h

o
lo

gi
ca

l B
io

m
ar

ke
r 

in
 A

u
to

so
m

al
 D

o
m

in
an

t 
A

lz
h

e
im

er
 D

is
ea

se
 (

D
O

I:
 1

0
.1

0
8

9
/b

ra
in

.2
0

2
0

.0
80

8
) 

Th
is

 p
ap

er
 h

as
 b

ee
n

 p
ee

r-
re

vi
ew

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
e

rg
o

 c
o

p
ye

d
it

in
g 

an
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

Aim: Identify a global resting state functional connectivity (gFC) signature in mutation 

carriers (MC) from the Dominantly Inherited Alzheimer Network (DIAN). Assess the gFC 

with regards to amyloid (A), tau (T), and neurodegeneration (N) biomarkers and estimated 

years to symptom onset (EYO). 

Introduction: Cross-sectional measures were assessed in MC (n=171) and mutation non-

carriers (NC) (n=70) participants.  A FC matrix that encompassed multiple resting state 

networks (RSNs) was computed for each participant.  

Methods: A global FC was compiled as a single index indicating functional connectivity 

strength. The gFC signature was modeled as a non-linear function of EYO. The gFC was 

linearly associated with other biomarkers used for assessing the AT(N) framework 

including: cerebrospinal fluid (CSF), positron emission tomography (PET) molecular 

biomarkers, and structural magnetic resonance imaging.  

Results: The gFC was reduced in MC compared to NC participants. When MC participants 

were differentiated by clinical dementia rating (CDR), the gFC was significantly decreased 

in MC CDR > 0 (demented) compared to either MC CDR 0 (cognitively normal) or NC 

participants. The gFC varied non-linearly with EYO and initially decreased at EYO = -24 

years, followed by a stable period followed by a further decline near EYO =0 years. 

Irrespective of EYO, a lower gFC associated with values of amyloid PET, CSF Aβ1-42, CSF p-

tau, CSF t-tau, FDG, and hippocampal volume. 

Conclusions: The gFC correlated with biomarkers used for defining the AT(N) framework. A 

biphasic change in the gFC suggested early changes associated with CSF amyloid and later 

changes associated with hippocampal volume.  

Key words: Autosomal dominant Alzheimer disease, resting state functional connectivity, 

estimated years to onset (EYO), cerebrospinal fluid (CSF), positron emission tomography 

(PET), amyloid, tau, fluorodeoxyglucose (FDG), hippocampus,  
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Impact Statement 

This project focused on creating and evaluating a global FC signature that may serve as an 

outcome measure in clinical trials.  This global FC signature encompassed multiple resting 

state networks (RSNs) that included both inter- and intra-networks. Prior studies that 

focus on a single network may overlook important changes seen within and between 

networks. Our analysis is a logical progression from previous work that demonstrated that 

intra- and inter-network brain connections across multiple networks were affected with 

progression to cognitive impairment in ADAD.  This work revealed that FC disruption 

exhibits a nonlinear time course that was consistent with proposed biomarker models. 
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INTRODUCTION  

Alzheimer disease (AD) is the leading cause of dementia in the United States. The 

occurrence of AD has been linked with β-amyloid (Aβ) peptide aggregating into plaques in 

the brain *1+. Aβ levels vary naturally following a circadian rhythm *5+ and are associated 

with neuronal excitability [6]. Excess production from neuronal hyper-excitability may 

underlie plaque formation [6, 6a]. The amyloid cascade hypothesis [7] proposes 

accumulation of Aβ plaques results in neurotoxic effects that are associated with tau 

accumulation and neurodegeneration culminating in cognitive dysfunction (as assessed by 

the clinical dementia rating (CDR)) [8]. Autosomal dominant Alzheimer disease (ADAD) is 

caused by ~100% penetrant mutations in genes that encode for the amyloid precursor 

protein (APP) [2-4] or gamma-secretase components, presenilin (PSEN) 1 and PSEN2. The 

ability to estimate when mutation positive (MC) carriers will develop cognitive changes 

allows for modeling of disease based on estimated years to symptom onset (EYO). ADAD 

typically occurs at an earlier age compared to late-onset AD (LOAD) [9-11] and is not 

associated with age-related comorbidities.  

