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Abstract 16 

Recent advances in process analytical technologies and modelling techniques present 17 

opportunities to improve industrial chromatography control strategies to enhance process 18 

robustness, increase productivity and move towards real-time release testing. This paper 19 

provides a critical overview of batch and continuous industrial chromatography control 20 

systems for therapeutic protein purification. Firstly, the limitations of conventional industrial 21 

fractionation control strategies using in-line UV spectroscopy and on-line HPLC are outlined. 22 

Following this, an evaluation of monitoring and control techniques showing promise within 23 

research, process development and manufacturing is provided. These novel control strategies 24 

combine rapid in-line data capture (e.g. NIR, MALS and variable pathlength UV) with 25 

enhanced process understanding obtained from mechanistic and empirical modelling 26 

techniques. Finally, a summary of the future states of industrial chromatography control 27 

systems is proposed, including strategies to control buffer formulation, product fractionation, 28 

column switching and column fouling. The implementation of these control systems improves 29 

process capabilities to fulfil product quality criteria as processes are scaled, transferred and 30 

operated, thus fast tracking the delivery of new medicines to market. 31 

Keywords: process control, biopharmaceuticals, mechanistic modelling, process 32 

intensification, process analytical technology, real-time release testing 33 
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1. Introduction 44 

The biopharmaceutical industry, currently dominated by therapeutic proteins, has grown 45 

rapidly since its inception while the portfolio of products has increased in complexity and 46 

diversity [1,2]. Concerns for the sector’s future highlight rising development costs and 47 

manufacturing challenges, in addition to competition from biosimilars  [3–5]. To ensure 48 

continual quality improvements and bring these complex therapeutic proteins faster to the 49 

market, companies have been driven to innovate by accelerating process development, 50 

reduce operational and capital expenses (OPEX and CAPEX), and move towards the goal of 51 

real-time release testing [6,7]. A key aspect in the manufacture of these therapeutic proteins 52 

is downstream processing where chromatography is typically the core purification technology 53 

[8]. Process optimisation and control of chromatography steps can contribute to more 54 

consistent product quality, better management of process variability, and cost reductions. 55 

However, the current implementation of chromatography control strategies in industry is 56 

limited and rudimentary, leading to processes operating sub-optimally in addition to delays in 57 

purification process development for new molecules. Therefore, a critical overview of the 58 

breadth of monitoring and control techniques is presented and possible future states of 59 

chromatography control that will pave the way towards greater process intensification are 60 

proposed.  61 

The key questions that will be tackled in this review of current and future industrial 62 

chromatography control strategies are: 63 

• What are the current standard buffer and fractionation control strategies in industrial 64 

chromatography?  65 

• What novel process analytical technologies (PATs) and control strategies have been 66 

published? 67 

• What are the benefits and issues of the novel PATs and control strategies described? 68 

• What will be the likely future state of industrial therapeutic protein chromatography 69 

control systems to meet the challenges of increasing product complexity? 70 

Process intensification was first pioneered as a way to reduce capital costs by the UK based 71 

Imperial Chemical Industries (ICI) in the late 1970s [9]. While it has since seen significant 72 

interest and application in the biopharmaceutical industry, the definition of process 73 

intensification has been vague and sometimes contradictory [10–13]. For the purposes of this 74 

review, process intensification is defined as any technology or strategy that increases the 75 

efficiency of one or more unit operations, leading to increased intermediate/final product purity 76 

and/or yield per unit volume, process time, and/or expense, resulting in reduced plant 77 
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footprints. In this manner, process intensification results in more efficient processes that meet 78 

regulatory requirements. 79 

To tackle the growing expenses and demands of the biopharmaceutical industry, key 80 

regulatory agencies have pushed in recent decades to improve and modernise the 81 

biopharmaceutical industry. A key element of this is the “Quality by Design” (QbD) initiative, 82 

first developed by Dr. Joseph M. Juran [14]. QbD is an approach to development, based on 83 

quality planning, quality control, and quality improvements. Since its inception, it has been 84 

identified as a key design strategy by The International Council for Harmonisation of Technical 85 

Requirements for Pharmaceuticals for Human Use (ICH) guideline Q8, resulting in a 86 

continuous push by regulators for its implementation [15,16]. 87 

The QbD process requires the development of an overall control strategy, within which 88 

relevant critical quality attributes (CQAs) are identified along with their acceptable operating 89 

ranges [17]. The critical process parameters (CPPs) that directly impact the pertinent CQAs 90 

are also identified. A QbD control strategy can require monitoring of the CQAs and 91 

manipulation of the CPPs in response to the process changes to maintain the process within 92 

the established design space. Table 1 details potential CPPs, CQAs and performance 93 

attributes relevant to process chromatography for the purification of therapeutic proteins. The 94 

pertinent CQAs and CPPs are identified via risk assessment during process development, and 95 

vary depending on the chromatography process in question. For example, a Protein A capture 96 

step may have fewer and less-stringent CQAs than a polishing ion-exchange step where the 97 

product stream is nearing the final product composition. Performance attributes, such as 98 

product yield and process productivity, are not classed as CQAs as they do not directly affect 99 

the safety or efficacy of the final product. However, they remain vitally important to assuring a 100 

feasible manufacturing process, and so relevant process parameters influencing the 101 

performance attributes also require identification to enable their control [18,19].  102 

Furthermore, the “Pharmaceutical Current Good Manufacturing Practices (cGMPs) for the 103 

21st Century—a Risk Based Approach,” is an initiative announced by the FDA in August of 104 

2002 to improve and modernise pharmaceutical manufacturing [20].  A vital element of the 105 

initiative is to encourage companies to adopt PAT for monitoring and control of processes, 106 

resulting in continuous real-time quality assurance. The utilisation of PAT plays a role in 107 

meeting the goals of the QbD design approach by monitoring the identified CQAs and 108 

manipulating the corresponding CPPs. For these reasons, a major focus in industry has been 109 

to improve the process efficiency and robustness of chromatography through the 110 

implementation of process monitoring and control using PAT. 111 
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However, while the ability of these PAT to monitor processes has been demonstrated in 112 

research and process development, the number of demonstrated implementations of control 113 

strategies utilising PAT is significantly lower [21–24]. This indicates a gap in meeting all the 114 

objectives of the FDA initiative. For industrial chromatography processes, these gaps exist 115 

due to the additional obstacles for PAT and process control implementation present in 116 

therapeutic protein chromatography when compared to small molecule chromatography. The 117 

first of these obstacles is the presence of product-related impurities including DNA and a 118 

variety of host cell proteins which must be reduced to nominal levels in the final product. 119 

Second, the similar binding affinities between the product and its aggregates, fragments, and 120 

dimers/monomers make their separation from the product challenging. Third, the difficulty in 121 

differentiating between product and product-related impurities using current PAT monitoring 122 

strategies means additional time and expenses are generated from retrospective off-line 123 

quality checks. Fourth, the wide variety of therapeutic proteins with different chemical 124 

compositions and configurations requires the development of individual control strategies for 125 

each product leading to long process development times [21–23]. 126 

These obstacles make accurate real-time measurements of therapeutic protein quantity and 127 

purity using traditional monitoring methods challenging. As a result, currently implemented 128 

chromatography control strategies in industry are relatively limited, reducing the process 129 

robustness and efficiency that can be achieved. Advanced control strategies could reduce 130 

expenses by decreasing buffer and material requirements, and intensifying chromatography 131 

steps resulting in processes with higher productivities that may lead to more robust processes 132 

with a smaller plant footprint.  133 

Improved process control is also a key element in the move towards real-time release testing 134 

(RTRT) [25]. For biologics, RTRT is an alternative approach to standard product testing at the 135 

end of production, on the basis that the manufacturer can demonstrate that product quality is 136 

maintained based on real-time process data [26]. Strategies for the implementation of RTRT 137 

across biologic manufacturing can be found in the literature [25], and in published guidance 138 

from US and European pharmaceutical regulators [26–28]. The potential benefits of RTRT 139 

founded on advanced process control and PAT implementation include increased quality 140 

assurance, shorter production timelines, reduced OPEX and less dependence on 141 

retrospective end-product testing. These advanced systems require the use of multivariate 142 

data analysis (MVDA), mechanistic modelling, and in-line or automated on-line technologies 143 

to rapidly monitor and predict the process attributes in real time.  144 

This review begins by highlighting the current buffer and fractionation control strategies used 145 

in industrial chromatography and identifies their limitations. This is followed by a deep dive 146 
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into literature for novel chromatography control strategies, starting with experimentally 147 

demonstrated spectroscopy-based soft sensors utilised in chromatography control strategies.  148 

The demonstrated and potential application of mechanistic modelling, PID controllers and 149 

model predictive control to industrial chromatography control are then further discussed, 150 

including the pros and cons of each strategy. Finally, a future perspective on advanced 151 

chromatography control systems and technologies is presented. 152 

2. Current industrial chromatography control systems 153 

The biopharmaceutical industry employs several monitoring and control technologies to 154 

ensure that chromatography systems operate safely, and that the product obtained meets the 155 

required specifications. In process chromatography there are two main areas for control: 156 

controlling the conditions of the column feed and controlling the purity and yield of the product. 157 

In this review, these areas are referred to as buffer control and fractionation control 158 

respectively. Currently available and industrially proven control technologies applied in both 159 

areas are detailed in the following two sections. A summary of the techniques discussed is 160 

provided in Table 2.  161 

2.1. Buffer control systems 162 

At industrial scale, protein purification can require thousands of litres of buffer weekly and a 163 

multitude of different buffer formulations per unit operation. In standard operation, buffers are 164 

formulated, tested and stored prior to consumption, often in large stainless steel tanks. Buffer 165 

formulation requires substantial resource and time, potentially involving off-line testing to 166 

ensure each buffer meets the required specification. It follows that buffer management 167 

contributes significantly to the overall plant footprint and can incur significant CAPEX and 168 

OPEX, with some authors citing buffer management as a prominent bottleneck in the entire 169 

production line [29]. As detailed in Table 2, two control techniques are readily available to 170 

address the buffer bottleneck, namely in-line dilution (ILD) and in-line conditioning (ILC).  171 

