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Abstract 

Purpose 

To assess the potential role of Computed Tomography (CT) texture analysis (CTTA) 

in identifying vulnerable patients with carotid artery atherosclerosis.  

 

Methods  

In this case-control pilot study, 12 patients with carotid atherosclerosis and a 

subsequent history of Transient Ischemic Attack or Stroke were age and sex 

matched with 12 control cases with asymptomatic carotid atherosclerosis (follow-up 

time 103.58±9.2 months). 

CTTA was performed using a commercially available research software package 

(TexRAD) by an operator blinded to clinical data. CTTA comprised a filtration-

histogram technique to extract features at different scales corresponding to spatial 

scale filter (fine=2mm, medium=3mm, coarse=4mm), followed by quantification using 

histogram-based statistical parameters: mean, kurtosis, skewness, entropy, standard 

deviation and mean value of positive pixels. A single axial slice was selected to best 

represent the largest cross-section of the carotid bifurcation on each side.  

 

Results 

CTTA revealed a statistically significant difference in skewness between symptomatic 

and asymptomatic patients at the medium (0.22±0.35 vs -0.18±0.39, p<0.001) and 

coarse (0.23±0.22 vs 0.03±0.29, p=0.003) texture scales. At the fine-texture scale, 

skewness (0.20±0.59 vs -0.18±0.58, p=0.009) and standard deviation 

(366.11±117.19 vs 300.37±82.51, p=0.03) were significant before correction.  

 



Conclusion 

Our pilot study highlights the potential of CTTA to identify vulnerable patients in 

stroke and TIA. CT texture may have the potential to act as a novel risk stratification 

tool in patients with carotid atherosclerosis. 
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Introduction 

Stroke is the second leading cause of death in the developed world and the 

third worldwide [1]. Carotid artery atherosclerosis is responsible for nearly a third of 

ischemic strokes [2]. Whereas patients with 70-99% carotid stenosis can be treated 

with endarterectomy or stenting [3–5], moderate stenosis is considerably more 

frequent and accounts for the majority of culprit plaques [6]. Moreover, the 

management of patients with stenosis < 50% is even more challenging as there is a 

subset of patients that develop recurrent neurological symptoms, including stroke [5]. 

Therefore, there is a need for better risk stratification to ensure optimization of 

medical therapy or more aggressive surgical or endovascular revascularization [5].  

This need has led to the definition of the “vulnerable patient” as a patient with 

a plaque that yields a high probability of undergoing rapid progression, thus 

becoming a culprit lesion [7]. Key factors are plaque composition and bio-mechanical 

forces exercised by blood flow over the plaque itself [7–12]. CT angiography (CTA) is 

fast, easy and widely available: it is a robust technique to evaluate carotid artery 

stenosis and plaque morphology [13, 14]. Several studies have demonstrated that 

CTA is capable of characterizing plaque composition showing good correlation with 

histology [15, 16].    

In the past few years, a method to extract more information related to tissue 

heterogeneity from standard images has been investigated, namely texture analysis 

(TA) [17, 18]. TA refers to a variety of mathematical and statistical techniques that 

can be used to describe different components of image heterogeneity namely 

feature/object size, number of features/objects and variation in density of 

object/feature gray-level intensity in relation to background tissue [17]. To date, the 

application of TA on CTA has been mostly limited to aortic aneurysm [19–21] with a 



 

sole pilot study exploring the use of TA in carotid arteries [22]. Therefore, we 

designed this study to assess the potential role of CT texture analysis (CTTA) in risk 

stratification of carotid atherosclerosis. The principal hypothesis behind this pilot 

study is that CT-derived texture of atherosclerotic plaque might be different 

(heterogeneous, reflecting the underlying distorted micro-architecture) in vulnerable 

patients whereby texture parameters could provide complementary information to 

assess risk stratification predicting the potential transformation of a vulnerable plaque 

into a culprit lesion. 

