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Characterization of four subtypes in morphologically normal
tissue excised proximal and distal to breast cancer
Emanuela Gadaleta 1, Pauline Fourgoux1,2, Stefano Pirró1, Graeme J. Thorn 1, Rachel Nelan3, Alastair Ironside3, Vinothini Rajeeve4,
Pedro R. Cutillas4, Anna E. Lobley1, Jun Wang 4, Esteban Gea2,5, Helen Ross-Adams1, Conrad Bessant 2,5, Nicholas R. Lemoine6,
Louise J. Jones3,7 and Claude Chelala 1,2,7✉

Widespread mammographic screening programs and improved self-monitoring allow for breast cancer to be detected earlier than ever
before. Breast-conserving surgery is a successful treatment for select women. However, up to 40% of women develop local recurrence
after surgery despite apparently tumor-free margins. This suggests that morphologically normal breast may harbor early alterations that
contribute to increased risk of cancer recurrence. We conducted a comprehensive transcriptomic and proteomic analysis to characterize
57 fresh-frozen tissues from breast cancers and matched histologically normal tissues resected proximal to (<2 cm) and distant from
(5–10 cm) the primary tumor, using tissues from cosmetic reduction mammoplasties as baseline. Four distinct transcriptomic subtypes
are identified within matched normal tissues: metabolic; immune; matrisome/epithelial–mesenchymal transition, and non-coding
enriched. Key components of the subtypes are supported by proteomic and tissue composition analyses. We find that the
metabolic subtype is associated with poor prognosis (p < 0.001, HR6.1). Examination of genes representing the metabolic
signature identifies several genes able to prognosticate outcome from histologically normal tissues. A subset of these have been
reported for their predictive ability in cancer but, to the best of our knowledge, these have not been reported altered in matched
normal tissues. This study takes an important first step toward characterizing matched normal tissues resected at pre-defined
margins from the primary tumor. Unlocking the predictive potential of unexcised tissue could prove key to driving the realization
of personalized medicine for breast cancer patients, allowing for more biologically-driven analyses of tissue margins than
morphology alone.
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INTRODUCTION
Improved mammographic screening and increased self-
monitoring allows for the detection of breast cancer in asympto-
matic stages. This has led to an increased trend toward breast-
conserving treatment (BCT) often with adjuvant radiotherapy1,2.
Completeness of excision is currently based on histological

examination of surgical margins. Despite apparently clear margins,
ipsilateral recurrence is reported in over 40% of patients receiving
BCT alone and in up to 20% of patients receiving adjuvant
radiotherapy2,3. It is not clear whether recurrence is attributable to
missed residual microscopic disease or to the development of
further perturbations within the unexcised field of cancerization.
Perceived risk status, determined primarily by pathological

evaluations and genomic tests focusing on the tumor, is used to
guide the therapeutic management of patients. However, novel
lines of evidence indicate that histologically normal (HN) tissue
resected adjacent to primary tumors has prognostic capabilities,
with about 40% of these tissues exhibiting aberrant genomic
features and behavior4–6.
These conclusions are usually based on pan-cancer studies that,

while providing a comprehensive overview of similarities and
differences across cancer types, may lack the granularity offered
by cancer-specific research. Data from The Cancer Genome Atlas
(TCGA)7, often used as a training or validation cohort, provides
access to invaluable data generated from different platforms and

sample types. However, detailed information about the spatial
location of cancer-adjacent tissues is not provided. Cancer-
adjacent specimens are described by the TCGA as tissue resected
≥2 cm from the tumor margin and defined as morphological
normal by histopathologic assessments. As such, researchers are
not able to analyze any distance-related effects using this dataset.
Finally, key studies on cancer-adjacent tissues do not investigate
the therapeutic implications of their findings4–6.
Our study provides insight into molecular alterations in HN

tissues within the affected breast and offers a greater under-
standing of the spatial implications of these aberrations. This was
achieved by performing a comprehensive analysis of RNA
sequencing data and proteomic profiles from breast cancers
(n= 19) and their matched HN tissues (n= 38), healthy breast
from cosmetic reduction mammoplasty (RM; n= 5), and risk
reducing mastectomies (RR, n= 5), with peritumoral samples
excised at proximal (TP, <2 cm) and distal (TD, 5–10 cm) sites from
the primary tumor.
We compared the transcriptomic profiles of matched HN tissues

to those of healthy breast and identified alterations in matched
tissues resected up to 10 cm from the primary tumor. Applying
unsupervised classification to the transcriptomic expression profiles
of all HN tissues resolved four distinct transcriptomic subtypes that
are independent of distance from the primary tumor: termed
metabolic, immune, matrisome/epithelial–mesenchymal transition
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(matrisome/EMT) and non-coding (nc) enriched. We then integrated
our transcriptomic findings with those from proteomic/phospho-
proteomic analyses (n= 33) to explore the prognostic and
therapeutic potential of our subtypes.
The ability to prognosticate outcome or predict response to

therapy from morphologically normal tissues in women with
breast cancer could help improve prognostic and therapeutic
determinations in breast cancer. Our findings raise the proposition
that breast cancers should be evaluated in conjunction with their
surrounding tissue, with completeness of excision being deter-
mined by both molecular and morphological features.