Figure 1a details the ILD configuration which requires the preparation of concentrated buffer 172 

solutions, which are precisely diluted in-line using water for injection (WFI) [30]. The diluted 173 

buffer is then fed directly into the chromatography column. Most buffer solutions required for 174 

chromatography are relatively dilute. Therefore, storing highly concentrated versions and 175 

diluting in-line drastically reduces the size and quantity of buffer preparation and storage 176 

vessels required [31]. Cost savings are further enhanced if ILD reduces volume requirements 177 

to a point where single-use bags can be used instead of tanks. The ILD can be controlled by 178 

calculating the flowrate set-points of the concentrated buffer(s) and WFI streams prior to 179 

running the process. During ILD, flow indicators on each stream provide feedback to the 180 

controller, which manipulates the pumps and flow control valves to ensure the set-points are 181 
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met, as shown in Figure 1a. Secondary feedback can be facilitated using final buffer pH and 182 

conductivity readings if required [32], whilst accounting for potential probe drift and erroneous 183 

calibration. Flowmeters typically provide highly reliable data. However, when relying on flow 184 

control only, the pre-formulated buffer concentrates must be prepared with great precision as 185 

dilution will propagate any small errors introduced [31]. ILC eradicates this issue and can 186 

instigate further CAPEX and OPEX reductions. 187 

ILC considers the controlled formulation of bioprocess buffers from individual component 188 

solutions and WFI immediately prior to consumption. The resulting buffer is fed directly into 189 

the purification process, thereby eliminating the need for laborious buffer formulation and 190 

storage prior to running the process. An example ILC system is provided in Figure 1b. The 191 

plant footprint and cost reductions can be greater than that of ILD, as individual buffer 192 

components can be stored in higher concentrations than a pre-formulated buffer concentrate 193 

[29]. Furthermore, any deviations in concentration, pH or conductivity from specification 194 

potentially introduced during dilution are prevented. A chromatography ILC system utilises 195 

four inlets namely: acid components, base components, salt solution, and WFI. As with ILD, 196 

feedback control is implemented to ensure that the final buffer solutions meet the 197 

specifications. If precisely formulated stock solutions of acid, base and salt are available, 198 

feedback control using only flowrate measurements and pre-determined flowrate set-points is 199 

possible (see Figure 1b). The conductivity and pH of the final buffer are monitored to ensure 200 

the product is suitable for real-time use. Dynamic feedback control using conductivity and pH 201 

probes is also possible and should be considered in situations where close control of the pH 202 

or conductivity is required, such as during linear gradient elution, or where variability in the 203 

stock solutions is anticipated. 204 

The benefits of the ILD and ILC buffer control systems are numerous. For example, Kedrion 205 

Biopharma showed that implementing ILC reduced their tank requirements by 84%, facilitating 206 

the adoption of single-use buffer tanks [33]. Furthermore, the buffer preparation time was 207 

reduced by 69%, and the overall plant footprint was reduced by 61%. The benefits of 208 

automating buffer formulation by applying feedback control are clear: it reduces CAPEX and 209 

plant footprint, simplifies buffer preparation, and improves process robustness by reducing 210 

buffer variability. It follows that the implementation of in-line buffer formulation systems will 211 

become more commonplace, as control system expenses reduce and regulatory familiarity 212 

with the technology improves. 213 

2.2. Fractionation control systems       214 

A critical process control decision is selecting when to collect the product from the eluting 215 

stream. A typical product fractionation control system is depicted in control loop A of Figure 2. 216 
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The controller relies on in-line data from an ultraviolet (UV) spectrophotometer at the column 217 

outlet to inform the control decision. As detailed in Table 2, UV absorption at 280 nm is a well-218 

established method for quantifying the total protein content during the process [34]. The UV 219 

280 nm absorbance is monitored continuously in-line, and the spectroscopy data is fed to the 220 

fractionation control unit. The control unit then dictates whether the column outlet stream is 221 

collected as product or is directed to waste. A common strategy employed is to instigate 222 

product collection when a minimum UV absorbance threshold is surpassed and terminate 223 

collection when the UV absorbance falls below a pre-determined value. The absorbance 224 

threshold used should be low enough to prevent significant product loss, but should ensure 225 

that product collection is not instigated too early due to inherent process disturbances or 226 

detector noise [35].  227 

In analytical chromatography applications, defining the collection point is usually trivial; the 228 

eluting components are typically well resolved. However, this is not always the case for 229 

industrial systems. Productivity requirements mean industrial chromatography systems are 230 

often overloaded and therefore, component elution profiles overlap. This challenging 231 

purification scenario is demonstrated graphically in Figure 3a, where a product molecule elutes 232 

between early and late eluting impurities. Due to the presence of impurities before and after 233 

the product peak, it is not possible to start and stop product collection based on a minimum 234 

UV 280 nm absorbance threshold. Furthermore, the single wavelength absorbance data 235 

provides a surrogate measure of the total protein content and cannot be used to ascertain the 236 

relative amounts of different protein species in the eluent. Finally, high column loading also 237 

results in a wide range of protein concentrations at the column outlet, leading to saturation of 238 

the UV spectrophotometer. Therefore, selecting the optimum product collection times during 239 

an industrial scale multicomponent purification is a great challenge, especially when 240 

separating complex products from multiple product-related impurities.  241 

To mitigate the risk of low product yield and high impurity content, product can be collected in 242 

discrete fractions spanning the width of the product elution peak. The individual fractions can 243 

then be analysed off-line, and the appropriate fractions pooled together to obtain a final pool 244 

that meets the specifications. However, under GMP regulations, retrospective off-line analysis 245 

adds an entire manufacturing shift to the production timeline, and incurs additional 246 

consumption of materials and resources [36]. Furthermore, the large volumetric flowrates 247 

observed during large-scale chromatography means collecting and analysing multiple eluate 248 

fractions is impractical. It follows that there is a substantial need to identify optimal product cut 249 

times during the chromatography process. To enable this, deconvolution of the chromatogram 250 

is required in real-time, so that the data can be transmitted to the fractionation controller during 251 

the process.  252 



8 
 

To obtain the additional data required to better-inform process control, on-line high-253 

performance liquid chromatography (HPLC) systems positioned at the column outlet can be 254 

used (see Table 2). On-line HPLC is now finding regular application in industry, following 255 

several publications demonstrating the ability of automated HPLC systems to inform 256 

chromatography process control [36–38]. By introducing a fully automated sampling line from 257 

the column outlet, and feeding this into an analytical chromatography system, the large-scale 258 

chromatogram can be deconvoluted retrospectively. Data regarding separate co-eluting 259 

species is then passed to the control algorithm, enabling better-informed cut time selection. 260 

HPLC assays are robust and well-established, can handle broad concentration ranges, and 261 

can provide accurate concentration data to the controller. Furthermore, multiple columns can 262 

be operated in parallel to significantly reduce the delay between sample acquisition and data 263 

transmission to the controller. 264 

However, the time associated with sampling and analysis still incurs a significant process 265 

delay, and on-line HPLC requires substantial CAPEX relative to UV-based fractionation. The 266 

requirement for an auto-sampler and potentially multiple HPLC units also increases system 267 

complexity. In addition, high-pressure (> 600 bar) HPLC is often utilised to enable shorter 268 

analysis times and provide data to the controller in shorter timeframes. Shorter HPLC elution 269 

times may result in peak overlap of similar proteins and so may not be able to give satisfactory 270 

resolution for complex separations [37]. Therefore, the addition of on-line HPLC is only 271 

recommended when there is a clear business case; the cost savings and process robustness 272 

improvements must outweigh the higher CAPEX and increased complexity on the 273 

manufacturing floor [36]. 274 

Additional process control challenges are introduced when operating a continuous 275 

chromatography system. Continuous chromatography makes use of multiple chromatography 276 

columns in series to utilise the full loading capacity of each column. It is generally used for 277 

‘bind-and-elute’ chromatography, with column operation consisting of the load, wash, elution, 278 

and regeneration steps. Many terms have been used to describe continuous chromatography. 279 

These include periodic counter current (PCC), simulated moving bed (SMB), and sequential 280 

multicolumn continuous chromatography (SMCC) [39–41]. These different continuous 281 

chromatography systems have different levels of complexity and flexibility, complicating the 282 

development of control systems for continuous chromatography.  While utilising differing 283 

terminology, number of columns, and methods to explain and visualise the process, the 284 

underlying theory and mechanisms are the same. Multiple columns are used to run loading 285 

continuously and elution discretely in a cyclical fashion. An example of a continuous 286 

chromatography setup, which makes use of three columns in a continuous six-step cycle, has 287 

previously been described by Warikoo et al. [40]. Thus, for the purpose of demonstrating and 288 
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commenting on continuous chromatography control schemes in this review, a three-column 289 

process is considered (see Figure 4).  290 

Continuous chromatography offers several distinct benefits when compared with traditional 291 

batch chromatography. First, the greater utilisation of the resin allows for similar processes to 292 

be operated with smaller columns when compared to batch. Second, the reduced column size 293 

reduces the amount of buffer needed, thus reducing CAPEX, OPEX, and can yield higher 294 

productivity [42–45]. However, industrial application of continuous chromatography is less 295 

common due to the increased operational complexity when compared to batch processes. 296 

This is evident in Figure 4, where an additional control loop (control loop B) and valve 297 

manifolds are required to facilitate column switching. Control loop B functions by utilising in-298 

line UV 280 nm readings at the column flow-through outlet to direct the feed and buffer streams 299 

into the appropriate column. When the UV absorbance at the outlet of the second column 300 

surpasses a pre-determined breakthrough absorbance, the control unit manipulates valve 301 

positions in the inlet and outlet manifolds to move to the next step in the cyclic process outlined 302 

by Warikoo et al. [40]. The feed stream is directed to the inlet of column 2, the flow-through 303 

stream is redirected to column 3, and the fully-loaded column 1 is prepared for elution. The 304 

controller guides the process through the six-step cycle, mitigating product loss even as 305 

column binding capacity deteriorates and feed content varies. Traditionally, continuous 306 

chromatography is controlled through timed column switching based on pre-determine 307 

breakthrough times. However, this has the downside of not accounting for changes in feed or 308 

resin. This can result in lower column utilisation, product purity and yield, thereby 309 

demonstrating a key benefit associated with improved process control.  310 

The increased complexity of continuous chromatography also introduces further product 311 

fractionation challenges in addition to those summarised for batch systems. When applying a 312 

timed column switching strategy, subtle variations in elution profiles and resin binding capacity 313 

can introduce column-to-column variability in purity and yield [46]. The impact of this variation 314 

is demonstrated in Figure 3b. Despite applying a constant product collection time, 𝑡𝑝, and time 315 

between column switches, 𝑡𝐶𝑆, to each of the columns, the theoretical purity and yield of the 316 

product stream obtained from each column is different. In the second column, the product 317 

molecule elutes slightly later than expected, resulting in a reduction in purity and yield. In the 318 

third column, the quantity of product bound to the column is lower, potentially due to variations 319 

in the product concentration in the feed or column binding capacity, resulting in a lower product 320 

purity in the product stream. This further demonstrates the potential gains associated with an 321 

adaptive fractionation strategy that can respond to inherent process variation. 322 
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From the information presented, it is evident that the fractionation control technologies applied 323 

to batch and continuous chromatography are limited. In particular, product fractionation 324 

controllers are limited by the basic UV spectroscopy and time-consuming HPLC systems used 325 

to inform fractionation decisions. Consequently, alternative techniques have been developed 326 

to rapidly provide substantial product and impurity concentration data to the controller in real 327 

time, or predict the optimum product cut times in advance. More advanced process controllers, 328 

