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Abstract

Regularised optimal transport theory has been gaining increasing interest in machine learning

as a versatile tool to handle and compare probability measures. Entropy-based regularisations,

known as Sinkhorn divergences, have proved successful in a wide range of applications: as a

metric for clustering and barycenters estimation, as a tool to transfer information in domain

adaptation, and as a fitting loss for generative models, to name a few. Given this success,

it is crucial to investigate the statistical and optimization properties of such models. These

aspects are instrumental to design new and principled paradigms that contribute to further

advance the field. Nonetheless, questions on asymptotic guarantees of the estimators based

on Entropic Optimal Transport have received less attention.

In this thesis we target such questions, focusing on three major settings where Entropic

Optimal Transport has been used: learning histograms in supervised frameworks, barycenter

estimation and probability matching. We present the first consistent estimator for learning

with Sinkhorn loss in supervised settings, with explicit excess risk bounds. We propose

a novel algorithm for Sinkhorn barycenters that handles arbitrary probability distributions

with provable global convergence guarantees. Finally, we address generative models with

Sinkhorn divergence as loss function: we analyse the role of the latent distribution and the

generator from a modelling and statistical perspective. We propose a method that learns the

latent distribution and the generator jointly and we characterize the generalization properties

of such estimator. Overall, the tools developed in this work contribute to the understanding

of the theoretical properties of Entropic Optimal Transport and their versatility in machine

learning.



Impact Statement

The impact of machine learning in everyday life is becoming increasingly more significant.

The amount of research towards advances of machine learning has grown immensely in

the past decade and spans a broad range of topics both in theory and applications. The

topic covered in this thesis is deeply theory-oriented and is of interest mainly within the

academic community. The focus of this thesis is on a metric between distributions -derived

from the Entropic Optimal Transport problem- that has recently gained a lot of attention

in the community. The application of this metric in many machine learning tasks has

proved successful. The success has motivated a new line of research that addresses the

interplay between Optimal Transport and Machine Learning. The present work advances the

understanding of the theoretical properties of loss functions based on Optimal Transport and

designs theoretically grounded methodologies that are applied to supervised and unsupervised

problems. This is necessary to pose the bases for methods which have abstract guarantees

and that are not developed for specific instances only. While Optimal Transport distances

have been already thoroughly studied in other applied sciences, such as economics, their

application in machine learning is relatively new but very promising. This thesis benefits

and contributes to the development of this active line of research. Specific contributions

of the thesis are related to three core problems of machine learning, namely distributional

regression, barycentric estimation and density fitting. However, the techniques developed

can be deployed in other sets of problems. Finally, while the direct impact of this work

is more immediate within academia, Optimal transport distances offer a versatile tool to

manipulate data: with some improvement of the engineering aspects we expect that the

methods developed in this thesis are of interest for practical applications.
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Chapter 1

Introduction

This thesis is about Entropic Optimal Transport in Machine Learning. Here we introduce the

motivations, the context, and the contributions of this work.

A central question in machine learning is to understand the structure of data and to build

models that use such data to solve a specific task. Probability distributions are an integral

part in many machine learning problems, both supervised and unsupervised. For example, a

classic machine learning task consists in estimating – based on a finite number of observed

data {xi}ni=1 in some space X – the unknown probability distribution from which the data is

sampled. A common approach amounts to fitting a parametric model to a dataset, i.e. finding

the parameters of a chosen model that fit the observed data in some meaningful way. In

practice, to find good parameters that fit a model to the unknown distribution, one has to

minimize an error (or loss) function, which quantifies the difference between the estimate

and the true distribution. This means that selecting a good notion of distance to compare

probabilities is a core part of the problem.

Alternatively, rather than learning the underlying distribution of the observed data, one

may be interested in finding patterns, and in grouping the data points according to their

similarity. Clustering is a common unsupervised task that aims to automatically divide

points into groups (i.e. clusters) with similar properties. Defining what ‘similar’ means

for complex data is challenging. In practice, many data can be represented as histograms,

which are discrete probability distributions over a finite set of atoms, or encoded as densities.

Examples include text documents, represented as histograms on a fixed vocabulary of n

words (Kusner et al., 2015); the colour content of images, defined by the distribution of

its pixels in some colour space (Rubner et al., 1997, 2000); words and graphs, that can be
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Figure 1.1: Representation of Dirac deltas centered at some a ∈ R and a+ ε for a small (left) and a
bigger (right) value of ε.

represented as Gaussian densities (Vilnis and McCallum, 2015; He et al., 2015). A good

notion of distance when comparing probabilities is a crucial tool to define similarity for such

data. Thus, quantitatively measuring the dissimilarity between two probability measures

(histograms, densities or general distributions) in a meaningful way becomes essential. The

metric used to quantify this dissimilarity plays a fundamental role, since different distances

used in the same problem can yield very different results (Rubner et al., 2000; Cuturi and

Doucet, 2014).

1.1 Discrepancies between probability measures

A widely used class of discrepancies between distributions is given by Csizar’s f -divergences,

which include the well-known Total Variation, Hellinger distance and Kullback-Leibler

divergence. Each of them has specific properties that can be advantageous depending on the

setting. For example, Total Variation is a useful upper bound of the difference between the

probabilities that the two distributions can assign to the same event, Hellinger distance is

convenient because of its factorization properties and Kullback-Leibler divergence arises

naturally in information theory and maximum likelihood estimation (Gibbs and Su, 2002).

However, all of them induce a strong notion of convergence, which results in not being

stable with respect to some types of changes in the distributions. As illustrative example

consider the following case: assume that there is a target distribution represented by a Dirac

delta δa centered at some point a ∈ R. With some procedure, one obtains as an estimate of

such target a Delta centered at a+ ε, i.e. δa+ε (Fig. 1.1). Intuitively, the mismatch in the

estimation is more severe as |ε| grows. Using the Total Variation to measure the error results

in the following behaviour: the error is 0 if ε = 0 and is 1 for any ε > 0, irrespective of how

big or small |ε| is; thus, the Total Variation does not suitably capture the actual entity of the

error. Ideally, a notion of discrepancy that is sensitive to changes in ε is favourable. Such

behavior is representative of metrics that are ‘weak’.
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Metrics between probability measures that are labelled as weak and are particularly suited to

capture the geometric properties of the distributions are Optimal Transport distances. 1

Optimal Transport (OT) distances are defined starting from an Optimal Transport problem

which consists in finding an ‘optimal’ way to move mass from a distribution α to a dis-

tribution β on some domain X . ‘Optimal’ is to be interpreted with respect to a ground

cost function defined on the underlying space X , which establishes the relevant geometric

structure. Normally, considering a metric space (X , d) (for example (Rd, ‖ · ‖)) the cost

function corresponds to the ground distance d or to a power of d. This is how the Optimal

Transport distances incorporate the geometry of the underlying space in their definition.

To clarify the terminology, we point out that when considering as cost function a distance

or a power of the distance, Optimal Transport metrics are referred to as Wasserstein dis-

tance. When considering a generic cost function, the correct terminology would be Optimal

Transport discrepancies. In the following we will use Optimal Transport and Wasserstein

interchangeably, with some abuse of terminology. In the Dirac deltas case mentioned above,

the Wasserstein distance between δ(a+ε) and δa amounts exactly to the distance between the

two support points |(a+ ε)− a| = |ε|: this reflects the intuition that the distance should be

small if the support points are close, and should increase as the support points move away

from each other. Also it showcases how the geometry of X (in this case R) is lifted to impose

a geometry on P(X ). Wasserstein distances are then suitable to compare measures with

non-overlapping support or supported on low-dimensional manifolds, to include geometric

information and to metrize the weak convergence.

Therefore, on paper, Optimal Transport distances satisfy all the requirements for a good

notion of distance and they seem to have a great potential in applications. However, real data

is inherently partial and limited: one has access to datasets that contain a finite number of

observations. When these observations are to be used as proxy for the underlying unknown

distributions, it is important that the distance in use enjoys a good approximation power,

namely that the distance between two distributions can be accurately estimated using their

samples. Optimal Transport distances fail in this aspect, and suffer the so called ‘curse of

dimensionality’: as the dimension of the ground space increases, the empirical measure

becomes less and less representative of its continuous counterpart. In addition to this,

Optimal Transport distances are affected by a second major drawback which concerns

1the term ‘distance’ will be used with some abuse of terminology to indicate any notion of discrepancy, not
necessarily satisfying the axioms of a distance.



1.2. Entropy-regularized Optimal Transport 18

the computational complexity: computing OT distances on samples scales cubically on

the number of samples (Pele and Werman, 2009), severely limiting scalability. These

shortcomings originally hindered the applicability of Optimal Transport distances in large-

scale data analysis. The interest for this family of metrics in machine learning community

was renewed by the introduction of regularized versions, which benefit from computational

tractability and better sample complexity, while preserving the same appealing properties as

unregularized OT. The most popular regularization consists in adding an entropy penalty in

the transport problem: Entropy-regularized Optimal Transport bridges the gap between the

geometric flavour of Optimal Transport and the statistical and computational efficiency of

other standard divergences commonly used in Machine Learning.

1.2 Entropy-regularized Optimal Transport
While entropy-regularization in transportation and linear programming had been studied

since (Schrödinger, 1931; Wilson, 1969; Cominetti and Martı́n, 1994), it was popularised in

the machine learning community by the landmark paper (Cuturi, 2013), which showed the

significant computational speed-up achievable using Sinkhorn-Knopp algorithm (Sinkhorn,

1964; Sinkhorn and Knopp, 1967). The new computational solver for entropic OT problems

opened the door to active research on Entropic Optimal Transport in different directions:

numerical aspects, theoretical properties, and a wide range of applications.

Numerics. The computational speed-up that entropy regularisation offers was first em-

pirically tested and highlighted in Cuturi (2013). Starting from this success, a subsequent

line of works has focused on: proposing stochastic algorithms to deal with large scales

settings or continuous distributions (Genevay et al., 2016); providing a refined analysis of

the computational complexity (Altschuler et al., 2017); in proposing yet other variants or

alternatives of Sinkhorn algorithm (Altschuler et al., 2017; Dvurechensky et al., 2018) and

strategies to achieve further speed-up in specific settings (Altschuler et al., 2019); in studying

stability for small regularization parameters and in developing libraries for state-of-the-art

implementations that scale to millions of samples (Feydy et al., 2019).

Theory. A second line of research concerns theoretical properties of Entropic Optimal

Transport, which are at the core of designing principled approaches when using entropic

OT as a loss function in machine learning. Since in most frameworks distributions are
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accessed only through a finite number of samples, questions on the sample complexity and

the approximation power of loss functions are of particular interest. Recent results have

provided the first answers to these statistical questions: (Genevay et al., 2018a) and the

following improvements and extensions in (Mena and Niles-Weed, 2019) showed that the

approximation rate is independent of the dimension, contrarily to unregularized Optimal

Transport. When dealing with finite realizations or mini-batches, approximation rate is not

the only property that matters: using OTε(α̂n, β̂n) as an approximation of OTε(α, β) results

in a biased estimator. The bias similarly affects the estimation of the gradients, making the

wide-spread mini-batch approach not theoretically justified. This problem has been addressed

in a very recent work (Mensch and Peyré, 2020) that studies a method to obtain unbiased

estimators for the gradients of Sinkhorn divergence. Besides dealing with samples, most

machine learning settings also require to solve some optimization problem: when Entropic

Optimal Transport is used to define a loss function, one has to minimize it over some space

of probability measures. This means that studying convexity and regularity properties is

useful to correctly design optimization procedures. Research on Entropic Optimal Transport

is also targeting such questions.

Applications. Advances in theoretical and computational sides have paved the way to

numerous applications: recent literature has explored Entropic Optimal Transport as a

measure of discrepancy between histograms and probability measures in a range of problems.

While this is far from being an exhaustive list, here are some examples:

• Clustering and barycenters: Optimal Transport and its entropic approximations have

been first used for aggregation and clustering in (Cuturi and Doucet, 2014; Ye et al.,

2017). Since Optimal Transport metrics faithfully incorporate the geometry of the

underlying domain, they tend to preserve the geometric structure of the input measures

when computing their average (Cuturi and Doucet, 2014). This means that computing

the average of a set of signals with similar shape but individual noise using Optimal

Transport metrics can produce a meaningful representation of the signal which faith-

fully maintain the profile while balancing out the noise. This advantage has motivated

a rich and active line of research on computation of barycenters using Wasserstein and

Entropic OT distances. When dealing with histograms, several algorithm which are

both fast in practice and fully justified in theory are available (Benamou et al., 2015;
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Dvurechenskii et al., 2018). On the other hand, computing barycenters of arbitrary

distributions is way harder; while the last few years have seen progress in this direction,

developing theoretically justified algorithms that cover general settings is still subject

of active on-going research.

• Generative Models: Generative models are an established approach to learn a prob-

ability distribution in a unsupervised way. Given a dataset of examples, the goal is

to fit the distribution of a parametric generative model to the unknown distribution

induced by such dataset; the model then is able to ideally generate new samples from

the unknown distribution. Wasserstein distance and Sinkhorn divergences have been

tested as loss functions for this task (Arjovsky et al., 2017; Genevay et al., 2018b).

While this is a promising direction, it is also still marginally explored. Challenges

arise on multiple levels, both practical and theoretical. In particular, many questions

related to asymptotic guarantees of the estimators, to the real performance of Optimal

Transport distances in high dimensions and to how the intrinsic dimension of the target

ρ affects the performance are still open.

• Domain adaptation: domain adaptation is an instance of transfer learning and aims to

predict classes on a new (target) dataset that is different from the available (source)

training dataset. Optimal Transport, both in its unregularised and regularised versions,

has been recently used as an elegant and effective tool to transfer information between

domains; the first method based on regularised optimal transport was proposed in

Courty et al. (2014). The success of this work led to other extensions, such as (Courty

et al., 2017; Redko et al., 2019; Bhushan Damodaran et al., 2018) and recently (Flamary

et al., 2019).

Optimal Transport distances in real applications. The notion of ‘transport of mass’,

which Wasserstein distances are based on, has also lead to remarkable applications in

natural sciences. Recently, (Schiebinger et al., 2019) has deployed Optimal Transport to

design tools for inferring developmental landscapes, probabilistic cellular fates and dynamic

trajectories from large-scale single-cell RNA-seq data collected along a time course. Entropy-

regularization is used to speed up computations and allows to handle bigger populations of

cells. This is a further evidence of the versatility of Optimal Transport distances and of their

potential in applied sciences, that is yet to be fully explored.
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1.3 Outline of the thesis

This thesis is part of the line of research exploring the interplay between regularised optimal

transport and machine learning. The goal of the work is to study Entropic Optimal Transport

as a metric in distributional regression, barycenter estimation and density fitting, with a

focus on designing estimators with certified theoretical guarantees. In each of the three

applications, the theoretical analysis of the relevant estimators or algorithms is based on

the development of new regularity properties of Entropic Optimal Transport, which are of

independent interest.

As a whole, the thesis contains advances in theoretical study of Entropic Optimal Transport

applied to machine learning problems. Statistics and optimization are core components in

machine learning and we aim to combine the recent interest in Entropic Optimal Transport

with classical questions on these aspects.

1.3.1 Contributions

We present the contributions of this thesis, dividing them into two categories: novel results

on theoretical properties of Entropic Optimal Transport and novel approaches to use Entropic

Optimal Transport in three standard machine learning applications. The results that fall under

‘theory’ are instrumental tools used to derive the asymptotic analysis of the methods designed

for the targeted applications. Note that since the algorithm used to compute the Entropic

Optimal Transport in practice was named after Sinkhorn (Sinkhorn, 1964; Sinkhorn and

Knopp, 1967) and is known as Sinkhorn algorithm, Entropic Optimal Transport divergences

are also called Sinkhorn divergences. In the following we will use both terminologies, and

subtle aspects will be clarified in the background Chapter.

Contributions on Entropic Optimal Transport

On histograms.

• We prove that Entropic Regularized Optimal Transport, in its different formulations

presented in the background Chapter, is a smooth function in the interior of the simplex

(Chapter 3).

• We use the implicit function theorem to derive a formula for the gradient of sharp

Sinkhorn divergence and we present an efficient algorithm to compute it in practice

(Chapter 3).

On arbitrary distributions.
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• We show that the gradient of Sinkhorn divergence is Lipschitz continuous with respect

to Total Variation metric. Tools for the proof are based on Perron-Frobenius theory

and the Hilbert metric. This result makes it possible to use Sinkhorn divergence in

those optimization algorithms that require smoothness of the gradient (Chapter 4).

• We show that the gradient of Sinkhorn divergence is Lipschitz continuous with respect

to MMD. The proof uses smoothness results on dual potentials of Sinkhorn divergence

that were studied in Genevay et al. (2018a) (Chapter 4).

• As a corollary of the Lipschitz continuity of the gradients, we show a result on the

sample complexity of the gradients of Sinkhorn divergence. This is useful to quantify

the errors that are introduced when using samples as a proxy of the real distribution

(Chapter 4).

• On the statistical side, we show the sample complexity of probability measures ob-

tained as pushforward of oracle measures highlighting that the dimension that comes

into play is the one of the oracle space (Chapter 5).

Contributions on Entropic Optimal Transport as a metric in learning problems and

barycentric estimation

• We study supervised learning problems with histograms as outputs and Entropic

Optimal Transport as a loss function. Interpreting the problem as a problem with

structured outputs and relying on recent results on structured prediction, we propose

the first estimator for learning in this setting which is universally consistent. We show

excess risk bounds for such estimator and test it in toy image reconstruction setting

(Chapter 3).

• Moving to the unsupervised world, we study Sinkhorn divergence as metric to compute

the Frechet mean (i.e. barycenter) of a set of arbitrary input measures. Relying on

Frank-Wolfe algorithm, we propose the first algorithm for Sinkhorn barycenters with

free support that does not rely on an alternating procedure and that iteratively populates

the barycenter, without using a fixed number of particles. We show convergence rates

for both discrete and continuous input measures (Chapter 4).

• We study Sinkhorn divergence as metric for learning a distribution in a unsupervised

way, namely using a latent distribution and a generator function as in GAN settings.

We propose an estimator based on learning jointly the latent distribution and the

generator function and we characterise the asymptotic behaviour of such estimator.
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We show that the learning bound is affected by the dimension of the latent space and

provide explicit upper bounds under different modelling assumptions (Chapter 5).

1.3.2 Structure of the thesis

To avoid repetitions, we keep the description of the chapters very short. The thesis is

structured as follows:

Chapter 2 contains the background material which is needed for the rest of the thesis. We

recall definitions and main properties of both Optimal Transport and various formulations of

Entropy-regularized Optimal Transport.

Chapter 3 is about Entropic Optimal Transport as loss function in a supervised learning

setting where the output set is a space of histograms. We focus on two characterisations of

Entropic Optimal Transport that are available in the discrete setting and compare them in

the role of loss functions on the space of histograms. We propose an estimator for learning

with such losses which is universally consistent. We show excess risk bounds as statistical

guarantees of the estimator.

Chapter 4 is dedicated to Sinkhorn barycenters. It presents a method for Sinkhorn barycenter

with free support with convergence guarantees, based on Frank-Wolfe algorithm. In contrast

to previous free-support methods, our algorithm does not perform an alternate minimization

between support and weights. Instead, the Frank-Wolfe (FW) procedure allows to populate

the support by incrementally adding new points and to update their weights at each iteration,

similarly to kernel herding strategies (Bach et al., 2012). We prove the convergence of the

proposed optimization scheme for both finitely and infinitely supported distribution settings.

Chapter 5 is concerned with Sinkhorn divergence as a metric to learn a distribution with

a generative model approach. We study sample complexity of a measure obtained as a

pushforward of an oracle measure supported on a lower dimensional space. We propose

an estimator for jointly learning latent distribution and generator map and provide upper

bounds on the generalization error that highlights the potential impact of the latent space on

the statistical performance.

Chapter 6 contains the conclusions of the thesis and a glance at future directions, that are

divided into two categories: i) questions which are directly motivated and tightly related to

the material presented in this manuscript; ii) broader questions which are of general interest

in the application of Optimal Transport tools to Machine Learning.
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Publications

Published papers during my PhD that are part of the thesis

• G. Luise, A. Rudi, M. Pontil, C. Ciliberto, Differential Properties of Sinkhorn Approx-

imations for Learning with Wassestein Distance, NeurIPS 2018

• G. Luise, S. Salzo, M. Pontil, C. Ciliberto, Sinkhorn Barycenters with Free Support

via Frank-Wolfe Algorithm, NeurIPS 2019 (spotlight)

Submitted papers during my PhD that are part of the thesis

• G. Luise, M. Pontil, C. Ciliberto, Generalization Properties of Optimal Transport

GANs with Latent Distribution Learning, arXiv:2007.14641

Further work done during the PhD that is unrelated to this thesis:

• G. Luise, D. Stamos, M. Pontil, C. Ciliberto, Leveraging Low-Rank Relations Between

Surrogate Tasks in Structured Prediction, ICML 2019

• G. Luise, G. Savaré, Contraction and regularizing properties of heat flows in metric

measure spaces, DCDS - S, doi: 10.3934/dcdss.2020327

• A. Salim, A. Korba, G. Luise, The Wasserstein Proximal Gradient Algorithm, NeurIPS

2020

• A. Korba, A. Salim, M. Arbel, G. Luise, A. Gretton, A Non-Asymptotic Analysis for

Stein Variational Gradient Descent, NeurIPS 2020

• S. Cohen, G. Luise, A. Terenin, B. Amos, M. P. Deisenroth, Aligning Time Series on

Incomparable Spaces, arXiv:2006.12648.

What this thesis is not about

There is a ton of extremely interesting work in Optimal Transport for Machine Learning that

is not mentioned in the thesis. Three of the main fundamental areas that are not touched in

this manuscript but are of deep interest for Optimal Transport in Machine Learning are the

following:

Map estimation. Historically, the Optimal Transport problem introduced by Monge

(Monge, 1781) was formulated as the problem of finding a map T which optimally moves

mass from a distribution α to a distribution β. Details on the formulation of the Monge

problem, with the related existence issues, can be found in Villani (2008). Inspired by the

Monge formulation, in machine learning active research is devoted to how to estimate a good
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mapping between two distributions only using their samples, which is –in most cases– all we

have access to in practice. The problem has been addressed in an array of works. With no

claim to give an exhaustive list, we refer to (Ferradans et al., 2014) in the case of squared

Euclidean loss, (Stavropoulou and Muller, 2015) using an approximation of the barycenter

mapping and more recently (Seguy et al., 2018) that can handle high scale settings for any

ground cost and (Flamary et al., 2019) that is specific to Gaussian measures.

Regularizations that do not involve the entropy: Sliced Wasserstein distance.

The computational burden is a major limiting factor in the application of OT distances to

large-scale data analysis. However, there are a few cases where computing the Optimal

Transport solution is cheap: for instance, Wasserstein distance on one-dimensional densities

has a closed formula that can be easily computed. This fact has inspired an approximation

of Wasserstein distance that exploits this property. Sliced-Wasserstein distances (Rabin

et al., 2011) operate by computing (ideally) infinitely many linear projections of the high-

dimensional distribution to one-dimensional subspaces and then computing the average of

the Wasserstein distance between these one-dimensional projections. The sliced-Wasserstein

distance has significantly lower computational cost than unregularized Wasserstein, while

maintaining similar theoretical properties. Together with entropic-regularized Optimal

Transport, it is an effective option to use Optimal Transport in practice, and there is active

research dedicated to the application of Sliced-Wasserstein distance and some generalizations

to a variety of tasks: among others, to the barycenter problem (Rabin et al., 2011), generative

models (Deshpande et al., 2018; Nadjahi et al., 2019) and auto-encoders (Kolouri et al.,

2019).

Optimal Transport or structured data, e.g. graphs. In this thesis we consider

probability distributions on comparable domains, meaning that we can always define a

cost function between points in such domains. However, many interesting applications

require us to deal with distributions that do not live in comparable spaces. Hence, it is

not possible to define a ground distance and consequently to use the standard definition of

Optimal Transport. However, there exists an extension of Optimal Transport which is suited

to this setting, named Gromov-Wasserstein (Mémoli, 2011). This has opened another line

of research which targets the application of this extension of OT and variants to structured
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data (Vayer et al., 2019b,a, 2020). This direction has the potential of achieving a powerful

combination of geometry-aware distances that however can be applied to very complicated

data.



Chapter 2

Background Material

The scope of this chapter is to present the concepts, tools and results that will be used in the

rest of the thesis. We will discuss in depth definitions and properties of Entropy-regularized

Optimal Transport. We will provide proofs of some of the results for completeness. For

others, which require more technicalities or long arguments, we will refer to the relevant

literature. Some of the concepts that are mentioned and used throughout the manuscript, but

that are not core building blocks for the novel material presented in the following chapters,

are deferred to Appendix A. Overall, this chapter does not contain novel results that stand as

contributions of the thesis.

2.1 Notations

We set some of the notation that we will use in the rest of the thesis. In the following, X

will denote most of the time a compact metric space or a compact subset of Rd. When

it has a different meaning, it will be specified case by case. We will use C(X ) to denote

the space of real valued continuous functions over X equipped with the supremum norm

‖f‖∞ = supx∈X |f(x)|. P(X ) andM(X ) denote the space of Radon probability measures

and finite signed measures over X respectively. The notation 〈·, ·〉 is used for both scalar

products and for a pairing between Banach spaces. For instance, we will use it to denote

the following; the inner product in any Hilbert space H; the inner product in the space of

matrices (Frobenius product): given A,B ∈ Rn×m, 〈A,B〉 =
∑n,m

ij=1AijBij ; the duality

pairing between the space of continuous functions and the space of finite signed measures:

given f ∈ C(X ) and µ ∈M(X ), 〈f, µ〉 =
∫
X f(x)dµ(x).
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2.2 Optimal Transport Distances

In order to motivate entropic Optimal Transport theory, which is the main focus of this

chapter, we start from classic Optimal Transport.

In this section we recall definition and properties of Optimal Transport distances. While

standard Optimal Transport distances are not used in the main chapters, they serve as a

preliminary material to introduce their entropic counterpart. In the following X and Y

will denote domains that in full generality are complete and separable metric spaces. One

can think of X and Y as subsets of Euclidean spaces for simplicity. Further or different

assumptions will be specified throughout the work when needed.

2.2.1 Definition of Kantorovich problem

Definition 2.1 (Pushforward). Let X and Y be two separable metric spaces, α ∈ P(X ) and

T : X → Y a measurable map. We denote by T#α the pushforward of α via T defined by

T#α(B) := α{T−1(B)} ∀B ∈ B(Y), (2.2.1)

where B(Y) denotes the measurable subsets of Y .

With this notion of pushforward measure, we can introduce the following.

Definition 2.2. Let α ∈ P(X ), β ∈ P(Y) and c : X × Y → R a continuous cost function

bounded from below. The Optimal Transport cost between α and β under the cost function c

is defined as

OT(α, β) = min
π∈Π(α,β)

∫
X×Y

c(x, y) dπ(x, y), (2.2.2)

where Π(α, β) is the set of admissible plans defined by Π(α, β) := {π ∈ P(X × Y) :

P1#π = α, P2#π = β}, with P1 : X × Y → X and P2 : X × Y → Y the projections

onto first and second argument; # denotes the pushforward operation defined in (2.2.1).

The product measures π in Π(α, β) are called transport plans. The constraints P1#π = α

and P2#π = β correspond to constraining the marginals of the product measure π to be

α and β. Note that the set Π(α, β) is nonempty, since the product measure α ⊗ β always

belongs to Π(α, β). The transport plans for which the minimum in (2.2.2) is attained are

called optimal plans. Note that the assumptions on the cost function c used in Def. 2.2 are

not minimal and one can define (2.2.2) for more general cost functions; all details of the

minimal assumptions that guarantee existence of minimizers can be found in (Villani, 2008).
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The quantity in (2.2.2) can be seen as a sort of distance between α and β but in general it

does not satisfy the axioms of a distance function. However, when c is defined in terms of

a distance on the underlying space, it is possible to define a proper notion of distance as

follows:

Definition 2.3. Let (X , d) be a complete and separable metric space and let p ∈ [1,∞).

For any probability measures α, β ∈ P(X ) the Wasserstein distance of order p between α

and β is defined as

Wp(α, β) =
(

inf
π∈Π(α,β)

∫
X×X

d(x, y)p dπ(x, y)
) 1
p
. (2.2.3)

Note that with the definition above, Wp may take the value +∞. In order to obtain a finite

quantity, one has to restrict to the space of measures

Pp(X ) := {α ∈ P(X ) :

∫
X
d(x, x0)p dα(x) < +∞},

where x0 ∈ X is arbitrary. The proof that Wp satisfies the axiom of a distance can be found in

(Villani, 2008, pg 106). Wasserstein distance has had a big echo in applications. In machine

learning, for example, it was first ‘rediscovered’ and used in computer vision problems under

the name of Earth-Mover-Distance (EMD) (Rubner et al., 1997, 2000). In the following we

may use the ‘Optimal Transport cost’ and ‘Wasserstein distance’ interchangeably.

2.2.2 Dual formulation

The minimization problem in (2.2.2) is sometimes referred to as primal problem. It admits a

dual formulation, known as Kantorovich duality. In order to present the result on Kantorovich

duality, we introduce the notion of c-transform below.

Definition 2.4. Let c : X × Y → R. A function ψ : X → R ∪ {+∞} is said to be c-convex

if it is not identically {+∞} and there exists a function ζ : Y → R ∪ {±∞} such that

ψ(x) = sup
y∈Y

(
ζ(y)− c(x, y)

)
∀x ∈ X . (2.2.4)

Then its c-transform is the function ψc defined by

ψc(y) = inf
x∈X

(
ψ(y) + c(x, y)

)
∀ y ∈ Y. (2.2.5)

Theorem 2.1. Let X and Y be two complete and separable metric spaces. Let α ∈ P(X )
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and β ∈ P(Y) and c : X × Y → R ∪ {+∞} a cost function satisfying the assumptions

mentioned before. Then,

min
π∈Π(α,β)

∫
X×Y

c(x, y) dπ(x, y) = sup
(ψ,φ)∈L1(α)×L1(β):ψ−φ≤c

(∫
Y
φ(y) dβ(y)−

∫
X
ψ(x) dα(x)

)
,

(2.2.6)

= sup
ψ∈L1(α)

∫
Y
ψc(y) dβ(y)−

∫
X
ψ(x) dα(x) (2.2.7)

= sup
φ∈L1(β)

∫
Y
φ(y) dβ(y)−

∫
X
φc(x) dα(x) (2.2.8)

where ψ − φ ≤ c is to be interpreted as ψ(x)− φ(y) ≤ c(x, y) for any x ∈ X , y ∈ Y .

The characterization of Kantorovich duality is richer than the one reported here and it con-

stitutes a core result in Optimal Transport theory. For a complete statement and the proof

we refer to (Villani, 2008, Thm. 5.10). Note that if OT(α, β) < +∞ and there exists two

functions ã ∈ L1(α) and b̃ ∈ L1(β) such that c(x, y) ≤ ã(x) + b̃(y) for any x ∈ X and

y ∈ Y , then the supremum on the right hand side is a maximum.

When considering a metric space (X , d) and taking c = d, the dual formulation of

Wasserstein-1 distance between α, β ∈ P(X ) simplifies as

W1(α, β) = sup
ψ: 1−Lipschitz

(∫
X
ψ dα−

∫
X
ψ dβ

)
. (2.2.9)

The formula above is known as Kantorovich-Rubenstein and it is useful in a variety of

settings (for example it is the formula used in the first paradigm of Generative Adversarial

Networks using Wasserstein distance (Arjovsky et al., 2017)).

2.2.3 Convergence in Wasserstein sense

The convergence of probability measures is of crucial importance in a variety of problems.

There exist different notions of convergence and they result in very different meaning of

‘what is close’ and ‘what is far’ in the space of probability measures. A very important type

of convergence is the ‘weak’ convergence, defined below.

Definition 2.5. Let (X , d) be a metric space. A sequence of probability measures µk ∈ P(X )
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Figure 2.1: Optimal transport problem between two discrete distributions α and β represented by
blue circles and red squares respectively. The area of the markers is proportional to
the weight at each location. That plot displays the optimal transport plan T ∗ using a
quadratic Euclidean cost.

weakly converges to µ ∈ P(X ) (and we write µk ⇀ µ) if

∫
X
ψ dµk →

∫
X
ψ dµ (2.2.10)

for any continuous and bounded function ψ. Weak convergence in Pp(X ) is defined similarly,

but with an extra condition: namely, µk weakly converges to µ in Pp(X ) if

µk ⇀ µ and
∫
X
d(x, xo)

p dµk(x)→
∫
X
d(x, xo)

p dµ(x). (2.2.11)

Proposition 2.2. Let (X , d) be a metric space and p ∈ [1,+∞). The Wp distance metrizes

the weak convergence in Pp(X ). This means that if {µk}k is a sequence of probability

measures in Pp(X ) and µ ∈ Pp(X ) is another measure, then the following are equivalent:

• Wp(µk, µ)→ 0

• µk ⇀ µ in Pp(X ).

The proof of the result above can be found in (Villani, 2008, Thm. 6.9). An immediate

consequence of the result above is the continuity of Wp: if µk (resp. νk) weakly converges

to µ (resp. ν) in Pp(X ) as k → +∞, then Wp(µk, νk)→Wp(µ, ν).

2.2.4 Discrete case and computational complexity

So far, we have introduced Optimal Transport and Wasserstein distance in full generality. In

machine learning applications, many times the data is discrete: in the following we specify

the definitions in this setting. Consider the probability simplex defined as ∆r := {v ∈ Rr :

vi ≥ 0,
∑
vi = 1}. Let α and β be two discrete measures defined as α =

∑n
i=1 aiδxi
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and β =
∑m

j=1 bjδyj with xi ∈ X for i = 1, . . . , n, yj ∈ Y for j = 1, . . . ,m and

a = (ai, . . . , an) ∈ ∆n, b = (b1, . . . , bm) ∈ ∆m. We refer to the points xi and yj as

locations and to the vectors a and b as weights. Optimal Transport problem in the discrete

case reads as follows:

OT(a, b) = min
T∈Π(a,b)

〈T,C〉 (2.2.12)

where Π(a, b) := {T ∈ Rn×m : Tij ≥ 0 , T1m = a, T>1n = b} and C is the cost matrix

defined by Cij = c(xi, yj). The set of matrices Π(a, b) is bounded and defined by n+m

constraints (one of which is redundant). It is a convex set which is called transport polytope.

The primal problem in (2.2.12) corresponds to a linear program (Bertsimas and Tsitsiklis,

1997). Intuitively, solutions of the primal problem prescribe a way of ‘transporting’ mass

between the two distributions, as shown in Fig. 2.1.

Dual formulation. In the discrete case, the dual formulation corresponding to (2.2.12) is a

constrained maximization problem. Given α and β as above, it reads as

OT(α, β) = max
u,v∈R(C)

〈a, u〉+ 〈b, v〉 (2.2.13)

where R(C) := {(u, v) ∈ Rn × Rm : ui + vj ≤ Cij for all i = 1, . . . , n, j = 1, . . .m}.

The result is an application of the strong duality result for linear program, see (Bertsimas

and Tsitsiklis, 1997, Thm. 4.4) and (Peyré and Cuturi, 2019, Prop. 2.4) for more details.

Several algorithms can be used to solve problem (2.2.12). Algorithmic aspects of standard

Optimal Transport are unrelated to the scope of this thesis. Therefore for a detailed discussion

on the algorithmic side and on OT solvers we refer to (Peyré and Cuturi, 2019, Chapter 3)

and here we just briefly comment on the computational complexity aspects, which pave

the way to the introduction of regularized variants of Optimal Transport. With no specific

assumptions on the cost matrix C, the computational complexity scales as O(n3 log(n))

when computing the distance between a pair of histograms of dimension n (Pele and Werman,

2009). While active research is devoted to improve the computational complexity under some

constraints on the cost matrix or when computing the distance up to some approximation

error, the computational cost constitutes an issue in large scale applications. This issue,

together with the statistical aspects described in the next section, is the core motivation

behind the introduction of entropy-regularization.
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2.2.5 Statistical Properties

When dealing with probability measures, an important property of metrics is their estimation

power, meaning how quickly the empirical measure obtained from n independent samples

from a given measure µ approaches µ in that distance. Also, in many practical settings, it is

required to quantify how much two probability distributions µ and ν differ but µ and ν are

only accessed via empirical or discretized measures µn and νn composed of n atoms. By the

weak convergence result in Prop. 2.2, it follows that Wp(µn, µ)→ 0 when n→ +∞, since

the empirical measure weakly converges to the population measure (Varadarajan, 1958). A

key point is to quantify the rate, capturing how good the estimation of µ via µn is, in terms

of the number of samples. This is not a favorable aspect for Optimal Transport distances

which suffer from a curse of dimensionality. In the high dimensional regime, the empirical

distribution µn becomes less and less representative as the dimension of the ambient space

becomes large. An extensive review of sample complexity results on Wasserstein distances

is beyond the scope of this work; here we just recall a couple of main results that clearly

highlight the dependence on the dimension. Results by Dudley (1969) show that the curse of

dimensionality is unavoidable and prove the lower bound W1(µn, µ) & n−
1
d for a probability

measure µ on Rd, with d > 2, which is absolutely continuous with respect to Lebesgue

measures. A subsequent strand of works including (Boissard and Le Gouic, 2014; Weed

and Bach, 2019) extended the results in Dudley (1969) to Wp. Also, a refined statement is

provided in Weed and Bach (2019) for measures supported in low-dimensional manifolds,

showing that the rate of approximation depends on the intrinsic dimension of the support.

Overall the statistical behaviour of Wasserstein distances is not appealing when dealing with

high dimensional data. This aspect, together with the computational burden, is alleviated

when regularizing the Optimal Transport problem with entropic penalty, which is presented

in the next section.

2.3 Entropic Regularized Optimal Transport

The take-home message from the previous section is that Optimal Transport distances have

several good properties but also severe drawbacks. In particular, they have a rich duality

formulation, they are easy to bound from above (being defined as a minimum) and they

incorporate geometric information of the underlying domain, through the cost function. On

the other hand, they exhibit a high computational cost and a ‘curse of dimensionality’ when
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it comes to approximating the distance between two distributions only using finite samples.

These drawbacks can be partially alleviated introducing a suitable regularization term. In this

thesis we consider the entropic regularization, which operates adding to the original problem

a penalty based on the entropy.

Short history of Entropic regularization. The entropic Optimal Transport problem

first appeared in Schrödinger (1932), in connection with the problem of finding the most

likely evolution of a particle configuration. It was later deployed for modelling purposes

in transportation theory (Wilson, 1969), under the name of entropy maximizing models.

Entropy was introduced in order to achieve a more accurate model when considering traffic

patterns. The actual traffic patterns do not match with the ones predicted using optimal

transport solutions. The former appear more diffuse than the latter, which concentrate the

traffic in a few routs as a result of the sparsity of optimal plans. Entropic regularization

was introduced in order to mitigate the sparsity. At a later stage, it proved useful in other

applications and recently re-injected interest in Optimal Transport theory in the machine

learning community (Cuturi, 2013). As a matter of terminology: in the following (and also

in the literature) the discrepancy resulting from the Entropic Optimal Transport problem is

referred to as Sinkhorn approximation or Sinkhorn divergence or Sinkhorn distance; the name

‘Sinkhorn’ is related to the algorithm used to find the solution of the entropic regularized

problem, while the nomenclature ‘divergence’ or ‘distance’ is an abuse of terminology

since -strictly speaking- entropic Optimal Transport as defined in (2.3.1) is neither of those.

However, Sinkhorn divergence is the correct name for a variant of Entropic OT presented in

Sec. 2.5, which indeed satisfies the requirement of a divergence.

2.3.1 Definition in the general setting

We introduce entropic optimal transport in its general formulation for arbitrary measures.

Let X be a compact metric space. While we will stick to this general notion, one can think

of X as a compact subset in some Euclidean space Rd.

Definition 2.6 (Entropic Regularized Optimal Transport). For α, β ∈ P(X ), the entropy-

regularized Optimal Transport distance is defined as

OTε(α, β) = min
π∈Π(α,β)

∫
c(x, y) dπ(x, y) + εKL(π | α⊗ β), (2.3.1)
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Figure 2.2: Impact of the parameter ε on the optimal transport plan between two 1-dimensional
densities. From left to right ε = 1, ε = 0.6, ε = 0.3 and ε = 10−3.

where KL(π | ξ) denotes the Kullback-Leibler divergence between the plan π and the

reference measure ξ and is defined by

KL(π | ξ) =


∫
X×Y

log
(dπ
dξ

)
dπ +

∫
X×Y

(
dξ(x, y)− dπ(x, y)

)
if π � ξ

+∞ otherwise.
(2.3.2)

The measure α⊗ β in (2.3.1) is used as reference measure. Note that the reference measure

itself plays no specific role, only its support does. Indeed for any π ∈ Π(α, β) and for any

(α′, β′) with the same support as (α, β) (hence such that they both have densities with respect

to one another) we have that KL(π | α ⊗ β) = KL(π | α′ ⊗ β′) − KL(α ⊗ β | α′ ⊗ β′).

Intuitively, the entropic regularization encourages a ‘smoothing’ of the optimal coupling, as

shown in Sec. 2.3.1.

2.3.2 Dual formulation

Similarly to standard Optimal Transport problem, the regularized counterpart admits both a

primal and a dual formulation. The dual formulation of standard OT, recalled in (2.2.6), is a

constrained problem. When adding entropic penalty, the constraint is replaced by a smooth

penalty, and the dual formulation becomes unconstrained.

Theorem 2.3. Let ε > 0. The dual problem of (2.3.1), in the sense of Fenchel-Rockafellar,

is (Chizat et al., 2018; Feydy et al., 2019)

OTε(α, β) = sup
u,v∈C(X )

∫
u(x) dα(x)+

∫
v(y) dβ(y)−ε

∫
e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y)+ε,

(2.3.3)

where C(X ) denotes the space of real-valued continuous functions on the domainX , endowed
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with the supremum norm ‖ · ‖∞.

Proof. The proof is an application of the Fenchel-Rockafellar theorem (Rockafellar, 1974,

Thm. 19 - 20) (which is recalled in Appendix A). We sketch the following steps here: let

C(X ) be the space of continuous functions over X , letM(X ) be the set of finite signed

measures over X and M+(X ) the set of finite positive measures over X . The function

KL(· | α⊗ β) can be extended onM(X ) setting it equal to +∞ outside ofM+(X ). Then,

problem (2.3.1) can be rewritten as

min
π∈M(X )

〈c, π〉+ εKL(π | α⊗ β) + ι{(α,β)}(Bπ), (2.3.4)

where B : M(X × X ) → M(X ) ×M(X ) is the bounded operator defined by Bπ :=

(P1#π,P2#π) (with Pi : X × X → X , i = 1, 2 the projections onto first and second

argument respectively) and ι is the indicator function defined by ιK(q) = 0 if q ∈ K and +∞

otherwise. Note thatM(X ) and C(X ) are topologically paired under the weak* topology.

Hence, we can apply Thm. A.1 choosing (in the notation of Thm. A.1) V = C(X )× C(X )

(and hence V ∗ =M(X )×M(X )), W = C(X × X ) (and hence W ∗ =M(X × X )), and

A∗ = B (and therefore A : C(X ) × C(X ) → C(X × X ) defined by (u, v) 7→ ((x, y) 7→

u(x) + v(y))). A related proof with more details can be found in (Chizat et al., 2018, Thm.

3.2).

First order optimality conditions. Let µ ∈ P(X ). We denote by Pµ : C(X ) → C(X )

the map such that, for any w ∈ C(X ),

Pµ(w) : x 7→ −ε log

∫
e
w(y)−c(x,y)

ε dµ(y). (2.3.5)

The first order optimality conditions for (2.3.3) are (see (Feydy et al., 2019) or Ap-

pendix A.4.2)

u = Pβ(v) α - a.e. and v = Pα(u) β - a.e, (2.3.6)
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which correspond to
e−

u(x)
ε =

∫
X
e
v(y)−c(x,y)

ε dβ(y) ∀x ∈ supp(α)

e−
v(y)
ε =

∫
X
e
u(x)−c(x,y)

ε dα(x) ∀ y ∈ supp(β).

(2.3.7)

Pairs (u, v) satisfying (2.3.6) exist and are referred to as dual potentials or Sinkhorn poten-

tials. The proof of existence is nontrivial. Since the dual formulation is of crucial importance

for several results presented throughout the work, we present the existence result for com-

pleteness; however, since the proof relies on technical lemmas, we defer it to Appendix A.4.

A useful reference for this point is (Knopp and Sinkhorn, 1968).

The operators Pα, Pβ correspond to Soft-min operators of strength ε. These are relaxations

of the c-transform defined in Def. 2.4.

Remark 2.1. Extension to the whole domain. Note that solutions of (2.3.3) are defined

α and β almost everywhere (see (2.3.6)). However, they can be extended to be defined

everywhere in a canonical way using the formulas (2.3.6), i.e.

u = Pβ(v), and v = Pα(u) on the whole X . (2.3.8)

This is a subtle and important point when defining the gradients of OTε (see section

Sec. 2.3.5).

Assuming the existence, we now show that the potentials extended on the whole domain are

unique up to a constant.

