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The next generation wireless communications requires
reduced energy consumption, increased data rates
and better signal coverage. The millimetre wave
frequency spectrum above 30 GHz can help fulfil
the performance requirements of the next generation
mobile broadband systems. Multiple-input multiple-
output (MIMO) technology can provide performance
gains to help mitigate the increased path loss
experienced at mmWave frequencies compared to
microwave bands. Emerging hybrid beamforming
architectures can reduce the energy consumption and
hardware complexity with the use of fewer Radio-
Frequency (RF) chains. Energy efficiency is identified
as a key fifth generation (5G) metric and will
have a major impact on the hybrid beamforming
system design. In terms of transceiver power
consumption, deactivating parts of the beamformer
structure to reduce power typically leads to significant
loss of spectral efficiency. Our aim is to achieve
the highest energy efficiency for the millimetre-
wave communications system while mitigating the
resulting loss in spectral efficiency. To achieve this,
we propose an optimal selection framework which
activates specific RF chains that amplify the digitally
beamformed signals with the analogue beamforming
network. Practical precoding is considered by including
the effects of user interference noise, and hardware
impairments in the system modelling.
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1. Introduction
There is currently a strong requirement to identify the technical needs and possible solutions that
will transform the wireless connectivity ecosystem for a better connected society in the future. Fifth
generation (5G) wireless standards will start to address the consumer demands and performance
enhancements for mobile communication in the next five years [1]. Looking forward, the Cisco
data traffic report indicates that in 2023 video applications will generate up to 82% of the total
mobile data traffic, with up to 29.3 billion networked devices [2]. The Ericsson mobility report [3]
also forecasts that there will be 2.6 billion mobile connections by the end of 2025 and at least
45% of the world’s population should be able to access 5G services in the same year. The next
generation services are expected to be commercially implemented on a large scale in the next few
years, e.g. in North America and North East Asia significant 5G subscriptions are expected to grow
rapidly [3]. Future wireless systems require high data rates/throughput, improved coverage, lower
latency, high mobility and reliability, and lower infrastructure costs [4,5].

One of the building blocks for fulfilling the requirements of the next generation mobile
communications is the use of multiple-input multiple-output (MIMO) techniques in the form
of large scale antenna arrays. Growth in spectrum availability will enhance overall network
capacity in order to accommodate a large number of mobile users worldwide. Most current mobile
broadband systems operate at frequencies below 6 GHz, but this spectrum is becoming increasingly
crowded, especially in major cities and areas of high population density. The demand for additional
spectrum can be fulfilled by the use of higher mmWave bands at carrier frequencies around 30-
300 GHz [6,7]. There are many potential applications associated with mmWave communications,
including fixed broadband access to the home, small cell communications in dense urban areas
and vehicle-to-vehicle communications. However, moving up in carrier frequency leads to new
challenges of higher path loss, more significant blocking effects and unconventional channel
characteristics [8]. Consideration is now also being given to using the Terahertz spectrum at
300 GHz and above, where the channel conditions are often more severe, typically limiting the
potential use cases to high data rate but very short range communications applications [9]. The
use of MIMO technology can provide performance gains to help to mitigate the adverse channel
effects, but these systems have hardware and power consumption constraints. The very name
mmWave highlights the very small wavelengths associated with these frequencies which allows a
large number of antennas to be placed on a compact space. Using a dedicated radio frequency
(RF) chain for each antenna element would lead to the best data-rate performance. However, this
solution is difficult to be implemented in practice because of the excessive power consumption
and hardware complexity that results. Also, using wide bandwidth analogue to digital converters
(ADCs) and digital to analogue converters (DACs) as part of the RF–chains at mmWave frequencies
becomes a further source of hardware complexity and high power consumption. A parsimonious
and energy efficient transceiver architecture is thus desired.

Figure 1 shows the multiuser hybrid beamforming architecture that is often studied in the
literature for use at mmWave frequencies. The transmitter wishes to send K spatial streams to K
receivers using spatial multiplexing techniques. Digital precoding is applied to the signals to direct
these streams to the receiver using directional beamforming concepts. The digital precoder outputs
are then converted into analogue form and amplified using LT RF–chains. These waveforms are
then directed to the transmitting antennas using an analogue precoder network. Various designs for
the precoder network are possible, but may comprise a Butler matrix setup to generate fixed beam
patterns or controllable phase shifters that allow dynamic beam patterns to be created. Typically
the number of RF–chains LT is much less than the number of transmitting antennas NT because of
their inherent broadband operation and high power consumption. The transmitting signal travels
through the wireless channel which is different for each one of the K receiving terminals. We
consider that each user equipment has NR antennas and applies analogue RF combining to the
received signal, before downconversion by a single RF–chain. The basic ideas of this architecture
were discussed in [10], where the number of transmit and receive RF chains could be selected
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Figure 1. Block diagram of a hybrid precoding MIMO system withNT transmitting antenna elements and LT RF–chains.

Each user terminal is equipped with NR antennas.

according to the number of spatial streams that should be transmitted and received. Techniques
for optimizing signal reception in this architecture are further explored in [11]. The concept of
using sparse signal processing techniques to determine the best precoding and reception weights
for maximising data throughput performance is described in [12]. A heuristic approach to hybrid
beamforming that can achieve performance very close to the ideal case of using one RF–chain is also
described in [13]. Detailed survey articles that discuss issues around mmWave communications
and hybrid beamforming can be found in [14,15].

