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Cellular automaton decoders 
for topological quantum codes 
with noisy measurements 
and beyond
Michael Vasmer1,2,3*, Dan E. Browne1 & Aleksander Kubica2,3

We propose an error correction procedure based on a cellular automaton, the sweep rule, which is 
applicable to a broad range of codes beyond topological quantum codes. For simplicity, however, we 
focus on the three-dimensional toric code on the rhombic dodecahedral lattice with boundaries and 
prove that the resulting local decoder has a non-zero error threshold. We also numerically benchmark 
the performance of the decoder in the setting with measurement errors using various noise models. 
We find that this error correction procedure is remarkably robust against measurement errors and is 
also essentially insensitive to the details of the lattice and noise model. Our work constitutes a step 
towards finding simple and high-performance decoding strategies for a wide range of quantum low-
density parity-check codes.

Developing and optimizing decoders for quantum error-correcting codes is an essential task on the road towards 
building a fault-tolerant quantum  computer1–3. A decoder is a classical algorithm that outputs a correction 
operator, given an error syndrome, i.e. a list of measurement outcomes of parity-check operators. The error 
threshold of a decoder tells us the maximum error rate that the code (and hence an architecture based on the 
code) can tolerate. Moreover, decoder performance has a direct impact on the resource requirements of fault-
tolerant quantum  computation4. In addition, the runtime of a decoder has a large bearing on the clock speed of 
a quantum computer and may be the most significant bottleneck in some  architectures5,6.

Here, we focus on decoders for CSS stabilizer  codes7,8, in particular topological quantum  codes9–12, which have 
desirable properties such as high error-correction thresholds and low-weight stabilizer generators. Recently, there 
has been renewed interest in d-dimensional topological codes, where d ≥ 3 , because they have more powerful 
logical gates than their two-dimensional  counterparts13–21 and are naturally suited to  networked22–25 and ballistic 
linear optical  architectures26–30. In addition, it has recently been proposed that one could utilize the power of 
three-dimensional (3D) topological codes using a two-dimensional layer of active  qubits31,32.

Cellular-automaton (CA) decoders for topological  codes33–39 are particularly attractive because they are local: 
at each vertex of the lattice we compute a correction using a simple rule that processes syndrome information in 
the neighbourhood of the vertex. This is in contrast to more complicated decoders such as the minimum-weight 
perfect matching  algorithm10, which requires global processing of the entire syndrome to compute a correction. 
Moreover, CA decoders have another advantage: they exhibit single-shot error  correction40,41, i.e. it is not neces-
sary to repeat stabilizer measurements to compensate for the effect of measurement errors.

In our work we study the recently proposed sweep  decoder39, a cellular-automaton decoder based on the 
sweep rule. First, we adapt the sweep rule to an abstract setting of codes without geometric locality, which opens 
up the possibility of using the sweep decoder for certain low-density parity-check (LDPC) codes beyond topo-
logical codes. Second, we show how the sweep decoder can be used to decode phase-flip errors in the 3D toric 
code on the rhombic dodecahedral lattice with boundaries, and we prove that it has a non-zero error threshold 
in this case. We remark that the original sweep decoder only works for the toric code defined on lattices without 
boundaries. Third, we numerically simulate the performance of the decoder in the setting with measurement 
errors and further optimize its performance. We use an independent and identically distributed (iid) error 
model with phase-flip probability p and measurement error probability q. We observe an error threshold of 
∼2.1% when q = p , an error threshold of ∼2.9% when q = 0 and an error threshold of ∼8% when p → 0+ ; see 
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Fig. 1. We note that the sweep rule decoder cannot be used to decode bit-flip errors in the 3D toric code, as their 
(point-like) syndromes do not have the necessary structure. However, 2D toric code decoders can be used for 
this purpose, e.g.10,42–47.

We report that the sweep decoder has an impressive robustness against measurement errors and in general 
performs well in terms of an error-correction threshold. To compare the sweep decoder with previous  work48–51, 
we look at the 3D toric code on the cubic lattice, as decoding the 3D toric code on the rhombic dodecahedral 
lattice has not been studied before; see Table 1.

The remainder of this article is structured as follows. We start by presenting how the sweep rule can be used 
in an abstract setting of codes without geometric locality. Then, we outline a proof of the non-zero error thresh-
old of the sweep decoder for the 3D toric code on the rhombic dodecahedral lattice with boundaries. We also 
present numerical simulations of the performance of the decoder in the setting with measurement errors for 
lattices with and without boundaries. We discuss the applicability of the sweep decoder and suggest directions 
for further research. Finally, we prove the properties of the sweep rule in the abstract setting, and analyze the 
case of lattices with boundaries.

Results
We start this section by adapting the sweep  rule39 to the setting of causal codes, which go beyond topological 
quantum codes. Then, we focus on the 3D toric code on the rhombic dodecahedral lattice. We first analyze the 
case of the infinite lattice, followed by the case of lattices with boundaries. We finish by presenting numerical 
simulations of the performance of various optimized versions of the sweep decoder.

Sweep rule for causal codes. Recall that a stabilizer code is CSS iff its stabilizer group can be generated 
by operators that consist exclusively of Pauli X or Pauli Z operators. Let Q denote the set of physical qubits of the 
code and S be the set of all X stabilizer generators, which are measured. We refer to the stabilizers returning −1 
outcome as the X-type syndrome. The X-type syndrome constitutes the classical data needed to correct Pauli Z 
errors. In what follows, we focus on correcting Z errors as X errors are handled analogously.
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Figure 1.  Numerical error threshold estimates for the sweep decoder applied to the toric code on the rhombic 
dodecahedral lattice. In (a), we plot the error threshold pth(N) as function of the number of error-correction 
cycles N, for an error model with equal phase-flip (p) and measurement error (q) probabilities ( α = q/p = 1 ). 
The inset shows the data for N = 210 , where we use 104 Monte Carlo samples for each point. Using the ansatz 
in Eq. (10), we estimate the sustainable threshold to be psus ≈ 2.1% . In (b), we plot psus for error models with 
different values of α , where we approximate psus ≈ pth(2

10).