RESULTS
Cohort characteristics
Fresh tissue samples were collected prospectively from breast
cancer patients (n= 57) and age-matched risk reduction (n= 5)
and reduction mammoplasty (n= 5) patients, following informed
patient consent. Fresh breast tissue specimens were assessed
macroscopically and, in cases of breast cancer, tumor and non-
tumor areas were identified. Samples from tumor and macro-
scopically normal tissue proximal to (TP, <2 cm) and distant from
(TD, 5–10 cm) the tumor were collected as individual frozen tissue
blocks (Fig. 1). Histopathological characterization of both tumor
and non-tumor tissue was then performed for each block. In
addition, key pathological characteristics of the invasive tumor
and any relevant benign breast disease present in the non-tumor
tissue, including those sampled from the risk reducing and
cosmetic reduction specimens, were recorded (Supplementary
Data Set 1). Data associated with one RM patient did not pass
initial quality assessments and so this patient was removed from
further analyses.

Matched HN tissues adjacent to cancer exhibit heterogeneity in
their transcriptomic profiles
Principal component analysis (PCA) of the top 5000 most variable
genes shows the first principal component to reflect malignancy
(Supplementary Fig. 1). The tumor profiles and RM profiles
aggregate in distinct areas of transcriptional space, with the latter
displaying greatest homogeneity in transcriptomic profiles relative

to all other groups. In contrast, the expression profiles of
morphologically normal samples (TP and TD) display great
heterogeneity.

Matched HN tissues adjacent to cancer display tumor-associated
characteristics
The PAM50 single-sample predictor8 was applied to both the
tumor and normal data to offer an indication into potential tumor
characteristics exhibited by the specimens (Supplementary Data
Set 2 and Supplementary Fig. 2).
RM samples are defined as normal-like, however, tumor-like

features are observed in HN tissues. While the number of samples
assigned to the normal-like subtype in HN profiles derived from
luminal tumors increases with distance from primary tumor
(tumor= 0, TP= 4, TD= 8), the inverse is true for the matched
profiles from triple negative tumors, with the majority of normal-
like tissues reported in the TP group (tumor= 0, TP= 3, TD= 1).
In agreement with previous literature, the transcriptomic

profiles of luminal tumors (9 out of 13), as determined by IHC
and molecular subtyping, are categorized as either luminal or
normal-like by PAM506. However, the intrinsic subtype allocation
of HN tissues is not always dependent on the associated
primary tumor.
We evaluated whether matched normal tissues were able to

predict overall survival based on PAM50 intrinsic subtype. TCGA
cancer-adjacent samples were stratified based on their PAM50
molecular subtype (Luminal A, n= 33, Luminal B, n= 11, Basal-
like, n= 31, Her2-enriched, n= 13, and Normal-like, n= 20) and
univariate Cox regression analysis performed. We found that the
molecular subtype in this cohort was not significantly associated
with outcome (log-rank p > 0.1).

Cancer-associated aberrations are present in proximal and distal
tissues
Differential expression (DE) analysis was conducted to identify
aberrant features in tumors and matched tissues. By using RM as a
baseline, we adjusted for confounding transcriptomic influences
present in matched breast tissues.
The total number of DE genes decreases in relation to distance

from primary tumor (FDR ≤ 0.05 and a log-fold change of ≥1)
(Supplementary Fig. 3), with the trend of upregulated genes being
greater than downregulated genes across each comparative
group (tumor: upregulated n= 1841, downregulated n= 1312;
TP: upregulated n= 247, downregulated n= 121; TD: upregulated
n= 264, downregulated n= 102).
To elucidate fundamental pathways disrupted in these tissues,

we used the pathway databases KEGG and Reactome, defined GO
terms and performed GSEA analysis, using the 50-hallmark gene
sets (GSEA false discovery rate [FDR] q-value < 0.05)9.
Pathways previously linked to cancer are highlighted in the

examination of tumor samples (Supplementary Fig. 4). The most
highly enriched functional categories include those associated
with proliferation and cell cycle progression, cancer-associated
signaling pathways and immune response.
In agreement with previous publications, the main pathways

affected in TP tissues include cellular response to external stimuli
and chemotaxis4–6. However, the most prominent observation is
the consistent dysregulation of metabolic pathways, such as those
involved in lipid metabolism and xenobiotic metabolic processes.
The most significant results from GSEA analysis are EMT, fatty acid
metabolism, androgen response, cancer-associated signaling
pathways mTORC1, and coagulation. Cellular response to external
stimuli (heat stress response), extracellular matrix organization,
and movement continues to be affected in TD tissues.
Overall, our DE analysis reports that morphologically normal

tissues resected proximal to and distant from cancer exhibit
molecular alterations compared to the RM tissues.