PID and model predictive control systems, also rely on real-time data to function effectively. 329 

3. Advanced monitoring and control technologies in research and process 330 

development 331 

 The most promising technologies for industrial chromatography control are spectroscopy 332 

instruments in conjunction with multivariate data analysis (MVDA), mechanistic modelling-333 

based controllers and model predictive control. Therefore, a review of spectroscopy-based 334 

control strategies demonstrated in research and process development is given. This is 335 

followed by a summary of mechanistic modelling, PID control and model predictive control 336 

applied to industrial chromatography control systems. 337 

3.1. Spectroscopy-based control systems  338 

Although the majority of published chromatography research typically focuses on process 339 

monitoring, there has been a recent increase in applications that demonstrate process control 340 

which are summarised in Table 3. Due to rapid measurement time and relatively high 341 

accuracy, recent advanced chromatography control strategies primarily utilise spectroscopy-342 

based PAT for in-line monitoring of the process. While UV 280 nm spectroscopy remains the 343 

dominant spectroscopy tool for process monitoring and control, there are now several other 344 

spectroscopy PATs available. These include infrared (IR), Raman, multi-angle light scattering 345 

(MALS), variable pathlength UV, fluorescence, and combined multi-sensor systems. The 346 

spectroscopy data generated by these PATs can be correlated to specific CPPs or CQAs 347 

through the development of MVDA or machine learning models and can provide real-time 348 

predictions of these variables. These predicted CQA or CPP measurements are often classed 349 

as “soft-sensors” and can be integrated within a controller to enhance their monitoring and/or 350 

control [47–49] . A review of these spectroscopy PATs implemented within  process control 351 

strategies is discussed. 352 

PAT often requires the application of multivariate data analysis (MVDA) and machine learning 353 

methods to extract useful information from large quantities of multivariate raw data [34]. The 354 

need for MVDA techniques is especially prominent for spectroscopy-based PATs, due to the 355 

potentially large number of variables (wavelengths) and typically noisy signals captured. The 356 

results of MVDA can be used to make predictions of product CQAs, and inform process control 357 
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decisions. Two MVDA techniques frequently applied to spectra are principal component 358 

analysis (PCA) and partial least squares (PLS) regression [21]. In PAT applications, PCA is 359 

well-suited to detecting and enabling removal of erroneous data points in multivariate datasets 360 

responsible for an unexpected increase in variance [50,51]. Whilst PCA can also be extended 361 

to make predictions of product CQAs via principal component regression [52], PLS is the 362 

prevalent regression technique applied to predict attributes from spectroscopy data. Methods 363 

for constructing and optimising PCA and PLS models can be found in the comprehensive 364 

review by Rolinger at al. [21], and elsewhere in the literature [52–55].  365 

3.1.1. UV/vis spectroscopy  366 

Due to its common usage in industry, UV spectroscopy has seen more focused interest as a 367 

PAT in the development of process control strategies for chromatography. The simplest UV 368 

spectroscopy control methods utilise a single wavelength. The monitoring method measures 369 

the difference between the breakthroughs UV versus the feed, subtracting the baseline 370 

absorbance from both. There has been previous implementation of single wavelength UV 371 

spectroscopy to continuous chromatography [40,56,57]. In addition to controlling fractioning 372 

and loading decisions, the control strategies use the loading information to control column 373 

switching. This allows the process to switch columns at the optimal time based on changes to 374 

the feed, which timed-column switching cannot accomplish in real-time, as outlined in Figure 375 

3. However, single wavelength controllers have limited accuracy when compared to more 376 

complex spectra controllers. 377 

In order to improve the accuracy of the PAT, the UV/vis absorbance of a solution over a 378 

spectral range can be measured [58,59]. This is due different amino acids absorbing different 379 

amount of light at different wavelengths, giving each protein its own spectral fingerprint. 380 

Utilising this spectra fingerprint, it is possible to differentiate and quantify proteins within a 381 

multi-protein solution. Multi-wavelength UV/vis spectroscopy monitoring methods has seen 382 

the application in the control of fractioning and pooling of batch protein A chromatography [60]. 383 

Using a spectral range of 200 to 410 nm, a PLS model was calibrated and validated for the 384 

differentiation of protein and impurities. The PLS model was then applied to the real-time 385 

monitoring of the varying protein concentrations. By utilising a broad spectral range rather than 386 

a single wavelength, the control strategy was able to accurately differentiate product and 387 

impurities when compared the traditional single-wavelength counterparts. The final model, 388 

which subtracted the impurity background, reached a root mean squared error (RMSE) of 0.01 389 

mg/ml for predictions and, it showed promise for the application to continuous chromatography 390 

as well. However, while the use of a PLS model for the monitoring and control of the process 391 

shows promise, it does come with drawbacks.  First, the PLS model was difficult to accurately 392 

calibrate over a wide range of concentrations, making high feed concentration variability of 393 
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problem for the control strategy. Second, high feed concentrations may lead to saturation of 394 

the detector, preventing the PAT from accurately informing the model. Finally, as the number 395 

of impurities present in the feed increases, the accuracy of the model decreases [59]. 396 

Finally, mechanistic control models coupled with UV spectroscopy monitoring has seen 397 

implementation in a two column continuous chromatography  control [61]. The work utilizes a 398 

transport dispersive mechanistic model-based approach to design, optimise and control the 399 

process. By measuring the concentration of the feed at-line with the use of a UV 400 

spectrophotometer, the model predicts when the product peak will elute and make the 401 

fractioning decision. In addition, the model accounts for aging resin (by reducing the density 402 

of the Protein A ligands parameter in the model) and changing upstream conditions. The 403 

implementation of the mechanistic controller successfully accounted for variations in the feed 404 

and the two column continuous chromatography set-up lead to a 2.5-fold higher capacity 405 

utilisation. The mechanistic model utilized for chromatography control in the paper is further 406 

discussed in section 3.2. While the mechanistic model does account for resin aging and 407 

varying upstream conditions, it does not capture all variability present in the system. This can 408 

lead to the mechanistic control method improperly determining the elution cutting times. A 409 

potential solution to this could be the implementation of an MVDA controller at the outlet to 410 

identify variations between the predicted and real output. Furthermore, the feed 411 

concentrations used where lower than typically seen in industry (0.2-0.8 g/L). For these 412 

reasons, further studies at large scale and higher feed concentrations are requirement to 413 

optimise this control strategy.  414 

3.1.2. Infrared (IR) spectroscopy  415 

Recently, through the implementation of multi-wavelength near IR spectroscopy (NIR) 416 

monitoring, the development of a control strategy  for column load in continuous 417 

chromatography with Protein A columns has been demonstrated [62]. Initially a NIR flow cell 418 

was placed at the inlet of the columns and a spectrum of the feed was collected every 3 419 

seconds. Using a PLS model calibrated with a reference spectrum, the concentration of the 420 

mAb of interest could be determined to within ±0.05 mg/ml. The control strategy utilized the 421 

information from the PLS model  to ensure the feed concentration was between the desired 422 

operating range of 3 mg/ml to 8 mg/ml, ensured optimum resin utilisation, and controlled 423 

column switching and fractionation. The control strategy was designed to handle extreme 424 

deviations in feed concentration outside the desired operating range and adjust times in 425 

various steps of the continuous counter-current chromatography as needed. Through the 426 

implementation of a secondary NIR flow cell at the outlet, further insight is gained by 427 

monitoring changes in column binding capacity in real time. This provides early warning of 428 

resin degradation as well as other column issues. This system reduces resin cost while 429 
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increasing process predictability and consistency. The accuracy of Multi-wavelength NIR 430 

monitoring in real time was shown to be significantly better than multi-wavelength UV-431 

spectroscopy, making it a more promising PAT for chromatography control. However, 432 

industrial scale tests are still required to fully verify and optimise the control method. 433 

In addition to its ability to differentiate and quantify proteins and their impurities, IR 434 

spectroscopy has demonstrated potential application as a PAT for column fouling monitoring 435 

[63]. However, since water is strongly absorbed with the mid-IR light range, the transmission 436 

cell path length can be no more than a single layer of resin beads [64]. To overcome the path 437 

length limitation, Attenuated total reflection Fourier transform IR (ATR-FTIR) was utilised. ATR 438 

only probes a layer a few micrometres deep that is adjacent to the surface of the ATR crystal. 439 

With this technique, resin beads are fed into an in-column ATR-FTIR cell. The analysis 440 

methods is able to differentiate the beads, proteins, DNA, and lipids present in the column, 441 

providing the opportunity to characterise what component are primarily responsible for the 442 

column fouling. This provides more information on the state of the column than fluorescence 443 

spectroscopy does when it is applied to column fouling determination [65,66]. Though recent 444 

studies indicate that fluorescence spectroscopy may be simpler and more accurate to 445 

implement for real-time monitoring than ATR-FTIR, it is still a promising PAT due to its ability 446 

to differentiate product and impurities. Furthermore, scale-up studies are still required to 447 

confirm the findings on industrial scale. 448 

3.1.3. Raman spectroscopy  449 

A spectroscopic technique receiving increasing interest in literature due to its high molecular 450 

specificity, robustness and minimal water interference is Raman spectroscopy [67]. Raman 451 

and IR spectroscopy are both vibrational spectroscopy techniques that operate in the visible 452 

and near infrared region.  Although no current literature has been published using Raman 453 

spectroscopy as a PAT in process control of chromatography, Raman spectrometry has seen 454 

recent interest as a PAT for monitoring chromatographic operations [68,69].  455 

Raman spectroscopy has broad application in biology, chemistry and has been applied in 456 

many environmental and industrial applications [70]. This includes the identification of 457 

modified nucleosides, a tumour biomarker present in urine, for cancer diagnosis. Following 458 

separation using affinity chromatography, the modified nucleosides were supplemented with 459 

gold, and surface-enhanced Raman scattering (SERS) spectroscopy was utilised to create a 460 

biochemical profile of the markers [71]. Due to its ability to identify proteins as well as their 461 

aggregates, it has seen recent application to chromatography application. Raman 462 

spectroscopy has been used to quantify aggregation in 3 insulin analogues: lipro, aspart, and 463 

glulisine, highlighting its implementation as a PAT for aggregation determination [72]. 464 
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Furthermore, Raman spectroscopy has been implemented as an on-line sensor to monitor 465 

breakthrough curves using an extended Kalman filter approach (EKF) analyser [69]. 466 

