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ABSTRACT  

Purpose: Double diffusion encoding (DDE) MRI enables the estimation of microscopic diffusion 

anisotropy, yielding valuable information on tissue microstructure. A recent study proposed that the 

acquisition of rotationally invariant DDE metrics, typically obtained using a spherical “5-design”, could 

be greatly simplified by assuming Gaussian diffusion, facilitating reduced acquisition times that are more 

compatible with clinical settings. Here, we aim to validate the new minimal acquisition scheme against 

the standard DDE 5-design, and to quantify the proposed method's noise robustness to facilitate future 

clinical use. 

Methods: DDE MRI experiments were performed on both ex vivo and in vivo rat brains at 9.4 T using 

the 5-design and the proposed minimal design and taking into account the difference in the number of 

acquisitions. The ensuing microscopic fractional anisotropy (μFA) maps were compared over a range of 

b-values up to 5000 s/mm2. Noise robustness was studied using analytical calculations and numerical 

simulations. 

Results: The minimal protocol quantified μFA at an accuracy comparable to the estimates obtained via 

the more theoretically robust DDE 5-design. μFA’s sensitivity to noise was found to strongly depend on 

compartment anisotropy and tensor magnitude in a non-linear fashion. When μFA < 0.75 or when mean 

diffusivity is particularly low, very high signal to noise ratio (SNR) is required for precise quantification 

of µFA. 

Conclusion: Our work supports using DDE for quantifying microscopic diffusion anisotropy in clinical 

settings but raises hitherto overlooked precision issues when measuring μFA with DDE and typical 

clinical SNR. 
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INTRODUCTION 

Diffusion-weighted MRI (dMRI) is sensitive to micron-scale displacements, making it a useful method 

for measuring microstructural features1 . Diffusion tensor imaging (DTI) represents diffusion in a voxel 

by a single Gaussian diffusion tensor with characteristic size, shape, and orientation2 . At low diffusion 

weighting, even in the case of restricted diffusion, dMRI acquisition schemes with at least six non-

collinear directions produce approximately mono-exponential signal decays from which the diffusion 

tensor’s eigenvectors and eigenvalues can be quantified and other quantitative metrics such as mean 

diffusivity (MD), fractional anisotropy (FA), and absolute orientation are typically derived2 . DTI has 

found widespread application in both clinical research and medicine3–6, where it is regularly used in 

studying white matter tissues7,8, acute stroke characterization9,10 , and pre-surgical planning11 , for 

example. However, the single tensor representation is not always sufficient for characterizing complex 

systems: restricted diffusion or polydispersity in diffusion components can induce non-mono-exponential 

signal decays, which cannot be captured by the DTI representation. Diffusion kurtosis imaging12  (DKI) 

methods have been developed to extend the signal representation13  to the second order in b, while q-

space imaging methods14–16  exploit the Fourier relationship between the averaged propagator and 

diffusion-weighted signal to enhance microstructural sensitivity. 

The methods mentioned above belong to a class of single diffusion encoding (SDE)17  methods 

because they probe the displacements of spins along a single axis. Despite their usefulness in 

characterizing tissues, a fundamental limitation of SDE methods is their inherent averaging over the 

ensemble of diffusion compartments in the imaging voxel. For example, in a system comprising an 

ensemble of diffusion tensors, all with identical magnitude and anisotropy but their directors aligned 

according to an orientation distribution function, SDE-driven anisotropy will typically be lower than the 

true underlying microscopic anisotropy (µA) – the anisotropy of the individual tensor in its own frame 

of reference17 . In the extreme case of powder-averaged systems, SDE’s anisotropy will approach zero 
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even if the underlying µA is very high. Microscopic fractional anisotropy (µFA) is another important 

metric, representing the normalized microscopic anisotropy, which is independent of the magnitude of 

the diffusion tensor17–19 . 

Multidimensional diffusion encoding (MDE) methods20 , such as double diffusion encoding 

(DDE) and q-space trajectory encoding21,22  (QTE), have gained significant attention over the previous 

years for their ability to disentangle microscopic diffusion anisotropy and orientation coherence19,23,24 , 

potentially capturing clinically-relevant information25,26  about tissue microstructure that is inherently 

unavailable in traditional SDE experiments. While DDE in the long mixing time and long diffusion time 

regime is a model-free method for measuring µA19,27,28, time-independent Gaussian diffusion is assumed 

when measuring µA with QTE20,22 . 