Fig. 1 Representative immunohistochemical images and loca-
tions of sample types. Immunohistochemical images representing
tissues collected from tumor, TP, TD, RR, and RM. Images shown at
×20 magnification, with scale bars at 50 μm.
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Four transcriptional subtypes are identified in matched HN tissues
Unsupervised non-negative matrix factorization (NMF)10 of the RNA-
seq data identified two classes (cophenetic coefficient 1) represent-
ing the tumor and “normal” phenotypes (Supplementary Fig. 5a).
Profiles of matched normal samples (TP, TD, RR, and RM) were

subsequently assessed independently of tumor profiles to gain a
greater understanding of the heterogeneity of these tissues.
NMF classification of HN transcriptomic profiles identifies four

classes in the samples (cophenetic coefficient 0.9991) (Fig. 2a and
Supplementary Fig. 5b) that remain stable even with the exclusion
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of RM and RR samples (cophenetic coefficient 0.9955). These four
clusters are defined using an aggregate of all tissues and, as such,
are independent of distance from the primary tumor.
We generated an abundance heatmap for the selected

clustering solution by identifying a 414-gene classifier: genes that
were differentially abundant between the clusters (Fig. 2b and
Supplementary Data Set 3). These subtypes were defined and
named according to their classifier attributes and pathway
enrichments: (i) metabolic; (ii) immune; (iii) matrisome/EMT; and
(iv) nc-enriched.
To validate these subtypes and identify potential therapeutic

targets, phosphoproteomic profiling was performed on a subset of
tumors (n= 11) and their matched specimens (n= 22). This was
followed by kinase substrate enrichment analysis (KSEA), which
infers kinase activity by matching phosphorylation sites to known
upstream kinases11.

Metabolic subtype
The metabolic subtype (n= 11) exhibits the greatest global
deregulation of its transcriptomic and phosphoproteomic signa-
ture relative to the immune, matrisome/EMT and nc-enriched
subtypes (Fig. 3 and Supplementary Data Set 4). This deregulation
is focused on mediators of metabolic processes, lipid and
cholesterol metabolism, and hypoxia-related events. This is
exemplified in the enrichment of cancer-associated metabolic
and proliferative events, such as integrin signaling, IF1/2-mediated
events, Syndecan-2-mediated signaling and uPA/uPAR-mediated
signaling, and MYC and associated transcription factors. Further-
more, the premise that our metabolic subtype is associated with
cellular metabolism is reinforced by overrepresentation of genes
and pathways that regulate members of the solute carrier (SLC)
and ATP-binding case, in particular those induced by hypoxia and
those that support the movement of glucose. Phosphorylation
analysis identifies kinase activations sites in potential kinase drug
targets, such as AURKB, CDK5, and GSK-3β12–15.
Our findings indicate that aberrations to the metabolic circuitry

are not localized to the primary tumor or its immediate vicinity but
that they can extend to distal tissues. This presents a potential
therapeutic target for patients whose tissues are allocated to this
subtype.

Immune subtype
The main genes, terms and pathways enriched in the HN tissues of
the immune subtype (n= 16) suggest activation of the immune
response. Phosphoproteomic profiling and kinome substrate
enrichment also indicate overrepresentation of immune-related
characteristics (Fig. 3 and Supplementary Data Set 4). The insulin
pathway and α6 integrins are involved with immune surveillance
and immunometabolic response16,17. Similarly, activation of kinase
substrates associated with inflammatory and immune responses
are present (SGK1, IKKB, p70S6K, HIPK2).

Matrisome/EMT subtype
This subtype (n= 8) is enriched in matrisomal and EMT elements,
which collaborate with matrisome-affiliated proteins, regulators
and secreted factors to regulate cell behavior and provide cues
fundamental to proliferation, differentiation, and migration. In
conjunction with a range of genes linked to functionalities of the
matrisome, our analysis reports elevated levels of mRNA for KIF14,
KIF18B, TUBA3D, and TUBA3E and other components of the
microtubule organization support mechanism. These transcrip-
tomic observations are supported by the proteomic analysis in
which an enrichment of activities associated with angiogenesis
and the metastatic cascade are reported, these include E-cadherin,
endothelin, pathways involved in TGF-β1 signaling (SMAD
dependent and SMAD independent) and Aurora A signaling

(Fig. 3 and Supplementary Data Set 4). Potential kinase-targeted
therapy targets identified in this group include MAP3K8, GRK2,
and AURKA. Interestingly, osteopontin-mediated events and
associated pathways, previously linked to cancer progression,
are depleted in both the matrisome and the metabolic
subtypes18,19.

Non-coding enriched subtype
The nc-enriched subtype (n= 12) comprises 61.3% (57/93) nc
elements. This subtype is enriched for antisense (n= 10), lincRNA
(n= 15), pseudogenes (n= 18), and sense intronic (n= 7) genes.
The functions of these genes have yet to be determined, however,
the regulatory targets of these elements may yield further insight
into the phenotypic character of this class. Literature mining of the
ncRNAs found 29 of these elements to have been reported
previously in cancer studies, but not in matched HN tissues, while
28 of these elements are novel (Supplementary Data Set 5). The
proteomic profile of the nc-enriched subtype exhibits low-level
alterations.