Enhanced Raman spectroscopy techniques, such as UV resonance Raman spectroscopy 467 

(UVRRS), have been developed to increase sensitivity and minimise fluorescent interference 468 

[68]. Finally, Raman has seen application both upstream, as an at-line monitoring tool for high-469 

throughput (HT) micro-bioreactor cultivation of mammalian cells, and downstream, to compare 470 

different elution conditions for a cation exchange (CEX) chromatography step for an Fc-fusion 471 

protein [54]. 472 

However, Raman spectroscopy does come with its drawbacks. First, the novel filters and 473 

lasers required are expensive and complex, as such its implementation outside of process 474 

development environments has been slow. Second, while conventional Raman spectroscopy 475 

has been proven at high protein concentrations, it is less robust and sensitive for lower 476 

concentrations. While Raman was able to measure protein concentration and monomer purity 477 

in CEX chromatography, it could not accurately predict of high and low molecular weight 478 

species, which were present in low concentrations [54]. Third, Raman scattering is inherently 479 

weak and is susceptible to fluorescent interference. When performing ion exchange 480 

chromatography on simulated plasma protein containing albumin and fibrinogen, the poorly 481 

soluble fibrinogen fraction caused significant impediment to the accuracy of the Raman spec 482 

analysis through [73]. This highlights the potential problems of implementing Raman 483 

spectroscopy as a PAT for chromatography control. The instrumentation costs are significantly 484 

more than that of the alternatives and problematic fluorescence can limit its application in 485 

biological samples. Despite this, it is evident that Raman spectroscopy has the potential to be 486 

used as a PAT analyser for chromatography; providing that core instrumentation costs fall, 487 

equipment familiarity improves and techniques such as UVRRS mature [67]. 488 

3.1.4. Light scattering technologies  489 

Light scattering technologies can be subdivided into two types. The first is static light scattering 490 

(SLS), which measures the light scattered at many different angles to determine the average 491 

intensity of a sample. This is useful to determine the structural characteristics of the sample. 492 

The second, dynamic light scatter (DLS), measures the fluctuations in the scattering intensity 493 

over time to characterise the diffusion of particles within a sample [74]. One promising SLS 494 

technology for chromatography monitoring is (MALS). Due to MALS ability to rapidly measure 495 

molecular weight in real time, it is a powerful tool to control for aggregate levels in product 496 

fractions. MALS can be used as a PAT on its own or combined with size-exclusion (SEC) 497 

chromatography [75]. In fact, MALS has seen recent implementation as an in-line PAT and 498 

on-line when coupled with ultra-high performance SEC chromatography (UHP-SEC-µMALS) 499 

for the  control of chromatography fractionation [76]. The rapid (<1s) MALS measurements 500 
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were able to reduce and control aggregate levels during fractionation, potentially removing the 501 

need for post purification analysis of aggregates. However, MALS is limited by two main 502 

drawbacks. First, rapid changes in concentration may affect the accuracy of MALS 503 

measurements. Second, MALS may be challenging to implement in other unit operations with 504 

significant difference in matrices and buffer conductivities [22]. For example, with bind-and-505 

elute chromatography. Despite these hurdles, MALS remains a promising tool for fractionation 506 

control for chromatography process providing aggregate clearance. 507 

3.1.5. Variable pathlength UV-vis spectroscopy 508 

Industrial scale chromatography produces complex multicomponent outlet streams, often 509 

containing a wide range of protein concentrations. Therefore, protein concentrations observed 510 

are often outside the narrow linear range of standard UV/vis spectroscopy equipment. To 511 

overcome this challenge, UV/vis equipment has been developed that automatically changes 512 

the optical pathlength during process measurements, thereby extending the concentration 513 

range over which accurate measurements can be obtained, rendering sample dilution 514 

unnecessary [22].  515 

Recently, two variable pathlength UV spectroscopy products have entered the market, namely 516 

the SoloVPE® and FlowVPE®. The FlowVPE® is of particular interest for process control, as it 517 

can be utilised in-line. The technology measures the UV absorbance of a solution at several 518 

pathlengths for each wavelength desired. For a given wavelength, a simple linear regression 519 

between the absorbance and the optical pathlength is assumed, and a least squares problem 520 

is solved to obtain the gradient and intercept. The gradient obtained is the critical component, 521 

as it is used together with the Beer-Lambert law to calculate the protein concentration in the 522 

solution [77]. This value can then be used to make better-informed control decisions, utilising 523 

only in-line equipment.  524 

Despite the improvements stated, variable pathlength UV equipment maintains a key 525 

disadvantage from its fixed pathlength predecessor; the FlowVPE® is incapable of 526 

distinguishing between different proteins and their derivatives [22]. To overcome this, Brestrich 527 

et al. [77] applied MVDA to exploit the difference in absorbance spectra between different 528 

protein variants in a cation exchange chromatography effluent stream. A PLS model was 529 

developed, validated and utilised together with the in-line FlowVPE® to dictate product pooling. 530 

The variable pathlength UV equipment enabled measurements over a wide concentration 531 

range (<80 g/L), whilst the PLS model enabled differentiation between the protein species 532 

investigated. However, the system demonstrated was not without its own set of challenges. 533 

Differences in UV absorbance spectra between mAbs, high molecular weight and low 534 

molecular weight variants are subtle. Exploiting these differences presents a significant 535 



16 
 

obstacle to overcome via PLS modelling [77]. Additionally, the FlowVPE® still suffers from the 536 

inherent light scattering challenges associated with standard UV spectroscopy when 537 

quantifying highly concentrated, and therefore highly turbid, protein product streams [22]. 538 

Furthermore, despite being an in-line technology, the measurement time was large (~30s) 539 

relative to standard spectroscopy equipment. This is due the requirement to adjust the location 540 

of the optical fibre for each pathlength measured [77]. It follows that further proof of method 541 

robustness, and optimisation of the variable pathlength UV spectroscopy acquisition and 542 

analysis times, would be of great interest to the field.  543 

3.1.6. Fluorescence Spectroscopy 544 

While most PAT applied in chromatography are utilized in the control  of fractionation and 545 

loading time, tryptophan fluorescence spectroscopy has been utilised for monitoring fouling 546 

and protein misfolding. The technology takes advantage of the fluorescence signal generated 547 

by tryptophan when excited by a 280 nm UV light source which can be measured in the 350 548 

nm range. This phenomenon was first applied to proteins in 1978, when tryptophan 549 

accessibility was used to differentiate the monomer and dimer of bovine aspartate 550 

aminotransferase, and has since been used to investigate a variety of protein structural 551 

changes [78–81]. Due to the utilisation of 280 nm light for excitation, the protein absorbance 552 

can be determined concurrently to misfolded proteins levels, thus making it a potential dual 553 

PAT in one. The Vernier Fluorescence/UV-VIS Spectrophotometer is an already existing tool 554 

that is able to achieve this. 555 

Apart from misfolded protein determination, tryptophan fluorescence spectroscopy has shown 556 

promised for implementation as a PAT tool for screening a variety of cleaning in place (CIP) 557 

protocols for protein A chromatography. Many PAT have been tested as qualitative or 558 

quantitative analytical tools for fouling. These include HPLC, scanning electron microscope 559 

(SEM), mass spectrometry (MS), and Fourier transform infrared spectroscopy (FTIR). 560 

However, tryptophan fluorescence spectroscopy has been demonstrated to be superior in 561 

fouling determination as wells as for screening a variety of cleaning in place (CIP) protocols 562 

for protein A chromatography [65]. In addition, the fluorescence-based PAT was applied for 563 

on-line monitoring and combined with control strategies to determine when to initiate column 564 

cleaning [66]. While not directly improving product purity and yields, the implementation of 565 

fluorescence spectroscopy reduces OPEX. The application of fluorescence spectroscopy as 566 

a PAT for CIP buffer screening has been show to optimize CIP buffer to maximize foulant 567 

clearance while minimizing ligand degradation. This has the added benefit of improving 568 

column life span. Column fouling monitoring also serves to increase column life span and 569 

buffer utilisation. Rather than arbitrarily performing CIP after a set number of cycle, the control 570 

strategy determines when fouling has reached critical levels. This reduces the frequency of 571 
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CIP to only when the process requires it, reducing OPEX and increasing column lifespan. The 572 

variety of applications for the PAT make it a promising tool for chromatography control.  573 

However, fluorescence spectroscopy is limited due to utilising only one wavelength to measure 574 

tryptophan fluorescence, limiting the PAT’s accuracy and ability to differentiate proteins.  575 

3.1.7. Multi-sensor systems 576 

The majority of spectroscopy-based PAT control systems proposed for industrial 577 

chromatography apply a single spectroscopy technique. Each system has associated benefits 578 

and shortfalls. To mitigate for these shortfalls, recent publications have explored multi-sensor 579 

systems, where data from several sensors is combined and leveraged to develop predictive 580 

empirical models [82,83]. The model outputs are then used to inform control decisions. 581 

Sauer et al. [82] considered a cation exchange chromatography system for purification of an 582 

Escherichia coli derived growth factor, whereas Walch et al. [83] considered a Protein A step. 583 

The control systems proposed in both publications required the development a PLS model for 584 

each attribute tested. Sauer et al. [82] proposed three model categories; 1. basic models using 585 

standard UV, pH and conductivity signals; 2. medium models incorporating MALS and 586 

refractive index (RI) predictors; and 3. extensive models including ATR-FTIR and fluorescence 587 

spectroscopy techniques. All three model types were tested for each attribute, and the 588 

appropriate model in each case was determined using the root-mean squared error (RMSE). 589 

A significant reduction in RMSE would justify the application of a more complex model. For 590 

attributes where the extensive and medium models resulted in no significant reduction in 591 

RMSE, basic models were proposed.  592 

In both papers, basic models were sufficient for overall quantity predictions, and extensive 593 

models were deemed appropriate for host-cell proteins and double-stranded DNA content. 594 