Pathologic changes start decades before clinical symptoms manifest in ADAD [8]. Recently, 

a set of biomarker criteria has been proposed to stage late onset AD disease progression 

[11a]. This model describes the earliest changes involve amyloid accumulation (A), 

followed by tau (T) deposition, and eventually neurodegeneration (N) that lead to 

cognitive dysfunction [12-19]. Changes in amyloid biomarkers, such as cerebrospinal fluid 

(CSF) Aβ1-42 and [11C] Pittsburgh compound B (PiB) amyloid positron emission tomography 

(PET), have been observed ~15-20 years before symptom onset in ADAD [8, 18, 20, 21, 22, 

23]. Tau (T) biomarkers, such as CSF phosphorylated tau181 (p-tau181) [4], change ~10-15 

years prior to symptom onset in ADAD. Neurodegeneration (N) biomarkers, such as CSF 

total tau (t-tau) [4, 23] 18F-fluorodeoxyglucose (FDG) PET, a measure of glucose 

metabolism [7], and magnetic resonance imaging (MRI) measurements of hippocampal 

volume [8, 22, 23, 24, 25], change at ~5-10 years prior to EYO. CSF-based measures are 

sensitive to global levels of amyloid accumulation and tau deposition, but lack information 

pertaining to what brain regions are affected. Imaging, on the other hand, provides 

spatially detailed information regarding impacted brain regions. In fact, PET imaging has 
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revealed amyloid may accumulate in a pattern of brain regions distributed across multiple 

functional brain networks [70]. This has led some to hypothesize that pathological spread 

of disease through the brain occurs via brain networks [26, 70, 71]. However, a gap 

persists regarding when changes in brain networks occur with respect to AT(N) biomarkers 

in ADAD.  

Resting-state functional connectivity (FC) non-invasively measures the association of 

signaling among brain regions and can be used to identify resting state networks (RSN) 

[27]. The inter-relationships among RSNs is sensitive to neuronal dysfunction and is 

associated with the degree of cognitive impairment [28-30]. A reduction in both intra- and 

inter-network FC occurs in ADAD [31]. Global metrics of amyloid and tau accumulation 

aggregate spatially selective patterns for increased sensitivity. Similarly, a global FC 

signature can be derived from a combination of changes in intra- and inter-networks that 

spans multiple RSNs [53, 69]. It remains important to know where changes in this global FC 

signature occur in the temporal progression of ADAD. 

The purpose of this study is to evaluate the role of FC within the AT(N) framework in 

ADAD.  Prior work has focused on select FC network differences however, we employ a 

data reduction strategy to compile information across multiple intra- and inter-network 

connections into a single global FC signature of ADAD. We assess FC strength based on a 

global FC signature between NC, MC asymptomatic (CDR 0), and MC symptomatic (CDR > 

0).  We also evaluate the relationship between the global FC signature and established 

biomarkers that comprise the AT(N) framework and model the global FC signature as a 

function of EYO.   

METHODS 

Participant characteristics: 

The cohort consisted of 171 individuals with ADAD mutations (MC) and 104 individuals 

from ADAD families who were genetically at-risk for inheriting the mutation but were not 

carriers (NC). All participants were enrolled in the international Dominantly Inherited 

Alzheimer Network (DIAN) and extracted from Data Freeze 11.  Inclusion into this current 

analysis required that participants complete a general physical (including neurologic) 
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examination, health and medication history, clinical assessment for dementia [32], 

biochemical analysis, neuroimaging acquisition on only 3T Siemens Tim Trio scanners 

(Erlangen, Germany), and successful pass all quality control criteria (e.g. reduced motion 

during neuroimaging acquisition).  All participants or their representatives provided 

written informed consent that was in accordance with the Washington University 

institutional review boards or their respective institutions provided approval.  

Clinical Dementia Rating (CDR): 

Experienced clinicians conducted semi-structured interviews of each participant and a 

knowledgeable collateral source. The CDR was used to evaluate degree of impairment 

[32]. A score of CDR 0 indicates cognitively normal, CDR 0.5 corresponds to very mild 

dementia, and CDR ≥1 specifies mild to moderate dementia. Participants with a score of 

CDR > 0 had a clinical diagnosis of AD dementia using previously described criteria [33]. 

EYO estimation: 

Parent age at symptomatic onset was determined from semi-structured interviews with 

the participant, a knowledgeable collateral source, and/or other informants familiar with 

the parental history of disease. The age at onset of the affected parent was determined by 

estimating the time of onset of consistent symptoms (e.g. memory/cognition, motor, or 

behavior) [2]. The EYO for each individual from DIAN was defined as age at testing minus 

the age at symptom onset for that individual’s affected parent *34]. 

Biochemical analyses: 

A lumbar puncture was performed in the morning under fasting conditions to obtain CSF 

using previously described methods [8]. Samples were shipped on dry ice to the DIAN 

biomarker core laboratory. CSF concentrations of Aβ1-42, t-tau, and p-tau at threonine 181 

(p-tau181) were measured by immunoassay (INNOTEST Aβ1-42 and INNO-BIA AlzBio3, 

Innogenetics). All values met quality-control standards, including a coefficient of variation 

of 25% or less and kit “controls” that were within the expected range as defined by the 

manufacturer. Measurement consistency between plates of a common sample were 

included in each run.  
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Imaging: 

MRI data from only 3T Siemens Tim Trio scanners (Erlangen, Germany) were analyzed. 