Table 1.  Comparison of the error thresholds of (cubic) toric code decoders against phase-flip noise with 
( q = p ) and without ( q = 0 ) measurement errors. Our results are shown in bold.

Decoder q = 0 q = p

Neural  network49 17.5% N/A

Renormalization group (RG)50 17.2% 7.3%

Toom’s  rule48 14.5% N/A

Erasure mapping (EM)51 12.2% N/A

Sweep (with direction change) 15.5% 1.7%
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We start by introducing a partially ordered set V with a binary relation � over its elements. We refer to the 
elements of V as locations. Given a subset of locations U ⊆ V  , we say that a location w ∈ V  is an upper bound of 
U and write U � w iff u � w for all u ∈ U ; a lower bound of U is defined similarly. The supremum of U, denoted 
by supU  , is the least upper bound of U, i.e., supU � w for each upper bound w of U. Similarly, the infimum 
inf U  is the greatest lower bound of U. We also define the future and past of w ∈ V  to be, respectively

We define the causal diamond

of U as the intersection of the future of inf U  and the past of supU  . Lastly, for any A ⊆ 2V , where 2V is the 
power set of V, we define the restriction of A to the location v ∈ V  as follows

For notational convenience, we use the shorthands 
⋃

A =
⋃

A∈A A and supA = sup
⋃

A.
Let CQ and CS be F2-linear vector spaces with the sets of qubits Q and X stabilizer generators S as bases, 

respectively. Note that there is a one-to-one correspondence between vectors in CQ and subsets of Q , thus we 
treat them interchangeably; similarly for vectors in CS and subsets of S . Let ∂ : CQ → CS be a linear map, 
called the boundary map, which for any Pauli Z error with support ǫ ⊆ Q returns its X-type syndrome σ ⊆ S , 
i.e., σ = ∂ǫ . We say that a location v ∈ V  is trailing for σ ∈ im ∂ iff σ |v is nonempty and belongs to the future 
of v, i.e., σ |v ⊂ ↑ (v).

Now, we proceed with defining a causal code. We say that a quadruple ((V ,�),Q ,S , ∂) describes a causal 
code iff the following conditions are satisfied. 

1. (causal diamonds) For any finite subset of locations U ⊆ V  there exists the causal diamond ♦(U).
2. (locations) Every qubit Q ∈ Q and every stabilizer generator S ∈ S correspond to finite subsets of locations, 

i.e., Q, S ⊆ V .
3. (qubit infimum) For every qubit Q ∈ Q its infimum satisfies inf Q ∈ Q.
4. (syndrome evaluation) The syndrome ∂ǫ of any error ǫ ⊆ Q can be evaluated locally, i.e., 

5. (trailing location) For any location v ∈ V  and the syndrome σ ∈ im ∂ , if σ |v is nonempty and σ |v ⊂ ↑ (v) , 
then there exists a subset of qubits ϕ(v) ⊆ Q |v ∩ ↑ (v) satisfying [∂ϕ(v)]|v = σ |v and ♦(ϕ(v)) = ♦(σ |v).

We can adapt the sweep rule to any causal code ((V ,�),Q ,S , ∂) . We define the sweep rule for every location 
v ∈ V  in the same way as in Ref.39.

Definition 1 (sweep rule) If v is trailing, then find a subset of qubits ϕ(v) ⊆ Q |v ∩ ↑ (v) with a boundary that 
locally matches σ , i.e. [∂ϕ(v)]|v = σ |v . Return ϕ(v).

Our first result is a lemma concerning the properties of the sweep rule. But, before we state the lemma, we 
must make some additional definitions. Let u, v ∈ V  be two locations satisfying u ≺ v . We say that a sequence 
of locations u ≺ w1 ≺ . . . ≺ wn ≺ v , where n = 0, 1, . . . , forms a chain between u and v of length n+ 1 . We 
define N(u, v) to be the collection of all the chains between u and v. We write ℓ(N) to denote the length of the 
chain N ∈ N(u, v).

Given a causal code ((V ,�),Q ,S , ∂) , we define its corresponding syndrome graph G as follows. For each 
stabilizer S ∈ S , there is a node in G and we add an edge between any two nodes iff their corresponding sta-
bilizers both have a non-zero intersection with the same qubit in Q . We define the syndrome distance dG(S,T) 
between any two stabilizer generators S,T ∈ S to be the graph distance in G, i.e., the length of the shortest path 
in G between the nodes corresponding to S and T. This can be extended to the syndromes σ , τ ⊆ S in the obvi-
ous way: dG(σ , τ) = minS∈σ ,T∈τ dG(S,T).

Lemma 1 (sweep rule properties) Let σ ∈ im ∂ be a syndrome of the causal code ((V ,�),Q ,S , ∂) . Suppose 
that the sweep rule is applied simultaneously at every location in V at time steps T = 1, 2, . . . , and the syndrome is 
updated at each time step as follows: σ (T+1) = σ (T) + ∂ϕ(T) , where ϕ(T) is the set of qubits returned by the rule. 
Then, 

1. (support) the syndrome at time T, σ (T) stays within the causal diamond of the original syndrome, i.e.

2. (propagation) the syndrome distance between σ and any S ∈ σ (T) is at most T, i.e. 

(1)↑ (w) = {W ⊆ V : w � W},

(2)↓ (w) = {W ⊆ V : W � w}.

(3)♦(U) = ↑ (inf U) ∩ ↓ (supU)

(4)A |v = {A ∈ A : A ∋ v}.

