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ABSTRACT 

Background: Thigh-worn accelerometers have established reliability and validity for 

measurement of free-living physical activity-related behaviours. However, comparisons of   

methods for measuring sleep and time in bed using the thigh worn accelerometer are rare. We 

compared the thigh-worn accelerometer algorithm that estimates time in bed with the output of a 

sleep diary (time in bed and time asleep).  

Methods: Participants (n=5498), from the 1970 British Cohort Study (BCS70) wore an activPAL 

device on their thigh continuously for seven days and completed a sleep diary. Bland-Altman plots 

and Pearson correlation coefficients were used to examine associations between the algorithm 

derived and diary time in bed and asleep.  

Results: Algorithm estimated acceptable levels of agreement with time in bed when compared to 

diary time in bed (mean bias of -11.4 min; LoA -264.6 to 241.8). The algorithm-derived time in 

bed overestimated diary sleep time (mean bias of 55.2 min; LoA -204.5 to 314.8 min). Algorithm 

and sleep diary are reasonably correlated (ρ=0.48, 95% CI: 0.45, 0.52 for women and ρ=0.51, 95% 

CI: 0.47, 0.55 for men) and provide broadly comparable estimates of time in bed but not for sleep 

time.  

Conclusions: The algorithm showed acceptable estimates of time in bed compared to diary at the 

group level. However, about half of the participants were outside of the ±30 min difference of a 

clinically relevant limit at an individual level.  

Keywords: accelerometer, activPAL, sleep, sleep diary
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Introduction 

Lifestyle behaviours are associated with a multitude of health outcomes, including 

cardiovascular diseases and mortality (Hoevenaar-Blom et al., 2014; Xiao et al., 2014). Among 

them, the potential health impacts of sleep, as reflected by sleep duration, quality, and timing, are 

less well explored (Barbaresko et al., 2018), possibly due to the difficulties with robustly 

measuring sleep-related exposures, including sleep duration. Self-reported sleep duration (short or 

long sleep duration) is linked to adverse health outcomes including obesity, diabetes, 

cardiovascular diseases, mood disorders and mortality (Grander, 2017). Although laboratory-

based polysomnography is the gold standard of objective sleep measurement, it is impractical in 

free-living epidemiological studies considering the cost, professional monitoring and large 

resource demands due to its specialized equipment (Van de Water et al., 2011). Diaries are 

common low-cost/low-tech alternatives for sleep monitoring in population research. However, 

diary-based methods could be burdensome for participants and  subject to recall bias (Tonetti et 

al., 2016), among other limitations (Riemann, 2012). 24-h device-based measurement methods 

might be a less burdensome option to estimate sleep duration in large scale epidemiological studies 

with the added advantage of not being subject to recall bias.  

Wearable devices, non-invasive and inexpensive methods for use in non-laboratory 

settings, have been increasingly used to estimate sleep, and several studies have examined the 

agreement between self-reported measures and accelerometer data in different populations 

(Girschik et al., 2012; Arora et al., 2013; McCrae et al., 2005). Although the thigh-worn 

accelerometer is considered as the gold standard for free-living measurements of sitting time and 

posture (Lyden et al., 2017; Dahlgren et al., 2010; Oliver et al., 2011) their uptake in sleep 

measurement studies is limited. Winkler et al. (2016) and Van der Berg et al. (2016) have recently 
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developed automated algorithms to isolate adults’ valid waking wear periods from thigh worn 

activPAL data collected with a continuous wear protocol. In addition to these algorithms, other 

time in bed estimation algorithms exist, e.g. the “CREA” algorithm built into the activPAL 

software (PAL Technologies) which considers 24-h wear time, classifies lying time as primary 

(e.g. during the night) or secondary (e.g. during the day) and automatically excludes sleeping time. 

Recent studies have used Winkler et al’s (2016) algorithm to calculate sleep duration (Biddle et 

al., 2018; Ezeugwu, & Manns, 2017). Biddle et al. (2018) have suggested an agreement between 

results of algorithm-derived and diary-based sleep duration in their study; for example, the 

algorithm-derived and diary-based sleep time association estimates  with fasting glucose were 

nearly identical (1.01, 95% CI 0.95 to 1.07 and 1.02, 95% CI 0.96; 1.08, respectively).  

