$See \ discussions, stats, and author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/346952067$

Pre-low raising in Cantonese and Thai: Effects of speech rate and vowel quantity

Article in The Journal of the Acoustical Society of America \cdot January 2021

Project

Project

prosody modeling and detection View project

Common Prosody Platform (CPP) – where theories and models of prosody can be directly compared View project

1	
2	
3	
4	Pre-low raising in Cantonese and Thai: Effects of speech rate and vowel quantity
5	
6	Albert Lee [*]
7	
8	The Education University of Hong Kong, Hong Kong.
9	
10	Santitham Prom-on
11	King Mongkut's University of Technology Thonburi, Thailand.
12	
13	Yi Xu
14	University College London, United Kingdom.
15	
16	Running title: PRE-LOW RAISING IN CANTONESE AND THAI
17	
18	
19	Date: 27 th September 2020
20	

^{*} Electronic mail: albertlee@eduhk.hk

Abstract

2	Although pre-low raising (PLR) has been extensively studied as a type of contextual tonal variation,
3	its underlying mechanism is barely understood. This paper explored the effects of phonetic vs.
4	phonological duration on PLR in Cantonese and Thai, and examined how speech rate and vowel
5	quantity interact with its realization in these languages respectively. The results for Cantonese
6	revealed that PLR always occurred before a large falling excursion (i.e. high-low); in other tonal
7	contexts, it was observed more often in faster speech. In the Thai corpus, PLR also occurred before
8	large falling excursions, and there was more PLR in short vowels. These results are discussed in
9	terms of possible accounts of the underlying mechanism of PLR.
10	
11	Keywords: tone, Cantonese, Thai, pre-low raising
12	
10	

1 I. INTRODUCTION

2 Pre-low raising (PLR) refers to the raised realization of the high target in a high-low 3 sequence compared to that in high-high. It is a type of contextual tonal variation that has been 4 extensively studied across languages. However, despite its ubiquity, the cause and the underlying 5 mechanism of this phenomenon have hardly been explored. As no language has been reported to 6 defy PLR, a good understanding of how it occurs is of both theoretical and practical importance. 7 Understanding how PLR occurs not only contributes to a better understanding of the division of 8 labour between phonetics and phonology in speech prosody, it is also useful to areas such as 9 speech synthesis and speech-understanding systems. In this paper, we explored the role of 10 duration in PLR realization in both its phonetic (speech rate) and phonological (vowel quantity) 11 senses through two languages that have a rich tonal inventory, namely Cantonese and Thai.

12

13 **A. What is pre-low raising?**

14 PLR is a well-known phenomenon in contextual tonal variation which has been widely 15 reported across languages. Often known otherwise as anticipatory dissimilation (Gandour et al., 16 1994; Xu, 1997) or anticipatory raising (Connell and Ladd, 1990; Xu, 1999), it is a local 17 anticipatory tonal variation where the f_0 of a high tone (H₁) is higher in a H₁L sequence than in a 18 H₁H₂ sequence. Since all the languages reported to show PLR have different lexical prosody, 19 perhaps the only thing they have in common is that the first of two consecutive syllables 20 (henceforth Syllable 1) contains a high pitch point, whereas Syllable 2 contains a low pitch point. 21 See Lee and Mok (2021) and Xu and Lee (in press) for a review. 22 Despite extensive reports on the tonal contexts in which PLR occurs, little is known

about its underlying mechanism. Franich (2015) found that increased cognitive load was

1 associated with greater PLR but had no effect on carryover tonal variation. This seems to suggest 2 that under normal cognitive load, speakers may have successfully suppressed some of the 3 dissimilatory effect. However, little else is known that might shed light on the underlying 4 mechanism of PLR. This lack of understanding poses a problem when there is a suspected case 5 of PLR, where one tone category might potentially be the PLR-induced allotone of another (cf. 6 Lee et al., 2017 on the case of Japanese) -- without understanding its cause, it is difficult to 7 provide a reliable diagnosis. This paper attempts to fill this gap by investigating variation of PLR 8 in different speech rate conditions, which is a natural starting point for exploratory studies in 9 speech production.

10

11 **B.** Possible Causes of PLR

Although we know of no previous study that has directly investigated the underlying
 mechanism of PLR, numerous possibilities have been suggested or are conceivable. They can be
 broadly categorized into articulatory, perceptual, and anatomical accounts.

15 Based on the findings in his production experiment, Xu (1997) offered two suggestions 16 on the possible causes of PLR. Firstly, PLR might be seen as a strategy to aid reaching a low 17 pitch target, which is articulatorily difficult. Normal speech typically operates just above the 18 floor of one's over two octave total pitch range (Honorof and Whalen, 2005), which means that 19 the articulation of the low tones would often push one's low pitch limit. The effect of 20 approaching the low limit can be seen in the absence of carryover or anticipatory effects in the 21 low offset of a tone in Xu's production data – one's lower pitch range is much less flexible than 22 its upper counterpart. Physiologically, to raise pitch one mainly needs to contract the 23 cricothyroid (CT) muscles, which are the only muscles that lengthen the vocal folds (Zemlin,

1 1988). To lower pitch, however, one needs to both (i) relax CT to unstretch the vocal folds, and 2 (ii) lower the larynx so as to increase the effective mass of the vocal folds (Ohala, 1978). The 3 lowering involves contracting multiple extrinsic laryngeal muscles to drag the cricoid cartilage 4 across a spinal curvature in the neck to further shorten the vocal folds (Honda et al., 1999). 5 Therefore, unlike pitch-raising that typically goes well below one's pitch ceiling in normal 6 speech, reaching a low pitch target is articulatorily more difficult. One way to push toward the 7 pitch floor is to generate a high downward velocity, and this can be helped by increasing the 8 distance of the pitch lowering movement. This is similar to a tennis player first pulling back his / 9 her arm in order to hit the ball hard during a serve or strike (Lee & Mok, 2021; Xu & Lee, in 10 press). In preparation for an upcoming low target which is articulatorily more difficult to 11 produce, PLR may therefore serve to allow extra distance (by raising f_0 peak) for acceleration so 12 as to achieve a higher maximum f_0 velocity. This account seems to make good sense as it is 13 compatible with our current understanding in physics, although how far a principle for free body 14 movement can be extended to f_0 control still requires careful examination. 15 Xu's (1997) second suggestion was that PLR might serve to counteract declination, 16 which can potentially blur contrasts of tone categories. From the perceptual perspective, PLR 17 may be useful for enhancing contrasts between otherwise similar-sounding tones. This echoes 18 the cross-linguistic tendency that languages with more types of stop consonants tend to disperse 19 VOT values along the VOT continuum (Cho and Ladefoged, 1999). Enhancing tonal contrasts 20 with PLR would be particularly useful for languages like Cantonese, in which most tones are 21 clustered in the lower half of one's tone space, and which is undergoing tone-merger (Mok et al., 22 2013). Moreover, the perception of level tones is known to strongly depend on context (e.g. 23 Zhang et al., 2012). In Wong and Diehl (2003), for example, it was reported that a higher

preceding context led to more low-tone identification responses. It thus follows that PLR can serve as a useful secondary cue to lexical tones. However, PLR is also present in languages where tone categories are not ambiguous, like in two-tone languages such as Yoruba, or nontonal languages such as English. Therefore, enhancement of perceptual contrasts cannot be taken as the (main) underlying mechanism of PLR.