Proposition 2.4. (Feydy et al., 2019, Prop 11) Let (u0, v0) and (u1, v1) be two pairs of

functions satisfying (2.3.8). Then there exists a constant K ∈ R such that

u0 = u1 −K and v0 = v1 +K. (2.3.9)

Proof. For t ∈ [0, 1] let ut = u0 + t(u1 − u0) and vt = v0 + t(v1 − v0). Set φ : R → R

the function defined as

φ(t) = 〈α, ut〉+ 〈β, vt〉 − ε
〈
α⊗ β, exp

(ut ⊕ vt − c

ε

)
− 1

〉
, (2.3.10)
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where we write ut ⊕ vt to denote the function (x, y) 7→ ut(x) + vt(y). Now, φ is concave

and it is bounded from above by φ(0) = φ(1) = OTε(α, β), being (u0, v0) and (u1, v1)

pairs of optimal potentials. That means that φ is constant. Therefore,

0 = φ′′(t) =
1

ε

〈
α⊗ β, exp

(ut ⊕ vt − c

ε

)
(u1 − u0 ⊕ v1 − v0)2

〉
. (2.3.11)

The equation above is satisfied if and only if

(u1(x)− u0(x) + v1(y)− v0(y))2 = 0 α⊗ β-a.e. , (2.3.12)

i.e. if and only if there exists a constant K ∈ R such that

u0 = u1 −K α-a.e. and v0 = v1 +K β-a.e. (2.3.13)

Noting that Tµ defined in (2.3.5) is such that for any µ ∈ P(X ), w ∈ C(X ) and K ∈ R

Pµ(w +K) = Pµ(w) +K, (2.3.14)

the results extends to the whole domain X .

Relation between primal and dual. Fenchel-Rockafellar duality also yields the follow-

ing link between the solutions of primal and dual problem: let π a solution of the primal

problem (2.3.1) and u, v a pair of optimal dual potentials. Then the primal-dual link is given

by

dπ(x, y) = e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y). (2.3.15)

This relation leads to a neat expression of OTε in terms of the optimal dual potentials

provided below.

Proposition 2.5. Let (u, v) be a pair of optimal potentials. Then

OTε(α, β) = 〈u, α〉+ 〈v, β〉 . (2.3.16)
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Proof. By the primal dual link, we have that when (u, v) is an optimal pair, then

OTε(α, β) =

∫
u(x) dα(x) +

∫
v(y) dβ(y)− ε

∫
e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y) + ε

=

∫
u(x) dα(x) +

∫
v(y) dβ(y)− ε

∫
dπ(x, y) + ε,

which gives the desired equality since
∫
dπ(x, y) = 1.

2.3.3 Properties of dual potentials

While the proof of existence is postponed to Appendix A.4, here we assume that pairs of

dual potentials exist and we present some useful properties. In this section X will always be

a compact metric space.

As mentioned above, pairs of optimal potentials are unique (α, β) - a.e. up to additive

constant, i.e. if (u, v) is a pair of dual potentials, then (u+K, v −K) is also a solution for

any K ∈ R.

Proposition 2.6. Let (u, v) be a pair of potentials which are canonically extended on X via

(2.3.6). Then,

u(x) ∈ [−max
y

(v(y)− c(x, y)),−min
y

(v(y)− c(x, y))] for any x ∈ X . (2.3.17)

Proof. The proof follows from the optimality conditions (2.3.7).

Proposition 2.7. Assume that the cost function c : X ×X → R is κ-Lipschitz. Let (u, v) be

a pair of solutions of (2.3.3). Then both u and v are κ-Lipschitz on X .

Proof. We show the result for u only, since the argument for v is identical. Recall that

u(x) = Pβ(v)(x). Computing the gradient of u we obtain

∇u(x) =

∫
∇xc(x, y)e

−c(x,y)+v(y)
ε dβ(y) (2.3.18)

and hence

‖∇u(x)‖ ≤ ‖∇xc(x, y)‖
∫
e
−c(x,y)+v(y)

ε dβ(y). (2.3.19)

By primal constraint we have that
∫
e
−c(x,y)+v(y)

ε dβ(y) = 1 and from Lipschitz property of c

we have that ‖∇xc(x, y)‖ ≤ κ. By the mean value theorem, it follows that u is κ-Lipschitz
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as desired.

Another important property of Sinkhorn potentials is their continuity with respect to the

initial measure, as proved below.

Proposition 2.8. Let {αn} and {βn} two sequences inP(X ) such that αn ⇀ α and βn ⇀ β

for some α, β ∈ P(X ). Given some anchor point xo ∈ X , let (un, vn) be the unique pair of

optimal potentials for OTε(αn, βn) such that un(xo) = 0. Then {un} and {vn} uniformly

converge to the pair (u, v) of optimal potentials of OTε(α, β) such that u(xo) = 0.

Proof. By the proposition above, un and vn are κ-Lipschitz functions on the compact

bounded domainX . Setting un(xo) = 0, we can bound |un| by κ times the diameter |X | ofX .

Using the fact that vn = Pαn(un) and the bound on |un|, we can find a constant that bounds

both |un| and |vn| uniformly. Hence we have that {un} and {vn} are uniformly bounded

and equicontinuous (since they are Lipschitz with same constant). Applying Ascoli-Arzela

theorem to the sequence {(un, vn)}n we obtain that there exists a subsequence {(unk , vnk)}k
indexed by k that converges uniformly to a pair (u, v) of continuous functions. Also u(xo) =

0. Since βn ⇀ β (αn ⇀ α respectively) and unk (vnk respectively) strongly converge to

u (v respectively), by (Brezis, 2010, Prop. 3.5,(iv) ) we have that u = Pβ(v), v = Pα(u)

and hence (u, v) is the unique pair of optimal potentials for (α, β) with u(xo) = 0. Since

the limit is unique, we conclude that the whole sequence {(un, vn)} uniformly converges to

(u, v).

In line with (Genevay et al., 2018a; Feydy et al., 2019) it will be useful in the following to

assume (u, v) to be the Sinkhorn potentials such that: i) u(xo) = 0 for an arbitrary anchor

point xo ∈ X and ii) (2.3.6) is satisfied pointwise on the entire domain X . Then, u is a fixed

point of the map Pβα = Pβ ◦ Pα (analogously for v). This suggests a fixed point iteration

approach to minimize (2.3.3), yielding the well-known Sinkhorn-Knopp algorithm which has

been shown to converge linearly in C(X ) (Sinkhorn and Knopp, 1967; Knopp and Sinkhorn,

1968) and which is recalled in section Sec. 2.4.

2.3.4 Note on the Discrete setting

We dedicate this section to a brief discussion of entropy regularization in the discrete setting.

Indeed when restricting to the discrete case, the literature presents subtle variants of Entropic-

Regularized Optimal Transport.
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We denote the probability simplex as

∆r := {a ∈ Rr+ :

r∑
i=1

ai = 1}. (2.3.20)

Let X denote some domain. A discrete measure α is a weighted sum of Dirac deltas, i.e.

α =
n∑
i=1

aiδxi , (2.3.21)

where x1, . . . , xn ∈ X and a = (a1, . . . , an) ∈ ∆n. Let α =
∑n

i=1 aiδxi and β =∑m
j=1 bjδyj , with a ∈ ∆n and b ∈ ∆m be two discrete measures. Recall that the transport

polytope Π(α, β) in this setting amounts to

Π(α, β) = Π(a, b) := {T ∈ Rn×m+ such that T1m = a, T>1n = b}. (2.3.22)

Note that transport plans T in Π(a, b) have nm variables and n+m constraints one of which

is redundant.

Regularization with Relative Entropy. The discrete counterpart of the Entropic regu-

larized Optimal Transport problem presented in (2.3.1) is the following:

OTε(α, β) = min
T∈Π(a,b)

〈T,C〉+ εKL(T | a⊗ b), (2.3.23)

where C is the cost matrix and a ⊗ b simply corresponds to ab>. Recall that the relative

entropy (i.e. Kullback-Leibler divergence) between P,Q ∈ Rn×m+ is defined by

KL(P | Q) =

n,m∑
i,j=1

(Pij log
(Pij
Qij

)
− Pij +Qij), (2.3.24)

with the convention that 0 log(0) = 0 and KL(P | Q) = +∞ if there exists a pair (i, j)

such that Pij 6= 0 and Qij = 0. Note that the function KL(· | Q) is strongly convex,

KL(P | Q) ≥ 0 and KL(P | Q) = 0 if and only if P = Q. In the discrete setting,

characterizing the dual formulation and the explicit form of the solution of (2.3.23) involves

less technicalities than the general case. Hence, we briefly present the related results below.
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Proposition 2.9. The solution T of (2.3.23) is unique and has the form

Tij = fiKijgj with K := e−
C
ε , (2.3.25)

for two scaling variables f ∈ Rn+ and g ∈ Rm+ .

Proof. Introducing the dual variables u ∈ Rn and v ∈ Rm for each constraint, the La-

grangian of (2.3.23) reads as

L(T, u, v) = 〈T,C〉+ εKL(T | a⊗ b)− 〈u, T1m − a〉 −
〈
v, T>1n − b

〉
. (2.3.26)

First order conditions yield

∂L(T, u, v)

∂Tij
= Cij + ε log

( Tij
aibj

)
− ui − vj , (2.3.27)

which lead to the expression Tij = aibje
ui+vj−Cij

ε . This can be rewritten in the desired form

using the scaling f, g defined by fi := aie
ui/ε and gj := bje

vj/ε respectively (which are

nonnegative by definition).

The optimal scaling are linked with solutions of the dual problem, that in the discrete case

reads as follows:

OTε(α, β) = max
u∈Rn,v∈Rm

〈u, a〉+ 〈v, b〉 − ε
∑
i,j

exp
(ui + vj − Cij

ε

)
aibj . (2.3.28)

As one can see in the proof of Prop. 2.9, the optimal dual variables in (2.3.28) are related to

the scalings f, g in Prop. 2.9 by (f, g) = (ae
u
ε , be

v
ε ).

Regularization with Discrete Entropy. Using the relative entropy as a regularizer leads

to a framework that is consistent in case of continuous measures and that enjoys a well

defined dual formulation. When considering discrete measures, the relative entropy between

the plan and the product of the marginals is equivalent - as a regularizer - to the discrete

entropy of the transport plan, meaning that the two formulations only differ by a constant

and share the same solution. In the machine learning community the revival of entropic

regularization has started with the discrete entropy and that is why we dedicate a paragraph

here to discuss this formulation. Note that this is the formulation that we consider also in
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Chapter 3, whose setting is restricted to the space of histograms and does not cover arbitrary

measures.

Definition 2.7 (Discrete entropy). The discrete entropy of a transport plan T is defined as

H(T ) = −
∑
ij

Tij(log Tij − 1). (2.3.29)

The entropy regularized Optimal Transport problem that makes use of the discrete entropy is

defined as

OTε(α, β) = min
T∈Π(a,b)

〈T,C〉 − εH(T ). (2.3.30)

Similarly to (2.3.23), the objective function is ε-strictly convex and hence (2.3.30) admits a

unique solution. The characterization of the optimal plan proved in Prop. 2.9 in case of the

relative entropy still holds, with the difference that going through the same proof with the

discrete entropy as regularizer one obtains that the scaling f and g are of the form f = eu

and g = ev, where u and v are optimal solutions of the dual problem

OTε(α, β) = max
u∈Rn,v∈Rm

〈u, a〉+ 〈v, b〉 − ε
∑
i,j

exp
(ui + vj − Cij

ε

)
, (2.3.31)

which differs from (2.3.28) because the sum in the right hand side does not depend on a and

b.

Regularization with discrete entropy, yet another variant. The entropic regulariza-

tion considered in the very first machine learning paper on the topic (Cuturi, 2013) was

slightly different. Namely, in the problem regularized with discrete entropy just recalled

in (2.3.30) the regularization plays a double role: in finding the optimal plan T ∗ε and in

the associated cost, OTε(α, β) = 〈T ∗ε , C〉+ εH(T ∗ε ). In (Cuturi, 2013, Eq. 2), the entropy

penalty is used to compute the optimal plan but then disregarded in the cost: with the same

notation as before,

˜OTε(α, β) = 〈T ∗ε , C〉 with T ∗ε = argmin
T∈Π(a,b)

〈T,C〉+ εH(T ). (2.3.32)

In Chapter 3 we will use both (2.3.30) and (2.3.32) and compare them in different tasks; we

leave further details on (2.3.32) to Chapter 3 to avoid repetitions.
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2.3.5 Gradients

From now on, we go back to the general setting and the formulation of OTε as in (2.3.1).

Since they will be important concepts in the rest of the thesis, we present some results on

differentiability of OTε. For a more in-depth analysis on this topic we refer the reader to

Feydy et al. (2019) (in particular Proposition 2).

To introduce the notion of directional derivatives of OTε we need to define the set of feasible

directions.

Definition 2.8. Let (α, β) ∈ P(X )2. The set of feasible directions of OTε at (α, β), denoted

as FP(X )2

(
(α, β)

)
is defined as

FP(X )2

(
(α, β)

)
:= {(µ, ν) ∈ P(X )2 s.t. µ = α′ − α, ν = β′ − β for some α′, β′ ∈ P(X )}.

Proposition 2.10. Let xo ∈ X , α, β ∈ P(X ) and (u, v) ∈ C(X )2 be the pair of cor-

responding Sinkhorn potentials with u(xo) = 0. The function OTε is directionally dif-

ferentiable and the directional derivative of OTε in (α, β) along a feasible direction

(µ, ν) ∈ FP(X )2

(
(α, β)

)
is

OT′ε(α, β;µ, ν) =

∫
u(x) dµ(x) +

∫
v(y) dν(y) = 〈(u, v), (µ, ν)〉 , (2.3.33)

where 〈w, ρ〉 =
∫
w(x) dρ(x) denotes the canonical pairing between the spaces C(X ) and

M(X ). Let ∇OTε : P(X )2 → C(X )2 be the operator that maps every pair of probability

distributions (α, β) ∈ P(X )2 to the corresponding pair of Sinkhorn potentials (u, v) ∈

C(X )2 with u(xo) = 0. Then (2.3.33) can be written as

OT′ε(α, β;µ, ν) = 〈∇OTε(α, β), (µ, ν)〉 . (2.3.34)

Proof. Let (δα, δβ) ∈ FP(X )2

(
(α, β)

)
. Denote by αt := α+ tδα and βt := β + tδβ. We

define the variation ration as

∆t =
OTε(αt, βt)− OTε(α, β)

t
. (2.3.35)

The rest of the proof consists in providing an upper and lower bound for the variation ratio.
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Lower bound. Let (u, v) a pair of optimal potentials for OTε(α, β). The pair (u, v) is then

suboptimal for OTε(αt, βt) yielding

OTε(αt, βt) ≥ 〈αt, u〉+ 〈βt, v〉 − ε
〈
αt ⊗ βt, exp(

1

ε
(u⊕ v − c))− 1

〉
. (2.3.36)

Since (u, v) are optimal potentials for OTε(α, β) we also have

OTε(α, β) = 〈u, α〉+ 〈v, β〉 − ε
〈
α⊗ β, exp(

1

ε
(u⊕ v − c))− 1

〉
. (2.3.37)

By definition of ∆t, we have that

∆t ≥ 〈δα, u〉+ 〈δβ, v〉 − ε
〈
δα⊗ β + α⊗ δβ, exp(

1

ε
(u⊕ v − c))− 1

〉
(2.3.38)

≥ 〈δα, f − ε〉+ 〈δβ, g − ε〉 , (2.3.39)

where the last inequality follows from the fact that
∫
e
u(x)+v(y)−c(x,y)

ε dβ(y)d(αt(x)−α(x)
t ) = 0.

Upper bound. Similarly, we can derive an upper bound for the same quantity using a pair

(ut, vt) of optimal potentials of OTε(αt, βt). Proceeding similarly as above, we obtain that

∆t ≤ 〈δα, ut − ε〉+ 〈δβ, vt − ε〉 . (2.3.40)

Now, note that as t → 0, αt ⇀ α and βt ⇀ β. Therefore ut → u and vt → v in ‖ · ‖∞.

Combining upper and lower bounds we have

∆t
t→0−−→ 〈δα, u− ε〉+ 〈δβ, v − ε〉 = 〈δα, u〉+ 〈δβ, v〉 , (2.3.41)

where the last equality follows from the fact that δα and δβ both have an overall mass that

sums up to 0.

Remark 2.2. In Prop. 2.10, the requirement u(xo) = 0 is only a convention to remove

ambiguities. Indeed, for every K ∈ R, replacing the Sinkhorn potentials (u, v) with

(u+K, v −K) does not affect (2.3.33).
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2.3.6 Convergence to unregularized Optimal Transport

In this thesis, Entropic Optimal Transport is of interest on its own, with its several elegant

properties, both theoretical and computational. However, since it comes as regularization

of standard Optimal Transport, a natural question concerns the relation between the two, in

terms of convergence when the regularization parameter goes to zero. In this section we

prove the result in the discrete case, since it is easier. After that we will state the result in the

general case and refer to relevant literature for the proof.

Proposition 2.11 (Convergence as ε→ 0 in the discrete case). Let Tε be the unique solution

of (2.3.23). Then Tε converges to the optimal solution with maximal entropy within the set

of all optimal solutions of the unregularized problem, namely

Tε
ε→0−−−→ argmin

T
{KL(T | a⊗ b) : T ∈ Π(a, b) and 〈T,C〉 = OT(α, β).} (2.3.42)

In particular

OTε(α, β)
ε→0−−−→ OT(α, β). (2.3.43)

Proof. Consider a sequence (εk)k such that εk → 0 as k →∞ and εk > 0. Let Tk be the

solution of (2.3.23) with ε = εk. Since Π(a, b) is bounded, {Tk}k is a bounded sequence

and hence we can extract a converging subsequence that we do not relabel, Tk → T ∗ for

some T ∗. Since Π(a, b) is closed, T ∗ ∈ Π(a, b). Now, consider any T which is a solution of

the unregularized transport problem (2.2.12), i.e. 〈T,C〉 = OT(α, β). By optimality of Tk

and T for their respective problems, we have

0 ≤ 〈Tk, C〉 − 〈T,C〉 ≤ εk(KL(T | a⊗ b)− KL(Tk | a⊗ b)). (2.3.44)

Since KL(· | a⊗b) is continuous, taking the limit as k →∞we obtain that 〈T ∗, C〉 = 〈T,C〉,

so T ∗ is a feasible point in the right hand side of (2.3.42). Moreover, dividing by εk in

(2.3.44) and taking the limit as k →∞, one obtains that KL(T ∗|a⊗ b) ≤ KL(T |a⊗ b) and

hence T ∗ is a solution of (2.3.42). Now, since KL(· | a⊗ b) is strictly convex, the solution

of (2.3.42) is unique. Hence the whole sequence converges.

In the general setting, the convergence result is the following:



2.4. Algorithms 47

Theorem 2.12. Let πε be the minimizer of the regularized problem in (2.3.1). Then,

OTε(α, β)
ε→0−−−→ OT(α, β) and πε ⇀ π, (2.3.45)

where π is a minimizer of the Optimal Transport problem (2.2.2).

The proof can be found in (Carlier et al., 2017, Thm. 2.7).

2.3.7 Short discussion of statistical results

We conclude the section on Entropic Optimal Transport recalling a result on the approxi-

mation power from finite samples. One of the shortcomings of standard Optimal Transport

distances introduced at the beginning of the chapter is the curse of dimensionality that ap-

pears when estimating a probability measure using samples. Introducing the entropic penalty

leads to advantages on this matter. Recent results showed that when considering entropic

regularized Optimal Transport, the dependence on the dimension appears in the constant and

not in the rate (Genevay et al., 2018a; Mena and Niles-Weed, 2019). The following holds:

Proposition 2.13. Consider X = Rd. Let α and β be two σ2-subgaussian measures in

P(X ). Let αn and βn be empirical measures from n iid samples of α and β. Then,

EOTε(αn, βn)− OTε(α, β) ≤ Cdε
(

1 +
σd5d/2e+6

εd5d/4e+3

) 1√
n
, (2.3.46)

where Cd is a constant depending on the dimension d only.

This result is shown in Mena and Niles-Weed (2019) and it is specific for the cost function

c = ‖ · ‖2. A less tight result, which however holds for more general classes of cost function,

is contained in Genevay et al. (2018a). The proofs of both results are quite technical and

have been the material of whole papers. Hence here we just refer to such works and we do

not provide the whole proofs.

2.4 Algorithms

After presenting the Entropic Optimal Transport problem and some important theoretical

results, we briefly discuss how to compute Entropic OT in practice. Algorithmic aspects are

not the focus on the thesis, therefore here we keep this section brief and we just recall the

basics. However, algorithmic developments are of fundamental importance and there is a

lot of interesting research addressing those aspects. We refer to the book (Peyré and Cuturi,

2019, Sec. 4.2-4.6) for a thorough review. In the following we focus of the discrete setting.



2.4. Algorithms 48

For completeness, in Appendix A we also discuss the continuous counterpart.

Recall the first order conditions in (2.3.6) of the dual problem (2.3.3): for α =
∑n

i=1 aiδxi ,

and β =
∑n

j=1 bjδyj , such conditions read

ui = −ε log
( m∑
j=1

e
vj−c(xi,yj)

ε bj
)
, vj = −ε log

( n∑
i=1

e
ui−c(xi,yj)

ε ai
)
, (2.4.1)

and taking the exponential scalings of ui and vj , i.e. fi = e
ui
ε and gj = e

vj
ε , we obtain the

equivalent conditions

fi =
1∑m

j=1 gje
−c(xi,yj)bj

, gj =
1∑n

i=1 fie
−c(xi,yj)ai

. (2.4.2)

Set K the matrix given by Kij = e
−c(xi,yj)

ε . Then the equations above can be rewritten as

f =
1

K(g � b)
=

a

Mg
, g =

1

K>(f � a)
=

b

M>f
, (2.4.3)

where � denotes the entrywise vector multiplication, the division is also to be considered

entrywise, and M = diag(a)Kdiag(b). The dual problem is concave in each variable,

therefore a natural way to solve it is to iteratively optimize over each variable. The algorithm

corresponding to these alternating maximizations is usually called Sinkhorn algorithm. It

was pioneered in Sinkhorn (1964); Sinkhorn and Knopp (1967) and further developed in

infinite dimensional settings in Nussbaum (1993). We recall Sinkhorn algorithm in Alg. 2.1.

The proof of convergence of Alg. 2.1 is similar to the proof of existence of the dual potentials,

Algorithm 2.1 Sinkhorn-Knopp algorithm (finite dimensional case)
Let K ∈ Rn×m++ , a ∈ Rn+, with a>1n = 1, and b ∈ Rm+ , with b>1m = 1. Set M =

diag(a)Kdiag(b). Let f(0) ∈ Rn++ and define

for ` = 0, 1, . . . g(`+1) =
b

M>f(`)

f(`+1) =
a

Mg(`+1)
.

that we have deferred to Appendix A. Here we provide it for the discrete setting. As

explained in Franklin and Lorenz (1989), a useful tool to show the global convergence

of Alg. 2.1 is the Hilbert projective metric, introduced in Birkhoff (1957). Denoting by
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Rn+ := {f ∈ Rn : fi > 0 ∀ i}, the Hilbert projective metric on Rn+ is defined as

for all (f, f ′) ∈ (Rn+)2 dH(f, f ′) := log max
fif
′
j

fjf ′i
. (2.4.4)

The Hilbert metric is a distance on Rn+/ ∼, where f ∼ f ′ if there exists t > 0 such that

f = tf ′, and hence dH(f, f ′) = 0 if and only if f ∼ f ′. Also note that taking a logarithmic

change of variables, the Hilbert metric is isometric to the variation seminorm which is a

norm between vectors defined up to additive constant and that is closely related to the `∞

norm. Namely,

dH(f, f ′) = ‖ log(f)− log(f ′)‖var, ‖u‖var := max
i

ui − (min
i

ui). (2.4.5)

Note that ‖u‖var ≤ 2‖u‖∞ and if we impose that ui = 0 for some fixed i, then

‖u‖∞ ≤ ‖u‖var. The global convergence result of Sinkhorn algorithm relies on the following

fundamental theorem (Birkhoff, 1957) about a contraction result under the Hilbert metric.

Theorem 2.14. Let K ∈ Rn×m+ . Then for any (g, g′) ∈ (Rm+ )2,

dH(Kg,Kg′) ≤ λ(K)dH(g, g′), where


λ(K) =

√
η(K)−1√
η(K)+1

< 1

η(K) = maxi,j,k,l
KikKj`
KjkKj`

.

(2.4.6)

Using the theorem above, we can show the global convergence of Sinkhorn algorithm.

Proposition 2.15. Let α =
∑n

i=1 aiδxi , and β =
∑n

j=1 bjδyj be two discrete measures and

set K the matrix given by Kij = e
−c(xi,yj)

ε . Then, the Sinkhorn iterations

f(`+1) =
1

K(g(`) � b)
, g(`+1) =

1

K>(f(`+1) � a)
(2.4.7)

converge to (f∗, g∗) the exponential scaling of a solution of the dual problem (2.3.3) and

dH(f(`), f∗) = O(λ(K)`) dH(g(`), g∗) = O(λ(K)`). (2.4.8)
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Also, setting T (`) = diag(f(`) � a)K diag(g(`) � b) = diag(f(`))M diag(g(`)) , we have

dH(f(`), f∗) ≤ dH(T (`)
1m, a)

1− λ(K)
(2.4.9)

dH(g(`), g∗) ≤ dH(T (`)>
1n, b)

1− λ(K)
(2.4.10)

and finally

‖ log(T (`))− log(T ∗)‖∞ ≤ dH(f(`), f∗) + dH(g(`), g∗), (2.4.11)

where T ∗ is the solution of (2.3.23) .

Proof. Note that by the defintion of the Hilbert metric, it holds that for any (g, g′) ∈ (Rm+ )2,

dH(g, g′) = dH(g/g′,1m) = dH(1m/g,1m/g
′). (2.4.12)

Hence,

dH(f(`+1), f∗) = dH(
a

Mg(`)
,

a

Mg∗
) = dH(Mg(`),Mg∗) (2.4.13)

≤λ(M)dH(g(`), g∗) = λ(K)dH(g(`), g∗) (2.4.14)

where the equality λ(K) = λ(M) is straighforward by definition of M. This shows (2.4.8).

Now, using the triangle inequality of the Hilbert metric, we obtain

dH(f(`), f∗) ≤ dH(f(`+1), f(`)) + dH(f(`+1), f∗)

≤ dH(
a

Mg(`)
, f(`)) + λ(K)dH(f(`), f∗)

≤ dH(a, f(`) �Mg(`)) + λ(K)dH(f(`), f∗).

This gives the first part of (2.4.9) (the second is analogous), since Mg(`) = T (`)
1m. Finally

the proof of (2.4.11) follows from (Franklin and Lorenz, 1989, Lemma 3).

Remark 2.3. Computational Complexity. The main computational bottleneck of Sinkhorn

iterations is the vector-matrix multiplication against K and K>: for two measures with n

points, the complexity of this operation is O(n2) if implemented naively. In several cases,

significant speed-ups are possible and we refer to (Peyré and Cuturi, 2019, Sec. 4.3) for the
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details on this point. In Altschuler et al. (2017) it is shown that Sinkhorn algorithm allows to

find an ε-approximation of OT distance with Õ(n2/ε3) arithmetic operations.

2.5 Sinkhorn divergence

The entropic bias. When the cost function c corresponds to a distance d or to a power

dp on the domain X , the related related OT or (OT)1/p are -strictly speaking- distances

(known as Wasserstein distances). When introducing the entropy-regularization we interfere

with the metric properties: in particular, OTε for ε > 0 does not satisfy the property

0 = OTε(α, α) ≤ OTε(α, β), which is a desirable feature when we want to use OTε to

compare distributions and to induce a notion of metric. While the impact is not significant

when ε is small, for big ε it leads to a ‘shrinking effect’; to observe this, note that for

ε → ∞, OTε(α, β) →
∫
c(x, y)dα(x) dβ(y). The latter quantity is minimized when

α is a Dirac delta centered at the mean (resp. median) value of β when c is c(x, y) =

‖x − y‖2 (resp. c(x, y) = ‖x − y‖). Regardless of its impact in practise, when ε > 0 the

entropic regularization introduces a bias in the optimal transport problem, since in general

OTε(α, α) 6= 0. Recently, a few works (Ramdas et al., 2017; Genevay et al., 2018b; Feydy

et al., 2019) have proposed to consider a debiased version of the entropic problem that

satisfies the properties of a divergence. The definition is below:

Definition 2.9 (Sinkhorn divergence). Sinkhorn divergence is a debiasing of OTε and it is

defined as follows: for α, β ∈ P(X )

Sε : P(X )× P(X )→ R, Sε(α, β) = OTε(α, β)− 1

2
OTε(α, α)− 1

2
OTε(β, β).

(2.5.1)

Nonnegativity, convexity and weak convergence. Sinkhorn divergence recovers prop-

erties which are desirable in a loss function that is often used for density fitting or matching.

The theorem below summarizes those properties in a clean statement:

Theorem 2.16. Let X be a compact metric space and c : X × X → R be a Lipschitz cost

function that induces for ε > 0 a positive universal kernel kε : X × X → R defined as

kε(x, y) = e−c(x,y)/ε. Then, the Sinkhorn divergence Sε is positive definite, smooth, and

convex in each of its inputs. Moreover, it metrizes the convergence in law, i.e. for any
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measures α, β ∈ P(X ), it holds

0 = Sε(α, α) ≤ Sε(α, β) (2.5.2)

α = β ⇐⇒ Sε(α, β) = 0 (2.5.3)

αn ⇀ α⇐⇒ Sε(αn, α)→ 0. (2.5.4)

Proof. The proof of this result is the subject of Feydy et al. (2019). To avoid several pages

of repetitions, we refer to the paper directly.

Limits. Sinkhorn divergence recovers the unregularized Optimal Transport as ε goes to

zero, similarly to OTε. However, when ε→∞, the limits of OTε and Sε are different. Set

the following notation: for a measure µ ∈ P(X ) and a real-valued continuous function

k : X × X → R, the convolution k ? α is defined as

k ? α ∈ C(X ) x 7−→
∫
X
k(x, y) dα(y). (2.5.5)

On one side we have

OTε(α, β)
ε→∞−−−→ 〈c, α⊗ β〉 = 〈α, c ? β〉 (2.5.6)

which does not have any ‘norm’ structure. On the other hand, Sinkhorn divergence leads to

Sε(α, β)
ε→∞−−−→= 〈α, c ? β〉 − 1

2
〈α, c ? α〉 − 1

2
〈β, c ? β〉 =

1

2
〈α− β,−c ? (α− β)〉 .

(2.5.7)

Hence, for k = −c/2 this is equivalent to

Sε(α, β)
ε→∞−−−→= Eα⊗α[k(x, x′)] + Eβ⊗β[k(y, y′)]− 2Eα⊗β[k(x, y)], (2.5.8)

which reminds of Maximum Mean Discrepancy MMD (recalled in Def. A.14) and exactly

corresponds to MMD for some choices of c (and consequently of the kernel k).

Debiased potentials and gradients. Let u, v be optimal dual potentials. In Prop. 2.5 we
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showed that OTε(α, β) = 〈α, u〉+ 〈β, v〉. Similarly,

Sε(α, β) = 〈α, u− p〉+ 〈β, v − q〉 , (2.5.9)

where (u, v) is a pair of optimal potentials of OTε(α, β) and p = Pα(p), q = Pβ(q) are

optimal potentials for OTε(α, α) and OTε(β, β) respectively.

Proposition 2.17. Let β ∈ P(X ) and let ∇1OTε be the first component of the gradient

operator defined in Prop. 2.10. Then the Sinkhorn divergence function Sε(·, β) : P(X )→ R

in (2.5.1) is directionally differentiable and, for every α ∈ P(X ) and every µ ∈ FP(X )(α) it

holds

[Sε(·, β)]′(α;µ) = 〈∇Sε(·, β), µ〉 ,

where

∇Sε(·, β) : P(X )→ C(X ) α 7→ ∇1OTε(α, β)− 1

2
∇1OTε(α, α) = u− p, (2.5.10)

with u = Pβα(u) ( where we recall that Pβα is the composition of Pβ and Pα) and p = Pα(p)

the Sinkhorn potentials of OTε(α, β) and OTε(α, α) respectively.

Proof. This follows immediately from the definition of Sinkhorn divergence and Prop. 2.10.

As for algorithms and statistical properties, it is straightforward to adapt the results recalled

in the previous section on entropic optimal transport OTε to the Sinkhorn divergence. In the

next chapters, we will explore Entropic OT and Sinkhorn divergence as discrepancy between

probability measures in three machine learning problems.



Chapter 3

Learning with Sinkhorn divergence

In many settings, data can be represented as discrete probability distributions over a finite set

of atoms (namely, histograms). Supervised learning problems with such data as outputs can

be cast as learning problems that aim to predict a probability measure. When predicting a

probability distribution, a suitable notion of closeness between measures is crucial. Optimal

Transport provides a powerful tool to compare probability distributions and is a natural

choice for a loss function when learning distributions.

In this chapter, we aim to use entropic optimal transport in supervised learning settings. The

goal is to propose an estimator with provable consistency and explicit learning rates. As

mentioned in the background chapter, slightly different variants of regularized OT are sound

and available when dealing with discrete measures. In particular, in most situations the

original Sinkhorn approximation (that we call sharp Sinkhorn) of the Wasserstein distance is

replaced by a regularized version (that we call vanilla Sinkhorn) that is less accurate but easier

to differentiate (Frogner et al., 2015; Rolet et al., 2016; Cuturi and Doucet, 2014; Benamou

et al., 2015). A natural question is whether the easier tractability of this regularization is

paid in terms of accuracy. Indeed, it can be shown that the sharp Sinkhorn approach provides

a tighter approximation to the Wasserstein distance (Cominetti and Martı́n, 1994). We

consider both vanilla and sharp Sinkhorn as viable loss functions for supervised learning

with histograms as outputs and we study their differential properties, that play a key role in

our analysis. We prove that sharp Sinkhorn distance enjoys the same smoothness properties

as vanilla Sinkhorn and we explicitly provide an efficient algorithm to compute its gradient.

We show that this result benefits both theory and applications: on one hand, we leverage

high order smoothness to design an estimator for learning with Wasserstein approximations

that has proved statistical guarantees. On the other hand, the gradient formula allows us
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to efficiently solve learning and optimization problems in practice. Promising preliminary

experiments complement our analysis. This chapter will mainly discuss the work in Luise

et al. (2018).1

Contributions. The principal contributions of this chapter are threefold; (i) we show that

both sharp and vanilla Sinkhorn distances on the simplex are smooth; (ii) we derive an

explicit formula to compute the gradient of the sharp Sinkhorn efficiently. As intended, this

latter result allows us to adopt this distance in applications such as approximating Wasserstein

barycenters (Cuturi and Doucet, 2014), which to the best of our knowledge has not been

investigated in this setting so far; (iii) we provide a novel sound approach to the challenging

problem of learning with Sinkhorn loss, recently considered in Frogner et al. (2015). In

particular, we leverage the smoothness of the Sinkhorn distance to study the generalization

properties of a structured prediction estimator adapted from Ciliberto et al. (2016) to this

setting, proving consistency and finite sample bounds. We provide preliminary empirical

evidence of the effectiveness of the proposed approach, testing our method on a image

reconstruction task.

The rest of the chapter is structured as follows: in Sec. 3.1 we briefly recall the definition of

sharp and vanilla Sinkhorn and we compare their behaviors as the regularization parameter

goes to zero; in Sec. 3.2 we present the results on differential properties of Sinkhorn

approximation and propose a method to compute the gradient of the sharp Sinkhorn based

on the implicit function theorem; Sec. 3.3 is the core section of the chapter and addresses the

supervised learning framework with Sinkhorn loss. Finally, Sec. 3.4 presents experiments on

the proposed estimator and Sec. 3.5 provides conluding remarks.

3.1 A comparison of variants of entropic regularization
In Chapter 2, we recalled two variants of Entropic Optimal Transport that are available when

considering discrete measures. In this Chapter we will use both of them in the supervised

learning setting. Here we study a comparison of the two in terms of approximation power of

the Wasserstein distance. While Wassestein distance and entropic versions were presented

in (2.2.12), (2.3.30), (2.3.32) in the background respectively, here we recall the definitions

for convenience. Let X be a metric space. In the following we focus on measures with

discrete support in X . In particular, we consider distributions α, β ∈ P(X ) that can be

1Advances in Neural Information Processing Systems (NeurIPS), Dec 2018, Montréal, Canada.



3.1. A comparison of variants of entropic regularization 56

written as linear combinations α =
∑n

i=1 aiδxi and β =
∑m

j=1 bjδyj of Dirac’s deltas

centered on a finite number n and m of points (xi)
n
i=1 and (yj)

m
j=1 in X , with the vector

weights a = (a1, . . . , an)> ∈ ∆n and b = (b1, . . . , bm)> ∈ ∆m belonging to the n and

m-dimensional simplex respectively. Wasserstein distance is defined as

OT(α, β) = W(α, β) = min
T∈Π(a,b)

〈T,C〉, (3.1.1)

where Π(a, b) := {T ∈ Rn×m+ : T1n = a, T>1m = b}. Now, let the discrete entropy of a

matrix T ∈ Rn×m+ be defined as

H(T ) = −
n,m∑
i,j=1

Tij(log Tij − 1). (3.1.2)

The two entropy-regularized optimal transport problems are defined as

OTε(α, β) = min
T∈Π(a,b)

〈T,C〉 − εH(T ) (3.1.3)

and

ÕTε(α, β) = 〈Tε, C〉 with Tε = argmin
T∈Π(a,b)

〈T,C〉 − εH(T ). (3.1.4)

In the following we will refer to (3.1.3) as vanilla Sinkhorn approximation and to (3.1.4) as

sharp Sinkhorn approximation.

Note that sharp Sinkhorn approximation corresponds to eliminating the contribution of the

entropic regularizer H(Tε) from OTε after the transport plan Tε has been obtained. The

function ÕTε was originally introduced in Cuturi (2013) as the Sinkhorn distance, although

recent literature on the topic has often adopted this name for the vanilla version (3.1.3). We

will use both the notations ÕTε(a, b) and ÕTε(α, β) (and also OTε(α, β) and OTε(a, b)),

although formally α and β are the discrete measures and a and b their weights. However,

here we consider the support points as fixed and we are only interested in the dependence on

a and b, therefore we use the two notations interchangeably.

As the intuition suggests, the absence of the entropic term H(Tε) in the cost in (3.1.4) is

reflected in a faster rate at approximating the Wasserstein distance, as characterized by the

result below.

Proposition 3.1. Let ε > 0. For any pair of discrete measures α, β ∈ P(X ) with respective
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weights a ∈ ∆n and b ∈ ∆m, we have

∣∣ ÕTε(α, β)−W(α, β)
∣∣ ≤ c1 e−

1
ε , c2ε ≤

∣∣ OTε(α, β)−W(α, β)
∣∣ ≤ c3ε, (3.1.5)

where c1, c2, c3 are constants independent of ε, depending on the support of α and β.

The proof of the proposition above is contained in Appendix B.2, where we provide the

explicit steps of the derivation of the two inequalities. Here we briefly summarize the main

points. Regarding the right hand side in (3.1.5): the upper bound is a consequence of (Cuturi

and Peyré, 2016, Prop. 2.1), that we also discussed in Prop. 2.11 in the case of the relative

entropy KL as regularizer (that is equivalent to the case of the discrete entropy in this setting);

the lower bound follows from the definition of OTε(α, β).

The proof of the left hand side of Prop. 3.1 is a consequence of the result in Cominetti

and Martı́n (1994)[Prop. 5.1], which proved exponential convergence of the approximation

of linear programs with entropy penalty functions in more general cases. Specifying the

result in the case of Optimal Transport with entropic regularization, Cominetti and Martı́n

(1994)[Prop. 5.1] proves the convergence of Tε in (3.1.4) to the optimal plan in (3.1.1) with

maximum entropy, i.e.

Tε → T ∗ = argmax
T∈Π(a,b)

{H(T ) : 〈T,C〉 = W(α, β)}.

While the sharp Sinkhorn distance ÕTε preserves the rate of converge of Tε, the extra

term εH(Tε) in the definition of the vanilla Sinkhorn distance OTε causes the slower rate.

Prop. 3.1 suggests that the sharp Sinkhorn distance can offer a more accurate approximation

of the Wasserstein distance for a given ε. This intuition is further supported in Example 3.1

where we compare the behaviour of the two approximations on the problem of finding an

optimal transport barycenter of probability distributions.

Wasserstein Barycenters. Finding the barycenter of a set of discrete probability measures

D = (νi)
`
i=1 is a challenging problem in applied optimal transport settings (Cuturi and

Doucet, 2014). While this is the main content of next chapter, here we use the barycenter

problem just as a tool to give an intuition of different properties of sharp and vanilla Sinkhorn.
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The Wasserstein barycenter is defined as

µ∗W = argmin
µ

BW(µ,D), BW(µ,D) =
∑̀
i=1

qi W(µ, νi), (3.1.6)

namely the point µ∗W minimizing the weighted average distance between all distributions

in the set D, with qi scalar weights. Finding the Wasserstein barycenter is computationally

very expensive and the typical approach is to approximate it with the barycenter µ∗ε , obtained

by substituting the Wasserstein distance W with the regularized Sinkhorn distance OTε in

the the objective functional of Eq. (3.1.6). However, in light of the result in Prop. 3.1, it

is natural to ask whether the corresponding baricenter µ̃∗ε of the sharp Sinkhorn distance

ÕTε could provide a better estimate of the Wasserstein one. While we defer a thorough

empirical comparison of the two barycenters to Sec. 3.4, here we consider a simple scenario

in which the sharp Sinkhorn can be proved to be a significantly better approximation of the

Wasserstein distance.

Example 3.1 (Barycenter of two Deltas). We consider the problem of estimating the barycen-

ter of two Dirac’s deltas µ1 = δz, µ2 = δy centered at z = 0 and y = n with z, y ∈ R

and n an even integer. Let X = {x0, . . . , xn} ⊂ R be the set of all integers between 0

and n and C the cost matrix with squared Euclidean distances. It is well-known that the

Wasserstein barycenter is the delta centered at the euclidean mean of z and y, µ∗W = δ z+y
2

.

A direct calculation (see Appendix B.1) shows instead that the vanilla Sinkhorn barycenter

µ∗ε =
∑n

i=0 qiδxi tends to spread the mass across all xi ∈ X , accordingly to the amount of

regularization,

qi ∝ e−((z−xi)2+(y−xi)2)/(2ε) i = 0, . . . , n, (3.1.7)

behaving similarly to a (discretized) Gaussian with standard deviation of the same order of

the regularization ε. On the contrary, the sharp Sinkhorn barycenter equals the Wasserstein

one, namely µ̃∗ε = µ∗W for every ε > 0. An example of this behavior is reported in Fig. 3.1.

Main Challenges of the sharp Sinkhorn. The example above, together with Prop. 3.1,

provides a strong argument in support of adopting the sharp Sinkhorn distance over its

regularized version. However, while the gradient of the regularized Sinkhorn distance can be

easily computed (see Cuturi and Doucet (2014) or Sec. 3.2) and therefore it is possible to

address optimization problems such as the barycenter in (3.1.6) with first-order methods (e.g.
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Figure 3.1: Comparison of the sharp (Blue) and regularized (Oranges) barycenters of two Dirac’s
deltas (Black) centered in 0 and 20 for different values of ε.

gradient descent), an explicit form for the gradient of the sharp Sinkhorn distance has not

been considered. Approaches based on automatic differentiation have been recently adopted

to compute the gradient of a variant of ÕTε, where the plan Tε is the one obtained after a

fixed number L of iterations (Genevay et al., 2018b; Schmitz et al., 2018; Flamary et al.,

2018). These methods have been observed to be both computationally efficient and also

effective in practice on a number of machine learning applications. However, in this work

we are interested in investigating the analytic properties of the gradient of the sharp Sinkhorn

distance, for which we provide an explicit algorithm in the following section.

3.2 Differential Properties of Sinkhorn Distances
In this section we present two main results of this chapter, namely a proof of the smoothness

of the two Sinkhorn distances introduced above, and the explicit derivation of a formula for

the gradient of ÕTε. These results will be key to employ the sharp Sinkhorn distance in

practical applications. They are obtained leveraging the Implicit Function Theorem (Edwards,

2012) via a proof technique analogous to that in Bengio (2000) and Flamary et al. (2018)

that we outline in this section and discuss in detail in the appendix.

Theorem 3.2. For any ε > 0, the Sinkhorn distances OTε and ÕTε : ∆n ×∆n → R are

C∞ in the interior of their domain.

Thm. 3.2 guarantees both Sinkhorn distances to be infinitely differentiable. In Sec. 3.3 this

result will allow us to derive an estimator for supervised learning with Sinkhorn loss and

characterize its corresponding statistical properties (i.e. universal consistency and learning

rates). The proof of Thm. 3.2 is instrumental to derive a formula for the gradient of ÕTε.

Proof. Let us show the proof for ÕTε first. We organize it in three steps:

Step 1. ÕTε is smooth when Tε is: when considering histograms, ÕTε depends on its
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argument a and b through the optimal coupling Tε(a, b), since the cost matrix C is fixed.

Thus, since ÕTε is a smooth function of Tε (being the Frobenius product of Tε with a

constant matrix), showing that ÕTε is smooth in a, b amounts to showing that Tε is smooth

in the same variables.

Step 2. Tε is smooth when the optimal dual variables (u∗, v∗) are: By Sinkhorn’s scaling

theorem (Sinkhorn and Knopp, 1967), the optimal plan Tε is characterized as follows

Tε = diag(e
u∗
ε )e

−C
ε diag(e

v∗
ε .) (3.2.1)

Being the exponential a smooth function, Tε(a, b) is smooth in a and b if the dual optima

u∗(a, b) and v∗(a, b) are. Our goal is then showing the smoothness of the dual optima with

respect to a and b.