Despite the increasingly frequent (Biddle et al., 2018; Ezeugwu, & Manns, 2017) use of 

this algorithm for estimating time in bed, very few studies have compared algorithm derived time 

in bed with other common measures such as diaries (Winkler et al., 2016; Van der Berg et al., 

2016) of sleep time. These studies generally show a correlation between algorithm derived time in 

bed and sleep diary derived time in bed (Winkler et al., 2016; Van der Berg et al., 2016), although 

none of them made direct comparisons with sleep time. The aim of this study was to compare 

Winkler et al’s (2016) algorithm-based method that uses the thigh worn accelerometer data with 

diary estimates of time in bed and time asleep in a large and established population birth cohort 

from Britain. 

Methods 

Participants and design 
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These secondary analyses of available aggregate data have been conducted using the 1970 

British Cohort Study (BCS70) data. The BCS70 is an observational prospective population-based 

cohort study, following the lives of 17,287 people born in a single week of 1970 in England, 

Scotland, and Wales. In 2016-18, a new wave of data collection was conducted when participants 

were aged 46-48 years. This comprised of computer assisted personal interviewing to collect the 

self-reported information via interviews during the home visit (1970 British Cohort Study). Nurses 

conducted physical examinations and placed the activity monitor on participants. The rationale 

and sampling methods used in the BCS70 are described in detail elsewhere (1970 British Cohort 

Study; Elliott, & Shepherd, 2006). All participants gave written informed consent, and the age-46 

biomedical survey received ethics from NRES Committee South East Coast - Brighton & Sussex 

(Ref 15/LO/1446). 

Measurements  

Computer assisted personal interviews (CAPI) collected data on participants’ self-rated 

general health, disability/limitations, smoking, and occupation. The disability/physical limitation 

was assessed using the European Statistics on Income and Living Conditions (EU-SILC) (Arora 

et al., 2015). During the home visit, a nurse took participant’s anthropometric measurements 

including height and weight. Body Mass Index (BMI) was calculated as weight (kg) divided by 

height squared (m2).  

Participants were asked to wear an activPAL3 device (PAL Technologies, Glasgow, UK) 

on their thigh for the seven days following their nurse visit. At the end of the visit, nurses placed 

and attached the devices to the thigh using a medical dressing. The device is a triaxial 

accelerometer that provides estimated body posture (sitting/reclining/lying, standing) and stepping 

speed (cadence) based on 3d-acceleration information with a sampling frequency of 20 Hz. 
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Devices were waterproofed to allow for continuous wear 24 hours (h)/day. Participants were asked 

to wear the device for seven consecutive days without removing it at any time. After the device 

was returned, data were downloaded and processed using an open-source program that 

incorporates the Winkler et al. (2016)  algorithm to quantify valid waking wear times by the 

custodians (Winkler et al., 2016). The Winkler et al. (2016) algorithm was set up to identify time 

as either a) time in bed or non-wear on a valid day b) waking wear time on a valid day c) any time 

on an invalid day. This algorithm was developed for use with 24-h wear protocols in adults to 

classify activity bouts recorded in activPAL `Events` files as `sleep`/ non-wear (or not) and on a 

valid day (or not). This automated approach excludes long periods without posture 

change/movement, adjacent low-active periods, and days with minimal movement and wear based 

on a simple algorithm. Briefly, development of an algorithm to estimate valid waking wear 

protocols has 4 steps including identifying bouts, examining surrounding bouts, identifying other 

invalid data and quality control such as checking and error correction. The algorithm was validated 

based on a minimum of four valid wear days with at least 10 h of waking wear data and > 500 

steps (Winkler et al., 2016). The algorithm aimed to measure in bed and non-wear time versus 

waking wear time. We used in bed and non-wear time together in our analysis. We excluded the 

first day of data and defined subsequent days as the 24 h between consecutive midnights. 