6 A related question is whether PLR might be a clear speech strategy (see review in 7 Smiljanić and Bradlow, 2009), as it can expand f_0 range. Adult native speakers of English have 8 been found to use a number of strategies when trying to speak clearly (Hazan and Baker, 2011), 9 including higher pitch (median) and larger pitch range, which are reminiscent of PLR. In their 10 data, the exact strategies a speaker used depended on task type (read vs. conversational) and 11 listening condition (no barrier vs. challenging). The difficulty with this account is that there is no 12 mirror phenomenon of anticipatory lowering before a high pitch target (Xu, 1997, 1999). While 13 it may be true that PLR is part of a communicative strategy to enhance the clarity of speech when 14 needed (cf. Lindblom, 1990), there must be something special about the low pitch articulation 15 that is absent in the articulation of the high pitch.

16 Finally, a more speculative account concerns speech anatomy. It is known that in 17 mammals, CT is supplied by the external superior laryngeal nerve, whereas all other intrinsic 18 laryngeal nerves are supplied by the recurrent laryngeal nerve. The left branch of the recurrent 19 laryngeal nerve passes under and around the aorta on its way to the larynx, whereas the right 20 recurrent laryngeal nerve passes under and around the subclavian artery. Compared with both 21 branches of the recurrent laryngeal nerve, the external superior laryngeal nerve takes a more 22 direct route to the larynx. If it is the case that neural impulses take less time to reach CT than to 23 other laryngeal muscles, then functions associated with CT contraction (e.g. PLR) may stand out

1 in very fast speech when other muscles (that are supplied by the recurrent larvngeal nerve) 2 cannot keep up to maintain balance. In such a scenario, pitch raising CT stands out before 3 antagonistic muscles can keep up, leading to PLR. In turn, one would predict that there is more 4 PLR in faster speech than otherwise. There is some evidence pointing in this direction. For 5 example, Udaka and colleagues (1988) reported shorter mean response times for CT (around 23 6 ms) than lateral cricoarytenoid (LCA) muscles (37.5~42 ms) upon auditory stimulation. 7 However, this difference appears to be too small to motivate this anatomical account. Moreover, 8 although the length of nerves can determine muscle latency (Sims et al., 1996), there are also 9 physical and histological confounding factors that prevent direct testing of this account (Prades 10 et al., 2012).

11 A plausible account of PLR should be able to explain its occurrence as well as non-12 occurrence. Considering the articulatory account and the unique properties of CT as reviewed 13 above, as a starting point here we investigated the effect of speech rate on PLR.

14

15 II. EXPERIMENT 1: CANTONESE

16 A. Introduction

17 1. Tones in Cantonese

Hong Kong Cantonese was chosen in this study because of its rich tonal inventory (see
Figure 1). Table I describes the contour of the six contrasting tones with their respective tone
letters (Chao, 1930). The highest tones are T1 and T2, while T4 is the lowest. Presumably, PLR
would likely take place in the higher tones T1 and T2, whereas the lowest T4 would likely give
rise to it in the preceding syllable, though Gu and Lee (2009) reported otherwise as will be
reviewed below.

1	<insert 1="" figure="" here=""></insert>
2	<insert here="" i="" table=""></insert>
3	
4	2. PLR in Cantonese

5 Gu and Lee (2009) presented a comprehensive production study on contextual tonal 6 variation in Cantonese. They recorded three native speakers of Hong Kong Cantonese, of which 7 two were professional announcers. Their stimuli were the disyllable *jau wai* in all $6 \times 6 = 36$ tone 8 combinations, spoken under broad focus or with narrow focus on either of the target syllables. 9 Based on visual inspection of mean f_0 curves and t-tests on mean f_0 , they concluded that PLR 10 occurred on T1, T2, and T5, with T2 showing the largest effect. These findings led them to 11 suggest that PLR more likely takes places in rising tones than in level tones. On a side note, Gu 12 and Lee (2009) also reported downstep and post-low bouncing after a low tone that follows 13 Syllable 1, and discussed the link between these articulatory phenomena from the point of view 14 of laryngeal muscle coordination. 15 Although Gu and Lee (2009) offered a clear picture of where PLR could occur in 16 Cantonese, many questions remained unclear. Firstly, while the effect of narrow focus on

17 contextual tonal variation has been investigated, speech rate is another effect that can shed light 17 on this phenomenon. Secondly, although they mentioned that PLR might be due to the 18 antagonistic forces of pitch raising cricothyroid and pitch lowering extrinsic laryngeal muscles, 20 exactly how these forces are related to PLR was not discussed. Thirdly, with two out of three of 21 their participants being professional announcers who might produce highly articulate speech, it 22 would be interesting to verify their findings with speakers less trained in enunciating.

1	Against this backdrop, this study has three goals: (i) verify Gu and Lee's (2009) claim
2	that only rising tones can serve as PLR hosts; (ii) examine if speech rate has an effect on PLR
3	(e.g. whether a lower general f_0 register associated with slow speech would provide a better
4	trigger for PLR); and (iii) offer an account on the cause of PLR. Here we test two hypotheses.
5	First, (H1) PLR can occur in T1 too as PLR has been extensively reported in languages
6	without a rising tone (e.g. Laniran and Clements, 2003 for Yoruba), it is unlikely PLR does not
7	occur in the high level tone in Cantonese. Second, (H2a) more PLR can be observed in slower
8	speech. This follows from the fact that one's pitch register is lower in slower speech, thus a
9	lower Syllable 2 would lead to more PLR (cf. Lee et al., 2017 for Japanese). An alternative to
10	this would be that (H2b) there is more PLR in faster speech. This stems from the articulatory
11	account above: to reach a high velocity within a short time, more distance is needed (cf. pulling
12	one's arm further back in order to hit the tennis ball harder). With a better understanding of how
13	PLR interacts with tone shape and speech rate, we would be in a better position to postulate its
14	cause(s).

15

16 **B. Methods**

17 *1. Participants*

18 Six native speakers (three male, including the first author) of Hong Kong Cantonese were 19 recruited in London for this experiment. They were aged 22~30 (S.D. 4.49) at the time of 20 recording. No one reported any (history of) speech or hearing impairment. All participants were 21 briefed about the experiment and granted written consent before the recording commenced. Five 22 of the speakers were remunerated a small sum for their time.

1 2. Target sentences

2	The disyllable <i>lau man</i> was chosen for this study. There is a 6-way contrast for each of
3	the two syllables, which yielded all 36 (6 \times 6) possible tone combinations. Also, with sonorant
4	initial consonants these two syllables ensured that continuous f_0 contours could be tracked.
5	Target words were framed in the carrier 再講 唯許字[zoi3 gong2 go2 deoi3 zi6] 'Say the
6	disyllable again'. See Table II for details.
7	<insert here="" ii="" table=""></insert>
8	Not every Cantonese word can be written with a Chinese character that is known to the
9	average native speaker. For example, for the syllable man3 we used the character 衡, which is
10	not commonly used. As such, during the experiment occasionally the experimenter had to remind
11	the participants of the pronunciation of this character by showing words associated with this
12	character (i.e. 傲邊 and 做水) on a card without saying them aloud.
13	Although the character 扭'twist' is pronounced [nau2], as a result of the /n/-/l/ merger it
14	is equally natural to pronounce it [lau2] in Hong Kong Cantonese. This merger is an old one,
15	with examples such as the place name \overline{m} $\hat{\mu}$ [naam4 aa1 dou2] officially translated as Lamma
16	Island.
17	
18	3. Recording procedures
19	Recording took place in a quiet room at University College London, using a RØDE NT1-
20	A microphone. The sampling rate was 44,100 Hz. Speakers were seated in front of a computer
21	screen, which displayed the stimuli in a randomized order. Speakers were instructed to say each
22	sentence twice, first at normal speed, followed by slow speed. Though speech rate was not
23	stipulated in actual terms, subjects were instructed to speak more slowly in the second

production. In this corpus, mean syllable duration was 180.2 ms (SD ±50.3) for normal speech
and 309.2 ms (SD ±59.3) for slow speech. Altogether 6 speakers × 2 speech rates × 36 tone
combinations × 5 = 2,160 utterances were elicited. Seven utterances (0.32%) were subsequently
discarded due to mispronunciation.