Step 3. (u∗, v∗) is smooth in a, b: this is the most technical part of the proof. First of all,

let us stress that one among the n + m rows/columns constraints of Π(a, b) is redundant:

the standard dual problem recalled in (2.3.31) has an extra dual variable, and this degree of

freedom is clear noticing that if (u, v) is feasible, than the pair (u + K1n, v −K1m) for

K ∈ R is also feasible. In the following, we get rid of the redundancy by removing one of

the dual variables. Hence, let us set

L(a, b;u, v) = −u> a− v> b̄ + ε

n,m−1∑
i,j=1

e
−(Cij−ui−vj)

ε , (3.2.2)

where b̄ corresponds to b with the last element removed. To avoid cumbersome notation,

from now on we denote x = (a, b) and γ = (u, v). The function L is smooth and strictly

convex in γ: hence, for every fixed x in the interior of ∆n × ∆m there exist γ∗(x) such

that L(x; γ∗(x)) = minγ L(x; γ). We now fix x0 and show that x 7→ γ∗(x) is Ck on a

neighbourhood of x0. Set Ψ(x; γ) := ∇γL(x; γ); the smoothness of L ensures that Ψ ∈ Ck.

Fix (x0; γ0) such that Ψ(x0; γ0) = 0. Since ∇γΨ(x; γ) = ∇2
γL(x; γ) and L is strictly

convex, ∇γΨ(x0; γ0) is invertible. Then, by the implicit function theorem, there exist a

subset Ux0 ⊂ ∆n ×∆m and a function φ : Ux0 → Rn × Rm−1 such that

i) φ(x0) = γ0

ii) Ψ(x, φ(x)) = 0, ∀x ∈ Ux0

iii) φ ∈ Ck(Ux0).

For each x in Ux0 , since φ(x) is a stationary point for L and L is strictly convex, then
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φ(x) = γ∗(x), which is -recalling the notation set before- (u∗, v∗). By a standard covering

argument, (u∗, v∗) is Ck on the interior of ∆n×∆m. As this holds true for any k, the optima

(u∗, v∗), and hence ÕTε, are C∞ on the interior of ∆n ×∆m.

Let us now focus on the smoothness of OTε. Note that when a, b belong to the interior of

the simplex, all components are strictly positive. From the characterization of Tε recalled

in Eq. (3.2.1), we know Tεij > 0 for any i, j = 1 . . . n,m. Then, since the logarithm is a

smooth function of Tε, the term εH(Tε) is smooth in a and b. This fact combined with the

first part of the proof shows the smoothness of OTε(a, b) = 〈Tε, C〉 − εH(Tε).

The gradient of Sinkhorn distances. After showing that Sinkhorn approximations are

smooth functions with respect to the inputs a and b, we now discuss how to derive the

gradient of sharp Sinkhorn with respect to one of the two variables. In both cases, the

dual problem introduced in (2.3.31) plays a fundamental role. In particular, as pointed

out in Cuturi and Doucet (2014), the gradient of the regularized Sinkhorn distance can be

obtained directly from the dual solution as ∇aOTε(a, b) = u∗(a, b), for any a ∈ Rn and

b ∈ Rm. This characterization is possible because of well-known properties of primal and

dual optimization problems (Bertsimas and Tsitsiklis, 1997).

The sharp Sinkhorn distance does not have a formulation in terms of a dual problem and

therefore a similar argument does not apply. Nevertheless, we show here that it is still

possible to obtain its gradient in closed form in terms of the dual solution.

Theorem 3.3. Let C ∈ Rn×m be a cost matrix, a ∈ ∆n, b ∈ ∆m and ε > 0. Let La,b(u, v)

be defined as the argument of the maximization in the right hand side of Eq. (2.3.31), with

argmax in (u∗, v∗). Let Tε be defined as in (3.2.1). Then,

∇aÕTε(a, b) = projT∆n

(
A L1m +B L̄>1n

)
(3.2.3)

where L = Tε � C ∈ Rn×m is the entry-wise multiplication between Tε and C and

L̄ ∈ Rn×m−1 corresponds to L with the last column removed. The terms A ∈ Rn×n and

B ∈ Rn×m−1 are

[A B] = −1

ε
D
[
∇2

(u,v)La,b(u∗, v∗)
]−1

, (3.2.4)

with D = [I 0] the matrix concatenating the n × n identity matrix I and the matrix 0 ∈

Rn×m−1 with all entries equal to zero. The operator projT∆n
denotes the projection onto
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Algorithm 3.1 Computation of ∇aÕTε(a, b)

Input: a ∈ ∆n, b ∈ ∆m, cost matrix C ∈ Rn,m+ , ε > 0.

T = SINKHORN(a, b, C, ε), T̄ = T1:n,1:(m−1)

L = T � C, L̄ = L1:n,1:(m−1)

D1 = diag(T1m), D2 = diag(T̄>1n)−1

H = D1 − T̄D2T̄
>,

f = − (L1n +D2T̄
>L̄1m−1)

g = H−1 f

Return: g− 1n(g>1n)

the tangent plane T∆n = {x ∈ Rn :
∑n

i=1 xi = 0} to the simplex ∆n.

The proof of Thm. 3.3 can be found in the supplementary material (Sec. B.3). The result is

obtained by noting that the gradient of ÕTε is characterized (via the chain rule) in terms of

the the gradients∇au∗(a, b) and∇av∗(a, b) of the dual solutions. The main technical step

of the proof is to show that these gradients correspond respectively to the terms A and B

defined in (3.2.4).

To obtain the gradient of ÕTε in practice, it is necessary to compute the Hessian

∇2
(u,v)La,b(u∗, v∗) of the dual functional. A direct calculation shows that this corresponds to

the matrix

∇2
(u,v)L(u∗, v∗) =

 diag(a) T̄ε

T̄ε
> diag(b̄)

 , (3.2.5)

where T̄ε (respectively b̄) corresponds to Tε (respectively b) with the last column (element)

removed. See the supplementary material (Sec. B.3) for the details of this derivation.

From the discussion above, it follows that the gradient of ÕTε can be obtained in closed

form in terms of the transport plan Tε. Alg. 3.1 reports an efficient approach to perform this

operation. The algorithm can be derived by simple algebraic manipulation of (3.2.3), given

the characterization of the Hessian in (3.2.5). We refer to Appendix B.3 for the detailed

derivation of the algorithm.

Barycenters with the sharp Sinkhorn. Using Alg. 3.1 we can now apply the accelerated

gradient descent approach proposed in Cuturi and Doucet (2014) to find barycenters with

respect to the sharp Sinkhorn distance. Fig. 3.2 reports a qualitative experiment inspired
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Figure 3.2: Nested Ellipses: (Left) Sample input data. (Middle) Regularized (Right) sharp Sinkhorn
barycenters. We compute the barycenter of 30 nested ellipses which are represented as
histograms on a 50 x 50 grid. We compare the performance of the Sharp and vanilla
Sinkhorn. Sharp Sinkhorn barycenter is less impacted by the entropic regularization and
suffer less blurriness, resulting more similar to the input data.

Figure 3.3: Ratio of time(AD) / time(Alg. 3.1) for 10, 50, and 100 iterations of the Sinkhorn algorithm

by the one in Cuturi and Doucet (2014), with the goal of comparing the two Sinkhorn

barycenters. We considered 30 images of random nested ellipses on a 50 × 50 grid. We

interpret each image as a distribution with support on pixels. The cost matrix is given by

the squared Euclidean distances between pixels, suitably normalized. The regularization

parameter in both cases is set to ε = 0.001. Fig. 3.2 shows some examples images in

the dataset and the corresponding barycenters of the two Sinkhorn distances. While the

barycenter µ∗ε of OTε suffers a blurry effect, the ÕTε barycenter µ̃∗ε is very sharp, suggesting

a better estimate of the ideal one.

We conclude this section with a computational consideration on the two methods.

Remark 3.1 (Computations). Differentiation of sharp Sinkhorn can be efficiently carried

out also via Automatic Differentiation (AD), as in Genevay et al. (2018b). Here we comment

on the computational complexity of Alg. 3.1 and empirically compare the computational times

of our approach and AD as dimensions and number of iterations grow. Experiments were run

on a Intel(R) Xeon(R) CPU E3-1240 v3 @ 3.40GHz with 16GB RAM. The implementation of

this comparison is available online2.

2https://github.com/GiulsLu/OT-gradients

https://github.com/GiulsLu/OT-gradients
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Figure 3.4: Average time (in seconds) to solve the Sinkhorn algorithm (Blue) and the remaining
operations required to compute the gradient of ÕTε in Alg. 3.1 (Orange) with respect to
an increasing dimension n of the support of the distributions compared.

Figure 3.5: Accuracy of the Gradient obtained with Alg. 3.1 or AD with respect to the number of
iterations

By leveraging the Sherman-Woodbury matrix identity, it is possible to show that the total

cost of computing the gradient ∇aÕTε(a, b) with a ∈ ∆n and b ∈ ∆m via Alg. 3.1 is

O(nmmin(n,m)). In particular, assume m ≤ n. Then, the most expensive operations are:

O(nm2) for matrix multiplication and O(m3) for solving a linear system with an m×m

positive definite matrix, where efficient off-the-shelf implementations such as Cholesky

decomposition can be used.

In Fig. 3.3 we compare the gradient obtained with Alg. 3.1 and Automatic Differentiation

(AD) on random histograms with different n (y axis), m (x axis), and reg. λ = 0.02. From

left to right, we report the ratio time(AD) / time(Alg. 3.1) for L = 10, L = 50, L = 100

iterations. The results shown are averaged on 10 different runs. Experiments show that

there exist regimes in which the gradient computed in closed form is a viable alternative to

Automatic Differentiation, depending on the task. In particular, it seems that as the ratio

between the supports n and m of the two distributions becomes more unbalanced, Alg. 3.1

is consistently faster than AD. Also, we note that the most expensive additional operations

required to compute the gradient of sharp Sinkhorn compared to the gradient of vanilla

Sinkhorn consist of matrix multiplications and the resolution of a linear system, which are

very efficiently implemented on modern machines. Indeed, in our experiments the Sinkhorn
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algorithm was always the most expensive component of the computation. Fig. 3.4 reports the

comparison of the time required to solve the Sinkhorn algorithm with respect to the remaining

operations in Alg. 3.1 to compute the gradient of ÕTε. It is important to notice however

that in practical applications both routines can be parallelized, and several ideas can be

exploited to lower the computational costs of either algorithms depending on the problem

structure (see for instance the convolutional Wasserstein distance in Solomon et al. (2015)).

Also, note that no comparison were made with a recently released library 3 that contains

an optimized implementation of Sinkhorn algorithm. Therefore, depending on the setting,

the computation of the gradient of the sharp Sinkhorn could be comparable or significantly

slower than the vanilla Sinkhorn or the one obtained with automatic differentiation.

Accuracy and approximation errors. We conclude this discussion on computational

consideration with a note on the accuracy of the method. A priori, the expression

Tε = diag(eu∗/ε) e−C/ε diag(ev∗/ε) which is used to derive Alg. 3.1 holds ‘at convergence’,

while in practise there is a limited budget (in terms of time and memory) for the computation

of Tε, i.e. limited number of iterations. In Pedregosa (2016) a similar issue is addressed.

In Fig. 3.5 we empirically show that plugging an approximation TLε obtained with a fixed

number L of iterations in the formula for the gradient allows to reach an accuracy with

respect to the ‘true gradient’ comparable or slightly better than automatic differentiation.

Errors are measured as `2 norm of the difference between approximated gradient and ‘true

gradient’, where the ‘true gradient’ is obtained via automatic differentiation setting 105 as

maximum number of iterations.

3.3 Learning with Sinkhorn Loss Functions
Given the characterization of smoothness for both Sinkhorn distances, in this section we

focus on a specific application: supervised learning with a Sinkhorn loss function. Supervised

learning with Optimal Transport loss was originally considered in Frogner et al. (2015);

this work focuses on Wasserstein distance as loss function in a image-tagging application

and it adopts an empirical risk minimization approach which, in practise, relies on entropic

regularization for algorithmic purposes. The statistical guarantees provided for the pro-

posed estimator are limited and provided for unregularized Wasserstein in specific settings.

Motivated by this first attempt, we use Sinkhorn approximation as loss function, with the

goal of providing a principled procedure that is theoretically justified and computationally

3https://www.kernel-operations.io/geomloss/api/pytorch-api.html

https://www.kernel-operations.io/geomloss/api/pytorch-api.html
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convenient.

We leverage the properties of Sinkhorn losses to study a learning algorithm with provable

statistical guarantees. Differently from (Frogner et al., 2015), we interpret the output space

equipped with the chosen loss function as a structured set and we rely on surrogate frame-

works to design a learning procedure. This allows us to propose an estimator with strong

theoretical guarantees that can be efficiently applied in practice. This section is devoted

to the problem setting and the main statements, while proofs are postponed to the next section.

Problem Setting. Let X be an input space and Y = ∆n a set of histograms. As it is standard

in supervised learning settings, the goal is to approximate a minimizer of the expected risk

min
f :X→Y

E(f), E(f) =

∫
X×Y

S(f(x), y) dρ(x, y) (3.3.1)

given a finite number of training points (xi, yi)
`
i=1 independently sampled from an unknown

distribution ρ on X × Y . The loss function S : Y × Y → R measures prediction errors and

in our setting corresponds to either ÕTε or OTε.

The idea behind the learning estimator that we will introduce below is the following: we

interpret (Y,S), where S is either ÕTε or OTε, as a structured output space. When dealing

with structured output spaces, a viable approach consists in using a surrogate method

(Bartlett et al., 2006; Mroueh et al., 2012). Intuitively, surrogate methods work as follows:

using an encoding function, the original structured output space is encoded into a vector

space, possibly infinite dimensional. Taking advantage of the linear structure of the space,

solving the problem at this level is more amenable and a surrogate estimator can be obtained

leveraging standard procedures. Once a surrogate estimator is obtained, one has to pull it

back to the original problem: this is done using a decoding map which has to satisfy some

assumptions in order to guarantee the effectiveness of the surrogate procedure. The formal

estimator is discussed below.

Structured Prediction Estimator. Given a training set (xi, yi)
`
i=1, we consider f̂ : X → Y

the structured prediction estimator proposed in Ciliberto et al. (2016), defined as

f̂(x) = argmin
y∈Y

∑̀
i=1

wi(x) S(y, yi) (3.3.2)

for any x ∈ X . The weights wi(x) are learned from the data and can be interpreted as scores
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suggesting the candidate output distribution y to be close according to the metric S to a

specific output distribution yi observed in training. While different learning strategies can be

adopted to learn the score vector w, we consider the kernel-based approach in Ciliberto et al.

(2016). In particular, given a positive definite kernel k : X × X → R (Aronszajn, 1950), we

have

w(x) = (w1(x), . . . , w`(x))> = (K + γ`I)−1Kx (3.3.3)

where γ > 0 is a regularization parameter while K ∈ R`×` and Kx ∈ Rn are respectively

the empirical kernel matrix with entries Kij = k(xi, xj) and the evaluation vector with

entries (Kx)i = k(x, xi), for any i, j = 1, . . . , `.

Remark 3.2 (Structured Prediction and Differentiability of Sinkhorn). The differentiability

properties studied in the previous sections of this chapter play a double role. On the practical

side, the gradient estimation algorithm in Alg. 3.1 allows to solve the optimization problem by

adopting first order methods such as gradient descent. On the theoretical side, the smoothness

guaranteed by Thm. 3.2 will allow us to characterize the generalization properties of the

estimator.

3.3.1 Theoretical Guarantees

In this section we study the theoretical guarantees of the estimator introduced in (3.3.2). We

study consistency and finite samples bounds.

Universal Consistency of f̂ . We start by showing f̂ is universally consistent, namely that

it achieves minimum expected risk as the number ` of training points increases. To avoid

technical issues on the boundary, in the following we will require Y = ∆θ
n for some θ > 0

to be the set of points p ∈ ∆n with pi ≥ θ for any i = 1, . . . , n. The main technical step in

this context is to show that for any smooth loss function on Y , the estimator in Eq. (3.3.2) is

consistent. In this sense, the characterization of smoothness in Thm. 3.2 is key to prove the

following result, in combination with Thm. 4 in Ciliberto et al. (2016).

Theorem 3.4 (Universal Consistency). Let Y = ∆θ
n, ε > 0 and S be either OTε or ÕTε.

Let k be a bounded continuous universal4 kernel on X . For any ` ∈ N and any distribution

ρ on X × Y let f̂` : X → Y be the estimator in (3.3.2) trained with (xi, yi)
`
i=1 points

4This is a standard assumptions for universal consistency (see (Steinwart and Christmann, 2008)). Example:
k(x, x′) = e−‖x−x

′‖2/σ .
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independently sampled from ρ and γ` = `−1/4. Then

lim
`→∞

E(f̂`) = min
f :X→Y

E(f) with probability 1. (3.3.4)

A result analogous to the one above was originally proved in (Ciliberto et al., 2016, Thm.

4) for a wide family of functions referred to as Structure Encoding Loss Function (SELF)

(Ciliberto et al., 2017) whose definition is recalled below:

Definition 3.1 (SELF). Let Y be a set. A function S : Y × Y → R is a Structure Encoding

Loss Function (SELF) if there exists a separable Hilbert space HY with inner product

〈·, ·〉HY , a continuous map ψ : Y → HY and a bounded linear operator V : HY → HY

such that

S(y, y′) = 〈ψ(y), V ψ(y′)〉HY y, y′ ∈ HY . (3.3.5)

While several classical loss functions used in structured prediction have been observed

to satisfy this SELF definition, such characterization was not available for the Sinkhorn

distances. The main technical step in the proof of Thm. 3.4 in this sense is to prove that any

smooth function on Y satisfies the definition of SELF. This result is provided in the lemma

below:

Theorem 3.5. (Smooth functions are SELF) Let Y be a compact subset of Rn. Any function

S : Y × Y → R such that S ∈ C∞(Y × Y) is SELF.

Proof. By assumption S ∈ C∞(Y × Y). Since Y is compact,

C∞(Y × Y) = C∞(Y)⊗ C∞(Y) ⊂ Hr(Y)⊗Hr(Y), (3.3.6)

for r > n/2, where Hr(Y) is the Sobolev space made of L2 functions weakly differentiable

r times (Brezis, 2010) and C∞(Y)⊗C∞(Y) denotes the completion of the topological tensor

product of C∞(Y) with itself with respect to the projective topology (see (Treves, 2016, Def

43.2 and 43.5)); the first equality follows from (Treves, 2016, Thm. 56.1 ). The Sobolev space

Hr(Y) is a Reproducing Kernel Hilbert Space (RKHS) (Berlinet and Thomas-Agnan, 2011)

and we denote by ky = k(y, ·) ∈ Hr(Y) the reproducing kernel. The product spaceHr⊗Hr

is also an RKHS with reproducing kernel K((y1, y2), (y′1, y
′
2)) = k(y1, y

′
1)k(y2, y

′
2), i.e. in

general Ky,y′ = ky ⊗ ky′ . Since S ∈ Hr ⊗ Hr, by reproducing property there exists a
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function V ∈ Hr ⊗Hr such that

S(y, y′) = 〈V, ky ⊗ ky′〉Hr⊗Hr .

By the isometric isomorphism Hr ⊗Hr ∼= HS(Hr, Hr) (Moretti, 2013), with HS(Hr, Hr)

the space of Hilbert-Schmidt operators from Hr to itself, it holds

S(y, y′) = 〈V, ky ⊗ ky′〉Hr⊗Hr = 〈V, ky ⊗ ky′〉HS = Tr(V ∗ky ⊗ ky′) = 〈ky′ , V ∗ky〉Hr ,

(3.3.7)

where V ∗ is the adjoint operator of V . To meet the conditions of Def. 3.1 it remains to

show that V ∗ and ky are bounded. But ky is bounded in Hr for any y ∈ Y by definition

of reproducing kernel and the operator norm ‖V ∗‖ is bounded from above by the Hilbert-

Schmidt norm ‖V ‖HS which is trivially bounded since V ∈ HS(Hr, Hr).

Corollary 3.6. The vanilla and sharp Sinkhorn losses OTε and ÕTε : ∆θ
n ×∆θ

n → R are

SELF.

Proof. Since ∆θ
n ⊂ ∆n is compact and OTε, ÕTε are C∞ in the interior on ∆n ×∆n by

Thm. 3.2, a direct application of the result above shows that OTε and ÕTε are SELF.

Combining this result with Thm.4 in Ciliberto et al. (2016), we obtain that for every smooth

loss function S on Y the corresponding estimator f̂ in Eq. (3.3.2) is universally consistent.

Since we have shown that vanilla and sharp Sinkhorn are smooth, the proof of Thm. 3.4

easily follows:

Proof. Since OTε, ÕTε are SELF functions and ∆θ
n is compact, the result follows from

Thm. 4 in Ciliberto et al. (2016).

Thm. 3.4 guarantees f̂ to be a valid estimator for the learning problem. To our knowledge,

this is the first result characterizing the universal consistency of an estimator for supervised

learning problem with Entropic Optimal Transport losses.

Learning Rates. By imposing standard regularity conditions on the learning problem, it is

possible to provide also excess risk bounds for f̂ .
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We start from the observation (see e.g. Lemma 6 in Ciliberto et al. (2016)) that the solution

f∗ : X → Y of the learning problem introduced in (3.3.1) is such that

f∗(x) = argmin
z∈Y

∫
Y
S(z, y) dρ(y|x) (3.3.8)

almost surely on X . In particular f∗(x) corresponds to the minimizer of the conditional

expectation Ey|xS(z, y) of the loss S(z, y) with respect to y given x ∈ X . As it is standard

in statistical learning theory, in order to obtain generalization bounds for estimating f∗ we

will impose regularity assumptions on the conditional distribution ρ(·|x) or, more precisely,

on its corresponding conditional mean embedding ((Song et al., 2009, 2013)) with respect to

a suitable space of functions.

Let h : X × X → R be the kernel on Y associated to the reproducing kernel Hilbert spaces

(RKHS) (whose definition is recalled in Appendix A.3) H = W
(d+1)/2
2 (Y), the Sobolev

space of square integrable functions with smoothness d+1
2 (see e.g. (Wendland, 2004)). We

consider a function g∗ : X → H such that

g∗(x) =

∫
Y
h(y, ·)dρ(y|x) (3.3.9)

almost surely on X . For any x ∈ X , the quantity g∗(x) is known as the conditional mean

embedding of ρ(·|x) in H, originally introduced in Song et al. (2009, 2013). In particular,

in Song et al. (2009) it was shown that in order to obtain learning rates for an estimator

approximating g∗, a key assumption is that g∗ belongs toH⊗F , the tensor product between

the spaceH on the output and the space F associated to a reproducing kernel on the input.

In this work we will require the same assumption.

It can be verified thatH⊗F is a RKHS for vector-valued functions (Micchelli and Pontil,

2005; Lever et al., 2012; Alvarez et al., 2012) and that by asking g∗ ∈ H ⊗ F we are

requiring the conditional mean embedding of ρ(·|x) to be sufficiently regular as a function

on X . We are now ready to report our result on the statistical performance of f̂ .

Theorem 3.7 (Learning Rates). Let Y = ∆θ
n, θ > 0 and S be either OTε or ÕTε. Let

H = W
(n+1)/2
2 (Y) and k : X × X → R be a bounded continuous reproducing kernel on

X with associated RKHS F . Let f̂` : X → Y be the estimator in Eq. (3.3.2) trained with `

training points independently sampled from ρ and with γ = `−1/2. If g∗ defined in Eq. (3.3.9)
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is such that g∗ ∈ H ⊗F , then

E(f̂`)− min
f :X→Y

E(f) ≤ c τ2`−1/4 (3.3.10)

holds with probability 1− 8e−τ for any τ > 0, with c a constant independent of ` and τ .

The proof of Thm. 3.7 requires to combine our characterization of the Sinkhorn distances (or

more generally smooth functions on Y) as structure encoding loss functions (see Sec. 3.3.1)

with Thm. 5 in Ciliberto et al. (2016) where a result analogous to the one above is reported

for SELF loss functions.

Remark 3.3. While the losses used in this Chapter use the original notions of Entropic

regularization, the statistical guarantees of Thm. 3.4 and Thm. 3.7 still hold true when using

as a loss the actual Sinkhorn divergence recalled in Sec. 2.5, where the autocorrelation terms

are removed.

Remark 3.4. A relevant question is whether the Wasserstein distance could be similarly

framed in the setting of structured prediction. However, the argument used to address

Sinkhorn distances relies on their smoothness properties and cannot be extended to the

Wasserstein distance, which is not smooth. A completely different approach may still be

successful and it is an interesting question for future work.

We conclude this section with a note on previous work. We recall that (Frogner et al., 2015)

is the first work proposing to use Optimal Transport-related loss function in supervised

learning setting. It deploys the entropic regularization in the algorithmic aspects, while

sticking to unregularized Wasserstein distance in the design of the model and in the statistical

analysis provided. They show a generalization bounds for an estimator minimizing the

1-Wasserstein distance. This chapter focuses on Entropic Optimal Transport as loss function

and not as a computational tool that serves as a surrogate of Wasserstein distance. We exploit

regularity properties that Entropic OT benefits from to characterize both the consistency

and the excess risk bounds in Thm. 3.7 of the estimator in (3.3.2). The two approaches and

analysis are based on different assumptions on the problem. Therefore, a comparison of the

corresponding learning rates is outside the scope of this work.

3.4 Experiments

We present here some experiments that compare the two Sinkhorn approximations (sharp and

vanilla) empirically. Optimization was performed with the accelerated gradient descent from
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Table 3.1: Average absolute improvement in terms of the ideal Wasserstein barycenter functional
BW in Eq. (3.1.6) of sharp vs vanilla Sinkhorn, for barycenters of random measures with
sparse support.

Support (% of total bins)
1% 2% 10% 50%

Improvement BW(µ̃∗ε)− BW(µ∗ε) 14.914± 0.076 12.482± 0.135 2.736± 0.569 0.258± 0.012

(Cuturi and Doucet, 2014) for ÕTε and Bregman projections (Benamou et al., 2015) for OTε.

Barycenters with Sinkhorn Distances. We compared the quality of Sinkhorn barycenters

in terms of their approximation of the (ideal) Wasserstein barycenter. We considered

discrete distributions on 100 bins, corresponding to the integers from 1 to 100 and a squared

Euclidean cost matrix C. We generated 4 different datasets of 10 measures each: these

datasets contain histograms where only k = 1, 2, 10, 50 (respectively) randomly chosen

consecutive bins are different from zero, with the non-zero entries sampled uniformly at

random between 0 and 1 (and then normalized to sum up to 1). In Table 3.1 they correspond

to the entries denoted by 1%, 2%, 10% and 50% support. We empirically chose the Sinkhorn

regularization parameter ε to be the smallest value such that the output Tε of the Sinkhorn

algorithm would be within 10−6 from the transport polytope in 1000 iterations. Table 3.1

reports the absolute improvement of the barycenter of the sharp Sinkhorn distance with

respect to the one obtained with the regularized Sinkhorn, averaged over 10 independent

dataset generation for each support size k. We call absolute improvement the following

quantity BW(µ̃∗ε)− BW(µ∗ε) that compares the quality of the barycenters µ̃∗ε and µ∗ε in terms

of the barycenter functional with Wasserstein distance BW. The quantity BW(µ̃∗ε)− BW(µ∗ε)

highlights how different µ̃∗ε and µ∗ε are in terms of the approximation of the actual Wasserstein

barycenter and it has to be interpreted as follows: the bigger this quantity is, the greater the

discrepancy between using sharp and vanilla Sinkhorn (and the more favorable for the sharp).

As can be noticed, the sharp Sinkhorn consistently outperforms the vanilla counterpart.

Interestingly, this improvement is more evident for measures with sparse support and tends

to reduce as the support increases. This is in line with the remark in example Example 3.1

and the fact that the regularization term in OTε tends to encourage oversmoothed solutions.

Learning with Wasserstein loss. We evaluated the Sinkhorn distances in an image re-

construction problem similar to the one considered in Weston et al. (2003) for structured
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prediction. Given an image depicting a drawing, the goal is to learn how to reconstruct the

lower half of the image (output) given the upper half (input). Similarly to Cuturi and Doucet

(2014) we interpret each (half) image as an histogram with mass corresponding to the gray

levels (normalized to sum up to 1). For all experiments, following Ciliberto et al. (2016), we

evaluated the performance of the reconstruction in terms of the classification accuracy of

an image recognition SVM classifier trained on a separate dataset. To train the structured

prediction estimator in (3.3.2) we used a Gaussian kernel with bandwith σ and regularization

parameter γ selected by cross-validation.

Reconstruction Error (%)
# Classes ÕTε OTε Hell(Ciliberto et al., 2017) KDE (Weston et al., 2003)

2 3.7± 0.6 4.9± 0.9 8.0± 2.4 12.0± 4.1
4 22.2± 0.9 31.8± 1.1 29.2± 0.8 40.8± 4.2
10 38.9± 0.9 44.9± 2.5 48.3± 2.4 64.9± 1.4

Table 3.2: Average reconstruction errors of the Sinkhorn (both sharp and vanilla), Hellinger, and
KDE estimators on the Google QuickDraw reconstruction problem. We considered the
following classes in the Google QuickDraw doodling dataset: fish, apple, (2) mug, candle,
(4) flower, moon, mushroom, hand, crown, broom (10). The images have size 28 x 28. We
interpret them as histograms over the grid of pixels. The input space X consists of the
upper halves of images. The outputs space Y consists of the lower halves of images. We
train the estimator described in the text on a dataset containing 1000 images per class and
we test it on other 1000 images. The results reported are averaged on 5 independent runs.
The cost matrix, containing the pairwise squared distance between pixels is normalized
and the regularization parameter is set to ε = 0.01. The Sinkhorn losses outperform
Hellinger and KDE: since they are sensitive to the geometric structure of the distributions
they are better suited at capturing the shape of the images. This has a positive impact in
the reconstruction.

• Google QuickDraw. We compared the performance of the two estimators on a challenging

dataset. We selected c = 2, 4, 10 classes from the Google QuickDraw dataset (Google,

2017) which consists in images of size 28× 28 pixels. We trained the structured prediction

estimators on 1000 images per class and tested on other 1000 images. We repeated these

experiments 5 times, each time randomly sampling a different training and test dataset.

Table 3.2 reports the reconstruction error (i.e. the classification error of the SVM classifier)

over images reconstructed by the Sinkhorn estimators, the structured prediction estimator

with Hellinger loss (Ciliberto et al., 2016) and the Kernel Dependency Estimator (KDE)

(Weston et al., 2003). As can be noticed, both Sinkhorn estimators perform significantly

better than their competitors (except the Hellinger distance outperforming OTε on 4 classes).

These results are not surprising as the geometric properties of optimal transport distances
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make them particularly suitable in comparing probability measures with ‘defined geometric

structure’ as it is the case here: indeed when interpreting images as probability measures over

the grid of pixel, the the support of the measure has a defined shape (e.g. it is concentrated

on a mug-shaped support for those in Mug class and similarly for the other classes). This is

in line with the intuition that optimal transport metrics respect the way the mass is distributed

on images (Cuturi, 2013; Cuturi and Doucet, 2014). Moreover, it is interesting to note that

the estimator of the sharp Sinkhorn distance provides always better reconstructions than its

vanilla counterpart.

3.5 Discussion
In this chapter we investigated the differential properties of Sinkhorn distances. We proved

the smoothness of the two functions and derived an explicit algorithm to efficiently compute

the gradient of the sharp Sinkhorn distance. Our result allows to employ the sharp Sinkhorn

distance in applications that rely on first order optimization methods, such as in approximating

Wasserstein barycenters and supervised learning on probability distributions. In this latter

setting, our characterization of smoothness allowed to study the statistical properties of

the Sinkhorn distance as loss function. In particular we considered a structured prediction

estimator for which we proved universal consistency and generalization bounds.



Chapter 4

Free-support Sinkhorn barycenters

The previous chapter was devoted to Sinkhorn divergences as losses in supervised learning

settings. In many applications however, data comes unlabelled and the primary interest

switches from prediction to identification of clusters or aggregation of the data. A rele-

vant example is the following: assume that multiple sensors collect data from the same

environment with different noise distributions. One may be interested in assembling the

gathered samples into a single signal, averaging out the noise due to individual measurements.

When averaging different distributions, the choice of the metric has a deep impact. Optimal

Transport distances and Sinkhorn divergences are particularly suitable in averaging problems,

since they capture the geometric structure of the distributions. OT and Sinkhorn barycenters

have been successfully used in many settings, including texture mixing (Rabin et al., 2011),

Bayesian inference (Srivastava et al., 2018), imaging (Gramfort et al., 2015), or model

ensemble (Dognin et al., 2018).

The notion of barycenter in Wasserstein space was first introduced by Agueh and Carlier

(2011) and later investigated from the algorithmic perspective, in case of both the original

Wasserstein distance (Staib et al., 2017; Claici et al., 2018) and its entropic regularizations

(Cuturi and Doucet, 2014; Benamou et al., 2015; Dvurechenskii et al., 2018). Two main

challenges in this regard are: i) how to efficiently identify the support of the candidate

barycenter and ii) how to deal with continuous (or infinitely supported) probability measures.

The first problem is typically addressed by either fixing the support of the barycenter a-priori

(Staib et al., 2017; Dvurechenskii et al., 2018) or by adopting an alternating minimization

procedure to iteratively optimize the support point locations and their weights (Cuturi and

Doucet, 2014; Claici et al., 2018). While fixed-support methods enjoy better theoretical

guarantees, free-support algorithms are more flexible, more memory efficient and practicable
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in high dimensional settings. Free support methods are not affected by any approximation

that is artificially introduced when fixing a priori the support of the target barycenter. In

addition, they are more suited to address the case where input measures are continuous. The

problem of dealing with continuous measures constitutes a challenge on its own; so far it

has been mainly approached by adopting stochastic optimization methods to minimize the

barycenter functional (Claici et al., 2018; Staib et al., 2017; Dvurechenskii et al., 2018).

In this chapter, we study this averaging, or barycenter, problem with respect to Sinkhorn

divergence in full generality. We present a novel algorithm to estimate the barycenter

of arbitrary probability distributions that does not require to fix the support beforehand.

Based on a Frank-Wolfe optimization strategy, our approach proceeds by populating the

support of the barycenter incrementally, without requiring any pre-allocation. In particular,

the algorithm adds new points and updates their weights at each iteration, similarly to

kernel herding strategies (Bach et al., 2012) and conditional gradient for sparse inverse

problem (Bredies and Pikkarainen, 2013; Boyd et al., 2017). We consider discrete as well

as continuous distributions, proving convergence rates of the proposed algorithm in both

settings. Key elements of our analysis are a new result showing that the Sinkhorn divergence

on compact domains has Lipschitz continuous gradient with respect to the Total Variation

and a characterization of the sample complexity of Sinkhorn potentials. These regularity

results complement recent work in Feydy et al. (2019) on theoretical properties of Sinkhorn

divergence and are of independent interest. Experiments validate the effectiveness of our

method in practice. This chapter will mainly discuss the work in Luise et al. (2019).1

Contributions. The main contributions of this chapter are the following: i) we show that

the gradient of the Sinkhorn divergence is Lipschitz continuous on the space of probability

measures with respect to the Total Variation. This result grants us convergence of the

barycenter algorithm in finite settings. It also provides further understanding of the theoretical

benefits of adding entropy penalty in terms of regularity properties of the divergence; ii) We

characterize the sample complexity of Sinkhorn potentials of two empirical distributions

sampled from arbitrary probability measures. While standard statistical results focus on

the sample complexity of the divergence itself, here we show finite sample bounds for

the gradients. This latter result allows us to iii) provide a concrete optimization scheme

1Advances in Neural Information Processing Systems (NeurIPS), Dec 2019, Vancouver, Canada.
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to approximately solve the barycenter problem for arbitrary probability measures with

convergence guarantees. iv) A byproduct of our analysis is the generalization of the Frank-

Wolfe (FW) algorithm to settings where the objective functional is defined only on a set with

empty interior, which is the case for Sinkhorn divergence barycenter problem.

The chapter is organized as follows: Sec. 4.1 briefly recalls the definitions that are used in this

chapter. Sec. 4.2 introduces the barycenter functional, and proves the Lipschitz continuity of

its gradient. Sec. 4.5 describes the implementation of our algorithm and Sec. 4.6 studies its

convergence rates. Finally, Sec. 4.7 evaluates the proposed methods empirically and Sec. 4.8

provides concluding remarks.

4.1 Setting

In this section we briefly recall for convenience some definitions and properties of entropy-

regularized Optimal Transport that will be repeatedly used in this chapter. We refer to

Chapter 2 for more details and a thorough presentation. We consider a compact set X ⊂ Rd

and a symmetric cost function c : X × X → R. We set D := supx,y∈X c(x, y) and denote

by P(X ) the space of probability measures on X (positive Radon measures with mass 1).

For any α, β ∈ P(X ), the Optimal Transport problem with entropic regularization is defined

in (2.3.1). In this chapter we mostly need the dual formulation that is recalled here for

convenience:

OTε(α, β) = max
u,v∈C(X )

∫
u(x) dα(x) +

∫
v(y) dβ(y)− ε

∫
e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y),

(4.1.1)

where C(X ) denotes the space of real-valued continuous functions on X , endowed with

‖ · ‖∞. Let µ ∈ P(X ). We denote by Pµ : C(X ) → C(X ) the map such that, for any

w ∈ C(X ),

Pµ(w) : x 7→ −ε log

∫
e
w(y)−c(x,y)

ε dµ(y). (4.1.2)

The first order optimality conditions for (4.1.1) are

u = Pβ(v) α- a.e. and v = Pα(u) β- a.e. (4.1.3)

Recall that pairs (u, v) satisfying (4.1.3) are referred to as Sinkhorn potentials. The properties

of the Sinkhorn potentials have been presented in Sec. 2.3.3 in Chapter 2. In the following we

assume (u, v) to be the Sinkhorn potentials such that: i) u(xo) = 0 for an arbitrary anchor
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point xo ∈ X and ii) (4.1.3) is satisfied pointwise on the entire domain X . The extended

potentials play the role of gradients as was presented in detail in Sec. 2.3.5. In this chapter

we use the unbiased version of the entropic regularization, referred to as Sinkhorn divergence

and recalled in Sec. 2.5. We rewrite the definition below for convenience:

Sε : P(X )×P(X )→ R, (α, β) 7→ OTε(α, β)− 1

2
OTε(α, α)− 1

2
OTε(β, β). (4.1.4)

Remark 4.1. The gradient of Sinkhorn divergence is a core concept in this chapter, and

we refer to Prop. 2.10 and Prop. 2.17 in Chapter 2 for the details. Here we just recall that

defining∇OTε : P(X )2 → C(X )2 to be the map

∇OTε(α, β) = (u, v), with u = Pβ(v), v = Pα(u) on X , u(xo) = 0,

(4.1.5)

then, for any α, α′, β, β′ ∈ P(X ), the directional derivative of OTε along (µ, ν) = (α′ −

α, β′ − β) is

OT′ε(α, β;µ, ν) = 〈∇OTε(α, β), (µ, ν)〉 = 〈u, µ〉+ 〈v, ν〉 , (4.1.6)

where 〈w, ρ〉 =
∫
w(x) dρ(x) denotes the canonical pairing between the spaces C(X ) and

M(X ). Also, for any β ∈ P(X ) the gradient of Sε(·, β) is

∇[Sε(·, β)] : P(X )→ C(X ) α 7→ ∇1OTε(α, β)− 1

2
∇1OTε(α, α) = u− p, (4.1.7)

with u = Pβα(u) and p = Pα(p).

4.2 Sinkhorn barycenters with Frank-Wolfe

Given β1, . . . βm ∈ P(X ) and ω1, . . . , ωm ≥ 0 a set of weights such that
∑m

j=1 ωj = 1, the

main goal of this chapter is to solve the following Sinkhorn barycenter problem

min
α∈P(X )

Bε(α), with Bε(α) =
m∑
j=1

ωj Sε(α, βj). (4.2.1)

Although the objective functional Bε is convex, its domain P(X ) has empty interior in

the space of finite signed measureM(X ). Hence standard notions of Fréchet or Gâteaux

differentiability do not apply. This causes some difficulties in devising optimization methods.
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To circumvent this issue, here we adopt the Frank-Wolfe (FW) algorithm. Indeed, one key

advantage of this method is that it is formulated in terms of directional derivatives along

feasible directions (i.e., directions that locally remain inside the constraint set). Building

upon (Demyanov and Rubinov, 1967, 1968; Dunn and Harshbarger, 1978), which study the

algorithm in Banach spaces, we show that the “weak” notion of directional differentiability

of Sε (and hence of Bε) in Remark 4.1 is sufficient to carry out the convergence analysis.

While full details are provided in Appendix C.1, below we give an overview of the main

result.

Frank-Wolfe in dual Banach spaces. LetW be a real Banach space with topological

dualW∗ and let D ⊂ W∗ be a nonempty, convex, closed and bounded set. For any w ∈ W∗

denote byFD(w) = R+(D−w) the set of feasible direction ofD atw (namely s = t(w′−w)

with w′ ∈ D and t > 0). Let G : D → R be a convex function and assume that there exists

a map ∇G : D → W (not necessarily unique) such that 〈∇G(w), s〉 = G′(w; s) for every

s ∈ FD(w). In Alg. 4.1 we present a method to minimize G. The algorithm is structurally

equivalent to the standard FW (Dunn and Harshbarger, 1978; Jaggi, 2013) and accounts for

possible inaccuracies in solving the minimization in step (i). This will be key in Sec. 4.6

when studying the barycenter problem for βj with infinite support. The following result (see

proof in Appendix C.1) shows that under the additional assumption that ∇G is Lipschitz-

continuous and with sufficiently fast decay of the errors, the above procedure converges in

value to the minimum of G with rate O(1/k). Here diam(D) denotes the diameter of D with

respect to the dual norm.

Theorem 4.1. Under the assumptions above, suppose in addition that ∇G is L-Lipschitz

continuous with L > 0. Let (wk)k∈N be obtained according to Alg. 4.1. Then, for every

integer k ≥ 1,

G(wk)−minG ≤ 2

k + 2
Ldiam(D)2 + ∆k, (4.2.2)

where ∆k is introduced in Alg. 4.1.

Frank-Wolfe Sinkhorn barycenters. We show that the barycenter problem (4.2.1)

satisfies the setting and hypotheses of Thm. 4.1 and can be thus approached via Alg. 4.1.

Optimization domain. Let W = C(X ), with dual W∗ = M(X ). The constraint set
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Algorithm 4.1 FRANK-WOLFE IN DUAL BANACH SPACES

Input: initial w0 ∈ D, threshold (∆k)k∈N ∈ RN
++, such that ∆k(k + 2) is nondecreasing.

For k = 0, 1, . . .
Take zk+1 such that G′(wk, zk+1 − wk) ≤ minz∈D G′(wk, z − wk) + ∆k

2
wk+1 = wk + 2

k+2(zk+1 − wk)

D = P(X ) is convex, closed, and bounded.

Objective functional. The objective functional G = Bε : P(X ) → R, defined in (4.2.1),

is convex since it is a convex combination of Sε(·, βj), with j = 1 . . .m. The gradient

∇Bε : P(X ) → C(X ) is ∇Bε =
∑m

j=1 ωj ∇Sε(·, βj), where ∇Sε(·, βj) is given in Re-

mark 4.1.

Lipschitz continuity of the gradient. This is the most critical condition and is addressed in

the following section.

4.3 Lipschitz continuity of the gradient of Sinkhorn divergence

with respect to the Total Variation
In this section we show that the gradient of the Sinkhorn divergence is Lipschitz continuous

with respect to the Total Variation on P(X ), denoted by TV. The definition of Total Variation

is provided in the brief discussion on f -divergences in Appendix A.2.1. The goal is to prove

the following theorem:

Theorem 4.2. The gradient ∇OTε recalled in Remark 4.1 is Lipschitz continuous. In

particular, the first component ∇1OTε is 2εe3D/ε-Lipschitz continuous, i.e., for every

α, α′, β, β′ ∈ P(X ),

∥∥u− u′∥∥∞ =
∥∥∇1OTε(α, β)−∇1OTε(α

′, β′)
∥∥
∞ ≤ 2εe3D/ε (‖α−α′‖TV+‖β−β′‖TV),

(4.3.1)

where D = supx,y∈X c(x, y), u = Pβα(u), u′ = Pβ′,α′(u
′), and u(xo) = u′(xo) = 0.

Moreover, it follows from (4.1.7) that ∇Sε(·, β) is 6εe3D/ε-Lipschitz continuous. The same

holds for∇Bε.

Thm. 4.2 is one of the main contributions of this chapter. It can be rephrased by saying

that the operator that maps a pair of distributions to their Sinkhorn potentials is Lipschitz
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continuous. This result is significantly deeper than the one given in (Dvurechenskii et al.,

2018, Lemma 1), which establishes the Lipschitz continuity of the gradient in the semidiscrete

case. The proof relies on non-trivial tools from Perron-Frobenius theory for Hilbert’s metric

(Lemmens and Nussbaum, 2012), which is a well-established framework to study Sinkhorn

potentials presented in Appendix A.4. This theorem provides a further understanding of

the impact of the entropy regularization in Optimal Transport problems. Namely, while the

benefits in terms of statistical properties and computational cost are well known, this theorem

concerns the benefits of adding the entropy in terms of smoothness property of the gradients.

While in this Chapter we use the theorem specifically to apply Frank-Wolfe algorithm to

the barycenter problem, its applicability is not limited to this case. We provide the proof

below. Most of the notions needed in the proof are presented in the introductory material in

Chapter 2 and the most technical ones in the supplementary chapter Appendix A.

The proof needs some preliminary lemmas. Here we will provide the statements only and

the minimum material that is necessary for the overall structure of the proof. We mostly use

properties of the Hilbert metric which are presented in Appendix A.4.1 at length. Here we

give the following definition of Hilbert metric:

Definition 4.1. Set C++(X ) := {f ∈ C(X ) such that f > 0}, the set of strictly positive

continuous functions. Let f, f ′ be two functions in C++(X ). The Hilbert metric dH is defined

as follows

dH(f, f ′) = log max
x,y∈X

f(x)f ′(y)

f(y)f ′(x)
. (4.3.2)

Note that normally (4.3.2) is a characterization of the Hilbert metric and not the definition.