Participants providing at least one valid day, defined as waking wear time of more than 10 h per 

day, were included in the core analysis (van der Velde JH et al., 2018). Figure 1 illustrates each 

stage of the algorithm.  

[Figure 1 here] 

Participants were also asked to complete a sleep diary for each day that they wore the 

monitor. The diary recorded some key information including the exact times (hh:mm) they went 
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to bed, fell asleep, woke up, and got out of bed. There were also separate entries on how many 

times participants got up during the night and self-rated sleep quality. The full diary is shown in 

Supplemental Appendix 1.  

Data handling  

Since the algorithm was designed to distinguish waking wear time from time in bed 

(Winkler et al., 2016), the algorithm-derived time in bed is computed by subtracting valid waking 

wear time from 24 h (Biddle et al., 2018). We made both day to day comparisons and mean value 

comparisons of valid days for sleep diary time in bed and sleep time data as well as algorithm-

derived time in bed data.  As PSG can measure the sleep accurately, we defined diary-reported 

sleep time as the time participants wake-up minus the time they fall asleep. Diary time in bed was 

defined as the time participants get out of bed minus the time they go to bed. Both algorithm data 

and sleep diary data were calculated as minutes. 

Statistical analysis 

Statistical analysis was performed using SPSS Version 26.0 (IBM, Chicago, IL, USA) and 

MedCalc software (Ostend, Belgium). The accelerometer and sleep diary variables were analysed 

as continuous variables. We ran the χ2 test and analysis of variance to examine differences by sex 

for categorical and continuous variables, respectively. Descriptive statistics were calculated for 

demographic characteristics of participants. We compared algorithm derived time in bed versus-

bed time and sleep duration of mean minute/day from diary using the paired sample t-test. We also 

used Schuirmann’s (1987) two one-sided tests (TOST) approach to test equivalence with a 

specified confidence level between observations. We defined a priori differences between 

algorithm and diary of ±30 min as satisfactory for time in bed and sleep time and calculated 90% 



8 
 

confidence interval (CI). If the entire range of 90% CI of the mean difference lay within the rage 

of ±30 min, we concluded that the two observations were equivalent. Pearson correlation 

coefficients were calculated to test the association between the algorithm derived and diary time 

in bed and sleep time. We used bootstrapping methods to calculate 95% confidence intervals. 

Differences in correlations across subgroups were tested using Fisher’s z test. In addition to 

Pearson correlation coefficients, we calculated absolute intraclass correlation coefficients (ICC) to 

assess reliability of repeated measurements among different days as a sensitivity analysis. In 

stratified analyses we examined the correlation (Pearson coefficients) between the algorithm 

derived and diary time in bed and asleep across different education groups and health statuses. We 

conducted Bland-Altman plot with multiple measurements per subject for daily data to examine 

the agreement of the algorithm-derived and diary-derived times in bed and times asleep. Limits of 

agreement (LoA) were calculated as bias ± 1.96 SD of the difference. A positive value of the mean 

difference between algorithm and diary indicates that algorithm overestimates diary data, whereas 

a negative value indicates that algorithm underestimates diary data. Similar to previous studies (de 

Zambotti, Baker, & Colrain, 2015; Short et al., 2017), we performed additional Bland-Altman 

plots where we defined a priori differences between algorithm and diary of ±30 min as satisfactory 

for time in bed and sleep time. The percentage of participants falling within this range is provided. 

We also performed Bland-Altman plot to examine the agreement of the algorithm-derived and 

diary-derived times in bed and times asleep for each day separately as sensitivity analysis. 

Additionally, we used the Bland-Altman plot to examine the agreement of the algorithm-derived 

and diary-derived times in bed and times asleep. We performed linear regression analysis to 

evaluate proportional bias. We specified the difference between algorithm and diary as the 

dependent variable, and the mean of the algorithm and diary as the independent variable. In this 
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analysis, a P < 0.05 model coefficient value indicated the presence of proportional bias. In a 

sensitivity analysis we repeated the above Bland-Altman plots but included participants with at 

least > 4 d of valid data and at least 20 h per day wear. We also calculated Pearson correlation 

coefficients for each day. All statistical tests were two-tailed, and values are reported as mean and 

95% confidence intervals.  