Walch et al. [83] required fluorescence, UV and RI signals for monomer content. ATR-FTIR, 595 

UV, RI and fluorescence signals best predicted high molecular weight impurity content. The 596 

developed models facilitated the application of model-based pooling strategies. Pooling 597 

criteria were based on maximum impurity content and minimum product content. The PAT 598 

control schemes designed compared well to equivalent at-line pooling schemes using the 599 

same pooling criteria. 600 

However, the recent and comprehensive spectroscopy PAT review paper by Rolinger, Rüdt 601 

and Hubbuch [21] highlighted several factors that must be considered when deriving MVDA 602 

models from multiple sensor inputs. The main considerations highlighted are as follows. 603 

Firstly, when predicting DNA and HCP content, the output variables are typically ratios not 604 

linearly correlated to spectra and span several orders of magnitude. Therefore, nonlinear 605 

empirical modelling alternatives may be more suitable than linear modelling such as PLS. 606 
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Alternatively, nonlinear relationships could be accounted for during model building by including 607 

bivariate interaction and polynomial terms. Secondly, if multiple variables and several 608 

nonlinear terms are included in model building, it is critical that the empirical model does not 609 

succumb to overfitting or derive fictitious correlations. Thus, it is key that cross-validation 610 

functions are applied and that the number of samples is sufficiently large relative to the number 611 

of input variables. Finally, system complexity increases significantly when using multiple 612 

devices potentially with different sampling rates, analysis times and locations on a given 613 

process stream. It follows that data pre-processing and alignment is key to ensure subsequent 614 

analysis derives the correct outputs [21].  615 

3.2. Mechanistic modelling for chromatography control  616 

Mechanistic chromatography models are formulated from mathematical equations describing 617 

the mass transfer and adsorption phenomena observed during a chromatography separation 618 

[84]. Also referred to as first-principle models, they can provide more accurate and wider-619 

ranging predictions than empirical modelling alternatives [85], and their value for industrial 620 

bioprocess design and optimisation is forecast to increase [86]. Mechanistic modelling of 621 

chromatography processes for process optimisation and robustness studies is a prevalent 622 

area of research [87,88]. However, with first-principle modelling accuracy and the efficiency of 623 

mathematical solvers improving, mechanistic models are finding a growing number of 624 

applications for chromatography process control for biopharmaceutical products [89].  625 

For well-predicted systems, Kumar and Rathore [90] demonstrated that mechanistic model 626 

simulations conducted prior to running the separation can be used to dictate fractionation. This 627 

feedforward control strategy was dependent on the availability of feed composition data, which 628 

in this case was obtained using UPLC. In an industrial setting however, feed data may be 629 

readily accessible from the upstream operation. A more computationally efficient fractionation 630 

method using mechanistic model simulations of the product profile only and an in-line UV 631 

signal was also demonstrated [90]. The difference between the overall UV signal and the 632 

mechanistic model prediction of the product profile was used as a measure of the impurity 633 

content. This overcomes a well-known challenge associated with mechanistic modelling; 634 

adsorption modelling of heterogeneous impurity groups is a complex task [19]. The main issue 635 

identified with this method was the limited linear range of the UV signal. To accurately identify 636 

optimum start and end cut times using the UV signal and the predicted product profile, the 637 

chromatogram must be within the linear range of the UV detector. 638 

Steinebach et al. [61] proposed also using the results of previously conducted mechanistic 639 

model simulations to inform continuous chromatography control actions, in the form of a look-640 

up table. The constructed table could then be used to select a feed volume per cycle that 641 
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guarantees the required product yield for a given feed concentration and flowrate, whilst 642 

minimising buffer consumption and maximising capacity utilisation. However, identifying this 643 

optimum feed volume per cycle requires measurement of the feed concentration in real-time. 644 

As discussed in section 3.1, this can be challenging for concentrated multicomponent feed 645 

streams.    646 

Westerberg et al. [91] demonstrated several theoretical mechanistic model-based cut 647 

strategies derived from an extensive sensitivity analysis. For an open-loop control system, a 648 

worst case UV absorbance value was calculated using an ideal fractionation strategy. This 649 

value was used as the absorbance threshold to trigger product collection for 200 subsequent 650 

mechanistic model simulations with process disturbances. Feed-forward control methods 651 

were also established by fitting linear functions to predict product cut time UV absorbance 652 

from several parameters. For example, a piecewise linear function was used to predict cut 653 

point absorbance from the load buffer conductivity. A relationship between the cut time UV 654 

absorbance and load buffer conductivity was observed during the preliminary sensitivity 655 

analysis. 656 

In a more recent in-silico study, Borg et al. [35] demonstrated that, when the product molecule 657 

elutes before the impurities, identification of the first cut point is trivial and can be made based 658 

on the UV 280 nm absorbance threshold. However, identifying the second cut point required 659 

extensive in-silico investigation of the impact on product yield and purity. Robust product 660 

fractionation was obtained by selecting the cut point that gives a 99.5% probability of obtaining 661 

the target purity. To confirm the strategy, Borg et al. [35] conducted a further 100,000 662 

mechanistic model simulations with process disturbances, of which 99.6% obtained the target 663 

purity. Sreedhar et al. [92] applied and contrasted three different algorithms to identify optimal 664 

cut-times using empirical and mechanistic modelling, where the product of interest eluted as 665 

an intermediate. The mechanistic model was used to simulate an overloaded asymmetrical 666 

chromatogram on which to test the algorithms, whereas the empirical model was limited to 667 

generating simple symmetrical chromatograms. This demonstrates the enhanced ability of 668 

mechanistic modelling to capture the complexity of industrial scale chromatography relative to 669 

statistical alternatives.    670 

Mechanistic model-informed process control has also been applied to chromatography 671 

processes integrated into a small-scale continuous end-to-end mAb production process [93]. 672 

Mechanistic models were developed for each chromatography step in the purification train, 673 

and were used to build a comprehensive model of the entire downstream process. Following 674 

this, mechanistic model simulations were conducted during the real process to inform control 675 

decisions critical to the immediate chromatography cycle. For the product capture step, a 676 
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loading factor control strategy was implemented to maximise resin utilisation and mitigate 677 

product loss despite variable flow and concentration outputs from the bioreactor. Upstream 678 

production rates and concentrations were used in conjunction with the mechanistic model-679 

derived DBC (at 1% breakthrough) to determine the load volume for a given cycle. The 680 

controller enabled consistent and higher product concentrations in the capture step product 681 

stream, and meant fewer cycles were required per process run thereby increasing column 682 

longevity. A feedforward control strategy was implemented to control fractionation in the 683 

subsequent ion-exchange steps. The mechanistic models were used to generate 684 

chromatograms during the process, utilising product loading data obtained from the complete 685 

downstream process model. Using the predicted peaks, theoretical UV absorbance cut-points 686 

were calculated that ensured sufficient impurity removal, and were subsequently applied to 687 

the real process. Therefore, the process was able to respond to variations in mAb 688 

concentrations and feed flowrates, and maintain the output within specifications. Both control 689 

schemes were proven over an extended period of 15 days. However, the continuous mAb 690 

production process was small-scale (0.8 mg ml-1 day-1 production rate using a 200 ml perfusion 691 

bioreactor), and demonstration of the control strategies at larger-scale is required. When 692 

purifying high-titre feed streams, reliance on a UV absorbance-based fractionation strategy 693 

may be infeasible due to the wide-ranging protein concentrations.   694 

The benefits of using mechanistic models for control scheme design and testing is evident 695 

from the examples given. By working in silico, a multitude of operating conditions and 696 

fractionation strategies can be trialled rapidly with minimal expenses and negligible material 697 

consumption prior to running the real process [35,61,91,92]. Alternatively, by utilising the 698 

mechanistic model in real-time in a feedforward configuration, the need for real-time feedback 699 

to the controller is eliminated thereby facilitating real-time control decisions. However, 700 

mechanistic model-based strategies are not without their drawbacks. Firstly, such control 701 

schemes are reliant on having a readily available and validated mechanistic model of the 702 

large-scale process. Whilst this is not typically the case in industry today, recent publications 703 

highlight the need to encourage industry uptake of mechanistic models and provide potential 704 

solutions to the uptake issue. Potential solutions include providing freely available open-705 

source mechanistic modelling software [94], standardising the model development process 706 

[95], and introducing a methodology for quantifying the predictive ability of a mechanistic 707 

model [96]. Secondly, feedforward controllers are heavily reliant on the accuracy of the 708 

process model utilised, and are unable to respond to unpredicted process deviations. 709 

Therefore, feedback control loops utilising well-established control techniques able to respond 710 

to such deviations, such as PID and MPC controllers, may provide more robust control 711 

alternatives. 712 
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3.3. PID controllers for product fractionation 713 

Proportional-integral-derivative (PID) control is a well-established and simple feedback control 714 

technique applied routinely throughout industry. The controller output is calculated in response 715 

to the error from a given process set-point, using three modes of control; proportional (P), 716 

integral (I) and derivative (D). Theoretically, the modes can be applied individually or 717 

collectively. However, PI controllers are the most commonly used, followed by simple P and 718 

full PID controllers [97]. Once the PID control parameters are tuned (using techniques such 719 

as the Ziegler-Nichols method) a PID control algorithm can mitigate deviations from set-points 720 

with negligible overshoot and lag. Furthermore, the controller can also be used to facilitate a 721 

controlled change in process set-point.  722 

Within bioprocesses, a PID controller is typically applied to regulate easily monitored variables 723 

such as temperature, flowrates and pH. Furthermore, the output from more advanced 724 

controllers, such as MPCs, may adjust the set-point of several simple PID control loops, 725 

thereby relying on the PID controller to implement the required changes. Within 726 

biochromatography, PID controllers have been used to control product purity and identify 727 

optimum cut-times [98,99].  728 

In the first example, a PID controller was designed and applied to two purification processes, 729 

using standard UV 280 nm signals to provide feedback data to the control system [99]. The 730 

objective of the controller was to ensure the product peak was positioned at a predetermined 731 

optimum location within the product elution window. PID control relies on a single input. 732 