Functional characteristics of the translated elements associated
with HN tissues recapitulate the transcriptomic subtypes
Proteomics informed by transcriptomics (PIT) is a method by
which spectra from liquid chromatography tandem mass spectro-
metry (LC-MS/MS) and the de novo transcriptome assembly are
used to infer all translated genomic elements (TGEs) in a sample20.
This methodology is sample-specific and is not dependent on a

standard database for mass spectrometry peptide identification.
This allows for the identification of novel translated elements, such
as polymorphisms, alternative splicing events, products of
genomic regions previously thought to be non-coding, as well
as unknown proteins.
PIT analysis of the orientation of the specimens reports that the

total number of TGEs decreases with distance from the primary
tumor (Fig. 4a). As observed in the transcriptomic analysis, overlap
between tumor features is observed within TP and TD tissues.
Each transcriptomic subtype exhibits both distinct and common

translated features (Fig. 4b). Closer inspection of the functionalities
and GO terms reported as uniquely enriched in each subtype are
in agreement with the transcriptional interpretation of the HN
subtypes.
Unlike standard proteomic profiling, PIT allows for greater

characterization of data pertaining to the nc-enriched subtype.
The defining features of this subtype are associated with
alternative splicing categories within the PIT dictionary (Fig. 4c),
with an enrichment of pathways and GO terms associated with
assembly of the spliceosomal complex, oxidative phosphorylation,
and regulation of mRNA processing.
This validates our transcriptomic findings in which a number of

ncRNAs that regulate alternative splicing are overexpressed in the
nc-enriched subtype. These include NEAT1, HOTAIRM1, and XIST,
which interact with splicing factors and/or influence chromatin
remodeling (Fig. 5).

Immune composition of the transcriptional subtypes suggests the
presence of tumor‐associated macrophages in the metabolic
subtype
Diversity within the HN tissues led us to hypothesize that each
subtype may exhibit characteristics related to cellular composi-
tion. We implemented CIBERSORT21, using the validated
LM22 signature matrix, to reveal patterns in the immune
characteristics of each subtype (Fig. 6). This matrix consists of
547 genes capable of differentiating 22 human hematopoietic cell
populations. These include seven types of T cells, naive and
memory B cells, plasma cells, NK cells, and myeloid subsets.
Inter-group normalization was also performed to allow for the
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immune profile of each subtype to be evaluated in relation to
each other.
The metabolic subtype is enriched for myeloid populations

while the immune subtype is enriched for lymphoid populations,
in particular components recruited in inflammatory response and
adaptive immunity, such as CD4+ T cells and B cells. The nc-
enriched subgroup exhibits a pattern of immune composition that
tends to inversely mirror that of the metabolic group. Finally, the
matrisome/EMT group does not appear to have defining immune

characteristics. It is depleted in almost all categories pertaining to
the lymphoid group relative to the other subtypes.
Our transcriptomic and proteomic findings identify multiple

entities associated with increased TAM density in the metabolic
subtype. These include high expression of ADIPOQ, AGPAT2, IL6,
NDUFA4L2, and S1PR1 at the transcriptomic level (Supplementary
Data Set 3) and dysregulation of the HIF1/2-α pathways, integrin
cell surface markers (β1 and β3) and osteopontin-mediated events
at the proteomic level (Fig. 3)22–24.
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Fig. 4 PIT detects translational patterns in the data. The rows in the UpSet represent the spatial location or subtype being assessed and the
columns represent the intersections and aggregates of conditions. The bar plot displays the number of translated elements identified for each
intersection or aggregate. a The number of TGEs decreases with distance from the primary tumor, with translated elements being reported
common between both HN subtypes and tumor. b The translational profiles of the transcriptomics-derived subtypes differ. While they exhibit
distinct characteristics, all of the HN profiles also show commonalities with each other and with the tumor profile. c The nc-enriched subtype
is enriched for TGE linked to alternative splicing events.
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We provide an overview of immune composition in each
subtype. It is important to consider that CIBERSORT infers immune
features using bulk tissue and that this may limit the potential
implication of the findings. In addition, information about the
distribution patterns of immune cells is not provided. The
localization of macrophages and tumor-infiltrating lymphocytes
is key to determining their effects. As such, these findings should
be interpreted with care.

The metabolic subtype exhibits poor prognosis
In the absence of publicly available datasets with similar sampling
design and sufficient specimens, we selected 108 matched
adjacent tissues from the TCGA BRCA dataset to validate our
subtypes. Support vector machine (svm)-based modeling was

applied to assign each TCGA adjacent sample to one of our
transcriptomic subtypes. We were able to classify the TCGA
samples into three of our four subtypes—metabolic, immune, and
nc-enriched. The matrisome/EMT subtype, as defined by our
study, was not found within the TCGA cohort. Univariate Cox
regression analysis was applied to determine the prognostic value
of the metabolic signature (n= 78). We report patients whose HN
tissues are assigned to the metabolic subtype to exhibit poor
prognosis (log-rank p < 0.001, HR6.1) (Fig. 7 and Supplementary
Fig. 6).
While the sample size of the immune and nc-enriched risk

groups is too small to make meaningful conclusions (n ≤ 16), the
trends appear to suggest that these are associated with good
prognosis, with no events recorded in the nc-enriched subtype.
However, further investigations are needed to validate the
prognostic implications of these observations.
Univariate modeling of our 414-gene signature identified 34

genes with significant prognostic potential (log-rank p < 0.01) in
HN tissues (Supplementary Data Set 6). Among the most
prognostic genes are SLC2A4, LGALS12, MRC1, and G0S2, all of
which are genes that define the metabolic signature.
Secondary univariate modeling stratifying the TCGA dataset

into two groups: age-matched (≤55) and older (>55 years) support
the premise that these genes have greater predictive value in the
younger cohort (Supplementary Data Set 6). However, the low
sample size available for validation in the younger group makes
confident determinations unfeasible.