Results 

Table 1 shows participants’ demographic, health status, and lifestyle health behaviours 

characteristics. There were no appreciable differences in the accelerometer 24-h waking wear time 

between men and women (mean 24-h waking wear time 16.0 h/day, standard deviation 1.3 h/day 

and mean 24-h waking wear time 15.7 h/day, standard deviation 1.3 h/day, respectively). The mean 

non-wear time for the valid days was 486.0 min (23.4 min -776.4 min).   

[Table 1 here] 

Table 2 compares absolute accelerometer time in bed with the diary-reported time in bed 

and asleep. The differences between algorithm-derived and diary time in bed by sex were 

statistically significant but practically small (mean -15.5 min per day for women, -3.5 min for 

men). The differences between algorithm-derived time in bed and diary sleep time were larger and 

also statistically significant (mean 56.0 min for women, 57.4 min for men). According to the TOST 

approach, we found that algorithm-derived and diary time in bed was equivalent for total, women 

and men (%90 CI of difference: -11.3, -8.2; %90 CI of difference: -17.6, -13.3; and %90 CI of 

difference: -5.7, -1.2, respectively) whereas the entire range of 90% CI of difference for algorithm-

derived time in bed and diary sleep time was not in the a priori defined limits of ±30 min. Table 3 

presents Pearson’s correlation coefficient between algorithm-derived time in bed and diary time 
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in bed and sleep time (Supplementary Figure 1). The correlation coefficients between algorithm-

derived time in bed and diary time in bed were 0.48 in women (95% CI: 0.45, 0.52) and 0.51 in 

men (95% CI: 0.47, 0.55). The correlation coefficients between algorithm-derived time in bed and 

diary sleep time were lower for both women (ρ=0.34, 95% CI: 0.30, 0.38) and men (ρ=0.39, 95% 

CI: 0.35, 0.43). Pearson’s correlation coefficient for the association between algorithm-derived 

time in bed and diary time in bed and asleep for each day also produced similar results to the main 

analysis (Supplementary Table 1). The ICC correlation coefficients were low for both women and 

men (Supplementary Table 2). We also compared absolute accelerometer time in bed with the 

diary-reported time in bed and time asleep by health status (Supplementary Table 3). The mean 

difference between algorithm derived and diary derived time in bed was lowest for healthy 

participants (-8.3 min), whereas it was the highest in participants who were severely hampered in 

activities because of health problems (-28.6 min). We presented correlations between algorithm 

and diary time in bed and asleep by health status in Supplementary Table 4. We also presented 

absolute differences between mean amounts of time in bed from the sleep diary and the 

accelerometer data by education level in Supplementary Table 5 and correlation between algorithm 

and diary for time in bed and asleep by education level in Supplementary Table 6. The correlations 

coefficient between algorithm-derived time in bed and diary time in bed were 0.51 in the lowest 

education level and 0.55 in the highest education level. 

[Table 2 here] 

[Table 3 here] 

The limits of agreement between algorithm-derived time in bed and diary time in bed were 

shown in the repeated measures of Bland-Altman plots (Figure 2) which depicts a systematic error 

(with a mean bias of -6.1 min; LoA -260.4 to 248.2 min for men and with a mean bias of -16.1 
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min; LoA -268.0 to 235.8 min for women). Assuming the diary is the reference method, the 

algorithm underestimated the time spent in bed for both women and men. Furthermore, linear 

regression analysis showed that this underestimation was statistically significant (95% CI: 0.398, 

0.426, P < 0.001) (Table 4). According to a priori defined limits, 36.9% of the measurements were 

in the range of ±30 min difference. The repeated measures of Bland-Altman method for 

comparison between algorithm-derived time in bed and diary sleep time showed a mean bias of 

