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Highlights: 

Multifunctional Inositol-kinase IP6K3 and IPMK affect LOAD and longevity 

Risk alleles for LOAD act as pro-longevity variants 

Protective alleles for LOAD act as risk factor for longevity  

Interactions between IP6K3 and IPMK account for phenotype-specific associations 

Mitochondria as crossroad of pathways leading to neurodegeneration and/or longevity 

  

Jo
ur

na
l P

re
-p

ro
of



 

 

Abstract 

Several studies reported that genetic variants predisposing to neurodegeneration were at higher 

frequencies in centenarians than in younger controls, suggesting they might favor also 

longevity.  

IP6K3 and IPMK regulate many crucial biological functions by mediating synthesis of inositol 

poly- and pyrophosphates and by acting non-enzymatically via protein–protein interactions. 

Our previous studies suggested they affect Late Onset Alzheimer Disease (LOAD) and 

longevity, respectively. Here, in the same sample groups, we investigated whether variants of 

IP6K3 also affect longevity, and variants of IPMK also influence LOAD susceptibility. We 

found that: i) a SNP of IP6K3 previously associated with increased risk of LOAD increased 

the chance to become long-lived, ii) SNPs of IPMK, previously associated with decreased 

longevity, were protective factors for LOAD, as previously observed for UCP4. SNP-SNP 

interaction analysis, including our previous data, highlighted phenotype-specific interactions 

between sets of alleles. Moreover, linkage disequilibrium and eQTL data associated to analyzed 

variants suggested mitochondria as crossroad of interconnected pathways crucial for 

susceptibility to neurodegeneration and/or longevity.  

Overall, data support the view that in these traits interactions may be more important than 

single polymorphisms. This phenomenon may contribute to the non-additive heritability of 

neurodegeneration and longevity and be part of the missing heritability of these traits.  

 
 

Keywords: IP6K3, IPMK, Aging, longevity, Alzheimer, SNP-SNP interaction 
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1. Introduction 

The heterogeneity in age-related functional decline is a highly debated topic (Field et al, 2018; 

Lowsky et al, 2014). The understanding of genetic and non-genetic factors that affect such 

heterogeneity is fundamental for the development of strategies to attenuate age related decline 

and prolong a healthy life. The study of centenarians, exceptionally long-lived individuals that 

in most cases experienced a delayed aging, has arisen growing interest for its potential to reveal 

information on the combination of genes and lifestyle factors that can prevent or postpone age-

related diseases. Numerous studies in this field demonstrated that longevity is a highly plastic 

and dynamic trait being the result of a lifelong remodeling process which depends on a 

complex genetic architecture, influenced by extensive genotype-by-genotype and genotype-

by-environment interactions (Dato et al, 2017). Undeniably, centenarians represent an extreme 

phenotype of good health and they could be considered as super-controls to compare the 

distribution of risk alleles with respect to patients with age related diseases, such as type two 

diabetes (T2D), assuming that such alleles should have the highest frequency among patients, 

an intermediate frequency among healthy subject and the lowest among centenarians 

(Garagnani et al, 2013). On the other hand, the systematic analysis of the ‘gerontome’, the 

collection of over 2000 genes shown to modulate aging in model organisms and human, 

suggested complex relationships between aging-related genes and age-related diseases. 

(Fernandes et al, 2016). For instance, many genetic variants associated with increased risks of 

diseases are found in genomes of long-lived people, suggesting they might be risk factors or 

protective factors according to other (genomic or environmental) concurrent factors (Beekman 

et al, 2010; Mooijaart et al, 2011; Raule et al, 2014; Sebastiani et al, 2013; Freudenberg-Hua 

et al, 2014). Similarly, some genetic alleles show tradeoff-like effect on mortality risk during 

life course (i.e., risk factors at adult age and pro longevity at advanced ages), or the same 
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variant shows opposite effects on different age-related diseases, differently affecting the 

individual mortality risk (Ukraintseva et al, 2016).  

To understand this genetic complexity, we need to consider a biological systems functioning 

as networks of biomolecules (Zhang et al, 2016; Cevenini et al, 2010); this implies that the 

individual effect of a gene can be negative or positive, or even neutral, depending on the 

interactions occurring with components of the different networks, which may change along 

life progression (Franceschi et al, 2020). Chiefly relevant to this scenario could be signaling 

molecules or proteins with multiple functions which may act as either signaling hubs or 

“switchers” connecting different pathways, influencing several cellular functions essential for 

survival (Wolfson et al, 2009). Energy production and storage may be crucial in this context. 

Indeed, the variability of mitochondrial DNA, affecting subunits of the oxidative 

phosphorylation chain, has been found to be correlated to longevity as well as diseases 

associated tissue (especially neuronal) degeneration. In several studies the same allelic 

variation in mtDNA was associated to both longevity and to degenerative disorders (Raule et 

al. 2014 and references therein). Similarly, mitochondrial uncoupling proteins 4 (UCP4) 

variation (rs9472817), affecting the management of energy, has been found to affect both 

longevity and neurodegenerative disease (Rose et al, 2011; Montesanto et al, 2016; 

Montesanto et al, 2018).  

