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ABSTRACT

This thesis is concerned with the application of 
statistical techniques in the field of crystallography - 
a branch of science dealing with the structure, 
classification and properties of crystals - and an 
analysis of some of the associated statistical problems. 
We shall concentrate throughout on the estimation of 
atomic co-ordinates within the unit cells of crystals.

The science of X-ray crystallography will be introduced 
and a review of some of the existing methodology given. 
We shall then consider how statistical ideas may be used 
to improve this methodology.

We shall be particularly concerned with the area of 
sequential experimentation, in which the data collection 
process itself is modified as a result of analysing the 
data already collected. Sequential experimentation for 
improved efficiency in any particular crystallographic 
problem requires that decisions be made as to which 
additional data should be collected in order to achieve 
the desired objective. Ways of selecting suitable 
sampling strategies will be described, together with 
associated stopping rules. We will also describe methods 
for handling relevant prior information - e.g. structural 
information available in crystallographic data bases - and 
nuisance parameters, and procedures for dealing with the
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inherent non-linearity of the crystallographic model, 
matrix updating and the recursive addition of data. The 
central problem of X-ray crystallography - the 'phase 
problem1 - will also be analysed from a statistical 
perspective. Practical application of some of our ideas 
will be given.

Much emphasis is placed on non-linear parameter 
estimation problems such as those arising in 
crystallography. A review of relevant statistical work in 
this general field is undertaken, and geometry-based ideas 
of our own proposed. We concentrate on either seeking 
suitable re-parameterisations (in a sense which we define) 
or on seeking alternatives to the standard tangent plane 
approximation to the solution surface based on relevant 
curvature measures.

The thesis ends with a few relevant concluding 
comments and some ideas for further related statistical 
work in the area of X-ray crystallography.
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CHAPTER 1
CRYSTALLOGRAPHY: AN INTRODUCTION FOR THE STATISTICIAN

1.1 Introduction to and a Brief History of the 
Development of X-rav Crystallography

To say something is crystalline means that the atoms or 
molecules of which it is composed are packed together in 
a regular (3-dimensional) manner; crystallography is the 
study of the structure of crystals. The purposes of 
crystallography can be split into two broad categories, 
namely

(1) Identification of solid substances
(2) Determination of atomic configurations.

It is with (2) that the statistician will be concerned, 
i.e. the principles underlying the progressive stages in 
the elucidation of internal structure.

There are 7 types of crystal forms. The division is based 
upon (3) imaginary axes passing through the centre of a 
crystal - their relative lengths and relative angles 
defining a "unit cell" (or unit of repeating pattern): the 
smallest group of atoms from which the whole crystal may 
be constructed forms the unit of pattern and may be 
associated with a lattice point. The statistician is 
primarily concerned with obtaining estimates of the co
ordinate positions of the atoms inside the unit cell, a
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process referred to as structure determination. The 
determination of the full symmetry of a crystal structure 
is important (see Section 1.2)? we will therefore need to 
consider point groups and space groups where

(1) Point groups are associated with symmetries of
arrangements of atoms around a lattice point

(2) Space groups are associated with symmetries of the
complete arrangement in the crystal.

There are 32 possible point groups and 230 possible space 
groups. Numerous crystallographic text-books cover the 
derivation of the crystal systems, symmetry, point groups 
and space groups? see for example [12].

Were we able to use visible light to look inside a crystal 
(and thus locate the positions of the atoms in the unit 
cell) the statistician's task would be greatly simplified? 
however, this is not possible, so an alternative method of 
structure determination must be found. For this, X-rays 
are used as discussed in Section 1.3. Before this, 
however, the structure factor equation - the single most 
important equation in crystallography - will be derived in 
Section 1.2? its derivation introduces many important 
concepts to be used throughout this thesis and will be 
given here in some detail. We will then be in a position 
to outline in Section 1.4 some of the associated 
statistical problems with which this thesis will be
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concerned. Some relevant notation will be introduced in 
Section 1.5.

First, however, a brief history of the development of X- 
ray crystallography will be given, with emphasis being put 
on the statistical aspects covered to date. The science 
of X-ray crystallography can be said to originate with the 
discovery in 1912 by Laue that X-rays, which had been 
discovered 17 years previously by Rontgen, have
wavelengths comparable to interatomic distances (see
Section 1.3). This discovery paved the way for the 
determination of exact arrangements of atoms in crystals 
and the first successful structure elucidations soon 
followed.

Most early structure determinations were carried out by 
the method of trial and error. This consisted of
postulating various atomic arrangements consistent with 
the known space-group symmetry and comparing the
theoretical results derived from such structures with the 
actual results observed. The configuration that yielded 
the best agreement was taken to be the final structure - 
its correctness being confirmed by continuing to check the 
calculations for further observations if necessary.

The first practical uses [25], [43] of the application of 
Fourier series to the representation of crystal structures 
were made in 1925 in the derivation of the electron 
distribution in the sodium and chlorine atoms in rock
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salt. Four years later, W.L. Bragg suggested that Fourier 
methods could be used in crystal structure determination. 
The relevant underlying theory is outlined in Section 2.3. 
Most original applications of the method, however, merely 
sought to refine structures that had been derived by the 
trial and error methods above.

Other methods of structure determination in widespread use 
in the inter-war years included approaches based on 
Patterson maps and so-called heavy atom methods (see 
Section 2.7). A landmark in the history of X-ray 
crystallography was reached in 1941, however, with the 
first application by Hughes [45] of least squares 
techniques in the refinement of crystal structures (see 
Section 2.2), which has since been widely adopted. Not 
long afterwards, the era of crystallographic statistics 
was born.

The founding father of crystallographic statistics is 
Arthur Wilson. Much of his early pioneering work concerned 
with the application of statistical methods in 
crystallography considered the statistical properties of 
the intensities of X-rays diffracted by a crystal (see 
Section 1.3). His inaugural result in this area is given 
in [71]. This was subsequently independently confirmed 
[38] and indeed extended [46]. In 1949, Wilson achieved a 
major breakthrough by deriving the ideal distribution 
functions of structure factors for all crystals [72]: as
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we shall see in the following Sections, the structure 
factor is that term in the expression for the amplitude of 
our observable experimental quantities which involves the 
co-ordinates of the atoms within the unit cell. As a 
consequence of this work, the development of direct 
methods (see Section 2.6) of an overtly statistical nature 
was taken up by Karle and Hauptman [42], [49]. Then, as
now, much of the energy channelled into crystallographic 
statistics sought to consider the properties of groups of 
related X-ray intensities in an attempt to tackle the 
phase problem of X-ray crystallography (introduced in 
Section 1.4).

Although the most active area in crystallographic 
statistics has been that of intensity statistics, other 
important areas covered include statistics of recorded 
counts, Wiener methods for electron density and 
alternatives to least squares. Useful references for the 
former two areas are [23] and [18] respectively; in 
conjunction with the latter area, use of Bayesian ideas 
[31] merits a special mention. This is a relatively new 
development in crystallographic circles, with only three 
relevant such applications [30], [32], [57] prior to 1980. 
Bayesian ideas will form an integral part of the theory of 
this thesis, however (see Chapter 3) . Finally, we also 
note that a structure has recently been determined based 
on the theory of maximum entropy [36], thus indicating 
another area in crystallography currently rife for



statistical research.

Further comments on the history of the growth of
crystallographic statistics (up to 1976) may be found in 
[62] .

1.2 Derivation of the Structure Factor Equation

Much of this Section is based on Chapter 2 of [54].

We recall from the previous Section that the (space) 
lattice of a crystal is the collection of points, each of 
which represents the groups of atoms which, when repeated 
at regular intervals, constitute the crystal. It is
assumed that each lattice point has the power to diffract 
X-rays, and may consequently be regarded as a (point) 
electron. The positions of the electrons can be denoted by 
vectors r such that

r = u a + v b + w c  (1.2.1)

where a, b, and c are the primitive translations of the
lattice and u, v and w are integers.

Now consider a parallel beam of X-rays of wavelength A 
falling on the lattice in a direction defined by the 
vector Sjj (of magnitude 1/A) . By referring to Figure 1.2.1 
where s (also of magnitude 1/A) is a vector defining an 
arbitrary direction and r is the vector distance: between îspioc?' 
two lattice points A and B, we see that the path
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difference between the two scattered waves in direction s

Figure 1.2.1: Scattering from two lattice points (s may
not be in the same plane as Sq and r)

is

AN - BM = A(r.s - r.s*,) = Ar.S (1.2.2)

where

S = s - Sg

is called the scattering vector. In order that the waves 
scattered by A and B in direction s shall be in phase, and 
thus reinforce each other, the path difference should be 
equal to a whole number of wavelengths, i.e.

r.S = (u a + v b + w c).S = integer. (1.2.3)

Equation (1.2.3) needs to hold for all integral values of 
u, v and w? this yields
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a . S = h
b.S = k (1.2.4)
c.S = 1

where h, k and 1 are integers. These equations (1.2.4) are 
referred to as Laue's equations.

From the first two equations of (1.2.4) we see that 

a b

i.e. the vector S is perpendicular to the vector 
a h

(-^— - —^—) . The latter vector, however, is in the plane

of Miller indices hkl where the Miller indices of a plane 
are a set of whole numbers (hkl) such that the intercepts 
of the plane on the axes defined by a, b and c are in the 
ratio

|a| |b| |c|
h : k : 1

Similarly, it can be shown that S is perpendicular to the 
a c

vector (~^~ ~ —j“ )/ which is also a vector in the plane 
hkl: we see that S is therefore perpendicular to this 
plane. But S is a vector in the direction of the bisector 
of the incident and diffracted beam, since the moduli of 
s and ŝj are equal (see Figure 1.2.2). Thus this bisector 
is identified with the normal to the hkl plane.
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Figure 1.2.2: Relationship between Sq , s  and S

This is the justification for the concept of each
diffraction as a "reflection" of the rays from a 
particular hkl plane.

We now introduce the spacing d of the planes hkl; this is 
the perpendicular distance from the origin to the nearest 
plane and consequently can be expressed as

a
. S

(1.2.5)

By noting from Laue's equations that

a
h . S = 1

and from Figure 1.2.2 that

S sin 6 
* A

21



equation (1.2.5) reduces to give

which is Bragg's equation (the quantity n which sometimes 
appears in Bragg's equation is now absorbed in the 
integers hkl). Bragg's law says that reflections will be 
obtained when equation (1.2.6) is satisfied, the 
corresponding 0 being called the Bragg angle of 
reflection.

In atoms the electrons occupy a finite volume and 
consequently the phase differences between rays scattered 
from different points in this volume have to be taken into 
account. For small angles of diffraction these phase 
differences are small, and the amplitude of scattering by 
an atom can be taken to be the sum of the amplitudes of 
the scattering by its individual electrons. This means 
that if the electrons at the lattice points are replaced 
by an atom of atomic number Z, then the expression for the 
amplitude of the scattered beam must be multiplied by the 
factor Z. As the angle of diffraction increases, however, 
the phase differences become larger, and thus the 
scattered beam becomes weaker, i.e. the factor becomes 
less than Z. The factor is called the atomic scattering 
factor f and is constant for a given angle of diffraction 
(assuming spherical symmetry for the atom). The curve of 
scattering factor against (sin 0)/A is called the
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scattering-factor curve. Extensive calculation of these 
curves has been carried out for different atoms and the 
results can be found in the International Tables for X-ray 
Crystallography.

We now consider the temperature factor. At all 
temperatures atoms have a finite amplitude of oscillation
(about 1013 per second) which is much smaller than the

18frequency of X-rays (about 10 per second); consequently, 
to a train of X-ray waves, the atoms would appear to be 
stationary, but displaced from their true positions in the 
lattice. Thus, in producing a given X-ray reflection, 
atoms in neighboring unit cells which should scatter in 
phase, will scatter slightly out of phase, the total 
effect being apparently to reduce the scattering factor of 
the atom by an amount which increases with angle. If the 
thermal waves have a random phase relationship, the form 
of the variation of the scattering factor with angle can 
be calculated (with certain assumptions about the nature 
of the atomic vibrations) . The result is that, if the 
scattering factor discussed above is called f0, the factor 
f to be used in practice is

• 2 nf = f„ exp (-B sln/) (1.2.7)
A

where 6 is the Bragg angle and B is the Debye-Waller 
factor (constant), if the mean square displacements are 
the same for all atoms and are isotropic. More generally,
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the factor used (for atom r) is of the form f0 exp(-Tr) 

where

T =  h 2B?n + k 2 B^_ + 1 2B ^, + hkB^_ + h lB lf .  + k l B l f , ; r 11 22 33 12 13 23
(1.2.8)

TO ththe six Bj^'s are the temperature parameters for the r 
atom which is assumed to be vibrating ellipsoidally.

Suppose now that the unit cell of a crystal contains R 
atoms, situated at points (xr,yr,zr) (r = 1..R) expressed 
as fractions of the lattice dimensions. The position of 
the rth atom in the unit cell can thus be represented by 
the vector

r = x a + y b + z c . (1.2.9)r r i r

The path difference between the electromagnetic waves 
scattered by these atoms and those that would be scattered 
by a set of atoms at the points of the lattice that define 
the origin of the unit cells is, by analogy with equation 
(1.2.2), Arr.S. Thus the expression for the individual 
scattered wave from the rth atom contains a term

fr exp(^yi Arr .S) = fr exp (2?ri rr .S)

where fr is the scattering factor of the rth atom. Thus the 
expression for the complete wave scattered by the crystal 
would contain a term
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Sol fc,4xy ̂
Using equations (1.2.4) and (1.2.9), equation (1.2.10) may
be re-written

R
FC = E f exp [2?ri(hx + ky + lz ) ] . (1.2.11)r=l r r r r

The quantity FC (a function of h,k and 1) is called the 
structure factor, and equation (1.2.11) the structure 
factor equation; its importance in the field of 
crystallography cannot be over-emphasised.

It is reasonable to assume that a statistician may start 
his analysis conditional upon knowing the appropriate
symmetries, space group and number of atoms, R, in the 
unit cell of the crystal under examination. Indeed, it is 
regarded as a necessary preliminary to a full structure 
determination. In the theory outlined above the atomic 
co-ordinate positions to be estimated inside the unit cell 
are defined by 3R structural parameters. When symmetry is 
present, the number of dependent parameters is less than 
3R, sometimes considerably less; in extreme cases, some 
atoms can even be precisely located from symmetry 
considerations alone.

We shall be concentrating in this thesis on the
centrosymmetric case, in which for every atom at (x,y,z)



there is an equivalent atom at (-x,-y,-z). In this case, 
equation (1.2.11) reduces to

R/2
FC(h) = 2 E f cos[27r(hx + ky + lz ) ] (1.2.12)

r=l

where the summation is now over the asymmetric part of the 
unit cell and we have written FC = FC(h) to denote its 
dependence on the triple h = hkl. Other simplifications 
exist for different space groups. There is a complete list 
in the International Tables for X-ray Crystallography; 
selected examples are given in [51], while Chapter 4 of 
[54] expands upon the significance of the resulting 
simplifications. In particular, it should be noted that 
for a given space group, various hkl's will give a zero 
contribution to the geometrical part of the structure 
factor, thus indicating systematic absences on the X-ray 
diffraction photograph (to be introduced in the next 
Section); such absences characterise that particular space 
group.

Finally, we note that we may express the FC(h) in the form 

FC(h) = |FC(h)| exp(i^h) (1.2.13)

where |FC(h) | is called the structure amplitude and <f>h the 
associated phase angle. Although we may measure the 
structure amplitude, the phases are unobservable 
quantities. In the centosymmetric case, the phase angle
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is either 0 or n depending whether the structure factor is 
positive or negative; in practice, the observed structure 
amplitude is accorded a phase angle based on the 
corresponding fitted value.

1.3 Experimental Procedure in X-rav Crystallography

The diffraction effects produced when X-rays pass through 
a crystal are studied. X-rays are electromagnetic waves 
of very high frequency and short wavelength, produced when 
rapidly moving electrons (accelerated by potentials of 
tens of thousand of volts) collide with atoms; the energy 
released when the electrons are suddenly stopped is given 
out in the form of electromagnetic waves having a 
wavelength of around lA (10"8 cm), the order of magnitude 
of interatomic distances. The wavelength distribution in 
the X-ray beam depends on the material of the target (of 
the X-ray tube) used and on the accelerating voltage. For 
most crystallographic purposes, a monochromatic beam (i.e. 
a beam consisting of one wavelength A) is desirable.

The intensities of the diffracted beams need to be 
considered, since these are observable quantities which 
depend upon the arrangement and position of atoms in the 
unit cell. There are two main methods for recording 
diffraction patterns of crystals and measuring the 
diffracted intensities, namely photographic methods and 
direct counting diffractometer methods: rotation
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photographs will be briefly discussed here.

For a rotation photograph the crystal is set to rotate 
about some axis. The incident beam is normal to the 
rotation axis; the diffraction pattern is usually recorded 
on a cylindrical film co-axial with this axis (see Figure 
1.3.1). The diffracted beams intersect the cylindrical 
film in a set of circles that appear as straight lines 
(layer lines) when the film is flattened out. It is 
possible to assign reflection indices (hkl) to the 
diffracted beams, which may be regarded as the reflection 
of X-rays by a particular set of parallel crystal planes 
as discussed in the previous Section. X-ray intensity 
measurements from the blackening of photographic film 
emulsion are made as follows.

ro ta jio n
axis

incident_____
X — ray beam

crystal

Figure 1.3.1: Simplified schematic diagram of X-ray
rotation photograph procedure
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Intensity scales may be prepared by allowing reflected 
beams to strike a film for different lengths of time and 
according each spot a value in proportion to this length. 
Intensities may then be measured by visual comparison with 
the scale. Alternatively, a photometric device may be used 
to estimate the blackening, the background intensity being 
measured and subtracted from the peak intensity. The 
general subject of accuracy in photographic measurements 
has been discussed exhaustively in [47], along with fuller 
details of the above procedure.