5

6 4. Data extraction

7 Sound files were then annotated using ProsodyPro (Xu, 2013, ver. 5.5.1). Segmentation 8 was done at the level of the syllable. Markings of vocal pulses were manually checked and 9 rectified to ensure accurate tracking of f_0 . Apart from the target word itself, the syllable before 10 (gong 2) as well as the one after (go 2) were also labelled during annotation, so as not to neglect 11 any carryover effect that extends from or into the target word. Other parts of the carrier sentence 12 were not analyzed in the present study. ProsodyPro then generated acoustical measurements 13 including time-normalized f_0 values and f_0 velocity for statistical analysis. ProsodyPro calculates 14 *f*^o velocity according to [1]:

$$f_{o}' = ((f_{osti} + 1) - (f_{osti} - 1)) / ((t_i + 1) - (t_i - 1)) [1]$$

16 Occasionally, some velocity values generated by ProsodyPro were physiologically implausible 17 (*cf.* Xu and Sun, 2002). We discarded any value greater than $> \pm 1000$ ST / s, accounting for 18 0.62% (N = 533) of the velocity data. For each speaker, all raw f_0 values (Hz) were converted 19 into semitones with the overall mean f_0 of that speaker as the reference.

20

21 **5.** Data analysis

The resultant acoustic data were analyzed using growth curve models (Mirman, 2014)
and smoothing spline ANOVA (SS ANOVA) (Davidson, 2006; Gu, 2014). The former have the

1 advantage of incorporating both time coefficients and subject-specific variation whereas the 2 latter allows us to assess (i) if different lexical tones in Syllable 2 cause significant differences in 3 f_0 contours in preceding Syllable 1, and if so (ii) at which specific time points those differences 4 can be found. These methods complement earlier studies (e.g. Gu & Lee, 2009) of which 5 statistical analyses were based on static point measurements (e.g. max and mean f_0). The 6 semitone data were analyzed using both growth curve models and SS ANOVA, whereas only the 7 latter was used to analyze f_0 velocity, as we were mainly interested in differences at specific 8 points in time.

9 We fitted a separate model for each lexical tone on Syllable 1 using the *lme4* package 10 (Bates et al., 2015, ver. 1.1-19). We included both the linear and the quadratic time terms 11 (orthogonal polynomials), the main effects of speech rate (contrast-coded) and lexical tone on 12 Syllable 2 (T1 as baseline) as well as their interactions. By-subject random intercepts and by-13 subject random slopes for speech rate were also included. The dependent variable was f_0 14 (semitones) at ten time points across Syllable 1. For any model, if f_0 is higher before a given 15 lexical tone than before T1 on Syllable 2, we take this as evidence of PLR. Although likelihood 16 ratio tests (anova()) revealed that lexical tone on Syllable 2 had a significant effect on f_0 in all 17 models (p < .001), it was only when Syllable 1 was T1 or T2 where T4 on Syllable 2 led to a 18 significantly higher f_0 compared to T1, i.e. PLR. This means that when Syllable 1 bore T3, T4, 19 T5, or T6, our speakers did not show evidence of PLR (i.e. f_0 before the baseline T1 was 20 significantly higher in preceding Syllable 1 instead). Consequently, these subsets of data will be 21 excluded from our analysis in the following section.

22 SS ANOVA plots in the following sections contain both averaged f_0 curves (thin solid 23 lines) and 95% Bayesian confidence intervals (width of the color ribbons) around the averaged curves. The X-axis represents normalized time, and Y-axis *f*₀ or *f*₀ velocity. At any point in time,
 if the confidence intervals of two conditions do not overlap, they are considered significantly
 different. See Davidson (2006) for a more detailed description.

4

5 C. Results

6 1. f_o contours

7 Table III presents the results of the growth curve analysis of the realization of T1 and T2 8 on Syllable 1 (see results for other tones in SuppPub5⁵). A fixed effect is considered significant 9 if the absolute value of the t-statistic is greater than or equal to 2.0 (Gelman and Hill, 2007). To 10 conserve space, here we focus on the main trends, and discuss the interactions in detail in the SS 11 ANOVA analysis to follow. The positive estimates for speech rate (T1: $\beta = 1.884$, SE = .554, t = 12 3.397; T2: $\beta = 3.331$, SE = .462, t = 7.205) indicate that Syllable 1 f₀ was higher at the normal 13 speech rate than in slow speech in general. The positive estimates for Tx - T1 (lexical tone on 14 Syllable 2) contrasts show that all these tones could give rise to PLR in Syllable 1 which bore T1 15 or T2, except that the T2T2 sequence was not significantly higher than T2T1 ($\beta = .071$, SE 16 = .067, t = 1.058). The significant interactions between speech rate and lexical tone show the 17 change in magnitude of PLR in normal speech vs. slow speech. For example, before a T4, mean 18 T1 f_0 was 20.9 Hz higher than the baseline in normal speech but 11.0 Hz higher in slow speech 19 $(\beta = .741, SE = .130, t = 5.701).$

20

<Insert Table III here>

Figure 2 shows the averaged f_0 contours of 30 repetitions from six speakers, with the second interval kept constant (T1 or T2 on Syllable 1). Vertical lines represent syllable boundaries. Here the TxT1 sequences serve as the baseline. Any contour significantly higher

1 than the baseline in Syllable 1 would constitute a case of PLR. In the two upper panels, the T1T4 2 contours are significantly higher than T1T1 across the entire Syllable 1, showing clear evidence 3 of PLR. In the bottom panel, the T2T4 contour is also significantly higher than T2T1, though in 4 only part of the second interval, while in the rest of the syllable the two conditions overlapped. 5 <Insert Figure 2 here> 6 In other tonal contexts, PLR appeared to be dependent upon speech rate, i.e. present in 7 faster speech but absent in slower speech. For example, for the T1T6 sequence in Figure 2, PLR 8 was observed only in normal speech but not in slow speech (i.e. the T1T6 contour is not higher 9 than T1T1 in slow speech in Syllable 1). The same was true for T1T2, T1T3, and T1T5, where 10 PLR was only observed in faster speech. While slow speech has a lower global f_0 register (global 11 mean f_0 in our data is 172 Hz for normal speech, and 145 Hz for slow speech), the resultant lower f_0 in Syllable 2 did not give rise to more PLR; this suggests that a low Syllable 2 is not the 12 13 only factor underlying this phenomenon. 14 Finally, as Table III has shown, where Syllable 1 was not a high tone (T1 or T2), PLR did 15 not occur even if Syllable 2 was low (T4). Refer to SuppPub1¹ for a complete set of SS ANOVA 16 plots for all Syllable 2 tone and speech rate conditions. 17 18 2. f_o velocity 19 Next, f_0 velocity in Syllable 2 (third interval) is considered. Recall that there was PLR in 20 T1T6 (see Figure 2) in normal speech but not in slow speech. Figure 3 shows the maximum 21 falling velocity of all Syllable 2 tone \times speech rate conditions. In cases of PLR, the maximum 22 falling velocity was much greater than otherwise. The same pattern was observed after visual

23 inspection of the velocity profiles of other tone sequences (see SuppPub2). Judging from Figure