Inositol polyphosphates and specifically the pyrophosphate containing species are emerging 

as molecules playing key role in the management of energy homeostasis and with fundamental 

role in regulating multiple cellular process (Tsui and York, 2010; Livermore et al, 2016). The 

energy-rich inositol pyrophosphates IP7 and IP8, generated by sequential phosphorylation of 

the calcium releasing factor IP3 or from the glycolytic intermediate glucose-6P (Desfougères 

et al, 2019), display pleiotropic effects acting as potential ‘molecular switch’ in the regulation 

of a wide spectrum of central processes such as phosphate homoeostasis and energetic 
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metabolism (Azevedo and Saiardi, 2017; Thota and Bhandari, 2015; Wilson et al, 2013; 

Wundenberg and Mayr, 2012).  Hence, inositol pyrophosphates signaling may be critical and 

at the “crossroad” of age-related disease and longevity networks.  In mammalian cells, the 

pathway of inositol pyrophosphates synthesis involves multiple enzymatic steps carried by 

different type of kinases; the ITPK1 type of multi kinase, the inositol polyphosphate multi 

kinase (IPMK), the inositol pentakisphosphate kinase IPPK, three different isoforms of inositol 

hexakisphosphate kinase (IP6K1–3) and two different isoforms of the diphosphoinositol 

pentakisphosphate kinase (PPIP5K1-2).   

Noteworthy is the capacity of many of these kinases and especially of both IPMK and IP6K3 

to, independently of their enzymatic ability, act non-catalytically via protein–protein 

interactions, influencing multiple different biological processes (Rojas et al, 2019; Kim et al, 

2017; Fu et al, 2015). The multifunctionality of these proteins, is suggestive of a fine tuning 

of the inositol polyphosphates signaling during life progression. The complexity and 

adaptability of the inositol polyphosphate signaling pathways could contribute to the 

heterogeneity in the age-related functional decline. We hypothesize that the variability in 

IPMK and IP6K3 genes could be leading either to neurodegeneration or to a long life.  

Such hypothesis is supported by different evidence; a rare variant (rs12570088) near to IPMK 

locus is related to the susceptibility to Alzheimer’s disease (Yokoyama et al 2016); IPMK acts 

as a regulator of fear extinction and synaptic plasticity (Park et al, 2019); furthermore, there 

are evidence that IP6K3 is linked to lifespan in mice (Moritoh et al, 2016).  

We recently demonstrate that the genetic variability of IPMK affect human longevity, by 

reporting a six-SNPs haplotype that significantly influences female longevity (De Rango et al, 

2019). Additionally, a study by Crocco et al (2016) showed that the variability of IP6K3, which 

is highly expressed in the brain, is associated with increased risk of late onset Alzheimer's 

disease (LOAD).  
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Considering that longevity and neurodegeneration share relevant pathways, in the same sample 

groups analyzed in Crocco et al (2016) and De Rango et al, (2019) here we investigated 

whether: a) the genetic variability of IP6K3, previously associated with LOAD can affect the 

ability to live longer, and b) the genetic variability of IPMK, previously correlated to longevity 

can affect the susceptibility to LOAD. 
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2. Materials and Methods 

2.1 Study population 

For this study we analyzed 848 unrelated subjects born in Calabria (South Italy) and recruited 

across the whole territory through several campaigns focused on the monitoring of the quality 

of aging in the region. The sample included 568 healthy subjects aged 64-105 years (55 % 

females), and 280 patients with LOAD aged 77.8 ± 5.0 years (63% females). Their Calabrian 

ancestry was ascertained up to the third generation.   

The group of health subjects was divided in two age classes according to two “thresholds of 

longevity”, 88 years for men and 91 years for women, corresponding to the point after which 

a significant negative change in the slope of the survival curve of the Italian population occurs 

(Passarino et al, 2007). Males younger than 88 and females younger than 91 years will be 

defined as controls (N =309, mean age 74 years); in accordance with this, the rest of the sample, 

males older than 88 and females older than 91 years, will be here defined as long lived samples 

(N =259, mean age 96.9 years). In the long-lived sample group females were 63%, while they 

were 49.5% in the adult controls.  All subjects were free of the major age-related pathologies 

(e.g., cancer, type-2 diabetes, neurodegenerative and cardiovascular diseases), and were 

carefully assessed using a rigorous clinical history evaluation and a general/neurological 

examination, to exclude the presence of any neurological disorder.  

LOAD patients were from the same geographical region and were enrolled by the Regional 

Neurogenetics Center (Lamezia Terme, Cz, Italy). Clinical diagnosis for LOAD was 

performed through the criteria of the National Institute on Aging, and the Alzheimer's 

Association workgroup (McKhann et al, 2011). All patients were fully characterized from a 

clinical point of view and a set of physical and biochemical parameters were measured. 