(5)∀v ∈ V : (∂ǫ)|v = [∂(ǫ|v)]|v .

(6)σ (T) ⊆ ♦(σ ),
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3. (removal) the syndrome is trivial, i.e. σ (T) = 0 , for

That is, the syndrome is trivial for times T greater than the maximal chain length between a location v and the 
supremum of the syndrome sup σ , maximized over all locations v contained in the syndrome (viewed as a subset 
of locations).

The above lemma is analogous to Lemma 2 from Ref.39, but is not limited to codes defined on geometric lat-
tices; rather, it now applies to more general causal codes. We defer the proof until the Methods.

Rhombic dodecahedral toric codes. In this section, we examine an example of a causal code: the 3D 
toric code defined on the infinite rhombic dodecahedral lattice. Toric codes defined on this lattice are of interest 
because they arise in the transversal implementation of CCZ in 3D toric  codes16,18,32. Consider the tessellation 
of R3 by rhombic dodecahedra, where a rhombic dodecahedron is a face-transistive polyhedron with twelve 
rhombic faces. One can construct this lattice from the cubic lattice, as follows. Begin with a cubic lattice, where 
the vertices of the lattice are the elements of Z3 . Create new vertices at all half-integer coordinates (x/2, y/2, z/2), 
satisfying x + y + z = 1 mod 4 and xyz = 1 mod 2 . These new vertices sit at the centres of half of all cubes 
in the cubic lattice. For each such cube, add edges from the new vertex at its centre to the vertices of the cube. 
Finally, delete the edges of the cubic lattice. The remaining lattice is a rhombic dodecahedral lattice. Figure 2 
gives an example of this procedure.

We denote the infinite rhombic dodecahedral lattice by L∞ , and we denote its vertices, edges, faces, and cells 
by L∞

0  , L∞
1  , L∞

2  , and L∞
3  respectively. We place qubits on faces, and we associate X and Z stabilizer generators 

with edges and cells, respectively. That is, for each edge e ∈ L
∞
1  , we have a stabilizer generator �f :e∈f Xf  , and for 

each cell c ∈ L
∞
3  , we have a stabilizer generator �f ∈cZf  , where Xf  ( Zf  ) denotes a Pauli X (Z) operator acting on 

the qubit on face f. In the notation of the previous section, V = L
∞
0  , S = L

∞
1  , and Q = L

∞
2  . Let �ω ∈ R

3 be 
a vector (a sweep direction) that is not perpendicular to any of the edges of L∞ . Such a sweep direction induces 
a partial order over L∞

0  , as we now explain. Let (u : v) denote a path from one vertex v ∈ L
∞
0  to another vertex 

u ∈ L
∞
0  , where (u : v) = {(u,w1), . . . , (wn, v)} is a set of edges. We call a path from u to v causal (denoted by 

(u � v) ) if the inner product �ω · (wi ,wi+1) has the same sign for all edges (wi ,wi+1) ∈ (u � v) . We write u � v , 
if u = v or there exists a causal path, (u � v) , and �ω · (wi ,wi+1) > 0 for all edges in the path.

We now verify that the rhombic dodecahedral toric code equipped with a sweep direction is a causal code. 
We note that this is only with respect to phase-flip errors, as for bit-flip errors the trailing location condition is 
not satisfied. Higher-dimensional toric codes can satisfy the causal code conditions for both bit-flip and phase-
flip errors, e.g. the 4D toric code with qubits on  faces10,52. We choose a sweep direction that is parallel to one 
of the edge directions of the lattice, �ω = (1, 1, 1) . First, consider the causal diamond condition. One can prove 
by induction that any finite subset of vertices of the lattice has an infimum and supremum, and therefore has a 
unique causal diamond. Figure 3 shows an example of the future of a vertex and the causal diamond of a subset 
of vertices. By definition, the qubits and stabilizer generators are associated with faces and edges, which are 
finite subsets of locations (vertices), so the locations condition is satisfied. Next, consider the qubit infimum 
conidition. The faces of the lattice are rhombi, and as �ω is not perpendicular to any of the edges of the lattice, 
each face contains its infimum.

(7)dG(S, σ) ≤ T ,

(8)T > max
v∈

⋃

σ
max

N∈N(v,sup σ)
ℓ(N).

Figure 2.  A family of rhombic dodecahedral lattices with boundaries. (a) Construction of the L = 3 lattice 
from the cubic lattice. We show the initial cubic lattice as well as the final rhombic dodecahedral lattice. (b) The 
L = 3 lattice. The front and back boundaries are smooth (syndromes must form closed loops) and the other 
boundaries are rough (open loops of syndrome can terminate). (c) An example of a open loop of syndrome 
terminating on one of the rough boundaries (light yellow edges). (d) A syndrome on the smooth boundary 
(light yellow edges). With the sweep direction �ω = −(1, 1, 1) , the ringed vertex does not satisfy the trailing 
location condition.
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Next, consider the syndrome evaluation condition. We consider vector spaces C1 and C2 with bases given by 
e ∈ L

∞
1  and f ∈ L

∞
2  , respectively. This allows us to define the linear boundary operator ∂ : C2 → C1 , which 

is specified for all basis elements f ∈ C2 as follows: ∂f =
∑

e∈f e . In words, for each face, ∂ returns the sum of 
the edges in the face. The syndrome of a (phase-flip) error ǫ ⊆ L

∞
2  is then ∂ǫ . This syndrome evaluation pro-

cedure is local.
Now, we consider the final causal code condition: the trailing location condition. The rhombic dodecahedral 

lattice has two types of vertex: one type is degree four and the other is degree eight. Given our choice of sweep 
direction, one can easily verify that the trailing location condition is satisfied at all the vertices of L∞ , as illus-
trated in Fig. 3c.

