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Abstract 

Background 

Although repeat expansions are a significant cause of neurodegenerative disease, systematic 

evaluation of this mutation type in non-Alzheimer’s dementias has been limited. Recent 

advances in whole-genome sequencing offer novel opportunities to map unstable DNA repeats 

and examine their role in the pathogenesis of complex dementias.  

Methods 

We performed repeat sizing of ten pathogenic genetic loci previously implicated in human 

disease using whole-genome sequence data from 2,442 patients clinically and/or pathologically 

diagnosed with frontotemporal dementia (FTD) and/or amyotrophic lateral sclerosis (ALS), 

2,599 patients diagnosed with Lewy body dementia (LBD), and 3,158 neurologically healthy 

subjects.  

Results 

Pathogenic expansions (range: 40 to 64 CAG repeats) in the huntingtin (HTT) gene were found 

in three (0.2%) of patients diagnosed with pure FTD/ALS syndromes but were not present in the 

LBD or healthy cohorts. We replicated our findings in an independent cohort, identifying five 

(0.13%) out of 3,674 patients with FTD/ALS spectrum disorders. None of the FTD/ALS patients 

carrying the pathogenic HTT expansion had choreoathetosis or a family history of Huntington’s 

disease. Postmortem evaluations of two patients revealed huntingtin-positive, as well as TDP43- 

and ubiquitin-positive aggregates, predominantly in the frontal cortex. There was no atrophy of 

the neostriatum, the pathological hallmark of Huntington’s disease, thereby ruling out mimic 

syndromes. 
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Conclusions  

Our findings confirm an etiological relationship between HTT repeat expansions and FTD/ALS 

syndromes. As antisense oligonucleotide therapies targeting this pathogenic mutation have 

already progressed to clinical trials, genetic screening of patients presenting with FTD/ALS for 

HTT repeat expansions should be considered. 
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Frontotemporal dementia (FTD, OMIM #600274) and amyotrophic lateral sclerosis (ALS, 

OMIM #105400) are progressive neurodegenerative disorders that are characterized clinically by 

cognitive deficits, language abnormalities, and muscle weakness.1,2 These aggressive illnesses 

typically occur between the ages of 40 and 70, leading to death within three to eight years of 

symptom onset.2,3 Approximately 15,000 individuals die of FTD and ALS in the United States 

annually4, and there are no treatments that can halt the degenerative progression. Clinical, 

genetic, and neuropathologic data demonstrate that FTD and ALS are closely related conditions 

that exist along a spectrum of neurological disease.5 

Though progress has been made, much remains unclear about the genetic etiology of 

FTD and ALS. Approximately 50% of FTD cases are familial, and causative mutations have 

been identified in several genes, most notably MAPT, GRN, C9orf72, and VCP.6 In ALS, 10% of 

patients report a family history of the disease. The genetic etiology is known for approximately 

two-thirds of these familial cases, whereas the underlying gene is known in 10% of sporadic 

cases.7 The intronic repeat expansion of the C9orf72 gene is the most common cause of both 

FTD and ALS.8 Other repeat expansions have been implicated in neurological diseases. These 

include polyglutamine repeats observed in Huntington’s disease9 and spinobulbar muscular 

atrophy10, and more complex expansions in the RFC1 gene that was recently associated with 

autosomal recessive cerebellar ataxia.11 Together, these data suggest that repeat expansions play 

a critical role in the pathogenesis of neurodegenerative diseases. This type of mutation may be 

amenable to antisense oligonucleotide therapy, adding further incentive to their identification.12 