Cognitive status was investigated through Mini Mental State Examination (MMSE) (Folstein 
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et al, 1975). MMSE scores were adjusted for age and educational level according to Magni et 

al (1996).  

It might be worth mentioning that long lived subjects were parts of the birth cohorts 1900-

1915. Control samples were parts of the birth cohorts 1925-1945, as well as LOAD patients.  

An informed written consent was signed by all subjects or their legal representative. This study 

was performed according to the Declaration of Helsinki with appropriate ethics committee 

approval. 

 

2.2 SNP selection and genotyping 

A panel of 17 SNPs within approximately 30 kb encompassing the entire IP6K3 gene and its 

5′ and 3′ flanking regions were genotyped in all subjects included in the study and chosen 

based on those genotyped in the previous study by Crocco et al (2016). Similarly, 14 SNPs 

were investigated for IPMK, mapping within and nearby the gene and prioritized by a tagging 

approach (De Rango et al, 2019). Genotyping was performed by iPlex Gold Genotyping Assay 

and Sequenom MassArray (Sequenom, San Diego, CA, USA) technology, following the 

manufacturer's instructions. SNP assays were designed using Sequenom's MassARRAY Assay 

Design v3.0 Software. Spectra were analyzed using MassARRAY Typer v3.4 Software 

(Sequenom). For quality control, to assess the reliability of the genotype identification 

protocols, about 10% of the samples were reanalyzed and the concordance rate of the 

genotypes was higher than 99%. For additional quality control, genotypes were excluded if 

Hardy-Weinberg equilibrium among controls p < 0.05 or call rates < 90%.  

 

2.3 Linkage disequilibrium and functional annotation analysis of associated SNPs 

Linkage disequilibrium analysis, LD, was explored using information from HaploReg v4.1 

(https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) and considering SNPs 
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associated with r2 ≥ 0.8. To explore the potential function of the candidate SNPs, functional 

annotation analysis was performed by interrogating GTEx (Genotype–Tissue Expression) 

dataset (https://gtexportal.org/), a comprehensive survey of the functional consequences of 

genetic variation in non-coding regions at the transcript level from various human tissues 

samples (The Genotype‐ Tissue Expression (GTEx) Consortium, 2013). Positive or negative 

effects of the allele on the gene expression were estimated by considering the normalized effect 

size (NES) of the eQTLs, defined as the effect of the alternative allele (ALT) relative to the 

reference allele (REF) in the human genome reference GRCh38/hg38. For each gene indicated 

to be regulated by the candidate SNPs, a nominal p-value threshold of p <0.05 was considered; 

top significant genes and relative tissues were finally included in the list of variant-gene pairs. 

 

2.4 MDR analysis of epistatic interactions 

For testing the epistatic interaction between pairs of SNPs, multifactor dimensionality 

reduction (MDR) was applied (Moore, 2004; Ritchie et al, 2001). This approach allows to 

estimate high-order interactions among genes collaborating with respect to a given phenotype 

and thus multilocus genotype combinations associated with high or low risk of disease. The 

entropy-based clustering algorithm used by MDR sets a contingency table for k SNPs and 

calculates case–control ratios for each of the possible multilocus genotypes. The MDR 

interaction model describes percentage of entropy (information gain or IG) by each factor 

(values in the nodes indicate independent main effect) or 2-way interaction. Graphical 

visualization is made through connections among the markers and help to interpret additive 

and non-additive interactions effects on phenotype: positive values of entropy indicate 

synergistic or non-additive interactions, while negative entropy values indicate redundancy 

between the markers or lack of any synergistic interaction between the markers. 
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For figures, networks were plotted by setting two-three-way combinations (Fig. 1a and 1b) and 

two-five-way combinations (Fig. 1S and 2S) of the attributes. Connections in red and orange 

indicate nonlinear or epistatic interactions, connections in green and brown indicate 

independence or additivity and redundancy (blue lines). For significance, permutation testing 

is applied, dividing the dataset into 10 portions, and using nine portions as a training data set, 

and the remaining as a testing data set. Missing genotypes were imputed with the MDR data 

tool software (version 0.4.3), by imputing the data from existing data set. MDR analyses were 

implemented in the open-source MDR software package version 3.0.2 (available on 

https://omictools.com/mdr-tool).  

 

2.5 Statistical analyses 

For each polymorphism, allele and genotype frequencies were estimated by gene counting 

from the observed genotypes. Hardy–Weinberg equilibrium was tested by Fisher’s exact test. 

Pairwise measures of linkage disequilibrium (LD) between the analyzed loci was estimated by 

Haploview. (https://www.broadinstitute.org/haploview/haploview). The association between 

the analyzed genetic variants and the phenotypes under study was evaluated by logistic 

regression models. In the analyses, controls (adult controls) were coded as 0 and cases (LOAD 

patients and long-lived individuals) were coded as 1. 