Sweep decoder for toric codes with boundaries. In this section, we consider the extension of the 
sweep rule to 3D toric codes defined on a family of rhombic dodecahedral lattices L with boundaries, with 
growing linear size L. We discuss the problems that occur when we try to apply the standard sweep rule to this 
lattice. Then, we present a solution to these problems in the form of a modified sweep decoder.

We construct a family of rhombic dodecahedral lattices with boundaries from the infinite rhombic dodeca-
hedral lattice, by considering finite regions of it. We start with a cubic lattice of size (L− 1)× (L+ 1)× L , with 
vertices at integer coordinates (x, y, z) ∈ [0, L− 1] × [0, L+ 1] × [0, L] . To construct a rhombic dodecahedral 
lattice, we create vertices at the centre of cubes with coordinates (x/2, y/2, z/2) satisfying x + y + z = 1 mod 4 
and xyz = 1 mod 2 . Then for each vertex at the centre of a cube, we create edges from this vertex to all the ver-
tices (x, y, z) of its cube satisfying 0 < y < L+ 1 and 0 < z < L . Finally, we delete the edges of the cubic lattice 
and all the vertices (x, y, z) of the cubic lattice with y = 0, L+ 1 or z = 0, L . Figure 2 illustrates the construction 
of the rhombic dodecahedral lattice L for L = 3.

We denote the vertices, edges, and faces of the lattice L by L0 , L1 , and L2 , respectively. As in the previous 
section, we associate qubits with the faces of the lattice and we associate X stabilizer generators with the edges. 
We define a local region of L to be a region of L with diameter smaller than L/2. In particular, there are no 
non-trivial logical Z operators supported within a local region. The boundary map ∂ is defined in the same way 
as the infinite case, except for an important caveat. Some faces in L only have one or two edges (see Fig. 2), so 
∂ can return the sum of fewer than four edges. In the bulk of the lattice, syndromes must form closed loops. As 
illustrated in Fig. 2b, the lattices in our family have two types of boundaries: rough and smooth. Open loops of 
syndrome may only terminate on the rough boundaries.

For a chosen sweep direction, some vertices on the boundaries of L will not satisfy the trailing location 
condition (see Fig. 2d for an example). This means that some syndromes near the boundary are immobile under 
the action of the Sweep rule. Clearly, this poses a significant problem for a decoder based on the Sweep rule, as 
there are some constant weight errors whose syndromes are immobile. Fortunately, there is a simple solution to 
this problem: periodically varying the sweep direction. We pick a set of eight sweep directions

where each �ω ∈ � is parallel to one of the eight edge directions of L . The rule for each direction is analogous 
to that shown in Fig. 3c.

For our set of sweep directions, there are no errors within a local region whose syndromes are immobile for 
every sweep direction. To make this statement precise, we need to adapt the definition of a causal diamond to 
lattices with boundaries. As L is a subset of the infinite rhombic dodecahedral lattice L∞ , the causal diamond 
of U ⊆ L0 is well defined in L∞ for any �ω ∈ � , but it may contain subsets of vertices that are not in L . Roughly 

(9)� = {(±1,±1,±1)},

Figure 3.  The sweep rule in the rhombic dodecahedral lattice. The sweep direction �ω = −(1, 1, 1) is indicated 
by the arrow. (a) The future ↑ (v) of v (the blue vertex), is the power set of the black vertices and the blue vertex. 
(b) The causal diamond of U, where U is the set of blue vertices. The red vertices are supU and inf U , and ♦(U) 
is the power set of the red, black and blue vertices. (c) In the rhombic dodecahedral lattice, there are two types of 
vertices: one type is degree four (red and black) and the other is degree eight (blue). The red (blue) shaded faces 
are the qubits that the rule may return, depending on the syndrome at the highlighted red (blue) vertex. The rule 
returns nothing at the black vertices because there are no syndromes whose restriction to a black vertex is in the 
future of that vertex.
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speaking, we define the causal region of U with respect to �ω , R �ω(U) , to be the restriction of the causal diamond 
in L∞ (with respect to �ω ) to the finite lattice L . More precisely, it is a subset of the elements of the causal dia-
mond, whose vertices belong to L , i.e. R �ω(U) = 2♦ �ω(U)∩L0 , where ♦ �ω(U) is the causal diamond with respect 
to �ω . We now state a lemma that is sufficient to prove that a decoder based on the Sweep rule has a non-zero 
error threshold for rhombic dodecahedral lattices with boundaries.

Lemma 2 Let � be a set of sweep directions and σ ∈ im ∂ be a syndrome, such that, for all sweep directions �ω ∈ � , 
the causal region of σ with respect to �ω , R �ω(σ ) , is contained in a local region of L . Then there exists a sweep direc-
tion �ω∗ ∈ � such that the trailing location condition is satisfied at every vertex in R �ω∗(σ ).

We defer the proof of Lemma 2 until the Methods. We now give a pseudocode description of a modified 
sweep decoder that works for 3D toric codes defined on lattices with boundaries. We note that all addition below 
is carried out modulo 2, as we view errors and syndromes as F2 vectors.

The decoder can fail in two ways. Firstly, if the syndrome is still non-trivial after |�| × Tmax applications of 
the sweep rule, we consider the decoder to have failed. Secondly, the decoder can fail because the product of the 
correction and the original error implements a non-trivial logical operator. We can now state our main theorem.

Theorem 1 Consider 3D toric codes defined on a family of rhombic dodecahedral lattices L , with growing linear 
size L. There exists a constant pth > 0 such that for any phase-flip error rate p < pth , the probability that the sweep 
decoder fails is O

(

(p/pth)
β1L

β2
)

 , for some constants β1,β2 > 0.