In recent years, optimizing the performance of the hybrid architecture has become the subject
of intense study. The fully-connected architecture studied in [12] connects all of the antennas
to each RF–chain, while the alternative partially-connected structure connects each RF–chain
to only a subset of all antennas, which requires fewer phase shifters [16]. A detailed study
in [17] also highlights that using the partially-connected setup can reduce RF losses in the system,
improving performance. The partially-connected setup is therefore able to achieve a lower power
consumption compared to the fully connected approach [18]. However, the partially-connected
approach may suffer from increased co-channel interference, so a low-complexity interference
cancellation precoding approach is proposed in [19]. Reference [20] studies the energy efficiency
of a partially-connected HBF system, where each RF–chain is connected to only a subset of the
available antennas. Other authors have tried to reduce the complexity through replacing some of
the phase shifters with a network of RF switches, such as described in [21,22]. It is shown in these
two papers that switches can operate at lower power consumption than phase shifters, enabling
further energy savings with minimal impact on throughput performance. Energy efficient baseband
signal processing methods to mitigate interference are also studied in [23]. A simple approach to
receiver design is to make use of lens antennas in place of a phase shifters or switches and low
complexity hardware implementations of this approach are reported in [24–26]. Reference [27]
studies the impact of non-linear effects in transmitter power amplifiers and concludes that using
only one RF–chain can be preferable in some scenarios to achieve the most energy efficient
operating point of the system.

The power consumption can be reduced further though making use of low resolution
quantisation of waveforms in MIMO transceivers. Jointly selecting low resolution quantisation
at both the TX and the RX, and optimizing bit resolution with the precoding and combining
designs can provide a highly energy efficient communication solution. This is due to the fact that
the power consumption of DACs/ADCs scales exponentially with the number of bits used [31].
Reference [32] studies how the sampling bit resolution affects the achieved data rates using an
additive quantisation noise model (AQNM) for the quantisation process. The AQNM approach is
also used in [33] which shows the impact of low resolution sampling on the achieved data rate.
The combination of a fully digital precoding TX with joint RF and baseband combining using low
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Notations Description
a Scalar
a Vector
‖a‖0 l0-norm of a
A Matrix
|A| Determinant of A
AT Transpose of A
AH Complex conjugate transpose of A
A(i) ith column of A
‖A‖F Frobenius norm of A
CN (a;A) Complex Gaussian vector; mean a, covariance A

RA×B To represent a matrix of size A×B with real entries
CA×B To represent a matrix of size A×B with complex entries
E{·} Expectation operator
IN Identity matrix with size N ×N
R+ Set of positive real numbers
R{·} Real part
tr(A) Trace of A

X∈CA×B Complex-valued matrix X of size A×B
X∈RA×B Real-valued matrix X of size A×B

Table 1. List of notations and their description.

resolution sampling at the RX is studied in [21]. Reference [34] proposes the idea of using a
mixture of high and low resolution ADCs, which can achieve a higher EE than systems that use
a fixed resolution ADCs at all receivers. The mmWave channel estimation problem when using
low resolution sampling at the RX is also discussed in [35]. Care is needed when selecting the
bit resolutions to be employed as the total power consumed may be dominated by a few ADCs or
DACs operating at high resolution.

As noted above, the RF–chains can consume considerable power and increase the costs of the
radio system [28], so another way to reduce energy is to optimize the number of activated RF–
chains. A brute-force technique has been used in [29] to identify the most energy efficient hybrid
precoder by designing the complete precoding solution for all of the choices for the number of
RF–chains. A simpler alternative approach to optimizing the number of activated RF–chains was
proposed in [30] which makes use of the Dinkelbach technique for optimizing the energy efficiency
metric of data rate divided by power consumed.

This paper builds on the existing literature on optimal hybrid beamformer design [11] and
the sparse solutions developed in [12]. More specifically, the paper builds on the Dinkelbach
technique for energy efficient RF–chain selection developed in [30] for single user MIMO channels.
We extend this work in two aspects. Firstly, we show how this method can be implemented in
a multiuser broadcast channel where one transmitter uses beamforming to send multiple data
streams simultaneously to multiple user terminals. Secondly, we show how our approach can take
into account the impact of hardware imperfections within the precoding network. This requires a
completely new approach based on the mathematical technique of convex relaxation, as compared
to the simpler methods used in [30]. This is necessary to handle the increased complexity of
selecting RF chains for the multi-user scenario. Further modifications are required to model
hardware imperfections in the system and to account for the potential co-channel interference
between multiple users.

Notations and Organisation

Table 1 provides a list of notations used in this paper along with their description.
The remainder of the paper is structured as follows: Section 2 reviews the literature on

dynamic hybrid beamforming architectures. Section 3 describes the system and channel models.
Section 4 discuss the EE maximisation problem where spectral efficiency and power consumption
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Channel Attributes Values
Bandwidth 100 MHz - 2 GHz

Base Station (BS) Antennas 64 - 256

Mobile Station (MS) Antennas 4 - 16

Channel Sparsity High
Spatial Correlation High

Angular Spread < 50 degrees
Orientation Sensitivity High

Table 2. Channel attributes and their typical values for mmWave communication.

models are defined. In Section 5, we introduce the proposed RF selection algorithm. Section 6
presents simulation results to show the performance improvements and finally Section 7 presents
conclusions to the paper.

2. System and Channel Model

(a) MmWave Channel
Making use of the very wide bandwidth channels available in the mmWave frequency bands is
an important way to meet the needs of mobile broadband users in the next decade [36–38].
The higher path losses associated with mmWave spectrum compared to microwave bands can
be mitigated through beamforming gains. These arise from using directional transmission and
reception with large scale antenna arrays, i.e., MIMO systems. In addition, mmWave signal
propagation is significantly affected by blockage effects, e.g., from the human body (attenuation
from 20 to 35 dB [39]) and building materials such as brick (attenuation of 40 to 80 dB
[40,41]). Table 2 discusses typical mmWave channel characteristics which are important attributes
when considering mmWave frequency channels for next generation wireless standards. One very
important property of a typical mmWave frequency channel is the high sparsity, i.e., there are only
few significant propagation paths in the angle and delay domains [7,42].