1	3, it appears that all cases of PLR in this corpus had a maximum falling velocity in Syllable 2
2	greater than 400 semitones / second; similarly, in the slow condition those without PLR all
3	appear to have peak velocity values below 300 semitones / second.
4	<insert 3="" figure="" here=""></insert>
5	
6	3. Correlation analysis
7	Finally, linear regression analysis was performed to verify the observations in Figure 2
8	and Figure 3. To calculate the correlation between mean syllable duration and PLR, we (i) first
9	averaged all repetitions of the same speaker, then (ii) for each tone (T1 and T2) in Syllable 1,
10	measured the difference between each tone in Syllable 2 ($T2 - T6$) and T1. For normal speech,
11	mean syllable duration was inversely correlated with mean PLR, $r =234$, $N = 60$, $p = .036$ (1-
12	tailed); for slow speech, the same correlation was non-significant, $r = .026$, $N = 60$, $p = .423$.
13	
14	D. Interim discussion
15	This experiment set out to test two hypotheses: (H1) PLR can occur in T1, and (H2a)
16	more PLR would be observed in slower speech / (H2b) in faster speech. We found that PLR
17	occurred in T1 as well as in T2, and that there was more PLR in fast speech than in slow speech.
18	These results clearly refuted (H2a), while supporting (H1) and (H2b).
19	That PLR could occur in T1 in our data is not surprising, as PLR commonly occurs in the
20	high tone in many languages. PLR in rising T2 in our data was also consistent with Gu and Lee
21	(2009), in which the raising appeared not to span entire Syllable 1-equivalent either. What is
22	more mysterious is why PLR was not observed in T1 in Gu and Lee (2009). Conceivable reasons

1	for this discrepancy include task effect (i.e. focus vs. speech rate, different target syllables) and
2	precision in speakers' articulation (use of professional news readers in Gu & Lee, 2009).
3	However, it was interesting that H2a was not supported. In Lee et al. (2017), we observed
4	a higher H* before a lower following L, and attributed this to PLR. The gradient effect observed
5	in Japanese could not be applied to Cantonese likely because of the difference in lexical prosody
6	of the two languages – the L target in Lee et al.'s Japanese data was probably way lower than
7	any non-T4 Cantonese tones even at its highest phonetic realization. Taking together Lee et al.'s
8	(2017) results and the present data, it seems that whether PLR occurs may be binary and
9	conditional upon a low enough Syllable 2; then in cases where PLR does occur, the exact amount
10	of raising is gradient and determined by the lowness of the following target.
11	The durational effect found in this experiment is novel and requires further verification.
12	As we have seen how speech rate affects PLR, a natural extension would be to see whether the
13	phonological use of duration (i.e. vowel quantity) has the same effect. To this end we chose Thai
14	for our follow-up experiment, to be described below.
15	
16	III. EXPERIMENT 2: THAI
17	A. Introduction
18	In the previous section, we have reported the effect of duration on PLR realization in
19	Cantonese. As PLR is assumed to be an articulatory, in turn universal, phenomenon, it is

20 important to understand its nature by comparing any proposed effect across different languages.

21 In this section, we explore PLR in Thai, which provides a suitable testing ground for the effect of

22 duration in the abstract sense (i.e. vowel quantity). While speech rate is concerned with syllable

1	duration at a global level (i.e. utterance or longer), it would be interesting to see if durational
2	contrasts at the syllable level would affect the realization of PLR in a similar way.
3	Thai has five lexical tones which contrast in height and contour, namely Mid, Low, Fall,
4	High, and Rise (Tingsabadh & Abramson, 1993, see also Table IV and Figure 4). Vowels
5	contrast in quantity, with duration being the primary cue (Potisuk, Gandour, & Harper, 1998),
6	though in specific stress conditions the durational contrast can be lost (Potisuk et al., 1998).
7	<insert 4="" figure="" here=""></insert>
8	<insert here="" iv="" table=""></insert>
9	
10	Gandour et al. (1994) have reported clear evidence of PLR in Thai, though vowel
11	quantity was not investigated in that study. They found that both the Rising and Low tones could
12	lead to PLR in the preceding syllable (Mid, Rising, or High). This echoes their remark that, of
13	the five Thai tones, 'low and rising tones had low f_0 onsets, falling and high tones high f_0 onsets,
14	and mid tone intermediate onsets' (Gandour et al., 1994, p. 483). They also noted that raised f_0
15	due to PLR spanned only a portion of the duration of Syllable 1 (e.g. the last 30% of a High tone,
16	unlike in Figure 2 where PLR effects in Cantonese spanned the entire Syllable 1). To better
17	understand the findings in the Cantonese experiment above, here we reanalyzed the production
18	data from Xu and Prom-on (2014) on contextual tonal variation, which are highly comparable
19	with our Cantonese data in terms of design and elicitation method. Xu and Prom-on (2014)
20	pointed out PLR as one source of residual errors in their f_0 synthesis, but did not provide further
21	acoustic details. Although this set of data was originally designed for a different purpose (i.e. f_0

modelling), it would also be an ideal corpus for examining PLR in Thai in greater detail than

before.

1 Based on the Cantonese results reported above and in Gandour et al. (1994), here we 2 tested the hypotheses that there are (H3) always PLR in High-Low, High-Rise, Rise-Low, and 3 Rise-Rise sequences, and (H4) more cases of PLR in short syllables (comparable to fast speech) 4 than long syllables. H3 is based on Gandour et al.'s (1994) observation that the Low and Rising 5 tones have low f_0 onsets, whereas the offsets of High and Rising are high. The resultant long 6 falling excursion would thus be a likely environment for PLR regardless of vowel quantity. H4 7 assumes that short vowels are comparable to the faster speech rate in Cantonese, and would thus 8 permit PLR in contexts otherwise not possible for PLR in the long vowel conditions. 9 Furthermore, we are also interested in whether the apparent 400 semitones / second threshold in 10 the Cantonese data also holds for Thai. 11 12 **B.** Methods 13 1. Corpus 14 The speech material was recorded by five native speakers (two females) of Standard Thai (Xu 15 and Prom-on, 2014). They were undergraduate students aged $20 \sim 25$, studying at King 16 Mongkut's University of Technology Thonburi, Bangkok, Thailand. The dataset consists of four-17 syllable sentences in which the tones of the two middle syllables vary across all five Thai tones 18 (Mid (T0), Low (T1), Falling (T2), High (T3), and Rising (T4)) and two vowel lengths (short and 19 long), cf. Table V. The first and the last syllables were always the Mid tone to minimize 20 carryover and anticipatory influences on the two middle syllables. 21 <Insert Table V here> 22 Altogether there were 100 tone \times vowel length combinations in total. Each utterance was 23 produced five times by each speaker, and the recording was done at the sample rate of 22.05 kHz

1 and 16-bit resolution. Participants were recorded at the normal speaking rate. Altogether there 2 were 5 speakers \times 4 quantity conditions \times 25 tone combinations \times 5 = 2500 utterances. Six 3 utterances (0.24%) were excluded from subsequent analysis due to misproduction. In the subset 4 of corpus of interest (High or Rising on Syllable 1, N = 994), mean Syllable 1 duration was 305 5 ms (SD \pm 31) for long vowels and 288 ms (SD \pm 33) for short vowels. One-tailed paired samples t-6 test confirmed that the difference was significant (t(9) = 4.151, p < .001). 7 8 2. Data analysis 9 Data extraction and analysis procedures were the same as in the Cantonese analysis 10 above. For the growth curve models, the fixed factor of speech rate was replaced by quantity. In 11 the model for the Rising tone (see Table VI), by-speaker random slopes were not included due to non-convergence of the model. Like for the Cantonese data, velocity value greater than ± 1000 12 13 ST/s were discarded, accounting for 0.19% (N = 97) of the velocity data. 14 15 C. Results 16 **1.** f_o contours 17 This experiment set out to test whether duration in terms of phonological quantity 18 influences the occurrence of PLR in Thai. Our hypotheses were that there is (H3) always PLR in 19 High-Low, High-Rise, Rise-Low, and Rise-Rise sequences, and (H4) more cases of PLR in short 20 syllables. 21 Table VI shows the summary of growth curve analysis on f_0 realization of Thai High tone and Rising tone on Syllable 1 (see results for other tones in SuppPub6⁶). All of Mid (β = .606, SE 22 = .073, t = 8.332), Low ($\beta = 1.205$, SE = .073, t = 16.567), Falling ($\beta = .285$, SE = .073, t =23