For a complete study of X-ray diffraction from crystals, 
the concept of a reciprocal lattice is needed. Such a 
lattice may be postulated for each direct lattice as 
follows. From the origin of the unit cell, draw lines 
normal to families of planes (hkl) in direct space; note 
the parentheses to denote the families of planes. Along 
each line, reciprocal lattice points hkl - no parentheses 
- are marked off such that the distance from the origin to 
the first point in any line is inversely proportional to 
the corresponding interplanar spacing d(hkl). Our spacing 
becomes d*(hkl) (say) given by

d * < h k l > -  d T h k i y  f1 -3 -1 )

for some constant K. In practice, K is often taken to be 
the wavelength of the X-radiation used; reciprocal lattice 
units (RU) are then dimensionless.
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X - r a y  beam

Sphere of 
ref lect ion

crysta l
p lanes

Figure 1.3.2: Ewald's construction

We may now introduce the sphere of reflection, or Ewald's 
sphere, a device which facilitates the geometric 
interpretation of X-ray diffraction photographs. The 
sphere is centred on the crystal (C) and drawn with a
radius of 1 RU on the X-ray beam (AQ) as diameter (see
Figure 1.3.2). Let a reflected beam hkl cut the sphere in
P. Then A,P and Q lie on a circular section of the sphere
which passes through the centre C. It can be seen from 
Figure 1.3.2 that

QP = 2 sin 0(hkl)

From Bragg's equation (1.2.6) and from the definition of 
the reciprocal lattice above, we identify the point P with
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the reciprocal lattice point hkl; hence 

QP = d*(hkl)

(by taking K = A in equation (1.3.1)).

The upshot of the above analysis is as follows. The 
condition that the crystal is in the correct orientation 
for a Bragg reflection hkl to take place is that the 
corresponding reciprocal lattice point P is on the sphere 
of reflection, as constructed above. As the crystal 
oscillates, an X-ray reflection flashes out each time a 
reciprocal lattice point cuts the sphere of reflection, 
and the direction of reflection is given by CP.

The apparently irregular variations of intensity observed 
are due to the effect of the relative position of the 
atoms in space. We recall the general structure factor 
equation (1.2.11):

R
FC(h) = 2 E f exp[27ri(hx + ky + lz ) ] 

r=l

The modulus |FC(h)| is called the structure amplitude? the 
intensities are proportional to |FC(h)|2. In practice, 
observed intensities are measured from which observed 
structure amplitudes |FO(h)| can be derived. See Appendix 
1 for further comments on (integrated) intensity and 
related crystallographic concepts.
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1.4 Statistical Problems Arising: Motivation For and Plan
of this Thesis

The co-ordinates in a model structure need to be 
determined such that the set of calculated structure 
factors best fit (in some sense) an observed set of 
structure factors. The method usually used is that of 
(weighted) least squares. As we shall see in Chapter 2, 
however, although we can determine a set of structure 
amplitudes from our intensity measurements, direct 
elucidation of the crystal structure would further require 
a knowledge of complex numbers of the form

|FO(h)| exp(i ^h ) .

However, the "phases" <f>h cannot be determined from 
experiment: this is the so-called phase problem of
crystallography. It manifests itself in the
centrosymmetric case in the loss of sign information for 
our observed structure factors. Statistical techniques 
may be developed to help combat the phase problem (see 
Section 3.2) and provide a basis for sensible sign 
allocation. Similarly, the allocation of appropriate 
least squares weights may be considered from a statistical 
perspective and the allocation of appropriate weighting 
schemes undertaken (see Section 3.3).

Another major problem arises from the fact that our 
fundamental equation (1.2.12) is highly non-linear in the
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parameters of interest. We will therefore need to be 
concerned with the development of procedures for handling 
non-linear models. Chapter 4 is consequently entirely
devoted to the area of non-linear parameter estimation.
Efficient techniques for dealing with "nuisance"
parameters, such as the thermal parameters that enter 
equation (1.2.12), will also need to be developed.

Methods of handling prior information and how it may be 
incorporated into our analyses will be considered. In 
particular, statistical procedures will be employed to 
show how structural information available (in 
crystallographic data bases) may be used. The most 
important application will be that of sequential
experimentation, to be discussed in Sections 3.4-3.6, in 
which the data collection process is modified in the light 
of results based on data currently available. The 
important statistical areas to be covered include the 
specification of relevant updating procedures, methods of 
selecting sampling strategies and the consideration of 
appropriate stopping rules.

Now that the relevant background theory has been 
introduced and some of the associated statistical problems 
outlined in their proper context, the prime motivation for 
this thesis may be stated as follows. We will be 
concerned with various statistical techniques arising in 
the field of X-ray crystallography, ultimately with regard
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to producing fully automatic (computer-controlled) 
sequential experimentation procedures for efficient 
crystal structure determination. An overview of the 
necessary stages in such an analysis is presented in 
Figure 1.4.1. To conclude this Section a few introductory 
comments will be made on the various stages involved.

Objectives

Prior Information

Initial Sampling Scheme

New Estimate

Re-cycle
  Stopping Rules

More data

respond to
unwanted
behaviour

STOP

Figure 1.4.1: Overview of a sequential experimentation
scheme as may be applied to X-ray 
crystallography

The objectives of a crystal structure analysis may 
influence our approach, in particular with regard to any 
simple matrix approximations we may wish to justify. 
Typical objectives include quick estimates (or packing
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structures), accurate specification of selected parameters 
(as opposed to the whole molecule) , or simply the most 
cost-effective estimate within a given time period. Our 
studies in Section 3.6 are motivated by wishing to make 
final refinements by measuring some but not all the 
intensities in the set of as yet unobserved reflections. 
We will seek to choose an appropriate subset that is not 
unduly large but still enables us to make very good final 
refinements. Much of our theory will be based on the 
minimax strategy, which seeks to reduce all associated 
parameter variances below specified target values. For 
this part of the analysis, we will be assuming we have 
good initial estimates and have already invoked an initial 
sampling scheme. Further comments will be found in Section 
3.6.

An important constituent of our prior information before 
any experimentation is undertaken is the set of postulated 
atomic co-ordinate positions which represent our prior 
beliefs about the atomic configuration under 
consideration. Such a trial structure is a necessary 
preliminary to the standard least squares approach 
of crystal structure determination in view of the non
linear nature of the model equation that arises in 
crystallography. A suitable trial structure - together 
with the analogous prior beliefs about the temperature 
factors of Section 1.2 - may be assumed to be available to 
us. Were we further able to quantify our degree of belief
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in our trial structure, as proposed in Section 3.2 we 
could proceed along the Bayesian lines outlined there and 
in Section 3.3. Other types of prior information that may 
be available and how they might be incorporated into our 
analysis are also given in Section 3.3.

A few brief comments on initial sampling schemes appear in 
Section 3.6; we merely note here that we shall generally 
assume appropriate initial batches of data to be readily 
available.

The key step of obtaining new parameter estimates raises 
a whole host of problems, whether we are invoking an 
iterative scheme based on a fixed set of data or updating 
existing beliefs in the light of further acquired data. 
Statistical considerations are dominated by the inherent 
non-linearity of our model and fundamental phase problem. 
We shall seek schemes to account for matrix inversion/ 
simplification wherever possible and updating procedures 
concerned with the recursive addition of data. Much of the 
associated theory is given in Section 3.5, while Chapter 
4 is devoted to the general theory of non-linear parameter 
estimation. The standard refinement methods in general 
use in the crystallographic world are summarised in 
Chapter 2, the theory being given for the case of fixed 
data only. The important question of how to proceed when 
our new estimates are unsatisfactory (e.g. they may lead 
to an increase in a target function such as the residual
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sum of squares) is touched upon during Chapters 3 and 4. 
For example, modification of a least squares step length 
or appeal to techniques such as steepest descent or 
Marquardt's compromise are cited as viable possibilities, 
together with our own ideas proposed in Chapter 4.

The scope for various stopping rules is wide. Standard 
rules exist such as cycling until resultant increments 
become negligible in the least squares iterative schemes 
for fixed data. When to stop the sequential addition of 
data into the analysis is not usually so clear-cut, 
however, though our minimax strategy presents no problems 
on this front. The general problem of whether further 
data should be acquired might best be considered in a 
decision theoretic framework in which we might pose the 
question: does the expected gain in information arising 
from making the extra measurement(s) justify the cost 
involved? Alternatively we might ask whether further 
acquisition of data is likely to afford us any useful 
additional information. Only if the answers to these sort 
of questions are in the negative, should we consider 
terminating our data collection procedure. Such an 
approach is not pursued here, though is recommended as an 
area for further study. Further general comments, 
including a note of standard stopping rules currently 
employed in crystallography, mainly of an ad hoc nature, 
are discussed as they arise during the formulation of the 
theory of Chapter 3.
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In cases where we deem acquisition of further data should 
indeed be undertaken, we shall wish to specify how many 
observations to make and where to make them. The 
specification of appropriate such sequential sampling 
schemes forms a major part of the theory of Chapter 3. 
Emphasis is put on where to make the additional 
observations. One-at-a-time selection schemes are 
relatively easy to formulate? possible extensions to cover 
general batches of incoming data are given. For these 
ideas, including determination of the optimum size of such 
batches, consultation with crystallographers is 
recommended.

In fact, the whole science of crystallographic statistics 
should be based upon co-operation and interaction between 
the two disciplines. As we have seen, there is clearly 
plenty of scope for the application of various statistical 
techniques within the crystallographic setting? the most 
efficient applications are likely to be those that 
incorporate the relevant theory in such a way as to best 
utilise the expert knowledge of the crystallographers. In 
cases where this expert knowledge is intuitive or based on 
rules of thumb, sound statistical theory should be sought 
which parallels the appropriate results. If such a theory 
is not immediately apparent, it should not devalue the 
usefulness of these techniques that have served 
crystallography well over the years. The statistician

38



should (initially at least) be prepared to compromise his 
aesthetic values in search of an efficient practical 
procedure.

1.5 Notation

The following notation shall be used throughout this 
thesis. Suppose we have a known response function analogue 
of our structure factor equation (1.2.12)

rj = FC(h, 0) (say) (1.5.1)

where h is the hkl triple of Section 1.2 and 

S. = ... 0p)T

is the vector of parameters to be estimated (p = number of 
unknown parameters) . Typically, 0. consists of atomic co
ordinate positions - conventionally expressed as fractions 
of the lattice dimension - together with isotropic or 
anisotropic temperature factor parameters (up to 6 per 
atom) . An overall scale factor may also be included in 0.. 
Note that we shall henceforth also use the abbreviation 
FC(h) to denote the particular value of the (theoretical) 
structure factor evaluated at our current parameter 
estimate.

Suppose at any given stage we have n observations

| FO(Hi) | = iFTfh^l + ci (i=l. .n) (1.5.2)
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where |FO(hj) | represents the measured structure amplitude
for the hj reflection, and FT(hj) the true (but unknown)
value of the corresponding structure factor. The
disturbances ei assumed to be normally distributed with

2mean zero and variance . Thus equation (1.5.2) may be
be re-expressed as

IfoQi^I - ncIftc^) I , a £ )  (i=l —  n) (1.5.3)

which represents our model. The multivariate form of our
model may be obtained by grouping the observations into an
(nxl) vector with the appropriate mean vector and
covariance matrix V (say). The disturbances which
represent measurement errors, are often assumed to be
independently distributed so that the latter reduces to a

2diagonal matrix with elements .
—i

For any iterative non-linear parameter estimation schemes 
that we shall be considering, let .0^ denote the estimate 
of 9_ after iteration k (= 0,1,2 ...). The initial
estimate oj°\ however, shall often also be written 0̂ . We 
let A0^ likewise represent the increment for the estimate 
after the (k+l)th iteration, i.e.

£ (k+i) _ + M (k) _

AWe sometimes use the notation A 0 to emphasise that our

40



increment has been estimated via a least squares approach 
(as outlined in Section 2.2).

We shall use the notation I to denote the value of a
Vk)

quantity evaluated at B_ = in particular,

(k) = 5FC (h.,£)
(i#j) 99j (i=l..n? j=l..p) (1.5.4)

(k)

represents the value of the partial derivative of the 
structure factor equation for the hj reflection with 
respect to 0}, evaluated at 0.=0.(k). The (nxp) design matrix 

at the kth iteration is defined by the matrix whoserV ■*

(i,j)th element is given by equation (1.5.4). In the 
centrosymmetric case our 'observations' at each iteration 
will be taken to be the (nxl) vector whose ith element 
is given by

= FO*(hi) - FC(hi,l) (i=l..n) (1.5.5)
(k)

where we use the notation FO* (hj) to represent the measured 
structure amplitude for the hj reflection, given the same 
sign as its fitted value.

Additional notation will be introduced as and when 
necessary.
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CHAPTER 2
CRYSTAL STRUCTURE REFINEMENT: A REVIEW OF METHODS

2•1 Introduction

In crystal structure analyses the co-ordinates of the 
atoms inside a unit cell may be estimated by the technique 
of least squares. However, an approach based upon the 
distribution of electron density throughout the unit cell 
may also be used. It can be shown that although the 
former technique is parametric and the latter non- 
parametric the underlying theory for the least squares 
approach may be arrived at by considering a special case 
of the electron density. This Chapter aims to study the 
non-parametric method and to compare and contrast it with 
the widely adopted parametric approach to crystal 
structure determination.

The first method - that of least squares - is based upon 
measured structure factors, derived from observed 
intensities, which may be obtained by a study of the 
diffraction effects produced when X-rays pass through a 
suitably orientated crystal. The structure factors are 
assumed to depend on the atomic co-ordinate positions, and 
our atomic co-ordinate estimates are taken to be those 
that minimise the discrepancy - in the sense of a weighted 
residual sum of squares - between the consequent 
calculated and observed values. The second method, which
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also makes use of measured structure factors, seeks to 
create a three-dimensional image of the scattering matter 
inside the unit cell - the so-called electron density - 
and to identify atomic co-ordinate positions with the 
centres of the peaks of such a map.

Sections 2.2 and 2.3 will explain the least squares 
approach and electron density approach to structure 
determination in more detail. The method of differential 
synthesis, a refinement procedure based on the electron 
density approach, will be discussed in Section 2.4. 
Section 2.5 will briefly compare and contrast the two 
differing approaches to structure determination, based on 
the salient points of Sections 2.2 and 2.3. Section 2.6 
will introduce a few of the more popular methods that have 
been developed to use in conjunction with out refinement 
procedures in order to help overcome the phase problem of 
Section 1.4. The Chapter concludes in Section 2.7 with a 
summary of the related notions of Patterson maps, heavy 
atom methods and isomorphous replacement.

2.2 The Standard Least Squares Approach

The method of weighted least squares much used in 
structure determination by crystallographers is to 
minimise the function ^ B_) below with respect to the
parameters 9} (j=l..p):
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where wh is the 'weight' of the observation and the 
summation is taken over all triples h at which 
observations have been taken. We note that this criterion 
function is equivalent to

xp = Z w, (FO* (h) - FC(h,£))2 (2.2.2)
h -

in the centrosymmetric cases with which we will be 
concerned.

The weights associated with the X-ray data may be based on 
a combination of theoretical assumptions and practical 
experience (see e.g. [26] p.217) though are usually just 
taken to be the inverse of the variance of the 
corresponding observation. In the original application of 
the method of least squares to structure analysis, 
however, only relative weights could be estimated based on 
the assumption that

wh « | FO (h) | ”2 ;

other feasible alternatives include weighting schemes such



where a and b are about 2F0(min) and 2/F0(max) 
respectively (where FO(min) and FO(max) are the minimum 
and maximum observed structure amplitudes). The
appropriateness of any given weighting scheme may be 
tested by grouping structure amplitudes according to any 
factor (e.g. |FO(h)| or position in reciprocal space) that 
is suspected to influence the standard deviation, and 
checking that the average value of

wh (FO*(h) - FC(h))2

is approximately the same in each group. The question of 
an appropriate weighting scheme to use in conjunction with 
the theory of this Section is returned to in Section 3.3.

Returning to our criterion function tp of (2.2.2) it should 
be noted that a more general formulation would introduce 
cross-product terms leading to

tp* (say) = E w, ,,(FO*(h) - FC(h) ) (FO* (h1) - FC(h')) 
h, h ' ---

(2.2.3)

where the weights wh h, are now typically elements of the 
inverse of the covariance matrix V of our observations./v

We may therefore think of the standard weighted least 
squares approach based on (2.2.2) as taking ^ to be the 
fixed diagonal matrix with elements wh_1 = crh2.

The essence of the least squares approach is that the
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FC(h,0.) are non-linear functions of B_ and so may be 
expanded in a Taylor series about 6^°\ an initial parameter 
value. By ignoring second order terms, the resulting 
expression is linear in terms of increments of the 
parameters (M.^) . Using this Taylor series approximation, 
minimisation of the criterion function (2.2.2) - with
respect to these increments - may now be carried out. 
This is achieved by solving the normal equations for the 
parameter increments obtained by differentiating and 
setting equal to zero. The resulting increments are then 
added to the initial set of parameter values the
FC(h,0.) expanded about the new point in parameter space, 
and the next set of normal equations solved for the new 
increments. This procedure (assuming it converges) is 
repeated until resulting increments become negligible.

The observational equations obtained at iteration k 
(derived in detail in Section 3.6) are

(x(k)T w X*k)) W Y*k) (2.2.4)

where X^, are defined by equations (1.5.4), (1.5.5)
and W is the diagonal matrix with elements w^. Equation
(2.2.4) must be solved for A0^ and used in conjunction 
with the updating scheme

£.(k+l) = 0.^ + • (2.2.5)

Recall that the matrix X ^  and the vector Y ^  must be re-fSj *
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evaluated at each updated parameter estimate. Following 
[55] we may choose to cycle until

^(k+i) _ e m 10-4
e j  ^  + i o “3

(j=l..p). (2.2.6)

The standard least squares scheme just described may be 
represented as in Figure (2.2.1).

(0)Ik=0
* Evaluate X ^ ,

Solve (for Afl

k̂^TW X ^  Afl^ (k)T

(k+1)

-4(k+l)_ (k) 10No
f k  ̂ + i o “3

YES

STOP 
(ACCEPT £^k+1^

(j=l. .p)?