Assuming that orthogonal frequency division multiplexing (OFDM) is being used, we make use
of the flat fading channel model to model one subcarrier of a mmWave communication system.
We consider Pk propagation paths for kth user, where k= 1, . . . ,K, NT TX antennas and NR RX
antennas. The channel response matrix is given by:

Hk =

Pk∑
p=1

αk,pa(NR, θk,p)bH(NT, φk,p) (2.1)

The scalar αk,p denotes the gain for the pth multi-path component (MPC) for kth user. The scalar
Pk is the total number of MPCs for the kth user and the vectors b(·)∈CNT×1 and a(·)∈CNR×1

are the steering vectors for the TX and RX respectively. Both TX and RX are assumed to use a
uniform linear array (ULA) with antenna array spacing d= λ/2, so that the RX steering vector is
defined as:

a(NR, θ) = [1, ejπ cos(θ), ej2π cos(θ), . . . , ej(N−1)π cos(θ)]T . (2.2)

The TX steering vector b(NT, φ)∈CNT×1 is defined similarly for the TX, with θ, φ∈ [−π2 ,
π
2 ]

representing the steering angle of arrival (AoA) and departure (AoD), respectively.

(b) System Model
We consider a mmWave downlink multi-user scenario, where the BS is equipped with an NT-
element ULA and serves K users. As shown in Figure 1, the BS employs analogue precoding
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represented by the matrix FRF ∈CNT×LT . To capture the hardware imperfections of the analogue
beamformer, we adopt the following linear model:

FRF = Fideal
RF +Φ, (2.3)

The matrix Fideal
RF ∈FNT×LT where FNT×LT is the set of NT × LT matrices with constant

modulus entries, given by [FRF]i,k = ejπ(i−1)(k−1)/N . The error matrix Φ∈CNT×LT due to
hardware imperfections is composed by identically independent distributed entries, [Φ]i,k ∼
CN (0, σ2

φ), and σ2
φ is the variance. The analogue precoder is connected to the baseband signals

via LT RF–chains. On the user side, each user equipment has an NR-element ULA with a single
RF–chain output.

The discrete-time received signal at kth user terminal, with k= 1, . . . ,K, is expressed as:

yk=wH
k HkF

ideal
RF P

1
2

TXx +wH
k HkΦP

1
2

TXx +wH
k

K−1∑
`=1, 6̀=k

H`FRFP
1
2

TXx+nk, (2.4)

where:

• x∈CLT×1 is the baseband signal for amplification and upconversion by the LT RF–chains,
• FRF ∈CLT×NT is the analogue beamforming matrix, which considered to contain noise

due to hardware imperfections and fluctuations in circuit behaviour.
• PTX ∈RLT×LT is a diagonal matrix whose entries contain the power amplification factors

of the LT RF–chains,
• Hk ∈CNT×NR is the mmWave channel response array between the kth user and the BS,
• wk ∈CNR×1 is the combiner beamforming vector applied for the kth user: it is computed

as the steering vector b that maximises the received signal power,
• wH

k HkΦx is the noise due to hardware imperfections,
• wHk

∑K−1
`=1, 6̀=kH`FRFx is the inter-user interference, the vector x∈CK×1 represents the

broadcast signal, and
• nk ∈C represents the additive white Gaussian noise (AWGN) which is complex Gaussian

distributed with zero-mean and variance σ2
n, i.e., nk ∼CN (0, σ2

n).

3. Energy Efficiency Maximisation
The EE is defined as the ratio of the SE R (bit/sec/Hz) and the power P (Watts) [43],

EE ,
R

P
(bit/Hz/Joule). (3.1)

Essentially, maximisation of the EE aims for simultaneous maximisation of the SE and minimisation
of the required power. This problem can be expressed by the following contrained optimisation :

max
R

P
subject to R≥Rmin & P ≤ Pmax, (3.2)

where Rmin and Pmax are the predefined lower and upper bounds for the SE and power,
respectively. The SE R and power P can be expressed as functions of several parameters, e.g., the
analog/digital beamforming matrices, the number of RF–chains, for the TX and the RX respectively.
Thus, equation (3.2) represents a fractional optimisation problem, where in general there may be
no closed form expression for the solution [43]. Depending on the optimisation variable we choose
to focus on, the SE R and the power P can be non-convex functions.

Let us consider the case where the optimisation variable is the power consumed by LT

RF–chains. Mathematically, the required energy for the operation of the ith RF–chain can be
represented by the ith entry of the vector p, [p1, . . . , pLT

]T , where pi is a positive real number,
i.e., pi ∈R+. Furthermore, the overall consumed power P for the Hybrid BF MIMO system is
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composed by the terms:

P = Pamp + PRFchains + Pcircuit (Watts), (3.3)

where Pamp is the power required by the amplifiers for signal transmission, PRFchains is the
consumed power at all the RF–chains and Pcircuit is the consumed power at the digital and
analogue circuit components. The consumed power for the RF–chains contributes significantly to
the overall power P . In this work we focus on the minimisation of the RF–chains power, which is
expressed as:

PRFchains ,
LT∑
i=1

pi. (Watts) (3.4)

Note that (3.4) is a convex function of the p since
∑LT
i=1 pi = ‖p‖1.