In order to identify any relationship between alleles in affecting the phenotypes, different 

genetic models (dominant, additive and recessive) were used to test association, using for each 

SNP the minor allele as reference.  For each SNP, the most likely genetic model was then 

estimated on the basis of minimum level of statistical significance (Wald test p-value). For 

SNPs with rare homozygous genotype < 3%, only the dominant model was considered.  

Jo
ur

na
l P

re
-p

ro
of

https://www.broadinstitute.org/haploview/haploview


 

 

Since SNPs were selected based on prior evidence of associations with the tested phenotypes, 

no Bonferroni correction was applied, as suggested by several authors (Armstrong 2014; 

Reuben et al, 2020). 
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3.  Results  

3.1 Experimental samples 

The sample groups analyzed in this study is presented in Table 1. These samples were 

previously tested for SNPs of IP6K3 (Adult control group vs LOAD patients), and for SNPs 

of IPMK (Adult control group vs long-lived subjects). In the current study we checked the 

same groups for potential cross-phenotype associations, by testing the variants of IP6K3, 

previously studied in LOAD patients, in long-lived subjects to compare them with the group 

of the adult control. Similarly, we studied the IPMK variants previously studied in long lived 

subjects in LOAD patients to compare them with the group of adult control. 

 

3.2 Analysis of the association of IP6K3 variants with Longevity 

Results for the analyzed IP6K3 variants are presented in Supplementary Table 1S. There was 

no association between sex and genotype frequency for any of the SNPs tested. Conversely, 

Table 2 report the SNPs statistically associated with longevity in the present study, together 

with those associated with LOAD as reported by Crocco and colleagues (2016). 

Our analysis found that the minor A allele of rs10947435 has a positive effect on longevity 

with a dominant model better fitting the data (OR=1.73, 95% CI 1.19-2.51; p=0.004). The 

additive model fit the data best for rs4713675 (OR=1.36, 95% CI 1.03-1.77; p=0.028), also 

with a positive effect of the minor T allele on longevity. The same allele (A) of rs10947435 

has been associated with an increased risk of LOAD (Table 2), whereas no association has 

been detected between rs4713675 and LOAD risk (Crocco et al, 2016). Conversely, the variant 

rs28607030 did not result associated with longevity in this study, but instead has been 

associated with LOAD in the previous one. Therefore, we observed either phenotype-specific 

(rs4713675 and rs28607030) or cross-phenotype (rs10947435) associations of SNPs with 

different direction of risk. 
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3.3 Analysis of the association of IPMK variants with LOAD  

We then investigated the IPMK variants previously studied in relation to longevity (De Rango 

et al, 2019), in patients affected by LOAD. In consideration of the sex-specific effect of IPMK 

SNPs on longevity, the data were analysed according to gender. Similarly, to what was seen 

for longevity, we found SNPs significantly associated with LOAD in females, but not in males.  

Results for the SNPs associated significantly to one or both traits are summarized in Table 3. 

Complete results are reported in Supplementary Table 2S. Out of the six SNPs negatively 

associated with female longevity, four SNPs, namely rs2790156, rs2790234, rs2590320 and 

rs2251039, conferred a protective effect on LOAD risk in the same gender (p <0.05), with ORs 

(95% CI) of respectively 0.25 (0.06–0.92), 0.52 (0.27–0.99), 0.23 (0.06–0.83) and 0.61 (0.39–

0.95).  As before, we found cross-phenotype and phenotype-specific effects of SNPs.  

We also performed haplotype analysis by including all the SNPs reported in Table 3. We 

identified the haplotype made of all the minor SNP alleles (namely A-G-A-t-a-T in Table 4) 

associated with reduced LOAD risk. The results also support a major effect of rs2790234-G 

allele on the trait; in fact, the A-G-A-t-a-T is significantly associated, while the A-C-A-t-a-T 

is not. Importantly, this is the same allele, lying in the six-SNPs haplotype, that exerts a major 

negative effect on longevity. 

 

3.4 SNP-SNP interaction analyses 

In view of the above findings, we evaluated SNP-SNP interactions both in LOAD and 

longevity of IP6K3 and IPMK variants analyzed in the present and previous studies (Crocco 

et al, 2016; De Rango et al, 2019), by applying a Multi-Dimensional Reduction (MDR) 

method. In the interaction analysis, we included a SNP of UCP4, previously tested in the same 
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sample groups, that negatively impacted on the probability to attain longevity (Rose et al., 

2011), while acted as a protective factor for LOAD (Montesanto et al., 2016). 

This analysis has reported phenotype-specific SNP-SNP interactions, as shown in 

Supplementary Figures 1S and 2S, which plot the interaction network for longevity and 

LOAD, using one to five-way attributes combinations. As for longevity, the analysis also 

showed the contribution of sex as one of the factors influencing the entropy of the system. 