Scanners were calibrated and used similar protocols. Structural images were acquired 

using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) protocol. T1-weighted scans 

were automatically segmented into regions of interest according to the Desikan atlas 

through FreeSurfer (Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, 

USA). Blood oxygen level-dependent (BOLD) FC was also acquired using previously 

described methods [31]. During the BOLD FC scans, participants were instructed to remain 

still with their eyes open and not fall asleep. 

PET imaging was performed using FDG to measure glucose metabolism and PiB to measure 

amyloid load. PET imaging analyses were performed using a previously described PET 

Unified Pipeline (PUP) [36]. Data from the 40 to 70 minute post-injection window for PiB 

and 40 to 60 minute window for FDG were converted to standardized uptake value ratios 

(SUVR) in the defined regions of interest using the cerebellar cortex as a reference region 

[37]. Partial volume correction (PVC) was performed with a regional spread function (RSF) 

*38+ that uses a geometric transfer matrix (GTM) technique *39+. Global Aβ was 

summarized as the average SUVR for the precuneus, lateral temporal, gyrus rectus and 

prefrontal regions that have previously been shown to delineate AD from cognitively 

normal controls [36]. FDG from the precuneus was utilized as changes in this region are 

reliable and occur early in DIAN participants [40, 22, 23]. 

FC Preprocessing:  

BOLD FC preprocessing followed previously described methods [20, 30, 31] including 

correction of odd versus even slice intensity differences attributable to interleaved 

acquisition and compensation for head movement within and across runs. Intensity 

inhomogeneity was corrected using FSL FAST [41] followed by intensity normalization to 

obtain a whole brain mode value of 1000. Echoplanar imaging (EPI) distortion due to 

magnetization inhomogeneity was corrected using a mean field map [42]. Atlas 

transformation was computed by registering the EPI mean image to an atlas-

representative template via the MP-RAGE (EPI             template). The template 
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was generated from a separate cohort of 12 cognitively normal individuals. Compensation 

for head motion, distortion correction, and atlas transformation were sequentially 

combined to generate a volumetric time series that was resampled in 3mm3 atlas space. 

Frames corrupted by excessive head motion were identified on the basis of both DVARS 

and frame displacement (FD) measures [43]. In greater detail, the DVARS criterion was 

0.9% root mean square (rms) of the frame-to-frame signal change from the entire brain 

[44, 45]. The FD criterion was 0.3mm. Frames were censored if either criterion was 

exceeded. The time series were band-pass filtered to retain frequencies between 0.005 Hz 

and 0.1Hz. For purposes of filtering, only a linear interpolation was applied over censored 

frames. Censored frames were excluded from all subsequent steps. 

Denoising was accomplished using a CompCor-like strategy [46]. In brief, nuisance 

regressors were derived from three compartments (white matter, ventricles and the extra-

axial space) and then dimensionality-reduced to create a matrix for singular value 

decomposition (SVD). White matter and ventricle masks were segmented in each 

individual using FreeSurfer 5.3 [47] and spatially resampled to register with the FC data. 

Time series also were extracted from high-variance voxels (temporal standard deviation 

>2.5% relative to the whole brain mode) in the extra-axial space (excluding the eyes). 

Nuisance regressors were derived from white matter, ventricles, and the extra-axial space. 

The final set of nuisance regressors included six parameters derived from rigid body head-

motion correction, the global signal (GS) averaged over the (FreeSurfer-segmented) brain, 

and the GS temporal derivative. The preprocessed time series was non-linearly warped to 

Montreal Neurological Institute (MNI) 152 space (3 mm3 voxels) space using FNIRT [48-51].  

FC post-processing 

A putative set of 246 functional regions-of-interest (ROI) were organized into 12 RSNs that 

included the sensorimotor (SM) sensorimotor-lateral (SMlat), cingulo-opercular (CO), 

auditory (AUD), ventral attention (VAN), visual (VIS), salience (SAL), default mode (DMN), 

memory (MEM), dorsal attention (DAN), subcortical (SUB), and frontoparietal (FP) [39]. 