For hybrid beamforming, we begin with a vector s∈CK×1 which contains the K data streams
for transmission: s obeys the property E[ssH ] = IK . The vector s is then pre-multiplied by the
matrix FBB ∈CLT×K which represents the digital beamforming matrix at the transmitter to
generate the baseband signal vector x. The precoder is therefore decomposed as:

F,FRFP
1
2

TXFBB, (3.5)

where PTX , diag(pTX) is the diagonal matrices representing the power consumption of the
RF–chains at the TX, pTX. For the hybrid combiner that represents the signals processed at the
receivers, we define the NR ×K matrix:

W, [w1,w2, . . .wK ]. (3.6)

The SE of the whole hybrid system is given by [12]:

R(PTX)=log2 |IK+
1

σ2
n
QQH |, (bit/sec/Hz) (3.7)

where the matrix Q∈CK×K is defined as:

Q, WH︸ ︷︷ ︸
RX side

HFRFP
1
2

TXFBB︸ ︷︷ ︸
TX side

. (3.8)

To simplify the system analysis, usually the design of TX beamforming and RX beamforming are
treated separately [12]. Thus, the SE considering the TX beamformer F given a pre-defined RX
beamformer matrix W is given by:

R(PTX) = log2 |IK +
1

σ2
n
WHHFRFP

1
2

TXFBBF
H
BBP

1
2

TXFHRFH
HW|. (3.9)

Maximising the EE ratio in equation (3.1) is in general a difficult mathematical problem. In
order to make progress, we use the following theorem to study the mathematical properties of
equation (3.9).

Theorem 1. The SE given by (3.9) is a concave function of the diagonal matrix PTX, assuming
FBBF

H
BB = IK .

Proof. Since FBBF
H
BB = IK , the expression in (3.9) is written as:

R(PTX) = log2 |IK +
1

σ2
n
WHHFRFPTXFHRFH

HW|

= log2 |IK +
1

σ2
n
PTXFHRFH

HWWHHFRF|

=

K∑
k=1

log2

(
1 +

1

σ2
n
pTX,qλq

)
, (3.10)
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where λk is the kth eigenvalue of the matrix (FHRFH
HWWHHFRF). Recall that the sum of

concave functions log2(1 + x) is also concave. Thus, R(PTX) is a concave function of PTX.

Therefore, in our case, the fractional problem (3.2) is given as the ratio of a concave and
a convex function. A common approach for solving fractional concave-convex problems is the
Dinkelbach method (DB) [44], which replaces the fractional optimisation by an iterative sequence
of simple problems based on the difference of the numerator and denominator. Specifically, the
solution to the problem (3.2) is given successively by solving the problem:

max(Rd − κdPk) subject to Rd ≥Rmin & Pd ≤ Pmax, (3.11)

for d= 1, . . . Dmax where Dmax is the maximum number of iterations of the method. In the above
equation Rd and Pd are the SE and power for the dth DM iteration,κd is the calculated EE ratio
based on the previous estimation of Rd−1 and Pd−1. Moreover, for concave-convex problems the
DM method also provides convergence guarantees in order to find the globally best solution.

(a) EE maximisation via RF–Chain Subset Selection
Assigning a zero value to the power of the ith RF–chain, pi=0 represents the option of de-activating
the corresponding RF–chain, so that it does not contribute to the overall power expenditure.
However, due to the use of the zero value, the problem becomes a combinatorial one, where all
possible combinations for the zero values that maximize the EE have to be exhaustively searched
[30]. This means that the complexity of such an "exhaustive search" solution scales exponentially
with the number of RF–chains LT.

To overcome the issue of the non tractability of the exhaustive search, we consider the case
where all RF–chains have equal power requirements, i.e., pi = p. Then, the problem (3.9) can be
formulated as a sparse subset selection one, by introducing a sparse RF–chain selection vector, s,
with entries in the set {0, 1}. Incorporating this selection procedure into the expressions of rate in
(3.9) and power in (3.4) for the TX, we have

R(S = log2 |IK +
1

σ2
n
WHHFRFSFBBF

H
BBSF

H
RFH

HW|, (3.12)

where S = diag(s), with s, [s1, · · · sLT
]∈ {0, 1}LTX×1, and pi = p for i= 1, . . . , LTX. Note that

(3.12), following the Theorem 1, is a concave function of S. The power consumed by the RF–chains
is expressed as:

PRFchains , Pfix + p

LT∑
i=1

si = Pfix + p‖S‖0, (Watts) (3.13)

where Pfix is a fixed power consumed by the system and which does not vary with the number of
activated RF chains. The matrix S is a diagonal matrix where the value si = 1 denotes that the ith
RF chain is activated, or set to zero otherwise. The introduction of the selection variable permits
us the approximation of the combinatorial problem (3.11) with si ∈ {0, 1}, i= 1, . . . , LT, into an
approximated convex problem with si ∈ (0, 1). Therefore, the dth convex optimisation problem in
(3.11) is transformed into a sparse subset selection, i.e.,

min
s

(κd‖s‖1 −Rd(s)) subject to Rd(s)≥Rmin & Pd(s)≤ Pmax, (3.14)

In [30] we provide an iterative algorithm that solves (3.14) via thresholding. Next, we will
describe major modifications to the proposed approach that are required to optimize performance
in the presence of hardware imperfections and multi-user co-channel interference. It will be seen
that it can significantly reduce the overall complexity, as discussed in more detail in the following
section.
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4. Proposed Technique
The RF selection process can be seen as an additional block of the hybrid beamformer structure,
that activates specific parts of the analogue beamformer. Thus, instead of finding the optimal
phased-array matrix FRF, we choose only a subset of columns of this matrix in order to achieve
the highest EE. This selection module is added between the digital and analogue parts, and can
be implemented by a network of switches. Essentially, it selects a subset of the LT columns from
a fixed codebook matrix which represents how the digital signals are forwarded to the analogue
signal processing network.