 

Methods  

Patients 

This case-control and cohort exploratory study was based upon retrospective 

assessment of a dataset of 341 patients with cardiovascular risk factors that 

underwent Whole-Body CTA (WB-CTA) at our institution as part of previous IRB 

approved studies [23–25]. The inclusion and exclusion criteria for the WB-CTA are as 

previously described [23–25]. To identify the patients to be included in this sub 

analysis, we reviewed the electronic data to firstly select subjects with any carotid 

plaque and with subsequent development of a transient ischemic attack (TIA) or 

stroke confirmed by stroke specialist consultant and A&E admission (flowchart in 

Figure 1). Patients with posterior circulation stroke were excluded. According to these 

inclusion criteria, we identified 12 patients (7 males; age 63±10 years) with carotid 

atherosclerosis, no history of cerebrovascular incidents preceding the CTA, and a 

subsequent TIA or stroke; the average time between the CTA and the cardiovascular 

(CV) events was 22.75±15.05 months. Two of those patients who already had a stent 

in place at the time of CTA were included in this study where the side with the stent 



 

was excluded from the analysis.  These patients were age and sex matched with 12 

randomly selected control cases from the whole study population (7 males; age 

63±10 years) with asymptomatic carotid atherosclerosis (follow-up time 103.58±9.2 

months). The baseline demographics for both groups are presented in Table 1. 

 

CTA Technique and Data Analysis 

All examinations were carried out on a 64-row CT scanner with z-flying focal-

spot technology (Somatom Sensation Cardiac 64; Siemens AG; Erlangen, Germany), 

using the following parameters: 64×0.6 mm detector configuration, tube potential 100 

kV, tube current modulated using the Combined Applications to Reduce Exposure 

(CARE) Dose 4D system (Siemens Medical Solutions, Forchheim, Germany) with a 

reference value of 120 mAs, pitch 1.2, gantry rotation time 0.33s, field of view 28cm, 

slice thickness 1 mm, B20 reconstruction algorithm. A high iodine concentration 

contrast medium (400 mgI/ml; Iomeron 400, Bracco, Milan, Italy) was injected 

through a 18G cannula inserted into a superficial vein of the antecubital fossa of the 

right arm using an automatic dual-head injector (Medrad Stellant Dual, Medrad, Palo 

Alto, PA, USA) with a Iodine flux of 1.6 gI/s followed by a 30 ml saline bolus injected 

at 4 ml/s. A bolus-tracking technique was used to trigger the acquisition 5 s after a 

threshold of 100 Hounsfield units (HU) was reached into the aortic arch. 

CTA images were analyzed using a dedicated workstation equipped with 

software for cardiovascular applications (Aquarius, TeraRecon, San Mateo, CA, 

USA) as previously described [23, 25]. Degree of stenosis was assessed using the 

North American Symptomatic Carotid Endarterectomy Trial (NASCET) method [4]. 

Plaque composition was assessed using a 3-point Likert scale (1: predominantly 

calcified; 2: mixed plaque; 3: predominantly non-calcified). 



 

 

CT Texture Analysis 

Texture analysis was performed using TexRAD (Feedback Medical Ltd., 

https://fbkmed.com/texrad-landing-2/, part of Feedback plc, Cambridge, UK) a 

proprietary research software algorithm which has undergone an extensive 

qualification process to assess tumor heterogeneity in radiological images [26–28]. A 

single operator (BLIND, a radiologist with a subspecialty interest in vascular imaging 

and 10 years of experience) performed the analysis blinded to the clinical data. All 

the CTA datasets of the identified subjects were exported in the Digital Imaging and 

Communications in Medicine (DICOM) format onto an encrypted external hard drive. 

To avoid bias in analysis related to the knowledge of clinical data, all the identified 

studies were anonymized, and the code assigned to each patient was recorded in a 

separate database.   