DISCUSSION
This study applies an integrated multidisciplinary approach to take
an important first step toward characterizing matched normal
tissues resected at pre-defined margins from the primary tumors.
Our findings support the proposition that histological normalcy
does not imply biological normalcy. Defects at margins of
resection of 4 cm have previously been reported4,6. However, we
observe alterations in tissues located up to 10 cm from the
primary tumor.
We identify four distinct transcriptomic subtypes in HN tissues

of young women with breast cancer; termed metabolic, immune,
matrisome/EMT, and nc-enriched. We also find that it is the
molecular characteristics of the HN tissues within each subtype,
rather than their distance from primary tumor, that has the
greatest predictive value.
All specimens allocated to the metabolic subtype exhibit

disruptions to their metabolic circuitry. Metabolic reprogramming,
mediated by cross-talk between signaling pathways, hypoxia, and
metabolic networks, has been shown to remodel the microenvir-
onment and drive proliferation, tumorigenesis, progression, and
resistance to treatment25,26. Our findings indicate that the
disruptions to cellular genetics observed in this subtype result in
poor prognosis. The most prognostic genes identified in our gene
signature map to the metabolic subtype and have been
recognized as prognostic or therapeutic factors in cancer but
not matched normal tissues27–30. To the best of our knowledge,
this is the first study to identify these prognostic genes in matched
normal tissues.
Deconvolution analysis noted a heavy enrichment of myeloid

cells and M1/M2 macrophages in this subtype. The enrichment of
myeloid cells in cancer-adjacent tissues has been reported
previously4. However, unlike studies that examine cancer-
adjacent tissues as a whole, we observe this phenomenon
primarily in the metabolic subtype. Recent studies also indicate
that M1 and M2 macrophages promote an immunosuppressive
phenotype when exposed to distinct microenvironmental cues,
such as hypoxia22. This macrophage profile could suggest the
presence of tumor‐associated macrophages (TAMs), which are

a

b

c

Metabolic

Immune

Matrisome/EMT

NC-enriched

Tumor

Fig. 5 Boxplots showing the non-negative expression values of
three well-known ncRNAs associated with alternative splicing
across all HN subtypes and primary breast cancer. The central line
in the boxes represent the median expression value, the boundaries
of the boxes represent the interquartile range and the ends of the
whiskers represent the minimum and maximum values in the data.
The expression of NEAT1 a, XIST b, and HOTAIRM1 c are significantly
higher in the nc-enriched subtype relative to the remaining HN
subtypes and in primary tumors.
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associated with poor prognosis and generating a hypoxic pre-
metastatic niche31,32.
Promising actionable metabolic therapeutic targets, such as

AURKB, CDK5, and GSK-3β, are enriched in this subtype. This, in
conjunction with findings from previous research, suggests that
the metabolic rewiring process could be susceptible to metabolic
therapy12–15.
HN tissues allocated to the immune subtype display activation

of an immune environment, which is consistent with recent
findings4. This appears to play a protective role, with patients
allocated to this group having good prognosis. High rates of
lymphocyte infiltration in colon, ovarian, and ER-negative breast
cancer have been associated with increased survival and better
pathological response rates relative to their low-density counter-
parts33,34. In addition, recent investigations report that the spatial
architecture of tumor-infiltrating lymphocytes is highly predictive
of recurrence35. As such, it would be informative to study the
behavior and localization characteristics of the immune cells
present in tumors and matched HN tissues of this subtype to help
refine individual prognostication.
All samples in the matrisome/EMT subtype exhibit imbalances

between cell–matrix and cell–cell adhesion pathways and disrup-
tions to matrisome processes that provide biophysical and
biochemical cues fundamental in regulating of EMT pathways
and rigidity of the extracellular matrix (ECM). ECM rigidity is
proving vital in regulating tumor spread and metastasis, and in the
context of mammographic density, increases the risk of breast
cancer. Furthermore, ECM rigidity and fibrotic co-localization has
been recognized as a prognostic marker of distant metastasis in

breast cancer, and chemoresistance to paclitaxel in pancreatic
cancer36,37.
We report similarities between genes defining our matrisome/

EMT subtype and matrisome gene sets reported previously in
breast, prostate, bladder, and ovarian cancer studies38,39. Unlike
these studies, we find that disruptions to the matrisome are
already present in matched HN tissues, suggesting that these
tissues could, themselves, have prognostic and therapeutic
potential. For instance, MAP3K8 and AURKA identified by our
phosphoproteomic interpretations are predictive biomarkers for
treatment efficacy and mediators of anti-tumor activities in solid
cancers40,41. Interestingly, we also observe dysregulation of
osteopontin-mediated events, which is a key player in creating
an immunosuppressive and pro-tumorigenic microenvironment,
and is reported as a prognostic marker in a range of solid
tumors18,19.
About 93% of the human genome is actively transcribed.