Therefore, the UV signals obtained were converted to a single value via two alternative 733 

techniques, which were later compared. The simple peak maximum method determined the 734 

time at which the UV peak maximum occurred, and fed this value to the PID controller. The 735 

second approach accounted for the non-Gaussian shape of an overloaded industrial 736 

chromatogram. The chromatogram was integrated, and the first moment of the chromatogram 737 

area in the 𝑥-axis (time) was computed and fed to the control scheme. The PID controller then 738 

adjusted the cut-time to minimise the error between the time value calculated and the set-point 739 

time. The results showed that the PID controller was able to move the collection window to 740 

the desired point and handle process disturbances, using only a UV 280 nm signal. However, 741 

the basic nature of the UV signal meant it was not possible to track product yield and purities 742 

during the process.  743 

In the second publication, an at-line HPLC system was used to provide information to a PID 744 

controller for a two column mAb purification [98]. The product molecule eluted as an 745 

intermediate. Therefore, two PID controllers were employed; one to control the early eluting 746 

impurity content and another to control the late eluting impurity content. Both PID controllers 747 
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were tuned in silico prior to experimentation, using a mechanistic model derived in a previous 748 

publication [100]. The PID controllers were then employed as follows. Firstly, the product outlet 749 

stream was analysed via HPLC during the cycle. Thus, a deconvoluted chromatogram was 750 

available prior to the next cycle. The resulting chromatogram was then integrated using the 751 

trapezium rule. The difference between the calculated impurities content and a pre-determined 752 

set-point was fed to the PID controllers as an error. The two PID controllers then calculated 753 

the start and end salt concentrations for the product elution window. Finally, the required 754 

control action was computed via mass balance using the output salt concentrations. The 755 

controller was proven in two lab applications, firstly using a synthetic three-protein feed, and 756 

secondly with a clarified cell culture supernatant. In both cases, the PID controllers reduced 757 

the error to negligible levels within 5 cycles and were able to handle disturbances in flowrate 758 

and feed concentration. The controllers also automated the complex task of setting the recycle 759 

rate during start-up. However, the target impurity content (5%) was less-challenging than a 760 

typical industrial system, and the significant delay associated with at-line HPLC meant real-761 

time control decisions were not feasible. Furthermore, at-line sampling required operator 762 

intervention and removal of product from the process, highlighting the requirement for 763 

advanced PATs to rapidly provide composite data to the control scheme. 764 

Both the UV and HPLC-based systems tested demonstrate that closed-loop PID controllers 765 

can be used to determine product cut-times during the process, thereby ensuring consistent 766 

attainment of the product quality attributes despite uncontrolled disturbance and variable feed 767 

compositions. However, for PID controllers to provide real-time control actions, detailed 768 

information regarding outlet compositions is required rapidly. As discussed previously, this is 769 

a great challenge for biomolecules. Furthermore, PID controllers require testing and tuning 770 

prior to application. This is relatively trivial and can be conducted in silico if an accurate 771 

mechanistic model of the process is readily available. Alternatively, if the purification process 772 

is similar to that demonstrated by Krättli et al. [98,99], the PID parameters provided may be 773 

suitable as a starting point. If no such model is available, substantial quantities of materials 774 

and time may be required to tune the controller. Finally, PID control schemes are relatively 775 

basic. Whilst this may enable cheap and simple implementation, more advanced control 776 

schemes (such as model predictive control) may be able to provide more accurate feedback 777 

and critically, they can facilitate process optimisation during production. 778 

3.4. Model predictive control  779 

Model predictive control (MPC) is a powerful control strategy developed to control multivariate 780 

non-linear systems where simple alternatives, such as PID controllers, are insufficient [101]. 781 

The benefits of MPC over alternative control methods are numerous [102]. MPC schemes are 782 

able to deal with a large number of manipulated and controlled variables, incorporate multiple 783 
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variable constraints and time delays into control scheme design, and manage inherent process 784 

variability by accounting for process disturbances. By incorporating model predictions, MPC 785 

can also forecast, and mitigate for, potential issues [101]. However, this means that the ability 786 

of MPC to control a process successfully depends strongly on the accuracy of the process 787 

model used. Despite this, MPC is a well-established and proven technique, with applications 788 

in the oil and gas industry dating back to the 1980s [102]. Note also that MPC can be used in 789 

conjunction with standard PID controllers, where the MPC controller updates PID set-points.  790 

Seborg et al. [101] provide a comprehensive overview of MPC. A summary of the main steps 791 

outlined is as follows. Firstly, a process model is used to make current and future predictions 792 

of key output variables over a short timeframe. MPC uses a dynamic process model to make 793 

predictions, usually a linear empirical model or a linearised version of a complex non-linear 794 

model. Secondly, the predictions are used to compute optimal process set-points over the 795 

timeframe using a steady-state version of the dynamic model. This steady-state optimisation 796 

generally uses a basic objective function, such as maximising production rate or minimising a 797 

cost function. Thirdly, the calculated set-points are fed into subsequent control calculations to 798 

determine a sequence of optimal control actions using the dynamic process model. The control 799 

actions calculated aim to drive the predicted outputs to the calculated set-points in an 800 

optimised manner, by satisfying a second specified objective function. Both the steady-state 801 

and dynamic optimisations can incorporate variable constraints, such as upper and lower 802 

boundaries for input and output variables. Despite a sequence of control actions being 803 

calculated, only the first action is enforced. After applying the immediate control action, the 804 

timeframe is shifted along a given time step, and the optimisations are repeated. The window 805 

of time over which the predictions are made and the control variables are optimised is referred 806 

to as the prediction horizon.                                                         807 

It is evident from the MPC procedure detailed above that a critical component of a successful 808 

MPC application are the optimisation steps. As optimisation is conducted twice at every time 809 

step, MPC can be computationally expensive. Therefore, to ensure the optimisation procedure 810 

can be completed rapidly, linear process models are typically employed to facilitate the use of 811 

linear optimisation algorithms [51]. As detailed in section 3.2, chromatography systems can 812 

be predicted accurately by complex non-linear mechanistic models. Optimisation using non-813 

linear mechanistic models is time consuming, and would result in sub-optimal frequency of 814 

control actions. Therefore, in MPC development for chromatography systems, the mechanistic 815 

process model is linearised via regression-based techniques such as system identification 816 

[103]. This facilitates the use of linear optimisation algorithms, which greatly reduces the 817 

computational burden relative to the non-linear alternatives. It should be noted however, that 818 
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as computing power increases and non-linear optimisation strategies improve, there is 819 

potential to use MPC for near real-time non-linear control [51].  820 

Examples of MPC for chromatography processes in academia date back to the turn of the 821 

century, with the focus mainly on continuous systems and chemical products [104,105]. 822 

Grossmann et al. [106] provided an in silico example of MPC to a continuous mAb purification 823 

process. The mechanistic model, composed of lumped kinetic transport and competitive 824 

Langmuir adsorption models, was linearised around a steady-state value. The reduced order 825 

model decreased the number of states from 1200 to 22, facilitating the application of a Kalman 826 

filter and computationally efficient optimisation. Optimisation and control actions were 827 

performed at the beginning of each cycle.  828 

Further research has culminated in the development of the Parametric Optimisation and 829 

Control (PAROC) framework by teams at Texas A&M University and Imperial College London 830 

[107]. The PAROC framework aims to provide a standardised platform for modelling-831 

orientated process design, optimisation and control, with a focus on deriving mutliparametric 832 

MPC systems. When applied to chromatography systems, the proposed scheme consists of 833 

four main steps. Firstly, a mechanistic chromatography model is developed and validated. 834 

Secondly, the model is linearised via system identification or alternative model reduction 835 

techniques. Thirdly, a multiparametric MPC system is formulated using the linearised process 836 

model. MPC design and tuning parameters, such as the length of the prediction horizon and 837 

the sampling period, are specified. Furthermore, a map of objective function solutions, and so 838 

optimal control actions, is produced accounting for input, output and disturbance constraints. 839 

Finally, the closed-loop control system is validated in-silico on the original mechanistic model.  840 

The PAROC framework has been demonstrated on continuous systems in several subsequent 841 

publications in silico [103,108–111]. In each case, multiparametric MPC is employed to obtain 842 

cyclic steady state by monitoring the integral of product and impurity concentrations (the output 843 

variables), and using “steady state shift” to carefully control the elution phase. As expected for 844 

bind/elute chromatography, the elution buffer salt concentration is identified as the significant 845 

input variable, with feed composition incorporated as an uncontrolled disturbance. Whilst feed 846 

flowrate is identified to have no significant impact on the eluted quantities, and so is excluded 847 

from the input variable set, it does impact the elution time [110]. Therefore, the control strategy 848 

was tested over a range of feed flowrates.  849 

The MPC controllers demonstrated have several unique benefits. Consistent operation is 850 

obtained, whether that be through the implementation of cycle-to-cycle control actions [106] 851 

or through continuous monitoring and control action implementation [109]. The continuous 852 

chromatography process can be driven to cyclic steady state, whilst accounting for 853 
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disturbances in feed composition. Furthermore, the model-based controller is able to 854 

outperform non-model orientated alternatives, such as PID control (see section 3.3), owing to 855 

the enhanced understanding imbedded in the linearised process model [109]. However, 856 

several publications highlight a focal issue with model-based control for protein purification. 857 

The controllers are highly reliant on real-time measurements of protein concentrations in the 858 

feed and/or column outlet [106,108]. As described in section 2.2, there are significant 859 

drawbacks with established UV spectroscopy and HPLC-based monitoring systems. 860 

Therefore, the development of novel PATs to provide feedback to the control scheme is 861 

critical. A PAT that can accurately and rapidly monitor co-eluting components may expedite 862 

the transition from MPC as an in silico control technique, to a proven control strategy for protein 863 

purification at industrial scale. 864 

4. The future of industrial chromatography control systems 865 

Based on the previous discussion, there is a need for advanced chromatography control 866 

strategies. The application of these state-of-the-art PATs and control strategies to future 867 

industrial chromatography processes must be done on a case by case basis. First, the 868 

implementation of PAT such as Raman or NIR for process monitoring comes with additional 869 

costs. Second, the implementation of new PATs and the development of control strategies 870 

requires experts trained in the use of the PATs and in the development of statistical and/or 871 

mechanistic models for control. Finally, there must be enough confidence in the statistical 872 

and/or mechanistic models of these tools for industry and regulators to approve them over 873 

proven off-line quantification methods. 874 

A schematic of a potential advanced chromatography control strategy is shown in Figure 5. 875 

The design uses several PATs to monitor key process parameters as well as information from 876 

upstream PAT. Although the figure shows a continuous chromatography set up, the design is 877 

also applicable to a batch system. While batch remains commonplace, continuous offers the 878 

potential for better process productivity and efficiency as discussed in section 2.2. 879 