The discovery of new genetic causes of FTD and ALS provides insights into the cellular 

mechanisms underlying neurodegeneration.7 From a clinical perspective, the molecular 

characterization of the genetic causes of disease in a patient assists in establishing an accurate 

https://paperpile.com/c/80vAaW/Ajnv
https://paperpile.com/c/80vAaW/fxbn
https://paperpile.com/c/80vAaW/W7Oh8+fxbn
https://paperpile.com/c/80vAaW/zCXx
https://paperpile.com/c/80vAaW/rdgP
https://paperpile.com/c/80vAaW/lOGn
https://paperpile.com/c/80vAaW/zAEEZ
https://paperpile.com/c/80vAaW/Lpwr
https://paperpile.com/c/80vAaW/MDVg
https://paperpile.com/c/80vAaW/uvvm
https://paperpile.com/c/80vAaW/cGeJ
https://paperpile.com/c/80vAaW/bhW2
https://paperpile.com/c/80vAaW/zAEEZ
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diagnosis and the genetic counseling of the patients and their family. It is also a necessary first 

step in preparation for future precision medicine. To explore the genetic architecture of FTD and 

ALS, we performed whole-genome sequencing in large cohorts of patients diagnosed with 

FTD/ALS spectrum disorders and neurologically healthy individuals. We used these data to 

systematically assess the role of previously identified, disease-causing repeat expansions in the 

pathogenesis of FTD and ALS.  

 

Methods 

Study subjects 

The workflow of this study is depicted in Fig. S1. The discovery cohort included (i) 1,377 

patients diagnosed with FTD spectrum disorders including the known subtypes of behavioral 

variant FTD, primary progressive aphasia, and progressive supranuclear palsy (PSP), (ii) 1,065 

patients diagnosed with ALS, (iii) 2,599 individuals diagnosed with Lewy body dementia (LBD), 

and (iv) 3,158 neurologically healthy participants. Patients with FTD were diagnosed according 

to the Neary criteria13 or the Movement Disorders Society criteria for PSP.14 Patients with ALS 

were diagnosed according to the El Escorial criteria15, whereas the LBD cases were diagnosed 

with pathologically definite or clinically probable disease according to consensus criteria.16,17 

The LBD cases were included in this study as diseased control subjects. All participants included 

in the aged, healthy control cohort were free of neurological disease based on history and 

neurological examination (mean age = 77.0 years of age at collection, interquartile range = 69.0–

86.0). All study participants were of European ancestry. Table S1 lists demographic 

characteristics of the cohorts. 

https://paperpile.com/c/80vAaW/rEwd
https://paperpile.com/c/80vAaW/wCXe
https://paperpile.com/c/80vAaW/IKh8
https://paperpile.com/c/80vAaW/ASrc1+j9sNM
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For replication, we used DNA obtained from 1,009 patients diagnosed with FTD, 2,665 

patients diagnosed with ALS, and 210 neurologically healthy individuals. The institutional 

review boards of participating institutions approved the study, and informed consent was 

obtained from all subjects or their surrogate decision-makers, according to the Declaration of 

Helsinki. 

 

Whole-genome sequencing and repeat expansion analysis 

Sequencing was performed on an HiSeq X Ten sequencer using PCR-free library preparations 

and 150-base-pair, paired-end cycles (version 2.5 chemistry, Illumina). The alignment is 

described in the supplementary appendix. ExpansionHunter - Targeted software (version 3.0.1) 

was used to estimate repeat lengths of ten known, disease-causing expansions in samples that 

had undergone whole-genome sequencing.19 This algorithm has been validated using 

experimentally-confirmed samples carrying expansions, including HTT.19 Fully-penetrant 

pathogenic alleles in the huntingtin (HTT) gene were defined as those containing 40 or more 

CAG repeats according to the American College of Medical Genetics diagnostic criteria.20 The 

number of repeats was validated using a repeat-primed PCR assay for each sample with greater 

than 35 HTT CAG repeats.18 

 

Repeat-primed PCR assay 

The CAG trinucleotide repeat length in HTT was quantified using a previously validated repeat-

primed PCR method (see Table S2).18 The chromatograms were used to estimate somatic 

mosaicism by generating an instability index for each sample.21  

 

https://paperpile.com/c/80vAaW/37E2
https://paperpile.com/c/80vAaW/37E2
https://paperpile.com/c/80vAaW/D3cIo
https://paperpile.com/c/80vAaW/SwJBx
https://paperpile.com/c/80vAaW/SwJBx
https://paperpile.com/c/80vAaW/XlYE
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Brain immunohistochemistry 

Primary antibodies and staining methods are listed in Table S3 and the supplementary 

materials. The huntingtin 2B4 antibody targets the N’-end of the protein and stains soluble 

huntingtin and insoluble aggregates. 