This is discussed in Appendix A.4.1. Here we state it directly as definition for convenience.

We start by characterizing the relation between Hilbert’s metric between functions of the

form f = eu/ε and the ‖·‖∞ norm between functions of the form u = ε log f .

Lemma 4.3. Let f, f ′ ∈ C++(X ) and set u = ε log f and u′ = ε log f ′. Then

dH(f, f ′) ≤ 2
∥∥log f − log f ′

∥∥
∞ or, equivalently dH(eu/ε, eu

′/ε) ≤ 2

ε

∥∥u− u′∥∥∞ .
(4.3.3)

Moreover, let xo ∈ X , consider the sets A = {h ∈ C++(X ) | h(xo) = 1} and B = {w ∈

C(X ) | w(xo) = 0}. Suppose that f, f ′ ∈ A (or equivalently that u, u′ ∈ B). Then

1

2
dH(f, f ′) ≤

∥∥log f − log f ′
∥∥
∞ ≤ dH(f, f ′) (4.3.4)
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and
ε

2
dH(eu/ε, eu

′/ε) ≤
∥∥u− u′∥∥∞ ≤ ε dH(eu/ε, eu

′/ε). (4.3.5)

The proof can be found in Appendix A.4.3. To proceed we recall the following two operators

(introduced in Appendix A.4.1):

• Lα : C(X )→ C(X ) defined by

Lα(f) : y 7−→
∫
X
e−

c(x,y)
ε f(x) dα(x) (4.3.6)

• Aα : C++(X )→ C++(X ) defined by

Aα(f) = 1/(Lαf). (4.3.7)

In the following we will use the notation k to denote k(x, y) := e−
c(x,y)
ε . The two maps L and

A are closely related to the Sinkhorn map Pα that we used to state the first order conditions

of the dual problem, recalled in (4.1.2). Indeed we have

Pα(u) = −ε log(Aα(eu/ε)). (4.3.8)

Similarly to (4.1.3), we can express optimality conditions of the dual problem (4.1.1) using

the map Aα and Aβ: setting f = e
u
ε and g = e

v
ε , then (4.1.3) is equivalent to

f = Aβ(g) and g = Aα(f), (4.3.9)

and analogously, by setting Aβα = Aβ ◦ Aα and Aαβ = Aα ◦ Aβ , is equivalent to

f = Aβα(f) and g = Aαβ(g). (4.3.10)

As last tool before the proof, we need a property of contraction of Hilbert metric for the

operator Aαβ . This property with its proof is contained in Thm. A.7 in Appendix A.4.2 and

the statement is recalled here for convenience:

Theorem 4.4 (Hilbert’s metric contraction for Aβα). The map Aβα : C++(X )→ C++(X )

has a unique fixed point up to positive scalar multiples. Moreover, let λ = eD/ε−1
eD/ε+1

. Then, for



4.3. Lipschitz continuity of the gradient of Sinkhorn divergence with respect to the Total Variation83

every f, f ′ ∈ C++(X ),

dH(Aβα(f),Aβα(f ′)) ≤ λ2 dH(f, f ′). (4.3.11)

We are ready to prove the main result of the section.

Theorem 4.5 (Lipschitz continuity of the Sinkhorn potentials with respect to the total

variation). Let α, β, α′, β′ ∈ P(X ) and let xo ∈ X . Let (u, v), (u′, v′) ∈ C(X )2 be the two

pairs of Sinkhorn potentials corresponding to the solution of the regularized OT problem in

(A.4.25) for (α, β) and (α′, β′) respectively such that u(xo) = u′(xo) = 0. Then

∥∥u− u′∥∥∞ ≤ 2εe3D/ε‖(α− α′, β − β′)‖TV. (4.3.12)

Hence, the map that to each pair of probability distributions (α, β) ∈ P(X )2 associates the

component u of the corresponding Sinkhorn potentials is 2εe3D/ε-Lipschitz continuous with

respect to the total variation.

Proof. The functions f = eu/ε and f ′ = eu
′/ε are fixed points of the maps Aβα and Aβ′α′

respectively. Then, it follows from Thm. 4.4 that

dH(f, f ′) = dH(Aβα(f),Aβ′α′(f
′))

≤ dH(Aβα(f),Aβ′α′(f)) + dH(Aβ′α′(f),Aβ′α′(f
′))

≤ dH(Aβα(f),Aβ′α′(f)) + λ2dH(f, f ′),

hence,

dH(f, f ′) ≤ 1

1− λ2
dH(Aβα(f),Aβ′α′(f)). (4.3.13)

Moreover, using (4.3.3), we have

dH(Aβα(f),Aβ′α′(f)) ≤ dH(Aβα(f),Aβ′α(f)) + dH(Aβ′α(f),Aβ′α′(f))

≤ dH(Aβ(g),Aβ′(g)) + λdH(Aα(f),Aα′(f))

≤ 2

∥∥∥∥log
Aβ(g)

Aβ′(g)

∥∥∥∥
∞

+ 2λ

∥∥∥∥log
Aα(f)

Aα′(f)

∥∥∥∥
∞
. (4.3.14)
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Now, note that by Lemma A.9

∣∣∣∣ log
Aβ(g)

Aβ′(g)

∣∣∣∣ =

∣∣∣∣ log
Lβ′g

Lβg

∣∣∣∣ ≤ max{1/Lβg, 1/Lβ′g}|(Lβ′ − Lβ)g| (4.3.15)

and that, for every x ∈ X ,

[(Lβ′ − Lβ)g](x) =

∫
k(x, z)g(z) d(β − β′)(z)

=
〈
k(x, ·)g, β − β′

〉
≤ ‖g‖∞ ‖β − β

′‖TV,
(4.3.16)

where k denotes the function k(x, z) = e−
c(x,z)
ε . Similarly, [(Lβ − Lβ′)g](x) ≤ ‖g‖∞ ‖β −

β′‖TV. Therefore, since 1/(Lβg) = Aβ(g) = f and Lβ′g ≥ e−D/ε min g, it follows from

Lemma A.8Item (v) and (A.4.34) (applied to g) that

∥∥∥∥log
Aβ(g)

Aβ′(g)

∥∥∥∥
∞
≤ max

{
‖f‖∞ ,

eD/ε

min g

}
‖g‖∞ ‖β − β

′‖TV ≤ e2D/ε ‖β − β′‖TV.

(4.3.17)

Analogously, it holds

∥∥∥∥log
Aα(f)

Aα′(f)

∥∥∥∥
∞
≤ e2D/ε ‖α− α′‖TV. (4.3.18)

Putting (4.3.13), (4.3.14), (4.3.17), and (4.3.18) together, we have

dH(f, f ′) ≤ 2e2D/ε

1− λ2

(
λ‖α− α′‖TV + ‖β − β′‖TV

)
. (4.3.19)

Now, note that since eD/ε ≥ 1

1

1− λ2
=

(eD/ε + 1)2

4eD/ε
≤ eD/ε. (4.3.20)

Finally, recalling (4.3.5), we have

∥∥u− u′∥∥∞ ≤ 2εe3D/ε‖(α− α′, β − β′)‖TV, (4.3.21)

where ‖(α − α′, β − β′)‖TV = ‖α − α′‖TV + ‖β − β′‖TV is the total variation norm on

M(X )2.

We are now ready to prove the theorem Thm. 4.2, stated at the beginning of the section,
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which is now a easy consequence of the results above:

Proof. The first part is just a consequence of Thm. 4.5 and (4.1.6). The second part follows

from the first part and Remark 4.1.

4.4 Lipschitz continuity with respect to the MMD and sample

complexity of Sinkhorn gradients

In the previous section, we proved Lipschitz continuity of the gradient of Sinkhorn divergence

with respect to Total Variation. Total Variation is a strong metric on the space of measures

which makesM(X ) a Banach space. This will be key in showing that Frank-Wolfe algorithm

can be applied to the barycenter problem and inherits the guarantees in the optimization

process. However, when we deal with continuous measures another ingredient comes into

play: in practise we access the absolutely continuous measures via samples. Therefore this

statistical aspects plays a role in the kind of theoretical guarantees that we can achieve. In

order to take the sampling procedure into account, we have to quantify the approximation

resulting by using a gradient computed on a sample rather than the actual gradient. In

statistical terms, we need a result on sample complexity of the gradients of Sinkhorn. This

section is devoted to this and the main tool is -again- a Lipschitz continuity result. However,

differently from the previous section where we proved a Lipschitz continuity result with

respect to a strong metric, here we need a Lipschitz continuity result with respect to a weak

metric, as specified in the statements below.

The main result that we prove in this section is the following, that quantifies the approximation

error between∇1OTε(·, β) and ∇1OTε(·, β̂) in terms of the sample size of β̂.

Theorem 4.6 (Sample Complexity of Sinkhorn Potentials). Suppose that c ∈ Cs+1(X × X )

with s > d/2. Then, there exists a constant r = r(X , c, d) such that for any α, β ∈ P(X )

and any empirical measure β̂ of a set of n points independently sampled from β, we have,

for every τ ∈ (0, 1]

‖u− un‖∞ = ‖∇1OTε(α, β)−∇1OTε(α, β̂)‖∞ ≤
8ε re3D/ε log 3

τ√
n

(4.4.1)

with probability at least 1− τ , where u = Pβα(u), un = Pβ̂α(un) and u(xo) = un(xo) = 0.

We point out that it cannot be obtained by means of the Lipschitz continuity of ∇1OTε in

Thm. 4.2, since empirical measures do not converge in ‖ · ‖TV to their target distribution
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(Devroye et al., 1990). Instead, the proof consists in considering the weaker Maximum Mean

Discrepancy (MMD, recalled in Def. A.14) metric associated to a universal kernel (Song,

2008), which metrizes the topology of the convergence in law of P(X ) (Sriperumbudur

et al., 2011). Empirical measures converge in MMD metric to their target distribution (Song,

2008). Therefore, in order to show that (4.4.1) holds, it is sufficient to prove the Lipschitz

continuity of∇1OTε with respect to MMD. We show this result below.

In general, recall that a well-established approach to approximate a distribution β ∈ P(X ) is

to independently sample a set of points x1, . . . , xn ∈ X from β and consider the empirical

distribution βn = 1
n

∑n
i=1 δxi . As an intermediate step, the following lemma shows that βn

converges to β in MMD with high probability. The original version of this result can be

found in Song (2008), we report an independent proof in Appendix C.4. for completeness.

Lemma 4.7. Let β ∈ P(X ). Let x1, . . . , xn ∈ X be independently sampled according to β

and denote by βn = 1
n

∑n
i=1 δxi . Then, for any τ ∈ (0, 1], we have

MMD(βn, β) ≤
4 log 3

τ√
n

(4.4.2)

with probability at least 1− τ .

We now proceed to the main result on Lipschitz continuity of the potentials with respect to

MMD.

Proposition 4.8 (Lipschitz continuity of the Sinkhorn Potentials with respect to the MMD).

Let X ⊂ Rd be a compact Lipschitz domain and c ∈ Cs+1(X × X ), with s > d/2. Let

α, β, α′, β′ ∈ P(X ). Let xo ∈ X and let (u, v), (u′, v′) ∈ C(X )2 be the two Sinkhorn

potentials corresponding to the solution of the regularized OT problem in (4.1.1) for (α, β)

and (α′, β′) respectively such that u(xo) = u′(xo) = 0. Then

∥∥u− u′∥∥∞ ≤ 2ε̄re3D/ε
(
MMD(α, α′) + MMD(β, β′)

)
, (4.4.3)

with r̄ from Lemma C.10. In other words, the operator∇1OTε : P(X )2 → C(X )is 2ε̄re3D/ε-

Lipschitz continuous with respect to the MMD.

Proof. Let f = eu/ε and g = ev/ε. A quite technical result, which is postponed to

Lemma C.10 in the appendix, shows a uniform bound on the norm of k(x, ·)eu/ε and

k(x, ·)ev/ε in the Sobolev spaceH = W s,2(Rd). Using those, we can now refine the analysis
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in Thm. 4.5. More precisely, we observe that in (4.3.16) we have

[(Lβ′ − Lβ)g](x) =

∫
k(x, z)g(z) d(β − β′)(z)

=

∫
〈k(x, ·)g, h(z, ·)〉H d(β − β′)(z)

=
〈
k(x, ·)g, hβ − hβ′

〉
H

≤ ‖k(x, ·)g‖H ‖hβ − hβ′‖H

≤ r̄ MMD(β, β′),

where hβ (hβ′) is the kernel mean embedding of β (β′), where in the first equality, with some

abuse of notation, we have implicitly considered the extension of k(x, ·)g toH = W s,2(Rd)

as discussed in Lemma C.10. The rest of the analysis in Thm. 4.5 remains unvaried, eventually

leading to (4.4.3).

We now have all the tools to prove Thm. 4.6, which easily follows from the results discussed

so far.

Proof. The theorem is just a consequence of Lemma 4.7 and Prop. 4.8.

Remark 4.2. This latter result relies on higher regularity properties of Sinkhorn potentials,

which have been recently shown (Genevay et al., 2018a, Thm.2) to be uniformly bounded in

Sobolev spaces under the additional assumption c ∈ Cs+1(X × X ). For sufficiently large s,

the Sobolev norm is in duality with the MMD (Muandet et al., 2017) and allows us to derive

the required Lipschitz continuity. We conclude noting that while Genevay et al. (2018a)

studied the sample complexity of the Sinkhorn divergence, Thm. 4.6 is a sample complexity

result for Sinkhorn potentials. In this sense, we observe that the constants appearing in

the bound are tightly related to those in (Genevay et al., 2018a, Thm.3) and have similar

behavior with respect to ε. However, in the subsequent work (Mena and Niles-Weed, 2019),

the exponential dependence on ε−1 in the sample complexity result has been removed, in

favour of polynomial dependence. This change cannot be done here with the present proof,

which deeply exploits the structure of DAD problems. It would be interesting to see whether

with a completely different approach it is possible to improve the constants in our results as

well. In a very recent paper (Shen et al., 2020) our result is generalized to cost functions

with weaker assumptions. However, the dependence on the regularization parameter remains

the same and there is no improvement on that regard.
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4.5 Algorithm: practical Sinkhorn barycenters

According to Sec. 4.2, FW is a valid approach to tackle the barycenter problem (4.2.1). Here

we describe how to implement in practice the abstract procedure of Alg. 4.1 to obtain a

sequence of distributions (αk)k∈N minimizing Bε. A main challenge in this sense resides in

finding a minimizing feasible direction for B′ε(αk;µ−αk) = 〈∇Bε(αk), µ− αk〉. According

to Remark 4.1, this amounts to solve

µk+1 ∈ argmin
µ∈P(X )

m∑
j=1

ωj 〈ujk − pk, µ〉 where ujk − pk = ∇Sε[(·, βj)](αk),

(4.5.1)

with pk = ∇1OTε(αk, αk) not depending on j. In general (4.5.1) would entail a mini-

mization over the set of all probability distributions on X . However, since the objective

functional is linear in µ and P(X ) is a weakly-∗ compact convex set, we can apply Bauer

maximum principle (see e.g., (Aliprantis, 2006, Thm. 7.69)). Hence, solutions are achieved

at the extreme points of the optimization domain: in the case of P(X ), the extreme points

correspond to Dirac’s deltas (Chouquet, 1969, p. 108). Now, denote by δx ∈ P(X ) the

Dirac’s delta centered at x ∈ X . We have 〈w, δx〉 = w(x) for every w ∈ C(X ). Hence

(4.5.1) is equivalent to

µk+1 = δxk+1
with xk+1 ∈ argmin

x∈X

m∑
j=1

ωj
(
ujk(x)− pk(x)

)
. (4.5.2)

Once the new support point xk+1 has been obtained, the update in Alg. 4.1 corresponds to

αk+1 = αk +
2

k + 2
(δxk+1

− αk) =
k

k + 2
αk +

2

k + 2
δxk+1

. (4.5.3)

In particular, if FW is initialized with a distribition with finite support, say α0 = δx0 for

some x0 ∈ X , then also every further iterate αk will have at most k + 1 support points.

According to (4.5.2), the inner optimization for FW consists in minimizing the functional

x 7→
∑m

j=1 ωj
(
ujk(x) − pk(x)

)
over X . In practice, having access to such functional

poses already a challenge, since it requires computing the Sinkhorn potentials ujk and pk,

which are continuous functions on the domain X . Below we discuss how to estimate these

potentials when the βj have finite support. We then address the general setting.
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Algorithm 4.2 SINKHORN BARYCENTERS

Input: Yj ∈ Rd×mj , bj ∈ Rmk for j = 1, . . . , J , initial point X0 = x0 ∈ Rd, ε > 0.

Initialize: βj = (Yj , bj) and α0 = (X0, a0) probability distributions with a0 = 1.

For k = 0, 1, . . . ,K − 1

p = SINKHORNKNOPP(αk, αk, ε)

For j = 1, . . . J
, vj = SINKHORNKNOPP(αk, βj , ε)

Let ϕk : x 7→ −
∑Q

q=1 log
∑mq

j=1 e
(vqj−c(x,Yj

q))/ε bqj +log
∑k

i=0 e
(pi−c(x,Xi))/εai

xk+1 = MINIMIZE(ϕk)

Xk+1 = [Xk, xk+1] and ak+1 = 1
k+1 [k ak, 1]

αk+1 = (Xk+1, ak+1)

Return: αK

Computing ∇1OTε for probability distributions with finite support. Let α, β ∈

P(X ), with β =
∑n

i=1 biδyi a probability measure with finite support, with b = (bi)
n
i=1

nonnegative weights summing up to 1. It is useful to identify β with the pair (Y, b), where

Y ∈ Rd×n is the matrix with i-th column equal to yi. Let now (u, v) ∈ C(X )2 be the pair

of Sinkhorn potentials associated to α and β in Prop. 2.10, recall that u = Pβ(v). Denote

by v ∈ Rn the evaluation vector of the Sinkhorn potential v, with i-th entry vi = v(yi).

According to the definition of Pβ in (4.1.2), for any x ∈ X

[∇1OTε(α, β)](x) = u(x) = [Pβ(v)](x) = −ε log
n∑
i=1

e(vi−c(x,yi))/ε bi, (4.5.4)

since the integral Pβ(v) reduces to a sum over the support of β. Hence, the gradient

of OTε (i.e. the potential u), is uniquely characterized in terms of the finite dimen-

sional vector v collecting the values of the potential v on the support of β . We refer

as SINKHORNGRADIENT to the routine which associates to each triplet (Y,b,v) the map

x 7→ −ε log
∑n

i=1 e
(vi−c(x,yi))/ε bi.

Sinkhorn barycenters: finite case. Alg. 4.2 summarizes FW applied to the barycenter

problem (4.2.1) when the βj’s have finite support. Starting from a Dirac’s delta α0 = δx0 ,

at each iteration k ∈ N the algorithm proceeds by: i) finding the corresponding evaluation

vectors vj’s and p of the Sinkhorn potentials for OTε(αk, βj) and OTε(αk, αk) respectively,

via the routine SINKHORNKNOPP (see (Cuturi, 2013; Feydy et al., 2019) or Alg. 2.1).
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This is possible since both βj and αk have finite support and therefore the problem of

approximating the evaluation vectors vj and p reduces to an optimization problem over

finite vector spaces that can be efficiently solved (Cuturi, 2013); ii) obtain the gradients

uj = ∇1OTε(αk, βj) and p = ∇1OTε(αk, αk) via SINKHORNGRADIENT; iii) minimize

ϕ : x 7→
∑n

j=1 ωj uj(x) − p(x) over X to find a new point xk+1 (we comment on this

meta-routine Minimize below); iv) finally update the support and weights of αk according

to (4.5.3) to obtain the new iterate αk+1.

A key feature of Alg. 4.2 is that the support of the candidate barycenter is updated incre-

mentally by adding at most one point at each iteration, a procedure similar in flavor to the

kernel herding strategy in Bach et al. (2012) and Lacoste-Julien et al. (2015). This contrasts

with previous methods for barycenter estimation (Cuturi and Doucet, 2014; Benamou et al.,

2015; Staib et al., 2017; Dvurechenskii et al., 2018), which require the support set, or at

least its cardinality, to be fixed beforehand. However, identifying the new support point

requires solving the nonconvex problem (4.5.2), a task addressed by the meta-routine MIN-

IMIZE. This problem is typically smooth (e.g., a linear combination of Gaussians when

c(x, y) = ‖x−y‖2) and first or second order nonlinear optimization methods can be adopted

to find stationary points. We note that all free-support methods in the literature for barycenter

estimation are also affected by nonconvexity since they typically require solving a bi-convex

problem (alternating minimization between support points and weights) which is not jointly

convex (Cuturi and Doucet, 2014; Claici et al., 2018). We conclude by observing that if we

restrict to the setting of (Staib et al., 2017; Dvurechenskii et al., 2018) with fixed support

set, then MINIMIZE can be solved exactly by evaluating the functional in (4.5.2) on each

candidate support point.

Sinkhorn barycenters: general case. When the βj’s have infinite support, it is not

possible to apply Sinkhorn-Knopp in practice. In line with (Genevay et al., 2018a; Staib

et al., 2017), we can randomly sample empirical distributions β̂j = 1
n

∑n
i=1 δxij from each

βj and apply Sinkhorn-Knopp to (αk, β̂j) in Alg. 4.1 rather than to the ideal pair (αk, βj).

This strategy is motivated by Prop. 2.8, where it was shown that Sinkhorn potentials vary

continuously with the input measures. However, it opens two questions: i) whether this

approach is theoretically justified (consistency) and ii) how many points should we sample

from each βj to ensure convergence (rates). We answer these questions in Thm. 4.10 in the
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next section.

4.6 Convergence analysis

We finally address the convergence of FW applied to both the finite and infinite settings

discussed in Sec. 4.5. We begin by considering the finite setting.

Theorem 4.9. Suppose that β1, . . . βm ∈ P(X ) have finite support and let αk be the k-th

iterate of Alg. 4.2 applied to (4.2.1). Then,

Bε(αk)− min
α∈P(X )

Bε(α) ≤ 48 ε e3D/ε

k + 2
. (4.6.1)

The result follows by the convergence result of FW in Thm. 4.1 applied with the Lipschitz

constant computed in Thm. 4.2, and recalling that diam(P(X )) = 2 with respect to the Total

Variation. We note that Thm. 4.9 assumes SINKHORNKNOPP and MINIMIZE in Alg. 4.2

to yield exact solutions. In Appendix C.3 we comment how approximation errors in this

context affect the bound in (4.6.1).

We can now study the convergence of FW in continuous settings.

Theorem 4.10. Suppose that c ∈ Cs+1(X ×X ) with s > d/2. Let n ∈ N and β̂1, . . . , β̂m be

empirical distributions with n support points, each independently sampled from β1, . . . , βm.

Let αk be the k-th iterate of Alg. 4.2 applied to β̂1, . . . , β̂m. Then for any τ ∈ (0, 1], the

following holds with probability larger than 1− τ

Bε(αk)− min
α∈P(X )

Bε(α) ≤
64r̄εe3D/ε log 3

τ

min(k,
√
n)

. (4.6.2)

Proof. Let B̂ε(α) =
∑m

j=1 ωjSε(α, β̂j). Then, it follows from the definition of Bε and

Thm. 4.6 that, for every k ∈ N, and with probability larger than 1− τ , we have

‖∇B̂ε(αk)−∇Bε(αk)‖∞ ≤
m∑
j=1

ωj‖∇[Sε(·, β̂j)](αk)− Sε(·, βj)](αk)‖∞

=

m∑
j=1

ωj‖∇1OTε(αk, β̂j)−∇1OTε(αk, βj)‖∞

≤
8ε re3D/ε log 3

τ√
n

=
∆1

4
,
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where

∆1 :=
32ε re3D/ε log 3

τ√
n

.

Now, let γk = 2/(k + 2). Since Alg. 4.2 is applied to β̂1, . . . β̂m, we have

δxk+1
∈ argmin
P(X )

〈∇B̂ε(αk), ·〉 and αk+1 = (1− γk)αk + γkδxk+1
.

Therefore, it follows from Thm. C.1, Prop. C.3, and Thm. 4.2 that, with probability larger

than 1− τ , we have

Bε(αk)− min
P(X )

Bε ≤ 6ε̄re3D/εdiam(P(X ))2γk + ∆1diam(P(X )).

The statement follows by noting that diam(P(X )) = 2.

A consequence of Thm. 4.10 is that the accuracy of FW depends simultaneously on the

number of iterations and the sample size used in the approximation of the gradients: by

choosing n = k2 we recover the O(1/k) rate of the finite setting, while for n = k we have a

rate of O(k−1/2), which is reminiscent of typical sample complexity results, highlighting

the statistical nature of the problem.

Remark 4.3 (Incremental Sampling). The above strategy requires sampling the empirical

distributions for β1, . . . , βm beforehand. A natural question is whether it would be possible

to do this incrementally, sampling new points and updating β̂j accordingly, as the number of

FW iterations increase. To this end, one can perform an intersection bound and see that this

strategy is still consistent, but the bound in Thm. 4.10 worsens the logarithmic term, which

becomes log(3mk/τ).

4.7 Experiments

In this section we show the performance of our method in a range of experiments 2.

Discrete measures: barycenter of nested ellipses. We compute the barycenter of 30

randomly generated nested ellipses on a 50× 50 grid similarly to Cuturi and Doucet (2014).

We interpret each image as a probability distribution in 2D. The cost matrix is given by the

squared Euclidean distances between pixels. Fig. 4.1 reports 8 samples of the input ellipses

2https://github.com/GiulsLu/Sinkhorn-Barycenters

https://github.com/GiulsLu/Sinkhorn-Barycenters
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Figure 4.1: We compute the barycenter of 30 pairs of nested ellipses, randomly generated on a
50× 50 grid. We use the Alg. 4.2 to compute the barycenter of the 30 input measures. A
sample of the inputs is provided in the outer figures, while the barycenter retrieved with
Alg. 4.2 is displayed in the center, with a red frame.

Figure 4.2: Barycenters of Gaussians: Alg. 4.2 is tested in the computation of the barycenter of
5 Gaussian distributions N (mi, Ci) i = 1, . . . , 5 in R2, with mean mi ∈ R2 and
covariance Ci randomly generated. Scatter plot: output of our method; Density level
sets: the true Wasserstein barycenter.

and the barycenter obtained with Alg. 4.2. It shows qualitatively that our approach captures

key geometric properties of the input measures.

Continuous measures: barycenter of Gaussians. We compute the barycenter of 5

Gaussian distributionsN (mi, Ci) i = 1, . . . , 5 in R2, with meanmi ∈ R2 and covarianceCi

randomly generated. We apply Alg. 4.2 to empirical measures obtained by sampling n = 500

points from each N (mi, Ci), i = 1, . . . , 5. Since the (Wasserstein) barycenter of Gaussian

distributions can be estimated accurately (see (Agueh and Carlier, 2011)), in Fig. 4.2 we

report both the output of our method (as a scatter plot) and the true Wasserstein barycenter (as

level sets of its density). We observe that the barycenter found by our algorithm recovers both

the mean and covariance of the target barycenter. In Appendix C.5 we provide additional

experiments also in the case of mixtures of Gaussians.

Image “compression” via distribution matching. Similarly to Claici et al. (2018),

we test Alg. 4.2 in the special case of computing the “barycenter” of a single measure
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Figure 4.3: Image compression: original image 140x140 pixels (left), sample (right). Alg. 4.2 is
used to match a single probability measure supported on 1402 points. On the right, a
sample of the barycenter retrived by the algorithm after around 3900 iterations.

Figure 4.4: k-means clustering experiment: 20 centroids obtained by performing k-mean with
Alg. 4.2. The experiment is run on a subset of 500 random images from the MNIST
dataset. Each image is suitably normalized to be interpreted as a probability distribution
on the grid of 28 × 28 pixels with values scaled between 0 and 1. The initialization
consists of 20 centroids according to the k-means++ strategy (Arthur and Vassilvitskii,
2007).

β ∈ P(X ). While the solution of this problem is the distribution β itself, we can interpret

the intermediate iterates αk of Alg. 4.2 as compressed version of the original measure. In

this sense k would represent the level of compression since αk is supported on at most k

points. Fig. 4.3 (Right) reports iteration k = 5000 of Alg. 4.2 applied to the 140×140 image

in Fig. 4.3 (Left) interpreted as a probability measure β in 2D. We note that the number of

points in the support is ∼ 3900: indeed, Alg. 4.2 selects the most relevant support points

multiple times to accumulate the right amount of mass on each of them (darker color = higher

weight). This shows that FW tends to greedily search for the most relevant support points,

prioritizing those with higher weight, with an echo of quantization in image processing.

k-means on MNIST digits. We tested our algorithm on a k-means clustering experiment.
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We consider a subset of 500 random images from the MNIST dataset. Each image is suitably

normalized to be interpreted as a probability distribution on the grid of 28 × 28 pixels

with values scaled between 0 and 1. The n = 500 random images constitute our set of

observations {β1, . . . , β500} and the goal of k-means clustering is to find a partition of the

n observations into k(≤ n) sets S = {S1, S2, . . . , Sk} so as to minimize the within-cluster

‘variance’. In our setting, the objective is

argmin
S

k∑
i=1

∑
β∈Si

Sε(β, αi) (4.7.1)

where αi is the barycenter of the points in Si. The naive procedure to find a solution consists

in the following: given an initial set of k means α(1)
1 , . . . α

(1)
k the algorithm proceeds by

alternating between two steps, the assignment step and the update step. The assignment step

assigns each observation to the cluster with the nearest mean, w.r.t. Sinkhorn divergence:

S
(t)
i := {βq : Sε(βq, α

(t)
i ) ≤ Sε(βq, α

(t)
j ) ∀ j, 1 ≤ j ≤ k}. (4.7.2)

The update steps recalculates the means (i.e. centroids) for the observations assigned to each

cluster

α
(t)
i = argmin

α

1

|S(t)
i |

|S(t)
i |∑
j=1

Sε(α, βj). (4.7.3)

This step corresponds to computing a barycenter w.r.t Sinkhorn divergence and we use

Alg. 4.2. We initialize 20 centroids according to the k-means++ strategy (Arthur and

Vassilvitskii, 2007). Fig. 4.4 depicts the 20 centroids obtained by performing k-means with

Alg. 4.2. We see that the structure of the digits is successfully detected, recovering also

minor details (e.g. note the difference between the centroids related to the digit 2).

Real data: Sinkhorn propagation of weather data. We consider the problem of

Sinkhorn propagation similar to the one in Solomon et al. (2014). The goal is to predict

the distribution of missing measurements for weather stations in the state of Texas, US

by “propagating” measurements from neighboring stations in the network. The problem

can be formulated as minimizing the functional
∑

(v,u)∈E ruvSε(ρv, ρu) over the set {ρv ∈

P(R2)|v ∈ V0} with: V0 ⊂ V the subset of stations with missing measurements, G =

(V, E) the whole graph of the stations network, ruv a weight inversely proportional to the
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geographical distance between two vertices/stations u, v ∈ V . Edges E are selected as

follows: we created a matrix D such that Duv contains the distance between station at vertex

u and station at vertex j, computed using the geographical coordinates of the stations. Each

node v in V , is connected to those nodes u ∈ V such that Dvu ≤ 3. If the number of nodes u

that meet this condition is less than 5, we connect v with its 5 nearest nodes. If the number

of nodes u that meet this condition is more than 10, we connect v with its 10 nearest nodes.

Each edge euv is weighted with ωuv := Duv. Since intuitively we may expect that nearer

nodes should have more influence in the construction of the histograms of unknown nodes, in

the propagation functional we weight Sε(ρv, ρu) with ruv = exp(−ωuv/σ) or ruv = 1/ωvu

suitably normalized.

The variable ρv ∈ P(R2) denotes the distribution of measurements at station v of daily

temperature and atmospheric pressure over one year. This is a generalization of the barycen-

ter problem (4.2.1) (see also (Peyré and Cuturi, 2019)). From the total |V| = 115, we

randomly select 10%, 20% or 30% to be available stations, and use Alg. 4.2 to propagate

their measurements to the remaining “missing” ones. As in Solomon et al. (2014), we use

as baseline the Dirichlet (DR) approach, that we briefly recall here. The Dirichlet (DR)

approach is a classic method for label propagation proposed in Zhu et al. (2003) that works

as follows: assume a label function f is unknown on a subset of vertices V0 ⊂ V and we

wish to infer f on V0 based on the known values on V \ V0. The DR method minimizes the

Dirichlet energy ED(f) :=
∑

(u,v)∈E ruv(fu − fv)2 over the set of functions with prescribed

values on V \ V0. As in Solomon et al. (2014), when considering probability distributions

ρv, the Dirichlet method can be naively extended as follows: for each x ∈ R, ρv(x) is

interpreted as label fv for v and the DR method recalled before can be applied. We compare

our approach (FW) with the Dirichlet baseline (DR) in terms of the error d(CT , Ĉ) between

the covariance matrix CT of the groundtruth distribution and that of the predicted one. Here

d(A,B) = ‖ log(A−1/2BA−1/2)‖ is the geodesic distance on the cone of positive definite

matrices. The average prediction errors are: 2.07 (FW), 2.24 (DR) for 10%, 1.47 (FW),

1.89 (DR) for 20% and 1.3 (FW), 1.6 (DR) for 30%. Standard deviations across 5 runs

with randomly selected known vertices are ∼ 0.2 for the 10% case and ∼ 0.05 for 20% and

30% cases. Fig. 4.5 qualitatively reports the improvement ∆ = d(CT , CDR)− d(CT , CFW )

of our method on individual stations: a higher color intensity corresponds to a wider gap

in our favor between prediction errors, from light green (∆ ∼ 0) to red (∆ ∼ 2). Our
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Figure 4.5: From Left to Right: propagation of weather data with 10%, 20% and 30% stations with
available measurements (represented by the black markers). The propagation problem
can be interpreted as a generalization of the barycenter problem: given a graph with
measurements available in some vertices, the goal is to predict the missing measurements.
Alg. 4.2 is tested against the Dirichlet baseline (see text). The quality of the predictions
are measured comparing the covariance matrices of the groundtruth distribution CT and
the predicted ones CDR for the Dirichlet method and CFW for Alg. 4.2. The figure
displays the improvement ∆ = d(CT , CDR) − d(CT , CFW ): higher color intensity
(in the scale light green, yellow, orange, red) corresponds to a bigger gap in favour of
Alg. 4.2, from light green ∆ ∼ 0 to red ∆ ∼ 2.

approach tends to propagate the distributions to missing locations with higher accuracy.

This is in line with the fact that barycenters with Sinkhorn divergence successfully captures

the overall geometric structure of the input distributions (intuitively, the distributions of

e.g. temperatures over a year registered in close stations have a similar shape) and that our

algorithm successfully computes such barycenters.

4.8 Discussion

This chapter dealt with Sinkhorn divergence as a metric for barycenter estimation. We

proposed a Frank-Wolfe-based algorithm to find the Sinkhorn barycenter of probability

distributions with either finitely or infinitely many support points. Our algorithm belongs
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to the family of barycenter methods with free support since it adaptively identifies support

points rather than fixing them a-priori. In the finite settings, we were able to guarantee

convergence of the proposed algorithm by proving the Lipschitz continuity of gradient of the

barycenter functional in the Total Variation sense. Then, by studying the sample complexity

of Sinkhorn potential estimation, we proved the convergence of our algorithm also in the

infinite case. We empirically assessed our method on a number of synthetic and real datasets,

showing that it exhibits good qualitative and quantitative performance. While in this work

we have considered FW iterates that are a convex combination of Dirac’s delta, models

with higher regularity (e.g. mixture of Gaussians) might be more suited to approximate the

barycenter of distributions with smooth density. Hence, future work will investigate how the

perspective adopted in this work could be extended also to other barycenter estimators.



Chapter 5

Probability matching with Sinkhorn

Divergence

In this chapter, we study Sinkhorn divergence as a metric to learn a distribution within the

generative model frameworks. Learning a parametric model that fits a set of observation is a

fundamental statistical problem. When the target distributions admit a density, the classic

approach to estimate such density is the maximum-likelihood estimation. In machine learning

problems however, the target distribution is often supported on a low-dimensional domain and

does not admit a density. In this case, an established approach to learn such target invokes

generative models. Generative models are obtained learning a parametric mapping that

given samples from a reference can generate samples that follow the target distribution. The

advantage of this approach is that the ability to easily generate samples is often more desirable

than knowing the numerical value of the density. The Generative Adversarial Networks

(GAN) framework is a well-established paradigm for generative models (Goodfellow et al.,

2014). In its original form, it deals with two models simultaneously: a generator g that

captures the data distribution, and a discriminator (or critic) D that estimates the probability

that a sample came from the training data rather than g. Algorithms in this class aim to

reproduce the sampling behavior of the target distribution, rather than explicitly fitting a

density function. This is done by modeling the target probability as the pushforward via

the generator map g of a probability measure in a latent space. Since their introduction,

GANs have achieved remarkable progress. From a practical perspective, a large number of

model architectures have been explored, leading to impressive results in image generation

(Vondrick et al., 2016; Isola et al., 2017; Ledig et al., 2017).

The original paradigm with generator and discriminator models has been subsequently
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generalized in a line of work devoted to identify rich metrics for generator training that

serve the role of discriminator: namely, the discriminator is played by a distance between

probability measures that quantify the discrepancy between the model distribution and the

data distribution; the generative model can optimize such distance to produce data that more

closely resembles the training data. Rich metrics that have been proposed as discriminator

are f -divergences (Nowozin et al., 2016), integral probability metrics (IPM) (Dziugaite et al.,

2015) or optimal transport distances (Arjovsky et al., 2017). While recent attention has been

devoted to studying the theoretical properties of such models (Liu et al., 2017; Bai et al.,

2018; Zhang et al., 2018), a full theoretical understanding of the main building blocks is still

missing.

We focus on generative models with regularized Optimal Transport metrics as discriminators

(Salimans et al., 2016; Genevay et al., 2018b). This metrics are known to have a bad

dependence, in terms of constants, on the dimension of the underlying space when it comes

to estimation from samples. Motivated by this insight, our goal is to understand the role of the

ambient space dimension and the latent dimension. In particular, we study how the interplay

between the latent distribution and the complexity of the pushforward map (generator) affects

the overall generalization performance, from both statistical and modelling perspectives. We

prove an upper bound on the learning rates of such generative models in terms of a notion of

complexity for: i) the ideal generator network and ii) the latent space and distribution.

Our analysis leads us to advocate learning the latent distribution as well as the pushforward

map within the generative model paradigm. The approach is in line with previous work on

multi-modal GANs (Ben-Yosef and Weinshall, 2018; Pandeva and Schubert, 2019), which

models the latent distribution as a Gaussian mixture whose parameters are inferred during

training. In fact, our results potentially provide a theoretical justification to the empirical

analysis of Ben-Yosef and Weinshall (2018) and Pandeva and Schubert (2019). In contrast to

the methods above, our estimator is not limited to Gaussian mixtures but can asymptotically

learn any sub-Gaussian latent distribution. Additionally, we characterize the learning rates of

our joint estimator and discuss the theoretical advantages over performing standard GANs

training, namely fixing the latent distribution a-priori. This chapter is based on (Luise et al.,

2020).

Contributions. The main contributions of this chapter include: i) showing how the regu-
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larity of a generator network (e.g. in terms of its smoothness) potentially affects the sample

complexity of pushforward measures and consequently of the generative models estimator;

ii) introducing a novel algorithm for joint training of generator and latent distributions; iii)

study the statistical properties (i.e. learning rates) of the resulting estimator in both settings

where the generative model is exact as well as the case where the target distribution is only

approximately supported on a low dimensional domain.

The rest of the chapter is organized as follows: Sec. 5.1 formally introduces the GANs frame-

work in terms of pushforward measures. Sec. 5.2 discusses the limitations of fixing the latent

distribution a-priori and motivates the proposed approach. Sec. 5.3 constitutes the core of

the chapter, proposing the joint estimator and studying its generalization properties. Training

and sampling strategies are discussed in Sec. 5.4. Finally Sec. 5.5 presents preliminary

experiments highlighting the effectiveness of the proposed estimator, while Sec. 5.6 provides

a brief discussion of the results and potential future directions.

5.1 Background

The goal of probability matching is to find a good approximation of a distribution ρ given only

a finite number of points sampled from it. Typically, one is interested in finding a distribution

µ̂ in a classM of probability measures that best approximates ρ, ideally minimizing

inf
µ∈M

d(µ, ρ). (5.1.1)

Here d is a discrepancy measure between probability distributions. A wide range of hy-

potheses spacesM have been considered in the literature, such as space of distributions

parametrized via mixture models (Dempster et al., 1977; Bishop, 2006; Sugiyama et al.,

2010; Sriperumbudur et al., 2017), deep belief networks (Hinton et al., 2006; Van den Oord

et al., 2016; Van Oord et al., 2016) and variational autencoders (Kingma and Welling, 2014)

among the most well known approaches. In this work we focus on generative models that

resemble ‘in spirit’ generative adversarial networks (GAN) (Goodfellow et al., 2014) and

that can be formulated as in (5.1.1), leveraging the notions of adversarial divergences and

pushforward measures. Below, we introduce these two notions and the notation used in this

work.

Adversarial divergences. Let P(X ) be the space of probability measures over a set
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X ⊂ Rd. Given a space F of functions F : X × X → R, we define the adversarial

divergence between µ, ρ ∈ P(X )

dF (µ, ρ) = sup
F∈F

∫
F (x′, x) d(µ⊗ ρ)(x′, x), (5.1.2)

namely the supremum over F of all expectations E [F (x, x′)] with respect to the joint

distribution µ⊗ρ (see (Liu et al., 2017)). A well-established family of adversarial divergences

are integral probability metrics (IPM) ( whose definition is recalled in Appendix A.2.2 ),

where F (x′, x) = f(x′)− f(x) for f : X → R in a suitable space (e.g. a ball in a Sobolev

space). Here dF measures the largest gap Eµf(x)− Eρf(x) between the expectations of µ

and ρ. Examples of IPM used in the GAN paradigm include Maximum Mean Discrepancy

(Dziugaite et al., 2015) and Sobolev-IPM (Mroueh et al., 2018). Other adversarial divergences

are f -divergences (Nowozin et al., 2016; Goodfellow et al., 2014). Recently, Optimal

Transport-based adversarial divergences have attracted significant attention from the GANs

literature, such as the Wasserstein distance (Arjovsky et al., 2017), the Sliced-Wasserestein

distance (Liutkus et al., 2019; Nadjahi et al., 2019; Deshpande et al., 2018; Wu et al., 2019)

or the Sinkhorn divergence (Genevay et al., 2018b; Sanjabi et al., 2018). For completeness,

in Appendix D.1 (see also (Liu et al., 2017)) we review how to formulate the adversarial

divergences mentioned above within the form of (5.1.2).

Pushforward measures. Pushforward measures are a central component of the GAN

paradigm. The notion of pushforward was introduced in Def. 2.1 and we recall it here for

convenience.

Definition 5.1 (Pushforward). Let Z and X be two measurable spaces and T : Z → X a

measurable map. Let η ∈ P(Z) be a probability measure over Z . The pushforward of η via

T is defined to be the measure T#η in P(X ) such that for any Borel subset B of X ,

(T#η)(B) = η(T−1(B)). (5.1.3)

To clarify the notation, in the rest of the paper we will refer to a measure T#η as pushforward

measure, and to the corresponding T as pushforward map. A key property of pushforward

measures is the Transfer lemma (Ambrosio et al., 2008, Sec 5.2), which states that for any



5.2. The Complexity of Modeling the Generator 103

measurable f : X → R,

∫
X
f(x) d(T#η)(x) =

∫
Z
f(T (z)) dη(z). (5.1.4)

This property is particularly useful within GAN settings as we discuss in the following.

Generative models with adversarial divergences. The generative adversarial network

(GAN) paradigm consists in parametrizing the spaceM of candidate models in (5.1.1) as a

set of pushforwards measures of a latent distribution. From now on, Z and X will denote

latent and target spaces and we will assumeZ ⊂ Rk and X ⊂ Rd. Given a set T of functions

T : Z → X and given a (latent) probability distribution η ∈ P(Z), we consider the space

M(T , η) = { µ = T#η | T ∈ T }.

While this choice allows to parameterize the target distribution only implicitly, it offers a

significant advantage at sampling time: sampling x from µ = T#η corresponds to sampling

a z from η and then taking x = T (z). By leveraging the Transfer lemma (5.1.4) and using an

adversarial divergence dF , the probability matching problem in (5.1.1) recovers the original

minimax game formulation in Goodfellow et al. (2014)

inf
µ∈M(T ,η)

dF (µ, ρ) = inf
T∈T

dF (T#η, ρ) = inf
T∈T

sup
F∈F

∫
F (T (z), x) d(η ⊗ ρ)(z, x).

(5.1.5)

Within the GAN literature, the pushforward T is referred to as the generator and optimization

is performed over a suitable T (e.g. a set of neural networks (Goodfellow et al., 2014)) for a

fixed η (e.g. a Gaussian or uniform distribution). The term F is called discriminator since,

when for instance dF is an IPM, F (x′, x) = f(x′) − f(x) aims at maximally separating

(discriminating) the expectations of µ and ρ. While this is not the original GANs formulation

and it is a variant of generative model based on adversarial divergences, in the following

with some abuse of terminology we will use the term GAN for the model above.