A single axial slice was selected to best represent the largest cross-section of 

the carotid bifurcation or the greatest degree of stenosis, in presence of an 

atherosclerotic plaque, bilaterally. A region of interest (ROI) was manually delineated 

fully enclosing each carotid artery (Figure 2); CTTA was then assessed within this 

ROI that comprised a filtration-histogram technique. The initial in-plane filtration step 

comprised a Laplacian of Gaussian (LoG) spatial band-pass filter (similar to a non-

orthogonal Wavelet) to produce a series of derived images highlighting features at 

different anatomic spatial scales ranging from fine-, medium- and coarse-texture. The 

spatial scale filter (SSF) values ranged between 2-4 mm in width (i.e. radius) where 

SSF=2mm was considered as fine texture scale, SSF=3mm was considered as 

medium texture scales, and SSF=4mm was considered as coarse texture scale. 

Instances with SSF>4mm were not included in the analysis due to the small size of 



 

the ROIs. Heterogeneity was quantified on filtered images using the following 

histogram based statistical parameters: mean, skewness (S), kurtosis (K),  entropy 

(E), standard deviation (SD) and mean value of positive pixels (MPP) [17]. Extensive 

validation and a simulation and phantom study by Miles et al clarified what does the 

filtration-histogram based TA actually mean and how do they reflect different 

components of heterogeneity[17]. In brief, the mean intensity reflects average 

brightness, S reflects asymmetry of the histogram distribution, K reflects the 

pointedness or peakedness of the histogram distribution, E reflects 

irregularity/heterogeneity, SD denotes the width of the histogram or dispersion from 

the average and the mean of positive pixels reflects the average brightness of only 

positive pixel values.  

 

Statistical Analysis 

Statistical analysis was performed using dedicated statistical software (SPSS 

25.0 statistical package; SPSS Inc, Armonk, NY, USA: IBM Corp.). Continuous 

values were shown as mean ± standard deviation (min – max; 95% confidence 

internal), categorical values were expressed as n (%). χ2, Student t-test and non-

parametric Mann-Whitney test were used to assess if there was any significant 

difference between symptomatic (patients) and asymptomatic (controls) groups. For 

the statistical analysis of the texture parameters, data from the same subjects were 

pooled to diminish cluster effect. Statistical significance was set at 5% for all the 

performed analyses and corrected for multiple comparisons by using the Benjamini-

Hochberg procedure, computing the false discovery rate (FDR) at 5% for all the 

texture parameters [29, 30]. Raw p values are shown, and significance is based on 

Benjamini-Hochberg correction. 



 

Receiver operating characteristic (ROC) curves were constructed, and the 

area under the ROC curve (AUC) and diagnostic criteria (optimal cut-off, sensitivity 

and specificity) was calculated for the texture parameters which showed statistically 

significant differences between the two groups on the univariate analysis before 

correction; TIA/stroke was used as the outcome variable to compute the analysis. 

According to the pilot nature of this study, the optimal cut-off values (i.e. operating 

point in the ROC curve) were determined favoring sensitivity among specificity, whilst 

trying to achieve a moderate balance between the two of them. 

 

Results 

We successfully analyzed 46 carotid arteries from the 24 selected patients (14 

men, 10 women; patient characteristics in Table 1); two bifurcations were not 

evaluated due to the presence of stents at the time of the scan and so excluded. 

The mean degree of stenosis at the right carotid bifurcation was significantly 

higher in the patient group compared to the control group (41 ± 36 vs. 12 ± 12; p = 

0.01). There was no statistically significant difference in the stenosis degree at the 

left carotid artery bifurcation (patient group: 12 ± 16; control group 17 ± 22; p = 0.56). 

There were no statistically significant differences in plaque composition for both sides 

(right side p = 0.39, left side p = 0.72) between the two groups (Table 2). 

The comprehensive results of the CTTA are shown in Table 3, Table 4 and 

Figure 3. Overall, the CTTA revealed a statistically significant difference in S between 

the patient group and the control group at the medium and coarse texture scales 

(SSF = 3mm, medium, 0.22 ± 0.35 vs -0.18 ± 0.39, p < 0.001; and SSF = 4mm, 

coarse, 0.23 ± 0.22 vs 0.03 ± 0.29, p = 0.003). At the fine texture scale (SSF = 2mm), 



 

S (0.20 ± 0.59 vs -0.18 ± 0.58, p = 0.009) and SD (366.11 ± 117.19 vs 300.37 ± 

82.51, p = 0.03) were significant before correction. 