 

Statistical analyses and data availability 

Trinucleotide repeat frequencies were compared between cohorts using a Fisher’s exact test, with 

a significance threshold of 0.005 (0.05 divided by ten repeat expansions). Genotype data defining 

the common haplotypes in the HTT locus22 were extracted from the whole-genome sequence data 

using PLINK (version 2.0). The ExpansionHunter - Targeted output for the CAG repeat-length 

was merged with the genotype information, and phasing was performed using Eagle (version 

2.4). Individual-level genotype data for the discovery genomes are available on dbGaP 

(phs001963.v1.p1).  

 

Results 

Assessment of repeat expansions 

After quality control, whole-genome sequence data from 2,442 patients diagnosed with 

FTD/ALS, 2,599 LBD patients, and 3,158 neurologically healthy individuals were available for 

analysis. We assessed ten repeat expansion motifs that have been previously associated with 

neurological disease using the ExpansionHunter - Targeted tool (Table S4).  

We identified three FTD patients who carried full-penetrance pathogenic repeat 

expansions (≥ 40) in the HTT gene, representing 0.2% of the discovery cohort (n = 1,377, Table 

1). In contrast, none of the LBD cases or control subjects carried pathogenic HTT expansions. 

https://paperpile.com/c/80vAaW/eu1m
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The lengths of the repeat expansions were confirmed using a repeat-primed PCR assay (Figure 

1A). We did not observe a higher rate of intermediate and low-penetrance HTT repeat 

expansions (36–39 CAG repeats) among patients diagnosed with FTD/ALS or LBD compared to 

control subjects. None of the other repeat expansions tested by the ExpansionHunter - Targeted 

algorithm displayed a similar pattern of being present in cases and absent in control subjects (see 

Table S4). For this reason, we focused our efforts on the HTT repeat expansion. 

To replicate our findings, we assessed the HTT CAG repeat length in an independent 

cohort of 3,674 patients diagnosed with FTD/ALS spectrum disorders and 210 healthy control 

participants. Published data of the occurrence of HTT repeat expansions among the general 

population were included as part of the replication (n = 10 of  31,463 individuals had ≥ 40 

repeats).23,24 We detected an additional five patients diagnosed with FTD/ALS in this replication 

cohort that carried pathogenic HTT repeat expansions.  

Overall, the carrier rate among patients diagnosed with FTD/ALS spectrum disorders was 

4.4 times higher than that observed among healthy individuals (Fisher’s test p-value = 2.68x10-3, 

odds ratio = 4.55, 95% CI = 1.56–12.80, Table 1). All of the patients found to carry the HTT 

expansion had no additional disease-causing mutations in other genes implicated in 

neurodegeneration (see supplementary appendix). 

 

Haplotype analysis and somatic mosaicism 

The FTD/ALS patients carrying the HTT repeat expansions harbored several different haplotypes 

that have previously been associated with this locus (Figure S6). The presence of multiple 

haplotypes indicated diverse ancestral sources among our samples, making it unlikely that 

another genetic variant outside of the expansion was causing disease in these patients. 

https://paperpile.com/c/80vAaW/jJDX
https://paperpile.com/c/80vAaW/mi36
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Furthermore, we did not detect interruptions within the HTT repeat expansion in any of the 

patients, and only detected the loss of interruption in the CAA-CAG trailing sequence in a single 

individual (patient #8, Figure 1D). 

Similar to patients with Huntington’s disease21, we observed a tendency towards CAG 

repeat length contraction among our patients diagnosed with FTD/ALS (instability index = -1.54, 

range -0.73 to -2.94). Additionally, we detected the presence of somatic mosaicism across 

multiple brain regions in a patient diagnosed with ALS (Fig. S4). 