5.2 The Complexity of Modeling the Generator
In this section we discuss a main limitation of choosing the latent distribution a-priori

within the GANs framework. This will motivate our analysis in Sec. 5.3 to learn the latent

distribution jointly with the generator. Let ρ ∈ P(Rd) be the (unknown) target distribution
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and ρn = 1
n

∑n
i=1 δxi an empirical distribution of n Dirac’s deltas δxi centered on i.i.d.

points (xi)
n
i=1 sampled from ρ. Given a latent distribution η ∈ P(Rk) (such as Gaussian or

uniform distribution), GAN training consists in learning a map T̂ such that

T̂ = argmin
T∈T

dF (T#η, ρn). (5.2.1)

The potential downside of this strategy is that it offloads all the complexity of modeling the

target ρ onto the generator T . Therefore, for a given η, it might happen that the equality

T#η = ρ is satisfied only by very complicated – hence hard to learn – pushforward maps.

To illustrate when this might be the case and its effects on modeling and learning, we

discuss some examples below (see Appendix D.2 for technical details). We first recall a

characterization of pushforward measures that will be instrumental in building this intuition.

Proposition 5.1 (Simplified version of (Ambrosio et al., 2008, Lemma 5.5.3)). Let ρ and

η ∈ P(Rd) admit density functions f, g : Rd → R with respect to the Lebesgue measure,

denoted η = fLd and ρ = gLd. Let T : Rd → Rd be injective a.e. and differentiable, then

ρ = T#η if and only if

g(T (x))|det∇T | = f(x). (5.2.2)

Using Prop. 5.1 we can interpret the GAN problem as akin to solving the differential equation

(5.2.2). Therefore, choosing η a-priori might implicitly require a very complex model space

T to find such a solution. In contrast, the following example describes the case where T

contains only simple models.

Example 5.1 (Affine Pushforward Maps). Let η ∈ P(Rd) admit a density f : Rd → R and

let

T = { TA,b : Rd → Rd | TA,b(z) = Az+ b, A ∈ Rd×d, b ∈ Rd, det(A) 6= 0 }. (5.2.3)

Then, for T = TA,b ∈ T , the measure ρ = T#η ∈ P(Rd) admits a density g : Rd → R such

that

g(z) = f(A−1(z − b)) · | det(A−1)|. (5.2.4)

The set T of affine generators is able to parametrize only a limited family of distributions

(essentially translations and re-scaling of the latent η). This prevents significant changes to
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Figure 5.1: Sinkhorn GAN estimation between a 2D Gaussian and a mixture of four 2D Gaussians
with generator space T of increasing complexity (depth of the network). Real (Red) vs
generated (Blue) samples.

the shape of the latent distribution to match the target; for example, a uniform (alternatively

a Gaussian) measures can match only uniform (Gaussian) measures. Below, we illustrate

two examples where the pushforward map can indeed be quite complex and therefore require

a larger space T when solving (5.2.1).

Example 5.2 (Uniform to Gaussian). Let η be the uniform distribution on the interval [−1, 1]

and ρ the Gaussian distribution on R, with zero mean and unit variance. Then T#η = ρ,

with T (x) =
√

2erf−1(x) the inverse to the standard error function erf(x) = ρ
(
(−∞, x]

)
.

The map erf−1 is highly nonlinear and with steep derivatives. Therefore, learning a GAN

from a uniform to a Gaussian distribution would require choosing a significantly large space

T to approximate erf−1. We further illustrate the effect of a similar behaviour with an

additional empirical example.

Empirical example (Multi-modal Target). We consider the case where ρ is multimodal (a

mixture of four Gaussian distributions in 2D), while η is unimodal (a Gaussian in 2D). Fig. 5.1

qualitatively compares samples from the real distribution ρ against samples from T#η, with

T learned via GAN training in (5.2.1) (with Sinkhorn loss dF , see Sec. 5.3) for spaces T of

increasing complexity (neural networks with increasing depth). Linear generators are clearly

unsuited for this task, and only highly non-linear models yield reasonable estimates. See

Appendix D.2 for details on the experimental setup.

5.3 Learning the Latent Distribution

The arguments above suggest that choosing the latent distribution a-priori can be limiting in

several settings. Therefore, in this work we propose to learn the latent distribution jointly

with the generator. Given a familyH of latent distributions, we aim to solve

(T̂ , η̂) = argmin
T∈T ,η∈H

dF (T#η, ρn). (5.3.1)
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A natural question is how the learning rates of (T̂ , η̂) are affected by the choice of T and

H. In this work we address this question for the case where dF is the Sinkhorn divergence

(Cuturi, 2013). Indeed, Optimal Transport is particularly suited to capture the geometric

properties of distribution supported on low-dimensional manifolds (Weed and Bach, 2019)

(e.g. pushforward measures from a low-dimensional latent space). Moreover, for the

Sinkhorn divergence, discriminator training, i.e. finding F in (5.1.5), can be efficiently

solved to arbitrary precision via the Sinkhorn-Knopp algorithm (see (Cuturi, 2013) and

Sec. 5.4). Below, we introduce our choices for dF ,H and T and then proceed to characterize

the learning rates of T̂#η̂.

Choosing dF : Sinkhorn divergence. Sinkhorn divergence and its properties were

presented in Sec. 2.5. Here just recall the definition: for any α, β ∈ P(X ) Sinkhorn

divergence is defined as

Sε(α, β) = OTε(α, β) − 1

2
OTε(α, α) − 1

2
OTε(β, β), (5.3.2)

where OTε is the Entropic Optimal Transport cost defined in (2.3.1).

Choosing H: sub-Gaussian distributions. For the purpose of our analysis, in the

following we will restrict to a class H of distribution that are not too spread out on the

entire latent domain Z ⊆ Rk. In particular, we will parametrize H ⊂ Gσ(Z) the space of

σ-sub-Gaussian distributions on Z , namely distributions η such that
∫
e‖z‖

2/2kσ2
dη(z) ≤ 2.

Gaussian distributions and probabilities supported on a compact set belong to this family.

Thus,H recovers the case of standard GANs. Note that the parameter σ allows us to upper

bound all moments of a distribution and can therefore be interpreted as a quantity that

controls the complexity of η.

Choosing T : balls in Cs(Z,X ). In the following we will restrict our analysis to

spaces of functions that satisfy specific regularity conditions. In particular, we will consider

T ⊂ Csτ,L(Z,X ) to be contained in the set of L-Lipscthitz functions in the ball of radius τ

in the space of continuous functions from Z ⊂ Rk to X ⊂ Rd equipped with the uniform

norm ‖ · ‖∞,s on all partial derivatives up to order s. Intuitively, the norm ‖T‖∞,s quantifies

the complexity of the generator T , hence reflecting how easy (or hard) it is to learn it in
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practice. In our analysis we will require s ≥ dk/2e + 1. To simplify our analysis in the

following, we add the additional requirements that T (0) = 0 for any T ∈ T (in case of an

offset, one can factor out a translation first (see (Peyré and Cuturi, 2019, Remark 2.19)). This

choice of the space T allows to formally model a wide range of smooth generators T (e.g.

pushforward maps parametrized by neural networks with smooth activations or via smooth

reproducing kernels).

We are now ready to state our main result, which characterizes the learning rates of the

estimator in (5.3.1) in terms of the complexity parameters associated to the spaces T andH

introduced above.

Theorem 5.2. Let Z ⊂ Rk, X ⊂ Rd and ρ = T ∗#η
∗ with T ∗ ∈ T ⊂ C

dk/2e+1
τ,L (Z,X ) and

η∗ ∈ H ⊂ Gσ(Z). Let (T̂ , η̂) satisfy (5.3.1) with dF = Sε and ρn a sample of n i.i.d. points

from ρ. Then,

E Sε(T̂#η̂, ρ) ≤ b(τ, L, σ, k)√
n

where b(τ, L, σ, k) = Ck (1 + τkLd3k/2e+1 σd5k/2e+6 ε−d5k/4e−3) with Ck a constant

depending only on the latent space dimension k.

Thm. 5.2 quantifies the tradeoff between the complexity terms τ, L of the pushforward map

T ∗ and σ of the latent distribution η∗. In particular, we note that: i) we pay a polynomial

cost in terms of the sub-Gaussian parameter σ of the latent distribution η∗; ii) we pay a

cost proportional to the complexity of the target generator, including its ‖T ∗‖s,∞ norm and

Lipschitz constant L; iii) all terms depend on the dimension k of the latent space and not

on the target space dimension d. This result suggests that the GAN paradigm is particularly

suited to settings where the target distribution can be modeled in terms of a low-dimensional

latent distribution and a regular pushforward map. Extending the result to larger families of

pushforward maps (e.g. with weaker regularity assumptions) would be interesting but would

require a different strategy than the one proposed here. Thus, it will be the subject of future

work.

Sketch of the proof. The proof of Thm. 5.2 is quite technical so we moved it to Appendix D.4.

Here we present the main steps and key ideas. We begin by observing that the matching error
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Sε(T̂#η̂, ρ)− Sε(T
∗
#η
∗, ρ) (which is equal to Sε(T̂#η̂, ρ) by assumption) is controlled by

Sε(T̂#η̂, ρ)− Sε(T
∗
#η
∗, ρ) = A1 +A2 +A3, (5.3.3)

where

A1 = Sε(T̂#η̂, ρ)− Sε(T̂#η̂, ρn) (5.3.4)

A2 = Sε(T̂#η̂, ρn)− Sε(T
∗
#η
∗, ρn) (5.3.5)

A3 = Sε(T
∗
#η
∗, ρn)− Sε(T

∗
#η
∗, ρ). (5.3.6)

By leveraging the optimality of the estimator T̂#η̂ in minimizing (5.3.1), we have that

A2 ≤ 0. Note that

A1 +A3 ≤ 2 sup
T∈T ,η∈H

[
Sε(T#η, ρn)− Sε(T#η, ρ)

]
. (5.3.7)

So combining the two equations above, we have that the matching error is upper bounded by

Sε(T̂#η̂, ρ) ≤ 2 sup
T∈T ,η∈H

|Sε(T#η, ρ)− Sε(T#η, ρn)|. (5.3.8)

The right hand side corresponds to the largest generalization error of estimators in (T ,H).

This quantity is related to the sample complexity of ρn with respect to the Sinkhorn diver-

gence. The latter is a topic recently studied in Genevay et al. (2018a); Mena and Niles-Weed

(2019), with bounds available for controlling |Sε(µ, ρ)−Sε(µ, ρn)| for µ a fixed distribution.

However, to control (5.3.8) we need to provide a uniform upper bound for the sample com-

plexity of the Sinkhorn divergence over the class (T ,H). To do so, we use the following.

Lemma 5.3 (Informal). Let η, ν1, ν2 ∈ Gσ(Z) and T, T ′ ∈ T with T as in Thm. 5.2. Then,

|Sε(T#η, T
′
#ν1)− Sε(T#η, T

′
#ν2)| ≤ sup

u∈Fσ,τ,L
|
∫
u(z) dν1 −

∫
u(z) dν2(z)| (5.3.9)

with Fσ,τ,L a suitable space of functions u : Z → R that does not depend on η, T and T ′

but only on the complexity parameters σ, τ and L (see Appendix D.3 for the characterization

of Fσ,τ,L).
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The result implies that we can upper bound the generalization error of T#η in terms of the

integral probability metric dFσ,τ,L(η∗, η∗n) (i.e. (right hand side of (5.3.9)) between the true

latent η∗ and its empirical sample η∗n. Note that this quantity is uniform with respect to the

sub-Gaussian parameter of distributions inH and the regularity of the class T . Following

(Mena and Niles-Weed, 2019, Thm. 2), we can control dFσ,τ,L(η∗, η∗n) in expectation by

estimating the covering numbers of a rescaling of Fσ,τ,L.

Thm. 5.2 studies the learning rates of the estimator in (5.3.1) when the GAN model is exact.

A natural question is whether similar results hold when this is only an approximation. Below,

we consider the case where the target distribution is ‘almost’ a low-dimensional pushforward

(e.g. it is concentrated around a low-dimensional manifold) but is supported on a larger

domain (e.g. due to noise).

Remark 5.1. The interest in this case is inspired by some results in Weed and Bach (2019)

on approximation rates of standard Wasserstein distance. As briefly discussed in Chapter 2,

given a probability measure ρ on a d−dimensional domain, its empirical version ρn ap-

proaches ρ in Wasserstein distance at the rate n−1/d. In Weed and Bach (2019), it was shown

that if ρ is supported on a k dimensional domain embedded in a d-dimensional space, with

k < d, then the rate of approximation depends on k only. It is natural to ask what happens

for measures which are ‘approximately’ low-dimensional, meaning that they are supported

on a low-dimensional manifold up to some noise, for example. The analysis in Weed and

Bach (2019) covers this case and proves that the advantage resides is non-asymptotic faster

rates, i.e. a better approximation for n up to a certain threshold. The result that we obtain

here is different in nature but follows the same motivation: we are interested in understanding

whether the ‘almost’ low-dimensional support of the target distribution can still leads to any

benefit in the statistical analysis.

Approximation error for noisy models. Let the target distribution ρ be obtained by

convolving T ∗#η
∗ with a distribution Φδ with sub-Gaussian parameter δ > 0. Recall that the

convolution Φδ ∗ µ is defined as the distribution such that, for any measurable f : X → R

∫
f(x) d(Φδ ∗ µ)(x) =

∫
f(w + y) dµ(y)dΦδ(w).

Therefore, ρ = Φδ∗T#η can be interpreted as the process of ‘perturbing’ the distribution T#η
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by means of a probability Φδ. Standard examples are the cases where Gaussian or uniform

noise is added to samples from the pushforward. This perturbation affects the generalization

of the proposed estimators by a term proportional to the sub-Gaussian parameter δ of the

noise Φδ, as follows.

Corollary 5.4. Under the same assumption of Thm. 5.2, let Φδ ∈ Gδ(X ) and ρ = Φδ ∗T ∗#η∗.

Then,

E Sε(T̂#η̂, ρ) ≤ 2 b(τ, L, σ, k)√
n

+ 3b1(L, σ, d, k) δ,

where b(τ, L, σ, k) is the same constant as in Thm. 5.2 and b1(L, σ, d, k) is another constant

that is reported in the formal version of the result in Cor. D.15.

Cor. 5.4 characterizes the approximation behavior of the GAN paradigm (see Appendix D.4.1

for a proof). It shows that when the target distribution is essentially low-dimensional, we can

recover it up to a quantity that depends on the intensity of the noise Φδ. This is reminiscent

of the irreducible error in supervised learning settings when approximating a function lying

outside the hypothesis space (Shalev-Shwartz and Ben-David, 2014).

5.4 Optimization

In this section we discuss how to parametrize the spaces T andH and tackle the joint GAN

problem in practice. We note that minimizing Sε(T#η, ρn) with respect to either T or η

critically hinges on the dual formulation of entropic Optimal Transport. Therefore, we first

briefly recall its formulation and main properties for convenience. Then, we use such notion

to address (5.3.1).

Dual Formulation of Entropic OT. Recall that the dual formulation of OTε(α, β)

(presented in (2.3.3)) is

max
u,v∈C(X )

∫
u(x) dα(x) +

∫
v(y) dβ(y) − ε

∫
e
u(x)+v(y)−‖x−y‖2

ε dα(x)dβ(y).

This problem always admits a pair of minimizers (u∗, v∗), also known as Sinkhorn potentials

(Sinkhorn, 1964). When α and β are probability distributions with finite support, the well-

established SINKHORNKNOPP algorithm can be applied to efficiently obtain the values of u∗

and v∗ on the support points of α and β respectively (Sinkhorn, 1964; Cuturi, 2013). Then,
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u∗ and v∗ can be evaluated on any point of X by means of the following characterization of

the Sinkhorn potentials ( presented in (2.3.8))

u∗(x) = − ε log

∫
e
v∗(y)−‖x−y‖2

ε dβ(y). (5.4.1)

This characterization will be of particular interest in the following. Indeed both optimization

of the generator and latent distribution will make use of the explicit calculation of the

gradients of u∗.

Learning the Generator. Minimizing (5.3.1) with respect to T for a fixed latent distribu-

tion η corresponds to training a standard GAN. The case of Sinkhorn GANs was originally

studied in Salimans et al. (2018); Genevay et al. (2018b). In practice, one considers a para-

metric family of generators Tθ with θ in some parameters space Θ. The gradients of Sinkhorn

divergence Sε(Tθ#η, ρn) with respect to θ can be obtained via automatic differentiation.

Here, we also provide an analytic formula which highlights the dependence on the gradient

of the potential and the gradient of the generator map. We will assume the parametrization to

be differentiable a.e., and denote by∇θTθ the gradient of Tθ with respect to θ. By leveraging

the characterization of dual potential in (5.4.1), we have the following.

Proposition 5.5. Let η ∈ P(Z) and ρ ∈ P(X ). Let (u∗, v∗) be a pair of minimizers of

(4.1.1) with α = Tθ#η and β = ρ. Then, the gradient of OTε(Tθ#η, ρ) in θ0 is

[
∇θOTε(Tθ#η, ρ)

]
|θ=θ0 =

∫ [
∇xu∗(·)

]
|x=Tθ0 (z)

[
∇θTθ(z)

]
|θ=θ0 dη(z). (5.4.2)

Remark 5.2 (Mini-batches). When η has dense support or the number of points in the

support is very large, computing the gradient of OTε with either (5.4.2) or automatic

differentiation can become prohibitive. A commonly used approach (Genevay et al., 2018b)

is to sample m points from η and ρ and compute ∇θOTε(Tθ#ηm, ρm) as a proxy of the

target gradient. We care to point out that such gradient is not an unbiased estimator of the

real gradient. This means that stochastic gradient descent approaches are not theoretically

justified and may fail in practice. Recent research (Mensch and Peyré, 2020; Fatras et al.,

2019) is exploring this aspect that is key to enable effective large scale applications.

Learning the Latent Distribution. To guarantee η̂ to be sub-Gaussian, we consider
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Algorithm 5.1 LATENT DISTRIBUTION LEARNING GANS

Input: Target ρn, latent dimension k, initial network params θ, Sinkhorn param ε > 0, step sizes α1, α2 > 0,
perturbation Φδ (e.g. GaussianN (0, δIk) in Rk), starting particles (zi)

m
i=1, sampling size `.

Until convergence do:
Sample (ij , wj)

`
j=1 with ij ∼ Unif.{1, . . . ,m} and wj ∼ Φδ

Let µ = 1
`

∑`
j=1 δxj with xj = Tθ(zij + wj)

(u∗, v∗) = SINKHORNKNOPP(µ, ρn, ε)

θ ← θ − α1

∑`
j=1∇xu

∗(xj)∇θTθ(zij + wj)

zi ← zi − α2

∑
j | ij=i∇xu

∗(xj)∇zTθ(zi + wj)

Return: µ̂ = Tθ#η̂ with η̂ = Φδ ∗ ν̂ and ν̂ = 1
m

∑m
i=1 zi.

Sampling: x ∼ µ̂ obtained as x = T (zi + w) with i ∼ Unif.{1, . . . ,m} and w ∼ Φδ .

H = P(Z) the set of probability measures over a compact subset Z of the latent space

Rk. Optimization over a space of measures P(Z) is itself an active research topic. Possible

strategies include Conditional Gradient (Bredies and Pikkarainen, 2013; Boyd et al., 2017;

Mensch et al., 2019; Luise et al., 2019), Mirror Descent (Hsieh et al., 2019) or the particle

based approaches discussed below (Feydy et al., 2019; Chizat, 2019).

Flow-based methods approximate the target distribution with a set of m particles η =∑m
i=1 ωiδzi whose position is then optimized to minimize Sε(T#η, ρn) (for simplicity, here

we do not learn the ωi but fix them to 1/m). This problem can be solved by a gradient

descent-based algorithm in the direction minimizing the associated Sinkhorn potentials

(Feydy et al., 2019). More precisely, given (u∗, v∗) a minimizer of (4.1.1), we update the

position of each particle via a gradient step of size α > 0

z+ = z − α∇zu∗(T (z)). (5.4.3)

We refer to (Chizat, 2019) for more details and a comprehensive analysis of convergence

and approximation guarantees for particle-based methods with respect to m the number of

particles.

Sampling & Training. Both conditional gradient and flow-based methods approximate

the ideal η̂ via a discrete distribution. While these strategies are guaranteed to approximate

to arbitrary precision the ideal solution, they cannot be directly used for sampling new

points. To this end here we propose to model η = Φδ ∗ ν as the convolution of a discrete

ν = 1
m

∑m
i=1 δzi with a δ-variance Gaussian distribution Φδ. We can then address the
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following variant to the joint problem (5.3.1)

min
θ∈Θ,ν∈H

Sε(Tθ#(Φδ∗ν), ρn), (5.4.4)

where ν is learned by means of the flow-based approaches introduced above (by sampling a

new set of points from Φδ at each iteration). This strategy effectively renders the estimated η

to be a mixture of m Gaussian distributions, whose position on the latent space is optimized

iteratively.

Alg. 5.1 summarizes the process of jointly learning η = Φδ ∗ ν and Tθ, according to

(5.4.4). For simplicity, we consider the case where we optimize simultaneously both network

parameters and support points of the latent distribution. However other options are viable,

such as block coordinate descent or alternating minimization, where each term is optimized

while keeping the other fixed to the previous step. The algorithm proceeds iteratively by: i)

sampling points from the current estimate of η̂ in terms of the discrete ν̂ and the perturbation

Φδ; ii) computing the Sinkhorn potential u∗ via the SINKHORNKNOPP1 algorithm; iii)

update the network parameters θ and latent ν̂ according to the gradient steps (5.4.2) and

(5.4.3) respectively.

5.5 Experiments
We tested the proposed strategy of jointly learning the latent distribution and generator

on two synthetic experiments. We do so by comparing the performance of the joint GAN

estimator from Alg. 5.1 and of the standard GAN estimator, with fixed latent distribution.

We report both the qualitative sampling behavior of the two methods as well as their quan-

titative performance in terms of generalization gap, namely the value Sε(T#η, ρ) attained

at convergence (using the Sinkhorn distance between generated and new real samples as

a proxy). Details on the setup, data generation, networks specifications and training are

reported in Appendix D.6.

Spiral. We chose the target ρ to be a multimodal probability measure in R2 supported on

a spiral-shaped 1D manifold (Fig. 5.2a, where the color intensity is proportional to higher

density). Given the low-dimensionality of the target, we consider a GAN model with latent

space Z in R. We compare Alg. 5.1 against a GAN trained with fixed latent distribution

1We used the implementation available at https://www.kernel-operations.io/geomloss/.

https://www.kernel-operations.io/geomloss/
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(a) Target density (b) Alg. 5.1 (c) Fixed latent (d) Learned η̂ by Alg. 5.1

Figure 5.2: Left: Multimodal distribution supported on the spiral: the target ρ is a multimodal
probability measure in R2 supported on a 1-dimensional spiral-shaped manifold; middle:
estimator T̂#η̂ trained on a sample ρn with n = 1000 points iid from ρ using Alg. 5.1;
Right: estimator T̂ ′#N (0, 1) trained on a sample ρn with n = 1000 points iid from ρ.
The latent distribution is fixed.

(a) Samples from the target ρ (b) Samples from T̂#η̂ from Alg. 5.1 (c) Samples from GAN with fixed η0

Figure 5.3: Left: Multimodal distribution supported on the swiss-roll: the target ρ is a multimodal
probability measure in R3 supported on a 2-dimensional swiss-roll manifold; middle:
estimator T̂#η̂ trained on a sample ρn with n = 1000 points iid from ρ using Alg. 5.1;
Right: estimator T̂ ′#N (0, Id) trained on a sample ρn with n = 1000 points iid from ρ.
The latent distribution is fixed.

η0 = N (0, 1) (the univariate Gaussian measure on R) by training them on a sample ρn

of n = 1000 i.i.d. points sampled from ρ. Fig. 5.2 reports the density and a sample of

the ground-truth target ρ (Fig. 5.2a), our T̂#η̂ estimated via Alg. 5.1 (Fig. 5.2b) and T̂ ′#η0

trained with standard Sinkhorn GAN (Fig. 5.2c). We see that the generator T̂ ′ is unable to

apply enough distortion to η0 to match ρ (see our discussion in Sec. 5.2). In contrast, our

method recovers the target distribution with high accuracy. This is quantitatively reflected

by the generalization gaps: Sε(T̂#η̂, ρ) < 10−5 for Alg. 5.1 and Sε(T̂
′
#η0, ρ) > 0.1 for the

fixed latent. Fig. 5.2d reports the density of the latent η̂ on R to show how our method

captures the bi-modality of ρ.

Swiss Roll. Similarly to the previous setting, we consider ρ a multimodal distribution in

R3 supported on the 2D swiss roll manifold. Latent space was set as Z ⊂ R2. Fig. 5.3

(Left to right) shows samples from the ground truth, our joint T̂#η̂ and the standard GAN

T̂#η0 with η0 = N (0, I). Also in this case, the latter generator was not able to fully recover

the geometry of ρ, as indicated by the different generalization gaps Sε(T̂#η̂, ρ) < 0.5 and

Sε(T̂
′
#η0, ρ) > 1.8.
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(a) Samples standard GAN (b) Samples Alg. 5.1 (c) Samples from η̂ by
Alg. 5.1

(d) Samples standard GAN (e) Samples Alg. 5.1 (f) Samples from η̂ by
Alg. 5.1

Figure 5.4: results for GAN training with T space of generators of increasing complexity. (Top row)
T space of 2-layers generators, (Bottom row) T space of 2-layers generators. (First two
columns) Samples from the target distribution ρ (blue) and generated samples (orange)
for respectively the standard GANs with fixed latent Gaussian distribution (left column)
and T̂#η̂ learned via Alg. 5.1 (central column). (Right column) samples from the latent
distribution η̂ learned via Alg. 5.1.

From 2D to 3D: matching of a 1-dimensional helix. We considered the task of matching a

probability measure ρ ∈ P(R3) supported on a 1-dimensional helix-shaped manifold. While

the target distribution could be modeled in terms of a latent distribution on the real line

and a suitable pushforward, here we consider a model where η ∈ P(R2) is a probability in

2D and T : R2 → R3. The goal of this experiment is to qualitatively assess the impact of

learning the latent distribution. Analogously to the previous experiments, we compare our

algorithm against the standard GAN approach, with latent distribution fixed and equal to

the Gaussian measure η0 = N ([0.0, 0.0], I). We consider two options for the family T of

candidate generators from R2 to R3 with increasing complexity. We aim to show that the

joint GAN estimator can efficiently learn the target distribution while the standard GAN

algorithm requires a significantly larger space of generators. We show results corresponding

to two architectures for learning the generator.

2-layers generator : we considered T the space of neural networks from R2 to R3 with

2 hidden layers of dimensions 128 and respectively ReLu and Tanh activation functions.

Fig. 5.4 (top row) reports the results for GAN training in this setting for the standard GAN

(Fig. 5.4a) and the proposed estimator (Fig. 5.4b). When keeping the latent distribution

fixed, the generator is not able to match the target. In contrast, by applying Alg. 5.1 to learn

the latent distribution, part of the complexity of modeling ρ is offloaded to η and therefore

the final estimator is able to approximately match the target. This is visually reported in
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Fig. 5.4c, which shows a sample from the learned latent distribution η̂. It can be noticed that

such distribution is significantly different from the Gaussian measure used for standard GAN

training. As a result, the generalization gaps (see section Sec. 5.5) are respectively 0.0003

for Alg. 5.1 and 0.0311 when keeping the latent distribution fixed.

4-layers generator: we considered T the space of neural networks from R2 to R3 with 4

hidden layers with dimensions 128, 512, 512, 128 and ReLu activation functions for layers

1,3 and Tanh for layers 2,4. Fig. 5.4 (bottom row) reports the results of GAN training for

the standard estimator with fixed latent distribution η0 (Fig. 5.4d) and the estimator from

Alg. 5.1 (Fig. 5.4e). We note that the standard GAN method is still not able to correctly

match the target distribution but is incurring in a smaller error. The two methods achieve

generalization gaps respectively 0.0003 for Alg. 5.1 and 0.0209 when keeping the latent

distribution fixed. We note that estimator from Alg. 5.1 is achieving similar qualitative and

quantitative performance to the one obtained using a simpler space of generators T . However

we observe a key difference in Fig. 5.4f, which reports a sample from the estimated latent

distribution η̂. Since the generator class is larger, it allows to apply more distortion to latent

distributions. As a consequence, the latent distribution can have a less sharp support shape

and still realize a good matching.

Figure 5.5: result with standard GAN with T a space of generators with 6 layers with 512 dimensions.

Deeper models. In our experiments, the standard GAN was able to match the target distribu-

tion only when T allowed for deeper networks (Fig. 5.5 shows this for T a space of networks

up to 6 layers with 512 neurons each and ReLU activation functions). This is in line with

the intuition in Sec. 5.2 and the theoretical analysis in this chapter: while choosing a fixed

latent distribution still allows to recover the target probability, doing so might impose tight

requirements on the complexity of the space of generators that needs to be considered.

Dependence on the dimensions of the latent and ambient space. Finally, we

conclude with an example that highlights the dependence on the ambient space and latent

space in terms of generalization error in practice. When testing the dependence on the



5.6. Discussion 117

Figure 5.6: Impact of the latent dimension and the ambient dimension on the statistical performance
of an estimator of the form T#η. The plots display on a log-log scale how the generaliza-
tion error (y-axis) decreases when the number of training points (x-axis) increases.

ambient space d: we considered as target ρ a distribution a 2-dimensional spiral-shaped

manifold embedded in Rd. We consider n ∈ {30, 50, 70, 90, 110, 150, 200, 500} training

points and we aim to display how the behaviour of the generalization error as n increases

is affected by the latent and ambient dimensions. For d = 10 fixed, we show that the

generalization error deteriorates as k increases, namely for k = 2, 5, 10 (see Fig. 5.6 (right)).

On the other hand, we keep k = 2 fixed and consider d = 2, 5, 10, i.e. we increase the

dimension of the ambient space. In this setting, increasing the dimension does not impact

the performance (see Fig. 5.6 (left)).

5.6 Discussion
In this chapter we studied the role of pushforward maps (generators) and latent distribu-

tions in a generative modelling framework with Sinkhorn divergence, from a theoretical

perspective. We characterized the learning rates of the estimator in terms of the complexity

(i.e. smoothness) of the class of generators. We introduced a novel ‘GAN’ estimator that

jointly learns both latent distribution generator, studied its generalization properties and

proposed a practical algorithm to train it. We performed some toy experiments that were

conceived as a proof-of-concept of the ideas and intuition underlying the proposed method.

Future work will focus on two main directions. First, we plan to investigate more empirically

oriented questions related to our framework. In particular, we plan to evaluate our approach

on large scale real data, to test the limits and benefits of the proposed strategy in practice.

Secondly, on a more theoretical direction, we plan to extend our analysis to a larger family

of adversarial divergences and generator networks.



Chapter 6

Conclusion and future directions

We end the thesis with some concluding remarks and potential future directions. Optimal

Transport is an elegant theory at the intersection of probability, analysis and geometry

and has proved to be a useful tool in a variety of applications. The Entropy-regularized

variant was first popularized in the machine learning community as a computational tool

to solve Optimal Transport problem efficiently up to some approximation. However, the

computational efficiency has paved the way to numerous applications and has motivated

further research on theoretical properties and advantages of Entropic Optimal Transport.

The thesis fits in this line of research. The scope of the thesis was to study the regularity

induced by the entropy penalty at different levels and to leverage this regularity when using

Entropic Optimal Transport in different machine learning problems, to design estimators

and algorithms with provable theoretical guarantees. We focused on supervised learning,

barycenter estimation and density matching.

Supervised Learning. We used Entropic Optimal Transport as a loss in supervised

learning settings with the simplex as output space. We proved high order differentiability

of Entropic OT which extends standard results on first order differentiability. We leveraged

such smoothness to design an estimator for learning with Sinkhorn loss that is consistent and

with provable learning rates.

Barycenter estimation. We used Sinkhorn divergence as metric in the barycenter problem

and proposed the first algorithm that computes both the weights and the atoms, with provable

convergence guarantees. The algorithm is based on Frank-Wolfe procedure. The algorithm

does not invoke an alternating minimization scheme as in previous literature, but proceeds by
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adding a new atom at each iteration and by suitably rescaling the weights. We proved new

regularity properties of the Sinkhorn divergence that were necessary to apply the Frank-Wolfe

paradigm, such as the Lipschitz continuity of the gradient. We showed convergence rates for

both discrete input measures and continuous input measures.

Density matching. We used the Sinkhorn divergence as a metric when learning a proba-

bility measure in a unsupervised fashion. Our goal was to understand how properties of the

generator and the latent space potentially impact the statistical performance of the estimator

parametrized as pushforward of such latent distribution and generator. We showed that

within the modelling range that is able to capture the target distribution, using a lower latent

dimension is beneficial. Based on our analysis, we proposed an estimator that learns both

the generator and the latent distribution and we studied the statistical performance of such

estimator.

6.1 Future directions
We first discuss potential further work which is tightly related to the material presented in

this thesis and then discuss broader future questions.

Future directions inspired by Chapter 3. Supervised learning in infinite dimensional

settings. The distributional regression setting considered in this work deals with probability

measures over a finite set. This is the framework originally proposed in the first work

considering Optimal Transport distances as losses in supervised learning setting and cap-

tures various applications. However, being able to deal with general measures rather than

histograms would greatly improve the flexibility of the paradigm. An open question is then

how to design an estimator with provable theoretical guarantees that is suitable to infinite

dimensional settings. This would allow to go beyond histograms and could provide a more

flexible and realistic approach suitable to a wider range or applications.

This is a hard problem on multiple levels; bridging the gap from the finite dimensional case

to the space of arbitrary probability distribution is ambitious in terms of both the evaluation

of the losses and the optimization pipelines. We believe that designing a framework for

supervised learning with Sinkhorn loss that successfully supports infinite dimensional spaces

both in the algorithmic modelling and in the statistical analysis constitutes an interesting and

important direction for future research.
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Future directions inspired by Chapter 4. Potential improvement of the constants in

the Lipschitz smoothness of Sinkhorn gradients. In Chapter 4 we proved Lipschitz continuity

of Sinkhorn gradients with respect to MMD and Total Variation. The Lipschitz constant

eD/ε where D is the diameter of the domain, has a bad dependence on ε. At the time

of publication of (Luise et al., 2019), which Chapter 4 is based on, the constant was in

line with the ones in Genevay et al. (2018a) regarding the sample complexity of Sinkhorn

divergence. However, for sample complexity results the dependence on ε was improved

from exponential to polynomial in the subsequent work (Mena and Niles-Weed, 2019). It is

not clear whether such improvement could hold in this case too. Our current analysis based

on Perron-Frobenius theory does not allow to eliminate the exponential dependence and

an interesting question is whether exploring other approaches can lead to better constants.

The very recent work (Shen et al., 2020) improves minor details of our results but does not

remove the exponential dependence. A relevant question would be to determine whether the

exponential dependence is tight in this case or to understand how to remove it.

Explore variants of Frank-Wolfe algorithm that could achieve better rates. In Chapter 4, we

considered the vanilla version of Frank-Wolfe algorithm, with oblivious step-size 2/(2 + k)

where k is the present iteration. However, there exists an extensive literature on Frank-

Wolfe variants (Lacoste-Julien and Jaggi, 2015) that can achieve better rates under specific

assumptions. Studying those variants both in theory and practice for the Sinkhorn barycenter

problem would be a natural extension of the work on barycenters presented in this thesis.

Extend the results to unbalanced Sinkhorn divergences. In this thesis we considered Entropic

Optimal Transport between probability measures, i.e. between measures with the same

mass. However, the formulations of Optimal Transport, its entropic version and the Sinkhorn

divergence can be extended to the unbalanced setting of arbitrary positive finite measures,

i.e. measures are not required to have the same mass (equal to one). Unbalanced Optimal

Transport is an extension of standard Optimal transport that is particularly suited for settings

where creation/ destruction of mass is natural, such as frameworks involving birth/death

dynamics or populations of cells (Schiebinger et al., 2019). Future work will be devoted to

exploring whether the results in Chapter 4 on the smoothness of the gradients hold for the

unbalance case as well. This would allow to study the barycenter problem and the proposed
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algorithm in the unbalanced setting.

Future directions inspired by Chapter 5. Chapter 5 is the most exploratory among

the chapters in the thesis. While it frames the main ideas and motivations, it leaves several

open questions. Weaken the regularity assumptions in the main results. In theorem Thm. 5.2

we assume high order differentiability of the generator T . This happens because in the proof

presented we need to differentiate and to estimate the norm of those derivatives. It would

be interesting to see whether it is possible to relax this assumption and to ask for weak

derivatives only. Allowing T to be in a Sobolev space would increase the generality of the

result and to cover standard activation functions in GANs generators such as ReLu.

Better statistical bounds for smaller classes of distributions. In our analysis, we leveraged

state-of-the-art results on sample complexity of Sinkhorn divergences, recently proved in

Mena and Niles-Weed (2019). The results are quite general, holding for any subgaussian

measure. However, this generality is paid in terms of constants in the bounds: in particular,

the leading term has the form (σε )5k/2 where k is the dimension of the domain and σ is the

subGaussianity. This quantity rapidly grows as k increases. Adding stronger requirements

on the distributions (e.g. restricting the attention to measures with smooth densities as in

Weed and Berthet (2019)) may lead to refined and more informative bounds.

6.2 Broader questions
Optimal Transport has received increasing attention in machine learning in the past decade

and there are countless aspects that have not been discussed in this thesis. The flexibility

of Optimal Transport metrics makes them a great tool in many settings. In particular, while

it is not to be considered as the panacea, Optimal Transport distances can be a powerful

option in a variety of tasks: as a loss function for distributional learning and as a metric for

barycenters, as considered in this thesis; but also as a notion to transfer information across

different domains, exploited in domain adaptation, and as geometric structure to equip the

space of probability measures with. This latter direction is relevant when optimizing on

the space of probability distributions, e.g. for sampling purposes. If on one side Optimal

Transport has great potential, on the other there are key fundamental aspects that still have to

be understood. We conclude the work with open questions that are not directly related to

the material presented but we believe are crucial for developments of Optimal Transport for
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Machine Learning.

Learning the cost function. In this thesis, we either developed theoretical results in full

generality (e.g. assuming the domain X to be a metric space with basic assumptions and the

cost function c to satisfy some mild requirements) without focusing on any specific appli-

cation, or we considered subsets of the Euclidean space equipped with standard Euclidean

norm as a show-case. In most applications -not covered or mentioned in this work, but deeply

relevant to the developments of the interaction between Optimal Transport and Machine

Learning- the cost function plays a fundamental role and simply sticking to a norm-related

quantity cannot lead to acceptable results in practice. One example among all concerns

images: there is no standard and effective way to define a distance between pairs of images.

Considering images as sufficiently high-dimensional vectors and using standard Euclidean

norm between them does not capture any notion of shape and texture which are however

crucial. Thus, the geometric flavour of Optimal Transport and its regularized variants is a

double-edged sword. Optimal Transport metric faithful incorporates the ground geometry

of the underlying domain, but what if the choice of the ground cost itself is not trivial? In

some cases, the ground geometry needs to be properly engineered for each specific problem

and becomes part of the problem itself. Relying on OT metrics without having access to

a sensible cost function can lead to poor results. Therefore, a very important and broad

question concerns how to design a ground metric which is meaningful for a given task.

While an option is to learn adversarially a deep embedding of the data, many aspects on this

question are still open and unexplored.

Large scale settings. While the entropic regularization improves the computational

complexity of Optimal Transport distances, in many large scale setting the computational

cost is still a burden. The most immediate solution is to rely on mini-batches. However,

gradients computed on batches are biased estimator of the actual gradients and therefore no

theoretical justification can back-up the mini-batch trick. A crucial question in this regard

consists in understanding how to make the use of batches theoretically sound. Simultaneously,

exploring computational methods that can efficiently deal with large scale settings and small

regularization parameter is also of fundamental importance.
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Dealing with high dimensions. The curse of dimensionality of Wasserstein distance is

alleviated by the entropy penalty: while for unregularized Optimal Transport the dependence

on the dimension appears in the rate of convergence, Sinkhorn divergences display a better

rate (n−1/2) and suffer the dependence on dimensionality in terms of constants. However,

the constants degrades as the regularization decreases and this poses challenges on how to

choose the parameter; how to optimally select the regularization is still an open question and

is application dependent. A large regularization is more efficient on the computational side

and probably on statistical sides as well; however, the geometry on the space of probability

measures induced by highly regularized Sinkhorn divergences becomes ‘flatter’ and less

discriminative, undermining some of the reasons why Optimal Transport metrics may be

favourable in the first place. Alternatives to Entropy regularization have been recently

proposed, for example in the line of works on Sliced Optimal Transport distances. Overall, it

seems that being able to combine good geometric properties with efficient computational

costs and effective statistical features is still an open challenge. Entropic Optimal Transport

is a first elegant answer but in its original definition, probability not the final one. More

research in this direction will be precious for future developments.
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Appendix of Background material

In this Appendix we cover some material -useful to understand the results in the thesis-

that was not included in Chapter 2. In particular: in Appendix A.1 we recall some basic

concepts on duality of convex functions and introduce the definitions that are necessary to

state the Fenchel-Rockafellar theorem. In Appendix A.2 we briefly introduce two important

families of divergences between probability measures, namely f -divergences and Integral

Probability Metrics, which includes the Maximum Mean Discrepancy (MMD). Related to

MMD, in Appendix A.3 we introduce some definitions and concepts on reproducing kernels

and Reproducing Kernel Hilbert Spaces, that are used in a few results in this thesis. In

Appendix A.4 we introduce Hilbert metric, its properties and all the technical lemmas and

details needed to prove the existence of solutions of the dual formulation of Entropic Optimal

Transport (2.3.3).

A.1 Useful concepts and Fenchel-Rockafellar theorem
In this section we introduce the tools that are necessary to state the Fenchel-Rockafellar

theorem. Let V be a Banach space.

Definition A.1. The set of functions f : V → R̄ that are convex, proper and lower semicon-

tinuous is denoted by Γ0(V ).

Definition A.2. Let V be a Banach space. The topological dual of V , denoted by V ∗, is the

space of all continuous linear functionals on V .

To state the Fenchel-Rockafeller theorem we need the notion of pairing (or duality), which is

recalled below:

Definition A.3. Two Banach spaces V and W are said topologically paired if all continuous

linear functionals on one space can be identified with the elements of the other, and vice-versa.
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Formally, V and W are topologically paired if there is a bilinear form 〈·, ·〉 : V ×W → R

that separates points, i.e. (i.e. ∀v 6= 0, ∃w ∈W such that 〈v, w〉 6= 0 and ∀w 6= 0 ∃v ∈ V

such that 〈v, w〉 6= 0) .

Note that a Banach space V (equipped with the strong or weak topology) and its topological

dual V ∗ equipped with the weak* topology are topologically paired. As an example, relevant

to our setting, consider the following: let X be a compact metric space and denote by

C(X ) the Banach space of continuous functions on X endowed with the norm of uniform

convergence. We denote byM(X ) the space of (signed) Borel measures on X endowed

with the norm of total variation (see (A.2.7)), which is the dual of C(X ). Then C(X ) and

M(X ) are topologically paired, with the following duality:

〈f, µ〉 =

∫
X
f dµ, for any f ∈ C(X ) µ ∈M(X ). (A.1.1)

Two other notions that we need are the Fenchel-Legendre conjugate and the definition of

adjoin operator which are recalled below.

Definition A.4. (Fenchel-Legendre conjugate) Le f ∈ Γ0(V ). The conjugate f∗ : V ∗ →

R ∪ {+∞} is defined as follows: for any v∗ ∈ V ∗

f∗(v∗) := sup
v∈V
〈v, v∗〉 − f(v). (A.1.2)

Definition A.5 (Adjoint operator). Let (V, V ∗) and (W,W ∗) be two pairs of topologically

paired spaces and A : V → W be a continuous linear operator. For all w∗ ∈ W ∗, the

application V 3 v 7→ 〈Av,w∗〉 is a continuous linear form on V and hence admits a

representer in V ∗ that we denote A∗w∗. This uniquely defines an operator A∗ : W ∗ → V ∗

that is called adjoint of A.

With these tools we can now state the Fenchel-Rockafellar theorem. We refer to (Rockafellar,

1974) for the proof and a more general statement.

Theorem A.1. [Fenchel-Rockafellar] Let (V, V ∗) and (W,W ∗) be two pairs of topologically

paired spaces. Let f ∈ Γ0(V ) and g ∈ Γ0(W ) and A : V → W be a continuous linear

operator with adjoint A∗ : W ∗ → V ∗. The so-called qualification constraint is the property:

there exists v ∈ dom(f) such that g is continuous at Av . If the qualification constraint

holds, then

sup
v∈V
−f(−v)− g(Av) = min

w∗∈W ∗
f∗(A∗w∗) + g∗(w∗), (A.1.3)



A.2. Comparing probability measures 126

and the min is attained. Moreover, if the minimum is finite, (v, w∗) ∈ V ×W ∗ is a couple of

optimizers if and only if Av ∈ ∂g∗(w∗) and A∗w∗ ∈ ∂f(−v).

A.2 Comparing probability measures
In this section we review common discrepancies between probability measures. Chapter 2 is

entirely dedicated to Optimal Transport and Sinkhorn divergences, while here we introduce

f -divergences and Maximum Mean Discrepancy, which are widely used in machine learning

and data science. We recall the definition of weak convergence of probability measures, that

will be often mentioned in the following section.

Definition A.6. Let X be a measurable space. A sequence (αn)n with αn ∈ P(X ) for all n

weak-converges to α ∈ P(X ) (denoted by αn ⇀ α) if

∫
X
f(x) dαn(x)→

∫
X
f(x) dα(x), for allf ∈ Cb(X ) (A.2.1)

where Cb(X ) is the space of continuous and bounded functions over X .