Figure 2.2.1: Standard least squares cycle
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Provided

N (k) = x ^k ^T W  X ^ (2.2.7)

is non-singular, equation (2.2.4) gives

= [ N^k ]̂ X (k)T W Y ^  . (2.2.8)

This is the so-called multiple linear regression formula. 
It is trivial to deduce that (2.2.8) pertains when X ^  and 

are defined via

(k) glFC(h.,i)|
(i,j) 9$^

9-9 ™

(2.2.9)

and
Yi (k) = | FO(h^) | - |FC(hif£)

<L=i.W

(2.2.10)

respectively. From our (approximate) observational 
equations based on equation (1.5.3), namely

(k)  ̂ (k)N(XV~'A£V V) , (2.2.11)

we can now deduce that our estimate based on (2.2.8) is 
linear unbiased. The covariance matrix of the sampling 
distribution of our estimate is

[Njy(k)] 1 X (k)T W V W X (k) [N(ki “1

which reduces to
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[nOO]"1

in the case where the weight matrix W = V"1. The Gauss- 
Markov Theorem says that amongst all linear unbiased 
estimates this is the one with smallest variance in the 
sense that it minimises the determinant of the resultant 
matrix. Furthermore, in the case of normal errors, the 
estimate is efficient.

The above analysis is based on a fixed weight matrix W 
which makes no allowance for any Taylor series residual of 
higher order (2nd, 3rd...) terms. Were we to know the
correct appropriate covariance matrix we would of course 
use it. Appreciative of the fact that these residuals 
change dependent on the parameter estimate, dynamic 
weighting schemes could be proposed which modify the 
weights used in the analysis above accordingly as the 
parameter estimate varies. Thus in general it may be 
reasonable to expect to re-evaluate a weight matrix 
at each iteration. Further related ideas appear in 
Section 6.1.

The least squares theory discussed here required only an 
initial parameter value of® before the proposed iterative 
procedure could be invoked. General prior parameter 
distribution information available may be incorporated 
naturally into the analysis by appealing to the Bayesian 
inferential paradigm [52] as outlined in Section 3.3. It
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should also be noted that the general problem of 
minimising equation (2.2.1) under conditions such as the 
atomic co-ordinate parameters having to satisfy certain 
equations of constraint may be incorporated into the least 
squares analysis along the lines proposed in [8] or may 
be solved by the standard method of undetermined 
(Lagrangian) multipliers as discussed in e.g. [26].

Once the least squares refinement procedure - which is 
especially suited for automatic, iterative computer 
operation - is invoked, however, it is essentially blind 
in the following sense. It will not be able to suggest 
the nature of any additional features whose inclusion may 
improve the level of agreement between the observed data 
and the underlying parametric model. As we shall see in 
the following Sections this is in marked contrast to the 
interactive nature of the electron density approach to 
crystal structure determination.

In extreme cases, there may prove to be problems of 
collinearity amongst the columns of the matrix X^, which 
may manifest itself in terms of a high condition number 
for the matrix N^, consequently yielding unreliable 
estimates. In cases where it is in fact singular resort 
may be made to the theory of pseudoinverses as discussed 
in e.g. [11]. Potentially more serious, however, are 
various other computational difficulties associated with 
the least squares approach: in particular, we shall be
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concerned in Section 3.5 with:

(1) (Avoidance of) matrix inversion routines

(2) Relationship between x̂ k+1̂ and

(3) Updating procedures to account for the recursive 
addition of data (recursive least squares).

The least squares approach represented in Figure 2.2.1 is 
for a fixed set of data and as such will only form an 
inner cycle of any sequential schemes we shall be 
discussing. Again, relevant comments appear in Section 
3.5. However, it gives the best structure for the data 
already available, in the sense of smallest associated 
residual sum of squares if).

2.3 Electron Density Approach

Let p{ r) denote some continuous electron density 
distribution inside the unit cell i.e. a small volume dr 
at a vector distance r from the origin contains p (r) dr 
electrons (so that p{r) is necessarily non-negative). Let 
the directions of incident and scattered waves be 
indicated by vectors ŝ, and s (of magnitude 1/A) as in 
Figure 1.2.1. Since a decrease in path length by 6 

corresponds to an increase in phase angle of 2ir6/\ we 
find that the phase of the wave scattered at r (in the 
direction of s) is
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27TT.S

with respect to the origin, where

s =

is the scattering vector of Section 1.2. The expression 
for the wave scattered at r then contains a term

P (£) dr exp(27ri r.S);

consequently, the superposition of all the wavelets 
scattered by the distribution is obtained by integration, 
viz

F(S) (say) = J* p(r) exp[27ri r.S] dr . (2.3.1)

Note that equation (2.3.1) is a more general equation for 
the structure factor of which equation (1.2.11) is a 
special example.

For the derivation of (1.2.11) we are concerned with those 
S such that the path difference Ar.S is an integral number 
of wavelengths whenever r is at the origin of another unit 
cell - so that the corresponding waves are in phase, thus 
reinforcing each other - and we find that S yields an 
integer triplet (which we associate with our previous h = 
hkl) . The continuous electron density is now assumed to
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be discrete, being concentrated at the 'points* occupied 
by the atoms in the unit cell (so the integration is 
replaced by a finite sum), with the appropriate densities 
now being atomic scattering factors.

Returning to equation (2.3.1) we see that the structure 
factor F (S) is the Fourier transform of the electron 
density p (r). In turn we can express the electron density 
as the inverse Fourier transform of the structure factor, 
namely

p (XYZ) = 1 2  F(h) exp[-ia, ] (2.3.2)
v h ~

where F(h) = F(S) - h being the integer triplet hkl 
associated with S as discussed above -

«h = 2ir (hX + kY + 1Z) ,

v is the volume of the unit cell and XYZ represents any
point inside the unit cell (0 £ X,Y,Z £ 1). Replacing
F(h) by the theoretical structure factor FC(h) given by
equation (1.2.11), the theoretical electron density inside
the unit cell may be calculated. Note that 2 is used to

h
denote the triple summation 2 2 2. In principle this

h k l
summation should include an infinite number of terms. 
Further remarks on this are deferred to later in the 
Section.

Using equation (1.2.13) - with the more general structure
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factor F(h) in place of FC - equation (2.3.2) may be re
written as

p (XYZ) = 1 2  | F (h) | cos (a, - <f>,) . (2.3.3)
v h — —

From equation (2.3.3) we see that were the phases <f>h to be 
known for each h we could combine the structure amplitudes 
|F(h)| in a triple Fourier series to reconstruct the 
electron density. Then, assuming atoms to be at the 
centres of peaks of the resulting three-dimensional map, 
we would know the entire structure.

In practice, however, there are three main problems 
associated with the above approach. Firstly, for the 
structure amplitudes |F(h)| we would like to use measured 
values |FO(h)|. However, our corresponding expression for 
the 'observed electron density1

p (XYZ) = 1 2  | FO (h) | cos (a. - <£,) (2.3.4)
v h — —

(where the subscript 'o' denotes the dependence on the 
observed amplitudes |FO(h)|) is now necessarily a finite 
sum (with observations only being available for those h 
whose associated Bragg angle of reflection 9 satisfies

where A is the wavelength of the X-ray radiation used and 
Smax corresponds to the radius of the limiting sphere in
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the reciprocal lattice). Furthermore, the sensible 
assignment of the phases <f>h (which are not observable 
quantities) is non-trivial and forms the basis of the 
phase problem mentioned in Section 1.4. Finally our 
observed amplitudes will be subject to some experimental 
error, however small.

As we have observed above the summation for our observed 
electron density p0 in equation (2.3.4) is necessarily 
limited by the finite number of experimentally available 
observations. Since our derived electron density 
equations (2.3.2) and (2.3.3) incorporated infinite sums 
a termination-of-series error is introduced; its main 
effect is to produce a set of approximately spherical 
ripples surrounding each atomic peak. The strength of the 
ripples is approximately proportional to the peak strength 
and problems of interpretation may be posed by overlapping 
of weak peaks with ripples from strong ones. For the 
purposes of differential synthesis to be discussed in the 
next Section the termination-of-series errors present in 
the observed electron density will be assumed to be 
present in the theoretical electron density based on FC(h) 
if both summations are taken over exactly the same terms.

Returning to the theory above, however, we still need some 
method to evaluate unobserved structure amplitudes and all 
phases. One possibility is for them to be assigned 
theoretical values based on any current available
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parameter estimate 9_ (which may have been obtained by 
least squares analysis based upon the limited set of 
observed data available) . This may only be regarded as a 
first approximation, however, depending as it does on an 
underlying parametric approach. For the allocation of 
phases, however, it may be better to resort to the so- 
called 'direct methods' which have been developed to help 
combat the phase problem. Correct allocation of phases is 
vitally important as the general features of an electron 
density map are known to depend much more on the phases 
than on the structure amplitudes. Some of the more 
popular direct methods in current use are discussed 
briefly in Section 2.6.

Alternative methods for dealing with partial (finite) data 
on the h's include one based on maximum entropy, a method 
which seeks to fit the 'best' distribution of electrons 
throughout the unit cell consistent with the experimental 
data available. Solution of a centrosymmetric structure 
by such an approach is discussed in [36].

Despite the foregoing comments, it is common crystal- 
lographic practice to set all unobservable structure 
amplitudes to zero so that the infinite sum in equation
(2.3.3) is reduced to the finite summation in equation
(2.3.4) over the h's at . which observations may 
experimentally be observed. The justification for this is 
based on the parametric approach inherent in deriving our
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simplified theoretical expression for the structure factor 
equation (1.2.11). Fake isotropic temperature factors may 
be thought of as being introduced into the atomic 
scattering factors used in equation (1.2.11); these have 
the effect of artificially lowering the values of fr for 
the h's where we are unable to take measurements so that 
equations (1.2.11) and (1.2.13) now yield negligible 
values for the (theoretical) structure amplitudes in this 
region. The effect of this analysis on the resultant 
electron density map is that of the series-termination- 
errors discussed above. The peaks become less sharply 
defined, though their positions - and the consequent 
atomic co-ordinate estimates - are unaltered. The loss of 
sharpness in the peaks will be reflected by the associated 
standard errors of these estimates. In most analyses, 
crystallographers claim that the introduction of fake 
temperature factors is unnecessary, with those postulated 
in a given trial structure being sufficient to ensure 
negligibly small theoretical structure amplitudes for the 
appropriate h's.

Suppose we have augmented our set of available observed 
structure amplitudes by 'pseudo-observations' (including 
all phases) so that we have an approximation to the 
electron density based partly on the data available and 
partly on theoretical assumptions. We may find that 
measurement of certain further structure amplitudes will 
lead to improved information on phases to be deduced from
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certain direct methods. Consequently, the electron 
density approach may be considered as being conducive to 
the technique of sequential experimentation, with 
additional observations being taken at the h's that will 
lead to most additional phase information.

One of the major advantages of the electron density 
approach to crystal structure determination outlined in 
this Section is that it is an interactive process i.e. the 
derived electron density maps are open to interpretation 
from the crystallographer and may consequently suggest 
paths of action. This also pertains to the difference 
maps of the next Section and further comments are made 
there. This is in stark contrast to the refinement 
process based on least squares, discussed in Section 2.2, 
which is an automatic process requiring no intervention 
from the crystallographer.

Perhaps the biggest single drawback to the approaches to 
crystal structure determination based on the ideas of 
electron density presented here is the resolution of the 
peaks of the resultant three-dimensional map. In 
particular, it was found that the computational effort 
required, especially in cases where the number of atoms in 
the unit cell was relatively small, was prohibitive and 
alternative methods of structure determination were 
sought. This heralded the advent of automatic iterative 
schemes such as the least squares refinement procedure.
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2.4 The Method of Differential Synthesis

We recall that equation (2.3.4) for the 'observed electron 
density' is a finite series. We shall now consider one 
method of correcting for the ensuing series-termination- 
errors which involves a synthesis with coefficients

|FO(h)I - |FC(h)I,

where the theoretical structure factors FC(h) and phases 
<f>h are derived from a suitable postulated structure.

We define the difference function of the electron density 
by

PD (XYZ) = p0 (XYZ) - pc (XYZ) (2.4.1)

where p0(XYZ) is given by equation (2.3.4) and pc(XYZ) by

p (XYZ) = 1 2  | FC (h) | cos (a. - <f>.) (2.4.2)
v h — —

(where the subscript 'c' denotes the dependence on the 
calculated structure factors FC(h) and the summation is 
over precisely those reflections that appear in pQ). As 
before, a parametric model is needed with the FC(h) being 
evaluated at the current parameter estimate in accordance 
with equation (1.2.11) . The phases <f>h are taken to be the 
same in both pQ and pc.

The method of differential synthesis proceeds by
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successively refining pD based on the convergence 
criterion that all slopes and curvatures of pD at the 
atomic positions are to be made equal to zero. It has 
been shown in [15] that this method is equivalent to a 
least squares refinement method based on an appropriate 
weighting scheme, and that comparison of the two methods 
reduces to comparison of the associated least squares 
weights wh.

The main justification for the above method is that it is 
open to informative interpretation in the sense that the 
prominent features of the difference synthesis enable 
various kinds of errors in the model structure to be 
recognised and corrected, e.g. missing or superfluous 
atoms or incorrectly placed atoms. Also, such maps will 
have peaks where insufficient electron density is included 
in the trial structure and troughs where too much is. 
Simultaneous refinement of the electron density is 
therefore also provided. Individual types of error may, 
however, be compounded to yield complicated patterns in 
the residual density. The procedure followed in practice 
is to correct only for the prominent features. These 
corrections are included in a revised structure model and 
the difference synthesis recalculated. We proceed in this 
way until the residual density contains no significant 
systematic features. Our resultant structural model will 
agree as well as possible with the observed electron 
density.
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Finally, an expression for the variance of atomic co
ordinate estimates obtained via such an approach has been 
derived in [21]. For example, for co-ordinate xr we find 
(after n observations have been taken)

2 2t 2 2 <lF°(Wl “ lFC(b) | )2 n
a = ir2— ) 2 h  7--:---------  -11- (2.4.3)
xr v h I<Cxx> I P~ r

where (Ĉ ),. (together with (Cxy)r. . (C„)r) represents the
curvature of the calculated electron density. For
comparison, the corresponding variance derived from the
least squares approach of the previous Section is given
for cases in which only the relative observational errors
are known, namely

, (|FO(h) | - | FC (ll) |)2
* 2 =--------  5=5--------  N.. (2.4.4)

— 1where x = 0 . and N .. is the j diagonal element of the r  D 33 j *

covariance matrix of the sampling distribution of the 
least squares estimate.

2.5 A Comparison and Contrast of the Two Standard Methods 
of Structure Determination

The main difference between the techniques of structure 
determination via the least squares and electron density 
approaches is that the former is a parametric approach
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whilst the latter is non-parametric. The electron density 
approach seeks to determine the continuous distribution of 
the electrons throughout the unit cell, associating 
molecular formation with the areas of high concentration. 
Conversely, we would expect that molecule formation is 
accompanied by a certain re-distribution of the electron 
density of the individual atoms to bring more density into 
some regions, e.g. between the nuclei, with a 
corresponding density deficit in other regions. This 
information is not taken into account by the least squares 
model in which it is assumed that the electron density 
distribution can be regarded as a superposition of 
electron density peaks corresponding to free, spherically 
symmetric atoms. Alternatively, the least squares model 
may be viewed as that corresponding to the electron 
density which has delta functions at the points occupied 
by atomic centres and is zero elsewhere, which is clearly 
an over-simplification.

Despite the fundamental differences between the two 
approaches, it is interesting to note that the use of 
appropriate weighting schemes in the least squares setting 
leads to equivalence with differential synthesis, the 
refinement procedure based on electron density as 
discussed in Section 2.4. Expressions for the variances 
of atomic co-ordinate estimates under the two approaches 
are given by equations such as (2.4.3) and (2.4.4).
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The least squares theory of Section 2.2 concentrates on 
the centrosymmetric case. Our criterion function (2.2.1) 
is based on observed structure amplitudes and the 
analogous fitted values. The phase problem reduces to 
that of correct sign allocation. In the formulation of 
Section 2.3, which is not confined to the centrosymmetric 
case, we see that the electron density approach is based 
on all structure factors - amplitudes and general phase 
angles - obtained from both observed and theoretical 
values. The general phase problem becomes that of the 
sensible assignment of such phase angles. This may be 
tackled via the direct methods of Section 2.6. Further 
methods for tackling the phase problem in the least 
squares setting will be introduced in Chapter 3.

Prior knowledge may readily be incorporated into the least 
squares approach. Once invoked, however, the refinement 
procedure is essentially blind as discussed in Section 
2.2. On the other hand the electron density approach is 
very much an interactive procedure, relying on the 
crystallographer to use prior knowledge in the 
interpretation of the resultant electron density maps.

Other than the question of correct sign allocation, the 
problems involved in the least squares approach are mainly 
computational, including possible collinearity and various 
updating procedures (as discussed in Section 3.5). The 
main problem in the electron density approach - apart from
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the determination of all structure factors and consequent 
phase problem - is the resolution of peaks.

Although electron density considerations will continue to 
play a role in structure determination, this thesis 
concentrates on the widely adopted parametric approach, 
which is found to be particularly conducive to automated 
sequential experimentation techniques of the type with 
which we will be concerned in Chapter 3. We will continue 
there to concentrate on the centrosymmetric case.

2.6 A Review of Some Direct Methods

Direct methods seek to tackle the phase problem by 
deriving phases of a structure by consideration of 
relationships among the indices and among the structure 
factor amplitudes, particularly of stronger reflections. 
Perhaps the single most important direct method is that of 
structure invariants and it is this that is described 
first.

The unitary structure factor U(h) is defined by [54]

U(h) = Z nrexp[27ri (hxr + kyr + lzr) ] (2.6.1)
r

where nr, the unitary scattering factor, is given by

n = f / S f r r r r
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The normalised structure factor E(h) may now be defined by

E(h) = |E(h)|exp(i^h ) = U(h)/(2 nr)
r

(2.6.2)

By taking the scattering factor, fr, to be that 
corresponding to a Bragg angle 0 - 0  (viz fr = Zr, the 
atomic number of the rth atom) , the ensuing E (h) values may 
be thought of as eliminating the effects of thermal 
vibration and treating each atom as if all its electrons 
were concentrated at a point. We may then wish to 
determine those (xr, yr, zr) which minimise the modified 
weighted residual sum of squares

V>E (say) 2 W (|E(h) 
h ~ 2 v h(2 Z~) 

r
2 Z exp[27ri 
r r

(hxr + kyr + lzr)] ) (2.6.3)

The co-ordinates (which are unknown) may be eliminated 
from (2.6.3) to yield relationships among the E(h)1 s 
having probabilistic validity, which in turn lead to 
approximate values of the unknown phases These
individual values are found to depend on the structure and 
also the choice of origin; however, certain linear 
combinations of the phases - the structure invariants - 
are determined by the structure alone and are independent 
of the origin. Important structure invariants are the
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linear combinations of three phases (triplets) and four 
phases (quartets), as will presently be introduced.