For longevity, as shown by the entropy graph and dendrogram in Figure 1A and 1B, we found 

an epistatic interaction between rs2790234-IPMK and rs4713675-IP6K3. As shown by red 

line, combining these two SNPs using MDR gives a positive information gain, evidence of an 

increased contribution to the phenotype respect to the single variants, which were in any case 

associated to the phenotype. This interaction is significant and consistent (9/10 cross-

validation consistency p<0.0001). Weaker interactions (orange lines) were found between 

rs2790234-IPMK and two SNPs, one being rs10947435-IP6K3 and rs9472817-UPC4, both 

associated with longevity in single-SNP analysis (Rose et al, 2011). As for the blue line, such 

as for green one, these connections indicate a redundancy of the correspondent SNP pairs on 

the phenotype: this is particularly true here for rs4713675-IP6K3 and rs10947435-IP6K3, 

which showed single associations with longevity.  

In LOAD dataset, as shown by the entropy graph and dendrogram in Figure 2A and 2B, the 

analysis shows a strong single effect of rs9472817-UCP4, explaining alone the 9.28% of the 

entropy of the system; this SNP was previously reported to be associated with LOAD 

(Montesanto et al, 2016). This SNP epistatically interacts with rs1832556-IPMK, with a 7/10 

cross-validation consistency and high training-balanced accuracy (p < 0.0001).  

 

3.5 Functional annotation of the associated SNPs 
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 We performed functional annotation for better understanding the associations found with 

longevity and LOAD.  We first queried the Haploreg database for SNPs in linkage 

disequilibrium (LD) (r2 >= 0.8) with those significantly associated with our phenotypes 

(Supplementary Table 3S). For IP6K3, rs10947435 resulted in LD with SNPs in the same gene 

and with several markers of UQCC2 (ubiquinol-cytochrome c reductase complex assembly 

factor 2, alias MNF1, Mitochondrial nucleoid factor 1); rs4713675 tags only another variant in 

the IP6K3 gene, while rs28607030 is not in LD with other SNPs. As for IPMK markers, 

searches yielded all the significant SNPs in LD with a large number of variants in the same 

gene and with CISD1 (CDGSH Iron Sulfur Domain 1, also termed mitoNEET) markers.  

To further evaluate allele- and/or tissue-specific differences in gene expression we performed 

expression quantitative trait loci (eQTL) analysis by interrogating GTEX database. This 

analysis reported both cis-regulatory and trans-regulatory allele-specific effects for all the 

tested SNPs (Supplementary Table 3S); in particular, the analysis showed allele- and tissue- 

specific effects on genes involved in several cellular functions including mitochondrial 

activity. 
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4. Discussion 

IP6K3 and IPMK gene products are crucial in the generation of inositol poly- and 

pyrophosphates and, also, interact with other cellular components to control numerous aspects 

of cell metabolism in response to distinct cellular signals (Mukherjee et al, 2020; Kim et al, 

2017; Wilson et al, 2013). Data from previous studies (Crocco et al 2016; De Rango et al 2019) 

show that IP6K3 and IPMK loci harbour variants that are associated with LOAD and longevity 

phenotype, respectively. As many reports have highlighted that genetic variation affecting 

neurodegeneration may affect longevity as well (Nygaard et al, 2019), and vice versa, we 

investigated the variation of these genes for both phenotypes. 

We found that an allele within IP6K3 locus (rs10947435-A), previously reported to be 

associated with increased risk for LOAD (Crocco et al, 2016), increased the chance to become 

long-lived, while a subset of alleles at IPMK locus (rs2790156-A, rs2790234-G, rs2590320-

A, rs2251039-T), that were found to decrease the chance to become long-lived (De Rango et 

al, 2019), decreased the risk for LOAD.  

Several scenarios fit these puzzling associations: diverse genetic mechanisms of pleiotropy, 

from the different forms of biological pleiotropy to spurious pleiotropy (Hodgkin, 1998; 

Solovieff et al, 2013); epistatic SNP-SNP interactions whereby the effect of an allele towards 

on trait is modifiable by alleles at other loci; genetic buffering, a type of epistatic interaction 

in which a favorable genotype attenuates the effect of one or more deleterious variants. In this 

model, interactions between longevity genotypes (buffering genes) and age-related disease 

genotypes (buffered genes) may account for the increased prevalence of deleterious disease 

alleles in long-lived individuals (Aviv et al, 2007; Tindale et al, 2017). Having regard to the 

above consideration, the finding that for most associated SNPs the best performing genetic 

model was different between the LOAD and longevity analyses may be explained by the fact 

that the different forms of interaction (i.e., different genotype-genotype combinations) may 
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have different genetic effects (either in magnitude or direction) depending on the genetic 

architecture of the trait itself (Mackay and Moore, 2014).  Also, the phenotype-specific SNP-

SNP interactions we observe reasonably support the hypothesis that genetic interactions could 

be major contributors to the complex observed associations.  

A paradigmatic example of the complex relationships among alleles in different physiological 

contests is provided by the mtDNA variability, with evidence that while mutations in subunits 

of the complex I of the electron transport chain have a beneficial effect on longevity, the co-

occurrence of mutations in complex I and III or in complex I and V seem to be detrimental 

(Raule et al, 2014). It is not surprising then that high frequency of mutations in complex I can 

be found in both mtDNA linked diseases (Man et al, 2004) and in long lived subjects (Tanaka 

et al, 1998). 