Let us describe the selection mechanism that represents the active/inactive RF–chains at the
BS, which is based on the approaches described in Section 3 above. For this, we use the binary
matrix S∈ {0, 1}NT×NT defined in Section 3. Specifically, S is a diagonal matrix whose entries
are either zero or one, A physical interpretation of S is possible by considering that this matrix
represents a switching network. This network activates only a maximum of LT outputs of an
extended analogue combiner FeRF ∈F

NT×NT . This extension ensures that the analogue front-end
has the same number of inputs and outputs, thus, the selection is possible from the entire analogue,
noisy, codebook given by:

FeRF = Fe,ideal
RF +Φe, (4.1)

where Fe,ideal
RF ∈FNT×NT is the extended ideal analogue beamformer and Φe ∈CNT×NT is the

extended noise matrix that captures hardware imperfections in the analogue circuitry.
These hardware imperfections may arise from one or more of the following sources [45]:

• Phase Noise: The oscillators used in the transmitter and receiver RF–chains are not perfect
sine waves, but rather their frequencies slowly drift over time, causing variations in the
channel model of the wireless links.

• Mutual Coupling: The antennas in a uniform or rectangular array are often spaced by half
a wavelength as in equation (2.2). This means the antennas can be subject to re-radiation
of the transmitted or received signals, an effect called mutual coupling. This distorts the
steering vector from its ideal form [46].

• RF Hardware Imperfections: In this case non-linearities in the RF amplifiers can cause
the signal to deviate from the linear model described in equation (2.4). In addition, some
RF combiner circuits, such as the Rotman lens for performing beamforming [26] can cause
distortion or spillover of the desired beam patterns.

• Beam Squint: In this case, the signal is sufficiently broadband that the steering vector
defined in equation (2.2) is no longer accurate [47] for all frequencies within the
bandwidth of the signal. Instead the steering vector becomes a function of the subcarrier
index in OFDM data transmission.

Incorporating the selection matrix, the system model of the proposed framework is expressed
as:

yk = wH
k HkF

e,ideal
RF SP

1
2

TXx + ζk(S) + ηk(S) + nk, (4.2)

where yk ∈C is the received signal of the kth user, the hardware noise component is given by,

ζk(S) = wH
k HkΦ

eSP
1
2

TXx, (4.3)

while ηk(S) is the interference that affects the kth user, given by:

ηk(S) = wH
k

∑
` 6=k

H`F
e
RFSP

1
2

TXx. (4.4)

For each user, the theoretical average SE is given by:

Rk(S) = log2 E

1 +
|wH
k HkF

e,ideal
RF SP

1
2

TXx|2

|ζk(S) + ηk(S) + nk|2

 , (bit/sec/Hz) (4.5)
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Algorithm 1 Exhaustive search algorithm

Input: Fe,ideal
RF , σ2

ζk
, σ2
ηk , σ

2
nk

, wk,Hk, , C
Output: Sopt

1: for i= 1, . . . , |C| do
2: Compute the EE for S(i) ∈ C via (4.5) and (3.13)
3: end for
4: Find Sopt=arg maxS(i) EE s.t. P (S(i))≤Pmax & R̄(S(i))≥Rmin

Algorithm 2 Iterative minimisation algorithm
Input: FRF,FBB, LT

Output: Siter

1: for LT = 1, 2, . . . , LT do

2: Compute the EE for SLT
=

[
ILT

0LT−LT

0LT−LT
0LT−LT

]
via (4.5) and (3.13)

3: end for
4: Find Siter = arg maxSLT

EE s.t. P (SLT
)≤ Pmax

where the expectation E{·} is performed over the joint space of {x, ζk, ηk}. Note that we assume
that these noise sources are statistically independent, thus, there are no cross-correlation terms
among them. Next, we provide an upper bound for Rk(S) which is expressed based on the known
covariance matrices of ζk(S) and ηk(S).

In this work, we focus on the power that is consumed by each RF–chain, PRF. Each RF–chain
has a number of power consuming components, such as the ADC/DAC and power amplifiers. Thus,
by activating only a subset of the RF–chains, the required power decreases significantly. This power
level is computed using the model described in equation (3.13).

The EE problem for the multi-user downlink scenario, can be expressed as:

max
S∈S

R̄(S)

P (S)
s.t. P (S)≤ Pmax and R̄(S)≥Rmin, (4.6)

where S is the set of the feasible diagonal matrices S which satisfy:

• [S]i,i ∈ {0, 1}, [S]i,k = 0 for i 6= k, and
• ‖S‖0 ≤LT,

while R̄(S) ,
∑K
k=1Rk(S). Due to the requirement S∈ {0, 1}NT×NT , problem (4.6) defines an

integer concave-convex fractional problem, which is computationally very expensive to solve. The
optimal subset can be obtained via exhaustive search over all possible combinations. Let the set C
represents all possible combinations for the state (active/inactive) of the virtual switches for the
LT RF–chains. Then, the exhaustive search algorithm has to compute the EE of the ith iteration,
defined as

EE ,
R̄(S(i))

P (S(i))
, (4.7)

for all combinations |C| with P (S(i))≤ Pmax and R̄(S(i))≥Rmin, and select the one with the
highest EE. The exhaustive search method is summarized in Algorithm 1, where the remaining
parameters are defined in Proposition 1 below. Note that, the number of the combinations |C|
increases exponentially with LT.