A divergence D on P(X ) is said to metrize the weak convergence if

D(αn, α)→ 0 ⇐⇒ αn ⇀ α. (A.2.2)

A.2.1 f -divergences

f -divergences are a class of divergences routinely used in many applications. They compare

two input measures by comparing their mass pointwise, without using any notion of mass

transportation. The pointwise comparison is based on the pointwise ratio between two

measures, that gives a sense of how close they are. The definition of f -divergences builds

upon the entropy functionals which are recalled below.

Definition A.7. (Entropy functional) A function f : R→ R ∪ {∞} is an entropy functional

if it is convex, lower-semicontinuous and f(1) = 0. The speed of growth of f at infinity is

given by

f ′∞ := lim
x→∞

f(x)

x
∈ R ∪ {∞}. (A.2.3)

An entropy functional f induces an f -divergence as follows:

Definition A.8. Let f be an entropy functional. For α, β ∈ M(X ), let dα
dββ + α⊥ be

the Lebesgue decomposition of α. Then, the f -divergence Df associated to the entropy
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functional f is defined as

Df (α, β) =

∫
X
f
(dα
dβ

)
dβ + α⊥f ′∞, (A.2.4)

if α and β are nonnegative and +∞ otherwise.

If f has a superlinear growth, i.e. f ′∞ =∞, then Df (α, β) =∞ when α does not admit a

density with respect to β. We provide two well-known examples of f -divergences below.

Kullback-Leibler divergence. One of the best-known examples of f -divergences is the

Kullback-Leibler divergence, defined as

DKL(α, β) = KL(α | β) =

∫
X

log
(dα
dβ

)
dα−

∫
X
dα+

∫
X
dβ, (A.2.5)

which is associated to the following function

fKL(x) =


x log x− x+ 1 if x > 0

0 if x = 0

+∞ otherwise.

(A.2.6)

The entropy function fKL has superlinear growth, meaning that f ′∞ =∞. This means that

when α and β do not share the same support, i.e. α does not admit a density with respect

to β, then KL(α | β) is equal to∞. For instance, consider αn = δ1/n and β = δ0. Since

αn and β have disjoint support, DKL(αn, β) = ∞ for any n, although the support of αn

gets closer to the support of β as n goes to infinity. This is illustrative of the fact that the

Kullback-Leibler divergence does not metrize the weak convergence.

Total Variation. Another well-known f -divergence is the Total Variation, defined as

TV(α, β) = DTV(α, β) = 2 sup
A∈B(X )

|α(A)− β(A)|, (A.2.7)

where B(X ) denotes the set of measurable subsets of X . DTV is associated to the entropy

functional

fTV(x) =


|x− 1| if x ≥ 0

+∞ otherwise.
(A.2.8)
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Total Variation defines a norm on the space of measuresM(X ) as follows

TV(α, β) = ‖α− β‖TV, ‖α‖TV = |α|(X ) =

∫
X
d|α|, (A.2.9)

where |α| = α+ + α−, with α+ and α− the two nonnegative measures that constitute the

Hahn-Jordan decomposition (Bogachev, 2007, Def. 3.1.4) of α, i.e. α = α+−α−. Note that

fTV has linear growth at infinity and f ′∞ = 1. Hence, unlike KL, DTV is not infinity when

α is not absolutely continuous with respect to β. However, in the examples with αn = δn

considered before, we have that DTV(αn, β) is constant; this means that Total Variation also

fails in metrizing the weak convergence. Total Variation also belongs to another class of

metrics called Integral Probability Metrics (IPM), which are another family of divergences

between probability measures. Under some specific assumptions IPM can metrize weak

convergence, as briefly discussed below.

A.2.2 Integral Probability Metrics

Integral Probability Metrics (Müller, 1997) are another class of widely-used discrepancies

between probability distributions. We recall the definition below.

Definition A.9 (Integral Probability Metric). Let X be a measurable space. For α, β ∈

P(X ), and Integral Probability Metric IPM is defined as

γF (α, β) = sup
f∈F

[ ∫
X
f(x) dα(x)−

∫
X
f(x) dβ(x)

]
, (A.2.10)

where F is a space of real-valued bounded measurable functions on X .

The function class F fully characterizes the IPM γF (α, β). When choosing F , there are

two important aspects: on one hand, the function class must be rich enough so that γF (α, β)

vanishes if and only if α = β, since this is a feature that is natural when we want to define a

notion of similarity. On the other hand, the larger the function class F , the harder it is to

estimate γF (α, β). For example, when F = Cb(X ), then the corresponding IPM is a metric

on the space of probability measures (Muandet et al., 2017, Thm. 3.5), but handling Cb(X )

is very difficult in practice. Necessary and sufficient conditions on the class F to ensure that

γF metrizes the weak convergence are discussed in (Müller, 1997).

Examples. One example of IPM is the Total variation, which is the only metric that is

both an f -divergence and an Integral Probability Metric (Sriperumbudur et al., 2009). The
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corresponding space F is given by

F = {f ∈ Cb(X ) : ‖f‖∞ ≤ 1}. (A.2.11)

Another well-known example is Wasserstein-1 distance, with

F = {f ∈ Cb(X ) : ‖f‖Lip ≤ 1}, (A.2.12)

that is the space of Lipchitz functions with Lipschitz constant smaller than 1.

Besides the examples above, a fundamental class of IPMs is given by choosing F as a unit

ball in a Reproducing Kernel Hilbert Space. The resulting IPM is called Maximum Mean

Discrepancy (MMD) (Gretton et al., 2007). MMDs are among the most important IPMs in

machine learning. We recall the definition in the next section, where we also provide some

background on kernels and RKHS that it is useful to read the manuscript.

A.3 Reminders on Kernels and MMD

This is an introductory section where we list basic definitions of concepts that are mentioned

throughout the thesis. It is to be interpreted as a minimal glossary, by no means exhaustive.

Definition A.10 (Kernel). Let X be a nonempty set. A function k : X × X → R is a kernel

if there exist a Hilbert spaceH and a function ϕ : X → H such that

k(x, x′) =
〈
ϕ(x), ϕ(x′)

〉
H for any x, x′ ∈ X . (A.3.1)

The function ϕ is referred to as feature map.

Definition A.11 (Reproducing kernel Hilbert Space). Let X a nonempty set andH a Hilbert

space of functions f : X → R. H is called a Reproducing kernel Hilbert Space if all the

evaluation functionals Fx defined by Fx(f) = f(x) are bounded, i.e. for all x ∈ X there

exists some C > 0 such that

|Fx(f)| = |f(x)| ≤ C‖f‖H for all f ∈ H. (A.3.2)

Proposition A.2 (Reproducing property). LetH be an RKHS. For each x ∈ X there exists

a function kx ∈ H such that Fx(f) = f(x) = 〈f, kx〉.

Let k : X × X → R be a two-variables function defined by k(x, y) := ky(x). Then, by
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the reproducing property it follows that k(x, y) = ky(x) = 〈kx, ky〉 = 〈ϕ(x), ϕ(y)〉, where

ϕ(x) := kx is the feature map ϕ : X → H.

Definition A.12 (Universal kernel). Let Cb(X ) be the space of continuous bounded functions

on a compact metric space X . A continuous positive definite kernel k on X is said to be

universal if the corresponding RKHSH is dense in Cb(X ), i.e., for any f ∈ Cb(X ) and ε > 0,

there exists a function h ∈ H such that ‖f − h‖∞ ≤ ε.

Definition A.13 (Kernel Mean Embedding). Let X be a measurable space and P(X ) denote

the set of probability measures over X . The kernel mean embedding of probability measures

in P(X ) into an RKHSH associated to a reproducing kernel k : X × X → R is defined as

M : P(X )→ H, α 7−→
∫
X
k(·, x) dα(x). (A.3.3)

Definition A.14 (Maximum Mean Discrepancy). LetH be a RKHS. Then, for α, β ∈ P(X ),

MMD(H;α, β) = sup
{f∈H:‖f‖H≤1}

[ ∫
X
f(x) dα(x)−

∫
X
f(x) dβ(x)

]
. (A.3.4)

Note that MMD can be expressed in terms of mean embeddings, namely

MMD(H;α, β) = ‖Mα −Mβ‖H, (A.3.5)

or equivalently using the correspondent kernel k

MMD2(H;α, β) = Eα⊗α(k(x, x′)) + Eβ⊗β(k(y, y′))− 2Eα⊗β(k(x, y)). (A.3.6)

A.4 Hilbert metric and existence of dual potentials

In this section we present the proof of existence of dual potentials, which are solutions of

the dual formulation of the Entropic Optimal Transport problem presented in Thm. 2.3. The

proof needs some preliminary material, including definition and properties of the Hilbert

metric, that are also necessary for other proofs in the thesis, mainly in Chapter 4. Some

results are quite technical and we present the proofs for completeness.
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A.4.1 Hilbert’s metric and the Birkhoff-Hopf theorem

We first review the basic concepts of the nonlinear Perron-Frobenius theory (Lemmens and

Nussbaum, 2012) which provides tools to deal with DAD problems and ultimately to study

existence of dual potentials.

We consider X ⊂ Rd to be a compact set. We denote by C(X ) the space of continu-

ous functions on X endowed with the sup norm, namely ‖f‖∞ = supx∈X |f(x)|. Let

C+(X ) be the cone of non-negative continuous functions, that is, C+(X ) := {f ∈ C(X )

such that f(x) ≥ 0, for every x ∈ X}. Also, we denote by C++(X ) the set of

continuous and (strictly) positive functions on X , C++(X ) := {f ∈ C(X ) such that

f(x) > 0, for every x ∈ X}, which turns out to be the interior of C+(X ).

Recall that c : X × X → R+ is a positive, symmetric, and continuous function and define

k : X × X → R++ as

∀x, y ∈ X , k(x, y) = e−
c(x,y)
ε . (A.4.1)

Set D = supx,y∈X c(x, y). Then, we have k(x, y) ∈ [e−D/ε, 1] for all x, y ∈ X . Let

α ∈ P(X ). Define the operator Lα : C(X )→ C(X ) as

∀f ∈ C(X ), Lαf : x 7→
∫

k(x, z)f(z) dα(z). (A.4.2)

Note that Lα is linear and continuous. In particular, since k(x, y) ∈ [0, 1] for all x, y ∈ X ,

we have

∀ f ∈ C+(X ), Lαf ≥ 0 (A.4.3)

and

∀ f ∈ C(X ), ‖Lαf‖∞ ≤ ‖f‖∞. (A.4.4)

Hilbert’s Metric. The cone C+(X ) induces a partial ordering ≤ on C(X ), such that

∀ f, g ∈ C(X ), f ≤ g ⇔ g − f ∈ C+(X ). (A.4.5)

According to (Lemmens and Nussbaum, 2012), we say that a function g ∈ C+(X ) dominates

f ∈ C(X ) if there exist t, s ∈ R such that

tg ≤ f ≤ sg. (A.4.6)



A.4. Hilbert metric and existence of dual potentials 132

This notion induces an equivalence relation on C+(X ), denoted f ∼ g, meaning that f

dominates g and g dominates f . The corresponding equivalence classes are called parts of

C+(X ). Let f, g ∈ C+(X ) be such that f ∼ g. We define

M(f/g) = inf{s ∈ R | f ≤ sg} and m(f/g) = sup{t ∈ R | tg ≤ f}. (A.4.7)

Note that m(f/g) ≤M(f/g). Moreover, for every f, g ∈ C+(X ) such that f ∼ g, we have

that supp(f) = supp(g) and if g 6= 0 (hence f 6= 0), then

M(f/g) = max
x∈supp(g)

f(x)

g(x)
> 0 and m(f/g) = min

x∈supp(g)

f(x)

g(x)
> 0. (A.4.8)

Definition A.15. With the notation introduced above, the Hilbert’s metric is defined as

dH(f, g) = log
M(f/g)

m(f/g)
, (A.4.9)

for all f ∼ g with f 6= 0 and g 6= 0, dH(0, 0) = 0 and dH(f, g) = +∞ otherwise.

Direct calculation shows that (Lemmens and Nussbaum, 2013, Proposition 2.1.1)

(i) dH(f, g) ≥ 0 and dH(f, g) = dH(g, f), for every f, g ∈ C+(X );

(ii) dH(f, h) ≤ dH(f, g) + dH(g, h), for every f, g, h ∈ C+(X ) with f ∼ g and g ∼ h;

(iii) dH(sf, tg) = dH(f, g), for every f, g ∈ C+(X ) and s, t > 0.

Note that dH induces a metric on the rays of the parts of C+(X ) (Lemmens and Nussbaum,

2013, Lemma 2.1).

We now focus on C++(X ). A direct consequence of Hilbert’s metric properties is the

following.

Lemma A.3 (Hilbert’s Metric on C++(X )). The interior of C+(X ) corresponds to the set of

(strictly) positive functions C++(X ) and is a part of C+(X ) with respect to the equivalence

relation induced by dominance. For every f, g ∈ C++(X ),

M(f/g) = max
x∈X

f(x)

g(x)
m(f/g) = min

x∈X

f(x)

g(x)
, (A.4.10)

and M(f/g) ≥ m(f/g) > 0. Therefore

dH(f, g) = log max
x,y∈X

f(x) g(y)

f(y) g(x)
. (A.4.11)
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Proof. Since X is compact it is straightforward to see that C++(X ) is the interior of C+(X ).

By applying (Lemmens and Nussbaum, 2012, Lemma 1.2.2) we have that C++(X ) is a part

of C+(X ). The characterization of M(f/g) and m(f/g) follows by direct calculation from

the definition using the fact that infX h = minX h > 0 for any h ∈ C++(X ) since X is

compact. Finally, the characterization of Hilbert’s metric on C++(X ) is obtained by recalling

that (minx∈X h(x))−1 = maxx∈X h(x)−1 for every h ∈ C++(X ).

Lemma A.4 (Ordering properties of Lα). Let α ∈ P(X ). Then the following holds:

(i) the operator Lα is order-preserving (with respect to the cone C+(X )), that is,

(∀ f, g ∈ C(X )) f ≤ g ⇒ Lαf ≤ Lαg; (A.4.12)

(ii) Lα maps parts of C+(X ) to parts of C+(X ), that is,

(∀ f, g ∈ C(X )) f ∼ g ⇒ Lαf ∼ Lαg; (A.4.13)

(iii) Lα(C+(X )) ⊂ C++(X ) ∪ {0} and Lα(C++(X )) ⊂ C++(X ).

Proof. (i): Let f, g ∈ C(X ) with f ≤ g. Then g − f ∈ C+(X ) and by linearity of Lα

combined with (A.4.3), we have Lαg − Lαf = Lα(g − f) ≥ 0.

(ii): Let f, g ∈ C+(X ) with f ∼ g. Then there exist t, s ∈ R and s′, t′ ∈ R such that

tg ≤ f ≤ sg and t′f ≤ g ≤ s′f . Since Lα is linear and order-preserving, we have

Lαf ∼ Lαg.

(iii): Let f ∈ C+(X ). By (A.4.3) and (A.4.4), for any x ∈ X

0 ≤ (Lαf)(x) ≤ ‖Lαf‖∞ ≤
∫
f(x) dα(x) = ‖f‖L1(X ,α). (A.4.14)

Moreover,

Lαf(x) =

∫
k(y, x)f(y) dα(y) ≥ e−D/ε ‖f‖L1(X ,α). (A.4.15)

Therefore, if ‖f‖L1(X ,α) = 0 then by (A.4.14) Lαf = 0; if ‖f‖L1(X ,α) > 0 then by (A.4.15)

Lαf ∈ C++(X ). We conclude that the operator Lα maps C+(X ) in C++(X )∪{0}. Moreover,

Lα(C++(X )) ⊂ C++(X ), since for every f ∈ C++(X ) we have ‖f‖L1(X ,α) ≥ minX f >

0.
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Following (Lemmens and Nussbaum, 2012, Section A.4) we now introduce a quantity which

plays a role of central importance.

Definition A.16 (Projective Diameter of Lα). Let α ∈ P(X ). The projective diameter of Lα

is

∆(Lα) = sup{dH(Lαf, Lαg) | f, g ∈ C+(X ), Lαf ∼ Lαg}. (A.4.16)

The following result shows that it is possible to find a finite upper bound on ∆(Lα) that is

independent on α.

Proposition A.5 (Upper bound on the Projective Diameter of Lα). Let α ∈ P(X ). Then

∆(Lα) ≤ 2D/ε. (A.4.17)

Proof. Let f, g ∈ C+(X ). Recall that Lα maps C+(X ) into C++(X ) ∪ {0} (see

Lemma A.4Item (iii)) and that {0} and C++(X ) are two parts of C+(X ) with respect to the

relation ∼ (see (Lemmens and Nussbaum, 2012, Lemma 1.2.2)). Now, if Lαf = Lαg = 0,

then we have dH(Lαf, Lαg) = dH(0, 0) = 0. Therefore it is sufficient to study the case that

Lαf, Lαg ∈ C++(X ). Following the characterization of Hilbert’s metric on C++(X ) given

in Lemma A.3, we have

dH(Lαf, Lαf
′) = log max

x,y∈X

(Lαf)(x) (Lαf
′)(y)

(Lαf)(y) (Lαf ′)(x)

= log max
x,y∈X

∫
k(x, z)f(z) dα(z)

∫
k(y, w)f ′(w) dα(w)∫

k(y, z)f(z) dα(z)
∫
k(x,w)f ′(w) dα(w)

= log max
x,y∈X

∫
k(x, z)k(y, w) f(z)f ′(w) dα(z)dα(w)∫
k(y, z)k(x,w) f(z)f ′(w) dα(z)dα(w)

= log max
x,y∈X

∫ k(x,z)k(y,w)
k(y,z)k(x,w) k(y, z)k(x,w) f(z)f ′(w) dα(z)dα(w)∫

k(y, z)k(x,w) f(z)f ′(w) dα(z)dα(w)

≤ log max
x,y,z,w∈X

k(x, z)k(y, w)

k(y, z)k(x,w)
.

Since for every x, y ∈ X c(x, y) ∈ [0,D], we have k(x, y) ∈ [e−D/ε, 1] and hence

dH(Lαf, Lαf
′) ≤ 2D/ε.

A consequence of Prop. A.5 is a special case of Birkhoff-Hopf theorem.

Theorem A.6 (Birkhoff-Hopf Theorem). Let λ = eD/ε−1
eD/ε+1

and α ∈ P(X ). Then, for every
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f, f ′ ∈ C+(X ) such that f ∼ f ′, we have

dH(Lαf, Lαf
′) ≤ λ dH(f, f ′). (A.4.18)

Proof. The statement is a direct application of the Birkhoff-Hopf theory (Lemmens and

Nussbaum, 2012, Sections A.4 and A.7). The Birkhoff contraction ratio of Lα is defined as

κ(Lα) = inf
{
λ̂ ∈ R+

∣∣ dH(Lαf, Lαf
′) ≤ λ̂dH(f, f ′) ∀f, f ′ ∈ C+(X ), f ∼ f ′

}
.

Then it follows from Birkhoff-Hopf theorem (Lemmens and Nussbaum, 2012, Theo-

rem A.4.1) that

κ(Lα) = tanh

(
1

4
∆(Lα)

)
. (A.4.19)

Recalling the upper bound on the projective diameter of Lα given in Prop. A.5, we have

κ(Lα) ≤ tanh

(
D

2ε

)
=
eD/ε − 1

eD/ε + 1
= λ,

and Eq. (A.4.18) follows.

A.4.2 DAD problems

We introduce the formalism of DAD problems. The dual formulation of Entropic OT falls

into this framework and hence the results reported in this section will be instrumental for the

proof of existence of dual potentials. Recall that the operator Lα introduced in the previous

section is defined as follows: for α ∈ P(X ), Lα : C(X )→ C(X ) is given by

(∀f ∈ C(X )) Lαf : x 7→
∫

k(x, z)f(z) dα(z). (A.4.20)

We now introduce another operator, closely related to Lα.

The map Aα. Let α ∈ P(X ). We define the map Aα : C++(X )→ C++(X ), such that

∀ f ∈ C++(X ), Aα(f) = R ◦ Lα(f) = 1/(Lαf), (A.4.21)
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where R : C++(X )→ C++(X ) is defined by R(f) = 1/f with

(1/f) : x 7→ 1

f(x)
. (A.4.22)

Note that Aα is well defined since, by Lemma A.4Item (iii), Lα(C++(X )) ⊂ C++(X ) and,

for every f ∈ C++(X ), minX f > 0, because X compact. Moreover, it follows from

(A.4.11) in Lemma A.3, that, for any two f, f ′ ∈ C++(X )

dH(1/f, 1/f ′) = log max
x,y∈X

f(y)f ′(x)

f(x)f ′(y)
= dH(f, f ′). (A.4.23)

We highlight here the connection between Pα introduced in (2.3.5) and Aα, namely for any

α ∈ P(X ) and u ∈ C(X )

Pα(u) = −ε log(Aα(eu/ε)). (A.4.24)

Dual OTε Problem. Recall the dual problem introduced (2.3.3) of the optimal transport

problem with entropic regularization: for α, β ∈ P(X ) and ε > 0

max
u,v∈C(X )

∫
u(x) dα+

∫
v(y) dβ(y)− ε

∫
e
u(x)+v(y)−d(x,y)

ε dα(x)dβ(y). (A.4.25)

The optimality conditions for the problem above are
e−

u(x)
ε =

∫
X
e
v(y)−c(x,y)

ε dβ(y) (∀x ∈ supp(α))

e−
v(y)
ε =

∫
X
e
u(x)−c(x,y)

ε dα(x) (∀ y ∈ supp(β)),

(A.4.26)

which are equivalent to
g(y)−1 =

∫
X
e
−c(x,y)

ε f(x) dα(x) (∀ y ∈ supp(β))

f(x)−1 =

∫
X
e
−c(x,y)

ε g(y) dβ(y) (∀x ∈ supp(α)),

(A.4.27)

where f = eu/ε ∈ C++(X ) and g = ev/ε ∈ C++(X ). In the rest of the section we will
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consider the following DAD problem: (Lemmens and Nussbaum, 2012; Nussbaum, 1993)

∀ y ∈ X
∫
X
f(x)k(x, y)g(y) dα(x) = 1 and ∀x ∈ X

∫
X
f(x)k(x, y)g(y) dβ(y) = 1.

(A.4.28)

It is clear that a solution of (A.4.28) is also a solution of (A.4.27). The vice versa is in

general not true; however, there is a canonical way to build solutions of (A.4.28) starting from

solutions of (A.4.27): indeed if (f, g) is a solution of (A.4.27), then the functions f̄ , ḡ : X →

R defined through f̄(x)−1 =
∫
X k(x, y)g(y) dβ(y) and ḡ(y)−1 =

∫
X k(x, y)g(y) dβ(y)

provide a solution of (A.4.28). So, the dual OTε problem (A.4.25) admits a solution if and

only if the corresponding DAD problem (A.4.28) admits a solution. Recalling the definition

of Aα in (A.4.21), problem (A.4.28) can be more compactly written as

f = Aβ(g) and g = Aα(f), (A.4.29)

or equivalently, by setting Aβα = Aβ ◦ Aα and Aαβ = Aα ◦ Aβ ,

f = Aβα(f) and g = Aαβ(g). (A.4.30)

This shows that the solutions of the DAD problem (A.4.28) are the fixed points of Aαβ and

Aβα respectively. Note that the operators Aβα and Aαβ are positively homogeneous, that

is, for every t ∈ R++ and f ∈ C++(X ), Aβα(tf) = tAβα(f) and Aαβ(tf) = tAαβ(f).

Thus, if f is a fixed point of Aβα, then tf is also a fixed point of Aβα, for every t > 0. If

(f, g) is a solution of the DAD problem (A.4.28), then the pair (u, v), with u = ε log f and

v = ε log g is a solution of (A.4.25). We refer to these solutions as Sinkhorn potentials of

the pair (α, β). Finally, note that, it follows from (A.4.26) that solutions of (A.4.25) are

determined (α, β)-a.e. on X and up to a translation of the form (u + t, v − t), for some

t ∈ R.

The following result is essentially the specialization of (Lemmens and Nussbaum, 2012,

Thm. 7.1.4) to the case of the map Aβα.

Theorem A.7 (Hilbert’s metric contraction for Aβα). The map Aβα : C++(X )→ C++(X )

has a unique fixed point up to positive scalar multiples. Moreover, let λ = eD/ε−1
eD/ε+1

. Then, for
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every f, f ′ ∈ C++(X ),

dH(Aβα(f),Aβα(f ′)) ≤ λ2 dH(f, f ′). (A.4.31)

Proof. To show that Aβα : C++(X ) → C++(X ) has a unique fixed point up to positive

scalar we refer to the proof of (Lemmens and Nussbaum, 2012, Thm. 7.1.4). As for (A.4.31),

this can be easily seen with the tools that we have introduced so far. By combining (A.4.23)

with Thm. A.6 we obtain that, for any f, f ′ ∈ C++(X )

dH(Aα(f),Aα(f ′)) = dH(1/(Lαf), 1/(Lαf
′)) = dH(Lαf, Lαf

′) ≤ λ dH(f, f ′).

(A.4.32)

Since the same holds for Aβ then (A.4.31) is satisfied.

We conclude this part gathering a few easy results that are useful in the rest of the appendix.

Lemma A.8. (Auxiliary Cone) Consider the set

K = {f ∈ C+(X ) | f(x) ≤ f(y) eD/ε ∀x, y ∈ X}. (A.4.33)

Let α ∈ P(X ). Then the following holds.

(i) K is a closed convex cone and K ⊂ C++(X ) ∪ {0};

(ii) Lα(C+(X )) ⊂ K;

(iii) R(K) ⊂ K, where recall that R : C++(X )→ C++(X ) is defined by R(f) = 1/f ;

(iv) Ran(Aα) ⊂ K;

(v) If f ∈ K and g = Aαf , then g ∈ K and 1 ≤ (minX g) ‖f‖∞ ≤ ‖g‖∞ ‖f‖∞ ≤

e2D/ε.

(vi) If f ∈ K is such that f(xo) = 1 for some xo ∈ X , then ‖ε log f‖∞ ≤ D.

Proof. (i): We see that for any f ∈ K,

max
X

f ≤ (min
X

f) eD/ε, (A.4.34)

so, if f(x) = 0 for some x ∈ X , then f(x) = 0 on all X . Hence K ⊆ C++(X ) ∪ {0}. It

is straightforward to verify that K is a convex cone. Moreover K is also closed. Indeed

if (fn)n∈N is a sequence in K which converges uniformly to f ∈ C(X ), then, for every
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x, y ∈ X and every n ∈ N, fn(x) ≤ fn(y)eD/ε and hence, letting n → +∞, we have

f(x) ≤ f(y)eD/ε.

(ii): For every f ∈ C+(X ) and x, y ∈ X , we have

(Lαf)(x) =

∫
k(x, z)f(z) dα(z) =

∫
k(x, z)

k(y, z)
k(y, z)f(z) dα(z)

≤ eD/ε
∫

k(y, z)f(z) dα(z) = eD/ε(Lαf)(y).

(iii): For every f ∈ K,

(∀x, y ∈ X ) f(x) ≤ f(y) eD/ε ⇔ 1

f(y)
≤ 1

f(x)
eD/ε.

(iv) It follows from Item (ii) and Item (iii) and the definition of Aα.

(v): It follows from (iv), Eq. (A.4.38), and Eq. (A.4.34).

(vi): Let f ∈ K be such that f(xo) = 1. Then minX f ≤ 1 ≤ maxX f . Thus, it follows

from Eq. (A.4.34) that

max
X

f ≤ eD/ε and min
X

f ≥ e−D/ε (A.4.35)

and hence, for every x ∈ X , −D ≤ ε log f(x) ≤ D.

A.4.3 Hilbert metric and relation with supremum norm

While the Hilbert metric is useful for DAD problems and to handle the dual potentials,

ultimately one is more interested in dealing with more classic norms, such as the supremum

norm. We conclude this section with two results on Hilbert metric and its relation with L∞

norm.

Lemma 4.3. Let f, f ′ ∈ C++(X ) and set u = ε log f and u′ = ε log f ′. Then

dH(f, f ′) ≤ 2
∥∥log f − log f ′

∥∥
∞ or, equivalently dH(eu/ε, eu

′/ε) ≤ 2

ε

∥∥u− u′∥∥∞ .
(4.3.3)

Moreover, let xo ∈ X , consider the sets A = {h ∈ C++(X ) | h(xo) = 1} and B = {w ∈

C(X ) | w(xo) = 0}. Suppose that f, f ′ ∈ A (or equivalently that u, u′ ∈ B). Then

1

2
dH(f, f ′) ≤

∥∥log f − log f ′
∥∥
∞ ≤ dH(f, f ′) (4.3.4)
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and
ε

2
dH(eu/ε, eu

′/ε) ≤
∥∥u− u′∥∥∞ ≤ ε dH(eu/ε, eu

′/ε). (4.3.5)

Proof. We have

dH(f, f ′) = log max
x,y∈X

f(x)f ′(y)

f(y)f ′(x)

= log max
x∈X

f(x)

f ′(x)
+ log max

y∈X

f ′(y)

f(y)

= max
x∈X

log
f(x)

f ′(x)
+ max

y∈X
log

f ′(y)

f(y)

≤ 2 max
x∈X

∣∣∣∣log
f(x)

f ′(x)

∣∣∣∣ = 2
∥∥log(f/f ′)

∥∥
∞ = 2

∥∥log f − log f ′
∥∥
∞

and (4.3.3) follows. Suppose that f, f ′ ∈ A. Then

∥∥log f − log f ′
∥∥
∞ = max

{
log max

x∈X

f(x)

f ′(x)
, log max

x∈X

f ′(x)

f(x)

}
= max

{
log max

x∈X

f(x)f ′(xo)

f(xo)f ′(x)
, log max

x∈X

f(xo)f
′(x)

f(x)f ′(xo)

}
≤ max

{
log max

x,y∈X

f(x)f ′(y)

f(y)f ′(x)
, log max

x,y∈X

f(y)f ′(x)

f(x)f ′(y)

}
= dH(f, f ′),

since f(xo)/f
′(xo) = f ′(xo)/f(xo) = 1. Therefore, (4.3.4) follows.

Lemma A.9. For every x, y ∈ R++ we have

|log x− log y| ≤ max
{
x−1, y−1

}
|x− y|. (A.4.36)

The following result allows to extend the previous observations on a pair f, f ′ to the corre-

sponding g = Aαf and g′ = Aαf
′.

Lemma A.10. Let xo ∈ X and K ⊂ C+(X ) the cone from Lemma A.8. Let f, f ′ ∈ K be

such that f(xo) = f ′(xo) = 1, and set g = Aαf and g′ = Aαf
′. Then,

∥∥log g − log g′
∥∥
∞ ≤ e

3D/ε
∥∥log f − log f ′

∥∥
∞ . (A.4.37)
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Proof. It follows from (A.4.21) and Lemma A.9 that

|log g − log g′| =
∣∣∣ log

g

g′

∣∣∣ =
∣∣∣ log

Lαf
′

Lαf

∣∣∣ ≤ max
{
g′, g

}
|Lαf − Lαf

′|.

Therefore, since 1 ≤ ‖f‖∞ , ‖f ′‖∞, and recalling Lemma A.8Item (v) and (A.4.4), we have

∥∥log g − log g′
∥∥
∞ ≤ max{‖g‖∞ ,

∥∥g′∥∥∞} ∥∥Lαf − Lαf
′∥∥
∞

≤ max{‖f‖∞ ‖g‖∞ ,
∥∥f ′∥∥∞ ∥∥g′∥∥∞} ∥∥Lαf − Lαf

′∥∥
∞

≤ e2D/ε
∥∥f − f ′∥∥∞

= e2D/ε‖elog f − elog f ′‖∞.

Now, since f, f ′ ≤ eD/ε, we have log f, log f ′ ≤ D/ε. Thus, the statement follows by noting

that the exponential function is Lipschitz continuous on ]−∞,D/ε] with constant eD/ε.

A.4.4 Existence of potentials and properties

In the previous subsections we have presented all the tools that are needed to show existence

of the potentials, which is now a corollary of previous results.

Corollary A.11 (Existence and uniqueness of Sinkhorn potentials). Let α, β ∈ P(X ). Then,

the DAD problem (A.4.28) admits a solution (f, g) and every other solution is of type

(tf, t−1g), for some t > 0. Moreover, there exists a pair (u, v) ∈ C(X )2 of Sinkhorn

potentials and every other pair of Sinkhorn potentials is of type (u + s, v − s), for some

s ∈ R. In particular, for every xo ∈ X , there exist a unique pair (u, v) of Sinkhorn potentials

such that u(x0) = 0.

Proof. It follows from Thm. A.7 and the discussion after (A.4.30).

Bounding (f, g) point-wise. We conclude this section by providing additional properties

of the solutions (f, g) of the DAD problem (A.4.29). In particular, we show that there exists

one such solution for which it is possible to provide a point-wise upper and lower bound

independent on α and β.

Remark A.1. Let f ∈ C++(X ) and set g = Aα(f). Then, recalling (A.4.21) and Eq. (A.4.4),

we have that, for every x ∈ X ,

1 = g(x)(Lα f)(x) ≤ g(x) ‖Lαf‖∞ ≤ g(x) ‖f‖∞
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and

1 = g(x)(Lα f)(x) ≥ g(x)(min
X

f)

∫
k(x, z) dα(z) ≥ g(x)(min

X
f)e−D/ε.

Therefore,

min
X

g ≥ 1

‖f‖∞
and ‖g‖∞ ≤

eD/ε

minX f
. (A.4.38)

As a direct consequence of Lemma A.8 we can establish a uniform point-wise upper and

lower bound for the value of DAD solutions.

Corollary A.12. Let α, β ∈ P(X ). Let xo ∈ X and let (f, g) be the solution of (A.4.29)

such that f(xo) = 1. Then ‖f‖∞ ≤ eD/ε and ‖g‖∞ ≤ e2D/ε. Moreover, the corrisponding

pair (u, v) of Sinkhorn potentials satifies ‖u‖∞ ≤ D and ‖v‖∞ ≤ 2D.

Proof. Since f and g are fixed points of Aβα and Aαβ respectively, it follows from

Lemma A.8Item (iv) that f, g ∈ K. Then, Lemma A.8Item (vi) yields ‖f‖∞ ≤ eD/ε,

whereas by the second of (A.4.38) and (A.4.35) we derive that ‖g‖∞ ≤ e2D/ε.
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Appendix of Chapter 3

This appendix is structured as follows:

Appendix B.1. This section presents more details on the Example 3.1 in the main body of

the manuscript.

Appendix B.2. This section contains the proof of Prop. 3.1.

Appendix B.3. This section presents the proof of Thm. 3.3 on the differential properties on

sharp and vanilla Sinkhorn and the formula of the gradient of sharp Sinkhorn.

B.1 Example: Barycenter of Dirac Deltas
Wasserstein barycenter problems can be divided into two main classes: problems in which

the support is free (and must be computed, generating a nonconvex problem (Cuturi and

Doucet, 2014)) and problems where the support is fixed. In some cases, the latter is the only

valid choice: for instance, when the geometric domain is a space of symbols and the cost

matrix M contains the symbol-to-symbol dissimilarities, no extra information of the symbol

space is available and the support of the barycenter will have to lie on a pre-determined set in

order to be meaningful. A concrete example is the following: when dealing with histograms

on words, the barycenter will optimize how to spread the mass among a set of known words

that are used to build the matrix C, through a word2vec operation. In the following we carry

out the computation of the barycenter of two Dirac deltas with regularized Sinkhorn and

Sinkhorn distances, in order to prove what stated in Example 3.1.

Barycenter with OTε. Let µ = δz be the Dirac delta centered at z ∈ Rd and ν = δy

the Dirac delta centered at y ∈ Rd. We fix the set of admissible support of the barycenter

X = {x1, . . . , xn}, where xi ∈ Rd for any i. For the sake of simplicity let us assume that X
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contains the point (y + z)/2. The cost matrices with mutual distances between z and X and

y and X will be

Cz = {d(z, xi)}ni=1 ∈ Rn, Cy = {d(y, xi)}ni=1.

Since the support is fixed, only the weights a = (a1, . . . , an) of the barycenter µε =∑n
i=1 aiδxi are to be computed. Vector a is the minimizer of the following functional

∆n 3 a −→ BOTε(a) =
1

2
OTε(a, δz) +

1

2
OTε(a, δy).

Note that since Dirac delta has mass 1 concentrated at a point, the transport polytope

corresponding to a and a Dirac delta is Π(a, 1). The elements in Π(a, 1) are those matrices

T ∈ Rn×1 such that T11 = a and T>1n = 1. Thus,


T1

T2

...

Tn


(

1
)

=


a1

a2

...

an

 (B.1.1)

which implies T1 = a1, . . . , Tn = an. In this case, Π(a, 1) contains only one matrix, which

coincides with a>. The distance OTε(a, δz) is given by 〈a>, Cz〉 − εH(a) and, similarly,

OTε(a, δy) = 〈a>, Cy〉 − εH(a). Then, the goal is to minimize

a −→ 1

2
〈a, Cz〉+

1

2
〈a, Cy〉+ ε

n∑
i=1

ai(log ai − 1)

with the constraint that a ∈ ∆n. The partial derivative with respect to ai is given by

∂BOTε

∂ai
=

1

2
(Czi + Cyi ) + ε log ai

Setting it equal to zero, it yields ai = e
−(Czi +C

y
i

)

2ε . The constraint a ∈ ∆n leads to

ai =
e
−(Czi +C

y
i

)

2ε∑n
j=1 e

−(Cz
j

+C
y
j

)

2ε

.
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Then the barycenter µ∗ε has weights (a1, . . . , an) where each ai is strictly positive, with

maximum at the entry corresponding to the point xi which realizes the minimum distance

from z and y, i.e. (z + y)/2. The sparsity of the initial deltas is lost.

Barycenter with ÕTε. On the other hand, let us compute the barycenter between µ and ν

with respect to the Sinkhorn distance recalled in Eq. (3.1.4). The very same considerations

on Π(a, 1) still hold, so Π(a, 1) contains T = a> only. Hence, in this case the Sinkhorn

barycenter functional B
ÕTε

coincides with the Wasserstein barycenter functional BW, since

ÕTε(a, δj) = 〈a>, Cj〉 = W(a, δj), for j = z, y. This trivially implies that µ̃∗ε = µ∗W.

B.2 Proof of Proposition 3.1 in Section 3.1

Proposition 3.1. Let ε > 0. For any pair of discrete measures α, β ∈ P(X ) with respective

weights a ∈ ∆n and b ∈ ∆m, we have

∣∣ ÕTε(α, β)−W(α, β)
∣∣ ≤ c1 e−

1
ε , c2ε ≤

∣∣ OTε(α, β)−W(α, β)
∣∣ ≤ c3ε, (3.1.5)

where c1, c2, c3 are constants independent of ε, depending on the support of α and β.

Proof. As shown in (Cominetti and Martı́n, 1994)(Prop.5.1), the sequence Tε converges to

an optimal plan of W as ε goes to zero. More precisely,

Tε → T ∗ = argmaxT∈Π(a,b){H(T ); 〈T,C〉 = W(α, β)}

exponentially fast, that is ‖Tε − T ∗‖Rnm ≤ c e−
1
ε . Thus,

|ÕTε(α, β)−W(α, β)| = |〈Tε, C〉 − 〈T ∗, C〉| ≤ ‖Tε − T ∗‖‖C‖ ≤ c e−
1
ε ‖C‖ =: c1e−

1
ε .

As for the second part, note that if T ∗ is a solution of minT∈Π(a,b) 〈T,C〉, then 〈T ∗, C〉 ≤

〈T,C〉, for any other T ∈ Π(a, b), including any solution Tε of minT∈Π(a,b) 〈T,C〉−εH(T ).

Also, by definition, H(T ) ≥ 0 for any T in the transport polytope. Hence, −εH(T ) ≤ 0 and

therefore OTε(α, β) ≤W(α, β). Using this fact and the definition of entropy, we obtain

0 ≤ 〈T ∗, C〉 − (〈Tε, C〉 − εH(Tε)) = 〈T ∗, C〉 − 〈Tε, C〉+ εH(Tε) ≤ εH(Tε), (B.2.1)
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since 〈T ∗, C〉 − 〈Tε, C〉 ≤ 0. This yields,

|OTε(α, β)−W(α, β)| ≤ εH(Tε) = ε
(
1−

∑
i,j

Tε,ij log(Tε,ij)
)
≤ c3ε, (B.2.2)

for some constant c3, proving the desired upper bound. As for the lower bound, note that

since Tε is the optimum, it attains the minimum and hence

〈Tε, C〉 − εH(Tε) ≤ 〈T,C〉 − εH(T )

for any other T , including T ∗. Therefore,

W(α, β)− OTε(α, β) = 〈T ∗, C〉 − 〈Tε, C〉+ εH(Tε) ≥ εH(T ∗) ≥ 0, (B.2.3)

leading to

|W(α, β)− OTε(α, β)| ≥ c2ε, (B.2.4)

for some constant c2.

B.3 Proof of the formula of the gradient
With a similar procedure, the implicit function theorem provides a formula for the gradient

of sharp Sinkhorn distance.

Theorem 3.3. Let C ∈ Rn×m be a cost matrix, a ∈ ∆n, b ∈ ∆m and ε > 0. Let La,b(u, v)

be defined as the argument of the maximization in the right hand side of Eq. (2.3.31), with

argmax in (u∗, v∗). Let Tε be defined as in (3.2.1). Then,

∇aÕTε(a, b) = projT∆n

(
A L1m +B L̄>1n

)
(3.2.3)

where L = Tε � C ∈ Rn×m is the entry-wise multiplication between Tε and C and

L̄ ∈ Rn×m−1 corresponds to L with the last column removed. The terms A ∈ Rn×n and

B ∈ Rn×m−1 are

[A B] = −1

ε
D
[
∇2

(u,v)La,b(u∗, v∗)
]−1

, (3.2.4)

with D = [I 0] the matrix concatenating the n × n identity matrix I and the matrix 0 ∈

Rn×m−1 with all entries equal to zero. The operator projT∆n
denotes the projection onto
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the tangent plane T∆n = {x ∈ Rn :
∑n

i=1 xi = 0} to the simplex ∆n.

Proof. Let us adopt the same notation as in the proof of Thm. 3.2. Recall that L is defined

by

L(a, b, u, v) = 〈a, u〉+ 〈b, v〉 − ε
n,m−1∑
i,j=1

e
ui+vj−Cij

ε . (B.3.1)

Since Ψ = ∇(u,v)L, by a direct computation, Ψ can be written as

Ψ(a, b;u, v) =

 a− T1

b− T>1

 ,

where T is the n ×m − 1 matrix given by diag(e
u∗
ε )e

C̄
ε diag(e

v∗
ε ) and C̄ is the matrix C

with mth column removed. In the following, we keep track of the dependence on a only.

Being Ψ the gradient of L, and γ∗(a) = (u∗(a), v∗(a)) a stationary point, we have

Ψ(a; γ∗(a)) = 0. (B.3.2)

For the sake of clarity, notice that:

i) a ∈ Rn;

ii) L : Rn × Rn × Rm−1 −→ R, as we are considering it is a function of a, u , v;

iii) Ψ(a, γ(a)) = ∇u,vL(a, γ(a)) ∈ Rn+m−1×1;

iv) u∗ : Rn → Rn, v∗ : Rn → Rm−1, thus γ∗ : Rn → Rn × Rm−1.

Our goal is to derive∇aγ
∗(a): by matrix differentiation rules (Kollo and von Rosen, 2006)

and Eq. (B.3.2),

∇aΨ(a, γ∗(a)) = ∇1Ψ(a, γ∗(a)) +∇aγ
∗(a)∇2Ψ(a, γ∗(a)) = 0. (B.3.3)

Let us analyse each term: ∇1Ψ(a, γ∗(a)) = [In,0n,m−1] is n×n+m−1 matrix with identity

and zeros block, and∇2Ψ(a, γ∗(a)) = ∇2
u,vL(a, γ∗(a)) =: H is the Hessian of L evaluated

at (a, γ∗(a)), which is a n+m−1× n+m−1 matrix. Together with Eq. (B.3.3), this yields

∇aγ
∗(a) = [∇au∗(a),∇av∗(a)] = −DH−1.

For the sake of clarity, note that∇au∗(a) and∇av∗(a) contains the gradients of the compo-
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nents as columns, i.e.

∇au∗ =
(
∇au∗1, ∇au∗2, . . . , ∇au∗n

)
∇av∗ =

(
∇av∗1, ∇av∗2, . . . , ∇av∗m−1

)
.

Now, since ÕTε(a, b) = 〈Tε, C〉 and Tε corresponds to Eq. (3.2.1) a straightforward compu-

tation shows that

∇aÕTε(a, b) =

n,m∑
i,j=1

∇aTεijCij =
1

ε

n,m∑
i,j=1

TεijCij∇au∗i +
1

ε

n,m−1∑
i,j=1

TεijCij∇av∗j .

Setting L := Tε � C, then the formula above can be rewritten as

∇aÕTε(a, b) =
1

ε

n∑
i

∇au∗i

m∑
j=1

Lij +
1

ε

m−1∑
j=1

∇av∗j

n∑
i=1

Lij ,

which is exactly

∇aÕTε(a, b) =
1

ε
(∇au∗L1m +∇av∗L̄

>
1n).

Since by definition, the gradient belongs to the tangent space of the domain, and a ∈

∆n, we project on the tangent space of the simplex, recovering projT∆n

1
ε (∇au∗L1m +

∇av∗L̄
>
1n).

B.3.1 Massaging the gradient to get an algorithmic-friendly form

In the proof of theorem 3.3 in Chapter 3 we have derived a formula for the gradient of

Sinkhorn distance. In this section we further manipulate it in order to obtain an algorithmic

friendly expression that also points out some interesting bits that were hidden in the formula

above. All the notation has already been introduced: from now on, we will drop the ε and

denote the optimal plan by T to make the notation neater.