One important underlying part of the theory is that the 
value of a given structure invariant is primarily 
determined, in favourable cases, by the values of one or 
more small sets of magnitudes E(h) - the so-called 
Neighbourhoods' - and is relatively insensitive to the 
values of the remaining E(h) magnitudes (the neighbourhood 
principle). Before proceeding further, it should be 
stressed that recovery of the individual phases from the 
appropriate structure invariants available should pose no 
great problem. We first consider the case of triplets.

Let H denote the collection of all reciprocal lattice 
vectors h = hkl, and let Rlf R2 and Rs, be fixed non
negative numbers. The ordered triple of reciprocal 
vectors h lf h2, hg is assumed to be uniformly distributed 
over the subset of HxHxH defined by

| E (1^)1 = R1, |E(h2)| = R2, |E(h3)| = R3 (2.6.4)

and

+ h2 + h3 = () (2.6.5)

The structure invariant (triplet)

^3 “ + %  + %  (2.6.6)

(note that we require (2.6.5)) is a function of the random
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variables and therefore is itself a random variable. The 
three magnitudes (2.6.4) define the first neighbourhood of 
<f> 3, and given these, the conditional probability 
distribution of <f>3 is given by [41]

Pl/3(Say) “ 2itIq (A) eXf> (A COS (2.6.7)

where I0 is the modified Bessel function and 

2 a3
A 3/2 1 2  3

a 2

with
R n 

a = 2 Z “ .
n r=l r

This distribution will always have a unique maximum at 
$ = 0 in the interval (-7r,7r) so that the most probable 
value of <f>3 is zero. The larger the value of A the smaller 
is the variance of the distribution and the more reliable 
is the estimate (zero) of <f>3.

Unfortunately, as we have just seen, the above theory 
gives no reliable non-zero estimate for any structure
invariant (triplet), a situation which is paralleled in
the analagous theory for quartets when only the 
appropriate first neighbourhood is considered. However, 
were we to consider the second neighbourhood (7 magnitudes 
in all) the theory for quartets may well yield non-zero 
estimates as discussed next.
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Let Rx, R2/ Rs/ R4, R12, R23 and R31 be fixed non-negative 
numbers. The ordered quadruple of reciprocal vectors h1# 
h2, hg and is assumed to be uniformly distributed over 
the subset of HxHxHxH defined by

| E (1^)1 = Rlf |E(h2)| = R2 , |E(h3)| = R3, |E(h4)| = R4

(2.6.8)

|E(h1+h2)| = R 12/ |E(h2+h3)| = R23' IE (— 3+— i) I = R31

(2.6.9)
and

-1 + -2 + — 3 + —4 = — * (2.6.10)

The structure invariant (quartet)

<£ = 0, + ,̂ + (2.6.11)
- 1 -2 - 3 4

(note that we require (2.6.10)) is a function of the
random variables hlf h2, h^ and therefore it itself a 
random variable. The seven magnitudes (2.6.8) and (2.6.9) 
define the second neighbourhood of <f>4, and given these, the 
conditional probability distribution of <f>4, can be 
calculated [40]. This distribution, as previously 
indicated, can have a maximum at any angle between 0 and 
7r, these extremes being reached according as the three
magnitudes in (2.6.9) are all large or all small,
respectively.
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A few other direct methods will now briefly be outlined. 
There are also available numerous (in)equality and various 
probability relations between structure factors which will 
not be mentioned here. We start by considering the 
centrosymmetric case.

When the crystal structure under consideration contains a 
centre of symmetry, the unitary structure factor of 
equation (2.6.1) may be expressed as

U(h) = S nr cos[27r(hx + ky + lz ) ] . (2.6.12)
r

By using Cauchy's inequality

|E arbr |2 <; (E |ar |2) (S Ibr 12) (2.6.13)
r r r

with

a = Vn r r

and

b = Jn cos[27r (hx + ky^ + lz^) ] r r r r r

we may derive

(U(h))2 ^ h(l + U(2h)) . (2.6.14)

These Harker-Kasper inequalities (2.6.14) may be used to 
show for example that a structure factor whose indices are 
all even is necessarily positive. Likewise, by
appropriate use of (2.6.13) we may deduce
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(UU^) + U(h2))2 s (l + Udij + h2))(i + - h2))

(2.6.15)
and

(U(hx) + U(h2))2 £ (1 - U Q ^  + h2))(l - U(h1 - h2))

(2.6.16)
which may be combined to give

(ludljH + |u(h2) )2 S (1 + sfh^sdi^sCh^h^lDdij+h^l )
x (1 + s(h1)s(h2)s(h1-h2)|u(h1+ h 2)| )

(2.6.17)

where s(h) is the sign of U(h) etc.

As should be readily appreciated, the presence of higher 
symmetry will often lead to many inequality relationships 
which may be stronger than those above and prove to be 
very useful. The importance of these inequalities lies in 
the fact that they enable various relations between 
structure factors to be established. One such relation, 
which will often be suggested by (2.6.17), is the triple
product sign relationship below.

For three strong related reflections in a centrosymmetric 
structure, the signs are related by

sfh^ s(h2) s Q ^  + h2) « +1 (2.6.18)
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where « means 'probably equals'. A relatively simple 
expression (good enough for most practical purposes) used 
to estimate the degree of probability associated with the 
sign above is [16]

P(hlfh2) = % + *stan h [<r3/c3/2) l u O ^ J U Q i ^ U Q ^ + h ^  | ]

(2.6.19)
where

e3 = 2 n 3 
r

and

e = 2 "r2 .

For a structure containing R equal atoms in the unit cell 
(2.6.19) reduces to

P Q i ^ h ^  = h + htan h [R|u(h1)U(h2)U(h1+h2) | ] . (2.6.20)

From relationships such as (2.6.18) it is often possible 
to derive phases for almost all strong reflections and so 
to determine the structure from the resulting electron 
density map.

The final two methods here apply to symmetric and non- 
centrosymmetric structures alike. Approximate values for 
phase angles may be derived from

< ^h-h' ^h'> h' (2.6.21)
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where < > denotes the mean value. In addition to
(2.6.21) the so-called tangent formula

< |E(h)E(h-h1)|sin(0h , + ^h_h .)>h . 
tan “ <|E(h)E(h-h1) |cos(^, + ^ - h ' ):>h'

(2 .6.22)
is used extensively to calculate and refine phases.

2.7 Patterson Maps. Heavy Atoms and Isomorphous 
Replacements

The Patterson function is defined by (0 £ U,V,W £ 1)

P(UVW) = 1 E |F(h)|2 cos[2*(hU + kV + 1W) ] (2.7.1)
v h

(c.f. expression for electron density (2.3.3). Note that 
no phase information is required for this map - only the 
relative positions of atoms.

The peaks in this map occur at points whose distances from 
the origin correspond in magnitude and direction with 
distances between atoms in the crystal. Ideally this map 
can be interpreted in terms of an atomic arrangement 
(consequently bypassing altogether the necessity of phase 
determination); however, it is more likely to serve as a 
guide and use of it may be made via the two approaches 
about to be described. For further details see e.g. [38].

If one or a few atoms of high atomic number are present,
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they will dominate the scattering, as shown by Figure
2.7.1. If these atom(s) can be located from a Patterson 
map, the phases of the entire structure may be 
approximated by the phases of the heavy atom(s). In the 
resulting electron density map, portions of the remainder 
of the structure will usually be revealed. A 'heavy' atom 
(M) with a much higher atomic number will have a much 
longer vector, F(M) say, in a diagram such as Figure
2.7.1. Since the steps or fr values for the lighter atoms 
are relatively small, there is a high probability that <f>h 
will be close to <f>M .

90*

> 0

Figure 2.7.1 Vector representation of structure factors

Finally, the method of isomorphous replacement is one of 
the best methods for the direct determination of phase 
angles, being a practical approach particularly useful for 
solving large structures such as those of proteins. The
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basic idea is as follows. Two crystals are said to be 
isomorphous if their space groups are the same and their 
unit cells and atomic arrangements are essentially 
identical. Suppose that atoms may be added to or replaced 
in a molecule to produce a new crystal isomorphous with 
those formed by the parent molecule. If the positions of 
these added or replaced atoms can be found from Patterson 
maps, their contributions to the phase angle of each 
reflection can be calculated, and if the atoms are 
sufficiently heavy, differences in intensities for the two 
isomorphs can be used to determine the phase angle for 
each reflection, either algebraically or graphically.
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CHAPTER 3
STATISTICAL ASPECTS OF STRUCTURE DETERMINATION

3.1 Introduction

This Chapter expands upon some of the statistical problems 
outlined in Section 1.4, the discussion being confined 
throughout to the centrosymmetric case. Section 3.2 is 
concerned with the phase problem, which has occupied 
crystallographers for years. Historically, it has proved 
the biggest stumbling block to successful crystal 
structure determination [48]. Here, we outline the 
problem, and try and look at it from a statistical 
perspective. Some of the Bayesian ideas introduced in 
Section 3.2 carry over naturally to Section 3.3 in which 
we concentrate on various aspects of crystal structure 
analysis. In particular, we shall be considering the 
incorporation of prior information into our analysis and 
the formulation of appropriate weighting schemes. 
Suggestions will be made as to how the new results 
obtained may be used to alter existing procedures.

Section 3.4 sees us turn our attention to the important 
area of sequential experimentation. The general theory is 
outlined with particular emphasis being given to our 
specific crystallographic application. Some of the 
relevant updating procedures required for efficient 
sequential experimentation in our current setting are
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given in Section 3.5.

Section 3.6 then considers various selection schemes we 
might use in conjunction with the ideas of the two 
previous Sections. General theory will be developed based 
on a minimax strategy and various approximations 
considered. We then go on to consider the similar results 
motivated by the criterion of D-optimality, before briefly 
discussing various related stratified sampling schemes. We 
make a few comments on the possible use of non-linearity 
weights before concluding the Section with brief notes on 
the practical implementation of our procedures.

Finally, we note that although the important problem of 
non-linearity is necessarily discussed throughout this 
Chapter, Chapter 4 is further dedicated to this key area.

3.2 A Bavesian Approach to Handling the Phase Problem of 
Centrosymmetric Structure Determination

The atomic arrangement in the unit cell of a crystal may 
be determined based upon the measured intensities of a 
sufficient number of X-ray diffraction maxima. From these 
intensities a set of numbers |FO(h)| can be derived, one 
corresponding to each intensity. However, the elucidation 
of the crystal structure requires, as we have seen in 
Chapter 2, a knowledge of the complex numbers

FO(h) = |FO(h)| exp(i ^h ) ,
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of which only the magnitudes |FO(h)| can be determined 
from experiment. Thus a * phase1 <f>h must be assigned to each 
|FO(h)|, and the problem of determining the phases when 
only the magnitudes |FO(h)| are known is called the 'phase 
problem'. It is without doubt the biggest single problem 
in crystal structure determination. Standard methods to 
help combat the phase problem were introduced in Chapter 
2. We continue here to concentrate on the centrosymmetric 
case, in which the phase problem reduces to that of 
correct sign allocation to the (necessarily positive) 
measured structure amplitudes |FO(h)|.

If the correct sign is not pre-determined (e.g. via the 
direct methods of Section 2.6) the measured structure 
amplitude is incorporated into the usual least squares 
analysis with the sign of the corresponding theoretical 
structure factor FC(h) based on a specified trial atomic 
configuration. Thus an observed amplitude of 20 will enter 
the analysis with a positive sign whether our 
corresponding theoretical value is 1 or 21. We see that 
two different scenarios are being treated in the same way; 
the latter | FC | value is sufficiently close to | FO | to 
enable us to assign a positive sign with some degree of 
confidence, whereas the former value is not. Were our 
corresponding theoretical value to be 41, it might further 
be strongly argued that FO* should be taken to be positive 
on the grounds that 41 is much nearer to +20 than -20. We
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have already commented in Section 2.3 that general 
features of electron density maps depend far more on 
correct allocation of phases than the actual amplitudes 
involved. In view of this we may therefore wish to 
incorporate into our analysis those observations, the 
signs of which we are most confident. For such an 
approach, however, we will not only need a prior estimate 
of the structure factor (FC) , but also some measure of its 
accuracy. Such a measure shall now be derived.

Consider first the following general theory. Suppose that 
a random variable X has a normal distribution with mean /z 
and variance a2 i.e.

X ~ N(/z,<r2) (3.2.1)

where /z,o-2 are both known. Then (for small a2) we may 
approximate the mean and variance of cos X by

2
E (cos X) = cos /z(l - 3y ~) (3.2.2)

and
Var(cos X) = a 2 sin2 /z (3.2.3)

respectively. Similarly, if Xj...XR are independent normal 
random variables with distributions

Xr - N(/Jr ,<r̂ ) (r = 1...R) (3.2.4)

then Z cos X has approximate mean and variance 
r
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and

2a
E(E cos X ) = S cos n (1 - (3.2.5)IT 10r r

Var(Z cos X ) = E a2 sin2 u (3.2.6)
r r

respectively. The above analysis may be extended to find 
the first two moments of

-BrF = Z C e cos X (3.2.7)r r ' *r

which incorporates additional independent (of each other 
and the X's) random variables Bj.-.Br with distributions

Br - M(or ,rr2) (r=l...R) (3.2.8)

and constants ^...Cr . The resultant approximate mean and 
variance are

2 2 —oi t a
E(F) = E C e rcos #xr ( 1 + -f“ “ 2 ) (3.2.9)

r
and

Var(F) = S C 2 e r (<72 sin2 n + rr2cos2 Mr) • 
r

(3.2.10)

The ramifications of equations (3.2.9) and (3.2.10) in the 
crystallographic setting are as follows. Note that F will 
be used to represent the theoretical structure factor
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equation with FC being reserved for this expression 
evaluated at a given trial atomic configuration.

For a structure factor with indices hkl, the structure 
factor equation of crystallography in the centrosymmetric 
case may be represented in the form of equation (3.2.7), 
with

Xr = 27r(hxr + kyr + lzr) (3.2.11)

where (xr,yr,zr) represent the atomic co-ordinates of the 
rth atom; the Br represent the corresponding linear 
combination of (an)isotopic temperature factor as 
discussed in Section 1.2, with Cr the associated atomic 
scattering factor. Although we do not know exactly the 
true co-ordinates (xr,yr,zr) a Bayesian approach typically 
furnishes us with prior beliefs expressible in the form

X r

i X
o

1 r 2a cr x x y r r Jr
ax z r r

- N yr0 / 2cr
yr * N

zr

i
N

0 1

2
a zr

(3.2.12)

Using a diagonal approximation to the covariance matrix of 
equation (3.2.12), and assuming independence between 
atoms, equations (3.2.11) and (3.2.12) yield equation 
(3.2.4) with

/z = 2 ir (hx + ky + lz ) (3.2.13)
0 0 0
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and

2 2 2 2  2 2  2 2
a = 47r (h (T + k Z a + 1* a ) . (3.2.14)r x y zr -1 r r

Similar expressions exist for the ar and rr2 appearing in
equation (3.2.8). The equation (3.2.9) for the expected
value of the (true) structure factor is not our usual FC
value based on our current approximation, namely

-a
FC = Z C e cos u (3.2.15)r r r-r

This represents instead the mode of our distribution for 
F based on our beliefs expressed by equations (3.2.12), 
though in practice - small rr2, crr2 - these two quantities 
will be very similar.

By writing equation (3.2.7) in the form

F = 2 Z f cos 27r(hx^ + kyv + lz ) (3.2.16)r r r rr
where

• 2 „„ , s m  6 .f = f exp (- B  r— ) ,r or r ^2 7 '

equation (3.2.10) for the variance of our distribution for 
F gives
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Var(F) = 4 2 fro
. 2 ,,2 2 , 2 2 , ,2 2 . 4tt (h cr + k a + 1 a )

r Jrr r

. 2.sin 27r(hxr + kyr + lzr ) + ( 2 7 ~bsin2^.2 2)

where

.cos 27r(hx + ky + lz ) 
r0 r0 r0

(3.2.17)

• 2 n sin 9.f = f exp (-a ---— )ro or r

Equation (3.2.17) is seen to reduce to the form

Var(F) = 5F
i

b
o1̂

(3.2.18)

where 6_ is our vector of parameters comprising all atomic 
co-ordinates and isotropic temperature factors, and 
represents the mode of the distributions representing our 
prior beliefs about these parameters, with associated 
variances a? for the estimate 0jO of 0}. The form of 
equation (3.2.18) is very important in practice as it is 
a relatively simple expression based on quantities that 
are readily available to us: the partial derivatives
involved form the appropriate row of the design matrix X^.

We are now in a position to form approximate prediction 
intervals for structure factors based on our prior
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beliefs; we use the normal approximation

FT ~ N (FC, a 2) (3.2.19)

where a 2 is given by equation (3.2.18), and we are using 
the notation FT to represent the true structure factor. We 
use the conventional value FC in place of that suggested 
by equation (3.2.9). In accordance with our original 
motivation, equation (3.2.19) may now enable us to 
estimate how likely we think the corresponding |FO| value 
is to have the same sign as FC. The extension of these
ideas, in particular the interpretation of an observed
| FO | value with a given standard error in the light of 
prior beliefs of the form of equation (3.2.19), is 
deferred to the next Section. Here we note that prediction 
intervals based on (3.2.19) of the form

FC ± c o (3.2.20)
a c ' '

- where the constant ca is determined by the confidence
level a. - may be used to determine which further (as yet
unobserved) reflections to measure. For example, we may
wish to measure only when the e.g. 95% confidence interval
does not contain zero, so that we are indeed confident of
correct sign allocation. We must also note that the
observations that are likely to yield the most information
will be those where the associated prediction interval is
big, since in these cases the theoretical structure factor
is sensitive to small shifts in atomic co-ordinate
positions. Consequently locating the true structure factor
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accurately (amplitude and sign) should tie down these co
ordinate positions. As is often the case in
crystallographic studies we have conflicting requirements; 
here we require prediction intervals that are large, but 
at the same time one-sided. Note, however, that sensible 
use of diffraction photographs may be made in the sense 
that if a prediction interval is predominantly positive 
with a slight negative tail and we visually observe a high 
intensity, then a positive sign may safely be assumed.