Before proceeding with the proposed technique, we would like to describe a sub-optimal,
but computationally affordable and straightforward approach of solving (4.6). This could be
implemented by selecting the minimum number of RF–chains, where the selection is performed
by a naive technique, e.g., randomly or consecutively [30]. This approach can be implemented
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Algorithm 3 Dinkelbach iterations
1: for i= 1, 2, . . . , Imax do
2: κ(i) = R̄(i)/P (i)

3: Obtain S(i) by solving (4.11)
4: Calculate R̄(i) and P (i)

5: end for

via a simple iterative search. Specifically, at each iteration the number of RF–chains LT would
increase by one until it reaches the maximum value, LT = 1, 2, . . . , LT. At each iteration the EE
will be computed and at the end of the iterations we select the LT which provides the maximum
EE. This iterative search is summarized in Algorithm 2.

In order to extend [30] to handle hardware imperfections and multi-user scenarios, the
complexity of selecting the the correct RF chains in (4.6) grows exponentially with the number
of RF chains LT. In this paper we adopt the convex relaxation strategy, where the integer values
are replaced by the set of real numbers [S]`,` ∈ (0, 1) [48]. This approach reflects the actual
system hardware and permits study of scenarios where the impairments that affect different RF
chains are not symmetric. Moreover, to deal with a fractional cost function, we employ Dinkelbach
iterations [49]. This method is an iterative and parametric algorithm, where a sequence of simpler
problems can be shown to converge to the global solution of the overall fractional problem. Let
κ(i) ∈R, for i= 1, 2, . . . , Imax, then one iteration of the DB method can be written as:

max
S∈S

{
K∑
k=1

Rk(S)− κ(i)P (S)

}
(4.8)

The notation S denotes the set of diagonal matrices that satisfy both constraints P (S)≤ Pmax and
R̄(S)≥Rmin. The DB iteration steps are summarized in Algorithm 3. Parameter κ(m) is defined as
the previous iteration EE computation [43], i.e.,

κ(m) = R̄(i−1)/P (i−1), (4.9)

with κ(0) = 1.
To provide a computationally tractable solution for (3.14), we use a completely different

approach to [30] and derive a novel lower bound approximation for the SE expression
∑
k Rk.

Proposition 1. Given that the covariance matrices E{[Φe]lT([Φe]lT)H} and E{[FeRF]lT([FeRF]lT)H}
are known for lT = 1, . . . , LT, the achievable average SE for the kth user, which is given by (4.5) can
be lower bounded by:

Rk ≥
‖wH

k HkF
e,ideal
RF SP

1
2

TX‖
2

σ2
n + σ2

ζk
+ σ2

ηk

, (4.10)

where σ2
ζk

, ξHk Mξk, σ2
ηk ,

∑
p 6=k ξ

H
p Nξp and σ2

n is the variance of the AWGN.

Proof. The proof is presented briefly in the Appendix.

Thus, problem (4.6) becomes:

max
S∈S


K∑
k=1

‖wH
k HkF

e,ideal
RF SP

1
2

TX‖
2

σ2
n + σ2

ζk
+ σ2

ηk

− κ(i)P (S)

 , (4.11)

where the denominator is a function of the selection matrix S, namely

σ2
ζk = ξHk E

{
ΦeSP

1
2

TX(P
1
2

TX)HS(Φe)H
}
ξk = ξHk Mξk, (4.12)
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Setting Value
Carrier Frequency 28 GHz
System Bandwidth 100 MHz

Delay Spread 10 ns
Angle Spread 10◦

Base Station (BS) Antennas NT 32

Mobile Station (MS) Antennas NR 8

Number of Users K 5− 15

Fading Type Rayleigh Fading
Number of Subpaths Pk Randomly chosen for each user with U(0, 15)

Table 3. Default simulation settings for the results presented in this section.

and

σ2
ηk =

∑
p 6=k

ξHp E
{
FeRFSP

1
2

TX(P
1
2

TX)HS(FeRF)H
}
ξp =

∑
p 6=k

ξHp Nξp. (4.13)

Formulas to compute the expectations in equations (4.12) and (4.13) are given in equations (A 6)
and (A 8) in the Appendix. However, equation (4.11) is still non-convex over S. To address this
issue, we use the Titu’s lemma on the summation term, i.e.,

K∑
k=1

‖wH
k HkF

e,ideal
RF SP

1
2

TX‖
2

σ2
n + σ2

ζk
+ σ2

ηk

≥
∑K
k=1 ‖w

H
k HkF

e,ideal
RF SP

1
2

TX‖
2∑K

k=1

(
σ2
n+σ2

ζk
+σ2

ηk

) . (4.14)

Using the lower bound of (4.14) in (4.11), and employing the DB approach, we can replace the
fractional cost function with:

max
S∈S

K∑
k=1

‖ωkS‖2 −
K∑
k=1

(
σ2
n + σ2

ζk + σ2
ηk

)
− κ(i)P (S), (4.15)

where ωk ,wH
k HkF

e,ideal
RF . Since (4.15) is convex over S, standard interior-point methods and

publicly available software-packages can be used to solve (4.15). Note that, even if problems (4.6)
and (4.15) result in different solution matrices S, their EE performance is almost identical, as
shown through the simulations in the next section.

5. Simulation Results
In this section, we use MATLABTM computer simulation results to evaluate the performance
of the proposed method. All the results are averaged over 500 Monte-Carlo realisations. Let
us first define the parameters and the system characteristics. We assume that the transmitter
employs hybrid A/D transmit beamforming with NT antennas, while the number of RF–chains
is LT ≤NT. Each transmission broadcasts a zero-mean random Gaussian vector with x∈CNR×1

and E{xxH}= INR
. We assume ULAs at both TX and RX sides and operating over a 28 GHz

outdoor mmWave channel [50]. The K users are distributed uniformly random around the BS
with maximum distance 5 meters. Also, the MPC Pk for the kth user is selected uniformly random
over the set [1, 15]. To focus on the TX performance, we assume digital combining is performed at
the user equipment, i.e., wk is defined as the kth column of the left orthonormal matrix, obtained
by the singular value decomposition of the channel matrix Hk. Default channel parameter settings
are shown in Table 3.