55.0 min (LoA -205.0 to 315.1 min) for men and a mean bias of 55.3 min (LoA -204.0 to 314.6 

min) for women, indicating that algorithm-derived time in bed overestimated sleep time in both 

sexes (Figure 3). The proportion of the total measurements in the range of clinically acceptable 

limits (±30 min difference) was 23.5%. Linear regression analysis also demonstrated the presence 

of proportional bias between algorithm-derived and diary for both sexes indicating that algorithm-

derived time in bed underestimated the diary time in bed whereas algorithm-derived time in bed 

overestimated the diary sleep time. Overall, based on the observed magnitude of the regression 

coefficients, proportional bias was greater in women than men for all variables (Table 4). The 

sensitivity analysis of day to day Bland-Altman method for comparison between algorithm-derived 

time in bed with diary sleep time and time in bed also produced similar results with the main 

analysis of repeated measures of Bland-Altman plots (Supplementary Table 7). In addition, Bland-

Altman agreement between algorithm time in bed and diary time in bed and sleep time showed 

similar results with the main analysis (Supplementary Figure 2 and 3). For instance, Bland-Altman 

method for comparison between algorithm derived time in bed and diary time in bed showed a 

mean bias of -3.5 min (LoA -139.1 to 132.1 min) for men and a mean bias of -15.5 min (LoA -

152.7 to 121.8 min) for women indicating an underestimation of time spent in bed for both men 

and women (Supplementary Figure 2). Algorithm derived time in bed also overestimated the diary 
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sleep time in the Bland Altman plot with a mean bias of 57.4 min (LoA -90.1 to 204.8 min) for 

men and 56.0 min (LoA -96.1 to 208.0 min) for women (Supplementary Figure 3).  

[Table 4 here] 

[Figure 2 here] 

[Figure 3 here] 

In sensitivity analyses we separately examined participants with high (>4d and >20hr) and 

low (<4d and <20 hr) wear compliance; Bland-Altman plots are shown in Supplementary Figure 

4. We also reported participants’ time in bed and sleep time according to valid wear days and valid 

h in Supplementary Table 8and 9. According to Bland-Altman plots, algorithm-derived time in 

bed overestimated the diary sleep time for both in participants who had more than 4 d activPAL 

wearing days (a mean bias of 55.3 min, LoA -82.1 to 192.6 min) and less than 4 d activPAL 

wearing days (a mean bias of 69.9 min, LoA -169.3 to 309.1 min).  

Discussion 

To our knowledge, this study is the largest population cohort to compare the thigh worn 

accelerometer algorithm that estimates time in bed with a sleep diary. The findings suggest that 

the algorithm estimates acceptable diary time in bed on a group level. However, about 36.9% of 

the measurements and about half of the participants were in the range of ±30 min difference of a 

clinically relevant limit at individual level. As expected, the correlations with diary estimated sleep 

time data were lower concluding that the algorithm estimates longer sleep time on a group level 

compared to diary. 
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Average absolute differences in time in bed between the two methods were generally small, 

e.g. the algorithm-derived time in bed was 9.8 minutes less than diary time in bed which was within 

the clinically acceptable range of ≤ 30 min difference. Although Winkler et al found a good 

correlation (Pearson correlation coefficient = 0.67) between the algorithm and sleep diary waking 

times, the algorithm overestimated waking wear time relative to the diary thus resulting in 

underestimation of diary time in bed (Winkler et al., 2016). van der Berg et al. (2018) developed 

another algorithm for the assessment of time in bed from activPAL data which was based on the 

number and duration of sedentary periods to identify time in bed, and on the number and duration 

of active periods (standing or stepping) to identify wake times. They showed that the algorithm 

estimates of time in bed differed on average by less than 25 minutes compared to the self-reported 

bedtimes. Their algorithm was strongly associated with self-reported wake and time in bed 

(Intraclass correlation coefficient = 0.79). We also found an acceptable agreement on estimation 

of algorithm-derived time in bed and diary time in bed on a group level although the LoAs were 

relatively wide. 