ROIs were defined as 10 mm diameter spheres whose center coordinates were in MNI 

atlas space [52].  All ROI’s were distinct and occupied unique voxels. A 246× FC matrix was 
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obtained for each individual as follows. First, the pre-processed FC data was transformed 

on to the MNI atlas. Second, the mean time series was computed within each ROI 

excluding the censored frames. The pairwise correlation between all ROI time series was 

then derived. Correlation values were Fisher transformed for normality. The mean 

246×246 FC matrix across all participants is shown in Figure 1 (left).We used each ROI’s 

RSN designation [52] to compute the average intra- and inter-network correlation reducing 

the FC to a 12×12 matrix. FC values along the diagonal blocks represent intra-RSN 

correlations, and values in the off diagonal blocks represent inter-RSN correlations. The 

mean 12×12 FC matrix across all participants is shown in Figure 1 (middle). 

FC Principal Components Analysis (PCA) 

Data reduction was performed to isolate a global FC signature metric of global FC changes 

[53, 69]. The intra- and inter-network pattern of FC values from each participant were 

compiled, and a single global FC signature was selected. Specifically, the 12 intra-network 

and (12×(12-1))⁄2=66 inter-network averages (total of 12+66=78) were compiled from all 

participants (n=275) into a single 275×78 matrix. A PCA of this matrix was performed by 

singular value decomposition (SVD). PCA is a multivariate analysis that reveals internal 

data organization and its variance.  This PCA revealed distinct FC patterns of intra- and 

inter-network averages across all RSNs. Each pattern is comprised of weights describing 

the influence from each of the 78 intra- and inter-network FC composites on that pattern. 

The magnitude of a given weight reflects the strength of influence while the sign, positive 

or negative, indicates whether the corresponding intra- or inter-network FC composite 

tends to increase or decrease, respectively, across participants. Each pattern was also 

accompanied by a set of scores that represented its association with each participant’s 

pattern of FC values. The variability of these scores related to the total variability of FC 

values among participants. A low score indicates the primary pattern is weakly present or 

absent from a participant. This implicates a strong deviation from, or decline in, the 

network connectivity specified by the primary pattern. The primary pattern that captured 

the largest percentage of total inter-individual FC variance (21%) was designated the global 

FC signature for ADAD (Figure 1, right). The same data reduction was applied to NC 

participants. The primary pattern from NC was very similar to the pattern computed for all 
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participants, indicating patient characteristics (abnormal levels of A42, tau, and 

neurodegeneration) are not strong factors in determining the primary pattern.  

EYO modeling 

Global FC signature versus RSN 

We compared the abilities of the global FC signature and intra-network values of the 12 

RSNs included in this study to, separately, predict EYO using a leave-one-out cross-

validation (LOOCV). Specifically, for each FC metric: 

1. FC and EYO data were split into two sets: train, and test. The training set comprised 

of data from N-1 mutation positive participants, and a test set comprising data 

from a single mutation positive participant. 

2. A linear predictive model was computed using the training set: 

E O           FC      

3. The linear model (i.e. coefficients          ) was used to predict EYO of the test 

set:  

E O          FC     

4. The error in EYO was computed: 

E O    E O     E O     

5. Steps 1- 4 were repeated such that the FC data for each mutation positive 

participant was used in the test set.  

6. The sum of squares (SS) was computed for both EYOerr and EYO: 

SS    ∑(E O   )
  

SS    ∑(E O)  

7. The coefficient of determination (R2), the proportion of the variance in actual EYO 

that is predictable from the FC, was computed:   
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Nonlinear modeling 

AD biomarkers exhibit nonlinear time courses across disease progression [8, 60, 60a]. 

Proposed biomarker models suggest nonlinear time courses with sigmoidal shape [60]. The 

sigmoid transition time (i.e., when peak rate-of-change occurs) varies based on the 

biomarker. We investigated a sigmoidal shape of the global FC signature for MC 

participants to estimate transition times. An unweighted moving average of the global FC 

signature for MC participants was computed as a function of EYO using bin sizes of ±5 

years to capture long-term trends. A model of staggered logistic decline evaluated the 

relationship between the global FC signature and EYO (t) for MC participants: 

global FC signature   (
 

     (    )
 

 

     (    )
) , 

where A is carrying capacity, r is growth rate, and           are transition times. Here the 

carrying capacity describes the maximum FC that can be sustained. The growth rates and 

carrying capacities for both curves were constrained by Goodness-of-fit using a Shapiro-

Wilks test of normality on the residuals (57). Nonlinear least-squares regression was 

performed using the ‘nlm’ function in R *54-56]. The Akaike Information Criterion (AIC), 

Bayesian Information Criterion, and Levene’s test were used to further evaluate model 

performance by comparing to polynomial models (i.e. linear, quadratic, and cubic) [58]. 