 

Clinicopathological description 

The clinical details of the eight patients carrying the full-penetrance pathogenic HTT repeat 

expansions are summarized in Table 2. None of the patients reported choreoathetosis. Two 

patients had a family history of either ALS or FTD, but none of the carriers described a family 

history of Huntington’s disease.  

We further examined postmortem brains obtained from two of our patients harboring full-

penetrance HTT CAG repeats. The first case was a woman carrying 40 HTT CAG repeats, who 

developed symptoms of ALS at age 56 and died eleven years later of respiratory failure after a 

typical course of motor neuron disease (Table 2, patient #5). Postmortem examination showed 

mild atrophy of the precentral gyrus and thinning of the anterior roots of the spinal cord. 

Microscopic examination revealed loss of the anterior horn neurons of the spinal cord and 

hypoglossal neurons (Figure 2A-B). Staining with TDP-43 antibodies showed rare neurons with 

translocation from the nucleus to the cytoplasm, and occasional neuropil skeins confined to the 

frontal cortex (Figure 2C). The dentate gyrus was normal. Dual staining of the prefrontal cortex 

https://paperpile.com/c/80vAaW/XlYE
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and striatum using huntingtin/p62 antibodies showed intranuclear and extranuclear aggregates of 

huntingtin and p62 with the highest density in the infragranular layers of the prefrontal cortex 

(Figure 2D). Staining of the prefrontal cortex (BA9) obtained from three neurological control 

subjects did not show this pattern of huntingtin/p62 staining. Ubiquitin-positive inclusions were 

found in the tail of the caudate and the frontal cortex. However, there was no neuronal loss or 

active gliosis in the striatum (Figure 2F, 2H-I).  

The second autopsy involved a man carrying 41 CAG repeats in HTT, who presented 

with right foot weakness at age 61. He was diagnosed with ALS based on disease progression 

and electromyography, and he died from respiratory failure nine years after symptom onset 

following a typical course of motor neuron disease (Table 2, patient #8). Postmortem 

examination showed mild atrophy of the precentral gyrus and degeneration of the anterior spinal 

roots. There was otherwise no atrophy of the cerebral cortex or striatum (Figure 3A), or 

evidence of neuronal loss or gliosis in the striatum on microscopic examination (Figure 3B). 

Staining with ubiquitin (Figure 3C) and 1c2 for polyglutamine showed scattered intranuclear 

and extranuclear aggregates within the striatum (Figure 3D) and peri-Rolandic cortex (Figure 

3E). Polyglutamine aggregates were not observed in the spinal cord. There was marked loss of 

anterior horn cells (Figure 3F), accompanied by degeneration of the corticospinal tracts, 

including the medulla and lateral spinal cord. Staining with TDP-43 antibodies showed ALS-

type TDP-43 cytoplasmic inclusions within some of the remaining motor neurons (Figure 3F 

inset). 

 

Discussion 
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Our data indicate that pathogenic expansions in HTT can give rise to FTD/ALS syndromes that 

are clinically distinct from the classical Huntington’s disease syndrome. A careful review of the 

clinical features of the eight patients carrying pathogenic HTT expansions confirmed the 

diagnosis of FTD or ALS. None of the patients manifested choreoathetoid movements during 

their illness or reported a family history of Huntington’s disease. Furthermore, the postmortem 

findings of two of our patients with full-penetrance HTT repeat expansions displayed the 

classical features of ALS, including loss of anterior horn cells and hypoglossal neurons, and the 

presence of TDP-43-positive inclusions, thereby ruling out mimic syndromes as an explanation 

of our findings. However, the effects of the pathogenic repeat expansions were corroborated by 

the occurrence of pathogenic polyglutamine/huntingtin co-pathology.   