The main potential use of a future activPAL algorithm will be to evaluate associations 

between sleep duration and health outcomes. It is therefore important to evaluate the capacity of 

the algorithm to produce consistent results. For instance, Biddle et al. (2018) examined the 

association between physical behaviours (sleep, sitting, standing, and stepping) and markers of 

metabolic health including fasting glucose and insulin, 2-h glucose and insulin. Sleep time was 

estimated with both the Winkler et al.’s (2016) algorithm and sleep diary. It is encouraging that 

Biddle et al. (2018) found that the results were materially the same when associations of self-

reported sleep time and cardiometabolic outcomes were compared to those of algorithm-derived 

time in bed. In our recent BCS70 analysis on the associations between different sleep indicators 
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and a range of cardiometabolic outcomes, we found that there was no material difference between 

the algorithm derived time in bed and diary time in bed or sleep time (Huang B, et al., 2020). We 

found that algorithm-derived time in bed was higher than diary sleep time by approximately 1 h in 

both men and women. Further development in algorithms to estimate sleep duration from the thigh-

worn accelerometer data is needed. Studies that determine the time in bed and sleep differences 

between diary and wrist actigraphy produce different results. For instance, while some studies 

showed that diary overestimated the total sleep time compared to actigraphy (Campanini et al., 

2017), other studies showed an underestimation (Liu et al., 2019). Yet, the conclusion from these 

studies were that the levels of disagreement are reasonable for the devices to be used 

interchangeably (Campanini et al., 2017; Liu et al., 2019). 

We showed that 23.5% of the participants were in the clinically acceptable range (±30 min 

difference) for sleep time. Unlike our study, the wrist-worn accelerometer study showed that 88% 

of the participants were in the clinically satisfactory ranges for total sleep time (de Zambotti et al., 

2019). The reason for these different findings can be attributed to properties of the devices. The 

thigh-worn accelerometer can detect sitting/lying time, upright time, sitting/lying to upright 

transitions and reduction in sitting as well as distinguish standing from stepping (Edwardson et al., 

2017). However, the wrist-worn accelerometer measures cannot use postural information when 

estimating sleep or waking state, habitual physical activity and energy expenditure (Doherty et al., 

2017). 

Although wrist actigraphy has excellent concordance with the PSG in the measurement of 

sleep time in healthy people (Martin & Hakim, 2011), wrist actigraphy is prone to overestimating 

sleep time in different health conditions compared to PSG (Blackwell at al., 2011) and is prone to 

underestimating sleep time compared to diary (Moore et al., 2015). We also found that the health 
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status of participants influenced the comparisons of time in bed and sleep time assessed by the 

thigh-worn accelerometer and diary. We showed that the differences between algorithm and diary 

for both time in bed and sleep time were higher in participants with a long-standing health 

condition compared to those who did not have a long-standing health condition. Theoretically at 

least, this observation opens up the possibility that either healthy people report sleep time more 

accurately or the algorithm works better for healthy people. This finding requires further attention 

in future research. 

Our study has several notable strengths, including the large sample size and the population-

based sample that increases generalisability of our findings. Another strength was that 63.5% of 

participants provided at least 6 valid days of sleep diary and the accelerometer data. Also, it is a 

strength that our participants were asked for bedtime and wake-up time rather than for the number 

of hours slept. The latter would entail a calculation by the respondents and thus an increased risk 

of reporting error of sleeping times.  

Our study has limitations also. The sleep diary as a method to measure time in bed and 

sleep time may be subject to recall limitations or incompleteness. Because of the way participants 

were instructed to complete the diary (on the following day), we expect that recall bias is less 

pronounced than recall questionnaires utilising a specific time frame or inquire about “usual” sleep 

duration. There is a need for studies that compare the algorithm we used with the gold standard 

polysomnography. In addition, because we only had the accelerometer data for Winkler et al. 