In the context of microstructural estimation, DDE was first proposed by Cory et al. in 1990 for 

measuring diffusion correlations along different dimensions in powder averaged systems29 , thereby 

reporting on µA. The DDE methodology has been reviewed in the past17,30; briefly, DDE sequences 

consist of two diffusion-sensitizing time periods spanned by two diffusion-encoding gradient pulse pairs, 

separated by a mixing time (Figure 1A).  Mitra predicted that in long mixing time angular DDE 

experiments, the amplitude of the signal modulation as a function of the angle between the two gradient 

pulse pairs is sensitive to µA in powder averaged systems31 . In 2002, Callaghan and Komlosh detected 

microscopic anisotropy in polydomain lyotropic liquid crystal systems by combining parallel and 

orthogonal gradient pulse pairs14 . While several DDE studies later obtained microscopic anisotropy in 

powder averaged systems ranging from porous media32  to biological tissues33 , Lawrenz and Finsterbusch 

were the first to propose a rotationally invariant acquisition scheme for extracting µA34 . Jespersen et al. 

proposed a more robust rotationally invariant acquisition methodology termed the DDE 5-design, which 

is a set of wave vector rotations that estimates the average over all possible wave vector rotations19 , 
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requiring 72 unique acquisitions. Bias, as well as correction schemes, have been recently reported for 

such acquisitions due to higher order terms35,36 , yet they require multiple diffusion-weighting shells, 

prolonging scan time. Along with poor vendor availability, the large number of acquisitions required for 

obtaining a theoretically justified powder average has likely impeded DDE from becoming more 

common in clinical settings. 

Recently, Yang et al. proposed that, if diffusion can be assumed to be Gaussian within microscopic 

domains, as few as 12 acquisitions could be sufficient for measuring µA and µFA26  (hereafter defined as 

the “minimal” design). This simplification is based on the idea that if diffusion in every microscopic 

compartment can be fully characterized by a diffusion tensor, some acquisitions with orthogonal wave 

vectors in the 5-design are redundant as they correspond to the same in-plane trace of the diffusion tensor. 

Additionally, asymmetric sampling of diffusion-weighting directions covering half a sphere is sufficient 

in the absence of bulk flow. This realization allows the 5-design to be simplified from 12 + 60 acquisitions 

to 6 + 15 acquisitions for parallel and orthogonal wave vectors, respectively. Using simulations of infinite 

cylinders with orientation dispersion and in vivo imaging experiments with a clinical whole-body 

scanner, Yang et al. experimentally showed that the design can be further reduced down to 6 + 6 without 

significant differences in the observed value of microscopic diffusion anisotropy. Importantly, such a 

dramatic reduction in directions, and hence in acquisition time, have strong implications for clinical 

applications and indeed, Yang et al. measured µFA maps in the clinical setting using the minimal design26 . 

However, to our knowledge, this new minimal approach has not been directly compared to the more 

theoretically robust DDE 5-design. Clearly, validation is important, because new methods may produce 

biased results37,38 , and bias due to an insufficient number of measurement directions in powder averaged 

measurements acquired with MDE has been reported39 . Therefore, in this study, we sought to 

experimentally validate the proposed approach by directly comparing its extracted metrics to their 5-

design counterparts over a range of relevant b-values. Additionally, we sought to assess the precision of 
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μFA estimates derived from DDE measurements, which have been scarcely explored previously. We 

studied the noise robustness of μFA derived from the clinically feasible DDE minimal design in detail 

using analytical calculations and noise simulations in order to provide guidelines for its use in 

neuroscientific and clinical research. 
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THEORY 

μFA measurements 

In arbitrarily organized systems in terms of orientation coherence, obtaining a powder averaged signal 

Siso would entail sampling over all possible orientations of the gradient pulse pair directions: 

S
iso(q,θ) =

1

8π2 ∫ S(Lqê1,Lqê2)SO(3)
dL    (1) 

where S is the measured signal, q is the magnitude of the diffusion wave vector, θ is the angle between 

the pulse pair directions represented by unit vectors ê1 and ê2, L represents a rotation, and SO(3) is the  

rotation group. It was shown by Jespersen et al. that if S is equal to the signal cumulant expansion up to 

the fifth order in q, the integral in equation 1 can be calculated exactly with a finite number of rotations19 : 

S
iso(q,θ) ≈

1

|χ|
∑ S(Lqê1,Lqê2)L∈χ     (2) 

The set of wave vector rotations χ is known as the 5-design which consists of 12 rotations for parallel 

gradient pairs and 60 rotations for non-parallel (typically, orthogonal) gradient pairs (Figure 1B). Yang 

et al. recently proposed that, by assuming Gaussian diffusion and orientation dispersion, the 5-design can 

be reduced to a minimum of only six parallel and six orthogonal gradient pulse pair rotations26 . 