For the evaluation of the proposed technique in terms of EE and SE performance, we have
considered the following cases for the TX:

(i) Digital BF: digital beamforming architecture (NT =LT), which represents the optimum
from the achievable SE perspective,
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Figure 2. Performance comparisons over the transmit power PTX for NT = 8, LT = 8, NR = 8. These results provide

a sanity check for the convergence of the proposed technique with hardware impairments noise of, σφ = 0.01. The

number of the users was set to K = 5.

(ii) Analogue BF: analogue beamforming architecture with LT = 1, which represents a low
power option with acceptable SE performance,

(iii) Hybrid BF: hybrid beamforming architecture with LT RF–chains, where the beamforming
matrices are obtained via [12]

(iv) Iterative-HBF: hybrid A/D transmit beamforming with the minimum number of RF–chains
LT, using Algorithm 2.

(v) Exhaustive-HBF: hybrid A/D transmit beamforming with the best subset of active RF–
chains obtained by exhaustive search, using Algorithm 1. The results of this technique are
limited by the number of RF–chains, i.e., LT ≤ 12.

First, to perform a sanity check, we compare the results of the proposed technique and the
Exhaustive-HBF for NT =LT =NR = 8. We keep the antenna arrays to small sizes due to the
computational complexity of the Exhaustive-HBF. In Fig. 2 we plot the SE, Power, and EE with
respect to the instantaneous signal-to-noise ratio (SNR), defined as:

SNR = 10 log10

(
1

σ2
n

)
, (5.1)

as well as the EE versus SE. It can be verified that the proposed technique maximizes the EE,
following closely the performance of the optimum Exhaustive-HBF algorithm. The Iterative-HBF
cannot reach the EE of the proposed technique, since it minimizes the number of the RF–chains
(e.g., the utilized codebook beams) and it does not consider the best subset of RF–chains to
use. Note that the Hybrid BF and Digital BF have the same EE performance, since NT =LT.
The Analogue BF method has only one RF–chain and thus it has a minimal number of digital
components; although it has low power consumption, it exhibits the lowest EE. This comes from
the fact that the transmitted signal needs to be multiplexed in time or frequency between the
different user terminals, as the transmitter cannot achieve spatial multiplexing. The power of the
proposed and exhaustive-HBF techniques is around 2.5 Joules/sec for all SNRs. This is half of the
power required by the Iterative-HBF and the 1/4-th of the Digital and Hybrid BFs.

Next, we increase the antenna array size of the BS to NT = 32, while the number of the active
RF–chains, that connect the analogue and the digital parts at the BS, remain LT = 8. Recall that,
in order to focus on the performance at the BS, each user employs a digital combiner with NR = 8.



14

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

0 10 20

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
p

e
c
tr

a
l 
E

ff
ic

ie
n

c
y

(b
it
/s

e
c
/H

z
)

0 10 20

SNR (dB)

0

5

10

15

20

25

30

35

P
o

w
e

r

(J
o

u
le

s
/s

e
c
)

0 10 20

SNR (dB)

0

0.05

0.1

0.15

0.2

0.25

0.3

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

(b
it
/H

z
/J

o
u

le
)

0 0.2 0.4 0.6

Rate

(bit/sec/Hz)

0

0.05

0.1

0.15

0.2

0.25

0.3

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

(b
it
/H

z
/J

o
u

le
)

Digital BF Analog BF

Hybrid BF Hybrid BF with RF minimization

Hybrid BF with RF exhaustive search Proposed

Figure 3. Performance comparisons over the transmit power PTX for NT = 32, LT = 8, NR = 8 and σφ = 0.01. The

number of the users was set to K = 5.

In Fig. 3, we show the SE and EE with respect to the SNR for NTX = 32 and σφ = 0.01. The
proposed technique outperforms the other baselines, even the Exhaustive-HBF. This is possible,
since it is able to search over the whole NT codebook space, having polynomial computational
complexity. To achieve this performance, the analogue part (e.g., phase-shifters) of the BS
beamformer have been increased, based on the proposed design. Thus, a trade-off between the
hardware complexity and the EE performance is possible. Note that in this work, we consider that
the power consumption of each phase-shifter is negligible compared to the power consumption
of each RF–chain [25]. This structure can be realized by using very energy efficient elements,
e.g., passive phase-shifters or a Butler matrix [51]. The required power for the proposed and
the Exhaustive-HBF techniques remain below 5 Joules/sec. The Iterative-HBF requires the double
energy per second, while the Hybrid BF four times more. The results for this case indicate the high
power consumption for the Digital BF, which is over 30 Joules/sec.

In Fig. 4 we plot the achievable SE, Power and EE over the number of RF–chains LT. The
proposed design is able to achieve superior EE performance when compared with the other hybrid
BF techniques. The achievable SE of Iterative-HBF and Exhaustive-HBF is very similar. Recall that
the Iterative-HBF selects the minimum number of RF–chains that achieves the best EE, while
Exhaustive-HBF searches for the best overall subset of RF–chains. However, the search space of
the latter is constrained to 8 codebook beams, due to the very high computational burden.