Our theory above may also be used to justify the 
crystallographer's intuitive notion of "shells" in 
reciprocal space based on

c _ sin 6 
b “ A

values, whereby various ad hoc rules have been developed 
in which they only consider reflections within specified 
S-limits at various stages of the refinement procedure 
(see e.g. [58]). For reflections with similar S-values- 
for which the factors fr below will be approximately 
constant - our structure factor equation of equation
(1.2.12)), viz

F = 2 E f cos 2n (hx^ + ky^ + lzl , r r r rr

yields (on average)

2 2 F — 2 E fr .
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Similarly, by using the approximation

, ,2 2 ,,2 , ,2 , , 2 . -2 + 1 a » (h + k + 1 ) cr (3.2.21)
r

-2 . 2 where a is the average value of < (<rx
r

G

equation (3.2.18) gives (on average)

2 _ 2 „, 2 ,2 ,2x -2 „ - 2a — 8tt (h + k + 1 ) o- E f c „ r (3.2.22)

The appropriateness of the above strategy is now apparent: 
by using equations (3.2.20) and (3.2.22) we may address 
the phase problem by only using those observations for 
which

c g  < I FI , a c ii'

or equivalently,

which leads us to consider those hkl values that satisfy

We should note, however, that here we have used the most 
general approximation in equation (3.2.21); alternative 
expressions such as

1 (3.2.23)-2ca G
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-2 . 2 where a is the average value of <(<r )> etc may also bex xr r
used, the degree to which we might approximate being 
dictated by the dimensions of the unit cell present.

Most information will be derived from those reflections
for which the (average) relative uncertainty, o-c/|F|, hence
ac2/F2, is largest, thus suggesting we take measurements
towards the extremities of our limiting 'shell* defined
by such as equations (3.2.23). Obviously, a successful

-2refinement, m  which a reduces at each stage will 
continuously extend our limiting shell, so that ultimately 
we may be able to incorporate all available data safety 
into our analysis.

3.3 Further Application of Bavesian Ideas to Crystal 
Structure Analysis

Inferential statistics is concerned with reaching 
conclusions extending beyond the immediate data. 
Statistical decision theory is further concerned with 
utilising the available information in order to choose 
among a number of alternative procedures. Bayesian 
statistics attempts to reduce the amount of uncertainty 
present in an inferential or decision-making problem by 
combining new information as it is obtained with any 
previous information to form the basis for statistical



procedures. The appropriate combination of the new and 
the old information is achieved via Bayes' theorem (hence 
the term Bayesian statistics). This shall now be stated 
and some applications of Bayesian ideas to crystal 
structure analysis considered.

We consider the one parameter case in which the prior 
distribution of the continuous random variable - 6 is 
represented by a density function f(0). The posterior 
distribution f(0/y) is the conditional density of 6, given 
the observed value y of the sample statistic. Bayes' 
theorem for continuous random variables states that [73]

f(0/y) « f(y/0) f(0) (3.3.1)

where f(y/0) is often termed the likelihood function and 
represents the conditional density of our sample 
statistic, given the parameter value (see Section 4.2). 
The general (multivariate) form of Bayes' theorem is the 
natural analogue of equation (3.3.1), stating that the 
posterior distribution of (the vector of parameters) 6_ is 
proportional to the product of the prior distribution and 
the likelihood function.

Our first application of the above ideas concerns the 
incorporation of any relevant prior beliefs into our 
crystal structure analysis. For example, based on the 
results of previous related studies, we may have reason to 
believe that
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0 ~ N ( 0 )  (3.3.2)

where the covariance matrix is known and non

singular, so that

A0(°) = e_ - 0.(°) ~ N (o, . (3.3.3)

Following the Taylor series approach of Section
2.2 and expanding about 0^°^ at the first stage of our
iteration procedure, we obtain the observational equations

Y ^ / i  ~ N (X(O)A 0 (O) , V) . (3.3.4)

[Note that here we are using the notation for X^°^, y(°) 
defined by equations (2.2.9), (2.2.10)]. Bayesian
analysis [53] yields the posterior distribution for the
parameter increment A 0 , given observed data y(°)

(o) . .= y' ' to be

A 0 ^  ~ N(D^°^d^°^,d (°)) (3.3.5)

where

[d (°)]_1 = x<°>T W X ^  + [ E ^ ] -1 (3.3.6)

and

d(°) = X^°^T W . (3.3.7)

-1Note that now W = V . [These formulae pertain with
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X (o), y(°) having their original specification (1.5.4), 
(1.5.5)]. Note further that as [S^°^] 1 approaches the 
zero matrix, consideration of the mode of the posterior 
distribution (3.3.5) yields our previous least squares 
results (for the case W = V"1) ? however, such cases -

unbounded - are unrealistic. Merely by specifying

we are expressing a preference for the true 
underlying parameter to lie in this region of parameter 
space, and, in any case, since fractional positional co
ordinates necessarily lie between -1 and +1 we 
automatically have an upper bound on the corresponding 
parameter variances. It is not unreasonable to expect 

to be accurately specified.

Naturally enough, we use the posterior mean for A 0 

to obtain

0(1) = ^(0) + p(0) <j(0)  ̂ (3.3.8)

The procedure may be repeated, maintaining our prior 
beliefs of equation (3.3.2), but with our least squares 
approximate linearisation now being about Our
observational equations become

~ N (X*1) M / 1*, V) ? (3.3.9)

equation (3.3.9) may be combined with the prior beliefs



to obtain a new posterior mean and covariance matrix for

The extra term appearing in equation (3.3.13) arises due 
to the non-zero prior mean appearing in equation (3.3.10). 
The process of substitution and re-estimation may be 
continued until resulting increments become negligible in 
some specified sense. The resultant procedure may be 
represented as in Figure 3.3.1.

At this stage it seems sensible to comment on the prior 
information that may be available and how it can be 
incorporated into the Bayesian framework. The three most 
important types of prior information in crystallographic 
studies are that

1) Certain bonded atoms are at pre-assigned distances 
from each other

Afl^. given observed data = y^. We obtain the result
[53]

-  N(D^1  ̂ d^1*, D^1*) (3.3.11)

where

(3.3.12)

and
1̂ )̂ . (3.3.13)
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(0)M

* Evaluate

(k) (0)n-l

(k)

k=k+l

(k) + A e W(k+l)

(k+l)NO ? Accept 6

YES

v
STOP

Figure 3.3.1: Incorporation of Bayesian beliefs of the
form of equation (3.3.2) into a standard 
least squares cycle
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2) Certain atom triplets define pre-assigned bonding

These conditions are often imposed on the atomic 
parameters to ensure that they represent a given molecule. 
One way of utilising such information is to express 2) and 
3) as distance requirements also - in terms of the three 
distances involved and specification of bonded/non-bonded 
atomic distances in the given plane respectively - and 
proceed along the lines proposed in [67]. We shall very 
briefly outline this approach before reverting to our 
Bayesian ideas.

The approach proposed in [67] is to treat the subsidiary 
equations obtained like observational equations and modify 
the least squares refinement method accordingly. The new 
least squares equations obtained are

angles

3) Certain atoms are co-planar.

dR± dR2
(3.3.14)

where

(3.3.15)

with cb being the appropriate prescribed distances for 
select pairs of atoms r and s, and wra the associated
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weights; R2 corresponds to the usual residual sum of 
squares xp of equation (2.2.1). Iterative least squares 
schemes may now proceed along the same lines as before.

The Bayesian assumes that conditions 1) , 2) and 3) may
typically be expressed in the form

P ~ N U p  , 5 p ) (3.3.16)

where P represents our distances (non-linear functions of 
0_) and the covariance matrix gp is known and non-singular. 
As with our observational equations, the non-linear 
functions of Q_ appearing in P may be expanded in a 1st 
order Taylor series so that equation (3.3.16) yields the 
approximation

XP(0) A£*°* ~ N (jip - P*0*, Sp ) (3.3.17)

where P̂ k̂ represents P evaluated at the parameter value 
9. = and likewise XP^ the associated design matrix. 
Then by defining (assuming it exists)

= [Xp(k)T XP*1̂ ] ”1 xp(k*T (3.3.18)

equation (3.3.17) suggests

A0 - N (H*°) ( ^  - P*°*), H<°>T Sp H^°*) . (3.3.19)

Equation (3.3.19) may be combined with the observational 
equation (3.3.4) to obtain the following posterior 
distribution for our parameter increment, given observed

93



data Y(0) = y(0):

(3.3.20)

where

(3.3.21)

and

(3.3.22)

The iterative cycle of substitution and re-estimation may 
now proceed similar to before.

In practice, however, the above approach is likely to be 
infeasible since the number of distance requirements 
specified will typically be less than the number of 
parameters to be estimated; this renders the matrix

singular and equation (3.3.18) consequently becomes 
meaningless. To rectify this, we may seek to incorporate 
prior beliefs of the form of equation (3.3.2) into 
equation (3.3.16) and proceed as above. However, the 
chemical prior information available as expressed by 
equation (3.3.16) will generally differ from the 
distribution for P derived from equation (3.3.2) alone. 
Bearing this in mind, the following alternative approach 
is proposed in such cases which seeks first to amalgamate

XP(k)T xp(k)
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the distributions of equations (3.3.2) and (3.3.16) into 
a single reconciled distribution.

Suppose as before we have a prior distribution for B_ given 
by equation (3.3.2). Then

XP^0) ~ N (0, XP*°) XP(°^T) (3.3.23)

where A#/0  ̂ = $_ - . Providing

= [XP^0* 2^°^ XP^0^ ] ”1 (3.3.24)

exists, we obtain the conditional distribution

A0/XP A0 - N(2 XPT M XP A0, 2 - 2  XPT M XP 2) (3.3.25)

(where all ^ s  and ~/-s have been dropped for notational
convenience). By using the approximation (3.3.17) to
equation (3.3.16), namely

XP A0 ~ N (u - P , 2 )P P P

(with Pp = P ^  ) , we find that

2 XPT M XP A0 - N(2 XPT M(a - P ), 2 XPT M 2 M XP 2)P P P
(3.3.26)

Retaining the conditional distribution (3.3.25), i.e.

A0 - 2 XPT M XP AO ~ N(o, 2 - 2  XPT M XP 2) (3.3.27)

independently of equation (3.3.26) we get
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A e ~ N(2 XPT M(a - P ) , 2 + 2 XPT M(2 - M_1)M XP 2)P P P
(3.3.28)

We may proceed to cycle similar to before; the analogue of 
equation (3.3.23) for XP^ Afl^ will have non-zero mean for 
k > 0 and the ensuing results must be modified 
accordingly. The resultant scheme is represented in
Figure 3.3.2. Having accepted at some stage of our
iteration procedure, we may update the covariance matrix 
in accordance with equation (3.3.28) to obtain the beliefs

d_ ~ N(£/0) + 2 ^  Xp(k)T - P^k*)

- X P ^  (0 ̂  - i/k) ) ] ,

g(°) + g(0) Xp(k)T [2 - (M^k  ̂) “1]M^k  ̂ X P ^  2 ^ )  .P
(3.3.29)

We may then use these beliefs (3.3.29) in conjunction with 
the observational data as discussed previously.

We shall now turn our attention towards the following 
alteration to existing methods of structure analysis. 
Rather than incorporating an (appropriately signed) 
observed structure factor into our least squares analysis 
with a weight based on the associated experimental error 
alone, we shall use a Bayesian procedure to obtain a more 
realistic weighting scheme (based on an improved estimate 
of the variance of the signed structure factor). Such a
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A 0 ^  = 

k=k+l

NO

Figure 3.

1 (0), A 9 (0) ~ N(o, S (0)), P ~ NfiSp, Sp )

Ik = 0

-> Evaluate X P ^ 1 , p(^)i
= [ X P ^  XP^k ^T ]-1

^ ( ° ) _  £<k))+s ̂ °ip ̂ k ^M(k) [ (jj, -P ̂ )  -XP ̂  (0 (°)-0 k̂ )̂ ]P

,(k+D m e W  + Aff(k)

? Accept 0^k
YES

Accept (3.3.28)iSTOP
;.2: Amalgamation of Bayesian beliefs of the form

of equation (3.3.2) and prior chemical 
information of the form of equation (3.3.16)
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scheme may influence the data entering the least squares 
procedure at any stage, with preference going to those 
observed values with the larger associated weights.

Let us suppose that we are sampling from a univariate 
normal population with known variance aT2, but unknown mean 
/iT. Suppose further that we have a prior distribution for 
the unknown quantity /zT that is normal with parameters 
and cr^2. If we observe a sample mean m from a sample of 
size n, the posterior distribution for /zT given the sample 
results is again normal. Formulae for the new parameters 
may be found in e.g. [73]. In the crystal lographic 
setting, for a given hkl reflection, let /zT represent the 
true structure factor FT (say), with the parameters 
corresponding to /z^ and a ^ 2 being given by the FC and 
a 2 of equation (3.2.19). The observation y(= m) 
corresponds to our observed |FO(h)| value (n = 1), and we 
assume our error variance a 2 = <rT2 is known prior to 
measurement. The above theory will not pertain directly, 
however, because of the phase problem, the effect of which 
is to generate the model (c.f. (1.5.3))

|FO(h)|/FT = ft ~ N(|ft|,ao2) . (3.3.30)

Note the modulus now appearing in the mean term. It does 
not seem unreasonable to expect our observed structure 
amplitude to be unbiased on the modulus of the true 
structure factor? furthermore, symmetricity of errors 
seems a natural condition to impose in cases where they
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are small relative to the mean term so that possible 
skewness due to the necessary non-negativity does not have 
a significant effect. Under such circumstances, the above 
normal approximation may be justified and consequently is 
considered to represent a realistic model (further related 
comments appear in Section 6.1).

Using the prior distribution (3.2.19) for FT, viz 

FT - N(FC, <rc2)

the above approach will need to be modified accordingly. 
This is achieved as follows. By replacing FT by X for 
notational convenience, equations (3.3.30) and (3.2.19) 
may be combined via Bayes' theorem to give the following 
posterior distribution for X:

f. FQ|(x) a exp [- 1 2 (x-FC) 2
X/ I FO (h) 2a c

1 ( | FO | (3.3.31)
2(7 2

o

The posterior mean and variance (plt and a*, (say)) may be 
evaluated via

(3.3.32)

and

(3.3.33)
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where

I = J x exp -1 2 1
2a

- (x-FC) - ( I FOI -
2a

(r=0,1,2).

Because of the |x| term appearing in (3.3.34), 
decomposed into the sum of the two integrals

f xr exp -1
2 a

(x-FC)2 - ~ —  ( | FO | + x)
2a

dx

and

J- X exp 
0

(x-FC)2 - — ( FO - X)
2a 2a

dx

The results of the above calculations yield

^   2 FC + — T ® — 2 lF°l(tan ha + a o c a + a o c

*[-*4 ea - *  [ ~ f ~ ] e-a + ------ :-------------------  a-

* [-»— ] ea + « [-14— ] e L a a
-a

x|)2 dx

(3.3.34)

Ir must be

(3.3.35)

(3.3.36)

(3.3.37)
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and

2 2 , <t̂  = a +

1

0
to

O
1 CM

a  2 |FO| c 1 1 2 <7 2 <7 2 I F0| FC 0 c 1 1
2 , 2 <7 +  <7 L 0 c J

T
2 _L 2<7 +  <7 L 0 c J

t 2 , 2,2
( C7 +  cr )v 0  o '

+
'U-,

(tan h f) +
*(g~) e + /i ^(g-) e 

$ (̂ — ) ea + #(^— ) e a'<7 ' '<7 7

a - fi.

where
(3.3.38)

£ =  a + h log
+

$ (^~) ■ 'a 7

(3.3.39)

FO ± a FC
(3.3.40)

+  <7

a =
<7 <7C O

/ 2 . 2,35 '
(c r  +  cr )' o c '

(3.3.41)

and

a = IFOI FC
2 , 2 ; <7 +  <7o c

(3.3.42)

furthermore we use the standard notation

*<z > = T t r  e
-z /2

and

®(z) = ; *(t) dt

101



for the density and distribution functions of N(o,l) 
random variables.

Were we to replace the integrals appearing in (3.3.35) and 
(3.3.36) by integrals over the complete range -«> to «>, we 
would obtain the approximations

2 2 cr FC cr

M1 = --2^---- 2 +  2   2 lFOl (tan h a) (3.3.43)cr + a a + ao c o c
and

2 2 cr^ =  cr +
cr 2 | F O  c 1
2 2 <r + cr “ o c J

(sec h2 a) . (3.3.44)

Such approximations may loosely be justified on the 
grounds that the terms (|F0| + x)2 and (|FO|-x)2 appearing 
in the respective exponential exponents will become large 
enough to render the integrand negligible over the 
extension of the range. Comparison of exact and 
approximate results for typical |fo|, ct02 , FC, <rc2 values 
reveals great similarity (see Table 3.3.1), the main 
differences occurring when | FO | ~ a 2 and | FC | ~ crc2. We 
shall henceforth use the approximate results (3.3.43) and 
(3.3.44).

The first - Bayesian - stage of our present analysis is 
now over. The second stage consists of considering how 
to utilise the information afforded us by knowledge of fix 
and a 2. In Chapter 2 we used
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FO* = |FO| x sign FC

in the least squares analysis with weights w « i/0̂ 2
determined by observational errors. These weights are 
imposed to quantify how reliable FO* is as an estimate for 
FT, assuming the sign is correct and in the light of 
observational error. In view of our posterior moments for 
FT, it is now possible to quantify this reliability in 
terms of variance about FO*, suggesting the modified 
weighting scheme

w « —  ----- i-------   . (3.3.45)
+ (FO* -

Standard iterative procedures may be invoked as before; 
the implementation of such schemes forms the third stage 
of our procedure.