However, <2% of the human genome encodes proteins, with at
least 75% being transcribed into ncRNA. Understanding the
functions of nc regulatory elements has gained considerable
traction recently but their mechanisms of action remain elusive.
All patients in the TCGA validation cohort allocated to the nc-
enriched subtype (n= 16) did not suffer cancer-related deaths
over 10 years, suggesting that this group is defined by a non-
malignant signature.
Transcriptional elements identified in this subtype have been

previously reported for their tumor suppressor capabilities42–44. In
addition, nc elements have been found to regulate alternative
splicing, which supports our transcriptomic and PIT observations.
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Fig. 6 Deconvolution analysis of the transcriptional subtypes. Each subtype has unique features of cellular composition.
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Key TGEs defining this subtype, such as NEAT1, interact with
splicing factors and influence chromatin remodeling. Unlike pan-
cancer studies that report low expression of NEAT1 in breast
tumors relative to their corresponding HN matched tissues, we
observe this phenomenon only in samples pertaining to the nc-
enriched and, to a lesser extent, the metabolic subtype45. This
suggests that NEAT1 is overexpressed in HN tissues from a subset
of patients rather than all HN tissues ubiquitously as reported
previously.
The metabolic, immune and nc-enriched subtypes are recapi-

tulated in the TCGA cohort, with this external dataset identifying
the metabolic subtype as having poor overall survival. The
matrisome/EMT subtype is notably absent in this cohort possibly
due to differences in sample collection and patient characteristics.
TCGA samples do not accurately reflect the breadth of HN

samples used in our study. Cancer-adjacent samples available
from the TCGA cohort are resected at margins >2 cm from the
primary tumor, meaning that the TCGA collection is not able to
represent our TP group. With five out of nine samples in the
matrisome/EMT subtype being TP, this may explain, in part, why
this subtype was not reproduced in the validation cohort.
Patient determinants, such as age and menopausal status, have

been reported independent discriminants for breast cancer
recurrence46. Our patient cohort comprises specimens from 19
young breast cancer patients (mean 41.3 years; range 32–53 years)
and controls from RR and RM patients (mean 36 years; range
22–48). The TCGA cohort comprises tumor-normal matched
specimens obtained from a wide range of ages (mean 57 years;
range 30–90 years). Matching the age profile between TCGA and
our data reduces the number of TCGA samples to 50 patients (≤55
years), offering insufficient samples to power subsequent analyses.
Young age has been shown to be an independent negative

prognostic factor for breast cancer recurrence and survival. The
difficulty of obtaining age-specific cohorts is likely why prognostic
models in young women often produce suboptimal results. Our

research highlights this paucity of data available from young
breast cancer patients and suggests that further research is
warranted to determine the prognostic and therapeutic signifi-
cance of any differences.
Limitations of this study include low power due to the small

cohort available with specimens available from primary tumor, TP,
and TD tissues. However, concordance of key transcriptomic
findings from deconvolution and proteomic analyses increase the
confidence of our results despite the small sample size. Ideally,
validation is performed using independent studies that have been
sampled in the same manner. Our sampling design was not
mirrored in publicly available datasets and so direct reproduction
of the workflow was not possible. Instead, the TCGA BRCA cohort
was used for validation, but, as discussed previously, the
differences in sampling design and patient covariates may have
prevented complete recapitulation of our findings. While our work
is indicative of key transcriptomic and proteomic changes in TP
and TD tissues, further investigations are warranted to reveal the
full significance of these alterations.
Our findings support the premise that breast cancer biology

should encompass the mechanistic roles of all cell types within the
affected breast. The identification of distinct molecular subtypes in
HN tissue from women with breast cancer has a number of
clinically relevant implications: signatures that predict poor
prognosis, such as the metabolic subtype, could be used to tailor
enhanced surveillance for patients undergoing BCT. Elucidating
the dynamics underlying the cross-talk between tumor and
matched normal tissue in the affected breast could help unravel
the mysteries underlying breast carcinogenesis, progression,
recurrence, and resistance to treatment.