In Fig. 5 we show the achievable SE, Power and EE with respect to the number of the users
K. The proposed technique achieves high SE, following the Hybrid BF and Digital BF curves. The
Power consumption of the proposed technique remains at the same level with the Analog BF and
Exhaustive-HBF, thus, it achieves the highest EE compared to the other approaches. This indicates
that the proper design of the beamformer via RF–chain selection focus the beams to different
locations.

It is important to note that, the proposed design has very similar SE performance with the
Hybrid BF approach [12], as shown in Figs. 3 and 4. Indeed, a connection between the proposed
technique and the greedy algorithm introduced in [12] exists. Specifically, the algorithm of [12]
estimates a sparse vector which corresponds to the digital part of the beamformer. In the proposed
design, we seek a sparse binary vector which is also part of the digital beamformer. Additionally,
the analogue parts are designed using static analogue codebooks in both approaches. However,
the analogue part of [12] is assumed to be drawn from an idealized discrete codebook, while, in
the proposed technique we explicitly model the introduced noise due to hardware imperfections.
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Figure 4. Spectral efficiency, Power and Energy efficiency over the number of RF chains LT, for NT = 32, NR = 8, and

σφ = 0.01. The number of the users was set to K = 8.
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Figure 5. Spectral efficiency, Power and Energy efficiency over the number of users K, for NT = 32, LT = 8, NR = 8,

and σφ = 0.01.

Moreover, the proposed technique outperforms [12] in terms of EE, since via the switches, it
deactivates parts of the analogue beamformer which do not contribute significantly to the overall
SE performance.

6. Conclusion
This paper discusses the advantages of hybrid beamforming architectures for millimetre-wave
wireless communications systems. By using a small number of radio frequency chains compared to
the number of antennas, it is possible to improve the energy efficiency of communication. A novel
radio frequency chain selection architecture is described to allocate the best predefined analogue
codebook that maximizes the energy efficiency performance of the transmitter. Via simulation
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results, we showed that its beneficial in terms of EE, to activate a subset of radio frequency chains,
rather than always to to use the maximum number that are available. The proposed algorithm
outperforms all the baselines in terms of both energy and spectrum efficiency, when the transmitter
has a large number of antenna terminals.
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Appendix
Starting from (4.5), the kth user rate can be is lower bounded by

Rk(S) = log2 E{1 + γk(S)} ≥ E{γk(S)}
E{1 + γk(S)} > cE{γk(S)}, (A 1)

where γk(S) ,
|ωH

k SP
1
2
TXx|

2

|ζk(S)+ηk(S)+nk|2 and ωHk ,wH
k HkF

e,ideal
RF . Using Titu’s lemma we have that:

E

 |ωHk SP
1
2

TXx|
2

|ζk(S)+ηk(S)+nk|2

≥
E
{
|ωHk SP

1
2

TXx|
2

}
E{|ζk(S)+ηk(S)+nk|2}

. (A 2)

Given that E{xxH}= I and S2 = S, the numerator of (A 2) is given by:

E
{
|ωHk SP

1
2

TXx|
2
}

=ωHk SP
1
2

TXE{xx
H}(P

1
2

TX)HSωk=ωHk P
1
2

TXS(P
1
2

TX)Hωk=

∥∥∥∥ωHk SP
1
2

TX

∥∥∥∥2

. (A 3)

Given that the hardware noise, the user interference noise and the white Gaussian noise are
mutually independent, the denominator of (A 2) is given by:

E{|ζk(S)+ηk(S)+nk|2}=E{|ζk(S)|2}+E{|ηk(S)|2}+E{|nk|2}, (A 4)

where E{|nk|2}= σ2
n. This expectation can be easily calculated as S and PTX are both diagonal

matrices,

E{|ζk(S)|2} = ξHk E
{
ΦeSP

1
2

TXxx
H(P

1
2

TX)HS(Φe)H
}
ξk

= ξHk E
{
ΦeSP

1
2

TX(P
1
2

TX)HS(Φe)H
}
ξk = ξHk Mξk, (A 5)

with ξk ,wH
k Hk. The expectation present in the matrix M can be easily calculated as S and PTX

are both diagonal matrices. The lth row and mth column entry of this matrix can be calculated as:

Ml,m=E
{
ΦelSP

1
2

TXP
1
2

TXS(Φem)H
}

=

NT∑
n=1

S(n)PTX(n)E
{
Φel,n(Φen,m)H

}
. (A 6)

HereΦel denotes the lth row vector andΦel,n denotes the lth row and nth column ofΦe respectively.
The notation S(l) is the lth diagonal entry of S and PTX(l) is the lth diagonal entry of PTX.
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Similarly,

E
{
|ηk(S)|2

}
=

∑
p 6=k
|ξHp FeRFSP

1
2

TXx|
2

=
∑
p 6=k

ξHp E
{
FeRFSP

1
2

TXxx
H(P

1
2

TX)HS(FeRF)H
}
ξp

=
∑
p 6=k

ξHp E
{
FeRFSP

1
2

TX(P
1
2

TX)HS(FeRF)H
}
ξp =

∑
p 6=k

ξHp Nξp, (A 7)

where ξhp ,wH
p Hp, E{ΦeS(Φe)H} and E{FeRFS(FeRF)H} are the covariance matrices of ζk(S)

and ηk(S) which depend on the selection matrix S. By analogy to equation (A 6), we have for N

Nl,m = E
{
FeRF(l)SP

1
2

TXP
1
2

TXS(FeRF(m))H
}

=

LT∑
n=1

S(n)PTX(n)E
{
FeRF(l, n)(FeRF(n,m))H

}
, (A 8)

where FeRF(l) denotes the lth row vector and FeRF(l, n) is the lth row and nth column entry of
FeRF, respectively. Using equations (A 3), (A 5) and (A 7) leads to the desired result.
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