1	3.921), and Rising (β = .645, <i>SE</i> = .073, <i>t</i> = 8.867) tones on Syllable 2 led to significantly higher
2	realization of the High tone in Syllable 1, compared to the baseline condition (High tone on
3	Syllable 2). Compared to the Short-Short quantity condition, in all of Long-Long (β =899, <i>SE</i>
4	= .103, t = -8.733), Long-Short (β =587, SE = .103, t = -5.702), and Short-Long (β =498, SE
5	= .103, t = -4.840) conditions, the Low tone on Syllable 2 led to significantly less increase in f_0 in
6	preceding High tone, i.e. more PLR in Short-Short. Similarly, when Syllable 1 bore the Rising
7	tone, all of Mid (β = .358, SE = .080, t = 4.455), Low (β = .335, SE = .080, t = 4.175), Falling (β
8	= .169, $SE = .080$, $t = 2.099$), and Rising ($\beta = .319$, $SE = .080$, $t = 3.971$) tones on Syllable 2 led
9	to significantly higher realization in the preceding syllable. Both the High and the Rising tones
10	on Syllable 1 were significantly higher in f_0 in the Short-Short condition than in the Long-Short
11	condition (β = .169, SE = .080, t = 2.099, β = .169, SE = .080, t = 2.099).
12	<insert table="" vi=""></insert>
13	Figure 5 shows the f_0 contours of High-x and Rise-x sequences in short-short and long-
14	long contexts For High-x sequences in both quantity conditions there was clear PLR in High-

long contexts. For High-x sequences, in both quantity conditions there was clear PLR in High-14 15 Mid, High-Low, High-Rise, but not in T3T2 (High-Fall), all compared with the High-High 16 baseline. In the short-short context, High-Low manifested the greatest PLR effect; in the long-17 long context, High-Rise showed the most PLR instead. Moreover, in the short-short context, the 18 PLR contours all diverged from the High-High baseline in the first half of the first syllable, 19 whereas in the long-long context this divergence mostly began at 50% into the first syllable. 20 Where Syllable 1 was the Rising tone, the Mid tone on Syllable 2 did not seem to incur PLR in 21 the preceding syllable. The Low, Falling, and Rising tones led to significantly higher realization 22 of preceding Rising tone, but this raising effect spanned only the last 30% of Syllable 1. Refer to

1	SuppPub3 ³ for a complete set of SS ANOVA plots for all Syllable 2 tone and speech rate
2	conditions.
3	<insert 5="" figure="" here=""></insert>
4	
5	2. f_o velocity
6	For f_0 velocity, we were interested in whether the 400 semitones / second dividing line in
7	Cantonese would also apply to Thai. Figure 6 shows that although all PLR cases had a greater
8	maximum falling f_0 velocity than the baseline, only some of them exceeded 400 semitones /
9	second, namely T3T1 (High-Low) and T3T4 (High-Rise) in the short-short context and T3T4 in
10	the long-long context. Refer to SuppPub4 ⁴ for a complete set of SS ANOVA plots for all
11	Syllable 2 tone and speech rate conditions.
12	<insert 6="" figure="" here=""></insert>
13	
14	3. Correlation analysis.
15	Finally, linear regression showed that for the Short-Short condition, mean syllable
16	duration was positively correlated with mean PLR, $r = .169$, $N = 100$, $p = .046$ (1-tailed). No
17	significant correlation between syllable duration and PLR was observed in any other quantity
18	conditions.
19	
20	IV. GENERAL DISCUSSION
21	A. Summary of Findings
22	1. Cantonese

This paper set out to extend previous work by Gu and Lee (2009) and explored the
underlying mechanism of PLR. We observed PLR when the falling excursion is large (T1T4 and
T2T4) or when the fall is fast (T1Tx in faster speech). We also found that for any PLR to occur,
Syllable 1 must be high, as Syllable 1 low in *f*₀ did not have PLR. Although one might assume
that a low Syllable 2 is the key to PLR, the results suggest that a high Syllable 1 and a fast fall
are at least as important if not more.

These findings are compatible with Gu and Lee (2009) in general, though there are also differences. In Gu and Lee (2009), where the effect of focus was examined, PLR was mainly observed in T2 and T5 on Syllable 1. On the other hand, in the present study, we looked at the effect of speech rate, and found instead that PLR consistently occurred in T1 and T2. Taken together, these two studies suggest that PLR in Cantonese is subject to factors including f_0 of Syllable 1, f_0 of Syllable 2, speech rate, and focus.

13

14 **2.** Thai

The Thai experiment served as a cross-linguistic verification and extension of the findings of Experiment 1. Growth curve analysis (Table VI) suggest that all of the four tones could lead to some raising in the preceding syllable in Thai compared to the High baseline, thus supporting H3. Furthermore, the significant interaction between quantity and tone on Syllable 2 shows that there was greater PLR in Short-Short than in any other quantity conditions, thus supporting H4. These two observations bring the Thai data in line with Cantonese in terms of the behaviour of PLR.

However, there were also notable differences between Thai and Cantonese. Firstly, upon
 careful inspection of SS ANOVA plots, we noticed that the raising effect of PLR was largely

1 restricted to the final portion (approximately 30%) of Syllable 1 for Thai. Duration in terms of 2 phonemic quantity appears to mainly affect the relative timing of the divergence of the baseline 3 and the PLR condition. This is in contrast to Cantonese, where PLR effects often span entire 4 Syllable 1. This could potentially be attributed to the longer mean syllable duration in the Thai 5 corpus (mean Syllable 1 duration with High or Rising, 296.1 ms, SD \pm 32.9) than in the 6 Cantonese corpus (mean Syllable 1 duration with T1 or T2, 247.6 ms, SD \pm 86.6). Secondly, in 7 cases where PLR was large in Thai (e.g. Syllable 2 =Rising), maximum falling velocity 8 exceeded -400 ST/s, like in Cantonese. But in other PLR cases it was ~-200 ST/s (Figure 6). 9 Thus the difference in PLR between Cantonese and Thai lied not only in how far they spanned in 10 Syllable 1, but also in their relationship with the corresponding maximum falling velocity, which 11 in turn is associated with articulatory strength. A third difference is that unlike Cantonese, the 12 Thai Rising tone does not seem to allow as much PLR as the High tone does. A closer inspection 13 of the SS ANOVA plots reveals that the Thai Rising tone occupies a much lower f_0 range than 14 the High tone. In fact, to produce the Thai Rising tone speakers first dip towards their pitch floor 15 before rising again – likely involving a completely different set of laryngeal muscles (i.e. pitch-16 lowering extrinsic laryngeal muscles) than the Thai High tone. Thus, the smaller PLR effect here 17 seems to lend further support to the physiological account, which will be explained further.

18

19 **B.** PLR to increase maximum velocity.