Association between global FC signature and AD biomarkers  

Associations were computed between a participant's global FC signature and A/T/(N) 

biomarkers including: CSF biomarkers (log transformed Aβ1-42 (A1), p-tau181 (T1), and total-

tau (N1) ), PET molecular biomarkers (PiB mean cortical SUVR (A2) and FDG uptake in the 

precuneus (N2)), and a structural MRI biomarker (hippocampal volume (N3)). To 

investigate the relationship between global FC signature and AD biomarkers while 

adjusting for mediating associations, the partial correlation matrix (P) was computed by 

matrix inversion of the correlation matrix (R) such that the partial correlation between the 

i-th and j-th biomarker was defined as: 

     
   

√      
 , 

where s_ ij were the elements of the inverted correlation matrix S=R^(-1). 
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RESULTS  

Demographics 

Cross-sectional FC data was obtained for NC (n=104) and MC (n=171) participants. NC 

individuals were older than MC CDR 0 (p < 0.05) participants, but younger than MC CDR>0 

(p < 0.05) participants. Similarly, MC CDR 0 participants were younger than MC CDR>0 

participants (p < 0.05) (Table 1). 

Spatial topology of the global FC signature of ADAD  

We observed a global FC signature of ADAD, with strong contributions from both intra- 

and inter-network connections that spanned multiple RSNs (Figure 1). This global FC 

signature was influenced by both positive and negative correlations and, for visual clarity, 

was separated along the diagonal based on the direction of influence on the global FC 

signature. Networks whose positive correlations had a strong influence included the SM, 

SMlat, CO, AUD, VIS, and MEM (intra-network). Networks whose negative correlations had 

a strong negative influence included the FP, MEM (inter-network), DAN, and DMN.  

The global FC signature associates with markers of disease progression 

The global FC signature decreased with pathology. We observed the global FC signature 

was significantly decreased in MC (yellow) compared to NC (gray) participants (Figure 2A). 

When MC participants were further differentiated by CDR status, the global FC signature 

significantly decreased in MC CDR > 0 (Figure 2A, red; p < 0.05) compared to either MC 

CDR 0 (green) and NC (gray) participants. NC and MC CDR 0 participants were not 

significantly different (p > 0.05). For MC participants a negative association was observed 

between mutation E O and the global FC signature (Spearman’s ρ = -0.33, p = 1.2e-05; 

Figure 2B). The association between the global FC signature and EYO remained significant 

after controlling for CDR status. We also observed that the global FC signature predicted, 

on average, 5 to 18 percent more variance for the actual EYO than inter-network RSN 

values (Figure 2C). 

 

Nonlinear EYO modeling of the global FC signature 
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With regards to EYO, the global FC signature varied non-linearly across the time course of 

the disease (Figure 2D). This was consistent with a dual logistic behavior model 

characterized by two transition times that were offset by ~17 years (Shapiro-Wilk’s W = 

0.97, p = 0.28). This nonlinear model (AIC = -161, BIC = -153) performed significantly better 

than first (AIC = -128, BIC = -123), second (AIC = -128, BIC = -121), and third (AIC = -126, BIC 

= -118) order polynomial models (Levene’s F = 4.04, p = 0.002) and suggested a two stage 

process. The global FC signature was elevated early in the disease time course (EYO < -16.7 

years) in MC followed by a period that resembled control levels until further decreasing 

near the estimated time of symptom onset (EYO = 0.5 years). 

Association between global FC signature and biomarkers 

Strong associations were observed between CSF total tau and CSF p-tau181 (r = 0.86, p < 

10E-16), mean cortical PiB SUVR and CSF total tau (r = 0.53, p = 1.7E-9), mean cortical PiB 

SUVR and CSF p-tau181 (r = 0.65, p = 2.2E-16), and precuneus PET FDG and hippocampal 

volume (r = 0.53, p = 1.6E-09).   

Strong associations were observed between the global FC signature and several AD 

biomarkers (Figure 3B, left). The global FC signature was compared to each AD biomarker 

classified according to the amyloid (A), tau (T), and neurodegeneration (N) framework 

(Figure 3A). With regards to A criteria, the global FC signature was negatively associated 

with amyloid deposition as measured by mean cortical PiB SUVR (p=0.03), and was 

positively correlated with CSF Aβ1-42 (p = 0.007). With regards to T criteria, the global FC 

signature was negatively associated with CSF p-tau181 (p = 0.009). With regards to (N) 

criteria, the global FC signature was negatively associated with CSF total tau (p=0.02), and 

positively associated with both precuneus PET FDG (p=0.002) and hippocampal volume (p 

= 0.001). For each of these biomarkers, a worse global FC signature score was associated 

with greater pathology.  