We provide a sketch of the proof here, and postpone the details until Supplementary Note 1. Our proof builds 
 on33,39,45,53 and relies on standard results from the  literature45,54.

Proof First, we consider a chunk decomposition of the error. This is a recursive definition, where the diameter 
of the chunk is exponential in the recursion level. Next, we use the properties of the sweep rule (Lemma 1) to 
show that the sweep decoder successfully corrects chunks up to some level m∗ = O

(

log L
)

 . To accomplish this, 
we first show that the sweep decoder is guaranteed to correct errors whose diameter is smaller than L, in a number 
of time steps that scales linearly with the diameter. Secondly, we rely on a standard lemma that states that a con-
nected component of a level-m chunk is well separated from level-n chunks with n ≥ m , which means that the 
sweep decoder corrects connected components of the error independently. Finally, percolation theory tells us 
that the probability of an error containing a level-n chunk is O

(

(p/pth)
2n
)

 , for some pth > 0 . As the decoder 
successfully corrects all level-n chunks for n < m∗ = O

(

log L
)

 , the failure probability of the decoder is 
O
(

(p/pth)
β1L

β2
)

 .   �

Numerical implementation and optimization. We implemented the sweep decoder in C++ and simu-
lated its performance for 3D toric codes defined on rhombic dodecahedral lattices, with and without boundaries. 
The code is available  online55. We study the performance of the sweep decoder for error models with phase-flip 
and measurement errors. Specifically, we simulate the following procedure.

Definition 2 (Decoding with noisy measurements) Consider the 3D toric code with qubits on faces and X stabi-
lizers on edges. At each time step T ∈ {1, . . . ,N} , the following events take place: 

1. A Z error independently affects each qubit with probability p.
2. The X stabilizer generators are measured perfectly.
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3. Each syndrome bit is flipped independently with probability q = αp , where α is a free parameter.
4. The sweep rule is applied simultaneously to every vertex, and Z corrections are applied to the qubits returned 

by the rule.

After N time steps have elapsed, the X stabilizer generators are measured perfectly and we apply Algorithm 1. 
Decoding succeeds if, and only if, the product of the errors and corrections (including the correction returned 
by Algorithm 1) is a Z-type stabilizer.

We note that measuring the stabilizers perfectly after N time steps may seem unrealistic. However, this can 
model readout of a CSS code, because measurement errors during destructive single-qubit X measurements of 
the physical qubits have the same effect as phase-flip errors immediately prior to the measurements.

We first present our results for lattices with periodic boundary conditions i.e. each lattice is topologically a 
3-torus. Although changing the sweep direction is not necessary for such lattices, we observe improved per-
formance compared with keeping a constant sweep direction. We consider error models with phase-flip error 
probability p and measurement error probability q = αp , for various values of α . For a given error model, we 
study the error threshold of the decoder as a function of N, the number of cycles, where a cycle is one round of 
the procedure described in Definition 2. For a range of values of N, we estimate the logical error rate, pL , as a 
function of p for different values of L (the linear lattice size, or equivalently the code distance of the toric code). 
We estimate the error threshold as the value of p at which the curves for different L intersect. We find that the 
error threshold decays polynomially in N to a constant value, the sustainable threshold. The sustainable threshold 
is a measure of how much noise the decoder can tolerate over a number of cycles much greater than the code 
distance. We use the following numerical ansatz

to model the behaviour of the error threshold as a function of N, where γ and psus (the sustainable threshold) 
are parameters of the fit. For an error model with α = q/p = 1 , we find a sustainable threshold of psus ≈ 2.1% , 
with γ = 1.06 and pth(1) = 21.5% (as shown in Fig. 1).

We observe that the decoder has a significantly higher tolerance to measurement noise as opposed to qubit 
noise, as shown in Fig. 1. We find that the maximum phase-flip error rate that the decoder can tolerate is p ≈ 2.9% 
(for q = 0 ), compared with a maximum measurement error rate of q ≈ 8% (for p → 0+ ). Our results show that 
the sweep decoder has an inbuilt resilience to measurement errors. To understand why this is the case, let us 
analyse the effect of measurement errors on the decoder. First, consider measurement errors that are far from 
phase-flip errors. A single isolated measurement error cannot cause the decoder to erroneously apply a Pauli-
X operator. To deceive the decoder, two measurement errors must occur next to each other, such that a vertex 
becomes trailing. Second, measurement errors in the neighbourhood of phase-flip errors can interfere with 
the decoder, and prevent it from applying a correction. Thus, to affect the performance of the decoder, a single 
measurement error either has to occur close to a phase-flip measurement error. This explains why the sweep 
decoder has a higher tolerance of measurement errors relative to phase-flip errors.

We also simulated the performance of the decoder for lattices with boundaries. We consider toric codes 
defined the family of rhombic dodecahedral lattices with boundaries that we described earlier. We find that 
the sustainable threshold of toric codes defined on this lattice family is psus ≈ 2.1% , for an error model where 
α = q/p = 1 . This value matches the sustainable threshold for the corresponding lattice with periodic boundary 
conditions, as expected.

A natural question to ask is whether applying the sweep rule multiple times per stabilizer measurement 
improves the performance of the decoder. Multiple applications of the rule could be feasible if gates are much 
faster than measurements, as in e.g. in trapped-ion  qubits56. We found that increasing the number of applications 
of the rule per syndrome measurement significantly improved the performance of the decoder for a variety of 
error models (including error models where α = q/p > 1 ); see Fig. 4 for an example.