Care must be taken whenever (3.3.45) is to be used as a 
dynamic weighting scheme, in which the weights are 
continually updated as our F C,ac2 values of equation
(3.2.19) change? in keeping with our original Bayesian 
ideals, such updated 'prior' information should be 
combined with new data (not the original | FO | , crQ2 values) 
in the evaluation of the appropriate weights (3.3.45). 
Once the final batch of measurements have been obtained a 
static weighting scheme should be employed and our problem 
reduced to that of minimising a criterion function of the 
form of (2.2.2). Crystallographers maintain the original
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data, however, when using similar dynamic weighting 
schemes of their own - see Section 5.2 - which although 
being a more practicable approximation to the approach 
above, is theoretically not as sound.

Note also that our theory is only an approximate one. 
Although, by considering individual structure factors we 
may not be using all the information available to us in an 
optimal manner (see Section 6.1), we are nevertheless 
making sensible use of relevant information that 
previously lay dormant. This fact, coupled with the 
relative tractability of our computations and consequent 
practicability of our approach, makes it a worthwhile one 
to adopt in practice.

The approach above may be further tuned by paying 
attention to the following points:

1) We will not in practice know the population variance 
crT2

2) Our | FO | value and associated a 2 will in fact 
represent the mean and variance of (typically) n = 4 
observations.

These points may be addressed as follows. Replacing crT 2 by 
Y for notational convenience, we may replace equation
(3.2.19) - recall X = FT - by the prior joint density
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fX,Y(X'Y) (2t t y/nQ)
l (x-m )2 n 1 

T  exp   oi o
* L 2y J

(3.3.46)

oo
where r(x) = J t

o

represents the gamma function. The two components of the 
right hand side of (3.3.46) have the following respective 
interpretations:

1) The conditional distribution of X given Y = y is 
normally distributed with parameters mQ and y/nQ

2) The gamma distribution with parameters d/2 and vd/2 
is the marginal distribution of the reciprocal of the 
process variance, 1/Y.

Prior beliefs for the first two moments of the process 
variance being e and var respectively, would suggest

Our original prior beliefs (3.2.19) would now suggest

v = e (3.3.47)

FC e (3.3.48)m n 2o o <7c
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Now suppose that given X=x and Y=y, Zx. . . Zn are independent 
and identically distributed N(|x|,y) random variables. 
Then we have [35] the distributional results

Z - N(|x|, *) (3.3.49)

and
2Z  x (n-1) (3.3.50)var n-1 A v '

where
n Z. n (Z.-Z)2

Z = 2 —  , Z = 2    . (3.3.51)i=l n var i=i n-l

The quantities Z, Zvar are independent, and consequently 
have joint density function (conditional on X=x and Y=y)

f- fz z » = ---- 1---- evpr-f^ ~ lx l)2ni
Z'Zvar/X=x'Y=y( ' var> (2«y/n)h Pt 2y 1

(^)n~X zvar) [•‘V 1 ZvarJ( 11=1

(3.3.52)

(3.3.52) is the analogue of our original model equation
(3.3.30); z and zvar represent our measured quantities | FO | 
and a 2 respectively. Equations (3.3.46) and (3.3.52) may 
now be combined via Bayes* theorem to derive the joint 
posterior distribution for X and Y given observed values 
| FO | and a 2. The calculations are similar to those

107



previously derived and yield the following approximate 
results.

Conditional on oT2 = a 2 , FT has posterior mean and 
variance, /i2 and o22 (say) , given by

„ _ no- FO _ e FC , c 1 1 . .
1*2 ~ 2 + 2 tan hno +e c no- + e c

1FOIFC ne
no + e c

(3.3.53)

and
2 2 

2 ac °t ncrc2 |F0|
2

1FO1FC ne
u 2 2no +e c no ^+e c

sec h 2
L *t no +e c J

(3.3.54)
Note that these reduce to equations (3.3.43) and (3.3.44) 
when n=l and a 2 — e = a 2. The posterior marginal
distribution of l/oT2 is gamma with parameters

%(n + 3 + and
(n-l)o,

+ e(l + ffrz)var' (3.3.55)

which suggests taking a 2 to be the posterior mean for o-T2, 
viz

2 2 _ (n-l)o var + 2e(var + e )
<rt = ------ Q-------------- -̂-----  (3.3.56)

(n+3) var + 2e

in the above equations. Some typical results are shown in 
Table 3.3.2.

We have already seen how the results of this Section 
may be used to modify our least squares weights.
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Alternatively, in the spirit of the previous Section, we 
may wish to determine the likelihood of correct sign 
allocation by considering such quantities as P(FT > o) 
based on the posterior distribution, and only use the 
corresponding FO* value if this probability is 
sufficiently big/small. The following probabilistic 
argument may be employed.

In cases where ft is positive, (3.3.30) gives the 
conditional distribution

| FO(h) |/FT = ft ~ N(ft,<7Q2) .

This may be combined with the prior distribution (3.2.19) 
to give the posterior distribution for the true structure 
factor

FT/ | FO (h) | = | FO | ~ N(a2 (£e^ + *^J^“) , ° 2 ) (3.3.57)
a  <7c o

where a is given by (3.3.41). Similarly, when ft is 
negative, so that (3.3.3 0) gives

|FO(h)|/ FT = ft - N(-ft, <ro 2 ),

we obtain

FT / | FO(h) | = | FO| ~ N(a2 (£^- - * * 2 ) • (3.3.58)

If we denote the probability of the true structure factor 
being positive by p, we would expect the posterior
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distributions (3.3.57) and (3.3.58) to pertain with 
probabilities p and (1-p) respectively. This gives rise 
to the expected posterior mean

2 FCO 2 + (2P“1) (3.3.59)2 + aao c

By equating this expression with the posterior mean n1 of 
equation (3.3.43), we obtain

which we may use as our assessed value of the probability 
of the true structure factor being positive.

We have seen in this Section some of the ways in which 
Bayesian ideas may be applied to crystal structure

incorporate naturally into the analysis any prior beliefs 
that we may hold. The Bayesian approach has furthermore, 
in accordance with our initial ideals, provided a sensible 
framework on which to make inferences and base decisions, 
strong arguments indeed for the inclusion of such ideas in 
the field of structure determination.

(3.3.60)
o c

analysis. In particular, they have enabled us to
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3.4 An Introduction to Sequential Experimentation in
Crystallography

Sequential experimentation is concerned with the 
modification of a data collection process as a result of 
analysing data already collected. Such analysis of the 
data during the actual collection process may enable us to 
determine whether further acquisition of data is likely to 
be cost-effective at any given stage; if so, we would also 
like to be able to use statistical techniques to select 
what the appropriate new data should be in the light of 
some specified criteria. We shall therefore be concerned 
with procedures consisting of the three components:

1) An initial sampling scheme

2) A sequential algorithm for addition of new data

3) A stopping rule.

We shall first, however, give a brief historical review of 
the development of sequential experimentation.

The role of experimental design in statistics was firmly
established by Fisher's pioneering work at Rothamsted
Experimental Station in the 1920's and 1930's, which
relied on the key insight [63] that:

'statistical analysis of data could be 
informative only if the data themselves were 
informative, and that informative data could 
best be assured by applying statistical ideas to 
the way in which the data were collected in the 
first place.'
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His work in this field culminated in 1935 with the 
publication of what is widely regarded as the definitive 
book on experimental design [28].

The area of sequential experimentation lay surprisingly 
dormant, however, until the classic works [65], [66] by
Wald some 10-15 year later, from which much of today's 
thinking originates. His most important discovery was the 
sequential probability ratio test (see [65]), which was 
designed to choose between two simple hypotheses. This 
still remains an important area of sequential analysis, 
and is one in which the theory is now highly developed.

Applications of sequential experimentation have been 
dominated by sequential medical trials: when comparing two 
treatments, ethical considerations often demand that a 
trial be stopped whenever there is clear evidence of the 
superiority of one of the treatments, thus making such 
trials particularly conducive to sequential analysis. 
Alternative theory and methods to those originally 
proposed by Wald were developed in this context by 
Armitage and Bross, and may be found in [1], together with 
further details of the methodology of sequential medical 
trials.

Other important areas in the development of sequential 
analysis are discussed in [70]; these include sampling 
inspection and recent work on sequential estimation and
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sequential resource allocation. A review of sequential 
statistical procedures (pre-1975) is also provided in 
[34], concentrating on sequential estimation and 
sequential hypothesis testing.

Our specific crystallographic application of sequential 
experimentation procedures will be concerned with the 
acquisition and analysis of X-ray diffraction data. We 
shall wish to make the process efficient in relation to 
specified criteria such as available resources and the 
information actually required from structural studies. We 
will be concerned with such aspects as cost, accuracy, 
speed and resolution - which will presently be introduced 
- and their relative importance, which will vary as the 
ultimate objectives of our structure determination vary. 
Brief comments will now be made on each of these four 
areas.

The financial cost involved in any given structure
determination may be split into 6 components, namely

(1) The cost of mounting the specimen under consideration

(2) The cost of turning on the appropriate data-
acquisition machinery

(3) The cost involved with the 'energy' source

(4) The cost of recording intensities

(5) The cost of measuring intensities
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(6) The cost of computing.

All 6 components will vary with the hardware and software 
used, though for any given combination (1) and (2) will be 
constant as will the turning on cost involved in (3) . The 
other component of (3) will be a running cost. Although 
we are concentrating here on X-ray diffraction, 
alternative energy sources may be used. For example, 
neutron beams - much used in crystallographic studies for 
the analysis of proteins - are much more expensive and in 
short supply. General sequential procedures reducing 
numbers of measurements taken will assume magnified 
importance in the neutron beam case in view of the 
consequent increase in (3) . The running cost will 
obviously depend upon the time taken for experimentation; 
this in turn will depend upon the (random) number of 
intensities to be recorded and measured. The time taken 
for individual intensities may not be constant across 
reflections, however, nor may the costs (4) or (5) . In 
the case of direct counting diffractometer methods, for 
example, two basic procedures are in common usage: we may 
either count for a specified time or until a specified 
number of counts has been attained. Finally, the cost 
involved in (6) will depend on the complexity of our 
calculations, in particular the nature of our sequential 
algorithm and relevant updating procedures involved, which 
may be governed by our original objectives. Some
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appropriate such updating procedures are discussed in the 
next Section.

In any structure determination we will be concerned with 
providing atomic co-ordinate estimates. There will also 
be an associated covariance matrix which we may take as 
our measure of the accuracy involved. When we speak of 
maximising the accuracy we need to minimise this matrix in 
some sense. One measure of the size of a matrix is its 
determinant and we may try to minimise this; 
alternatively, for example, we may try to minimise its 
trace, which is computationally much easier to evaluate 
and represents the sum of all the individual variances. 
The context should make it clear in what sense we are 
trying to maximise the accuracy in any given case.

The speed of any given procedure will be the time taken to 
reach the appropriate stopping rule. We shall generally 
assume that the overall time taken for any given 
sequential procedure is unlikely to be restrictively long, 
even in cases in which we are primarily interested in 
obtaining a quick estimate.

The concept of resolution shall now be introduced. We 
recall from Chapter 2 the essential premise of crystal 
structure analysis that atoms are located at the peaks of 
electron density maps, which may be constructed from 
observed structure amplitudes and calculated phases. Such 
maps may be calculated after eliminating all observed



amplitudes measured beyond a given 20 value: the
'resolution' obtained is usually expressed in terms of the 
interplanar spacings

d = A2sin0

corresponding to the maximum observed 20 values. This 
definition emphasises the crystal1ographer's pre
occupation with collecting data in the order of ascending 
(sin 0)/A. We see that the better the resolution, the 
more detail will be portrayed by the corresponding 
electron density maps (thus giving rise to better atomic 
co-ordinate estimates). It would seem reasonable to try 
to extend the definition of resolution to be a measure of 
the detail portrayed by successive density maps, in the 
general case where data has been acquired sequentially.

A major practical consideration will be the testing of any 
theoretical procedures that we may propose. In particular 
relevant sequential experimentation procedures may be 
tried for various combinations of the available data- 
acquisition hardware and software (though certain 
combinations may have been deemed unsuitable by 
theoretical considerations). It may well prove necessary 
to modify the theoretical results to develop procedures 
which perform well in practice. The need for co-operative 
interaction between statisticians and crystallographers is 
apparent. Where we find it expedient to resort to rules
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of thumb or ad hoc methods, we shall still wish to be able 
to obtain some form of theoretical justification.

We consider now how we may hope to improve on existing 
procedures. The structural information available in 
crystallographic data bases has traditionally only been 
used to assist constrained refinements after the data has 
been collected; little attention has previously been paid 
to the possibility of analysing the data during the 
collection process in line with the ideals of sequential 
experimentation. Crystallographers have continued to take 
excessive measurements as though completely unaware that 
statisticians not only have extremely powerful techniques 
for estimating the value of information extracted from 
incomplete data sets, but also have appropriate stopping 
rules associated with their sampling procedures. Such an 
approach has been particularly remiss in the field of 
computer-controlled diffractometry, in which the data are 
acquired serially (in order of ascending (sin 0)/A). The 
operational speed of modern computers means that the time 
taken to re-position the crystal and measure a new 
reflection - of the order of a minute - is long enough for 
a substantial amount of calculation to be undertaken 
before the crystal has to be reset and another measurement 
taken.

The possibility of allowing the data collection procedure 
to be modified according to the data already collected is
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particularly attractive in the case of crystal structure 
solution and refinement for the following reason. The 
resolution attainable is linearly dependent on

c - sin 0 
A

whereas the number of available reflections is 
proportional to S3? consequently, for even a modest 
increase in resolution, many extra reflections may be 
needed. To gain an acceptable degree of accuracy or 
resolution many more observations (typically 3-10 times) 
than variable parameters to be estimated are often needed. 
It is hoped that the sequential procedures envisaged in 
Section 3.6 will diminish this degree of over
determination .

We conclude this Section by noting the following three 
components of crystal structure analysis using 
diffractometer data:

1) Models which are themselves derived by computer 
techniques involving ab initio calculations and/or 
data retrieved from computerised data bases

2) Computer control of the data collection process, 
which is serial, and in which each additional 
observation can be used to update the prior 
information on a realistic real-time basis
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3) Structure refinement using iterative computer
procedures.

These components make the crystallographic setting ideal 
for the general exploration of techniques for computer- 
controlled sequential experimentation.

3.5 Some Relevant Updating Procedures for Use in
Seguential Structure Determination

A sequential crystal structure analysis may be concerned 
with 3 updating procedures:

(1) Recursive addition of data

(2) Iterations to avoid matrix inversion

(3) Iterations to account for non-linearity.

We shall address (1) first. Following the least squares 
approach of Section 2.2 we shall assume we have available 
a least squares estimate after n x observations have been 
made, and formulate our problem as follows. We wish to 
find a sequential method for computing the least squares 
estimate after a further n2 observations have been made, 
without having to re-do all our calculations from scratch. 
This will be particularly desirable in the sense of 
computer efficiency and real time operation. The 
recursive least squares (RLS) algorithm helps us achieve 
this and is given below. It provides exact results for
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the true linear model, but can be incorporated into our 
non-linear theory as suggested.

Suppose we have a linear model of the form

Y = X M  + I (3.5.1)

where

e_ ~ N (0,V) .

TSuppose also we have a target function e. W e.
-1 . .(where W = V ) to be minimised after each batch of

measurements has been received, giving updated estimates
(for (A0)) at each stage. Summarise our first nx
observations by (3.5.1) with

X = X1, Y = Y1, V = V 1 (3.5.2)

where is the design matrix for the first batch (nj 
observations) of data etc. Similarly, our first (nj+n2)
observations may be summarised by (3.5.1) with

i
Si 1 , 2 = ll

1
1II 

CN
1 XI 
1

i h .

< y =
VT ! V l-12 1 -2 J

where X2 is the design matrix for the second batch (n2 
observations) of data etc. We shall here assume 
independence between batches, so that the covariance term



Let

M 1 = cSlT W2 X1]“1 X,T W Y1 (3.5.4)

-1(where ) be the least squares estimator of A 0
abased on the first nx observations, and Afl2 the least 

squares estimator to be calculated from the first (nj+n2) 
observations; similarly,

~1 = [~1T ~l ^il_1 (3.5.5)

and A2 the respective covariance matrices. Then

Ai2 = M l  + Ax X2T [X2 X2T + a2 - X2 M x)

(3.5.6)
and

A2 = Ai - A XX2T [ X ^  X2T + Y2 3_1 X2 Ax . (3.5.7)

Equations (3.5.6) and (3.5.7) form the basis of the 
recursive least squares algorithm? clearly, if the sizes 
of incoming batches of data (n2) are small compared to the 
amount of data already held (n2) , then much less 
computational effort (in terms of matrix inversion etc) is 
required using the RLS algorithm than in reprocessing the 
whole data set at each stage.

The above analysis assumed a linear model. For problems
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I
i

| that are non-linear in the parameters, linearisation via
a Taylor series expansion is used in order to reach the 
form required by the algorithm. In order to produce a 
sequence of least squares estimates a Gauss-Newton 
iteration should be undertaken at each stage. Figure 
(2.2.1) may be correspondingly modified to give rise to 
the sequential procedure for our non-linear model shown in 
Figure (3.5.1) .

The procedure may be summarised as follows. For each new 
data set, the whole model is linearised about the current 
parameter estimate. The RLS formulae are then applied to 
get a parameter increment, and consequently updated 
parameter estimate. A Gauss-Newton iteration scheme may 
now proceed on the whole model linearised about this new 
parameter estimate and continue as before until 
convergence. A new data set may be received and the whole 
process repeated.