(2016)’s algorithm, we could not make any comparison with other algorithms. We were not able 

to evaluate the validity on daily total time. Another limitation is that we had algorithm data for 

duration of sleep and time in bed, not for the time participants go to bed and the time they wake 

up. 
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CONCLUSION 

In summary, the algorithm we tested showed acceptable estimates of time in bed compared to 

diary at the group level. As such, the algorithm is appropriate for use in large-scale population 

studies to estimate time in bed at a group level. However, despite the limited bias between 

algorithm and diary, the broad 95% limits of agreement suggest that there may still be disparities 

between these measurement modalities at individual participant levels in estimating time in bed 

and sleep time. This was especially true for sleep time; as the average value for sleep time 

increased, there appeared to be less agreement between the measurements. The limited research to 

date, suggests that such disagreement has limited impact on estimates of association between sleep 

and health outcomes. With the increasing use of thigh worn monitors in the field of physical 

activity, sedentary behaviour and sleep, automated estimation of sleep behaviour parameters has 

several practical advantages and can maximise use of the accelerometer data. More research is 

required to further refine the different algorithms that estimate sleep duration from the thigh-worn 

accelerometer data. 
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Figure 1. Flow chart for the steps of algorithm  

Figure 2(A-C). The repeated measures of Bland-Altman agreement between algorithm and 

diary for the duration of time in bed. Mean of the differences between algorithm and diary time 

in bed and lower and upper agreement limits (mean difference ± 1.96 standard deviation) are 

displayed for each Bland-Altman plot. The green lines represent the upper and lower a priori-

set clinically satisfactory limits (± 30 min from the zero line).  

Figure 3(A-C). The repeated measures of Bland-Altman agreement between algorithm and 

diary for the duration of time in bed and sleep time. Mean of the differences between algorithm 

time in bed and diary sleep time and lower and upper agreement limits (mean difference ± 1.96 

standard deviation) are displayed for each Bland-Altman plot. The green lines represent the 

upper and lower a priori-set clinically satisfactory limits (± 30 min from the zero line).



23 
 

Table 1. Characteristics of Participants 

 Total* 
(n=5498) 

Women 
(n=2879) 

Men 
(n=2619) 

 % 
 

95% CI Mean 
 

95% CI % 
 

95% CI Mean 
 

95% CI % 
 

95% CI Mean 
 

95% CI 

Employed 84.0 

 
83.0, 
85.0 

  79.2 

 
77.7, 
80.6 

  89.3 

 
88.1, 
90.6 

  

Self-employed 2.4 

 
2.0, 2.8   2.6 

 
2.1, 3.3   2.1 

 
1.6, 2.7   

Shift-workers 15.3 
 

14.2, 
16.3 

  13.9 
 

12.6, 
15.3 

  16.7 
 

15.2, 
18.2 

  

BMIa   28.2 

 
28.02, 
28.30 

  27.9 

 
27.67, 
28.09 

  28.5 

 
28.29, 
28.66 

Current Smoker 13.3 
 

12.3, 
14.2 

  12.9 
 

11.7, 
14.0 

  13.7 
 

12.4, 
15.0 

  

General health 
score 

  68.9 
 

68.6, 
69.9 

  69.6 
 

68.94, 
70.72 

  68.2 
 

67.81, 
69.42 

No long-
standing health 
condition 

84.4 

 
83.4, 
85.4 

  82.1 

 
80.7, 
83.5 

  87.0 

 
85.6, 
88.3 

  

Total time to 
fall asleep (0-15 
min) 

51.5 

 
50.3, 
52.9 

  47.6 

 
45.6, 
49.5 

  55.8 

 
53.7, 
57.6 

  

Getting enough 
sleep (most of 
the time) 

33.5 
 

32.3, 
34.8 

  32.5 
 

30.9, 
34.1 

  34.6 
 

32.8, 
36.6 

  

Times out of 
bed during 
night 

  0.7 

 
0.71, 
0.76 

  0.8 

 
0.70, 
0.76 

  0.7 

 
0.71, 
0.77 

Self-rated sleep 
quality (1 to 10) 

  6.9 
 

6.91, 
7.00 

  6.9 
 

6.90, 
7.01 

  6.9 
 

6.88, 
7.01 

Sleep hours 
over the last 4 
weeks 

  6.8 

 
6.78, 
6.84 

  6.9 

 
6.86, 
6.96 

  6.7 

 
6.67, 
6.76 
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Number of valid 
days for sleep 
time (diary) 

  6.5 

 
6.47, 
6.54 

  6.5 

 
6.47, 
6.56 

  6.5 

 
6.45, 
6.54 

Number of valid 
days for time in 
bed (diary) 