The ability to change the sweep direction gives us parameters that we can use to tune the performance of the 
decoder. They are: the frequency with which we change the sweep direction and the order in which we change the 
sweep direction. We investigated the effect of varying both of these parameters. The most significant parameter 
is the direction-change frequency. Our simulation naturally divides into two phases: the error suppression phase 
where the rule applied while errors are happening, and the perfect decoding phase where the rule is applied 
without errors. In the error suppression phase, we want to prevent the build-up of errors near the boundaries 
so we anticipate that we may want to vary the sweep direction more frequently. We find that changing direction 
after ∼ log L sweeps in the error-suppression phase and L sweeps in the perfect decoding phase gave the best 
performance, as shown in Fig. 5. We find that the order in which we change the sweep direction does not appre-
ciably impact the performance of the decoder. In addition, we find that the performance of the regular sweep 
decoder is superior to the greedy sweep decoder introduced  in39.

Finally, we evaluated the performance of the sweep decoder against a simple correlated noise model, finding 
a reduced error threshold (see Supplementary Note 3).

Discussion
In this article, we extended the definition of the sweep rule CA to causal codes. We also proved that the sweep 
decoder has a non-zero error threshold for 3D toric codes defined on a family of lattices with boundaries. In 
addition, we benchmarked and optimized the decoder for various 3D toric codes.

(10)pth(N) = psus

[

1−

(

1−
pth(1)

psus

)

N−γ

]

,
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We now comment on the performance of the sweep decoder compared with other decoding algorithms. Recall 
that in Table 1, we list the error thresholds obtained from numerical simulations for various decoders applied 
to toric codes defined on the cubic lattice subject to phase-flip and measurement noise (see Supplementary 
Note 2 for details on the sweep decoder numerics). Although the sweep decoder does not have the highest error 
threshold, it has other advantages that make it attractive. Firstly, as it is a CA decoder, it is highly parallelizable, 
which is an advantage when compared to decoding algorithms that require more involved processing such as 
the RG decoder introduced in Ref.50. In addition, whilst neural network decoders such  as49 have low complexity 
once the network is trained, for codes with boundaries the training cost may scale exponentially with the code 
 distance57. Also, the sweep decoder is the only decoder in Table 1 that exhibits single-shot error correction. In 
contrast, using the RG decoder it is necessary to repeat the stabilizer measurements O(L) times before finding a 
correction, which further complicates the decoding procedure. Finally, we note there is still a large gap between 

2.6 2.8 3 3.2 3.4 3.6
·10−2
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p
L
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Figure 4.  Improving the performance of the sweep decoder applied to the toric code on the rhombic 
dodecahedral lattice (with boundaries) by applying the rule multiple times per syndrome measurement. We set 
α = q/p = 1 and we fix N = 210 error correction cycles. We plot the logical error rate pL as a function of p for 
different linear lattice sizes L. We applied the rule three times per syndrome measurement and we observe an 
error threshold of pth ≈ 3.2% , an improvement of over the corresponding error threshold of pth ≈ 2.17% when 
we applied the rule once per syndrome measurement (see the inset of Fig. 1a). We use 104 Monte Carlo samples 
for each point.
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Figure 5.  Optimizing the direction-change frequency for the sweep decoder applied to the toric code on the 
rhombic dodecahedral lattice (with boundaries). We plot the logical error rate pL as a function of the direction-
change period for various values of L. The number of error correction cycles is N = 210 and p = q = 0.021 . We 
achieve the best performance when we change sweep direction every ∼ log L cycles. We use 104 samples for each 
point.
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the highest error thresholds in Table 1 and the theoretical maximum error threshold of pth = 23.180(4)% , as 
predicted by statistical mechanical  mappings58–61.

The sweep decoder could also be used in other topological codes with boundaries. Recently, it was shown that 
toric code decoders can be used to decode color  codes62. Therefore, we could use the sweep decoder to correct 
errors in (d ≥ 3)-dimensional color codes with boundaries, as long as the toric codes on the restricted lattices 
of the color codes are causal codes.

We expect that the sweep decoder would be well-suited to (just-in-time) JIT decoding, which arises when 
one considers realizing a 3D topological code using a constant-thickness slice of active qubits. In this context, 
the syndrome information from the full 3D code is not available, but we still need to find a correction. The sweep 
decoder is ideally suited to this task, because it only requires local information to find a correction. Let us con-
sider the JIT decoding problem described  in32 as an example. We start with a single layer of 2D toric code. Then 
we create a new 2D toric code layer above the first, with each qubit prepared in the |0� state. Next, we measure 
the X stabilizers of the 3D toric code that link the two 2D layers. Then, we measure the qubits of the lower layer 
in the Z basis. We iterate this procedure until we have realized the full 3D code.

The X stabilizer measurements will project two layers of 2D toric code into a single 3D toric code, up to a 
random Pauli Z error applied to the qubits. This error will have a syndrome consisting of closed loops of edges. 
The standard decoding strategy is simply to apply an Z operator whose boundary is equal to the closed loops. 
However, when measurement errors occur, the syndrome will consist of broken loops. We call the ends of broken 
loops breakpoints. To decode with measurement errors, one can first close the broken loops (pair breakpoints) 
using the minimum-weight perfect matching algorithm, before applying an Z correction. However, in the JIT 
scenario, some breakpoints may need to be paired with other breakpoints that will appear in the future.  In32, 
Brown proposed deferring the pairing of breakpoints until later in the procedure, to reduce the probability of 
making mistakes. However, given the innate robustness of the sweep decoder, instead of using the ‘repair-then-
correct’ decoder outlined above, we could simply apply the sweep decoder at every step and not worry about 
the measurement errors. Given our numerical results, we anticipate that the sweep decoder would be effective 
in this case, and so provides an alternative method of JIT decoding to that is worth exploring.