The results of this study are consistent with the velocity account of PLR. That is, by raising pitch in the preceding syllable, the distance of the downward movement toward the low tone is increased, which would help generate a high downward velocity to push toward the pitch floor which is known to be hard to reach. The speech rate effect in the Cantonese data fits in this

1 account, because faster speech (where PLR occurs) requires a high maximum velocity, thus a 2 higher starting point would be required for acceleration. A non-low Syllable 2 (e.g. T1T3) 3 spoken slowly involves no fast movement or large excursion, and thus yields no PLR. 4 The smaller PLR effect on the Thai Rising tone, meanwhile, is likely attributable to 5 another property of CT – allowing quick changes in f_0 . While CT would not otherwise be very 6 active in one's lower f_0 range, here some PLR is still observed because the Rising tone followed 7 by other tones requires very rapid f_0 movements – the specialty of the pars recta belly (Mu & 8 Sanders, 2009), which will be explained further below.

9

10 C. A perceptual account for PLR?

11 PLR may enhance tonal contrasts to aid comprehension. Researchers have shown that 12 Cantonese is undergoing tone-merger (Mok et al., 2013), and that some native speakers are 13 becoming less able to perceive the difference between certain similar tones; the magnitude of 14 PLR can help distinguish between, for example, T4 and T6 in Syllable 2. That said, while PLR 15 may possibly facilitate tonal identification to some extent, this benefit cannot explain the 16 occurrence of PLR per se. This is because PLR occurs only at the upper end of the tonal space, 17 where tonal contrasts are hardly ambiguous; the fact that PLR is absent in non-high Syllable 1, 18 where tonal contrasts are ambiguous, renders this hypothesis rather unlikely. More importantly, 19 PLR does not only occur in languages with many tones, but also in languages with fewer tones 20 (e.g. three tones in Yoruba, see Laniran & Clements, 2003 and in Bimoba, see Snider, 1998) 21 where contrast enhancement is not necessary. A contrast enhancement account, therefore, cannot 22 be taken as the underlying mechanism of this phenomenon.

1

D. An anatomical account for PLR?

2 Yet another possible account for PLR comes from the innervation patterns of intrinsic 3 laryngeal muscles. Here CT is hypothesized to be the direct cause of PLR. If PLR was not 4 actively planned, it may be the result of physical constraints (nature of CT in relation to other 5 laryngeal muscles). Recall that PLR depends on the excursion size as well as the speed of f_0 fall, 6 both of which are closely related to the properties of CT. The former, in particular the fact that 7 PLR is absent when the fall starts from a non-high tone, echoes the fact that CT is active in one's 8 upper pitch range; when the fall starts from the middle of one's pitch range, there may be little 9 CT activity to begin with, thus no PLR. The latter point ties in well with the fact that CT activity 10 is not responsible for a f_0 fall that is steady and gradual (Collier, 1975). It is also consistent with 11 a part of CT that is capable of very fast f_0 movements, namely the pars recta belly (Mu & 12 Sanders, 2009). Hence even when the fall excursion is small, PLR would still occur before a 13 steep fall as CT is required for fast f_0 movement.

Laryngeal muscles work together to maintain balance in vocal fold tension, and some are antagonistic to one another. Normally, the contraction of different laryngeal muscles is timed to ensure precise f_0 control. However, if we assume that some intrinsic laryngeal muscles (i.e. CT) are faster than others, then the slower ones may not catch up in fast speech as well as CT; and if it is the ones antagonistic to CT that do not catch up, then the effect of CT contraction would stand out unchecked, resulting in PLR.

For this hypothesis to be true, it is necessary to establish that CT is a much faster muscle than other intrinsic laryngeal muscles that are involved in f_0 control. Two pieces of evidence appear to be supportive. Firstly, CT is innervated by the external superior laryngeal nerve, whereas all other intrinsic laryngeal muscles are supplied by the recurrent laryngeal nerve. In mammals, the external superior laryngeal nerve is much shorter in length than the recurrent
laryngeal nerve, meaning that motor commands go through a much shorter course to reach CT
than they do to reach other muscles. One study looking at laryngeal muscle potentials under
auditory stimulation found that CT had a shorter latency than lateral cricoarytenoid (Udaka et al.,
1988). Moreover, the rectus belly of CT that is responsible for fast *f*₀ changes is supplied by 3~7
branches of the external superior laryngeal nerve (Mu & Sanders, 2009), lending further support
to this account.

8 Secondly, factors which raise f_0 usually raise intensity as well. Where f_0 is deliberately 9 held constant and intensity left to vary (e.g. production of swelltone). CT activity is found to 10 decrease with increasing intensity, so as to suppress involuntary f_0 rises (Hirano, Vennard, & 11 Ohala, 1970). Although a full acoustical analysis would be beyond the scope of this paper, our 12 intensity results show that cases with PLR do not also see higher intensity, suggesting that the 13 raised f_0 is due to CT contraction alone, like in Hirano, Vennard, and Ohala (1970). Needless to 14 say, any speculation on the cause of PLR related to muscle coordination must be verify with 15 articulatory measurements such as electromyography.

16

17 E. Suggestions for Future Research

The most direct implication of our findings is that we could test suspected cases of PLR in the future based on our new understanding of this phenomenon. For example, the present results are in line with the Japanese pitch accent, a case argued to be due to PLR (Lee et al., 2017). The extra high f_0 associated with the Japanese pitch accent is argued to be the result of PLR (i.e. derived), instead of being an underlying articulatory target in its own right. As an accented word ends in a steep fall, our data explain why 'PLR' occurs even in slow speech in Japanese. Previously it has been difficult to motivate this account due to theory-internal reasons regarding Japanese phonology. With a slightly better understanding of PLR, it is now possible to diagnose ambiguous cases like Japanese based on such acoustic properties as f_0 excursion and velocity at various speech rate conditions.

5 Another interesting observation from the data that was beyond the scope of this study was 6 that the T4-T4 sequence in Cantonese was always realized significantly higher than any other 7 Tx-T4 sequence, with the difference being much larger in slow speech. Similarly, though to a 8 much lesser extent, the Low-Low sequence in Thai was also realized significantly higher than 9 some other tonal contexts. It is unclear whether this is idiosyncratic or another articulatory 10 phenomenon pertaining to continuous low targets. The reader is referred to SuppPub1 and 11 SuppPub3 for details.

12 Thirdly, it would be beneficial to verify the present findings with additional manipulation 13 of speech rate of Cantonese and Thai, or of other languages.^b With more data, we may be able to 14 predict when exactly PLR may occur in different conditions (e.g. speech rate, pitch excursion).

In turn, this would contribute to the accuracy of f_0 synthesis, among other applications.

Finally, while this paper has explored PLR from the perspective of speech production, currently little is known about the relationship between this phenomenon and perception, with exceptions such as Wong and Diehl (2003). How much PLR contributes to tonal perception in languages with many tones, e.g. Thai and Cantonese, warrants more detailed investigation.

20

15

21 V. CONCLUSION

^b We owe this suggestion to Prof. Benjamin Tucker.

In this study, we found that for Cantonese, there was PLR either when falling excursion was large or when speech was fast; Thai showed a similar behaviour to Cantonese in that there was more PLR in short vowels. Cases with large PLR effects often coincided with great maximum falling velocity values, e.g. > -400 semitones / second. Given our findings, we argue that PLR serves to allow more room for acceleration in preparation for an upcoming falling excursion.