Furthermore, continuous chromatography works efficiently with perfusion bioreactors, which 880 

operate for longer periods of times than batch bioreactors, constantly producing product with 881 

lower product composition variations than batch. In a batch chromatography system, the 882 

design would remain the same save for removal of the column switching loop.  883 

Figure 5 includes a single control unit which can be mechanistic, statistical, or a hybrid of these 884 

two, the nature of the model being dependent on the process in question. This control unit 885 

utilises a process model that can be mechanistic, statistical, or a hybrid of these two, the 886 

nature of the model being dependent on the process in question. The main control unit makes 887 

decisions for each control sub-loop based on the data generated from the PAT in all the sub-888 
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loops. In this way, the response of each control subsystem is dependent on the state of the 889 

entire process. To streamline the discussion of Figure 5, the figure discussion is broken down 890 

by the individual control loops presented and their importance to the control of the overall 891 

process. These control loops are the column switching, production fractionation, column 892 

fouling, and external IC loops. 893 

Column Switching Control Loop: As demonstrated in the red control loop, efficient and 894 

timely column switching in continuous chromatography improves process efficiency and 895 

reduces column to column variation. Traditionally, column switching in continuous 896 

chromatography systems is performed by timed switches determined through previous 897 

experimental analysis. Due to the limitations of timed column switching discussed in section 898 

2.2, column switching based on column breakthrough determined by utilising spectroscopy-899 

based PAT offers a beneficial alternative, as demonstrated in literature (Table 3). The 900 

implementation of a column switching control loop meets regulator desires for more consistent 901 

processes and can be easily be achieved with existing product fractionation PAT (Figure 5).  902 

Fractionation Control Loop:  Highlighted in blue within the figure, fractionation control is the 903 

key to obtaining the desired product yield and purity. While traditional single-wavelength UV 904 

methods have often failed to differentiate product and product related impurities for complex 905 

separations, recent studies have overcome these challenges through advanced spectroscopy 906 

techniques and models, yielding more robust separations (Table 3). The proposed 907 

fractionation control loop makes use of a PAT at the inlet and outlet of the column system 908 

(Figure 5). The inlet PAT will be utilised to monitor the composition of the incoming feed. This 909 

information is fed to the overall empirical/mechanistic model which predicts the elution time of 910 

the product and dictates fractionation. The PAT at the outlet monitors the composition of the 911 

outlet stream, which is once again fed to the process model. As such, the PAT at the outlet 912 

composition determined by the PAT differs significantly from that predicted by the model, the 913 

outlet data can be used dictate fractionation. In this way, the ability of the feedforward model-914 

based controller to direct fractionation with a negligible time-delay is exploited, while the 915 

validity of model predictions is monitored via feedback data from the PAT. 916 

The PAT providing data to the fractionation loop will likely be spectroscopy based. However, 917 

spectroscopy techniques work well in tandem with at-line or automated on-line HPLC/UPLC. 918 

Due to its faster measurement time but lower accuracy, the spectroscopy PAT provides the 919 

primary source of feedback data to the controller. The HPLC/UPLC measurements, which 920 

take longer to produce but are more reliable, are then used to adjust the control decisions 921 

made from the spectroscopy measurements or mechanistic model. Combined control 922 

strategies utilising both off-line and on-line measurement control strategies have previously 923 



27 
 

been implemented in the biopharmaceutical industry, such as on fermentation control [112]. 924 

For this reason, a controller utilising process data from an in-line spectroscopy PAT and an 925 

at-line or automated on-line HPLC/UPLC should be feasible. For systems with significant 926 

levels of protein aggregation, the implementation of MALS in-line or by autosampler would be 927 

beneficial in reducing and controlling the aggregate levels during the separation [75,76]. 928 

Furthermore, the addition of an autosampler adds the additional benefits of previously at-line 929 

analysis, such as ELISA, MS, and/or any other complex analysis techniques [22,24]. Though 930 

the inlet and outlet PAT provide the critical data to the controller unit necessary for fractionation 931 

control, PAT are also utilised to monitor the fouling of the column. 932 

Fouling Control Loop: Shown in green within Figure 5, the fouling control loop monitors 933 

column fouling and initiates CIP when needed. The build-up of column fouling over the course 934 

of process operation leads to lower binding capacity and therefore decreased operational 935 

efficiency. Although this is the case, most current methodologies call for CIP between a set 936 

number of column operations recommended by the manufacturer or experimentally pre-937 

determined [113]. This may lead to CIP occurring too early or too late, leading to decreased 938 

operational efficiency or faster column degradation. Due to the substantial cost of the 939 

chromatography resin, especially protein A resin, there is a desire to maximise column 940 

lifespan. Therefore, the implementation of a fouling control loop can be used to reduce process 941 

expenses by increasing column lifespan (Figure 5). Fouling of the column can be monitored 942 

using fluorescence spectroscopy or ATR-FTIR (Table 3). If a mechanistic model is utilised to 943 

control the system, the binding capacity coefficient within the model can be adjusted based 944 

on the fouling data obtained from the PAT.  Furthermore, the PAT used to monitor fouling can 945 

also be used to test the efficacy of CIP buffers, making it a versatile tool to have. The chosen 946 

PAT will monitor the column and send data to the control unit. When the fouling reaches critical 947 

levels, the controller directs the system to implement CIP. The automation of CIP helps 948 

maximises the columns lifespan and reduce labour requirements during operation.  949 

Buffer Formulation Control Loop: Finally, highlighted within Figure 5 in purple as an external 950 

data link, the buffer formulation control loop automates buffer formulation, allowing for rapid 951 

adjustments to adapt to variations in the process. As discussed in section 2.1, automated 952 

buffer formulation using feedback control can provide a multitude of potential benefits to a 953 

biologic production facility. Benefits include a large reduction in plant footprint and CAPEX 954 

thanks to the associated reduction in buffer storage requirements, more consistent and robust 955 

buffer formulation, and a substantial reduction in labour and time requirements for buffer 956 

production [33]. Therefore, an in-line conditioning (ILC) unit has been included in Figure 5. 957 

Close control of the buffer conditions as it is produced within the ILC unit would ensure the 958 

equilibration, washing and elution stages proceed as desired. Data regarding buffer pH, 959 
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conductivity and salt content can also be passed to the overall process control unit, potentially 960 

informing the mechanistic or empirical model simulations used to dictate product fractionation. 961 

The process robustness and productivity improvements associated with in-line buffer 962 

formulation techniques are expected to outweigh the increased control system costs and 963 

complexity [29]. As regulatory and industry familiarity with automated buffer formulation 964 

improves, it is expected that such systems will find more regular application for industrial scale 965 

protein production as companies strive to eliminate the buffer bottleneck. 966 

It should be noted that advanced chromatography control strategies should only be employed 967 

when the cost savings for the process outweigh the increased control complexity and 968 

development expenses [36]. When this is not the case, simpler or more traditional control 969 

strategies should be implemented. In a simple separation, where the product-related 970 

impurities are limited and/or the resolution between the product and impurities is good, a 971 

simple control system can be utilised. In such a case, model predictability of the system is 972 

likely to be good. As a result, a well-developed and validated mechanistic model may be all 973 

that is required to control the process. If a spectroscopy PAT is utilised for monitoring or 974 

control, only one or two UV wavelengths may need to be monitored rather than a spectra due 975 

to the high resolution between product and impurities.  976 

For more complex separations, with significant amounts of product-related impurities and low 977 

resolutions between product and impurities, a more complex controller, such as a hybrid 978 

control strategy utilising a mechanistic model coupled with a MVDA based PAT model, will be 979 

required. In a hybrid control system, the mechanistic model makes elution time and process 980 

predictions based on the composition of the feed stream, column fouling, and other process 981 

parameters. The addition of a multi-wavelength spectroscopy system, utilising a MVDA model, 982 

is useful for two reasons. First, low concentration impurities are challenging to quantify in-line, 983 

and to predict accurately with mechanistic or empirical models. In such cases, the control 984 

system may benefit from both models working in tandem. The spectroscopy-MVDA model 985 

measures the total protein concentration while the mechanistic model predicts the product 986 

concentration. By subtracting the predicted product concentration from the total measured 987 

concentration, the protein impurity concentration can be predicted. This is then used to 988 

calculate product purity and to fractionate accordingly. Second, the MVDA model monitors for 989 

any deviations between the mechanistic model prediction and actual process operation. If 990 

significant deviations are found, then the MVDA side of the model can step in to correct the 991 

process, and maintain product consistency and operational robustness. Furthermore, this 992 

could trigger a mechanistic model recalibration, using an inverse-fit method and the 993 

deconvoluted signal from the spectroscopy system to update the model parameters.  994 
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5. Conclusion 995 

This paper reviews the growing body of research related to industrial chromatography control 996 

for biotherapeutics revealing significant promise that chromatography control will attain the 997 

same degree of robustness and rapid response as seen in control systems in traditional 998 

process industries. While the implementation of PAT and process control methods do require 999 

additional time and cost to develop, they have the potential to fulfil the additional control 1000 

requirements. Future work will include an in-depth cost analysis to help determine the balance 1001 

between the upfront costs for developing and implementing advanced control strategies, and 1002 

the expected savings during process development and product manufacture as a result of 1003 

enhanced process robustness and productivity. Several advanced industrial chromatography 1004 

control strategies outlined in this review have demonstrated increased robustness and 1005 

improved control of product quality attributes, with the potential to become an integral part of 1006 

biopharmaceutical process development and commercial manufacturing in the future. 1007 
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 1417 

Figure 1. Example control schematics for an in-line buffer dilution (ILD) system (a) and an in-line 1418 
buffer conditioning (ILC) system (b). Both schematics demonstrate feedback flow control, where the 1419 
required input stream flowrates are determined before buffer formulation. The controllers use in-line 1420 
flowrate measurements to ensure flowrates are at the required set-points, and that the outlet flowrate 1421 
is maintained constant. If a deviation from the set-point is observed, the controllers adjust the flow 1422 
control valve position to eliminate the error. Additional pH and conductivity measurements are taken 1423 
to ensure the buffers meet the specifications prior to use.  1424 
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 1425 

Figure 2. Example piping and instrumentation diagram (P&ID) for a batch chromatography protein 1426 
purification process at industrial scale. The diagram demonstrates process monitoring and control 1427 
technologies used routinely in industry, most notably a fractionation controller. The P&ID is not 1428 
intended to be exhaustive however, it does provide a useful overview of the relevant control and 1429 
monitoring systems. 1430 
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(a) 1432 

(b) 1433 

Figure 3. Example chromatograms highlighting the impact of the fractionation strategy based on UV 1434 