We finish this section by suggesting further applications of the sweep decoder, such as decoding more general 
quantum LDPC codes, e.g. homological product  codes63, especially those introduced  in64. The abstract reformu-
lation of the sweep rule CA presented in the Introduction provides a clear starting point for this task. However, 
we emphasize that it is still uncertain as to whether the sweep decoder would work in this case, as more general 
LDPC codes may not share the properties of topological codes that are needed in the proof of Theorem 1. In 
addition, we would like to prove the existence of a non-zero error threshold when measurements are unreliable. 
From our investigation of this question, it seems that the proof technique in Supplementary Note 1 breaks down 
for this case.

Methods
In this section, we prove Lemma 1, which concerned the properties of the sweep rule in an abstract setting. In 
addition, we show that the sweep rule retains essentially the same properties for rhombic dodecahedral lattices 
with boundaries. We require these properties to prove a non-zero error threshold for the sweep decoder (see 
Supplementary Note 1). We begin with a useful lemma about causal diamonds, which we will use throughout 
this section.

Lemma 3 Let V be a partially ordered set. For any finite subsets U ,W ⊆ V  , if U ⊆ W , then

Proof We recall that ♦(U) = ↑ (inf U) ∩ ↓ (supU) . As both ↑ (inf U) and ↓ (supU) contain U, their intersection 
also contains U, i.e. U ⊆ ♦(U) . If U ⊆ W , then inf W � inf U  so ↑ (inf U) ⊆ ↑ (inf W) . Likewise, if U ⊆ W , 
then supU � supW and therefore ↓ (supU) ⊆ ↓ (supW) . Consequently, ♦(U) ⊆ ♦(W) .   �

Proof of sweep rule properties. Proof of Lemma 1 First, we prove the support property by induction. At 
time step T = 1 (before the rule is applied), this property holds. Now, consider the syndrome at time T, σ (T) . 
Let U (T) denote the set of trailing locations of the syndrome at time step T. Between time steps T and T + 1 , 
for each trailing location u ∈ U (T) , the sweep rule will return a subset of qubits ϕ(T)(u) with the property that 
[∂ϕ(T)(u)]|u = σ (T)|u . Therefore, the syndrome at time step T + 1 is

By assumption, ♦(∂ϕ(u)) = ♦
(

σ (T)|u
)

 , and ♦(σ )(T) ⊆ ♦(σ ) . Making multiple uses of Lemma 3, we have

Next, we prove the propagation property, also by induction. The property is true at time step T = 1 . Now, we 
prove the inductive step from time step T − 1 to T. As long as σ (T)  = 0 , for every S ∈ σ (T) , either S ∈ σ (T−1) or 
there exists an edge in the syndrome graph between the node corresponding to S and a node corresponding to 
S′ ∈ σ (T−1) . By invoking the triangle inequality, we conclude that

(11)U ⊆ ♦(U) ⊆ ♦(W).

(12)σ (T+1) = σ (T) +
∑

u∈U (T)

∂ϕ(T)(u).

(13)

σ (T+1) ⊆ ♦

�

σ (T+1)
�

= ♦



σ (T) ∪
�

u∈U (T)

∂ϕ(T)(u)



 ⊆ ♦



♦

�

σ (T)
�

∪
�

u∈U (T)

♦

�

∂ϕ(T)(u)
�



 ⊆ ♦(σ ).
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To prove the removal property, we define a function

In words, fσ (T) is the length of the longest chain between any location v ∈
⋃

σ (T) and the supremum of the 
original syndrome, sup σ . If σ (T) = ∅ , then we set fσ (T) = 0 . We now show that fσ (T) is a monotonically 
decreasing function of T. At time T, any location v ∈

⋃

σ (T) that maximizes the value of f(T) will necessarily be 
trailing. Between time steps T and T + 1 , a subset of qubits ϕ(T)(v) ∈ ↑ (v) will be returned, and the syndrome 
will be modified such that v /∈

⋃

σ (T+1) . Instead, there will be new locations u ∈
⋃

σ (T+1) , where every u ≻ v , 
which implies that fσ (T + 1) < fσ (T) . We note that because every qubit Q ∈ Q contains its unique infimum, it 
is impossible for a qubit to be returned multiple times by the rule in one time step.

The removal property immediately follows from the monotonicity of fσ (T) . As we consider lattices with a finite 
number of locations, fσ (1) = maxv∈

⋃

σ maxN∈N(v,sup σ) ℓ(N) will be finite. And between each time step, fσ (T) 
decreases by at least one, which implies that σ (T) = 0 for all T > maxv∈

⋃

σ maxN∈N(v,sup σ) ℓ(N) .   �

Sweep rule properties for rhombic dodecahedral lattices with boundaries. In this section, we 
show that the sweep rule retains the support, propagation and removal properties for rhombic dodecahedral 
lattices with boundaries, with some minor modifications.

We recall that we use a set of eight sweep directions � = (±1,±1,±1) . By inspecting Fig. 3, one can verify 
that no �ω ∈ � is perpendicular to any of the edges of the rhombic dodecahedral lattice, so the partial order 
is always well defined. In the Results, we neglected a subtlety concerning causal regions. Consider the causal 
region of U ⊆ L0 with respect to �ω , R �ω(U) = 2♦ �ω(U)∩L0 . For a given U, causal regions with respect to differ-
ent sweep directions may not be the same. Therefore, we must modify the definition of the causal region. Let 
{ �ω1, �ω2, . . . , �ω8} be an ordering of the sweep directions �ωj ∈ � . We recursively define the causal region of U to be

i.e. to compute R (U) , we take the causal region of U with respect to �ω1 , then we take the causal region of R �ω1
(U) 

with respect to �ω2 , and similarly until we reach �ω8.
The first step in showing that the sweep rule has the desired properties is to prove Lemma 2. This lemma is 

sufficient for proving the removal property of the rule.

Proof of Lemma 1 Any vertex not on the boundaries of L satisfies the trailing location condition for all �ω ∈ � , 
so we only need to check the vertices on the boundaries.