Puzzling genetic associations may also represent the effects of co-localizing, that is causative, 

common, or rare, variants at the same locus (or proximal loci) tagged by the same SNP due to 

LD.  It is also worth noting that an allele may differently affect the expression of near (cis-

eQTL) or distant (trans-eQTL) genes or even it may have different effects on different tissues, 

thus likely exhibiting context-specific effects with different phenotypic consequences. This 

could be particularly true for genes, such as IP6K3 and IPMK, endowed with more than one 

molecular function, or participating in diverse biological processes that could require the 

coordinate action of distinct signalling network. 

The LD analysis performed, demonstrated that the associated SNPs are in LD not only with 

variants on the gene where they reside but also with those of other genes; thus, they may act 

as potential proxy markers for other SNPs in the same chromosomal region. Moreover, data 

extracted from GTEx database revealed allele-specific cis- and trans-eQTL effects across 

different tissues. We found that IP6K3 rs10947435-A and rs4713675-T alleles also regulate, 

in a tissue specific manner, BAK1 and UQCC2 genes, both of which are related to 
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mitochondrial function (Gross, 2016; Tucker et al, 2013). This is also the case for the 

associated IPMK variants, which are all cis-eQTL for CISD1, which encodes for a 

mitochondrial Fe-S proteininvolved in the regulation of mitochondrial lipid oxidation (Yuan 

et al, 2016). It is also quite interesting that the differential effects on gene expression of IPMK 

and IP6K3 variants distinguish neuronal tissues with respect to the other tissues (see Table 

3S).  

Likely the mechanistic basis of our observation may reside in mitochondria. The numerous 

evidence of the involvement of mitochondria in promoting neurodegeneration and in mediating 

longevity (Golpich et al, 2017; Rose et al, 2017) give plausibility to this hypothesis, that is 

supported by findings showing that inositol pyrophosphates act as energy sensors able to affect 

the cellular level of ATP, thus modifying the balance between mitochondrial oxidative 

phosphorylation and glycolytic flux (Gu et al, 2017; Szijgyarto et al, 2011). Besides, IPMK 

overexpression is reported to rescue deficits in mitochondrial metabolic activity in transgenic 

models of Huntington’s disease (Ahmed et al, 2015) and also binds, in a glucose-mediated 

manner, the AMP-activated protein kinase (AMPK), a sensor of intracellular ATP levels that 

is rapidly activated after nearly all mitochondrial stresses (Bang et al, 2012). Additionally, 

IPMK appears to be a physiologic cofactor of mTOR (Kim et al 2011), which regulates many 

aspects of mitochondrial function and one of the central modulators of lifespan (Wei et al, 

2015). Further evidence, of the role on inositol polyphosphate in bioenergetic control come 

through the Inositol (1,4,5) Trisphosphate Receptor Type 3 (ITPR3). This receptor determines 

an increase of Ca2+ release from Endoplasmic Reticulum and a concomitant increase of the 

Ca2+ uptake in mitochondria (Càrdenas et al, 2010), negatively affecting its activity. Notably, 

besides affecting the IP6K3 expression, the tested markers also differentially regulate the 

ITPR3 gene expression (Supplementary Table 3S).  
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Remarkably, a behaviour like the one observed in the present study was reported for the 

polymorphism (rs9472817) of the uncoupling protein 4 gene (UCP4), a neuron specific 

mitochondrial membrane protein that uncouple biofuel oxidation from ATP.  Indeed, the 

rs9472817-C allele was found to increase the risk of LOAD and the penetrance of APOE-ε4 

allele (Montesanto et al, 2016), the risk for Frontotemporal Dementia (FTD) (Montesanto et 

al, 2018), and, at the same time, was found overrepresented among centenarians (Rose et al, 

2011). Noteworthy, UCP4 has multifunctional properties on the neuronal system which 

include thermogenesis, neuronal plasticity, neuroprotection against oxidative stress, regulation 

of mitochondrial membrane potential and ATP level and Calcium homeostasis (Ramsden et 

al, 2012).  

The highly orchestrated intracellular signaling pathways are often integrating and modulating 

mitochondrial physiology essential to the cellular metabolic and energetic needs. It therefore 

seems likely that mitochondria functions are important determinants of both diseases state and 

longevity. Mitochondria appear to be central hubs for neurodegeneration (Anderson et al, 

2019). On the other hand, the central nervous system is significantly enriched with hubs (about 

73% of the whole human interactome) among pathways which act at the crossroad of longevity 

and age-related disease networks (Wolfson et al, 2009). A further support to this hypothesis is 

given by the genetic variability of mtDNA, and in particular by the 4336T>C mtDNA mutation 

which was found associated with Alzheimer's disease (AD) risk in a large number of studies 

and twice more frequent in ultra-nonagenarians than in younger controls (Brown et al, 1996; 

Santoro et al, 2010 and references therein). 