 

Given the powder averaged data acquired with parallel and orthogonal pulse pairs, microscopic 

anisotropy (μA) can be estimated as19  

ε = (𝜇𝐴)2 = 𝑙𝑛(
S||

PA

S⊥
PA)b

−2
     (3) 

where ∥ and ⊥ stand for acquisitions with parallel and orthogonal wave vectors, PA stands for powder 

average, and b is the b-value of one of the gradient pulse pairs in the DDE sequence. μA is a measure of 

the average variance of the eigenvalues of the microscopic diffusion tensors, irrespective of orientation, 

and as such it depends on the microscopic tensors’ anisotropy and size19,40 . Microscopic fractional 
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anisotropy (μFA) is a normalized measure of microscopic diffusion anisotropy that only depends on 

anisotropy of the diffusion tensors. 

μFA = √
3

2√
ε

ε+
3

5
(𝑀𝐷)2

     (4) 

where MD stands for mean diffusivity19 . In realistic voxels, a distribution of microscopic diffusion 

orientations will nearly invariably exist, and thus the measured μA and μFA will correspond to the 

average eigenvalue variance38 . 

 

Accuracy of μFA 

Since the formalism presented above is based on the truncation of the signal cumulant expansion, µA 

estimates can be corrupted by non-vanishing higher order effects. Accuracy problems arising due to these 

reasons were extensively discussed by Ianus et al. who proposed that the accuracy of μFA can be 

improved by introducing a higher order correction (P3) to equation 3 35 : 

ln(
S||

PA

S⊥
PA) = (𝜇𝐴)2b

2 + P3b
3
     (5) 

This correction allows µA and μFA to be more accurately measured. 

 

Precision of μFA 

The higher order corrections result in a more accurate estimate of μFA, albeit at some cost in precision 

due to the third order polynomial fit being more sensitive to noise than the second order fit. To our 

knowledge, previous studies have not addressed how μFA’s noise robustness is affected by ε‘s 

logarithmic dependence on the ratio of the powder averaged parallel and orthogonal wave vector 

acquisitions (Equation 3), the normalization of ε by MD (Equation 4) and the ensuing non-linear 

dependence on ε and MD. This can be examined using a common formula for propagation of 
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uncertainty41 , that approximates the error in f, which depends on vector x containing noisy measurements, 

due to random noise as 

σf(x)
2 = ∑ σi

2(
𝜕f

𝜕xi
)2N

i=1       (6) 

where σf(x) represents the standard deviation of noisy f, and σi is the standard deviation of noisy 

measurements of xi 41 . This first-order approximation is valid if the errors are statistically independent 

and small compared to the signal level41 . Applying Equation 6 on Equations 3 and 4 gives 

σε = √
σ2

12S||
2 +

σ2

12S⊥
2 b

−2
      (7) 

σμFA = σε√
27

200

(𝑀𝐷)2

√ε(ε+
3

5
(𝑀𝐷)2)

3
2

     (8) 

where it was assumed that the powder averaging is done over 12 directions for both parallel and 

orthogonal acquisitions (Figure 1C), and that MD can be observed without error. This assumption was 

made because MD can be estimated from the first order term of the signal cumulant expansion, making 

it more robust to noise than μFA, which is estimated from the second order term13 . It can be seen from 

Equations 7 and 8 that the magnitude with which error propagates to μFA depends on both ε and MD in 

a non-linear way, and that the same level of noise results in a larger uncertainty in μFA when ε or MD 

are very low, which in turn impedes precise measurements of μFA in such voxels. On the contrary, high 

MD will result in very diminished signal, effectively reducing SNR and preventing precise measurements 

due to the noise floor. 
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METHODS 

All animal experiments were preapproved by the competent institutional and national authorities, and 

carried out according to European Directive 2010/63. 