7

8 ACKNOWLEDGMENT

9 Part of the results of experiment 1, based different statistical tests, was reported at the 5th

10 International Symposium on Tonal Aspects of Languages (TAL 2016).11

1	FOOTNOTES
2	
3	¹ See supplementary material at [URL will be inserted by AIP] for complete SS ANOVA f_0 plots
4	for Cantonese.
5	
6	² See supplementary material at [URL will be inserted by AIP] for complete SS ANOVA f_0
7	velocity plots for Cantonese.
8	
9	³ See supplementary material at [URL will be inserted by AIP] for complete SS ANOVA f_0 plots
10	for Thai.
11	
12	⁴ See supplementary material at [URL will be inserted by AIP] for complete SS ANOVA f_0
13	velocity plots for Thai.
14	
15	⁵ See all model summaries [URL will be inserted by AIP] for Cantonese.
16	
17	⁶ See all model summaries [URL will be inserted by AIP] for Thai.
18	
19	
20	

1	REFERENCES
2	Bates, D. M., Mächler, M., Bolker, B. M., and Walker, S. C. (2015). "Fitting Linear Mixed-
3	Effects Models using {lme4}," J. Stat. Softw., 67, 1–48.
4	Bauer, R. S., and Benedict, P. K. (1997). Modern Cantonese phonology, Mouton de Gruyter,
5	Berlin.
6	Chao, YR. (1930). "A system of tone-letters," Le Maître Phonétique, 45, 24–27.
7	Cho, T., and Ladefoged, P. N. (1999). "Variation and universals in VOT: Evidence from 18
8	languages," J. Phon., 27, 207–229.
9	Collier, R. (1975). "Physiological correlates of intonation patterns," J. Acoust. Soc. Am., 58,
10	249–256.
11	Connell, B., and Ladd, D. R. (1990). "Aspects of pitch realisation in Yoruba," Phonology, 7, 1–
12	29.
13	Davidson, L. S. (2006). "Comparing tongue shapes from ultrasound imaging using smoothing
14	spline analysis of variance," J. Acoust. Soc. Am., 120, 407–415.
15	Franich, K. (2015). "The effect of cognitive load on tonal coarticulation," Proc. 18th Int. Congr.
16	Phonetic Sci. (ICPhS 2015), Glasgow, Scotland.
17	Gandour, J. T., Potisuk, S., and Dechongkit, S. (1994). "Tonal coarticulation in Thai," J. Phon.,
18	22 , 477–492.
19	Gelman, A., and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical
20	models, Cambridge University Press, Cambridge.
21	Gu, C. (2014). "Smoothing spline ANOVA models: R package gss," J. Stat. Softw., 58, 1–25.
22	Gu, W., and Lee, T. (2009). "Effects of tone and emphatic focus on F0 contours of Cantonese
23	speech: A comparison with Standard Chinese," Chinese J. Phonetics, 2, 133–147.

1	Hazan, V. L., and Baker, R. E. (2011). "Acoustic-phonetic characteristics of speech produced
2	with communicative intent to counter adverse listening conditions," J. Acoust. Soc. Am.,
3	130 , 2139–2152.
4	Hirano, M., Vennard, W., and Ohala, J. J. (1970). "Regulation of register, pitch and intensity of
5	voice," Folia Phoniatr. Logop., 22, 1–20.
6	Honda, K., Hirai, H., Masaki, S., and Shimada, Y. (1999). "Role of vertical larynx movement
7	and cervical lordosis in F0 control," Lang. Speech, 42, 401-411.
8	Honorof, D. N., and Whalen, D. H. (2005). "Perception of pitch location within a speaker's F0
9	range," J. Acoust. Soc. Am., 117, 2193–2200.
10	Laniran, Y. O., and Clements, G. N. (2003). "Downstep and high raising: Interacting factors in
11	Yoruba tone production," J. Phon., 31 , 203–250.
12	Lee, A., and Mok, P. K. P. (2021). "Lexical tone," In J. Setter and RA. Knight (Eds.),
13	Cambridge Handb. Phonetics, Cambridge University Press, Cambridge.
14	Lee, A., Prom-on, S., and Xu, Y. (2017). "Pre-low raising in Japanese pitch accent," Phonetica,
15	74 , 231–246.
16	Lindblom, B. E. F. (1990). "Explaining phonetic variation: A sketch of the H&H Theory," In W.
17	J. Hardcastle and A. Marchal (Eds.), Speech Prod. speech Model., Kluwer, Dordrecht, pp.
18	403–439.
19	Mok, P. K. P., Zuo, D., and Wong, W. Y. P. (2013). "Production and perception of a sound
20	change in progress: Tone merging in Hong Kong Cantonese," Lang. Var. Change, 25, 341-
21	370.
22	Mu, L., and Sanders, I. (2009). "The human cricothyroid muscle: Three muscle bellies and their
23	innervation patterns," J. Voice, 23, 21-28. doi:10.1016/j.jvoice.2007.08.001

1	Ohala, J. J. (1978). "Production of tone," In V. A. Fromkin (Ed.), Tone A Linguist. Surv.,
2	Academic Press, New York, NY, pp. 5–39.
3	Potisuk, S., Gandour, J. T., and Harper, M. P. (1998). "Vowel length and stress in Thai," Acta
4	Linguist. Hafniensia, 30 , 39–62.
5	Prades, JM., Dubois, MD., Dumollard, JM., Tordella, L., Rigail, J., Timoshenko, A. P., and
6	Peoc'h, M. (2012). "Morphological and functional asymmetry of the human recurrent
7	laryngeal nerve," Surg. Radiol. Anat., 34, 903–908.
8	Sims, H. S., Yamashita, T., Rhew, K., and Ludlow, C. L. (1996). "Assessing the clinical utility
9	of the magnetic stimulator for measuring response latencies in the laryngeal muscles,"
10	Otolaryngol Head Neck Surg.,.
11	Smiljanić, R., and Bradlow, A. R. (2009). "Speaking and hearing clearly: Talker and listener
12	factors in speaking style changes," Linguist. Lang. Compass, 3 , 236–264.
13	Snider, K. L. (1998). "Phonetic realisation of downstep in Bimoba," Phonology, 15, 77–101.
14	Tingsabadh, M. R. K., and Abramson, A. S. (1993). "Illustrations of the IPA: Thai," J. Int. Phon.
15	Assoc., 23 , 24–28.
16	Udaka, J., Kanetake, H., Kihara, H., and Koike, Y. (1988). "Human laryngeal responses induced
17	by sensory nerve stimuli," In O. Fujimura (Ed.), Vocal fold Physiol. Voice Prod. Mech.
18	Funct., Raven Press, New York, NY, pp. 67–74.
19	Wong, P. C. M., and Diehl, R. L. (2003). "Perceptual normalization for inter- and intratalker
20	variation in Cantonese level tones," J. Speech, Lang. Hear. Res., 46, 413-422.
21	Xu, Y. (1997). "Contextual tonal variations in Mandarin," J. Phon., 25, 61-83.
22	Xu, Y. (1999). "Effects of tone and focus on the formation and alignment of F0 contours," J.
23	Phon., 27 , 55–105.