An explicit computation of the second derivatives of L with respect to ui and vj for i =

1, . . . , n and j = 1, . . . ,m− 1 leads to the following identity

H =
1

ε

diag(T1) T̄

T̄> diag(T̄>1)

 =
1

ε

diag(a) T̄

T̄> diag(b̄)

 .
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That is, H is a block matrix and each block can be expressed in terms of the plan T . The

block structure can be exploited when it comes to compute the inverse: we have shown that

the gradient of the dual potentials is given by

[∇au∗,∇av∗] = −DH−1, D = [In,0n,m−1].

Now, the inverse of a block matrix is again a block matrix, say

H−1 = ε

K1 K2

K3 K4

 .

Then, [∇au∗,∇av∗] = −ε[K1,K2]. By the formula of the block inverse, setting

K = diag(T1)− T̄diag(T̄>1)−1T̄>,

the blocks K1 and K2 are given by

K1 = K−1, K2 = −K−1T̄diag(T̄>1)−1.

Note thatK is symmetric and so its inverse. Now, we can rewrite 1
ε (∇au∗L1m+∇av∗L̄

>
1n),

with L = T � C, as

1

ε
ε
(
−K−1L1m +K−1T̄diag(T̄>1)−1L̄>1n

)
and, since ε cancels out, we conclude that

∇aÕTε(a, b) = ·solve(K,−L1m + T̄diag(T̄>1)−1L̄>1n).

Comment on Remark 3.1. In the recent work (Altschuler et al., 2017), it has been shown

that Sinkhorn-Knopp algorithm outputs a matrix Tε whose distance ‖Tε1−a‖1+‖T>ε 1−b‖1

from the transport polytope Π(a, b) is smaller than σ in O(σ−2 log(s/`)) iterations, where

s =
∑

ij e−
Cij
ε and ` = minij e−

Cij
ε . Let us denote by Cmax and Cmin the maximum and
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minimum elements of C respectively. Then,

s

`
=
∑
ij

e−
(Cij−Cmax)

ε ≥ e−
(Cmin−Cmax)

ε ≥ 1.

This yields the lower bound

log
(s
`

)
≥ cε−1

where c is a constant independent of ε. We can then conclude that Sinkhorn-Knopp algorithm

returns a matrix Tε such that

〈Tε, C〉 ≤W(a, b) + σ

in O(n2σ−2C2
maxε

−1).



Appendix C

Appendix of Chapter 4

Below we give an overview of the structure of the supplementary material and highlight the

main novel results.

Appendix C.1: abstract Frank-Wolfe algorithm in dual Banach spaces. This

section contains full details on Frank-Wolfe algorithm. The novelty stands in the relaxation

of the differentiability assumptions.

Appendix C.2 Sinkhorn algorithm in infinite dimensions. This section contains the

generalization of Sinkhorn algorithm, presented in Chapter 2, in the infinite dimensional

setting.

Appendix C.3: Frank-Wolfe algorithm for Sinkhorn barycenters. This section

contains the complete analysis of FW algorithm for Sinkhorn barycenters, which takes

into account the error in the computation of Sinkhorn potentials and the error in their

minimization. The main result is the convergence of the Frank-Wolfe scheme for finitely

supported distributions in Thm. C.7.

Appendix C.4: Sample complexity of Sinkhorn potential and convergence of

Alg. 4.2 in case of continuous measures. This section contains the discussion and the

proofs of two of main results of the work Thm. 4.6, Thm. 4.10.

Appendix C.5: additional experiments. This section contains additional experiment

on barycenters of mixture of Gaussian and the barycenter of meshes in 3D (dinosaur).
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C.1 The Frank-Wolfe algorithm in dual Banach spaces

In this section we detail the convergence analysis of the Frank-Wolfe algorithm in abstract

dual Banach spaces and under mild directional differentiablility assumptions so to cover the

setting of Sinkhorn barycenters described in Sec. 4.2 in Chapter 4.

Let W be a real Banach space and let be W∗ its topological dual. Let D ⊂ W∗ be a

nonempty, closed, convex, and bounded set and let G : D → R be a convex function. We

address the following optimization problem

min
w∈D

G(w), (C.1.1)

assuming that the set of solutions is nonemtpy.

We recall the concept of the tangent cone of feasible directions.

Definition C.1. Let w ∈ D. Then the cone of feasible directions of D at w is FD(w) =

R+(D − w) and the tangent cone of D at w is

TD(w) = FD(w) =
{
v ∈ W∗ | ∃(tk)k∈N ∈ RN

++ such that tk → 0

and ∃(wk)k∈N ∈ DN such that t−1
k (wk − w)→ v

}
.

Remark C.1. FD(w) is the cone generated by D − w, and it is a convex cone. Indeed, if

t > 0 and v ∈ FD(w), then tv ∈ FD(w). Moreover, if v1, v2 ∈ FD(w), then there exists

t1, t2 > 0 and w1, w2 ∈ D such that vi = ti(wi − w), i = 1, 2. Thus,

v1 + v2 = (t1 + t2)
( t1
t1 + t2

w1 +
t2

t1 + t2
w2 − w

)
∈ R+(D − w).

So, TD(w) is a closed convex cone too.

Definition C.2. Let w ∈ D and v ∈ FD(w). Then, the directional derivative of G at w in

the direction v is

G′(w; v) = lim
t→0+

G(w + tv)− G(w)

t
∈ [−∞,+∞[ .

Remark C.2. The above definition is well-posed. Indeed, since v is a feasible direction of
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D at w, there exists t1 > 0 and w1 ∈ D such that v = t1(w1 − w); hence

∀ t ∈ ]0, 1/t1] , w + tv = w + t t1(w1 − w) = (1− t t1)w + t t1w1 ∈ D.

Moreover, since G is convex, the function t ∈ ]0, 1/t1] 7→ (G(w + tv) − G(w))/t is

increasing, hence

lim
t→0+

G(w + tv)− G(w)

t
= inf

t∈]0,1/t1]

G(w + tv)− G(w)

t
. (C.1.2)

It is easy to prove that the function

v ∈ FD(w) 7→ G′(w; v) ∈ [−∞,+∞[

is positively homogeneous and sublinear (hence convex), that is,

(i) ∀ v ∈ FD(w) and ∀ t ∈ R+, G′(w; tv) = tG′(w; v);

(ii) ∀ v1, v2 ∈ FD(w), G′(w; v1 + v2) ≤ G′(w; v1) + G′(w; v2).

We make the following assumptions on G:

H1) ∀w ∈ D, the function v 7→ G′(w; v) is finite, that is, G′(w; v) ∈ R.

H2) The curvature of G is finite, that is,

CG = sup
w,z∈D
γ∈[0,1]

2

γ2

(
G(w + γ(z − w))− G(w)− γG′(w; z − w)

)
< +∞. (C.1.3)

Remark C.3. For every w, z ∈ D, we have

G(z)− G(w) ≥ G′(w; z − w). (C.1.4)

This follows from Eq. (C.1.2) with w1 = z and t = 1 (t1 = 1).

The (inexact) Frank-Wolfe algorithm is detailed in Alg. C.1.

Remark C.4.

(i) Alg. C.1 does not require the sub-problem minz∈D G′(wk, z − wk) to have solutions.

Indeed it only requires computing a ∆k-minimizer of G′(wk; · − wk) on D, which

always exists.

(ii) Since D is weakly-∗ compact (by Banach-Alaoglu theorem), if G′(wk, · − wk) is

weakly-∗ continuous on D, then the sub-problem minz∈D G′(wk, z − wk) admits
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Algorithm C.1 Frank-Wolfe in Dual Banach Spaces
Let (γk)k∈N ∈ RN

++ be such that γ0 = 1 and, for every k ∈ N, 1/γk ≤ 1/γk+1 ≤ 1/2+1/γk
(i.e., γk = 2/(k + 2)). Let w0 ∈ D and (∆k)k∈N ∈ RN

+ be such that (∆k/γk)k∈N is
nondecreasing. Then

for k = 0, 1, . . .⌊
find zk+1 ∈ D is such that G′(wk; zk+1 − wk) ≤ infz∈D G′(wk; z − wk) + 1

2∆k

wk+1 = wk + γk(zk+1 − wk)

solutions. Note that this occurs when the directional derivative G′(w; ·) is linear and

can be represented inW . This case is addressed in the subsequent Prop. C.3.

Theorem C.1. Let (wk)k∈N be defined according to Alg. C.1. Then, for every integer k ≥ 1,

G(wk)−minG ≤ CGγk + ∆k. (C.1.5)

Proof. Let w∗ ∈ D be a solution of problem Eq. (C.1.1). It follows from Item H2) and the

definition of wk+1 in Alg. C.1, that

G(wk+1) ≤ G(wk) + γkG
′(wk; zk+1 − wk) +

γ2
k

2
CG.

Moreover, it follows from the definition of zk+1 in Alg. C.1 and Eq. (C.1.4) that

G′(wk; zk+1 − wk) ≤ inf
z∈D

G′(wk; z − wk) +
1

2
∆k

≤ G′(wk;w∗ − wk) +
1

2
∆k

≤ −(G(wk)− G(w∗)) +
1

2
∆k.

Then,

G(wk+1)− G(w∗) ≤ (1− γk)(G(wk)− G(w∗)) +
γ2
k

2

(
CG +

∆k

γk

)
. (C.1.6)

Now, similarly to (Jaggi, 2013, Theorem 2), we can prove (C.1.5) by induction. Since γ0 = 1,

1/γ1 ≤ 1/2 + 1/γ0, and ∆0/γ0 ≤ ∆1/γ1, it follows from Eq. (C.1.6) that

G(w1)− G(w∗) ≤
1

2

(
CG +

∆0

γ0

)
≤ γ1

(
CG +

∆1

γ1

)
, (C.1.7)
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hence (C.1.5) is true for k = 1. Set, for the sake of brevity, Ck = CG + ∆k/γk and suppose

that Eq. (C.1.5) holds for k ∈ N, k ≥ 1. Then, it follows from Eq. (C.1.6) and the properties

of (γk)k∈N that

G(wk+1)− G(w∗) ≤ (1− γk)γkCk +
γ2
k

2
Ck

= Ckγk

(
1− γk

2

)
≤ Ckγk

(
1− γk+1

2

)
≤ Ck

1

1/γk+1 − 1/2

(
1− γk+1

2

)
= Ckγk+1

≤ Ck+1γk+1.

Corollary C.2. Under the assumptions of Thm. C.1, suppose in addition that ∆k = ∆γζk ,

for some ζ ∈ [0, 1] and ∆ ≥ 0. Then we have

G(wk)−minG ≤ CGγk + ∆γζk . (C.1.8)

Proof. It follows from Thm. C.1 by noting that the sequence ∆k/γk = ∆/γ1−ζ
k is nonde-

creasing.

Proposition C.3. Suppose that there exists a mapping∇G : D →W such that1,

∀w ∈ D, ∀ z ∈ D 〈∇G(w), z − w〉 = G′(w; z − w). (C.1.9)

Then the following holds.

(i) Let k ∈ N and suppose that there exists uk ∈ W such that ‖uk −∇G(wk)‖ ≤ ∆1,k/4

and that zk+1 ∈ D satisfies

〈uk, zk+1〉 ≤ min
z∈D
〈uk, z〉+

∆2,k

2
,

for some ∆1,k,∆2,k > 0. Then

G′(wk; zk+1 − wk) ≤ min
z∈D

G′(wk; z − wk) +
1

2
(∆1,kdiam(D) + ∆2,k). (C.1.10)

1This mapping does not need to be unique.
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(ii) Suppose that∇G : D →W is L-Lipschitz continuous for some L > 0. Then, for every

w, z ∈ D and γ ∈ [0, 1],

G(w + γ(z − w))− G(w)− γ 〈z − w,∇G(w)〉 ≤ L

2
γ2‖z − w‖2

and hence CG ≤ Ldiam(D)2.

Proof. Item (i): we have

〈∇G(wk), zk+1 − wk〉 = 〈uk, zk+1 − wk〉+ 〈∇G(wk)− uk, zk+1 − wk〉

≤ min
z∈D
〈uk, z − wk〉+

∆2,k

2
+

∆1,k

4
diam(D). (C.1.11)

Moreover,

∀ z ∈ D, 〈uk, z − wk〉 = 〈∇G(wk), z − wk〉+ 〈uk −∇G(wk), z − wk〉

≤ 〈∇G(wk), z − wk〉+
∆1,k

4
diam(D),

hence

min
z∈D
〈uk, z − wk〉 ≤ min

z∈D
〈∇G(wk), z − wk〉+

∆1,k

4
diam(D). (C.1.12)

Thus, Eq. (C.1.10) follows from Eq. (C.1.11), Eq. (C.1.12), and Eq. (C.1.9).

Item (ii): let w, z ∈ D, and define ψ : [0, 1] → W∗ such that ψ(γ) = G(w + γ(z − w))

∀ γ ∈ [0, 1] . Then, it is easy to see that for every γ ∈ ]0, 1[, ψ is differentiable at γ

and ψ′(γ) = G′(w + γ(z − w); z − w) = 〈∇G(w + γ(z − w)), z − w〉. Moreover, ψ is

continuous on [0, 1]. Therefore, the fundamental theorem of calculus yields

ψ(γ)− ψ(0) =

∫ γ

0
ψ′(t)dt
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and hence

G(w + γ(z − w))− G(w)− γ 〈∇G(w), z − w〉 =

∫ γ

0
〈∇G(w + t(z − w))−∇G(w), z − w〉 dt

≤
∫ γ

0
‖∇G(w + t(z − w))−∇G(w)‖‖z − w‖dt

≤
∫ γ

0
Lt‖z − w‖2dt

= L
γ2

2
‖z − w‖2,

where we used Cauchy-Schwarz inequality and the Lipschiz continuity of∇G.

C.2 Sinkhorn algorithm in infinite dimesional setting

In the context of optimal transport, Sinkhorn-Knopp algorithm is often presented and studied

in finite dimension (Cuturi, 2013; Peyré and Cuturi, 2019). The algorithm originates from the

so called matrix scaling problems, also called DAD problems, which consists in finding, for

a given matrix A with nonnegative entries, two diagonal matrices D1, D2 such that D1AD2

is doubly stochastic (Sinkhorn and Knopp, 1967). In our setting it is crucial to analyze the

algorithm in infinite dimension.

Thm. A.7 shows that Aβα is a contraction with respect to the Hilbert’s metric. This suggests

a direct approach to find the solutions of the DAD problem by adopting a fixed-point

strategy, which amounts to applying the operators Aα and Aβ alternatively, starting from

some f (0) ∈ C++(X ). This is exactly the approach to the Sinkhorn algorithm pioneered

by Menon (1967) and Franklin and Lorenz (1989) and further developed in an infinite

dimensional setting in Nussbaum (1993). In this section we review the algorithm and give

the convergence properties for the special kernel k in (A.4.1). In particular we provide rate

of convergence in the sup norm ‖·‖∞.

Algorithm C.2 Sinkhorn-Knopp algorithm (infinite dimensional case)

Let α, β ∈ P(X ). Let f (0) ∈ C++(X ) and define,

for ` = 0, 1, . . .⌊
g(`+1) = Aα(f (`))

f (`+1) = Aβ(g(`+1))
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Theorem C.4 (Convergence of Sinkhorn-Knopp algorithm). Let D be the diameter of the

domain X and recall that λ = eD/ε−1
eD/ε+1

. Let (f (`))`∈N be defined according to Alg. C.2. Let

xo ∈ X and let (f, g) be the solution of the DAD problem Eq. (A.4.27) such that f(xo) = 1.

Then, defining for every ` ∈ N, f̃ (`) = f (`)/f (`)(xo) and g̃(`+1) = g(`+1)f (`)(xo), we have


‖log f̃ (`) − log f‖∞ ≤ λ2`

(
D

ε
+ log

‖f (0)‖∞
minX f (0)

)

‖log g̃(`+1) − log g‖∞ ≤ e3D/ε‖log f̃ (`) − log f‖∞.

(C.2.1)

Moreover, let the potentials (u, v) = (ε log f, ε log g) and set (ũ(`), ṽ(`)) = (ε log f̃ (`), ε log g̃(`))

for every ` ∈ N. Then we have

‖ũ(`) − u‖∞ ≤ λ2`

(
D + maxX u

(0) −minX u
(0)

ε

)
. (C.2.2)

Proof. LetA be the set defined in Lemma 4.3. For every ` ∈ N, we have f (`+1) = Aβα(f (`))

and f̃ ` ∈ A. Thus, it follows from Thm. A.7 and (4.3.4) in Lemma 4.3 that, for every ` ∈ N,

‖log f̃ (`) − log f‖∞ ≤ dH(f̃ `, f) = dH(A
(`)
βα(f (0)), f) ≤ λ2`dH(f (0), f).

Moreover, recalling (A.4.11), we have

dH(f (0), f) = dH(1/f (0), Lβg) = log max
x,y∈X

f (0)(y)Lβg(y)

f (0)(x)Lβg(x)
≤ log

[
eD/ε max

x,y∈X

f (0)(y)

f (0)(x)

]

where we used the fact that Lβ(C++(X )) ⊂ K, with K defined in Lemma A.8 and the

definition (A.4.33). Thus, the first inequality in (C.2.1) follows. The second inequality in

(C.2.1) and (C.2.2) follow directly from Lemma A.10 and the fact that u(0) = ε log f (0).

Proposition C.5. Suppose that α and β are probability measures with finite support. Then

Alg. C.2 can be reduced to the finite dimensional Alg. 2.1. More specifically, suppose that

α =
∑n1

i=1 aiδxi , and β =
∑n2

i=1 biδyi , where a = (ai)1≤i≤n1 ∈ Rn1
+ ,
∑n

i=1 ai = 1 and

b = (bi)1≤i≤n2 ∈ Rn2
+ ,
∑n

i=1 bi = 1. Let K ∈ Rn1×n2 be such that Ki1,i2 = k(xi1 , yi2) and

let M = diag(a)Kdiag(b) ∈ Rn1×n2 . Let (f(`))`∈N and (f (`))`∈N be defined according to
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Alg. 2.1 and Alg. C.2 respectively, with f(0) = (f (0)(xi))1≤i≤n1 . Then, for every ` ∈ N,

g(`+1)(y)−1 =

n1∑
i1=1

k(xi1 , y)ai1f
(`)
i1

∀ y ∈ X

f (`+1)(x)−1 =

n2∑
i2=1

k(x, yi2)bi2g
(`+1)
i2

∀x ∈ X .

Moreover, setting u(`) = ε log f (`), v(`) = ε log g(`), u(`) = ε log f(`), and v(`) = ε log g(`),

we have
v(`+1)(y) = −ε log

n1∑
i1=1

exp(u
(`)
i1
− c(xi1 , y))ai1 ∀ y ∈ X

u(`+1)(x) = −ε log

n2∑
i2=1

exp(v
(`+1)
i2

− c(x, yi2))bi2 ∀x ∈ X .
(C.2.3)

Proof. Since α and β have finite support, we derive from the definitions of f (`+1) and g(`+1)

in Alg. C.2 and those of Aα and Aβ that


g(`+1)(y)−1 = (Lαf

(`)))(y) =

n1∑
i1=1

ai1k(xi1 , y)f (`)(xi1) ∀x ∈ X

f (`+1)(x)−1 = (Lβg
(`+1)))(x) =

n2∑
i2=1

k(x, yi2)bi2g
(`+1)(yi2) ∀ y ∈ X .

Now, multiplying the above equations by bi2 and ai1 respectively, and recalling that Mi1,i2 =

ai1k(xi1 , yi2)bi2 , we have


b1g

(`+1)(y1)−1

...

bn2g
(`+1)(yn2)−1

 = M>


f (`)(x1)

...

f (`)(xn1)

 ,

a1f

(`+1)(x1)−1

...

an1f
(`+1)(xn1)−1

 = M


g(`+1)(y1)

...

g(`+1)(yn2)

 ,

and hence
g(`+1)(y1)

...

g(`+1)(yn2)

 = b

/
M>


f (`)(x1)

...

f (`)(xn1)

 ,

f (`+1)(x1)

...

f (`+1)(xn1)

 = a

/
M


g(`+1)(y1)

...

g(`+1)(yn2)

 .

Therefore, since f(0) = (f (0)(xi))1≤i≤n1 , recalling Alg. 2.1, it follows by induction that, for
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every ` ∈ N, f(`) = (f (`)(xi))1≤i≤n1 and g(`) = (g(`)(xi))1≤i≤n1 . Thus, the first part of the

statement follows. The second part follows directly from the definitions of u(`), v(`), u(`),

and v(`).

C.3 Frank-Wolfe algorithm for Sinkhorn barycenters

In this section we finally analyze the Frank-Wolfe algorithm for the Sinkhorn barycenters and

give convergence results. The following result is a direct consequence of the convergence

of Sinkhorn algorithm Thm. C.4 and the definition of gradient of OTε, presented in the

background material in (2.3.33) and recalled in Chapter 4 in Remark 4.1.

Theorem C.6. Let D be the diameter of the domain X and let λ = eD/ε−1
eD/ε+1

. Let (ũ(`))`∈N be

generated with Sinkhorn algorithm in the continuous setting, recalled in Alg. C.2. Then,

∀ ` ∈ N, ‖ũ(`) −∇1OTε(α, β)‖∞ ≤ λ2`

(
D + maxX u

(0) −minX u
(0)

ε

)
, (C.3.1)

where u(`) = ε log f (`) and ũ(`) = u(`) − u(`)(xo).

In view of Prop. 2.17, Thm. C.6, and Prop. C.3, we can address the problem of the Sinkhorn

barycenter (4.2.1) via the Frank-Wolfe Alg. C.1. Note that, according to Prop. C.3(ii), since

the diameter of P(X ) with respect to ‖ · ‖TV is 2, we have that the curvature of Bε is upper

bounded by

CBε ≤ 24εe3D/ε. (C.3.2)

Let k ∈ N and αk be the current iteration. For every j ∈ {1, . . . ,m}, we can compute

∇1OTε(αk, βj) and ∇1OTε(αk, αk) by the Sinkhorn-Knopp algorithm. By (C.3.1), we

can find ` ∈ N large enough so that ‖ũ(`)
j − ∇1OTε(αk, βj)‖∞ ≤ ∆1,k/8 and ‖p̃(`) −

∇1OTε(αk, αk)‖∞ ≤ ∆1,k/8 and we set

ũ(`) :=
m∑
j=1

ωj ũ
(`)
j − p̃

(`). (C.3.3)

Then,

‖ũ(`) −∇Bε(αk)‖∞ ≤
∆1,k

4
. (C.3.4)
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Now, Frank-Wolf Alg. C.1 (in the version considered in Prop. C.3(i)) requires finding

ηk+1 ∈ argmin
η∈P(X )

〈ũ(`), η − αk〉 (C.3.5)

and making the update

αk+1 = (1− γk)αk + γkηk+1. (C.3.6)

Since the solution of (C.3.5) is a Dirac measure (see Sec. 4.5 in Chapter 4), the algorithm

reduces to
find xk+1 ∈ X such that ũ(`)(xk+1) ≤ minx∈X ũ

(`)(x) +
∆2,k

2

αk+1 = (1− γk)αk + γkδxk+1
.

(C.3.7)

So, if we initialize the algorithm with α0 = δx0 , then any αk will be a discrete probability

measure with support contained in {x0, . . . , xk}. This implies that if all the βj’s are prob-

ability measures with finite support, the computation of ∇1OTε(αk, βj) by the Sinkhorn

algorithm can be reduced to a fully discrete algorithm, as showed in Prop. C.5. More

precisely, assume that

βj =
n∑

i2=0

bj,i2δyj,i2 ∀ j = 1, . . . ,m, (C.3.8)

and that at iteration k we have

αk =

k∑
i1=0

ak,i1δxi1 . (C.3.9)

Set k : X × X → R to be defined as k(x, y) = e
−c(x,y)

ε , and

ak =


ak,0

...

ak,k

 ∈ Rk+1, M0 =


ak,0k(x0, x0)ak,0 . . . ak,0k(x0, xk)ak,k

...
. . .

...

ak,kk(xk, x0)ak,0 . . . ak,kk(xk, xk)ak,k

 ∈ R(k+1)×(k+1)

(C.3.10)
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and, for every j = 1 . . . ,m,

bj =


bj,0

...

bj,n

 ∈ Rn+1, Mj =


ak,0k(x0, yj,0)bj,0 . . . ak,0k(x0, yj,n)bj,n

...
. . .

...

ak,kk(xk, yj,0)bj,0 . . . ak,nk(xk, yj,n)bj,n

 ∈ R(k+1)×(n+1).

(C.3.11)

Then, run Alg. 2.1, with input ak, and M0 to get (e(`), h(`)), and, for every j = 1, . . . ,m,

with input ak, bj , and Mj to get (f
(`)
j , g

(`)
j ). So, we have,

∀ ` ∈ N


h(`+1) =

ak
M>0 e

(`)
, e(`+1) =

ak
M0h(`+1)

g
(`+1)
j =

bj

M>j f
(`)
j

, f
(`+1)
j =

ak

Mjg
(`+1)
j

∀ j = 1, . . . ,m.

(C.3.12)

According to Prop. C.5, for every ` ∈ N, we have

∀x ∈ X



e(`)(x)−1 =
k∑

i2=0

k(x, xi2)h
(`−1)
i2

ak,i2 ,

p(`)(x) = ε log e(`)(x) = −ε log

k∑
i2=0

k(x, xi2)h
(`−1)
i2

ak,i2

p̃(`)(x) = p(`)(x)− p(`)(xo),

(C.3.13)

and, for every j = 1, . . . ,m,

(∀x ∈ X )



f
(`)
j (x)−1 =

n∑
i2=0

k(x, yi2)g
(`−1)
j,i2

bj,i2 ,

u
(`)
j (x) = ε log f

(`)
j (x) = −ε log

n∑
i2=0

k(x, yi2)g
(`−1)
j,i2

bj,i2

ũ
(`)
j (x) = u

(`)
j (x)− u(`)

j (xo).

(C.3.14)

Since the ũ(`)
j ’s and u(`)

j ’s, and p̃(`) and p(`), differ by a constant only, the final algorithm

can be written as in Alg. C.3. We stress that this algorithm is more theoretically accurate

than Alg. 4.2 since, in the computation of the Sinkhorn potentials and in their minimization,

errors have been taken into account.

We now give a final convergence theorem, of which Thm. 4.9 in Chapter 4 is a special case.

Theorem C.7. Suppose that β1, . . . , βm ∈ P(X ) are probability measures with finite
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Algorithm C.3 Frank-Wolfe algorithm for Sinkhorn barycenter
Let α0 = δx0 for some x0 ∈ X . Let (∆k)k∈N ∈ RN

+ be such that ∆k/γk is nondecreasing.
Define

for k = 0, 1, . . .

run Alg. 2.1 with input ak, ak,M0 till λ2`D/ε ≤ ∆1,k

8 → h ∈ Rk+1

compute p via (C.3.13) with h

for j = 1, . . .m⌊
run Alg. 2.1 with input ak, bj ,Mj till λ2`D/ε ≤ ∆1,k

8 → gj ∈ Rn+1

compute uj via (C.3.14) with gj

set u =
∑m

j=1 ωjuj − p

find xk+1 ∈ X such that u(xk+1) ≤ minx∈X u(x) +
∆2,k

2
αk+1 = (1− γk)αk + γkδxk+1

.

support, each of cardinality n ∈ N. Let (αk)k∈N be generated by Alg. C.3. Then, for every

k ∈ N,

Bε(αk)− min
α∈P(X )

Bε(α) ≤ γk24εe3D/ε + 2∆1,k + ∆2,k (C.3.15)

Proof. It follows from Thm. C.1, Prop. C.3, and (C.3.2), recalling that diam(P(X )) =

2.

C.4 Sample complexity of Sinkhorn potential

In the following we will denote by Cs(X ) the space of s-differentiable functions with

continuous derivatives and by W s,p(X ) the Sobolev space of functions f : X → R with

p-summable weak derivatives up to order s (Adams and Fournier, 2003). We denote by

‖ · ‖s,p the corresponding norm.

The following result shows that under suitable smoothness assumptions on the cost function

c, the Sinkhorn potentials are uniformly bounded as functions in a suitable Sobolev space

of corresponding smoothness. This fact will play a key role in approximating the Sinkhorn

potentials of general distributions in practice. We recall the result on this Sobolev regularity

of the potentials below.

Theorem C.8 (Proposition 2 in (Genevay et al., 2018a)). Let X be a closed bounded

domain with Lipschitz boundary in Rd (Adams and Fournier, 2003, Definition 4.9) and let

c ∈ Cs+1(X × X ). Then for every (α, β) ∈ P(X )2, the associated Sinkhorn potentials
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(u, v) ∈ C(X )2 are functions in W s,∞(X ). Moreover, let xo ∈ X . Then there exists a

constant r > 0, depending only on ε, s and X , such that for every (α, β) ∈ P(X )2 the

associated Sinkhorn potentials (u, v) ∈ C(X )2 with u(xo) = 0 satisfy ‖u‖s,∞, ‖v‖s,∞ ≤ r.

In the original statement of (Genevay et al., 2018a, Proposition 2) the above result is

formulated for c ∈ C∞(X × X ) for simplicity. However, as clarified by the authors, it holds

also for the more general case c ∈ Cs+1(X × X ′/).

Lemma C.9. Let X ⊂ Rd be a closed bounded domain with Lipschitz boundary and let

u, u′ ∈W s,∞(X ). Then the following holds

(i) ‖uu′‖s,∞ ≤ m1‖u‖s,∞‖u′‖s,∞,

(ii) ‖eu‖s,∞ ≤ ‖eu‖∞(1 + m2‖u‖s,∞),

where m1 = m1(s, d) and m2 = m2(s, d) > 0 depend only on the dimension d and the

order of differentiability s but not on u and u′.

Proof. Item (i) follows directly from Leibniz formula. To see Item (ii), let i = (i1, . . . , id) ∈

Nd be a multi-index with |i| =
∑d

`=1 i` ≤ s and note that by chain rule the derivatives of eu

can be written as

Di eu = eu Pi

(
(Dju)j≤i

)
,

where Pi is a polynomial of degree |i| and j ≤ i is the ordering associated to the cone of

non-negative vectors in Rd. Note that P0 = 1, while for |i| > 0, the associated polyomial Pi

has a root in zero (i.e. it does not have constant term). Hence

‖eu‖s,∞ ≤ ‖eu‖∞
(

1 + |P |
(

(‖Diu‖∞)|i|≤s

) )
,

where we have denoted by P =
∑

0<|i|≤s Pi and by |P | the polynomial with coefficients

corresponding to the absolute value of the coefficients of P . Therefore, since ‖Diu‖∞ ≤

‖u‖s,∞ for any |i| ≤ s, by taking

m2 = |P |
(

(1)|i|≤s

)
,

(namely the sum of all the coefficients of |P |), we obtain the desired result. Indeed note that

the coefficients of P do not depend on u but only on the smoothness s and dimension d.
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Lemma C.10. Let X ⊂ Rd be a closed bounded domain with Lipschitz boundary and

let xo ∈ X . Let c ∈ Cs+1(X × X ), for some s ∈ N. Then for any α, β ∈ P(X ) and

corresponding pair of Sinkhorn potentials (u, v) ∈ C(X )2 with u(xo) = 0, the functions

k(x, ·)eu/ε and k(x, ·)ev/ε belong to W s,2(X ) for every x ∈ X . Moreover, they admit an

extension toH = W s,2(Rd) and there exists a constant r̄ independent on α and β, such that

for every x ∈ X ∥∥k(x, ·)eu/ε
∥∥
H,
∥∥k(x, ·)ev/ε

∥∥
H ≤ r̄ (C.4.1)

(with some abuse of notation, we have identified k(x, ·)eu/ε and k(x, ·)ev/ε with their exten-

sions to Rd).

Proof. In the following we denote by ‖ · ‖s,2 = ‖ · ‖s,2,X the norm of W s,2(X ) and by

‖ · ‖H = ‖ · ‖s,2,Rd the norm of H = W s,2(Rd). Let x ∈ X . Then, since u − c(x, ·) ∈

W s,∞(X ) and ‖u‖s,∞ ≤ r, it follows from Lemma C.9 that

∥∥k(x, ·)eu/ε
∥∥
s,∞ =

∥∥e(u−c(x,)̇)/ε∥∥
s,∞

≤
∥∥e(u−c(x,)̇)/ε∥∥

∞(1 + m2‖u− c(x, ·)‖s,∞)

=
∥∥k(x, ·)eu/ε

∥∥
∞(1 + m2‖u− c(x, ·)‖s,∞)

≤
∥∥eu/ε∥∥∞(1 + m2(r + ‖c‖s,∞))

≤ eD/ε(1 + m2(r + ‖c‖s,∞)),

where we used the fact that Di[c(x, ·)] = (Dic)(x, ·). This implies

∥∥k(x, ·)eu/ε
∥∥
s,2
≤ |X |1/2eD/ε(1 + m2(r + ‖c‖s,∞))

where |X | is the Lebesgue measure of X . Proceeding analogously to (Genevay et al.,

2018a, Proposition 2) and using Stein’s Extension Theorem (Adams and Fournier, 2003,

Theorem 5.24),(Stein, 2016, Chapter 6), we can guarantee the existence of a total extension

operator (Adams and Fournier, 2003, Definition 5.17). In particular, there exists a constant

m3 = m3(s, 2,X ) such that for any ϕ ∈W s,2(X ) there exists ϕ̃ ∈W s,2(Rd) such that

‖ϕ̃‖H = ‖ϕ̃‖s,2,Rd ≤ m3‖ϕ‖s,2,X = m3‖ϕ‖s,2. (C.4.2)
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Therefore, we conclude

∥∥k(x, ·)eu/ε
∥∥
H ≤ m3|X |1/2eD/ε(1 + m2(r + ‖c‖s,∞)) =: r̄. (C.4.3)

The same argument applies to k(x, ·)ev/ε with the only exception that now, in virtue of

Cor. A.12, we have ‖ev/ε‖∞ ≤ e2D/ε. Note that r̄ is a constant depending only on X , c, s

and d but it is independent on the probability distributions α and β.

Sobolev spaces and reproducing kernel Hilbert spaces. Recall that for s > d/2 the

space H = W s,2(Rd), is a reproducing kernel Hilbert space (RKHS) (Wendland, 2004,

Chapter 10). In this setting we denote by h : X × X → R the associated reproducing kernel,

which is continuous and bounded and satisfies the reproducing property

∀x ∈ X , ∀ f ∈ H 〈f, h(x, ·)〉H = f(x). (C.4.4)

We can also assume that h is normalized, namely, ‖h(x, ·)‖H = 1 for all x ∈ X (Wendland,

2004, Chapter 10).

Kernel mean embeddings. For every β ∈ P(X ), we denote by hβ ∈ H the Kernel Mean

Embedding of β inH (Smola et al., 2007; Muandet et al., 2017), that is, the vector

hβ =

∫
h(x, ·) dβ(x). (C.4.5)

In other words, the kernel mean embedding of a distribution β corresponds to the expectation

of h(x, ·) with respect to β. By the linearity of the inner product and the integral, for every

f ∈ H, the inner product

〈f, hβ〉H =

∫
〈f, h(x, ·)〉 dβ(x) =

∫
f(x) dβ(x), (C.4.6)

corresponds to the expectation of f(x) with respect to β. The Maximum Mean Discrep-

ancy (MMD) (Song, 2008; Sriperumbudur et al., 2011; Muandet et al., 2017) between two

probability distributions β, β′ ∈ P(X ), recalled inDef. A.14, corresponds to

MMD(β, β′) = ‖hβ − hβ′‖H. (C.4.7)
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In the case of the Sobolev spaceH = W s,2(Rd), the MMD metrizes the weak-∗ topology

of P(X ) (Sriperumbudur et al., 2010, 2011). Finally, we show the sample complexity of

MMD:

Lemma 4.7. Let β ∈ P(X ). Let x1, . . . , xn ∈ X be independently sampled according to β

and denote by βn = 1
n

∑n
i=1 δxi . Then, for any τ ∈ (0, 1], we have

MMD(βn, β) ≤
4 log 3

τ√
n

(4.4.2)

with probability at least 1− τ .

Proof. The proof follows by applying Pinelis’ inequality (Yurinskii, 1976; Pinelis, 1994;

Smale and Zhou, 2007) for random vectors in Hilbert spaces. More precisely, for i =

1, . . . , n, denote by ζi = h(xi, ·) ∈ H and recall that ‖ζi‖ = ‖h(x, ·)‖ = 1 for all x ∈ X .

We can therefore apply (Smale and Zhou, 2007, Lemma 2) with constants M̃ = 1 and

σ2 = supi E‖ζi‖2 ≤ 1, which guarantees that for every τ ∈ (0, 1]

‖ 1

n

n∑
i=1

[
ζi − E ζi

]
‖H ≤

2 log 2
τ

n
+

√
2 log 2

τ

n
≤

4 log 3
τ√

n
, (C.4.8)

holds with probability at least 1 − τ . Here, for the second inequality we have used the

fact that log 2
τ ≤ log 3

τ and log 3
τ ≥ 1 for every τ ∈ (0, 1]. The desired result follows by

observing that

hβ =

∫
h(x, ·) dβ(x) = E ζi (C.4.9)

for all i = 1, . . . , n, and

hβ =
1

m

m∑
i=1

h(xi, ·) =
1

m

m∑
i=1

ζi. (C.4.10)

Therefore,

MMD(βk, β) = ‖hβk − hβ‖H = ‖ 1

n

n∑
i=1

[
ζi − E ζi

]
‖H, (C.4.11)

which combined with (C.4.8) leads to the conclusion.

C.5 Additional experiments

Sampling of continuous measures: mixture of Gaussians. We compute the barycen-
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ter of 5 mixtures of two Gaussians µj , centered at (j/2, 1/2) and (j/2, 3/2) for j − 0, . . . , 4

respectively. Samples are provided in Fig. C.1. We use different relative weights pairs in

the mixture of Gaussians, namely (1/10, 9/10), (1/4, 3/4), (1/2, 1/2). At each iteration, a

sample of n = 500 points is drawn from µj , j = 0 . . . , 4. Results are reported in Fig. C.2.

Figure C.1: Samples of input measures

Figure C.2: Barycenters of Mixture of Gaussians

Large scale discrete measures: meshes. We compute the barycenter of two discrete

measures with support in R3. Meshes of the dinosaur are taken from (Solomon et al., 2015)

and rescaled by a 0.5 factor. The internal problem in Frank-Wolfe algorithm is solved using

L-BFGS-B SciPy optimizer. Formula of the Jacobian is passed to the method. The barycenter

is displayed in Fig. C.3 together with an example of the input.

Figure C.3: 3D dinosaur mesh (left), barycenter of 3D meshes (right)



Appendix D

Appendix of Chapter 5

This chapter is organized as follows:

Appendix D.1. This section recalls how common loss functions used for GAN training can

be formulated as adversarial divergences.

Appendix D.2. This section provides details on the examples made in Sec. 5.2.

Appendix D.3. In this section we derive technical results that will be used to prove the

main results of this work.

Appendix D.4. This section proves the learning rates of the joint GAN estimator proposed

in Sec. 5.3.

Appendix D.5. This section proves the formula of the gradient of Sinkhorn divergence

with respect to network parameters.

Appendix D.6. This section describes the experimental setup and network specification for

the empirical evaluation reported in Sec. 5.5.

D.1 Adversarial Divergences
The notion of adversarial divergence was originally introduced in Liu et al. (2017). For

completeness, we review how most loss functions used for probability matching within the

GANs literature can be formulated as an adversarial divergence in (5.1.2). We recall here the

definition in (5.1.2) of adversarial divergence over a space F of functions F : X × X → R,
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bewteen two distributions µ, ρ ∈ P(X ) as

dF (µ, ρ) = sup
F∈F

∫
F (x′, x) dµ(x′)dρ(x). (D.1.1)

Depending on the choice of F we recover different choices of adversarial divergences as

discussed below.

Integral Probability Metrics. One of the most notable examples of adversarial diver-

gences are integral probability metrics (IPM), briefly discussed in Appendix A.2.2. Recall

that the IPM over a space F0 of functions f : X → R, between two distribution µ, ρ is

defined as

IPMF0(µ, ρ) = sup
f∈F0

|
∫
f(x) dµ(x)−

∫
f(x)dρ(x)|. (D.1.2)

The IPM is an adversarial divergence with F in (D.1.1) defined as

F = { F | F : (x′, x) 7→ f(x′)− f(x), f ∈ F0 }.

Examples include:

• Maximum Mean Discrepancy (MMD). HereF0 is the ball of radius 1 in a Reproducing

Kernel Hilbert Space (Dziugaite et al., 2015).

• µ-Sobolev IPM. Proposed in (Mroueh et al., 2018). Given a reference measure µ ∈

P(X ), Sobolev-IPM consider F0 to be

F0 = { f | Eµ ‖∇f(·)‖2 ≤ 1, f ∈W 1,2(X , µ) }

with W 1,2(X , µ) denoting the space of µ-square integrable functions on X with µ-

square integrable first weak derivative. Similarly, µ-Fisher-IPM (Mroueh and Sercu,

2017) are IPM defined over F0 the ball of radius 1 in L2(X , µ).

• 1-Wasserstein. The 1-Wasserstein distance is defined as in (2.2.3) with p = 1 and with

dual formulation (2.2.9) in Chapter 2. The dual formulation is in an IPM loss, with

F0 the ball of radius 1 in the space of Lipschitz functions (namely all functions with

Lipschitz constant less or equal than 1).
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f -Divergences. f -Divergences, briefly introduced in Appendix A.2.1, are discrepancy

measures between two distributions of the form

df (µ, ρ) =

∫
f

(
dµ

dρ
(x)

)
dρ(x) (D.1.3)

where dµ/dρ denotes the Radon-Nykodin derivative of µ with respect to ρ and f : X →

R ∪ {∞} is suitable a convex function. By leveraging the notion of Fenchel dual f∗(y) =

supx 〈x, y〉 − f(x) and the fact that f∗∗ = f for convex functios, in (Nowozin et al., 2016;

Liu et al., 2017) it was observed that f -divergences of the form in (D.1.3) can be written as

adversarial divergences with

Ff = { F | F : (x′, x) 7→ g(x′)− f∗(g(x)), g ∈ Cb(X ), dom(g) ⊂ dom(f) }

with Cb(X ) the set of continuous bounded functions on X .

Entropic Optimal Transport. We conclude this section by reviewing how entropic

optimal transport functions can be formulated as adversarial divergences. As observed in

Sec. 5.4, the dual probem associated to the definition of OTε corresponds to

sup
u,v∈C(X )

∫
u(x) dµ(x) +

∫
v(y) dρ(y) − ε

∫
e
u(x)+v(y)−‖x−y‖2

ε dµ(x)dρ(y).

This problem can be written in the form of adversarial divergence in (5.1.2) by taking

F = { F | F : (x, y) 7→ u(x) + v(y)− εe
u(x)+v(y)−‖x−y‖2

ε , u, v ∈ C(X ) }.

D.2 The Complexity of Pushforward Maps/Generators

We provide here some examples and remarks on pushforward maps. Assume that Z =

X = Rd and consider µ to be a Gaussian measure. Consider ρ ∈ P(X ) a target distribution.

Since µ is absolutely continuous with respect to Lebesgue measure Ld, there always exists

a measurable map T such that T#µ = ρ (see for example (Ambrosio and Gigli, 2013,

Thm. 1.33 ). However, existence of a pushforward map T does not imply anything on its

regularity, unless further assumptions hold on the measures µ and ρ. For example, consider

the case where the support of ρ is disconnected: in this case, any pushforward will exhibit



D.2. The Complexity of Pushforward Maps/Generators 172

discontinuities (since the image through a continuous map of a connected set is always

connected). In the following we provide a few examples of pushforward map between

distributions.

1. Book-shifting. Let µ = χ[0,1] and ρ = χ[1,2]. The maps T1, T2 : [0, 1] → [1, 2] defined

by T1(x) = 2− x, T2(x) = x+ 1 are pushforwards from µ to ρ, i.e. Ti#µ = ρ for i = 1, 2.

2. Gaussians. Let µ = N (mµ,Σµ) and ρ = N (mρ,Σρ) be two Gaussians on Rd. The

following map

T : x→ mρ +A(x−mµ), A = Σ
− 1

2
µ

(
Σ

1
2
µΣρΣ

1
2
µ

) 1
2 Σ
− 1

2
µ (D.2.1)

is such that T#µ = ρ.

Intuitively, when considering measures with the same ‘structure’ (i.e. in the examples above,

both uniform or both Gaussian), the ‘distortion’ needed to match the two distribution is

mild and this results in very regular pushforward maps, namely linear in the case above.

Viceversa, given a measure µ, pushforward via linear maps can target measures with the

same structure as µ only.

Example: class of functions and correspondent pushforward measures. Con-

sider T the class of affine maps on the real line, i.e.

T := {Tm,q : R→ R : Tm,q(x) = mx+ q, m, q ∈ R, m 6= 0.} (D.2.2)

Let µ = rL1 with r = 1[0,1]. Then, all the pushforward measures T#µ with T ∈ T are of

the form

Tm,q# µ =
1[0,1](

x−q
m )

m
L1. (D.2.3)

Hence, all the measures that can be written as pushforward of µ via maps in T are uniform

measures on intervals in R, namely Tm,q# µ = 1
m1[q,q+m].

When µ and the target measure ρ are very different, pushforward maps will be more complex:

3. From uniform to troncated Gaussian. Let ρ = f1[−1,1] and µ = g1[−1.1] with

f(x) =
√

2/(πc)e−
x2

2 , c = erf(1/
√

2) and g(x) = 1
2 . Using (5.2.2), one can show that the

map T such that T#µ = ρ is of the form

T (x) =
√

2erf−1
(
cx/2

)
. (D.2.4)
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Since ρ is not of the form (D.2.3), there exists no T ∈ T with T defined in (D.2.2) such that

T#µ = ρ. In order to be able to map µ into ρ, one has to consider a class of function T large

enough to include the function erf−1.