 

Specimen preparation 

Ex vivo experiments: A rat brain (N = 1) was extracted through standard transcardial perfusion from a 

healthy adult animal and was then immersed in 4 % paraformaldehyde (PFA) solution for 24 h, followed 

by immersion in a phosphate-buffered saline (PBS) solution for at least 48 h. The extracted brain was 

inserted into a Fluorinert (Sigma Aldrich, Lisbon, PT) filled 10-mm NMR tube and placed in the scanner 

at 23 °C. 

In vivo experiments: A healthy rat (N = 1, age 135 days, weight 288 g) was anesthetized with isoflurane 

(4% for induction, 2% maintenance delivered via nose cone) and placed in the scanner. Respiration rate 

and rectal temperature were monitored and kept stable over the entire experiment via small adjustments 

in isoflurane levels and circulating warm water, respectively. 

 

MRI experiments 

All experiments were performed on a 9.4 T Bruker (Karlsruhe, Germany) BioSpec scanner harnessing 

an 86 mm volume coil for transmission and 4-element array cryocoil for reception. A DDE-EPI pulse 

sequence written in-house was used with the following experimental parameters: δ = 5 ms and Δ = τ 

(mixing time) = 15 ms, TE = 69 ms in experiment 1 and TE = 65 ms in experiments 2 and 3, TR = 1 s, 

FOV = 20 mm x 20 mm, matrix of 100 x 100 (partial Fourier factor = 1.25), leading to an in-plane 

resolution of 0.2×0.2 mm2, 3 slices in experiment 1 and 5 slices in experiments 2 and 3 of 0.8 mm 

thickness were acquired with a slice gap of 0.5 mm. The echoes were double-sampled to suppress residual 

ghosting. 
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The accuracy of the proposed minimal design26  in neural tissue was validated using the following three 

experiments. 

 

Experiment 1: To avoid any issues associated with in vivo measurements, an ex vivo rat brain was 

scanned with both the minimal design and the 5-design using b-values typically used in a clinical setting, 

namely, three b-values equally distributed between 1000 and 3000 s/mm2. To maximize SNR, the 5-

design measurements were averaged over 30 acquisitions and the minimal design measurements over 90 

acquisitions (the factor of 3 in number of averages accounts for multiplexing). The 5-design experiment 

here was repeated twice to measure the inherent variance in μFA due to finite SNR. 

 

Experiment 2: In addition to experiment 1, the b-value dependency of our comparison was investigated 

by imaging the ex vivo brain with more densely sampled and higher b-values, specifically, using ten b-

values evenly distributed between 500 and 5000 s/mm2. The 5-design measurements were averaged over 

8 acquisitions and the minimal design measurements over 24 acquisitions, accounting for multiplexing. 

 

Experiment 3: To avoid bias due to the fixation process and temperature, the comparison of the two 

methods was repeated in vivo. Here, the experiment was performed with b-values of 1000 and 2500 

s/mm2. The 5-design measurements were averaged over 8 acquisitions and the minimal design 

measurements over 24 acquisitions, again accounting for multiplexing. 

The b-values expressed here refer to the total diffusion-weighting during the DDE experiment. 

For every 5-design acquisition, 13 b = 0 s/mm2 images were acquired for temporal SNR estimation. In 

all experiments involving the minimal design, rather than using 6 parallel and 6 orthogonal wave vector 

pair directions distributed over half a sphere as originally prescribed26 , 12 + 12 directions (Figure 1C) 

distributed over the surface of the sphere were used to eliminate the possibility of artifacts arising from 
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cross-terms between the imaging and diffusion gradients42 . The 5-design was acquired as usual with 12 

parallel and 60 orthogonal directions (Figure 1B). 

 

Image analysis 

Preprocessing: Diffusion-weighted data was denoised using a Marchenko-Pastur-PCA denoising 

procedure with a 17 x 17 x 1 sliding window43 . Gibbs ringing artifacts were reduced using a sub-voxel 

shift algorithm44 . To correct for motion and signal drifts, data was registered to the first non-diffusion-

weighted image with a sub-voxel discrete Fourier transform algorithm45 . No procedure for eddy current 

induced artifact correction was applied, since no eddy current distortions could be visually observed in 

any of the datasets.   

 

Analysis: μFA maps were calculated from the powder averaged data without the higher order correction 

using Equations 3 and 4. MD used in calculating μFA was estimated by fitting a diffusion tensor to the 

data acquired with parallel wave vectors at b = 1000 s/mm2 using DiPy46 . Voxel-specific temporal SNR 

was quantified as the mean signal divided by the standard deviation of signal over b0 images, and the 

average SNR was obtained by averaging voxel-specific SNR values over the brain volume. 