Clearly, since the matrices for the whole set of model 
equations must be inverted at each cycle of the Gauss- 
Newton iterations, the computational advantages of using 
the RLS algorithm will be lost, unless we can dispense 
with any such cycles (and cycle along the dotted line of 
Figure (3.5.1)) This may indeed be possible in the latter 
stages of a crystal structure refinement in which we might 
reasonably expect linearisation to be good enough that 
one iteration at each stage will give essentially correct
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INITIAL DATA SET

v
NEW DATA SET £ /s

RLS ALGORITHM

* No No |
?fixed cycle iteration(s) ? - - •* ?stopping rule? - - ■»

YES YES
YES

?stopping rule? * STOP
NO

Figure 3.5.1: Non-linear sequential procedure based on
RLS algorithm

estimates. Then we would hope that estimates obtained by 
ignoring Gauss-Newton cycles would tend towards those 
gained by following the complete procedure in the 
following sense. The initial data set would yield a least 
squares estimate sufficiently close to the true value that 
further adjustments will be very small and each cycle of 
our RLS algorithm would be roughly equivalent to one 
Gauss-Newton cycle, especially as the amount of new 
information received in each batch becomes (relatively) 
increasingly small.

In terms of computer efficiency, avoidance/simplification 
of matrix inversion routines (2) is the single most 
important point. A typical result is the matrix
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approximation for small e relative to A -

[A + e]”1 « A”1 - A”1 € A_1 (3.5.8)

- which may be used to update the covariance matrix for 
our parameter estimates when a (relatively small) new set 
of data becomes available. A similar result may also be 
used in conjunction with point (3) above, in which we find 
an approximation for the covariance matrix (&2 *) evaluated 
at an updated parameter estimate in terms of the original 
covariance matrix (A^1) . We assume £2 is readily available 
and estimate its inverse via B2 where

§2 = 2~1~1 -l”1 ~2 -l”1 * (3.5.9)

Generally, given an approximation B to A-1 we could use
(3.5.9) in the form

B -> 2B - B A B

to give us successive approximations to A"1. Convergence 
of such methods obviously depends on the accuracy of our 
initial approximation; this may be quantified as in the 
related discussion below.

Returning to our observational equations (2.2.4) and 
putting

A(k) = X (k) W X (k) (3.5.10)
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and
b (k) = x (k)T w y(lc) (3.5.11)

we see that

A ^  = b^k  ̂ . (3.5.12)

Letting be an approximation to [A^]'1, (3.5.12)
becomes, approximately,

A0/k) = B (k) b (k) . (3.5.13)

The (k+l)th iterate of b derived by using fixed data and 
an exactly linear model in which A ^  = A (say) for all k is 
[61]

b (k+1) = ^(k) - A • (3.5.14)

With (for all k) B ^  = B =* A"1, equations (3.5.13) and
(3.5.14) give

M.(k+1) = [I - B A]k B b^1* (3.5.15)

where b ^  is the initial vector b. For convergence, we 
require

OO
2 A0.(k) < oo (i=l...p) . (3.5.16)

k=l
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Let the vector B b ^  be expanded in terms of the 
eigenvectors ^  (say) of B A ?  thus if

(1) yB b ' ' = S c. ±. (3.5.17)
j=l 3 3

equation (3.5.15) yields

^(k+1) = P (i-A.)k c. (3.5.18)
j=l 3 3 3

where Aj is the eigenvalue corresponding to Hence
condition (3.5.16) becomes

00 P k-1 P v-i2 S (1-A.)* ■ c. rp. . = S [ 2  (1-A .) ^  O.rp.. < ~k=l j=l J J J1 j=1 k=1 J J J1
(i=l...p) (3.5.19)

which is satisfied if |l-Aj| < 1 (j=l. . .p) . This condition 
is therefore sufficient to ensure convergence.

Ideally, combination of some of the procedures above into 
one iterative least squares cycle would be desirable e.g. 
something along the lines of the following simplified 
possibility (assuming initial estimate 0_^ available) :

(1) Set k=l; Ai(0) = 0
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(2) Obtain initial data set

(3) Evaluate deign matrix (X), vector of observed values 
- current fitted values (Y) , weight matrix (W) , based 
on all available data and evaluated at

(4) Set A = XT W X

(5) Set B = 2B - B A B  (on first cycle take B « A"1)

(6) Set b = XT W Y' 9   /V A* _

(7) Evaluate A£^ = B b (EXIT when sufficiently 
small)

(8) Evaluate 0(k+1) = £(k) + M (k)

(9) Set k = k+1

(10) (a) Return to (3) (for fixed cycle iteration)
(b) Obtain new data set (small compared to current 

available data)

(11) Evaluate design matrix (X), weight matrix (W), based
on new data set only and evaluated at 0/k)

(12) Set A* = XT W X
V  A* A* **

(13) Set B = B - B A* B
A# A# A* ^

(14) Return to (3).

In practice, however, many crystallographic investigations 
resort to approximating the matrices A ^  of equation
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(3.5.10), thus dispensing with the need for full-matrix 
calculations. Approximations are sought for which the 
inverse is readily available; two of the classical 
candidates are given below.

The diagonal approximation sets all off-diagonal elements 
of A ^  equal to zero. A measure of acceptability of such 
an approximation could be obtained by e.g. evaluating a 
test statistic of the form

2 A (k)2. . j iD<i J

though no such check is currently undertaken. This 
approach implies independence between all the individual 
parameters of our model; a slightly more realistic 
approximation is therefore the block-diagonal matrix in 
which all off-diagonal elements of A ^  are set equal to 
zero with the following exceptions:

(1) intra-atomic terms between position parameters
(2) intra-atomic terms between temperature parameters.

Such approximations generally led to overestimates for the 
parameter increments in their original applications (e.g. 
[20]); divergence was prevented by the introduction of 
empirical partial shift rules of the form

0.(k+l)= + rj A £ ^  (3.5.20)
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for some constant rj less than one. The applicability of 
the above approximations will often be governed by the 
underlying objectives of our crystal structure analysis; 
in particular, such matrix simplification is most likely 
to be justified when we are primarily interested in 
obtaining quick estimates/packing structures.

Finally, with regard to iterative schemes to account for 
non-linearity, we may resort to cycling procedures such as 
that suggested by equation (3.5.9). Alternatively, appeal 
may possibly be made to some form of Taylor series 
analogue for matrices to help us evaluate/estimate x̂ k+1̂ in 
terms of X^, though this is very much an open area.

3•6 Various Selection Schemes for use in Sequential 
Crystal structure Determination

In accordance with our previous ideas, we shall be 
concerned with determining the structure of a centrally 
symmetric crystal. We shall assume throughout that our 
parameters, the atomic co-ordinate positions (x1,y1,z1) 
.... (xR, yR, ZR) , are of equal interest to us: the minimax
strategy we shall be using will therefore be that of 
reducing all the corresponding variances below a specified 
target value. The theory may readily be adapted in the 
case of unequal interest. It may be further modified were 
we to wish to work in real space - rather than with co
ordinates in the unit cell - by noting that the co
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ordinates in real space may be obtained from those in the 
unit cell by pre-multiplication by a fixed matrix 
(determined by the unit cell).

Our theory concentrates on the final stages of a crystal 
structure refinement. We assume that we have already 
measured the intensities of reflections with indices h = 
hkl lying in a set S(l) (say) which has enabled us to 
obtain very good approximations (x^,y^,z^) (r=l...R) to
the exact atomic co-ordinates. As usual, we suppose that 
our determination of (x^, y^, z^) (r=l...R) was carried
out by choosing those parameters to minimise

S Wh (FC(h) - FO(h))2 
heS(l) 11

where

(1) FO(h) is an appropriately signed square root of the 
observed intensity |FO(h)|2

R
(2) FC(h) = 2 S f (h) cos 27r(hx + ky + lz )

r=l

where the fr(h) are temperature factors which may 
incorporate unknown thermal parameters

(3) Wh (weighting factor) is typically l/ah2 where a ^  is 
the best available estimate for the variance of 
|FO(h) I.
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Our studies were then motivated by wishing to make final 
refinements by measuring some but not all of the 
intensities for h in the set T(say) of remaining indices 
for which intensity measurements are available to us. We 
seek a subset S(2) of T that is not unduly large but still 
enables us to make a very good final refinement.

Once S(2) has been determined, our final atomic co
ordinate estimates (£^, r/r), (say) are obtained by
minimising

S (FC(h) - FO(h))2
heS (1) US (2) h  ~

The estimates are of course unknown until we have carried 
through the minimisation process. This minimisation 
process shall now be given. The least squares equations 
of Section 2.2. are derived in detail, though we shall 
here be using a notation specific to this Section.

We shall use t to stand for any of x,y,z; likewise r for 
any of £, rj, $■, and m for any one of h,k,l. It will be 
clear from the context that when e.g. t stands for y, then 
t stands for rj and m stands for k. The co-ordinates (£^, 
r/r), ^  are determined as the solutions of the least
squares equations

0 ---- 7-r s w (FC(r) - FO(h))2
d r ( J heS(1)US(2) -

r=l...R) (3.6.1)
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where FC(r) indicates that the calculations are based on 
the co-ordinates. The exact (to within errors
in the numerical methods) solutions of (3.6.1) are found
by iteration of linearised versions of (3.6.1). By
writing

{ (r> _ x (r) + A x (r)( ̂ (r) . y (r) + A y (r) ̂

= z (r> + A z ^  (r=l...R) (3.6.2)

we obtain

FC (r) = 2 S f (r)(h) cos 27r(h£(r) + krj(r) + l?(r)) 
r=l

« 2 2 f (r)(h) cos 27r(hx(r) + ky(r) + lz(r))
r=l

- 4tt 2 f^r^(h)[sin 2tt(hx^r  ̂ + ky*r* + l z ^ ) ]  
r=l

. (hAx^r)+ kAy^r  ̂+ l A z ^ )  , (3.6.3)

where f^(h) represents theoretical temperature factors,
which we shall assume fixed for our present purposes.
Equation (3.6.3) may be re-written in the form

FC(r) « FC(t) - 2tt 2 ( h A x ^  + kAy^r  ̂ + l A z ^ )
r=l ( }

(3.6.4)

where FC(t) indicates that the calculations are based on
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the (x^, y^,z^) co-ordinates, and

G (t) = G (?)(W = 2f (r) (il) sin 2*(hx(r> + ky<r> + lz<r>),

(r«l...R) . (3.6.5)

The least squares equations obtained by setting the 
differentials of

R (r)2 W, (FC(t) - FO(h) - 2tt 2 G)7(
heS(1)US(2) & r=l (t)

. (hAx(r> + kAy(r) + lAz(r)))2

with respect to At'r' (t=x,y,z; r=l...R) equal to zero
reduce to

2tt 2 [ 2 W. m h G^fh A x (s)
s=l heS (1) US (2) *  W  ™

+ 2ir 2 [ 2 W , m  k G^ |  G$f\ 1 Ay^s*
s=l heS(1)US(2) h  (t) (t)

+ 2n 2 [ 2 W. m 1 G ^j A z ^  (3.6.6)
s=l heS (1) US (2) Q ^

2 W (FC(t) - FO(h)) m G^ |
heS(l)US(2) ~ K }

(m=h,k,l; r=l...R) .

In matrix form the least squares equations above may be 
written (dropping tildes for notational convenience)

[Ax + A2] A 9 = b1 AF1 + b2 AF2 (3.6.7)
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where

(1) Aj (i=l,2) contains elements of the form

2w 2 W. m m' G*?( G ^ l  
heS(i) &

(m,m' =h,k,l; r,s=l...R)

(2) A 9 contains elements of the form At^ (t=x,y,z; 
s=l...R)

(3) bj (i=l,2) contains elements of the form

m (hcS(i); m=h,k,l? r=l...R)

(4) AFj (i=l,2) contains elements of the form

FC(t) - FO(h) (heS(i))

Suppose now that the contributions from S(2) are small in 
comparison to those from S(l). This will indeed be the 
case in the latter stages of a sequential crystal 
structure refinement in which batches of incoming data 
will be small in comparison to the data already acquired. 
We may then use the matrix approximation (3.5.8) -

[Al + A.,]"1 - A ^ 1 - A ^ 1 A2 A,’1

- to obtain the following result:

A0 « (P - Q) AF1 + R AF2 (3.6.8)
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where

P = Ax_1 b1, Q = K 1 1 A2 A ^ 1 b1, R = A x 1 b2 . (3.6.9)

From equation (3.6.8), we can estimate the variance of
by

£ (p ,r. (b) - q ,r,(b))2 <7h2 + e (r (h))2<7 2
heS(l) t r' ' Q heS(2) ~

(3.6.10)

(tt)where p (h) represents elements of the r v ' - row of P 
r' '

etc. Further reduction of (3.6.10) based on the 
assumption of small S(2) terms in comparison to S(l) terms 
produces the variance estimate

= E (p . . (h))2 <r 2 - 2 E p .(h) 
r ̂ ' hcS(l) t ' ' - hcS(l) r

• q (r) (b) o-h 2 . (3.6.11)
T ~

Note that the first term on the right hand side of
equation (3.6.11) is in fact the variance estimate based
on the S (1) measurements alone. Our minimax strategy
is to introduce indices h = hkl into S(2) in order to

2maximise the reduction of the single biggest a ^  i.e. 

to maximise (for a particular r^)



the S (2) terms entering the above formula via the q

terms. Selection of the appropriate indices is greatly 
simplified in practice by the following matrix 
manipulations. Note that we henceforth assume that our 
refinement procedure is sufficiently far advanced for us 
to use a weighting scheme proportional to observational 
errors alone, in line with the original least squares 
theory of Section 2.2.

The matrix A2 may be written as

A = E g(h) g(ll)T (3.6.12)
h e S ( 2 )

where the column vector g(h) contains elements of the form

(27r Wh)^m (m = h,k,l; r=l. . .R) . (3.6.13)

Hence Q (=A1”1A2A1~1 b1) may be written

Q = E A _1 g(h) g(h)T A.-1 b 
heS(2)

(3.6.14)

We further define e . . to be the column vector consisting
-r (r)T

of zeros except for a 1 in the - row, and D (a2) to be 
the diagonal matrix with elements ah2 (h e S(l)).

Then

137



= E ((e D ( 2 ) (e . ,TA 1“1g(h)g(li)T A -1b )T
heS (2) t KT) ■L X ^ ‘L ^

= E e T A _1(b D(<r2)b T) (e TAj'^Wgtli) \ j"3) T.
heS (2) t ' ' t' '

(3.6.15)

2By using the result (putting w, = 1/cr. )

b.. D(a2) b.T = E W . m  G^ |  m' G*®} = A,
1 1  heS(l) h  (t) (t) 2* 1

(3.6.16)
and the fact that

e (r)T V 1 g(b)T ' '

is a scalar, equation (3.6.15) yields

E P (r)(h) q (h) <, 2 = ^  E (e TA _1g(h)) 2.
hcS(l) r ' ' t K } -  heS(2) t K }

(3.6.17)

Our minimax strategy, having isolated the worst variance 
2a . . after calculations based on our S(l) measurements, r(r)

is therefore to choose S(2) to consist of those h that 
maximise

(e (r)T Al_1 9(H))2 • (3.6.18)
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A simplified version of the selection scheme advocated 
above may be obtained by replacing the least squares 
equations (3.6.6) by the diagonalised equations

2ir ( E
h e S  ( 1 )  U S  ( 2 )

E
h e S  ( 1 )  U S  ( 2 )

Wh (FC(t)

- FO (h)) m (m=h,k, 1; r=l...R). (3.6.19)

To this approximation, the variance of is proportional 
to

E
h e S  ( 1 ) U S  ( 2 )

1 (3.6.20)

whence we would be led to choose S(2) to consist of those 
h for which

is as large as possible. For the selection rules based on
(3.6.18) and (3.6.21) we must use an estimate of the 
weight of the as yet unobserved reflections; such an 
estimate will be readily available based for example on 
either the current FC(t) values, or on a cursory 
inspection of a diffraction photograph. It may also be 
suggested by the very nature of certain direct counting 
diffractometer methods - see Section 3.4 - which may be 
employed.

(3.6.21)
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We see that (as above) choosing new observations to help 
reduce the variances of individual parameters is easy 
enough. Suitable extensions of these ideas to deal with 
alternative strategies to our minimax procedure may also 
be derived in certain cases. For example, we may want to 
minimise the average - variance or, equivalently,
minimise

R 2E E a . . (3.6.22)
r=l r=S,rjf$ »

We may approximate the individual variances of the form 
(3.6.20) using the first order binomial expansion

  (1 ~ c 1 S Wh < m G ft!)2> (3.6.23)T (r) T (r) heS(2) n ^

where

C (r-\ ~ E Wh (m G rtl>2 (3.6.24)t' ' hcS(l) 11 ' '

is a known constant. Then our selection rule based on 
minimising (3.6.22) becomes that of choosing h in order to 
maximise



a slightly less tractable, though nevertheless still
manageable, result. This latter strategy is analogous to 
seeking to maximise the accuracy of our refinement in the 
sense of minimising the trace of our covariance matrix as 
discussed in Section 3.4. Were we instead to wish to 
minimise the determinant, the natural way to proceed would 
be via the theory of D-optimality discussed below. As we 
shall see, the form of the selection rule derived
generalises the minimax result based on (3.6.18).

We recall that in our current setting we are supposing the 
known response function analogue of our structure factor 
equation to be of the form

r?(h) = g(h) M  ,

with our observations Y satisfying

Y = £  + c.

where the random errors e. have the distribution 

_e ~ N (0 , V) .

For observations at h e S(l), estimation of A 0 by least 
squares gives the result - c.f. (3.6.7) -

A 9 = A1”1 b1 AF1 (3.6.26)
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with corresponding covariance matrix A/1. It is the 
desire to minimise this covariance matrix A/1 -
equivalently, maximise Ax - that motivates the definition 
of D-optimality. Our initial sampling design is said to 
be D-optimal if it specifies a subset S(l) of indices for 
our initial data set, for which the associated information 
matrix A: has maximum determinant over all possible such 
subsets of the same size. Thus, given our initial set 
S (1) , this criterion leads us to seek the (fixed-size) 
subset S (2) of indices for which the determinant of 
(Aj + A2) is maximised.

For sequential schemes bringing in one extra observation 
at each stage, the appropriate selection rule may be 
readily defined. We merely seek that h (eT) for which

det (Aj + g (h) g(h)T) 

is maximised. By using the identity 

det (A^ + g(h)g(h)T ) = (1 + g(h)T A 1“1 g(h)) det

(3.6.27)
we see that our selection rule is therefore to choose that 
h that maximises

g(h)T A 1_1 g(h) (3.6.28)

(c.f. our previous minimax result based on (3.6.18)). For 
general fixed batch size (>1), maximising det(AA + A2) over
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all possible candidates A2 is likely to prove 
computationally prohibitive.