 

To investigate the strength of the direct pathological relationship between any two 

biomarkers (including the global FC signature) we controlled for potential mediating 

effects of general pathological decline. Specifically, an unbiased model was computed 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

25
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Page 15 of 33 
 
 
 

15 

B
ra

in
 C

o
n

n
ec

ti
vi

ty
 

R
es

ti
n

g-
St

at
e 

Fu
n

ct
io

n
al

 C
o

n
n

e
ct

iv
it

y 
D

is
ru

p
ti

o
n

 a
s 

a 
P

at
h

o
lo

gi
ca

l B
io

m
ar

ke
r 

in
 A

u
to

so
m

al
 D

o
m

in
an

t 
A

lz
h

e
im

er
 D

is
ea

se
 (

D
O

I:
 1

0
.1

0
8

9
/b

ra
in

.2
0

2
0

.0
80

8
) 

Th
is

 p
ap

er
 h

as
 b

ee
n

 p
ee

r-
re

vi
ew

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
e

rg
o

 c
o

p
ye

d
it

in
g 

an
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

using a partial correlation matrix that controlled for other biomarkers (Figure 3B, middle). 

In this unbiased model, no assumption of a specific temporal sequence of biomarkers was 

included. This network model strongly differentiated AT(N) biomarkers and agreed with 

previous hypothesized trajectories with amyloid measures strongly associating with each 

(A1 and A2), measure of tau (T1) strongly tied to neurodegeneration (N1) as well as 

measures of neurodegeneration group together (N1, N2, and N3) (Figure 3B, right). In this 

model, the global FC signature most strongly associated with CSF Aβ 1-42 (A1) and 

hippocampal volume (N3). These results provide further evidence of a two-stage process 

concerning the global FC signature with changes associating with early and late 

biomarkers. Moreover, these results suggest each stage may be associated with changes in 

either amyloid accumulation or volumetrics. 

DISCUSSION 

These results provide evidence that disruption of multiple functionally connected brain 

networks occurs in ADAD mutation carriers that is both stage dependent (asymptomatic 

versus symptomatic) and state dependent (biomarker status). Disruption of the global FC 

signature was greatest in symptomatic MC carriers. This indicates that changes in the 

global FC signature are tightly coupled with clinical presentation. However, even after 

adjusting for symptom severity using CDR, disruption of the global FC signature was 

significantly associated with disease progression, as measured by EYO. Further, the global 

FC signature was, on average, a better predictor of EYO compared to intra-network values 

of individual RSNs. Changes in the global FC signature were also associated with 

pathological biomarkers classified using the AT(N) framework for designating temporal 

progression of AD. Two independent methods showed that disruption of the global FC 

signature: 1) occurred primarily during early (EYO ~ -17), and late (EYO ~ 0) stages, and 2) 

was associated with early (CSF Aβ1-42), and late (hippocampal atrophy) stage biomarker 

changes.  Taken together, these results suggest the global FC signature may be sensitive to  

 

distinct processes affecting synaptic activity: Aβ accumulation early on in disease 

progression, and neurodegeneration during later stages. 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

25
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



Page 16 of 33 
 
 
 

16 

B
ra

in
 C

o
n

n
ec

ti
vi

ty
 

R
es

ti
n

g-
St

at
e 

Fu
n

ct
io

n
al

 C
o

n
n

e
ct

iv
it

y 
D

is
ru

p
ti

o
n

 a
s 

a 
P

at
h

o
lo

gi
ca

l B
io

m
ar

ke
r 

in
 A

u
to

so
m

al
 D

o
m

in
an

t 
A

lz
h

e
im

er
 D

is
ea

se
 (

D
O

I:
 1

0
.1

0
8

9
/b

ra
in

.2
0

2
0

.0
80

8
) 

Th
is

 p
ap

er
 h

as
 b

ee
n

 p
ee

r-
re

vi
ew

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
e

rg
o

 c
o

p
ye

d
it

in
g 

an
d

 p
ro

o
f 

co
rr

ec
ti

o
n

. T
h

e 
fi

n
al

 p
u

b
lis

h
ed

 v
er

si
o

n
 m

ay
 d

if
fe

r 
fr

o
m

 t
h

is
 p

ro
o

f.
 