ROC analysis was performed for SD and S at SSF=2 and S at SSF=3 and 

SSF = 4 using TIA/stroke as outcome; the corresponding plots are shown in Figures 

4 and 5.  Based on the ROC analysis, at SSF=3, a S value greater than or equal to 

0.015 identified patients with an AUC of 0.81, sensitivity of 77% and specificity of 

79% (p < 0.001, figure 4). Optimal cut-off, AUC, sensitivity and specificity for S at 

SSF=2 were respectively -0.29, 0.72, 73%, 64% (p = 0.009), and at SSF=4 were 

0.06, 0.76, 82%, 67% (p = 0.003). AUC values for SD, at SSF = 2 a value equal or 

greater than 315.3 was able to identify patients from asymptomatic subjects with an 

AUC of 0.68, sensitivity of 64 % and specificity of 71% (p = 0.033, figure 5). 

 

Discussion 

In this pilot study, we showed that CTTA parameters, in particular, S and SD, 

might be able to identify plaques at risk of becoming culprit lesions. We observed that 

S and SD are the parameters that best correlate with future ischemic events. S is 

particularly higher in vulnerable patients as compared to asymptomatic control cases. 

It indicates the presence of hyper-dense objects at any given particular scale [17] 

which might reflect the presence of microcalcification, micro-vessel proliferation or 

micro-ulceration within the plaque; the last two being the most expected features. 

Indeed, ROC analysis showed a high AUC value for S at all texture scales, i.e., fine-, 

medium- and coarse-grained texture scales. Although this needs further confirmation, 

we may envisage the future application of this parameter as a predictor for TIA/stroke 

episodes. SD at fine-gained texture scale was higher in the patient group compared 

to controls and could potentially reflect a higher number of hyper-dense objects in the 



 

patient group [17]. Moreover, provided that acquisition technique, post-processing 

and iodine delivery rate are constant, texture analysis could also have a role in 

assessing the heterogeneity within the lumen as a surrogate for flow dynamics. An 

increase in turbulent flow could potentially cause an increase in entropy. In the 

current study, we did not see relevant changes in texture parameters that could be 

attributed to flow dynamics within the lumen, likely due to the low prevalence of 

severe stenosis, however, we envisage that this information, in particular in patients 

with severe stenosis, could complement the plaque analysis.  

These findings may have a significant impact in routine clinical practice 

because patients’ risk of developing an acute ischemic attack could be better 

estimated by combining CTTA and current risk stratification tools. At present, the 

management of patients with stenosis above the threshold proposed by the NASCET 

and European Carotid Surgery Trial (ECST) studies is well defined, however, lower 

degree of stenosis still poses a significant challenge [3–5]. Recently, the European 

Society for Vascular Surgery (ESVS) published a set of guidelines which also aimed 

at defining treatment for patients with carotid stenosis <70% [5]. Medical treatment 

has been proposed as class I intervention in asymptomatic patients with stenosis 

<60% and in symptomatic patients with stenosis <50%; however, the working group 

highlighted the unmet need for clinical/imaging algorithms able to identify a subset of 

patients who would benefit from a more aggressive approach, with imaging criteria 

having a predominant role. Nevertheless, the treatment for asymptomatic patients 

with stenosis >60% and symptomatic patients with stenosis 50-69% is still 

controversial due to conflicting evidence. Therefore, the potential capability of CTTA 

to identify plaques at risk of causing a cerebrovascular event despite the degree of 



 

stenosis, may be particularly useful in guiding/optimizing management in patients 

with mild to moderate stenosis, currently the most challenging subgroup of patients.  