1	Xu, Y. (2013). "ProsodyPro: A tool for large-scale systematic prosody analysis," Proc. Tools
2	Resour. Anal. Speech Prosody (TRASP 2013), Aix-en-Provence, France, 7–10.
3	Xu, Y., and Lee, A. (in press). "Tonal processes defined as tonal coarticulation," In CR.
4	Huang, YH. Lin, and IH. Chen (Eds.), Cambridge Handb. Chinese Linguist., Cambridge
5	University Press, Cambridge. Expected in 2021.
6	Xu, Y., and Prom-on, S. (2014). "Toward invariant functional representations of variable surface
7	fundamental frequency contours: Synthesizing speech melody via model-based stochastic
8	learning," Speech Commun., 57, 181–208.
9	Xu, Y., and Sun, X. (2002). "Maximum speed of pitch change and how it may relate to speech,"
10	J. Acoust. Soc. Am., 111 , 1399–1413.
11	Xu, Y., and Wang, Q. E. (2001). "Pitch targets and their realization: Evidence from Mandarin
12	Chinese," Speech Commun., 33 , 319–337.
13	Zemlin, W. R. (1988). Speech and hearing science—Anatomy and physiology, Prentice Hall,
14	Englewood Cliffs, NJ.
15	Zhang, C., Peng, G., and Wang, W. SY. (2012). "Unequal effects of speech and nonspeech
16	contexts on the perceptual normalization of Cantonese level tones," J. Acoust. Soc. Am.,
17	132 , 1088–1099.
18	

TABLES

- 3 Table I. Cantonese words contrasting six lexical tones on open syllable /ji:/ (based on Bauer and
- 4 Benedict, 1997 with the high falling tone removed).

Tone	Lexical item	Tone contour	value
T1	衣'clothes'	High level	55
T2	椅'chair'	High rising	25
T3	意'idea'	Mid level	33
T4	疑'suspicious'	Mid-low falling	21
T5	耳'ear'	Mid-low rising	23
T6	_`'two'	Mid-low level	22

- 2 convention, in which the number denotes tonal category. The tone values of Tones 1 to 6 are
- 3 respectively 55, 25, 33, 21, 23, 22 (Bauer and Benedict, 1997).

Carrier	Syllable 1	Syllable 2	Carrier
	lau1	man1	
	褸	蚊	
	nau2	man2	-
	扭	抿	
-	lau3	man3	_
zoi3 gong2	嘍	儆	go2 deoi3 zi6
再講 –	lau4	man4	
	留	民	
	lau5	man5	_
	柳	吻	
	lau6	man6	_
	漏	問	

			T2 on Syllable 1					
		Fixed		Random	Fixed			Random
	β	SE	t	By-speaker <i>SD</i>	β	SE	t	By-speaker <i>SD</i>
(Intercept)	2.868	.257	11.178	.618	.228	.245	.933	.588
Time (linear)	466.370	22 024	13.743		-1191.000	24 880	-34.157	
Time (quardiatic)	-419.037	55.954	-12.348		1015.000	34.000	29.100	
Rate	1.884	.554	3.397	1.339	3.331	.462	7.205	1.108
T2 - T1	.740		11.389		.071		1.058	
T3 – T1	.314	065	4.827		.267		3.993	
T4 - T1	1.379	.005	21.229	.749		.067	11.197	
T5 – T1	.425		6.546		.215		3.208	
T6 – T1	.646	.066	9.850		.491		7.314	
Rate \times (T2 – T1)	1.215		9.349		215		-1.604	
Rate \times (T3 – T1)	.447	120	3.436		395	.134	-2.955	
Rate \times (T4 – T1)	.741	.150	5.701		.682		5.096	
Rate \times (T5 – T1)	.884		6.802		290		-2.170	
Rate \times (T6 – T1)	1.876	.131	14.311		021		159	

1 Table III. Growth curve analysis on f_0 realization of Cantonese T1 and T2 on Syllable 1. Significant effects are in bold (t > 2.0).

Tone	Lexical item	Tone contour
T0	คา 'stick'	Mid
T1	ข่า 'galangal'	Low
T2	ค่า 'value'	Falling
T3	ค้า 'to trade'	High
T4	ขา 'leg'	Rising

Table IV. Thai words contrasting five lexical tones on open syllable $/k^{h}a:/.$

1st	2nd	3rd	4th
	?a:0/nim0	la:0/loŋ0	
	''อา/นิม''	''ลา/หลง''	
	no:j1/mam1	?aːn1/man1	-
	"หน่อย/หม่ำ"	''อ่าน/หมั่น''	
k ^h un0	me:2/nim2	wa:ŋ2/maj2	- ŋaːn0 or maː0
"คุณ"	"แม่/นิ่ม"	''ว่าง/ไม่''	"งาน/มา"
	na:3/miŋ3	ne:n3/lom3	-
	"น้า/มิ้ง"	''เน้น/ล้ม''	
	laːn4/jiŋ4	ha:4/loŋ4	-
	''หลาน/หญิง''	''หา/หลง''	

1	Table V. Target sentences	of the Thai corpus	(first reported)	in Xu & Prom-on. 2	2014).
-	A		(

	High on Syllable 1				Rising o	on Syllable	$e1 = \frac{3}{2}$	
		Fixed		Random		Fixed		Random ⁴
	β	SE	t	By-speaker SD	β	SE	t	By-speaker SD 6
(Intercept)	1.501	.338	4.439	.747	-1.899	.212	-8.943	.458
Time (linear)	-176.647	9 106	-21.792		-647.900	8 000	-72.001	8
Time (quardiatic)	239.900	8.100	29.595		474.000	0.999	52.669	9
Quantity (LL - SS)	-1.416	.443	-3.197	.977	149		-1.855	
Quantity (LS - SS)	991	.234	-4.232	.498	218	-	-2.718	
Quantity (SL - SS)	182	.236	773	.501	.335	-	4.178	
Mid - High	.606		8.332		.358	.080	4.455	
Low – High	1.205	072	16.567		.335	-	4.175	
Falling – High	.285	.073	3.921		.169	-	2.099	
Rising - High	.645	-	8.867		.319		3.971	
Quantity (LL - SS) \times Mid	192		-1.863		223		-1.965	
Quantity (LS - SS) \times Mid	416	-	-4.038		285	-	-2.506	
Quantity (SL - SS) \times Mid	028	-	277		364	.114	-3.208	
Quantity (LL - SS) \times Low	899	-	-8.733		.056	-	.494	
Quantity (LS - SS) \times Low	587	-	-5.702		120	-	-1.052	
Quantity (SL - SS) \times Low	498	102	-4.840		005	.117	041	
Quantity (LL - SS) \times Falling	299	.103	-2.908		147		-1.297	
Quantity (LS - SS) \times Falling	191	-	-1.856		329	114	-2.893	
Quantity (SL - SS) \times Falling	349	-	-3.393		583		-5.130	
Quantity (LL - SS) \times Rising	.214	-	2.077		022		196	
Quantity (LS - SS) \times Rising	018	-	179		317		-2.794	
Ouantity (SL - SS) \times Rising	034	-	329		.009		.081	

1 Table VI. Growth curve analysis on f_0 realization of Thai High tone and Rising tone on Syllable 1. Notation of the baseline level for 2 tone (High) is omitted in the interaction terms. Significant effects are in bold (t > 2.0).

1 FIGURE CAPTIONS

- 2 Figure 1. Time-normalized f_0 contours of the six lexical tones of Cantonese (carrier syllable
- 3 /ma/) produced by a male native speaker.
- 4 Figure 2. SS ANOVA plots showing mean f_0 contours averaged across 6 Cantonese speakers.
- 5 Figure 3. SS ANOVA plots showing mean f_0 velocity contours averaged across 6 Cantonese
- 6 speakers. In the left panel, PLR occurred in all tone pairs; in the right panel, PLR was observed
- 7 only in T1T4 (turquoise).
- 8 Figure 4. Time-normalized f_0 contours of the five lexical tones of Thai (carrier syllable /ga/)
- 9 produced by a female native speaker.
- 10 Figure 5. SS ANOVA plots showing mean f_0 contours averaged across 5 Thai speakers.
- 11 Figure 6. SS ANOVA plots showing mean f_0 velocity contours averaged across 5 Thai speakers.

₃₃₀Hz 280 230 180 130 80 Normalized time Rise Mic Low

Normalised time

Normalised time