It is possible that the patients carrying the HTT repeat expansions suffered from two 

separate neurodegenerative diseases by chance, and that they would have developed the classic 

symptoms of Huntington’s disease if they had lived long enough. We believe that this is an 

unlikely scenario for several reasons. First, we identified multiple patients in our discovery 

cohort following the same clinical pattern, and found a similar rate of occurrence in our 

replication cohort. In contrast, full-penetrance pathogenic HTT expansions were not present in 

our LBD disease control or healthy control whole-genome sequence data. Second, the apparently 

normal striatum in both patients who underwent postmortem evaluation diminishes the 

likelihood of subclinical Huntington's disease as an explanation for their symptoms. 

Choreoathetoid movements observed in Huntington’s disease originate from the striatum, and the 

lack of detectable neuronal loss or reactive gliosis in this region implies that the motor neuron 

disease was not masking these symptoms. Third, two of our eight patients lived at least nine 

years after the onset of their symptoms and did not manifest signs of Huntington’s disease during 
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this extended survival period. Fourth, the prevalence rates of FTD (22 per 100,000 population)25, 

ALS (6 per 100,000)3, and Huntington's disease (3 per 100,000)26 indicate that, by chance, there 

should only be three cases of disease co-occurrence in the entire United States population of 327 

million. Instead, we identified eight patients among a moderately-sized cohort of FTD/ALS 

cases. Finally, the age of onset among our patients overlapped with the predicted age of onset of 

Huntington’s disease based on their CAG repeat length (Figure 1C). 

Regardless of the nosological and semantic distinctions of designating HTT repeat 

expansions as a genetic cause of FTD/ALS spectrum disorders, our findings have direct 

implications for how these diseases are considered etiologically, the clinical care of patients 

presenting with these neurological conditions, and the neuropathologic staging of disease. From 

a clinical and diagnostic perspective, our work defines a new genetic cause of both ALS and 

FTD. Although there have been previous reports of the coexistence of FTD/ALS and 

Huntington's disease27,28–31,32,33,34, pathogenic HTT mutations have not been described in cases of 

pure FTD and ALS. Even though these expansions account for less than 1% of FTD and ALS 

cases, clinical practice should be adapted to include regular screening of these patient 

populations for this mutation, particularly in light of the antisense oligonucleotide treatments 

targeting the HTT locus that are undergoing clinical trials.12  

From a neuropathologic perspective, we have identified a pathological subtype that is 

distinct from the classical features observed in the brains of patients diagnosed with 

Huntington’s disease.35 This novel pattern is characterized by abundant huntingtin-positive, 

ubiquitin-positive inclusions in the frontal cortex and the absence of neostriatal degeneration, 

with scarce TDP-43 positive co-pathology. The neuropathologic staging of Huntington's disease, 

as defined by Vonsattel and colleagues in 198535, rests on the progressive degeneration of the 

https://paperpile.com/c/80vAaW/3eka9
https://paperpile.com/c/80vAaW/W7Oh8
https://paperpile.com/c/80vAaW/6F88e
https://paperpile.com/c/80vAaW/1XQ8u
https://paperpile.com/c/80vAaW/lgVDt+eFuua+vF0UJ+we1wJ
https://paperpile.com/c/80vAaW/Vbcjh+W4YZO
https://paperpile.com/c/80vAaW/Qi3Xc
https://paperpile.com/c/80vAaW/bhW2
https://paperpile.com/c/80vAaW/TjQW
https://paperpile.com/c/80vAaW/TjQW
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striatum. Based on our work, an addendum of the neuropathologic consensus criteria for the 

diagnosis of Huntington’s disease should be considered to capture the true frequency of this 

subtype among the disease population. 