METHODS
Sampling design
Surgically resected fresh-frozen tissues (n= 57) from therapeutic mastect-
omy specimens from primary breast cancer, risk reduction mastectomy
(n= 5; three BRCA1/2 mutants, one BRCA1/2 wild type, one BRCA1/2 status
unknown), and cosmetic reduction mammoplasty (n= 5) were obtained
from the Barts Cancer Institute Breast Tissue Bank and Barts Health NHS
Trust, London, UK. Ethics approval was obtained from the East of England -
Cambridge Central Research Ethics Committee (approval no. 15-EE-0192),
with written informed consent obtained from each patient.
Standard hematoxylin & eosin (H&E) stained slides were scored for

relative proportions of benign, epithelial, stromal, and tumor cells to allow
selection of appropriate sample cores from the patient cohort. Using fresh-
frozen mounts, regions of tumor and matched tissues located proximal to
(<2 cm) and distant from (5–10 cm) the tumor border were identified and
marked for macro-dissection.
To confirm IHC staining for estrogen receptor (ER) and Her2, completed

as standard of care by Barts and The London NHS Trust, validatory IHC
staining with antibodies for ER (Abcam, ab16660, 1 μg/ml) and Her2
(Abcam, ab134182, 1 μg/ml) was performed on fresh tissue mounts using
standard methods and acetone buffer. In situ hybridization for Her2 was
performed only in two cases where IHC is equivocal. For completeness, IHC
for progesterone receptor (Novocastra, NCL-PGR-312, 1 μg/ml) was also
performed. The receptor status presented in the manuscript is the final
classification.
Briefly, frozen sections were thawed at room temperature (RT) then fixed

in ice-cold acetone for 5 min. Tissues were blocked with 1% bovine serum
albumin (1X phosphate-buffered saline [PBS]) and incubated with primary
antibody for 30min at RT in blocking buffer. Appropriate secondary
antibodies (1:200 1X PBS) were incubated for 40min at RT. Tissues were
rinsed and incubated with Vectastain ABC reagent (Vector Laboratories) for
30min at RT, then rinsed and incubated with 3,3′-diaminobenzidine (DAB)/
H2O2 until good contrast was achieved. Sections were rinsed and counter-
stained with Mayers, rehydrated and mounted. These sections were scored
(low/medium/high intensity) to determine each patient’s receptor status.
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Fig. 7 Kaplan–Meier plot showing the relationship between the
metabolic subtype and outcome. Cancer-adjacent samples from
the TCGA BRCA cohort was used to estimate the prognostic value of
our findings. Each cancer-adjacent sample from the TCGA was
assigned to a transcriptomic subtype. Patients allocated to the
metabolic risk group have a worse prognosis relative to patients in
all other risk groups (log-rank p < 0.001, hazard ratio 5.8). The hazard
ratio was estimated using a Cox proportional hazards model, and
curves were compared using a log-rank test.
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Sequencing
Between 9 and 50 tissue sections (10 μm each, per patient and per site)
were used for downstream RNA extraction of fresh-frozen tissues to obtain
sufficient RNA for sequencing. Total RNA was extracted using the Qiagen
RNeasy Plus Mini kit (Qiagen) according to the manufacturer’s protocol.
RNA concentration was determined using the Qubit® (Invitrogen) and RNA
quality was assessed using Agilent Bioanalyzer 2.0 (Agilent Technologies); a
minimum RIN threshold of 7.0 was applied.
RNA-seq libraries were prepared at the Wellcome Trust Centre for

Human Genetics high throughput genomics unit using RNA-seq RiboZero
Gold, according to the manufacturer’s instructions (Illumina). Paired-end
reads of 150 bp in length were generated using the HiSeq 4000 (Illumina)
platform, achieving just over 100M paired-end reads per sample on
average.
After checking FASTQ data quality with FastQC, raw reads were aligned

to the reference genome hg38 using HISAT2 (https://ccb.jhu.edu/software/
hisat2/index.shtml). The number of reads uniquely aligned (mapping
quality score q > 10) to the exonic region of each gene were counted using
the HTSeq package, based on the GENCODE annotation (version 23).
Genes that achieved at least one count per million mapped reads in at
least four samples were included (n= 19,472).
Read counts were normalized using the conditional quantile normal-

ization method, which accounts for gene length and GC content. The log2-
transformed reads per kilobase per million mapped reads (RPKM) were
derived for all filtered genes across 67 samples. To account for batch
effects, the Combat function via the SVA R package was applied (https://
bioconductor.org/packages/release/bioc/html/sva.html). The corrected
log2 expression values were adjusted to avoid negative values, as log2
(1+ unlogged expression value).

Proteomics
Experiments were performed using mass spectrometry (MS) as described
previously47. Briefly, fresh-frozen breast tissue cores from tumor, TP, and
TD tissue (n= 33) were ground and lysed in urea lysis buffer (8 M urea,
10mM Na3VO4, 100 mM β-glycerol phosphate, and 25mM Na2H2P2O7)
supplemented with phosphatase inhibitors (Sigma).
Proteins were digested into peptides using trypsin and phosphopep-

tides enriched from total peptides by TiO2 chromatography. Dried
phosphopeptides were dissolved in 0.1% trifluoroacetic acid and analyzed
by nanoflow ultimate 3000 RSL nano instrument, coupled to a Q-Exactive
Plus mass spectrometer (ThermoFisher Scientific). Gradient elution was
from 3 to 35% buffer B (0.1% formic acid in acetonitrile) in 120min at a
flow rate 300 nL/min, with buffer A (0.1% formic acid in water) used to
balance the mobile phase. The spray voltage was 1.95 kV, with capillary
temperature 255 °C. The Q-Exactive plus was operated in data-dependent
mode with one survey MS scan followed by 15 MS/MS scans. The full scans
were acquired in the mass analyzer at 375–1500m/z with the resolution of
70,000, and the MS/MS scans were obtained with a resolution of 17,500.
MS raw files were converted into Mascot Generic Format using Mascot

Distiller (version 2.5.1) and searched against the SwissProt database
(December 2015 release), restricted to human entries using the Mascot
search daemon (version 2.5.0). Allowed mass windows were 10 ppm and
25mmu for parent and fragment mass-to-charge values, respectively.
Variable modifications included in searches were oxidation of methionine,
pyro-glu (N-term) and phosphorylation of serine, threonine, and tyrosine.
KSEA was implemented to infer kinase activity from phosphoproteomic

data and provide formal determination of pathways enriched in the data11.