Our results are consistent with previous FC studies that investigated the disruption of 

specific RSNs in ADAD, but also sheds new light on patterned changes across the entire 

spatial topography. Previous studies have primarily focused on FC changes within a single 

network. Changes have typically focused on the DMN, as this network has been associated 

with amyloid deposition [28, 29] and is one of the largest networks with regards to overall 

size in the brain [27]. In our current analysis, a global FC pattern of disruption was 

observed that included both intra and inter-network brain connections. These results 

suggest that prior studies primarily focusing on changes within a single network may 

overlook important changes seen within not only a network but also changes between 

networks. Our analysis is a logical progression from previous work that demonstrated that 

intra- and inter-network brain connections across multiple networks were affected with 

progression to cognitive impairment in ADAD [31]. In our current analysis, RSNs that 

associated with cognitive impairment included cognitive processing networks including 

MEM, FP, DAN, and DMN as well as sensory cortical regions such as the SM, SM-lat, VIS, 

and AUD.  Cognitive processing regions that have been associated with the changes in 

pathological biomarkers, such as amyloid and tau accumulation and volume loss, and 

disruption of FC in these regions, may be associated with positivity of one or more 

biomarkers. Interestingly, neither FC nor pathological changes are typically observed in 

primary sensory regions. These results suggest the FC disruption observed may be a 

precursor to subsequent pathology.  

Disruption was greatest for symptomatic mutation carriers (MC CDR>0) compared to 

mutation non-carriers (NC). Our data showed that the greatest changes in the FC signature 

occurred for the symptomatic disease stage based on clinical staging and genetic profile. 

Specifically, our data showed that 50% of the MC symptomatic cohort overlapped with the 

worst 25% of the asymptomatic MC cohort. This degree of overlap can be attributed to the 

classification scheme that is based on subjective responses during the clinical interview.  

This sensitivity to symptom manifestation bolsters the capability of this imaging marker as  

a tool for disease conversion. Future studies may assess the capability of an FC signature to 

redefine group classification to better identify individuals on the cusp of conversion. 

Our results are consistent with previous FC studies that investigated disease progression 
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using linear modeling, but also provide new insight regarding the timeline of FC disruption. 

Linear modeling of disease progression suggests FC disruption begins prior to the onset of 

symptoms. Consistent with previous results, we used a linear model and observed that FC 

disruption in certain RSNs occurred approximately five years prior to expected symptom 

inset (EYO -5) [59]. However, previous reports show AD biomarkers exhibit nonlinear time 

courses across disease stages [8, 60]. In an updated model of disease progression, we 

observed that the global FC signature also exhibited a nonlinear time course that was 

consistent with proposed biomarker models [60]. Specifically, disruption of the global FC 

signature was marked by two dramatic changes that occurred during very early (~17 EYO) 

and late (~0 EYO) disease stages in AD progression. The time period leading up to the initial 

decrease of the global FC signature could suggest a very early period of hyper-connectivity 

*63+. The production of Aβ has been linked to increased synaptic activity that can manifest 

as non-convulsive seizures that are present prior to cognitive symptoms [60, 64-66].  FC 

hyperactivity has also been observed in LOAD particularly in areas with advanced Aβ 

accumulation [67].  It remains unclear whether this hyperactivity is detrimental due to 

synaptic excitotoxicity or compensatory due to increased pathological burden [68].  Our 

data suggests this hyperactivity in FC may be a compensatory mechanism to preserve 

cognitive stability provided this observed state was years before symptom onset [69].    

However, prolonged hyperactivity can lead to cognitive deficits and overall loss in 

connectivity strength [70].  This coincides with the second sharp decrease in the global FC 

signature occurred at EYO = 0. This is consistent with evidence from MRI studies that show 

volume loss accelerates near EYO = 0 [24].  Together our data shows an overall pattern 

that initiates with a decline from a hyperactive state that briefly returns to baseline levels 

before declining near symptom onset.  These results suggest a dual pathology process that 

reflects biological changes in the absence of behavioral changes.  Understanding these 

distinct processes is clinically important for treatment intervention as individuals may 

respond differently based on their point on these curves. 

The ability to characterize changes in a global FC signature during preclinical stages of AD 

was further supported by a separate linear model that focused on AT(N) biomarkers. A 

number of studies focusing on pathological biomarkers have proposed an AT(N) sequence 
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in LOAD [60]. Our model for ADAD was given no a priori assumptions concerning the 

sequence of biomarker events, except that the sequence should be consistent for 

participants. Despite our assumption of no specific temporal sequence of biomarker 

progression, our work further supports that ADAD and LOAD have similar temporal 

patterns for AD biomarkers regardless of the age of onset or genetic association [61]. 

Furthermore, we found disruption of the global FC signature was preferentially associated 

with both CSF Aβ1-42 and hippocampal atrophy, biomarkers that characterize pathological 

changes occurring during the early and late stages of AD, respectively. This suggests that 

genetic mutations set in motion a timeline of AT(N) biomarkers changes with brain 

amyloidosis (possibly, with certain soluble amyloid peptides proposed to be more closely 

associated with neuronal excitotoxicity) (A) followed by tauopathy (T) and eventually 

reduced glucose metabolism and brain volumetrics (N) [6,7, 62]. 