From the examples above, it is clear that when given a fixed µ and a target ρ, the regularity

(in terms of upper bounds of derivatives ) varies significantly, depending on the properties of

µ and ρ. In particular, a measure µ with a specific structure, may require a pushforward T to

have big derivatives, in order to satisfy T#µ = ρ.

Example: pushforward from one Gaussian to a mixture of three Gaussians in 1d. We

computed the pushforward from a Gaussian distribution to a mixture of the Gaussian dis-

tributions in 1D with variance 0.05 and 0.01 (see Fig. D.1a and Fig. D.1c). We computed

the pushforward map using a neural network with 5 layers, alternating ReLu and tanh as

activation functions. Fig. D.1b and Fig. D.1d display the graphs of the computed pushforward

maps. One can notice that the maps alternate regions with steep derivatives to regions with

flat derivatives, needed to distort the mass of the Gaussian in order to match the multimodal

shape of the target. The steepness is significantly higher in the case where the target has

smaller variance (i.e. the three Gaussians are more concentrated leading to areas with a very

small amount of mass).

Experimental setup for Fig. 5.1. We used neural network with 1 layer (linear network), 2

layers (with ReLu activation), 5 (up to 256 dimensions) and 7 layers (up to 512 dimensions),

alternating ReLu to Tanh activation functions.

D.3 Technical results

We introduce some notation first; in the following, the map c : X × X → R denotes the

Euclidean squared norm, i.e. c(x, y) = 1
2‖x−y‖

2. Given two maps V, T : Z → X , we used

the symbol c decorated with subscripts T and V to denote the following: cT,V : Z × Z → R

is the function defined by

cT,V (z, w) = c(T (z), V (w)), for all z, w ∈ Z.

Since we need to highlight the dependence on the cost, we will incorporate it in the notation

used for Sinkhorn divergence, namely Sε,c with c denoting the cost function used. We first

recall a straightforward result which links Sinkhorn divergence of pushforward measures
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Figure D.1: Pushforward functions that map 1 Gaussian to a mixture of three Gaussians. Distributions
displayed on the left. Graphs of pushforward maps on the right.

with Sinkhorn divergence with modified cost function.

Lemma D.1. Let µ, ν ∈ P(Z) and T, V : Z → X be continuous maps. Let c : X ×X → R

and cT,V : Z × Z → R be as defined above. Then,

Sε,c(T#µ, V#ν) = Sε,cT,V (µ, ν).

Proof. Similarly to Sε,c, let OTε,c be the biased entropic OT problem with cost function c.

Let F (µ, ν, u, v, c) be defined as

F (α, β, u, v, c) =

∫
X
u(x) dα(x) +

∫
X
v(y) dβ(y)− ε

∫
e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y).

By the dual definition of OTε,c, we have

OTε,c(T#µ, V#ν) = sup
(u,v)∈C(X )×C(X )

F (T#µ, V#ν, u, v, c) (D.3.1)

= sup
(u,v)∈C(X )×C(X )

F (µ, ν, u ◦ T, v ◦ V, cT,V ) (D.3.2)

= sup
(ũ,ṽ)∈(C(X )◦T )×(C(X )◦V )

F (µ, ν, ũ, ṽ, cT,V ), (D.3.3)

by the property of the pushforward and where C(X ) ◦ T := {f ◦ T : f ∈ C(X )} and
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similarly for C(X ) ◦ V . Now, consider

OTε,cT,V (µ, ν) = sup
(ũ,ṽ)∈C(Z)×C(Z)

∫
Z
ũ(z) dµ(z) +

∫
Z
ṽ(w) dν(w)− ε

∫
e
ũ(z)+ṽ(w)−cT,V (z,w)

ε dµ(z)dν(w).

We note that the optimal potentials ũ, ṽ of OTε,cT,V satisfy

ũ(z) = − log

∫
Z
eṽ(w)−cT,V (z,w) dν(w).

Recalling that cT,V (z, w) = c(T (z), V (w)), we note that ũ and ṽ are functions of the form

u ◦ T and v ◦ V . Hence the supremum in (D.3.4) can be restricted to be on the sets C(X ) ◦ T

and C(X )◦V . Thus, the quantity in (D.3.3) equals OTε,cT,V . Extending the same argument to

the autocorrelation terms, we conclude that Sε,c(T#µ, V#ν) = Sε,cT,V (µ, ν) as desired.

Before proceeding with the results bounding the potentials of Sinkhorn divergence with cost

function cT,V , we provide some technical results the will be needed in the rest.

Lemma D.2 (Lemma 1 in (Mena and Niles-Weed, 2019)). If µ ∈ P(Z) with Z ⊂ Rk is

σ2-subgaussian, then

Eµ‖X‖2r ≤ (2kσ2)rr!,

for all nonnegative integers r. Also,

Eµev·X ≤ Eµe‖v‖‖X‖ ≤ 2e
kσ2

2
‖v‖2

for any v ∈ Rk.

Lemma D.3. Let P = T#µ with T : Rk → Rd such that ‖T (z)‖ ≤ L‖z‖ and µ σ2-sub-

Gaussian. Then

EP ‖X‖2 ≤ 2k(Lσ)2 and EP ‖X‖ ≤ Lσ
√

2k.

Proof.

EP ‖X‖2 =

∫
X
‖x‖2 dP (x) =

∫
X
‖x‖2 d(T#µ)(x) (D.3.4)

=

∫
Z
‖T (z)‖2 dµ(z) ≤ L2

∫
Z
‖z‖2 dµ(z). (D.3.5)
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Since µ is σ2-sub-Gaussian, we have that

Eµ
‖z‖2r

(2kσ2)rr!
≤ Eµe

‖z‖2

2kσ2 − 1 ≤ 1.

Thus, L2Eµ‖z‖2 ≤ 2L2kσ2 and combining this with (D.3.5) we obtain

EP ‖X‖2 ≤ L22kσ2.

An easy application of Jensen inequality yields the bound for EP ‖X‖.

The lemma below contains bound of Sinkhorn potentials for a cost function of the form cT,V .

The proof is quite technical, mostly based on long but basic computations, and it follows the

same steps and ideas as the proofs in (Mena and Niles-Weed, 2019).

Lemma D.4 (Bounds on potentials with changed cost function). Let µ, ν ∈ P(Z) be

σ2-sub-Gaussian measures and consider Sinkhorn divergence with ε = 1 and c(x, y) =

1
2‖T (x)− V (y)‖ as cost function, where T, V : Z → X are such that ‖K(z)‖ ≤ L‖z‖ for

K = T, V . Let (u, v) denote a pair of optimal potentials. Then,

−1− k(Lσ)2
(
1 +

1

2
(‖T (x)‖+

√
2kLσ)

)2 ≤ u(x) ≤ 1

2

(
‖T (x)‖+

√
2kLσ

)2
−1− k(Lσ)2

(
1 +

1

2
(‖V (y)‖+

√
2kLσ)

)2 ≤ v(y) ≤ 1

2

(
‖V (y)‖+

√
2kLσ

)2
.

Proof. Let (u0, v0) any pair of optimal potentials. Since potentials are defined up to constant,

we assume as in (Mena and Niles-Weed, 2019) that Eµu0 = Eνv0 = 1
2S(µ, ν). We define

u(x) = − log

∫
X
ev0(y)− 1

2
‖T (x)−V (y)‖2 dν(y)

v(y) = − log

∫
X
eu(x)− 1

2
‖T (x)−V (y)‖2 dµ(x),

for any x, y ∈ X . Once we have proved that they are well defined and we have shown the

desired lower and upper bound, the proof that they are optimal potentials is exactly the same

as in (Mena and Niles-Weed, 2019, Prop 6). By Jensen inequality

v0(y) = − log

∫
X
eu0(x)− 1

2
‖T (x)−V (y)‖2 dµ(x)

≤ −Eµu0(x) +
1

2
Eµ‖T (X)− V (y)‖2 ≤ 1

2
Eµ‖T (X)− V (y)‖2.
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Therefore

ev0(y)− 1
2
‖T (x)−V (y)‖2 ≤ e

1
2
Eµ‖T (X)−V (y)‖2− 1

2
‖T (x)−V (y)‖.

Expanding the squares we have

1

2
Eµ‖T (X)− V (y)‖2 − 1

2
‖T (x)− V (y)‖2

=
1

2
Eµ‖T (X)‖2 +

1

2
‖V (y)‖2 − Eµ 〈T (X), V (y)〉 − 1

2
‖T (x)‖2 − 1

2
‖V (y)‖2 − 〈T (x), V (y)〉 .

Using Lemma D.3, we obtain

1

2
Eµ‖T (X)− V (y)‖2 − 1

2
‖T (x)− V (y)‖2 ≤ L2kσ2 + Eµ‖T (X)‖‖V (y)‖+ ‖T (x)‖‖V (y)‖

≤ k(Lσ)2 + ‖V (y)‖(‖T (x)‖+
√

2kLσ).

With elementary computations and using σ2-sub-Gaussianity of ν, we get

∫
Z
ek(Lσ)2+‖V (y)‖(‖T (x)‖+

√
2kLσ) dν(y) ≤ 2ek(Lσ)2

(
1+ 1

2
(‖T (x)‖+

√
2kLσ)

)2

.

So combining the last steps, we have shown that

∫
ev0(y)− 1

2
‖T (x)−V (y)‖2 dν(y) ≤ 2ek(Lσ)2

(
1+ 1

2
(‖T (x)‖+

√
2kLσ)

)2

.

Now,

u(x) =− log

∫
ev0(y)− 1

2
‖T (x)−V (y)‖2 dν(y)

≥− log(2ek(Lσ)2
(

1+ 1
2

(‖T (x)‖+
√

2kLσ)
)2

)

≥− 1− k(Lσ)2
(
1 +

1

2
(‖T (x)‖+

√
2kLσ)

)2
,
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proving the desired lower bound. We now study the upper bound for u:

u(x) = − log

∫
ev0(y)− 1

2
‖T (x)−V (y)‖2 dν(y)

≤
∫
− log ev0(y)− 1

2
‖T (x)−V (y)‖2 dν(y)

= −
∫
v0(y) dν(y) +

∫
1

2
‖T (x)− V (y)‖2 dν(y)

≤
∫

1

2
‖T (x)− V (y)‖2 dν(y).

Developing the square and bounding Eν‖V (Y )‖2 and Eν‖V (Y )‖ with Lemma D.3, we have

u(x) ≤ 1

2

(
‖T (x)‖+

√
2kLσ

)2
.

With the exact same reasoning one can derive the analogous bound for v.

Note that in terms of ‖x‖ (and not ‖T (x)‖) the derived bounds become

−1− k(Lσ)2
(
1 +

1

2
L2(‖x‖+

√
2kσ)

)2 ≤ u(x) ≤ 1

2
L2
(
‖x‖+

√
2kσ

)2 (D.3.6)

−1− k(Lσ)2
(
1 +

1

2
L2(‖y‖+

√
2kσ)

)2 ≤ v(y) ≤ 1

2
L2
(
‖y‖+

√
2kσ

)2
. (D.3.7)

Therefore we have the following result:

Lemma D.5. In the assumptions of Lemma D.4 we have

|u(z)| ≤ Ck


1 + (Lσ)4 if ‖z‖ ≤

√
kσ

1 + (1 + (Lσ)2)L2‖z‖2 if ‖z‖ >
√
kσ.

(D.3.8)

where Ck is a constant depending only on k.

Proof. This is an immediate consequence of (D.3.6) and (D.3.7).

While the previous results provided bounds on the potentials, the following will focus on

their derivatives. As before, the proof is technical (with even more computations) but mainly

follows its analogous in (Mena and Niles-Weed, 2019) (which is done for the squared norm

as a cost and does not highlights the dependence on T and V ).

Lemma D.6 (Bounds on derivatives of potentials with changed cost function). Let

µ, ν ∈ P(Z) be σ2-sub-Gaussian measures and consider Sinkhorn divergence with ε = 1
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and c(x, y) = 1
2‖T (x) − V (y)‖ as cost function, where T, V : Z → X are such that

‖K(z)‖ ≤ L‖z‖ for K = T, V . Also, assume that for any multi-index α with length at most

|α| ≤ bk/2c+ 1, ‖DαT (x)‖∞ ≤ τ. Let (u, v) denote a pair of optimal potentials. Then,

|Dα
(
u(·)− 1

2
‖T (·)‖2

)
(z)| ≤ Ck,|α|


(τLσ)|α|(1 + ((Lσ)2 + Lσ)|α|) if ‖z‖ ≤

√
kσ

(τLσ)|α|(1 + (
√

(Lσ)‖z‖+ (L2σ)‖z‖)|α|) if ‖z‖ >
√
kσ.

(D.3.9)

Proof. Potentials (u, v) are chosen as in Lemma D.4. For convenience, set ū the function

defined by ū(x) = u(x)− 1
2‖T (x)‖2. The goal is now to bound the derivatives of ū, namely

|Dαū(x)|. Note that

Dαū(x) = −Dα log(e−ū(x)) = −Dα(log(

∫
ev(y)− 1

2
‖T (x)−V (y)‖2+ 1

2
‖T (x)‖2 dν(y))

= −Dα(log(

∫
ev(y)− 1

2
‖V (y)‖2+〈V (y),T (x)〉 dν(y))

=
Dα
∫
ev(y)− 1

2
‖V (y)‖2+〈V (y),T (x)〉 dν(y))∫

ev(y)− 1
2
‖V (y)‖2+〈V (y),T (x)〉 dν(y))

.

Using Faa’ di Bruno formula, we have

Dα

∫
ev(y)− 1

2
‖V (y)‖2+〈V (y),T (x)〉 dν(y)) =

∫
P([
〈
DjT (x), V (y)

〉
]j≤|α|)e

v(y)− 1
2
‖V (y)‖2−〈T (x),V (y)〉 dν(y),

where P is a polynomial of degree |α|. In order to bound |Dαū(x)|, we have to bound the

quantity

A(x) :=

∫
P([
〈
DjT (x), V (y)

〉
]j≤|α|)e

v(y)− 1
2
‖V (y)‖2−〈T (x),V (y)〉 dν(y)∫

ev(y)− 1
2
‖V (y)‖2+〈V (y),T (x)〉 dν(y))

.

To simplify the notation, set

E(v, V )(y) := ev(y)− 1
2
‖V (y)‖2−〈T (x),V (y)〉 and B :=

∫
ev(y)− 1

2
‖V (y)‖2+〈V (y),T (x)〉 dν(y)./

Now, set D := {y : ‖y‖ ≤ h} with h to be chosen later, and Dc the complementary set. We
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split the quantity A(x) as follows:

A(x) = A1(x) +A2(x)

with

A1(x) =

∫
1DP([

〈
DjT (x), V (y)

〉
]j≤|α|)E(v, V )(y) dν(y)/B,

A2(x) =

∫
1DcP([

〈
DjT (x), V (y)

〉
]j≤|α|)E(v, V )(y) dν(y)/B.

We bound the two terms separately: note that on D we have ‖V (y)‖ ≤ L‖y‖ ≤ Lh and

hence

A1(x) ≤ sup
x

P([
〈
‖DjT (x)‖, Lh

〉
]j≤|α|) ≤ C|α|τ |α|(Lh)|α|,

since we can assume without loss of generality that τ ≥ 1 and L ≥ 1. As for A2, we proceed

as follows. First, applying Lemma D.4 we have that

1

B
=
(∫

E(v, V )(y) dν(y)
)−1

= eū(x) ≤ e−
1
2
‖T (x)‖2+u(x) ≤ ek(Lσ)2+‖T (x)‖

√
2kLσ

and

ev(y)− 1
2
‖V (y)‖2 ≤ ek(Lσ)2+‖V (y)‖

√
2kLσ.

Using these inequalities, we obtain

A2 ≤ c1

∫
1DcP([

〈
DjT (x), V (y)

〉
]j≤|α|)e

‖V (y)‖
√

2kLσ+〈T (x),V (y)〉 dν(y)

≤ c1

∫
1DcP([

〈
DjT (x), V (y)

〉
]j≤|α|)e

‖V (y)‖(
√

2kLσ+‖T (x)‖) dν(y)

≤ C|α|c1τ
|α|L|α|

(∫
1Dc‖y‖2|α| dν(y)

)1/2(∫
1Dce

2‖V (y)‖(
√

2kLσ+‖T (x)‖) dν(y)
)1/2

,

with c1 = e2k(Lσ)2+‖T (x)‖
√

2kσL. Now,

(∫
1Dc‖y‖2|α| dν(y)

)1/2
≤ e

−h2

8kσ2

(∫
1Dce

‖y‖2

4kσ2 ‖y‖2|α| dν(y)
)1/2

,
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and applying Young inequality, the subgaussianity of ν and Lemma D.2, we have

(∫
1Dc‖y‖2|α| dν(y)

)1/2
≤ e

−h2

8kσ2
√

2(2|α|)!1/4(
√

2kσ)|α|.

Also,

(∫
1Dce

2‖V (y)‖(
√

2kLσ+‖T (x)‖) dν(y)
)1/2

≤ 2e2L2(
√

2kLσ+‖T (x)‖)2kσ2
.

Choosing h2 ≥ Ck,|α|σ
2((Lσ)2 + (Lσ)4) if ‖x‖ ≤

√
kσ and h2 ≥ Ck,|α|σ

2(σL‖x‖ +

σ2L4‖x‖2) if ‖x‖ >
√
kσ for a sufficiently large constant Ck,|α|, then we have that

A2 ≤ Ck,|α|(τσL)|α|.

Combining this with the bound on A1, we obtain:

A(x) ≤ Ck,|α|(τLσ)|α|(1 + ((Lσ)2 + Lσ)|α|) if ‖x‖ ≤
√
kσ,

and

A(x) ≤ Ck,|α|(τLσ)|α|(1 + (
√

(Lσ)‖x‖+ (L2σ)‖x‖)|α|) if ‖x‖ >
√
kσ.

Lemma D.7. In the assumptions of Lemma D.6 we have, for any multi-index α,

|Dαu(z)| ≤ Ck,|α|


τL‖z‖+ (τLσ)|α|(1 + (Lσ)2|α|) if ‖z‖ ≤

√
kσ

τL‖z‖+ (τLσ)|α|(1 + (L2σ‖z‖)|α|) if ‖z‖ >
√
kσ.

(D.3.10)

where Ck is a constant depending only on k.

Proof. The proof follows by easy manipulation of the terms in (D.3.9).

Finally, we present the formal version of Lemma 5.3.

Lemma D.8. LetFσ,τ,L be the space of functions satisfying inequalities (D.3.8) and (D.3.10).

Let η, ν1, ν2 ∈ Gσ(Z) and T, T ′ ∈ T with T as in Thm. 5.2. Let S denote Sinkhorn
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divergence with ε = 1. Then,

|S(T#η, T
′
#ν1)− S(T#η, T

′
#ν2)| ≤ sup

u∈Fσ,τ,L
|
∫
u(z) dν1 −

∫
u(z) dν2(z)|. (D.3.11)

Proof. The proof follows exactly the same lines as the proof of (Mena and Niles-Weed, 2019,

Cor 2) with this variant: the set Fσ is replaced by the set Fσ,τ,L, thanks to our estimates on

the potentials in the bounds Lemma D.5 and Lemma D.7.

Remark D.1. Define the set Fs to be the set of functions satisfying

|u(x)| ≤ Cs,k(1 + ‖x‖2)

|Dαu(x)| ≤ Cs,k(1 + ‖x‖s) |α| ≤ s.

Note that for a sufficiently big constant Cs,k, for any u ∈ Fσ,τ,L the function
1

1+(τL)s+(σL)3sτs
u belongs to Fs.

Theorem D.9. With the same notation as above, the following holds

E sup
T∈T ,η∈H

|Sε(T#η, ρn)− Sε(T#η, ρ)| ≤ b(τ, L, σ, k)√
n

(D.3.12)

where b(τ, L, σ, k) = Ck (τL)d
k
2
e+1
(
1+Lk+2(1+σd

5k
2
e+6) ε−d

5k
4
e−3
)

with Ck a constant

depending only on the latent space dimension k.

Proof. We first set ε = 1 and consider S, and then obtain the bound for the general case. For

a given T ∈ T and η ∈ H, by (Mena and Niles-Weed, 2019, Prop 2), and Lemma D.1 we

have

|S(T#η, ρn)− S(T#η, ρ)| = |S(T#η, T
∗
#η
∗
n)− S(T#η, T

∗
#η
∗)|

=|ScT,T∗ (η, η
∗
n)− ScT,T∗ (η, η

∗)| ≤ sup
f∈Fσ,L,τ

|
∫
Z
f d(η∗n − η∗)|.

Note that the set Fσ,L,τ is independent of the specific η, η∗ and T, T ∗ and depends only on

the properties of the classes that we consider, i.e. σ2-sub-gaussianity and boundedness L

and smoothness τ for functions in T . Thus, we can take the supremum in the left hand side
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over η ∈ H and T ∈ T :

sup
T∈T ,η∈H

|S(T#η, ρn)− S(T#η, ρ)| ≤ sup
f∈Fσ,L,τ

|
∫
Z
f d(η∗n − η∗)|.

From now on, recalling that for any f ∈ Fσ,τ,L the function 1
(τL)s+(σL)3sτs

f belongs to Fs,

the proof is identical to the proof of (Mena and Niles-Weed, 2019, Thm. 2) and it leads to

the following bound for any ε:

E sup
T∈T ,η∈H

|Sε(T#η, ρn)− Sε(T#η, ρ)| ≤ b(τ, L, σ, k)√
n

where b(τ, L, σ, k) = Ck (τL)d
k
2
e+1
(
1+Lk+2(1+σd

5k
2
e+6) ε−d

5k
4
e−3
)

with Ck a constant

depending only on the latent space dimension k.

D.4 Learning Rates
We provide here a formal statement of Thm. 5.2.

Theorem D.10. Let Z ⊂ Rk, X ⊂ Rd and ρ = T ∗#η
∗ with T ∗ ∈ T ⊂ Cdk/2e+1

τ,L (Z,X ) and

η∗ ∈ H ⊂ Gσ(Z). Let (T̂ , η̂) satisfy (5.3.1) with dF = Sε and ρn a sample of n i.i.d. points

from ρ. Then,

E Sε(T̂#η̂, ρ) ≤ b(τ, L, σ, k)√
n

where b(τ, L, σ, k) = Ck (τL)d
k
2
e+1
(
1+Lk+2(1+σd

5k
2
e+6) ε−d

5k
4
e−3
)

with Ck a constant

depending only on the latent space dimension k and where the expectation is taken with

respect to ρn.

Proof. We decompose the error as follows

Sε(T̂#η̂, ρ)− Sε(T
∗
#η
∗, ρ) = A1 +A2 +A3 (D.4.1)

where

A1 = Sε(T̂#η̂, ρ)− Sε(T̂#η̂, ρn) (D.4.2)

A2 = Sε(T̂#η̂, ρn)− Sε(T
∗
#η
∗, ρn) (D.4.3)

A3 = Sε(T
∗
#η
∗, ρn)− Sε(T

∗
#η
∗, ρ). (D.4.4)
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Note that by optimality of T̂ and η̂, A2 ≤ 0. Now,

A1 +A3 ≤ 2 sup
T∈T ,η∈H

[
Sε(T#η, ρn)− Sε(T#η, ρ)

]
. (D.4.5)

Applying Thm. D.9 and combining it with (D.4.1) and (D.4.5) yields the desired result.

D.4.1 Perturbation case

We conclude this section extending Thm. 5.2 to the case where the model is accurate up to a

perturbation of the pushforward measure in terms of a subgaussian distribution.

Lemma D.11 (Pushforward of a sub-Gaussian measure). Let T : Z → X be a Lipschitz

continuous map from Z ⊂ Rk to X ⊂ Rd with Lipschitz constant L and such that T (0) = 0.

Let η ∈ Gσ(Z). Then T#η ∈ GσL(X ) with σL = σL
√
k/d.

Proof. The result follows by observing that for any σ0 we have

∫
X
e
‖x‖2

2dσ2
0 d(T#η)(x) =

∫
Z
e
‖T (z)‖2

2dσ2
0 dη(z) ≤

∫
Z
e
L2‖z‖2

2dσ2
0 dη(z).

Since η ∈ Gσ(Z), we have that ∫
Z
e
‖z‖2

2kσ2 ≤ 2.

Choosing σ0 = σL
√
k/d yields the we obtain that

∫
X
e
‖x‖2

2dσ2
0 d(T#η)(x) ≤

∫
Z
e
‖z‖2

2kσ2 ≤ 2

and hence T#η belongs to GσL(X ) as required.

Lemma D.12 (Convolution of two sub-Gaussian measures). Let σ1, σ2 > 0, µ ∈ Gσ1(X )

and ρ ∈ Gσ2(X ). Then µ ∗ ρ ∈ G2σ̄ with σ̄ = max(σ1, σ2).

Proof. For any σ > 0 we have

∫
e
‖x‖2

2dσ2 d(µ ∗ ρ)(x) =

∫
e
‖y+w‖2

2dσ2 dµ(y)dρ(w)

≤
∫
e
‖y‖2+‖w‖2

dσ2 dµ(y)dρ(w)

≤

(∫
e

2‖y‖2

dσ2 dµ(y)

)1/2(∫
e

2‖w‖2

dσ2 dρ(w)

)1/2

.



D.4. Learning Rates 185

Now, if σ ≥ 2σ1, we have

∫
e

2‖y‖2

dσ2 dµ(y) ≤
∫
e
‖y‖2

2dσ2
1 dµ(y) ≤ 2.

Analogously for σ ≥ 2σ2. Therefore by taking σ = 2σ̄ with σ̄ = max(σ1, σ2), we have

∫
e
‖x‖2

2dσ2 d(µ ∗ ρ)(x) ≤ 2,

and hence µ ∗ ρ ∈ G2σ̄ as required.

Lemma D.13 (Perturbation). Let µ ∈ Gσ with σ ≥ 1. Let Φδ ∈ Gδ for 0 ≤ δ ≤ σ. Then, for

any ν ∈ G2σ, we have

|Sε(ν,Φδ ∗ µ)− Sε(ν, µ)| ≤ b1(σ, d) δ

with

b1(σ, d) = 6d3/2σ(1 + C1,d4σ
2(1 + 2σ))

and C1,d a constant depending only on the ambient dimension d.

Proof. Since δ ≤ σ, by applying Lemma D.12 we have Φδ ∗ µ ∈ G2σ and µ ∈ Gσ ⊂ G2σ.

Therefore, we apply Lemma D.8 to control

|Sε(ν,Φδ ∗ µ)− Sε(ν, µ)| ≤ sup
u∈F2σ

|
∫
u(x+ w) dµ(x)dΦδ(w)−

∫
u(x) dµ(x)|

(D.4.6)

= sup
u∈F2σ

|
∫ (

u(x+ w)− u(x)
)
dΦδ(w)dµ(x)|. (D.4.7)

Note that for any x,w ∈ X we can define H : [0, 1]→ R such that for any t ∈ [0, 1]

H(t) = u(x+ tw).
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Then, by the fundamental theorem of calculus we have

∫ 1

0
H ′(t) dt = H(1)−H(0)

= u(x+ w)− u(x).

Now

H ′(t) = 〈∇u(x+ tw), w〉 ,

which implies

|u(x+ w)− u(x)| ≤
∫ 1

0
‖∇u(x+ tw)‖‖w‖ dt

≤
√
d‖w‖

∫ 1

0
‖∇u(x+ tw)‖∞.

Now, by direct application of (Mena and Niles-Weed, 2019, Prop. 1) for the functions in

F2σ, we have

|D1u(x)| ≤


‖x‖+ C1,d4σ

2(1 + 2σ) if ‖x‖ ≤
√
d2σ

‖x‖(1 + C1,d2
3/2σ3/2(1 + (2σ)1/2)) otherwise.

Therefore, since σ > 1 we can upper bound σ2/3 with σ2 and σ1/2 with σ, to obtain the

neater formula below

‖∇f(x)‖∞ ≤ b0(σ, d)(1 + ‖x‖) with b0(σ, d) = 1 + C1,d4σ
2(1 + 2σ).

We can therefore bound

∫ 1

0
‖∇u(x+ tw)‖ dt ≤ b0(σ, d)

∫ 1

0
(1 + ‖x+ tw‖) dt

≤ b0(σ, d)(1 + ‖x‖+ ‖w‖).

Combining the steps above, for any x,w ∈ X

|u(x+ w)− u(x)| ≤
√
db0s(σ, d)(‖x‖‖w‖+ ‖w‖2 + ‖w‖).
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Plugging this inequality in (D.4.7), we have

sup
u∈Fσ

∫
u(x+ w)− u(x) dµ(x) ≤

√
db0(σ, d)

∫
(‖x‖‖w‖+ ‖w‖2 + ‖w‖) dµ(x)dΦδ(w)

≤ 2d3/2b0(σ, d) δ(σ + δ + 1),

where we have used Lemma D.2 in the last inequality. Since δ ≤ σ and σ ≥ 1, we have that

1 + δ + σ ≤ 3σ and the inequality above yields the required result.

Lemma D.14 (Perturbation on samples). Let µ ∈ Gσ with σ ≥ 1. Let Φδ ∈ Gδ for 0 ≤ δ ≤ σ.

Consider ρ = Φδ ∗ µ and denote by ρn and µn the empirical measures ρn = 1
n

∑n
i=1 δxi+wi

and µn = 1
n

∑n
i=1 δxi where xi are sampled i.i.d. from µ and wi are samples i.i.d. from Φδ.

Then, for any ν ∈ G2σ, we have

E|Sε(ν, ρn)− Sε(ν, µn)| ≤ b1(σ, d) δ

with

b1(σ, d) = 6d3/2σ(1 + C1,d4σ
2(1 + 2σ))

and C1,d a constant depending only on the ambient dimension d.

Proof. Similarly to the proof of Lemma D.13, we have

|Sε(ν, ρn)− Sε(ν, µn)| ≤ sup
u∈F2σ

|
∫
u(y) dρn(y)−

∫
u(y) dµn(y)| (D.4.8)

= sup
u∈F2σ

| 1
n

∑
i=1

(
u(xi + wi)− u(xi)

)
|. (D.4.9)

Using the upper bound on the gradient of u proved in Lemma D.13, we obtain

|Sε(ν, ρn)− Sε(ν, µn)| ≤ sup
u∈F2σ

| 1
n

∑
i=1

(
u(xi + wi)− u(xi)

)
| (D.4.10)

≤
√
db0(σ, d)

1

n

n∑
i=1

(‖xi‖‖wi‖+ ‖wi‖2 + ‖wi‖). (D.4.11)
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Taking the expectation, we get

E|Sε(ν, ρn)− Sε(ν, µn)| ≤ Ex∼µ,w∼Φδ

√
db0(σ, d)

1

n

n∑
i=1

(‖xi‖‖wi‖+ ‖wi‖2 + ‖wi‖),

(D.4.12)

and using Lemma D.2 we conclude

E|Sε(ν, ρn)− Sε(ν, µn)| ≤ 2d3/2b0(σ, d) δ(σ + δ + 1). (D.4.13)

Since δ ≤ σ and σ ≥ 1, we have that 1 + δ + σ ≤ 3σ and the inequality above yields the

required result.

We are finally ready to prove our result on perturbed GAN models.

Corollary D.15 (Formal version of Cor. 5.4). Under the same assumption of Thm. 5.2, let

Φδ ∈ Gδ(X ) and ρ = Φδ ∗ T ∗#η∗. Let c be the same constant of Thm. 5.2. Then,

E Sε(T̂#η̂, ρ) ≤ 2 b(τ, L, σ, k)√
n

+ 3b1(Lσ
√
k/d, d) δ.

with b1(Lσ
√
k/d, d) the constant defined in Lemma D.13.

Proof. Let ρn be the empirical sample used to obtain (T̂ , η̂). By definition of ρ, we have

that ρn corresponds to an empirical sample of points (T ∗(zi) + wi)
n
i=1 with zi i.i.d. points

sampled from η∗ and wi i.i.d. points sampled from Φδ. We denote η∗n = 1
n

∑n
i=1 δzi .

Consider the following decomposition of the error

Sε(T̂#η̂, ρ) = A1 +A2 +A3 +A4 +A5 +A6

with

A1 = Sε(T̂#η̂, ρ)− Sε(T̂#η̂, T
∗
#η
∗)

A2 = Sε(T̂#η̂, T
∗
#η
∗)− Sε(T̂#η̂, T

∗
#η
∗
n)

A3 = Sε(T̂#η̂, T
∗
#η
∗
n)− Sε(T̂#η̂, ρn)

A4 = Sε(T̂#η̂, ρn)− Sε(T
∗
#η
∗, ρn)

A5 = Sε(T
∗
#η
∗, ρn)− Sε(T

∗
#η
∗, T ∗#η

∗
n)

A6 = Sε(T
∗
#η
∗, T ∗#η

∗
n)
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We start by controlling the term A1. First we note that according to Lemma D.11, both

distributions T̂#η̂ and T ∗#η
∗ are sub-Gaussian with parameter Lσ

√
k/d. Therefore, by

applying Lemma D.13 we obtain

A1 ≤ b1(Lσ
√
k/d, d) δ

where b1 is the constant introduced in Lemma D.13. As for A3 and A5, we bound them

using Lemma D.14 and we obtain

E[A3] ≤ b1(Lσ
√
k/d, d) δ

E[A5] ≤ b1(Lσ
√
k/d, d) δ.

The term A2 corresponds to the sample complexity of T ∗#η
∗. Therefore we can apply

Thm. D.9 to obtain

E[A2] = E
[
Sε(T̂#η̂, T

∗
#η
∗)− Sε(T̂#η̂, T

∗
#η
∗
n)
]
≤ b(σ, τ, L)√

n
.

The same holds for A6, namely

E[A6] = E
[
Sε(T

∗
#η
∗, T ∗#η

∗
n)
]

= E
[
Sε(T

∗
#η
∗, T ∗#η

∗
n)− Sε(T

∗
#η
∗, T ∗#η

∗)
]

≤ b(σ, τ, L)√
n

.

Finally, we note that since (T̂ , η̂) is the minimizer of Sε(T#η, ρn),

A4 = Sε(T̂#η̂, ρn)− Sε(T
∗
#η
∗, ρn) ≤ 0.

Combining all the bounds above yields the required result.

D.5 Optimization

D.5.1 Computing the gradient with respect to the network parameters

In this section we provide the analytic formula for the gradient of the Sinkhorn divergence

with respect to the generator network parameters. We recall here the statement.
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Proposition 5.5. Let η ∈ P(Z) and ρ ∈ P(X ). Let (u∗, v∗) be a pair of minimizers of

(4.1.1) with α = Tθ#η and β = ρ. Then, the gradient of OTε(Tθ#η, ρ) in θ0 is

[
∇θOTε(Tθ#η, ρ)

]
|θ=θ0 =

∫ [
∇xu∗(·)

]
|x=Tθ0 (z)

[
∇θTθ(z)

]
|θ=θ0 dη(z). (5.4.2)

The proof of the result hinges on the following characterization of the directional derivative

of functionals that admit a variational form. Note that here we consider a generic smooth

cost function c : X × X → R in the definition of OTε, even though most of the material in

the chapter was presented with the squared Euclidean distance.

Theorem D.16 (Thm. 4.13 in Bonnans and Shapiro (2013)). Let f : X × U → R is a

continuous function such that for all x ∈ X the function f(x, ·) is (Gateaux) differentiable,

that f(x, u) and∇uf(x, u) are continuous onX ×U , and that the inf-compactness condition

holds. Then the optimal value function

v : u0 7→ inf
x∈X

f(x, u0),

is Fréchet directionally differentiable at u0 with directional derivative

v′(u0; ū) = inf
x∈S(u0)

∇uf(x, u0)ū,

for any ū ∈ U , with S(u0) the set of minimizer of f(·, u0).

We recall that inf-compactness is the condition requiring the existence of a neighborhood of

u0 and a constant such that the level sets of f(·, u) associated to such constant are compact

for any u in such neighborhood. We note that the same result holds when considering

the supremum of a joint function f(x, u0), which is the case of the Sinkhorn divergence

considered in the following.

Let now η ∈ P(Z), ρ ∈ P(X ) and Θ a space of parameters for the pushforward maps

Tθ : Z → X . We will apply Thm. D.16 to the functional

F (θ) = OTε(Tθ#η, ρ) = sup
u,v∈C(X )

G(Tθ#η, ρ, u, v),
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where we have denoted

G(Tθ#η, ρ, u, v) =

∫
u(x) d(Tθ#η)(x) +

∫
v(y) dρ(y)

− ε
∫
e
u(x)+v(y)−c(x,y)

ε d(Tθ#η)(x)dρ(y).

We recall that the solution (u∗, v∗) to the Sinkhorn dual problem is unique up to a constant

shift (u∗ + r, v∗ − r) for any r ∈ R (Feydy et al., 2019). We can therefore restrict the above

optimization problem to

F (θ) = sup
(a,b)∈D

G(Tθ#η, ρ, u, v), (D.5.1)

to the domain

D =

{
(u, v) ∈ C(X )× C(X )

∣∣∣∣∣
∫
u(x) d(Tθ#η)(x) =

∫
v(y) dρ(y)

}
.

Therefore, over this linear subspace of C(X ) × C(X ), the functional OTε(Tθ#η, ρ, ·, ·)

admits a unique minimizer and is actually strictly concave, which guarantees inf-compactness

(actually sup-compactness in this case) to hold.

We can therefore apply Thm. D.16 with the following substitutions in our setting: x← (u, v),

X ← D, u← θ and U ← Θ. Let (u∗, v∗) be the minimizer of (D.5.1). We have

[∇θF (·)]|θ=θ0 = ∇θ[G(Tθ#η, ρ, u
∗, v∗)|θ=θ0 .

Now, by applying the Transfer lemma, we have

G(Tθ#η, ρ, u
∗, v∗) = G(η, ρ, u∗ ◦ Tθ, v∗)

and therefore,

[∇θF (·)]|θ=θ0 = ∇θ[G(η, ρ, u∗ ◦ Tθ, v∗)|θ=θ0

=

∫ [
∇θu∗(Tθ(z))

]
|θ=θ0 dη(z)

− ε
∫ [
∇θe

u∗(Tθ(z))+v∗(y)−c(T (z),y)

ε

]
|θ=θ0 dη(z)dρ(y).
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Recall that u∗ is differentiable (actually C∞, see e.g. (Genevay et al., 2018a, Thm. 2)

characterizing the regularity of Sinkhorn potential when using a smooth cost). The chain

rule yields

∫ [
∇θu∗(Tθ(z))

]
|θ=θ0 dη(z) =

∫ [
∇xu∗(·)|x=Tθ0 (z)

][
∇θTθ(z)

]
|θ=θ0 dη(z). (D.5.2)

By computing the gradient of the exponential term, the second term in the gradient can be

split in two parts

ε

∫ [
∇θ e

u∗(Tθ(z))+v∗(y)−c(Tθ(z),y)

ε
]
|θ=θ0 dη(z)dρ(y) = A1 −A2

with

A1 =

∫ [
∇θu∗(Tθ(z))

]
|θ=θ0 e

u∗(Tθ0 (z))+v∗(y)−c(Tθ0 (z),y)

ε dη(x)dρ(y)

A2 =

∫ [
∇θc(Tθ(z), y)

]
|θ=θ0 e

u∗(Tθ0 (z))+v∗(y)−c(Tθ0 (z),y)

ε dη(x)dρ(y).

Recall that since (u∗, v∗) is a pair of minimizers, the characterization of u∗ from (5.4.1)

holds, implying that for any z ∈ Z ,

∫
e
u∗(Tθ0 (z))+v∗(y)−c(Tθ0 (z),y)

ε dρ(y) = 1.

Therefore

A1 =

∫ [
∇θu∗(Tθ(z))

]
|θ=θ0

(∫
e
u∗(Tθ0 (z))+v∗(y)−c(Tθ0 (z),y)

ε dρ(y)

)
dη(z)

=

∫ [
∇θu∗(Tθ(z))

]
|θ=θ0 dη(z).

Hence, analogously to (D.5.2) we have

A1 =

∫ [
∇xu∗(·)|x=Tθ0 (z)

][
∇θTθ(z)

]
|θ=θ0 dη(z).

Regarding the term A2, we apply the chain rule to the cost term, obtaining

A2 =

∫ [
∇xc(·, y)|x=Tθ0 (z)

][
∇θTθ(z)

]
|θ=θ0 e

u∗(Tθ0 (z))+v∗(y)−c(Tθ0 (z),y)

ε dη(z)dρ(y).
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Since the term in (D.5.2) and A1 eliminate each other, we have

[∇θF (·)]|θ=θ0 =

∫ [
∇xc(·, y)|x=Tθ0 (z)

][
∇θTθ(z)

]
|θ=θ0 e

u∗(Tθ(z))+v∗(y)−c(Tθ(z),y)

ε dη(z)dρ(y).

Now, by the characterization of Sinkhorn potential in (5.4.1), we have that for any x0 ∈ X ,

∇xu∗(·)|x=x0 =

∫
∇xc(·, y)|x=x0 e

u∗(x0)+v(y)−c(x0,y))
ε dρ(y).

Replacing the equality above in the formula of∇θF , we have

[
∇θF (·)

]
|θ=θ0 =

∫ [
∇zu∗(·)

]
|x=Tθ0 (z)

[
∇θTθ(z)

]
|θ=θ0 dη(z),

as required.

Gradient of the Sinkhorn Divergence. Prop. 5.5 characterizes the gradient of

OTε(Tθ#η, ρ) with respect to the network parameters θ. However, the Sinkhorn divergence,

defined in (2.5.1) depends also on the so-called autocorrelation term −1
2OTε(Tθ#η, Tθ#η).

By following the same reasoning in the proof of Prop. 5.5, we have that

[
∇θOTε(Tθ#η, Tθ#η)

]
|θ=θ0 = 2

∫ [
∇zu∗(·)

]
|x=Tθ0 (z)

[
∇θTθ(z)

]
|θ=θ0 dη(z)

with u∗ the Sinkhorn potential minimizing

OTε(Tθ#η, Tθ#η) = sup
u∈C(X )

G(Tθ#η, Tθ#η, u, u).

Thanks to the linearity of the gradient, we can therefore compute the gradient of the Sinkhorn

divergence by combining the gradient of OTε(Tθ#η, ρ) and OTε(Tθ#η, Tθ#η).

D.6 Experiments

In this section we provide the details on the experimental setup of section Sec. 5.5.

Spiral. We describe the setting reported in Fig. 5.2, where the target ρ ∈ P(R2) is a

multi-modal distribution on a spiral-shaped 1D manifold in R2. In particular we modeled
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ρ∗ = T#η
∗ with η a mixture of three Gaussian distributions on R,

η∗ =
1

3

3∑
j=1

N (mj , σ)

with means respectively in m1 = 0.1, m2 = 0.7 and m3 = 0.9 and same variance σ2 = 0.1.

To map η to R2 we considered the pushforward map T ∗ : R→ R2 such that

T ∗(x) = (x sin(2πx), x cos(2πx)).

To approximate T we considered a fully connected neural network with 4 hidden layers with

dimensions 256, 1024, 256, 256, two ReLUs activation functions for the first and second

layers and one sigmoid (tanh) for the third layer. To minimize Sε(T#η, ρn) in T for η fixed,

we used ADAM as optimizer, with learning rate of α1 = 10−4. To learn η for T fixed we

used step size α2 = 10−3. We run Alg. 5.1 with m = 1000 particles and sampling size

` = 100 (the number of “perturbation” points sampled around the particles at each iteration).

We set the regularization parameter of the Sinkhorn divergence equal to ε = 0.005. When

keeping η fixed, we chose η to be N (0.5, 1).

Swiss Roll. Similary to the previous setting we considered ρ = T ∗#η
∗ the pushforward

measure of a multimodal latent distribution. Here ρ ∈ P(R3), with η∗ ∈ P(R2) the

“restriction” of a Gaussian mixture on [0, 1]2. More formally, let g : R2 → R be the density

of the mixture of 3 isotropic Gaussian measures

ρ =
1

3

3∑
j=1

N (mj ,Σ)

with means m1 = (0.4, 0.4), m2 = (0.2, 0.8) and m3 = (0.8, 0.5), and same covariance

Σ = σI with σ2 = 0.15. Then we consider η∗ the distribution with density h : R2 → R,

proportional to

h ∝ g · 1[0,1]2 ,

where 1[0,1]2 is the indicator function of the interval [0, 1]2. We used the pushforward map
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of the swiss roll T ∗ : R2 → R3

T (x, y) = ( x cos(2πx), y, x sin(2πx) ).

To approximate T we considered the same structure used in the spiral setting: a fully

connected neural network with 4 hidden layers with dimensions 256, 1024, 256, 256, two

ReLUs activation functions for the first and second layers and one sigmoid (tanh) for the

third layer. To minimize Sε(T#η, ρn) in T for η fixed, we used ADAM as optimizer, with

learning rate of α1 = 5 · 10−5. To learn η for T fixed we used step size α2 = 10−4. We run

Alg. 5.1 with m = 1000 particles and sampling size ` = 100 performing block-coordinate

descent, alternating 50 iterations when learning T with η fixed and 20 iterations when

learning η for a fixed T . We set the regularization parameter of the Sinkhorn divergence

starting from ε = 2 and decreasing every 50 iterations of the generator training (both for

Alg. 5.1 and the standard Sinkhorn GAN) by a factor ε← 0.9 · ε. We did not allow ε to drop

below 10−3 When keeping the latent fixed, we chose η to be N ([0.5, 0.5], I).
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