Proteomics informed by transcriptomics
PIT analysis was performed using methods described previously20 to
generate a list of translated genomic elements (TGEs) and classify them
according to how they differ from the Uniprot canonical sequence. Default
parameters: 1% peptide-spectrum match-level FDR; and peptide evi-
dence ≥ 2.
Profiles of translated genomic elements are presented as UpSet plots

generated using UpSetR (v1.4.0).

Data analysis
Genes were ranked based on median absolute deviance (MAD) of
expression values, with the top 5000 most variable genes selected for
PCA. PCA on tumor and normal profiles was conducted using the R

package FactoMineR v1.41 (https://cran.r-project.org/web/packages/
FactoMineR/index.html).
The intrinsic.cluster.predict function, available from the genefu package

(https://www.bioconductor.org/packages/release/bioc/html/genefu.html),
was called to fit a single-sample predictor to the data using the PAM50
classifier (sbt.model=pam50.scale)8. The probabilities of each subtype
allocation were estimated using the Subtype Clustering Model and
returned in the subtype.proba R value.
We selected the 5000 most variable genes (MAD) and applied the

consensus NMF method to identify sample clusters10. Consensus matrices
and sample correlation matrices were obtained for k= 2 to k= 8, with the
optimal clustering solution determined by the most stable k-factor
decomposition. NMF parameters: Brunet algorithm; k= 2–8 clusters; error
function= Euclidean; number of clusterings to build consensus matrix=20;
iterations= 500. Clustering patterns were confirmed using the R package
ConsensusClusterPlus v1.38.0 (https://bioconductor.org/packages/release/
bioc/html/ConsensusClusterPlus.html).
Differential expression analyses were conducted using EdgeR (https://

bioconductor.org/packages/release/bioc/html/edgeR.html). A significance
threshold of FDR ≤ 0.05 and a log-fold change of ≥1 was implemented
during the differential analysis of each spatial group (tumor, TP, and TD)
relative to RM.
To identify genes most representative of each cluster, we implemented

the function SAMseq in the samr R library v2.0 (https://cran.r-project.org/
web/packages/samr/index.html). SAMseq parameters: resp.type=“Multi-
class”, nperms=100. The top gene sets representing each class were
ranked further using the average expression values of each gene and de
termining differences in the values between the represented cluster versus
that of the non-represented cluster with the largest average value.
Enrichment analyses on genes differentially expressed between the

spatial locations, relative to RM, and cluster-specific signatures were
performed using the ClueGO Cytoscape Plugin48. ClueGO parameters for
enrichment: Ontologies: GO (Biological Processes, Molecular Function,
Cellular Component and Immune System Processes), Reactome49, KEGG;
GO fusion; Evidence= Experimental and Inferred from the literature;
Hierarchy depth= 5–10; significance threshold= padj ≤ 0.05 (Bonferroni);
kappa score ≥ 0.6.
Gene set enrichment analysis (GSEA) was performed using the Broad

Institute desktop application (http://software.broadinstitute.org/gsea/
downloads.jsp).
The leukocyte signature matrix (Cibersort: LM2221) was used to infer

immune phenotypes for the four subgroups. Single-sample gene set scores
were obtained for each signature in the normalized gene expression
matrix to determine the representation of immune cell types in each
patient. The scores for each signature were summarized for each patient
population group and mean centered to permit comparisons between
groups. Parameters: signature matrix= LM22, mean= geometric mean.

Validation
RNA-seq data for breast cancer primary tumors with matched normal
samples (n= 108) was obtained from the TCGA.
Patients were stratified into risk groups based on their class allocation by

Support Vector Machine (SVM) using the R package e1071 v1.6-8 (https://
cran.r-project.org/web/packages/e1071/index.html). A tuning step was
implemented to define optimal parameters. The SVM model was
subsequently applied to the TCGA RNA-seq data for subtype allocation.
SVM optimized parameters: sampling method= 10-fold cross validation;
cost= 0.01.
A Cox proportional hazards regression model was applied to assess the

prognostic capability of the subtypes, with p-values estimated using log-
rank test. Survival modeling and Kaplan–Meier analyses were conducted
using the survival package v2.41-3 (https://cran.r-project.org/web/
packages/survival/index.html).
Univariate modeling was also applied to every gene defining the 414-

gene classifier independently via median dichotomization of the mRNA
abundance intensities. These genes were collated and ranked based on
their prognostic potential.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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the transcriptomic findings available for top-level analyses from Breast Cancer Now
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