First, we consider the rough boundaries. On each such boundary, there are vertices that do not satisfy the 
trailing vertex condition for certain sweep directions. Let us examine each rough boundary in turn. First, consider 
the vertices on the top rough boundary, an example of which is highlighted in Fig. 6a. For these vertices, the prob-
lematic sweep directions are those that point inwards, i.e. �ω = (x, y,−1) , x, y = ±1 . Similarly, the problematic 
sweep directions for the vertices on the bottom rough boundary are �ω = (x, y, 1) , x, y = ±1 . Next, consider the 
vertices on the right rough boundary (see Fig. 6b for an example). The problematic sweep directions for these 
vertices are also those that point inwards, i.e. �ω = (−1, y, z) , y, z = ±1 . Analogously, the problematic sweep 
directions for the vertices on the left rough boundary are �ω = (1, y, z) , y, z = ±1 . Therefore, the satisfying sweep 
directions for vertices on the rough boundaries are those that point outwards, as shown in Fig. 7. 

Now, consider the smooth boundaries. We have already analysed the vertices which are part of a rough bound-
ary and a smooth boundary. For certain sweep directions, some vertices in the bulk of the smooth boundary 
do not satisfy the trailing vertex condition because of a missing face (see Fig. 2d for an example). For each such 
vertex, there are two problematic directions (both of which point outwards from the relevant smooth boundary). 
In Fig. 2d, these directions are �ω = −(1, 1, 1) and �ω′ = (1,−1, 1) . However, for each smooth boundary there are 
four sweep directions (the ones that point inwards) for which every vertex in the bulk of the boundary satisfies 
the trailing vertex condition. Figure 7 illustrates the satisfying directions for each smooth boundary.

We recall that a local region of L has diameter smaller than L/2. Any such region can intersect at most two 
rough boundaries and one smooth boundary e.g. the boundaries highlighted in Fig. 7a, Fig. 7c, and Fig. 7e. 
For this combination of boundaries, there is only one sweep direction for which all vertices satisfy the trailing 
vertex condition: �ω = (1, 1, 1) . This sweep direction will also work for a local region that intersects any two of 
the above boundaries, and any region that intersects any one of the above boundaries. There are eight possible 
combinations of three boundaries that can be intersected by a local region (corresponding to the eight corners 
of the cubes in Fig. 7). Therefore, by symmetry, the set of sweep directions required for the Lemma to hold are 
exactly � = {(±1,±1,±1)} .   �

We now explain how to modify the proof of Lemma 1 such that it applies to our family of rhombic dodecahe-
dral lattices with boundaries. First, we note that the proof of the support property is identical, except we replace 
♦(σ ) by R (σ ) . The proof of the propagation property is essentially the same, except that there may be some 
time steps where the syndrome does not move, as there are some sweep directions for which certain syndromes 
are immobile. However, this does not affect the upper bound on the propagation distance of any syndrome: it 
is still upper-bounded by T, the number of applications of the rule. We note that in Lemma 1, the propagation 
distance refers to path lengths in the syndrome graph. However, one can verify that there will always be an edge 

(14)dG(S, σ) ≤ dG(S, S
′)+ dG(S

′, σ) = 1+ (T − 1) = T .

(15)fσ (T) = max
v∈

⋃

σ (T)
max

N∈N(v,sup σ)
ℓ(N).

(16)R (U) = R �ω8
◦ . . . ◦R �ω2

◦R �ω1
(U),
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linking any syndrome σ (T) and its corresponding syndrome at the following time step σ (T+1) in L . Therefore, 
the upper bound on the propagation distance also applies to the distance defined as the length of the shortest 
path between two vertices of L.

Finally, the removal property also holds for any syndrome σ with R (σ ) contained in a local region, but with 
a longer required removal time. Suppose that we use the ordering { �ω1, �ω2, . . . , �ω8} and apply the sweep rule for 
T∗ time steps using �ω1 , followed by T∗ applications using �ω2 , and so on until we reach �ω8 , where

i.e. the longest causal path between the infimum and supremum of R (σ ) , maximized over the set of sweep 
directions.

By Lemma 2, there will always exist a sweep direction such that the trailing location condition is satisfied at 
every vertex in R (σ ) . Therefore, one can make a similar argument to the one made in the proof of Lemma 1 to 
show that there exists a monotone for at least one sweep direction, �ω,

which decreases by one at each time step the sweep rule is applied with direction �ω . By the support property 
fσ (T) ≤ T∗ for all T, so if we apply the rule T∗ times with sweep direction �ω , then the syndrome is guaranteed 
to be removed. But a priori we do not know which sweep direction(s) will remove a given syndrome. Therefore, 
to guarantee the removal of a syndrome, we must apply the sweep rule T∗ times in each direction, which gives 
a total removal time of |�| × T∗.

(17)T∗ = max
�ω∈�

max
(inf R (σ )�supR (σ ))

|(inf R (σ ) � supR (σ ))|,

(18)f (T) = max
v∈σ (T)

|(v � sup σ (T))|,

Figure 6.  Vertices on the rough boundaries that do not satisfy the trailing vertex condition. In (a), we 
highlight such a vertex, v, in blue on the top rough boundary. Consider the highlighted qubit (blue face) and 
its syndrome (light yellow edges). For the sweep directions �ω = (1,−1,−1) and �ω′ = (−1, 1,−1) , v does not 
satisfy the trailing vertex condition because the blue face is not in ↑ (v) . In (b), we highlight a vertex in red on 
the right rough boundary that does not satisfy the trailing vertex condition for the same reason as (a), where the 
problematic sweep direction is �ω = (−1,−1, 1).

Figure 7.  The constraints on the sweep directions �ω = (x, y, z) ∈ {(±1,±1,±1)} such that all vertices on the 
highlighted boundary satisfy the trailing vertex condition.
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