 

To our knowledge, this pilot study represents the first use of CTTA to 

investigate the relationship between heterogeneity as assessed by texture analysis of 

carotid artery plaque and future cardiovascular events in a prospectively enrolled 

cohort of asymptomatic patients with CV risk factors. Previous studies have proved 

that CT signal heterogeneity in small abdominal aortic aneurysm (AAA), assessed 

using CTTA, might be considered as a risk stratification tool to identify untreated 

aneurysms at risk of significant expansion [20]. CTTA seems to correlate with AAA 

metabolism as defined by 18F-Fluorodeoxyglucose Positron Emission Tomography 

[20]. Moreover, CTTA might be a valuable tool to classify aortic abdominal aneurysm 

evolution after EVAR [19, 21]. Those studies clearly demonstrated the potential utility 

of CTTA in cardiovascular imaging as a risk stratification tool and carotid artery 

imaging is a natural potential application for such an analysis. Acharya et al. explored 

a potential combination of discrete wavelet transform and texture analysis to build a 

classifier of CTA images that would be able to identify symptomatic and 

asymptomatic patients [19]. Despite the promising results, however, the recruited 

patients were already symptomatic at the time of the analysis and symptomatic 

plaques have histological distinctive features that clearly separate them from 

asymptomatic plaques [31]. Therefore, the differences in plaque microarchitecture 

and composition may have driven the results undermining the prognostic capability of 

the technique in a routine clinical practice.   

 



 

Previous studies explored several different types of texture analysis on 

ultrasound images of carotid arteries, however, only a few focused on the predictive 

capability of texture analysis in determining future ischemic events in asymptomatic 

patients [32–34]. Texture analysis of US images in addition to the clinical 

characteristics and the degree of stenosis was able to improve the prediction of 

subsequent ipsilateral cerebrovascular events both using first order statistics [32] and 

using support vector machines (SVM) [33]. Similarly, a model combining 

Framingham risk score, total plaque volume and plaque texture of 3D ultrasound 

images was significantly better than conventional risk stratification approach in 

predicting future cerebrovascular events [34]. However, in those studies, only 

approximately 10-11% of the patient cohort became symptomatic during follow-up.  

 

Our pilot study is a step forward from those previously published work. CT is a 

more reliable technique, far less operator-dependent than ultrasound and, therefore, 

more suitable for quantification as a reliable quantitative imaging biomarker and 

potential adjunct as a risk assessment tool. Moreover, Nyman et al. recently 

demonstrated that plaque texture analysis of US images is influenced by the cardiac 

phase at which images are acquired, the size of the plaque and the echogenicity [35]. 

The effect of the cardiac phase may be explained by the compression and out-of-

plane movement of the plaque due to the increased pressure during systole causing 

significant variation in texture features as also demonstrated by other recent studies 

[36, 37]. In addition to the out-of-plane motion, Nyman et al. also highlighted the 

variability observed in small plaques. The influence of the echogenicity is supposedly 

due to the higher presence of lipids within echolucent plaques resulting in softer and 

more elastic plaques more prone to compression and deformation during systole 



 

which in turn would result in higher ultrasonic reflection. Overall, the variability 

determined a reclassification of 16-25% of cases depending on the chosen cutoff 

values leading the authors to question the possibility of successfully characterize 

small echolucent plaques. CTA is intrinsically more reproducible than US, less 

sensitive to motion and the attenuation coefficient is based on the tissue density 

therefore it is not influenced by the cardiac cycle. 

Moreover, in our cohort, all the patients were asymptomatic at the time of the 

CTA with the events happening an average of 23 months after the examination. 

Therefore, our technique has been able to correctly predict a future event at a time 

when no other conventional imaging features would have predicted a future acute 

ischemic attack. A further significant strength of our pilot study is the perfect match 

between the asymptomatic and symptomatic group leading to a 50% of events rate 

within our cohort. Indeed, as the asymptomatic pool was selected from a larger 

cohort of patients, we purposely matched the number and characteristics of the two 

groups to avoid any over- or under- fitting effect potentially introduced in skewed 

cohorts. 

 

Nevertheless, this current study has several limitations. The first is the small 

sample size being a pilot study. Although in a small study population, a significant 

difference in some texture parameters between the symptomatic and control groups 

were observed. The second most important limitation is that we analyzed both sides 

due to the retrospective nature of this study and the lack of more detailed clinical 

information, which did not allow for a clear identification of the future culprit side. 