280 nm monitoring at the column(s) outlet for (a) batch and (b) continuous chromatography modes 1435 

of chromatography. In (a), product collection is instigated when the absorbance increases due to the 1436 

presence of product in the central peak. Product collection is stopped when the UV absorbance 1437 

increases again, due to the presence of impurities. This determines the product collection time, 𝑡𝑝. 1438 

The individual absorbance of each component is plotted to demonstrate the improved insight 1439 

obtained via spectral deconvolution. Note also that an example UV saturation limit is plotted. The 1440 

UV 280 nm signal is unable to surpass this value if operated with a fixed pathlength. In (b), a 1441 

traditional continuous chromatography fractionation strategy is demonstrated where the time 1442 

between column switches, 𝑡𝐶𝑆, and 𝑡𝑝 are constant. Product purity and yield was calculated using 1443 

the trapezium rule.  1444 
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 1446 

Figure 4. Example piping and instrumentation diagram (P&ID) for a three-column continuous 1447 
chromatography protein purification process at industrial scale. The diagram demonstrates process 1448 
monitoring and control technologies used routinely in industry, including a fractionation controller and 1449 
a column switching controller. The P&ID highlights the flow of the feed into the system, the flow-1450 
through stream, and the product elution stream. The P&ID is not intended to be exhaustive however, 1451 
it does provide a useful overview of the relevant control and monitoring systems.1452 
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 1453 

Figure 5. The future outlook of chromatography control. An example piping and instrumentation 1454 
diagrams (P&ID) for a future continuous chromatography protein purification process at industrial 1455 
scale. The diagram demonstrates the implementation of additional Process Analytical Technologies 1456 
(PAT) for monitoring and control of column fouling, column switching, buffer formulation, and product 1457 
fractionation. The chromatography control unit utilizes the process data from each PAT to optimize 1458 
the control strategies for each sub-loop. Note that flow indicators were removed from the feed 1459 
streams to ensure that the control loops were indicated with clarity.  1460 
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9. Tables 1463 

Table 1. Example product quality attributes, process parameters and performance attributes 1464 

relevant to chromatography processes for therapeutic protein manufacturing.    1465 

Product Quality Attributes Process Parameters Performance Attributes 

Aggregate content Bed height Buffer consumption 

Charge profile Elution conductivity Process productivity 

DNA content Elution pH Product pool concentration 

Fragment content Equilibration pH Product pool volume 

HCP content Feed impurity content Product yield 

Leached Protein A content Feed product concentration Resin regeneration efficiency 

Protein concentration Load conductivity Resin utilisation 

Viral content Load pH  

 Operating flowrate  

 Pressure  

 Product collection start time/volume  

 Product collection stop time/volume  

 Protein loading  

 Resin lifetime  

 Temperature  

 Wash conductivity  

 Wash pH  

Note: Product quality attributes and process parameters may be identified as critical quality attributes (CQAs) or 1466 

critical process parameters (CPPs) respectively via risk assessment during chromatography process development. 1467 

However, performance attributes do not impact product quality and therefore cannot be classified as CQAs or 1468 

CPPs but are important for process efficiency reasons [19]. The information was compiled from [18,19,25,114]. 1469 



48 
 

Table 2. Summary of chromatography process control strategies in industry. 1470 

Equipment Location Attribute(s) Measured 
Process Variable(s) 

Controlled 
Benefits Issues References 

In-line UV 
Spectrophotometer  

Column outlet Protein concentration 
Product fractionation 
times 

• Well-established and commercially 
available technology 

• Cheap to purchase and operate 

• Robust operation 

• Non-invasive 

• Data obtained rapidly 

• Multiple wavelengths can be used to 
detect different components  

• Instrument saturation likely due to limited 
linear range 

• Unable to differentiate between product 
and impurities when elution peaks overlap 

• Industrial UV detectors designed for 
operating robustness at the expense of 
sensitivity and responsiveness. 

[36,115,116] 

On-line HPLC Column outlet Protein concentration 
Product fractionation 
times 

• Well-established and commercially 
available technology 

• Can distinguish between product and 
impurities, even when they are not well 
resolved. 

• Can handle a wide product concentration 
range 

• Analysis times of under 10 minutes 
reported 

• Assay is well understood and reliable 

• Not suitable for informing real-time control 
decisions  

• Potential for human error introduced if not 
automated 

• Additional sampling and HPLC equipment 
required on manufacturing floor 

• Risk of contamination increased 

[36,37,115,116]  

In-line Buffer 
Dilution (ILD) 
System  

Buffer feed to 
column 

Flowrates of all the ILD 
inlet and outlet streams, 
and final buffer pH and 
conductivity 

Final buffer 
composition, pH and 
conductivity 

• Substantial reduction in buffer storage 
requirements thereby reducing inventory, 
capital and cleaning costs 

• The buffer concentration can be adjusted 
during the process 

• Can be used to facilitate controlled 
gradient elution by blending buffers 
together  

• Feedback control improves robustness by 
reducing buffer variability 

• Concentrated buffers require precise 
formulation as dilution propagates any 
residual formulation error 

• pH and conductivity changes must be 
accounted for during dilution 

• Buffer flexibility can be limited if one buffer 
concentrate is used to produce the final 
buffer 

• May require additional pumps and delivery 
lines to enable conductivity and pH control 

• Additional validation and maintenance 
costs introduced 

[29–32] 

In-line Buffer 
Conditioning (ILC) 
System 

Buffer feed to 
column 

Flowrates of all the ILC 
inlet and outlet streams, 
and final buffer pH and 
conductivity 

Final buffer 
composition, pH and 
conductivity 

• Substantial reduction in buffer storage 
requirements thereby reducing inventory, 
capital and cleaning costs 

• Buffer preparation is simplified reducing 
labour requirements 

• Shorter buffer preparation times 

• Single component concentrates have 
longer shelf-life than final buffer solution 

• Reduced risk of waste buffer 

• Requires at least 4 inlets, each with its 
own pump, valves and controls 

• Feedback control results in consumption of 
additional buffer until a stable pH and/or 
conductivity is obtained (~1 min to obtain 
stable conditions) 

• Novelty of the system and consumption of 
buffer as it is produced introduces more 
regulatory considerations 

[29,33] 



49 
 

 1471 

  1472 

• Can be used to facilitate controlled 
gradient elution 

• Feedback control improves robustness by 
reducing buffer variability 

• Additional validation and maintenance 
costs introduced 
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Table 3. Summary of chromatography process control strategies in research and process development.  1473 

Equipment Location 
Attribute Measured and 
Model Implemented 

Process 
Variable(s) 
Controlled 

Benefits  Issues References 

UV Spectrophotometer 

 

Column 
outlet  

OR 

Column 
outlet and 
inlet  

Protein concentration 

• Single UV-wavelength 
model 

• Column 
switching 

• Product 
fractionation 
times 

• Column switching and fractionation 
dictated by product breakthrough 

• No time-based performance decline 
after 31 days and 160 cycles of 
continuous operation 

• Can handle high feed concentrations 
(>30 g/L) 

• Control independent of the cell culture 
feedstock and titer 

• Increased 
implementation and 
operational complexity 

• Single wavelength 
absorbance cannot 
differentiate between 
product and impurity 

[40,56,57] 

Column 
outlet 

Protein concentration 

• Multi-wavelength PLS 
model 

• Product 
fractionation 
times 

• Differentiates product and impurities by 
utilizing UV-spectra rather than single 
wavelength during loading 

• Improved product purity and yields 

• Challenges related to the 
scale up, robustness of 
the method, and the 
optimization of the 
measurement time 

• Accuracy of model 
suffers as number of 
impurities increases 

[60] 

 

Column 
inlet and 
outlet 

Protein concentration 

• Single UV-wavelength 
model fed into 
mechanistic model 

• Column 
switching 

• Product 
fractionation 
times 

• Model accounts for variation in feed 

• Column switching and fractionation 
dictated by product breakthrough 

• 2.5-fold higher capacity utilization 

• Low concentration ranges 
utilized (0.2-0.8 g/L)  

• Model may not capture all 
variability present in the 
system 

[61] 

Variable pathlength UV-vis 
Spectrophotometer 

Column 
outlet 
AND/OR 
inlet  

Protein concentration 

• Single UV-wavelength 
or multi-wavelength 
PLS model 

• Column 
switching 

• Product 
fractionation 
times 

• Accurate measurements over a large 
concentration range (<80 g/L) 

• Differentiates product and impurities 

• Column switching and fractionation 
dictated by predicted protein 
concentrations 

• Large measurement time 
(~30s) 

• Single wavelength 
absorbance cannot 
differentiate between 
product and impurity 

[22,77] 

Near Infrared Spectrophotometer 
Column 
inlet and 
outlet 

Protein concentration 

• Multi-wavelength PLS 
model 

• Column 
switching 

• Product 
fractionation 
times 

• Rapid measurements (3s) 

• High accuracy and precision of mAb 
quantification  

• Column switching and fractionation 
dictated by inlet concentration and 
predicted protein concentration 

• Has currently not been 
scaled up for industrial 
scale 

[62] 

Multi-angle light scattering 
(MALS) 

Column 
Outlet 

Protein aggregate levels 

• MALS/UV dual model 

• Product 
fractionation 
times 

• Rapid measurements (<1s) 

• Reduces and controls aggregate levels 
in fractions 

• Removes the need for post purification 
analysis 

• Rapid changes in 
concentration may affect 
MALS accuracy 

• May be challenging to 
implement in other unit 
operations with 
significant difference in 

[22,76] 
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matrices and buffer 
conductivities. E.g bind-
and-elute 
chromatography 

Tryptophan Fluorescence 
Spectrophotometer 

In-column 

Monitoring and control of 
resin fouling 

• Single-wavelength 
fluorescence model 

• CIP 

• Predicts critical fouling levels 

• Improves column lifespan 

• Optimizes CIP buffer utilization 

• No significant loss of yield observed 
after 200 cycles  

• Only determines column 
fouling and must be 
combined with other 
PATs/control methods 

• Single wavelength 
utilization limits the 
accuracy of the PAT 

[65,66] 

Attenuated Total Reflection-
Fourier Transform Infrared (ATR-
FTIR) Spectrophotometer 

In-column 

Monitoring and control of 
resin fouling 

• Multi-wavelength PLS 
model 

• CIP 

• Predicts critical fouling levels 

• Improves column lifespan 

• Optimizes CIP buffer utilization 

• Spectra based PLS model 

• Only determines column 
fouling and must be 
combined with other 
PATs/control methods 

• Further scale-up studies 
are required. 

[63] 
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