Our results contribute to the understanding of how, in AD etiology, changes in global 

network functionality precipitate eventual short-term episodic memory deficits that is the 

hallmark of AD.  Based on these results it may be possible to use the global FC signature as 

a marker of underlying neuronal response to trials that introduce anti-Aβ therapies very 

early in the disease.  Advantages for FC as an outcome measure in clinical trials include 

lack of radiation unlike PET biomarkers, and being less invasive than a lumbar puncture for 

CSF.   Further studies should also look at changes in comparison to LOAD. Longitudinal 

studies of changes in FC in this cohort are needed to more robustly evaluate the nature of 

neuronal dysfunction with disease progression.  
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Figure 1. Principal component analysis (PCA) reveals a distributed pattern of functional 

connectivity (FC) changes across cortical and subcortical resting state networks (RSNs). 

LEFT: The mean FC matrix across all participants. An FC matrix from 248 regions of interest 

was computed for each participant. Positive correlations are shown in the upper triangle, 

and negatives are shown in the bottom triangle. Notched black lines on the top and to the 

right indicate RSNs. The black box outline is a visual aid highlighting the intra-network FC 

values of the default mode network (DMN). MIDDLE: The mean FC-composite matrix 

across all participants. For each participant an FC-composite matrix was generated by 

computing the mean intra- and inter-network FC matrix values (total of 78) for all 12 RSNs. 

Here the black box highlights the mean intra-network FC value of the DMN. RIGHT: The 

global FC signature is derived from the primary PCA pattern and reflects positively and 

negatively weighted mean FC-composite values. The strongest positive weights include the 

sensorimotor (SM, SMlat), cingulo-opercular (CO), auditory (AUD), visual (VIS), and 

memory (MEM). The strongest negative weights included the fronto-parietal (FP), MEM, 

dorsal attention (DAN), and default mode (DMN). The black box outline highlights the 

weight of the mean intra-network FC value of the DMN.  
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Figure 2. A) The global functional connectivity (FC) signature as a functional of mutation 

status, clinical dementia rating (CDR) and expected years to symptom onset (EYO). A) 

Violin and box plots of the global FC signature for NC (gray) and MC (yellow), MC CDR 0 

(green), and MC CDR>0 (red) participants. NC had a higher global FC signature compared 

to MC. MC CDR>0 had significant decreases in the global FC signature compared to NC and 

MC CDR 0 participants. A black bars represents a significant group difference. B) Line plot 

showing the association between global FC signature and mutation EYO for MC 

participants. The global FC signature was associated with EYO in MC (p < 0.05). The dashed 

line (black) is the mean global FC signature in NC participants, and the dark gray band is 

the confidence interval defined as two standard errors of the mean. C) Coefficient of 

determination (R2) for the global FC signature and the intra-network values of 12 RSNs.  

The length of the vertical bar represents the strength of that FC value for predicting EYO. D) 

The global FC signature for MC individuals exhibits a biphasic behavior with regards to 

mutation EYO in ±5-year bins. When the global FC signature was fit to the bin means 

(yellow curve), two logistic curves were observed (magenta, and cyan). A two stage 

process was observed, with early and late changes seen in the global FC signature. 
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Figure 3. The global FC signature as a function of Alzheimer disease (AD) biomarkers in 

mutation positive (MC) individuals. Analyses investigated amyloid (A; green), Tau (T; 

purple), and neurodegenerative (N; orange) biomarkers. Scatter plots show the global FC 

signature was A) positively associated with cerebrospinal fluid (CSF) Aβ1-42, negatively 

associated with mean  Pittsburgh B (PiB) standardized uptake value ratios (SUVR), 

negatively associated with CSF phosphorylated tau 181 (p-tau181) and total tau, and 

positively associated with both precuneus fluorodeoxyglucose (FDG) uptake and 

hippocampal volume. B) The correlation matrix of all biomarkers, including global FC 

signature (left), was inverted to compute the partial correlation matrix (middle). Network 

map of relationships was plotted among the global FC signature and AD biomarkers based 

on the partial correlation matrix. The fully (light edges) and minimally (dark edges) 

connected graphs are shown. All associations were corrected for age.  
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Table 1 

 NC MC 

N 104 171 

Age: M(SD) 40.2(11.3) 39.4(11.3) 

Gender (M/F) 41/63 74/97 

CDR (0/0.5/>0.5) 104/0/0 99/46/26 

NC = Non-Carrier 

MC= Mutation Carrier 

CDR = Clinical Dementia Ratio 
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