However, Rothwell et al. [38] showed that patients with plaque surface irregularity in 

the symptomatic carotid artery were more likely to have irregularity in the 



 

contralateral carotid artery as compared to patient with smooth plaque, suggesting a 

predisposition to plaque irregularity – i.e., texture heterogeneity – and rupture within 

individuals. This finding combined with the cluster correction we performed before the 

analysis and application of statistical correction for multiple comparisons (and still the 

observation of statistically significant differences between the two groups) to certain 

extent mitigate the limitation of using both sides and the lack of detailed clinical 

information. Nevertheless, we envisage the need for a larger, prospective study, 

ideally with pathological confirmation, which will allow for further confirmation of our 

pilot results. This in-depth evaluation can provide further biologic rationale and 

correlation between CTTA, symptoms, culprit plaque and outcome. 

 

In conclusion, our pilot study highlights the potential of CTTA to act as a novel 

non-invasive imaging biomarker to detect vulnerable plaque, independent of the 

degree of stenosis, in patients with carotid artery atherosclerosis without the need for 

additional imaging and complex/invasive procedures, with the potential to improve 

risk stratification and management. 
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Tables 

 

 
Symptomatic Group 

(n = 12)	

Asymptomatic Group 

(n = 12) 
p	

Age (years)	 63 ± 10	 63 ± 10	 0.98	

Male, n (%)	 7 (58.3)	 7 (58.3)	 1.00	

CV risk factors (n)	 3.83 ± 1.5	 3.17 ± 2.0	 0.37	

Diabetes	 5 (41.7)	 2 (16.7)	 0.19	

Smoking	 2 (16.7)	 4 (33.3)	 0.31	

Hypertension	 11 (91.7)	 7 (58.3)	 0.06	

Dyslipidemia	 9 (75)	 5 (41.7)	 0.10	

Body Mass index 28.7 ± 3.2 28.2 ± 3.0 0.62 

Family history of HLP	 5 (41.7)	 5 (41.7)	 1.00	

Family history of CVD	 6 (50)	 8 (66.7)	 0.42	

Therapy 

- Antihypertensive 

- Hypoglycemic 

- Lipid-lowering 

 

9 (75) 

5 (41.7) 

5 (58.3) 

 

7 (58.3) 

2 (16.7) 

4 (33.3) 

 

0.42 

0.20 

0.62 

 



 

Table 1: Demographic table.  

Continuous values are expressed as mean ± sd, categorical data as natural numbers 

(%). Cardiovascular risk factors are listed individually and the sum of risk factors in 

each patient is provided as “CV risk factors (n). Therapy refers to the treatment the 

patients were undergoing at the time of recruitment. Abbreviations: CV = 

cardiovascular, HLP = Hyperlipidemia, CVD = cardiovascular disease.



 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Plaque characteristics. 

Continuous values are expressed as mean ± sd, categorical data as natural numbers (%). * and bold denotes statistical 

significance.

 Right Carotid Bifurcation	  Left Carotid Bifurcation	  

 
Symptomatic 

Group	
Asymptomatic 

Group	
p	

Symptomatic 

Group	
Asymptomatic 

Group	
p	

Stenosis	 41 ± 36	 12 ± 12	 0.01*	 12 ± 16	 17 ± 22	 0.56	

Plaque composition 

   No plaque 

   Predominantly calcified 

   Mixed plaque 

   Predominantly non calcified	

 

2 (16.7) 

2 (16.7) 

6 (50) 

2 (16.7)	

 

3 (25) 

1 (8.3) 

2 (16.7) 

6 (50)	

0.39 

 

 

	

 

6 (50) 

- 

5 (41.7) 

1 (8.3)	

 

5 (41.7) 

- 

6 (50) 

1 (8.3)	

0.72 

 

 

	



 

 Symptomatic Group	 Asymptomatic Group	

Filter	 Mean	 Skewness	 Kurtosis	 Entropy	 SD	 MPP	 Mean	 Skewness	 Kurtosis	 Entropy	 SD	 MPP	