Overall, these data support the idea that in neurodegenerative diseases and longevity, such as 

in other complex traits interactions may be more important than single polymorphic variations 

(Moore and Williams, 2002; Gilbert-Diamond and Moore, 2011) and that they play an 

important role on their non-additive heritability. Interactions may account for the missing 
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heritability of these traits and for their lack of replicability, as previously suggested based on 

studies on model organisms (Mackay, 2014). On the other hand, it has been shown that using 

whole genome data to find interactions affecting different phenotypes is extremely difficult 

due to huge number of interactions to be tested, the so-called curse of dimensionality (Bellman, 

1961; Gilbert-Diamond and Moore, 2011), which leads to great standard errors or to a 

reduction of power (Concato et al, 1993; Hosmer and Lemeshow; 2000; Freitas, 2001; Gilbert-

Diamond and Moore, 2011). On the contrary, to highlight some polymorphisms which appear 

to be correlated to phenotypes, emerging with appreciable additive effects (Mackay, 2014), 

may represent a starting point for interaction analyses and functional studies which avoid blind 

data mining. 

 

5. Conclusions 

Although additional large studies are warranted to validate our findings, some important 

conclusions emerge from this study.  First, it supports a direct or indirect (i.e. mediate by the 

action of interacting partners) role of the multifunctional inositol-kinases IPMK and IP6K3 in 

both neurodegeneration and longevity. These kinases are recognized to be crucial in inositol-

mediated transduction pathways and metabolic routes essential for cell homeostasis and 

survival. Second, it supports the view that the contribution of a gene promoting survival can 

be considered as an aggregated outcome of the multiple influences of its variants in the 

interactome network of the cell. Therefore, genes promoting longevity and/or affecting disease 

risks may be found in hubs interconnecting several signaling pathways. The final outcome will 

depend on the net effect of their interactions with other variants of proteins networking with 

them.  
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Supporting information list: 

Table 1S: Logistic regression analysis for the association between IP6K3 genotypes and 

longevity 

Table 2S: Results of the logistic regression models for IPMK SNPs in the female LOAD 

samples 

Table 3S: Summary of functional annotation for relevant SNPs at IP6K3 and IPMK loci, as obtained 

by Genotype-Tissue Expression (GTEx) pilot analysis (https://gtexportal.org/home/). 

Figure 1S. Interaction graph (a) and interaction dendrogram (b) in longevity data set, resulting from 

MDR analysis. In a, the network graph obtained by setting from two to five-way combinations of the 

attributes. For each SNP is reported in per cent the value of information gain (IG) and numbers in the 

connections indicate the entropy-based IG for the SNP pairs. Red bar and orange bar indicate the high-

level synergies on the phenotype, while the brown indicate a medium-level interaction, green and blue 

connections with negative IG values indicate redundancy or lack of synergistic interactions between 

the markers. In b, the interaction dendrogram for the same dataset, obtained from the information gain 

values, organized in a distance matrix to carry out a hierarchical cluster analysis. Pairs of SNPs with 

stronger interactions have a smaller distance. The shorter is the line connecting two attributes, stronger 

is the interaction. As before, the color of the line indicates the type of interaction. Red and orange 

suggest there is a synergistic relationship (i.e. epistasis). Yellow suggests independence. Green and 

blue suggest redundancy or correlation. 

Figure 2S. Interaction graph (a) and interaction dendrogram (b) in LOAD data set, resulting from MDR 

analysis. In a, the network graph obtained by setting from two to five-way combinations of the 

attributes. For each SNP is reported in per cent the value of information gain (IG) and numbers in the 

connections indicate the entropy-based IG for the SNP pairs. Red bar and orange bar indicate the high-

level synergies on the phenotype, while the brown indicate a medium-level interaction, green and blue 

connections with negative IG values indicate redundancy or lack of synergistic interactions between 

the markers. In b, the interaction dendrogram for the same dataset, obtained from the information gain 

values, organized in a distance matrix to carry out a hierarchical cluster analysis. Pairs of SNPs with 

stronger interactions have a smaller distance. The shorter is the line connecting two attributes, stronger 

is the interaction. As before, the color of the line indicates the type of interaction. Red and orange 

suggest there is a synergistic relationship (i.e. epistasis). Yellow suggests independence. Green and 

blue suggest moderate and high redundancy respectively. 
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Table 1. Summary of the studied sample groups 

 

 Subjects, n Mean age (years, +/- SD) Female, % 

Adult control 309 74.06 ± 6.95 49.5 

LOAD 280 77.8 ± 5.0 63.0 

Long lived 259 96.92 ± 3.72 63.0 

 

 

 

Table 2.  Relevant comparisons of association results for IP6K3 SNPs with longevity (present study)  

and LOAD (Crocco et al, 2016). 