 

Simulations 

The noise robustness and rotational variance of μFA estimation using the minimal design was studied by 

generating synthetic data by analytically simulating axially symmetric diffusion tensors of varying sizes 

and shapes. Synthetic signal was generated according to 

 

𝑆 = 𝑆0𝑒
−b:D        (9) 
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where S0 is the MRI signal without diffusion-weighting, b is the measurement tensor, D is the diffusion 

tensor, and : stands for the generalized tensor product20 . The DDE sequence with parallel and orthogonal 

wave vectors encode linear and planar measurement tensors, respectively. Diffusion tensors were used 

instead of restricted diffusion because the minimal design assumes that diffusion can be approximated as 

Gaussian in every microscopic compartment26 . The effects of non-Gaussian diffusion are outside the 

scope of this work. μFA was calculated from single-shell DDE data according to Equations 3 and 4 with 

MD equaling its ground truth value. The following simulations were performed. 

 

Simulation 1: The rotational variance of the minimal design was quantified by simulating noise-free 

DDE experiments of single diffusion tensors with 400 unique orientations uniformly distributed over half 

a sphere. Both the 5-design and the minimal design were used with a total b-value of 2250 s/mm2. The 

standard deviations of the resulting μFA estimates were calculated to estimate the rotational variances of 

the two protocols. μFA of the simulated tensors was varied from 0 to 1 and MD was varied from 0.1 to 3 

μm2/ms. 50 values for both μFA and MD were used leading to a total number of 106 different simulated 

tensors. 

 

Simulation 2: The noise robustness of the minimal design was quantified by adding Rician noise to 

synthetic data and quantifying its effect on the estimate of μFA. Rician noise was emulated by adding 

real and imaginary Gaussian noise to the data and by taking the modulus of the resulting complex number 

to be the noisy signal. Here, SNR refers to the mean signal at b = 0 divided by the standard deviation of 

noise in each channel. Single tensors aligned with the x axis were used. μFA of the simulated tensors was 

varied from 0 to 1 and MD was varied from 0.1 to 3 μm2/ms. 100 values for both parameters were used 

leading to a total number of 104 different simulated tensors. Simulations were performed using total b-

values of 1500, 2250, 3000, and 3750 s/mm2. Biophysically meaningless values of μFA, which are 

imaginary or greater than 1 due to noise, were rejected. Two noise propagation simulation experiments 
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were performed. First, the standard deviations of 104 noisy μFA estimates at three levels of SNR (10, 25, 

and 100) were calculated over the whole parameter space. Second, the minimum SNR required for 

measuring μFA within 0.1 from its asymptotic value with 95 % confidence was estimated by repeating 

the noisy simulations 103 times over the whole parameter space at 100 levels of SNR equally distributed 

between 1 and 1000. The asymptotic value of the μFA estimate refers to the μFA value calculated from 

single-shell data with infinite SNR, which is a biased estimate of μFA35. 
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RESULTS 

Imaging experiments 

Experiment 1: The results of the first ex vivo imaging experiments are illustrated in Figures 2 and 3.  

Figure 2 shows the powder averaged signals for parallel and orthogonal wave vector orientations from a 

representative slice and at different b-values. SNR of the pre-processed data was already very high, 

typically around 150 for the b0 images, and the ensuing powder averaged signals are correspondingly 

robust for all b-values. The subtraction of these powder-averaged signals, dependent on µA, shows a b-

value dependent pattern increasing in intensity with higher b-values, especially in white matter.   

The μFA maps derived from Jespersen’s DDE 5-design and Yang et al.’s DDE minimal design 

are shown in Figure 3A and 3B. Qualitatively, the maps are nearly indistinguishable, and when the maps 

are subtracted, no clear spatial pattern is observed (Figure 3C). When the µFA derived from each method 

were plotted against each other voxel-wise (Figure 3D), a very strong and statistically significant 

correlation was observed (Pearson's correlation coefficient = 0.91, p < 10-10) with the data points very 

close to the unity line. More importantly, only a small bias was observed as the distribution of voxel-

wise differences was centered near zero at 0.014 with a standard deviation of 0.07. Figure 3E shows the 

voxel-wise differences plotted against their mean value, revealing larger differences at lower values of 

μFA, as expected based on the analysis described in the theory section. 