SSF2	
150.72 

± 93.72	

0.20  

± 0.59	

-0.36  

± 1.05	

5.21  

± 0.22	

366.11 

± 117.19	

392.50 

± 132.90	

158.90  

± 40.8	

-0.18 

± 0.58	

-0.18 

± 1.66	

5.28 

± 0.17	

300.37 

± 82.51	

322.54 

± 72.34	

SSF3	
267.89 

± 145.97	

0.22 

± 0.35	

-0.84  

± 0.41	

5.20 

± 0.22	

404.63 

± 137.87	

480.56 

± 176.38	

269.10 

± 61.22	

-0.18 

± 0.39	

-0.76 

± 0.70	

5.30 

± 0.16	

330.59 

± 73.10	

418.04 

± 77.03	

SSF4	
358.41 

± 181.52	

0.23  

± 0.22	

-0.90 

± 0.22	

5.21 

± 0.23	

396.98 

± 144.85	

502.62 

± 197.81	

355.30 

± 80.10	

0.03 

± 0.29	

-0.94 

± 0.32	

5.32 

± 0.16	

346.93 

± 66.65	

464.23 

± 83.40	

 

Table 3: Texture parameters. 

Continuous values are expressed as mean ± sd. 



 

 Symptomatic group vs asymptomatic group	

Filter	 Mean	 SD	 Entropy	 MPP	 Skewness	 Kurtosis	

SSF2	 0.367	 0.033	 0.311	 0.050	 0.009	 0.56	

SSF3	 0.482	 0.065	 0.262	 0.312	 < 0.001*	 0.939	

SSF4	 0.629	 0.367	 0.166	 0.826	 0.003*	 0.214	

 

 

Table 4: Comparison between symptomatic group and asymptomatic group. 

Values are p obtained using the Mann-Whitney test as stated in the statistical 

analysis paragraph. * and bold denotes statistical significance after correction for 

multiple comparisons by using the Benjamini-Hochberg procedure with a false 

discovery rate (FDR) at 5%. 



 

Figures  

Fig. 1 Patients selection. Flow-chart shows the process used to select the two 

groups evaluated in this study. The original population was composed by 341 

subjects that underwent WB-CTA for previous studies (24,25). We firstly screened 

the population to highlight subjects with atherosclerotic disease at the carotid artery. 

Therefore, we included in the symptomatic group patients with a subsequent TIA or 

stroke recorded during the follow-up. From the asymptomatic pool, we randomly 

selected sex and age matched controls.  

Fig. 2 Example of CTTA at SSF=2 (fine-texture-map) superimposed onto the CTA 

image in an asymptomatic subject (a) and in a patient with TIA (b).  

Fig. 3 Texture parameters in Table 3, graphically represented as mean and standard 

deviation by the error bars, for both symptomatic and asymptomatic groups, as well 

as for the three spatial scale filters (SSFs) considered. Statistical significance is 

denoted as * (according to the p values computed in Table 4). 

 Fig. 4 ROC curves for the CTTA (skewness). ROC curve highlights the ability of 

Skewness to distinguish between symptomatic and asymptomatic patients. Texture 

filter scales comprised SSF=2 (A), SSF=3 (B) and SSF=4 (C). The corresponding 

AUCs are 0.72 (95% CI 0.576–0.871; p = 0.009) for SSF=2; 0.81 (95% CI 0.678–

0.937; p=.0001) for SSF=3 and 0.76 (95% CI 0.6100.903; p=0.003) for SSF=4.  

Optical cut offs, sensitivity and specificity are, respectively, -0.29, 73%, 64% at 

SSF=2, 0.015, 77% and 79% at SSF=3, and 0.06, 82%, 67% at SSF=4. Diagonal 

segments are produced by ties. 

Fig. 5 SD ROC curve for the CTTA (SD at SSF=2). ROC curve highlights the ability 

of SD at SSF=2 to distinguish between symptomatic and asymptomatic patients. The 



 

corresponding AUC is 0.68 (95% CI 0.527–0.840; p=0.033); optimal cut off is 315.3, 

sensitivity 64 % and specificity 71%. Diagonal segments are produced by ties.
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