  6.5 

 
6.51, 
6.58 

  6.6 

 
6.52, 
6.61 

  6.5 

 
6.48, 
6.57 

Number of valid 
days 
(Accelerometer) 

  6.2 

 
6.12, 
6.20 

  6.2 

 
6.15, 
6.25 

  6.1 

 
6.05, 
6.18 

Accelerometer 
wear time, 
h/dayb 

  15.8 
 

15.80, 
15.88 

  15.7 
 

15.65, 
15.75 

  16.0 
 

15.94, 
16.05 

Abbreviations: CI, confidence interval. 
* Age is identical for the whole sample. 
a Weight (kg)/height (m)2. 
b Average accelerometer wear time per day, where non-wear was defined by intervals of at least 60 minutes of zero activity counts, with allowance for up to 2 
consecutive minutes of 1–100 counts/minute.
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Table 2. Absolute Differences Between Mean Amounts of Time in Bed From The Sleep Diary and Accelerometer Data, by Sex 

 Time in Bed (min/day) Sleep Time (min/day) Differencea 
(min/day) 

Differenceb 
(min/day) 

P Valuec P Valued 

 Algorithm Diary Diary 

 Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI 

Women 
(n=2879) 

497.8 494.8, 500.2 513.1 

 
510.9, 515.2 441.6 

 
439.5, 443.7 -15.5 

 
-18.1, -12.9 56.0 

 
53.0, 58.9 <0.001 <0.001 

Men 
(n=2619) 

480.0 

 
477.1, 483.2 483.6 

 
481.1, 485.8 422.8 

 
420.4, 425.0 -3.5 

 
-6.3, -0.7 57.4 

 
54.3, 60.4 0.011 <0.001 

Total 
(n=5498) 

489.4 

 
487.3, 491.5 499.0 

 
497.4, 500.8 432.6 

 
431.0, 434.2 -9.8 

 
-11.6, -8.0 56.6 

 
54.6, 58.6 <0.001 <0.001 

Abbreviations: CI, confidence interval. 
a Difference between time in bed (algorithm) and time in bed (diary) 
b Difference between time in bed (algorithm) and sleep time (diary) 

c P value for the difference between algorithm-derived data (time in bed) and diary (time in bed), according to the Paired Sample t-test 
d P value for the difference between algorithm-derived data (time in bed) and diary (sleep time), according to the Paired Sample t-test
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Table 3. Correlation Between Algorithm and Diary for Time in Bed and Sleep Time, by Sex 
 

Algorithm, 
Diary 

Women (n=2812) Men (n=2544) P value a 
ρ b 95% CI c ρ b 95% CI c 

Time in Bed 0.48* 0.45, 0.52 0.51* 0.47, 0.55 0.207 
Sleep Time 0.34* 0.30, 0.38 0.39* 0.35, 0.43 0.023 

Abbreviations: CI, confidence interval 
* P <0.001 
a P value for the difference between Pearson’s ρ for women and men, calculated using Fisher’s z test. 
b Pearson’s correlation coefficient. 
c Confidence intervals were computed using a bootstrapping procedure. 
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Table 4. Linear Regression Coefficients Between the Mean of the Algorithm and Diary Derived Time, 
and the Difference Between the Algorithm and Diary Derived Time 

 Coefficient  95% CI P 

Women    

Time in Bed (Algorithm and Diary) 0.341 0.442, 0.481 <0.001 
Time in Bed (Algorithm) and Sleep Time 
(Diary) 

0.357 0.517, 0.560 <0.001 

Men    

Time in Bed (Algorithm and Diary) 0.294 0.371, 0.412 <0.001 
Time in Bed (Algorithm) and Sleep Time 
(Diary) 

0.327 0.454, 0.499 <0.001 

Total     

Time in Bed (Algorithm and Diary) 0.310 0.398, 0.426 <0.001 
Time in Bed (Algorithm) and Sleep Time 
(Diary) 

0.341 0.487, 0.518 <0.001 

 

 

 

 