To test whether the small variance observed was due to the different methods or due to noise, we 

performed a simple test-retest experiment for the DDE 5-design (Figure 3F and 3G). The difference 

image again shows no particular spatial pattern (Figure 3H), and when the test-retest metrics were plotted 

against each other, a very similar pattern was observed than with the comparison of the minimal design 

against the 5-design (Figure 3I). Indeed, the variance in this test-retest experiment was also very similar 

to that observed in Experiment 1 above, with the distribution of voxel-wise differences between test and 

retest exhibiting a mean of 0.004 and a standard deviation of 0.06. The Pearson's correlation coefficient 

was 0.93 for the μFA maps acquired with two repetitions of the 5-design (p < 10-10), and the data points 
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closely followed the unity line. The voxel-wise differences are plotted against their mean values in Figure 

3J, again revealing larger differences at lower values of μFA and showing that the precision of μFA 

decreases with decreasing microscopic anisotropy. 

 

Experiment 2: In the second ex vivo experiment, the methods were compared over a larger interval of 

b-values which was more densely sampled to see if the results deviate at higher b-values due to 

differences in how non-Gaussian diffusion affects the powder averaged data acquired with the two 

methods. Results shown in Figure 4 confirmed that the accuracy of the minimal design is comparable to 

the 5-design with b-values up to 5000 s/mm2. Figure 4 also shows that increasing diffusion-weighting 

leads to underestimation of μFA, because the maps were calculated without a higher order correction. 

 

Experiment 3: Finally, we confirmed that our ex vivo experiments are representative of in vivo 

experiments by replicating the results in vivo, which can be seen in Figures 3K - 3O.  The very similar 

μFA maps extracted from data acquired with the 5-design and the minimal design are shown in Figure 

3K and 3L. The μFA values extracted from the two methods are highly correlated (Pearson’s R = 0.86, p 

< 10-10) with the data points following the unity line, and the voxel-wise difference distribution’s mean 

is equal to 0.012 with a standard deviation of 0.10. 

 

Simulations 

Simulation 1: The standard deviations of μFA estimates derived from simulated measurements with 

different tensor orientations are shown in Figure 5. These results reveal that the minimal design is more 

rotationally variant than the 5-design when used for measuring μFA in individual tensors with high 

anisotropy or diffusivity. The standard deviation of μFA estimates ranges from 0 to 0.1 for the 5-design 

and 0 to 0.26 for the minimal design with the mean of the standard deviation of μFA estimates over the 

whole parameter space being 0.03 and 0.06 for the 5-design and the minimal design, respectively. No 
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differences were observed in the mean values of the μFA estimates of tensors with different orientations 

obtained with the two protocols. 

 

Simulation 2: Figure 6 portrays the standard deviation of μFA estimates from synthetic experiments 

repeated with random noise addition. The simulation results reveal that precision of μFA is highly 

dependent on its value and that particularly low values of MD, 0.5 μm2/ms or less (depending on the 

SNR and the b-value), prevent precise measurement of μFA irrespective of its value. Greater diffusion-

weighting increases the precision of the noisy estimate of small compartments’ μFA but without enabling 

precise measurement of low values of μFA. 

Figure 7 shows a map of the estimated minimum required SNR for measuring μFA within 0.1 

margin from its asymptotic value with 95 % confidence with the minimal design. These results suggest 

that an SNR of 50 would enable reliable measurement of μFA values greater than 0.75, and that an SNR 

of nearly 200 would be necessary for reliably measuring μFA values of less than 0.5. The results also 

show that by increasing the magnitude of diffusion-weighting, reliable quantification of microscopic 

anisotropy becomes possible in smaller compartments. On the other hand, higher level of diffusion-

weighting prevents measurements in large compartments due to the signal having hit the noise floor. 

These results suggest that to maximize precision in human brain tissue, where MD is usually around 0.8 

μm2/ms, it is desirable to use a b-value near 2250 s/mm2. 
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DISCUSSION 

The DDE 5-design has been well established as a method capable of probing microscopic diffusion 

anisotropy, a clinically relevant microstructural property, in a model free fashion19,23,35,38 . Yang et al.’s 

minimal design26  enables crucial acceleration of the method for clinical applications, but its accuracy 

requires validation against the “gold standard” 5-design. Furthermore, to assign confidence in the 

precision of the µFA estimates given an SNR and maximal b-values, a noise propagation analysis is 

required and would be generally relevant both for clinical and preclinical applications. Hence, this study 

had two main purposes: (1) to experimentally validate the minimal design proposed by Yang et al. and 

(2) to assess μFA's noise robustness and to provide SNR requirements for reporting specific µFA values. 