 

 Association with longevity 

(present study) 

Association with LOAD 

 (Crocco et al, 2016) 

 Adult controls vs Long-lived LOAD vs Adult controls 

IP6K3 SNPs Minor 

allele 

OR 95% C.I. pModel OR 95% C.I. pModel 

rs10947435 A 1.73 1.19-2.51 0.004D 1.90 1.15-3.14 0.010 D 

rs4713675 T 1.36 1.03-1.78 0.028A 1.45 0.85-2.48 0.170 D 

rs28607030 G 0.75 0.45-1.25 0.270R 0.57 0.36–0.90 0.011D 

OR, odds ratio; CI, 95% confidence interval. OR adjusted for sex. PModel is the p-value of the best-fit genetic  

model. The choice of each genetic model was based on AIC value. D is dominant, R is recessive and ADD is the  

additive model.  

 

 

Table 3. Relevant comparisons of association results for IPMK SNPs with LOAD (present study) 

and longevity (De Rango et al, 2019) in female samples. 

 

 Association with LOAD  

(present study) 

Association with longevity  

(De Rango et al, 2019) 

 LOAD vs Adult controls Adult controls vs Long-lived 

IPMK SNPs Minor allele OR 95% C.I. pModel OR 95% C.I. pModel 

rs2790156 A 0.25 0.06-0.92 0.042R 0.61 0.38–0.98 0.042 D 
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rs2790234 G 0.52 0.27–0.99 0.048D 0.33 0.16-0.67 0.002 D 

rs2590320 A 0.23 0.06–0.83 0.025R 0.57 0.36–0.91 0.019 D  

rs6481383 T 0.96 0.55–1.47 0.697D 0.59 0.37-0.94 0.026 D 

rs1832556  A 0.40 0.13–1.19 0.101R 0.59 0.37-0.94 0.028 D 

rs2251039 T 0.61 0.39–0.95 0.029D 0.61 0.38-0.97 0.038 D 

OR, odds ratio; CI, 95% confidence interval. PModel is the p-value of the bestfit genetic model. The 

choice of each genetic model was based on AIC value. D and Rindicate the dominant and recessive 

model, respectivaly.  

 

 

 

Table 4: Relevant comparisons of association results for IPMK haplotypes with LOAD (present study) and 

longevity (De Rango et al, 2019) in female samples. 

 

 Association with LOAD  

(present study) 

Association with longevity 

 (De Rango et al, 2019) 

 LOAD vs Adult controls Adult controls vs Long-lived 

Haplotype Frequency Score P value* Frequency Score P value* 

A-G-A-t-a-T 0.073 -2.000 0.044 0.067 -2.897 0.002 

A-C-A-t-a-T 0.135 -1.144 0.252 0.138 -0.668 0.483 

G-C-C-t-g-C 0.186 1.259 0.207 0.161 -0.353 0.715 

G-C-C-c-g-C 0.566 -0.170 0.864 0.616 2.155 0.024 

 

* simulated p-value obtained by Monte Carlo replication up to 10,000 bootstraps  
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Figure legends: 

 

Figure 1. Interaction graph (a) and interaction dendrogram (b) in longevity data set, resulting from MDR 

analysis. In a, the network graph obtained by setting from two to three-way combinations of the attributes. 

For each SNP is reported in per cent the value of information gain (IG) and numbers in the connections 

indicate the entropy-based IG for the SNP pairs. Red bar and orange bar indicate the high-level synergies 

on the phenotype, while the brown indicate a medium-level interaction, green and blue connections with 

negative IG values indicate redundancy or lack of synergistic interactions between the markers. In b, the 

interaction dendrogram for the same dataset, obtained from the information gain values, organized in a 

distance matrix to carry out a hierarchical cluster analysis. Pairs of SNPs with stronger interactions have a 

smaller distance. The shorter is the line connecting two attributes, stronger is the interaction. As before, the 

color of the line indicates the type of interaction. Red and orange suggest there is a synergistic relationship 

(i.e., epistasis). Yellow suggests independence. Green and blue suggest redundancy or correlation. 

 

Figure 2. Interaction graph (a) and interaction dendrogram (b) in LOAD data set, resulting from MDR 

analysis. In a, the network graph obtained by setting from two to three-way combinations of the attributes. 

For each SNP is reported in per cent the value of information gain (IG) and numbers in the connections 

indicate the entropy-based IG for the SNP pairs. Red bar and orange bar indicate the high-level synergies 

on the phenotype, while the brown indicate a medium-level interaction, green and blue connections with 

negative IG values indicate redundancy or lack of synergistic interactions between the markers. In b, the 

interaction dendrogram for the same dataset, obtained from the information gain values, organized in a 

distance matrix to carry out a hierarchical cluster analysis. Pairs of SNPs with stronger interactions have a 

smaller distance. The shorter is the line connecting two attributes, stronger is the interaction. As before, the 

color of the line indicates the type of interaction. Red and orange suggest there is a synergistic relationship 
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(i.e., epistasis). Yellow suggests independence. Green and blue suggest moderate and high redundancy, 

respectively. 
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