Our study has several limitations. Our cohorts focused on individuals of European 

ancestry. Future studies should determine the importance of the HTT expansions among non-

European FTD and ALS populations. Additionally, the algorithm used in this study only 

examines known disease-causing repeat expansions.19 There may be undiscovered repeat 

expansions driving neuropsychiatric disease. The emergence of high-throughput, low-cost, long-

range sequencing will allow us to identify these regions among large cohorts of patients 

methodically.37 

There is increasing consensus that molecularly defined genetic causes of disease can 

present with heterogeneous, neuropsychiatric syndromes. The polyglutamine expansion diseases 

SCA2 and SCA3 typically cause ataxia but can also cause levodopa-responsive Parkinson’s 

disease.36 This consideration is particularly valid for frontal lobe diseases that can present with 

protean syndromes. For example, patients with mutations in the MAPT gene can present with 

behavioral variant FTD, nonfluent variant primary progressive aphasia, progressive supranuclear 

palsy, or corticobasal syndrome38, and the pathogenic repeat expansion in the C9orf72 gene has 

united two clinically disparate neurologic diseases, FTD and ALS, into a single disease entity.8 

In that regard, two of the patients identified in this study reported that elderly relatives had been 

diagnosed with Alzheimer’s disease. It may be worthwhile to screen patients presenting with 

psychiatric symptoms later in life or with other forms of dementia to elucidate the real 

phenotypic spectrum associated with pathogenic HTT repeat expansions.  

https://paperpile.com/c/80vAaW/37E2
https://paperpile.com/c/80vAaW/XnG8
https://paperpile.com/c/80vAaW/6l5e
https://paperpile.com/c/80vAaW/YINZ
https://paperpile.com/c/80vAaW/Lpwr
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We have made the individual-level genome sequence data for our patients and control 

subjects publicly available on the dbGaP web portal as a resource for other researchers. Our 

research highlights the power of performing whole-genome sequencing in large cohorts of 

patients with complex neurodegenerative syndromes. We prioritized performing whole-genome 

sequencing in autopsy samples, as it allowed us to evaluate the neuropathologic changes 

associated with genetic variation quickly. As the cost of this technology decreases, the size of 

cohorts that can undergo whole-genome sequencing will increase, enhancing our ability to detect 

rare, clinically actionable genetic mutations underlying neurologic diseases. 

Our work leads to an increase in diagnostic accuracy and a refinement of the phenotype 

characteristics associated with pathogenic HTT repeat expansions. Although our discovery 

accounts for a small subset of FTD/ALS patients, clinicians should be aware of this unusual 

presentation associated with pathogenic HTT repeat expansions. They should consider instituting 

testing for their FTD and ALS patients, especially as it paves the way for disease-modifying 

therapy in this small subset of patients.  
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Table 1. Pathogenic HTT repeat expansions within the discovery and replication cohorts 

 Discovery cohort  Replication cohort* 

 
Number carriers / 

number screened 
Rate 

 
Number carriers / 

number screened 
Rate 

FTD/ALS      

        FTD 3/1,377 0.2%  2/1,009 0.2% 

        ALS 0/1,065 0  3/2,665 0.1% 

LBD 0/2,599 0  - - 

Controls 0/3,158 0  10/31,465 0.03% 

* The replication cohort included 210 neurologically-healthy controls, 13,670 population 

controls from Gardiner et al., 201923, and 17,703 neurologically-healthy individuals from the UK 

100K Genomes Project24; The replication cohort included 1,236 samples that were analyzed by 

repeat-primed PCR and 2,648 samples analyzed by next-generation sequencing. All samples 

predicted to have more than 35 CAG repeats based on the whole-genome sequence data were 

verified by repeat-primed PCR. 
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Table 2. Clinical details of the eight patients carrying a full-penetrance pathogenic HTT 

repeat expansion 

Patient 

# 

Cohort CAG 

repeats 

Clinical 

diagnosis 

Age at 

onset (y) 

Gender Family 

history 

Presenting symptoms 

1 Discovery 41 PSP-FTD 68 M No - 

2 Discovery 40 bvFTD 56 F Yes Behavioral changes 

3 Discovery 40 nfvPPA 57 F No Language disturbance 

4 Replication 64 PSP-FTD 17 F Yes 

Academic decline, 

dysarthria, bradykinesia, 

and gait disturbance 

5 Replication 40 ALS 56 F - - 

6 Replication 44 bvFTD 44 M Yes 
Personality changes and 

apathy 

7 Replication 40 ALS 76 M Yes Lower limb weakness 

8 Replication 41 ALS 61 M No Right foot weakness 

Clinical diagnoses include progressive supranuclear palsy - frontotemporal dementia type (PSP-

FTD), behavioral variant frontotemporal dementia (bvFTD), nonfluent variant primary 

progressive aphasia subtype of FTD (nfvPPA), and amyotrophic lateral sclerosis (ALS). Family 

history refers to family history of FTD/ALS. 
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Figure legends 

 

Figure 1. HTT repeat expansions detected in patients diagnosed with FTD/ALS. 