While Jespersen et al.’s DDE 5-design19  – the contemporary “gold standard” for quantifying rotationally-

invariant microscopic diffusion anisotropy38  – requires at least 72 separate acquisitions per b-value, 

Yang’s approach entails a minimum of only 12 acquisitions26 . In our study, we applied the bipolar version 

of the minimal design, which consists of 24 acquisitions, due to potential cross-term effects42 . After 

correcting for multiplexing effects (72 5-design acquisitions vs. 24 minimal design acquisitions averaged 

3 times), a comparison of µFA maps acquired with each method revealed qualitatively indistinguishable 

results. In fact, µFA’s variance in the test-retest of 5-design was very similar to the comparison of 5-

design vs. minimal design. Thus, the powder averaged µFA calculated from 72 measurements of the DDE 

5-design can be closely approximated in neural tissue, including both gray matter and white matter 

tissues, by Yang et al.’s minimal design26  in the b-value range that was studied here. In addition, we have 

shown that the experimental validation holds both for ex vivo and in vivo conditions, thereby excluding 

tissue fixation effects as confounders. For every orthogonal gradient pair in the 5-design, there are three 

other gradient pairs encoding the same measurement tensor19 . Thus, in case of Gaussian diffusion and 

infinite SNR, 15 orthogonal wave vector pairs are sufficient for measuring the same powder averaged 

signal than what is measured with the 5-design. In voxels with sufficient microscopic orientation 
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dispersion, this can be further reduced to six as shown by Yang et al26 . However, if the microscopic 

compartments are perfectly aligned, the minimal design suffers from larger rotational variance than the 

5-design, as shown by the simulations presented here (Figure 5), which can lead to significantly biased 

results as previously discussed by Szczepankiewiczc et al39 . 

Recently, the accuracy of µFA estimated by powder averaging methods such as the 5-design has 

been scrutinized, and Ianus et al. found significant higher order effects that bias the estimates at different 

b-values35 . Corrections of the bias can be achieved by measuring more b-value shells and fitting the 

higher order terms35,36 . However, every shell consumes more experimental time that is limited in clinical 

applications. In this study, we chose to forego higher order correction due to the prolonged acquisition; 

hence the μFA maps are biased due to b-value dependency. Still, it is worth noting that if the biased µFA 

is precise, it can be highly useful both in basic research and in the clinic. Our investigation into μFA’s 

precision revealed two important features: µFA precision will depend strongly and nonlinearly on MD 

and on the actual µFA value. When MD is very small, the estimation of µFA is hampered even with very 

high SNR, and for reasonable values of MD, precise estimates of µFA < 0.5 require very high (> 200) 

SNR. On the other hand, large values of MD result in very diminished signal, impeding precise 

measurements. Our simulations also revealed the optimal b-value for probing micoscopic anisotropy in 

compartments with MD values of 0.8 μm2/ms to be near 2250 s/mm2, a result which is consistent with 

previous studies26 . Combined, these findings suggest that caution needs to be exercised in interpreting 

µFA maps, and the SNR should always be reported to assess the confidence in the estimates’ precision. 

In particular, µFA maps are more reliable in areas with higher µFA, which should be taken into account 

upon interpretation of results. This lack of precision for low values of µFA have been previously reported 

with the µFA values derived from QTE experiments18,39,47 . The large variance in voxels with low μFA 

can result in negative values of ε, leading to imaginary values of μFA. It is important to note that our 

simulations incorporated diffusion tensors, rather than restricted diffusion, whose effects were not the 
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focus of this study. Still, given the experimental results, it seems that the Gaussian regime was not 

severely violated in our experiments or the µFA derived from the 5-design and minimal design would 

have differed. 

Our results do not provide evidence that the minimal design is superior to the 5-design. Rather, 

the evidence points to an efficient acceleration which maps µFA approximately as robustly as the 5-

design in neural tissue, when a fair comparison is performed. Therefore, given stringent time limitations 

that do not allow 72 acquisitions, microscopic diffusion anisotropy could be well-characterized with the 

approach proposed by Yang et al.26 . Additionally, it may be possible to use the minimal design to shorten 

the acquisition time required for calculating μFA maps with the higher order correction35,36, thereby 

providing more accurate metrics. However, three issues must be controlled for when applying the 

minimal design in the clinic. First, it is very challenging to reliably measure values of μFA lower than 

0.5 (e.g., gray matter) with SNR typically achievable in the clinical setting, making it difficult to quantify 

microscopic diffusion anisotropy in gray matter without high gradients48 . Second, the rotational variance 

of the minimal design may result in biased signal powder average in tissues where microenvironments 

are nearly aligned, highly anisotropic, and of large diffusivity39 . Third, when using DDE with clinical 

scanners, it is important to control for concomitant fields, which can give rise to substantial signal bias49 . 

Furthermore, we would like to point out that if the assumption of Gaussian diffusion is correct, then 

isotropic spherical tensor encoding with QTE would probably be even more suitable for mapping 

microscopic diffusion anisotropy in the clinical setting due to more efficient diffusion-weighting and 

larger signal deviation between the MDE and SDE acquisitions20,50 . However, it is worth recalling that 

DDE offers model-free estimates while QTE's assumptions, as well as unresolved issues with time-

dependent diffusion and rotational dependence51 , may incur other penalties in accuracy or precision of 

µFA estimates. DDE thus seems to offer a robust way for characterizing microscopic diffusion anisotropy. 
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CONCLUSIONS 

In conclusion, reducing the number of wave vector rotations in calculating the powder average of a DDE 

5-design experiment, as proposed by Yang et al.26 , does not prevent the accurate quantification of 

microscopic diffusion anisotropy. The SNR requirements for precise quantification of μFA should be 

carefully considered when applying the discussed powder averaging scheme in a clinical setting for 

quantifying μFA. 
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FIGURES 

 

 

 

 

Figure 1. A) A schematic representation of the used DDE sequence where gradient pulse pairs of equal 

magnitude are separated by a 180° RF pulse. Δ is the diffusion time, δ is the pulse duration, and τ is the 

mixing time. B) Gradient directions of the 5-design. C) Gradient directions of the recently proposed 

minimal design. In B and C, the directions of the first wave vector are shown in blue and the directions 

of the second wave vector are shown in green. The first wave vectors pointing towards the vertices of the 

icosahedron are represented by longer arrows. 
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Figure 2. Powder averaged data from experiment 1 acquired with parallel (first row) and orthogonal 

wave vectors (second row) with three b-values. Microscopic anisotropy can be observed by subtracting 

the powder averaged data acquired with orthogonal wave vectors from the powder averaged data 

acquired with parallel wave vectors (third row). 
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Figure 3. Comparison of μFA maps calculated with the 5-design and the minimal design. Top row shows 

a comparison between the 5-design and the minimal design (Experiment 1). Middle row shows the same 

comparison between two repetitions of the 5-design experiment (Experiment 1). Bottom row shows the 

results of the in vivo experiment (Experiment 3). Difference stands for the map obtained by reducing the 

map in the second column from the map in the first column. The fourth and fifth columns show the voxel-

wise comparison of the maps. The dashed lines in the fourth column are identity lines. 
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Figure 4. Voxel-wise comparison of μFA maps calculated from single-shell data (experiment 2) acquired 

with the 5-design and the minimal design over a range of b-values. The dashed lines are identity lines. 

 

 

 

 

 

Figure 5. Standard deviations of μFA estimates from simulated experiments of 400 axially symmetric 

tensors with directions uniformly distributed over half a sphere with the 5-design (A) and the minimal 

design (B) using a b-value of 2250 s/mm2. 
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Figure 6. The standard deviations of μFA estimates calculated from 104 repetitions of simulations with 

three different levels of noise and with four b-values. Simulations were performed with single diffusion 

tensors with varying anisotropies and mean diffusivities. Biophysically meaningless values of μFA were 
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excluded from calculations. The contour lines follow data smoothed with a Gaussian filter (σ = 0.8 

pixels). 

 

 

 

 

 

Figure 7. The minimum SNR required for measuring μFA within 0.1 margin from its asymptotic value 

with 95 % confidence with four different b-values and varying diffusion tensor sizes and shapes. The 

figure was generated from 103 repetitions of noisy simulations at 100 levels of SNR equally distributed 

between 1 and 1000. Tensors requiring a higher SNR than 1000 are colored as yellow. The contour lines 

follow data smoothed with a Gaussian filter (σ = 0.8 pixels). 