(A) An ideogram of chromosome 4 showing the location of the HTT gene at 4p16.3, the gene 

transcript (exon 1 in red), and representative repeat-primed PCR chromatograms depicting wild-

type and HTT CAG repeat expansions. (B) The distributions of HTT CAG repeat expansions in 

the FTD/ALS (n = 2,442), LBD (n = 2,599), and control (n = 3,158) discovery cohorts based on 

analysis of whole-genome sequence data. Inset figures are zoomed views showing the number of 

cases carrying CAG repeat expansions >=36 repeats. (C) Ages at symptom onset among 

FTD/ALS patients compared to the size of their HTT repeat expansions. The curve represents the 

estimated age at onset and corresponding standard deviation based on the number of CAG 

repeats (as described in Langbehn et al.39). (D) The allelic structure of samples carrying HTT 

repeat expansions. The pathogenic repeat sequence is represented by [CAG]n, where n 

corresponds to the number of repeats. The trailing CAG-CAA glutamine sequence, the CCG-

CCA proline sequence, and the [CCT]n codons are also shown (modified from Ciosi et al.40). 

  

https://paperpile.com/c/80vAaW/IGEB
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Figure 2. Neuropathologic changes observed in a patient diagnosed with ALS carrying a 

full-penetrance pathogenic HTT repeat expansion (patient #5). 

(A) A representative section of cervical cord showing pallor of the lateral (*) and anterior 

corticospinal tracts (**) with atrophy of the ventral horns. (B) The loss of motor neurons of the 

anterior horns is severe. (C) Nucleocytoplasmic translocation of TDP-43 (arrows) involving the 

prefrontal cortex (BA9). (D) Frequent p62 (red arrow) and huntingtin (black arrow) dystrophic 

neurites (Insert), intranuclear huntingtin (black arrow) and p62 (red arrow) inclusions are noted 

within the prefrontal cortex. (E) The neostriatum is apparently normal, for example, at the level 

of the nucleus accumbens, and neither neuronal loss nor reactive gliosis is detectable. (F) & (G) 

Occasional huntingtin aggregates are seen within the neuropil of the nucleus accumbens. (H) The 

tail of the caudate nucleus is not atrophic, and the neuronal density is normal and without 

reactive gliosis. (I) & (J) Rare huntingtin aggregates involve the neuropil of the tail of the 

caudate nucleus (arrows). Scale bars: A: 1 mm, and C-D: 50 microns. 
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Figure 3. Neuropathologic changes observed in a patient diagnosed with ALS carrying a 

full-penetrance pathogenic HTT repeat expansion (patient #8). 

(A) Coronal section of the fresh brain shows that the caudate, putamen, and globus pallidus are 

intact with no evidence of atrophy. (B) Luxol fast blue/hematoxylin and eosin staining of the 

caudate nucleus shows no neuronal loss or gliosis. (C) Ubiquitin immunostaining of the caudate 

nucleus shows extranuclear aggregates (arrow) and rare intranuclear inclusions (arrowhead). (D-

E) Immunohistochemistry for polyglutamine expansions shows occasional extranuclear 

inclusions within the caudate nucleus (D) and the peri-Rolandic cortex (E, arrows). (F) There is 

severe motor neuron loss within the anterior horn of the spinal cord (Luxol fast blue/hematoxylin 

and eosin). (Insert) A remaining motor neuron with a TDP-43 cytoplasmic inclusion. Scale bars: 

B: 50 microns, C-D: 20 microns, and F: 100 microns. 
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