We may however, use the appropriate number of indices 
based on the largest values of (3.6.28), or use a one-at- 
a-time selection scheme as follows. Having chosen the 
best single h based on (3.6.28) we may obtain

A2 = Ai + 9(h) g(h)T.

We may then choose the best single h based on (3.6.28) 
with A/1 replaced by A2_1 (or an approximation to it) ; this 
process may be continued until the requisite number of h's 
have been determined.

At this juncture it seems appropriate to make a few 
comments on stopping rules and average sample numbers i.e. 
we have derived rules to determine where to make extra 
observations, but little has so far been said about how 
many to take at any stage or, indeed, when to stop 
sampling altogether. Termination criteria are usually 
formulated in terms of the accuracy of the estimates e.g. 
we may demand that all individual parameter variances fall 
below specified levels or that the determinant of the 
associated covariance matrix falls below a specified 
value. The number nQ (say) of additional observations 
required at any stage, given that we have already made n 
observations, may be estimated [3] using the fact that the 
elements of the present covariance matrix - c.f. equation
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(2.4.4) - are roughly proportional to 1/n-p (where p =
number of parameters to be estimated). For example, if 
the present determinant = a, and we wish to reduce this 
past b (<a), then we must solve the equation

(n + nQ - p) p b = (n - p) p a (3.6.29)
for nQ.

Returning to our previous ideas, we now show that the 
general theory of optimal design effectively enables us to 
handle nuisance parameters in the sense that it allows us 
to concentrate on certain subsets of parameters e.g. the 
co-ordinates of any individual atom that may be of 
particular interest in a given structure determination. 
To achieve this we partition our information matrix A 
based on the appropriate subset of parameters (this may 
first necessitate a re-ordering of our parameters) so that

A = 11
12

12
22

where An is based on derivatives only with respect to our 
parameters of interest. The inverse of the upper left 
hand component of the similarly partitioned matrix A'1 is 
given by

A11 ” A 12 A22 A12 (3.6.30)
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and our design criterion now becomes that of maximising 
this determinant. Similar techniques allow us to 'home 
in' on any specified linear combination of parameter 
values. Further details, together with much of the 
general underlying theory of optimal design may be found 
in e.g. [60].

The question of randomised sampling schemes will now be 
considered, including specification of appropriate initial 
sampling schemes. If a trial structure is available, 
selection rules may be based on a specific criterion such 
as D-optimality. Alternatively, since expected values may 
be calculated for all structure factors, we may wish to 
measure the (expected) strongest reflections: observed and 
calculated phases are most likely to be correct for these 
reflections, which also take less time to measure with a 
given precision than do weak reflections. If, however, 
there is no information as to the relative value of the 
data points in the specific experiment under
consideration, then they can be selected at random [58], 
subject to general provisos such as adequate 3-d coverage. 
Although we shall usually expect to have a suitable trial 
structure available to us, success in such cases motivates 
us to consider selection schemes based on the ideas of 
stratified random sampling as discussed below.
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Stratified random sampling consists of splitting a 
population into various strata, and then independently 
drawing simple random samples within each stratum. One 
common reason for stratified sampling is that if the units 
within the strata are more homogeneous than the population 
as a whole, then we might obtain better estimates. For 
example in the crystallographic setting we might wish to 
allocate various strata - i.e. indices at which 
observations are available - according to the assessed 
weights of the observations. Such an approach should be 
feasible in practice since for any given structure 
determination we are likely to have some insight into the 
appropriate weights prior to experimentation. In cases 
where equal weights are assumed, stratification may be 
carried out according to e.g. convenience and/or cost.

A standard result in the theory of stratified random 
sampling will now be given, and a parallel result 
postulated for the crystallographic analogue. Considering 
the situation in which we have L strata and we are 
interested in obtaining an estimate of the population 
mean. Let the variance within the ith stratum be a?; 

suppose also that stratum i has Nj units and the sampling 
cost per unit is Cj. Suppose further that we have an 
overhead cost c0 so that the total cost associated with the 
allocation n^..^ is
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L
C_ + E c. n.
0 i=i x 1

Then the optimum allocation - i.e. the one that minimises 
the variance of the resultant estimate - associated with 
a fixed cost c is given by [17]

L N. a.
E n± = n = (c - C Q ) §E(-J— (3.6.31)

1=1 i=l
E N. a. J  c. 
i=l

and
N. a.

. ( J c i }n L N . a .
3=1 3

(i=l...L) . (3.6.32)

As a corollary, we see that in the special case where cost 
does not depend on stratum (i.e. cx = .... = cL) the
optimum (or 'Neyman1) allocation for a fixed size n is 
given by

n. = nN.<r. (i = l . . L ) .l 1 1  v 9

1  ’
E N. <r. (3.6.33)

j=l 3 D

Finally, we see that proportional allocation, in which nj/Nj 
does not depend on stratum i, is optimal if the sample 
size is fixed and the variances within the strata are 
equal.
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In our crystallographic application, adaptations to the 
above theory have to be made. In particular, we note that 
we will be concerned with estimating a vector of
parameters. We will now therefore wish to obtain a 
representative value from each stratum to indicate the 
relative importance of the stratum for structure
determination. A natural candidate is a measure of the 
accuracy of any observation in the stratum; in such cases 
where we stratify via the (assessed) weight of 
observations, such a value is readily available. 
Furthermore, such a scheme is likely to be similar to 
stratification via (sin 0)/\ values, and the assumption of 
constant cost across each stratum will not be
unreasonable. In such cases, for a fixed sample size n, 
we will arrive at sampling schemes of the form of 
(3.6.32), where a? is the reciprocal of the representative 
stratum weight.

In accordance with the above ideas, initial sampling 
schemes in structure determinations have usually been 
based on a low (sin 0)/A values: these reflections have 
the largest assessed weights and can consequently be 
measured most accurately, are also most easily attainable 
in terms of speed and/or convenience sampling, and cost 
least to measure. We continue to safely assume that 
appropriate initial sampling schemes are available and 
concentrate instead on sequential sampling schemes to use.
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A final refined structure will need good agreement between 
theoretical and observed structure factors for all 
reflections, not just those with low (sin 9)/\ values; in 
fact, agreement for high order reflections - i.e. those 
with high (sin 9)/A values - is of paramount importance as 
we shall discuss later in this Section. Such reflections 
will therefore need to be brought into our schemes. We 
may achieve this via stratification based on the concepts 
of trace and determinant of our information matrix in line 
with our previous minimax and D-optimality ideas, which 
are motivated by seeking to minimise our associated 
covariance matrix. Note that the relevant selection rules 
we derived based on (3.6.18) and (3.6.28) were biased 
towards choosing higher order reflections.

Suppose at any given stage of our structure refinement we 
have an information matrix Ax. Bringing in reflections at 
indices h e S(2), our information matrix will become (Aa +
A2) where A2 is of the form of equation (3.6.12). Since

tr(A + A ) = tr (A ) + E tr (g(h) g(h)T)
h e S ( 2 )

we see that we may stratify according to

tr(g(h) g(h)T ). (3.6.34)

Likewise, in view of the identity (3.6.27), the

149



corresponding argument based on determinants leads us to 
stratify according to (3.6.28) i.e.

g(h) A ^ 1 g(h)T .

It is now unlikely that the assumption of equal cost 
across strata will hold. However, for a given batch size 
n, we may still stratify as suggested above and use Neyman 
allocation (3.6.33) with <Tj replaced by an analogous 
representative stratum value based on (3.6.34) or 
(3.6.28). This will tell us how many observation to take 
in each stratum. In cases where equal costs do hold, or 
where cost is a minor consideration, we may sample 
randomly across the strata. If, however, costs vary 
randomly across strata, the sample may be chosen non- 
randomly corresponding to the lowest costs within the 
given stratum. Alternatively, considerations such as 
likelihood of correct sign allocation or ease of 
measurement may determine where we measure. For any such 
schemes, it is important to note that the strata will vary 
as our parameter estimate varies at each successive stage 
of our iteration procedure.

However we choose our sequential sampling schemes, the 
success of our statistical techniques, depending as they 
invariably do on linear approximations, will ultimately be 
influenced by the 'degree of non-linearity1 present and 
the consequent goodness of fit of linear approximations
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such as equation (3.6.3) over the appropriate ranges. For 
the individual geometrical (cosine) components of our 
structure factor equation, the required measure of 
goodness of linear approximation will depend on two
things:

(1) The value of the fitted cosine term

(2) The range of approximation.
We merely comment here that, by the nature of the cosine 
curve, we would expect better approximations in cases 
where the individual geometrical components have small 
values of (1) (in modulus) and (2) . This should
consequently yield faster convergence of our iteration 
procedures and may prove useful when seeking quick
estimates/packing structures. The requirement of small 
values of (2) justifies omitting most high order data in 
such cases. We should be aware, however, that vital 
information may be missed by not including certain
reflections; in particular, phase information will suffer 
since the (theoretical) structure factors included will 
now be smaller than usual, being the sums of terms which 
will (on average) be more concentrated round small 
|cosine| values. The question of overcoming this apparent 
conflict between good phase information and acceptable 
linear approximation may be addressed by seeking to modify 
our weighting schemes according to some non-linearity 
criterion (e.g. based on minimum discrepancy or mean
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squared error over ranges of approximation). This is not 
pursued further here, but we note that help in this area 
might come from the pioneering paper by Beale [7], which 
sought to make more precise the notion of 'degree of non- 
linearity' present and presented various non-linearity 
measures to help quantify this, originally for use in the 
formulation of conservative confidence intervals for the 
parameters of interest. Bates and Watts [4] developed 
non-linearity measures of their own based on the geometric 
concept of curvature, which they showed to be related to 
Beale's original measures. A review of their work in the 
field of non-linear parameter estimation is undertaken in 
Section 4.3.

We consider next the specification of an appropriate 
procedure to adopt in practice. As mentioned in Section
1.4 this will be influenced by the underlying objectives 
of each individual structure determination; two general 
strategies emerge naturally, however, which are likely to 
cover most possibilities. The first is the minimax type 
of strategy as discussed earlier in this Section, in which 
we may seek to reduce all variances of our atomic co
ordinate estimates below a specified level. Associated 
variations such as our D-optimality based strategy are 
included in this category. The second approach is based 
on the premise that the true test is whether calculated 
structure factors fit those observed for high-order 
reflections. As we saw at the end of Section 3.2, shifts
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in our atomic co-ordinate estimates had relatively larger 
effect for fitted high-order values. Thus we can only 
expect a good correspondence between such observed and 
calculated values when our atomic estimates are indeed 
very close to the true underlying values. Because of 
their importance, such high-order reflections (which are 
necessarily small due to the reduced atomic scattering 
factors involved - see Section 1.2) should be measured as 
accurately as possible. As a consequence of the different 
viewpoints, the main difference between the above schemes 
turns out to be the respective stopping rules. The former 
strategy has a well-defined stopping rule, whilst for the 
latter the question of quantifying what constitutes a good 
or bad fit is traditionally answered in terms of R-factors 
(see Section 4.2). We re-iterate that we are primarily 
concerned with the final stages of a crystal structure 
analysis in which we assume our data already have 
essentially correct phases, and in which minimax-type 
selection schemes have a bias towards choosing high-order 
data as we have seen; the two approaches will thus be 
similar in practice.

Suppose we were to carry out a sequential structure 
determination using our minimax criterion. We shall now 
consider what visual displays we may wish to use in 
conjunction with such a procedure. The most obvious 
visual aid is a graph showing how the maximum variance at 
each stage, <r2max (say) , progresses towards the target
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value <r2T (say) ; or equivalently, how -o-2max progresses 
towards -a2T as in Figure 3.6.1. The horizontal scale 
should be '% accessible data* (the left hand point being 
determined by the size of the initial batch of data) and 
the vertical scale 1 V max' as shown. Such graphs may be 
useful in indicating whether our target value is too 
stringent or not i.e. whether we are likely to reach our 
target value even with all accessible data. If thought 
not, we might wish to curtail our experimentation 
procedure or set a more realistic target value.

2—amax

x
x

X X
X

X
I-------------------------------- % accessible data
10 30 50 70

(say)

Figure 3.6.1: Chart to show progress of a sequential
structure determination based on a 
minimax strategy

Similarly the R-values of Section 4.2 may be displayed at 
the various stages of our sequential procedure, either for 
all the data measured to date or for just the high-order 
reflections (or both) . It is to be hoped that the initial
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batches of data ensure sufficient phase discrimination 
that the refinement procedure will not start to diverge 
when higher-order reflections are included. This can be 
monitored by checking that successive R-values do not 
increase. A similar chart to Figure 3.6.1 can be produced 
for R-values and may be treated like a control chart in 
the theory of quality control [69] with associated 
stopping rules of its own. The two charts may of course 
be displayed simultaneously.
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CHAPTER 4
NON-LINEAR PARAMETER ESTIMATION

4.1 Introduction

One of the basic difficulties involved in the refinement 
of crystal structures is the fact that the model is non
linear. Several proposals on how to measure the non- 
linearity of the consequent linearised models used have 
appeared in the literature (see e.g. [4], [7]). Hougaard 
[44] has used measures of this type to suggest ways of 
parameterising models to obtain various properties such 
as normal likelihood, stability of variance, zero 
asymptotic skewness and asymptotic unbiasedness. The 
adaptation and extension of related work into the area of 
crystal structure determination may lead to improved 
parameterisation of our existing model, and to 
alternatives to the current practice of adopting the 
first-order Taylor series approximation to any non-linear 
function. We shall investigate this further during this 
Chapter, relying heavily on the work [4], [5] of Bates and 
Watts.

First, however, a review of some standard existing methods 
used to tackle the problem of non-linear parameter 
estimation will be given in Section 4.2. The work of 
Bates and Watts will then be reviewed in Section 4.3; this 
introduces the important concepts of intrinsic curvature
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and parameter effects curvature in an attempt to quantify 
the appropriateness of standard linear approximations and 
various parameterisations. These notions will be used 
throughout the remainder of the Chapter.

Section 4.4 considers possible re-parameterisations 
motivated by considering the relation between points on 
the approximating tangent plane and their analogues on the 
solution surface. In particular, mappings are sought that 
are orthogonal to the tangent plane in order to reduce the 
parameter effects curvature of Bates and Watts. Section
4.5 considers non-linear parameter estimation from a 
geometrical point of view and proposes various alternative 
estimation procedures based on curvature measures derived 
from the theory of Section 4.3. Section 4.6 seeks to 
extend the general theory and suggest how use of it may be 
made in the crystallographic setting. Section 4.7 briefly 
discusses the results of applications of some of our 
ideas.

4.2 A Review of Methods

This Section reviews alternative standard methods of non
linear parameter estimation. We consider first an 
approach based on maximum likelihood. Such an approach 
underlines the fundamental differences between Bayesian 
and classical statistics. Most notably, classical 
inference prescribes inferential techniques that are based
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on sample information alone. The classical statistician 
further argues that our parameters are fixed, not random 
variables, and any probability statements about possible 
parameter values are therefore meaningless. The
interpretation of results obtained under the two 
approaches highlights the different underlying rationales; 
the mode of the posterior distribution favoured by 
Bayesians gives the most likely parameter value whereas 
the maximum-1ikelihood estimator is that parameter value 
that makes the observed sample results appear most likely. 
Whereas Bayesians make probability statements about the 
parameters, classical statisticians make probability 
statements concerning the sample results.

The likelihood function L(£) of a sample is the joint 
probability density function of the observations viewed as 
a function of the unknown parameters The maximum
likelihood estimate of £ is that value which maximises 
L(£.) , or equivalently log L(0.) ; this value is of course 
subject to any constraints that may be imposed. In the 
case where we assume our observational errors e. = ±(0_) 

satisfy

e ~ N (0, V)

the log-1 ikelihood function for a sample of size n takes 
the form
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n
log L(6_) = - — log 2n - hloq  det V  - k E W . . , c . c . ,

* ~ i,i»=l 11 1 1
(4.2.1)

where WH, is the (ii')th entry of the matrix W = Y'1- When 
V is known the maximum likelihood method requires us to 
minimise

n
(4.2.2)J ,,, "U' VI. •

With e. = Y (vector of observed values - fitted values) ,
(4.2.2) reduces to tp' of (2.2.3) and our criterion is 
precisely that of weighted least squares. If, for some 
reason, our dispersion matrix V was unknown, however, (c.f 
weighted least squares with unknown weights), maximum 
likelihood based methods may be employed as follows. Only 
the results will be quoted here; for further details of 
their derivation see e.g. [3].

Define the cross-product matrix M(0.) of the residuals by

M ( D  = €(£.) ±(l)T . (4.2.3)

In the case where V is known to be a diagonal matrix, we 
seek those values of Q_ and Va (i=l..n) that maximise
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log L(0) = - ^ log 2w -h E log V.. -h 
z i=l 1111

(4.2.4)

We proceed by finding £* (say) which minimises

n
i=l

(4.2.5)

and by estimating Vu (i=l...n) via €?(£*).

When V is a general unknown matrix our problem can be 
formulated in terms of seeking those values of 0. and V 
that maximise

and by estimating V via M(£*).

Although both estimates given for V are biased, methods 
exist [3] for possible bias removal. The above results 
are included merely for completeness and to provide a 
useful reference in cases where V is unknown; in 
crystallographic studies, however, we can generally expect 
to know V in which case the method of maximum likelihood
is equivalent to that of weighted least squares as we have 
seen.

log L(£) = log 2tt log det V -^tr[V_1M(i.) ] . (4.2.6)

We now proceed by finding £.* which minimises

log det M(£) (4.2.7)
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Suppose we wish to minimise the residual sum of squares 
function tp of equation (2.2.1) with respect to 9_ as 
before. Let ^k denote *1>{Q^) ; then we call an iteration 
acceptable if V'k+i < V'k* Most iterative schemes encountered 
in non-linear parameter estimation problems such as we 
have here now fall into the following general framework:

(1) Provide an initial parameter estimate 0_^ (set k = 0)

(2) Determine a vector v ^  in the direction of the 
proposed step

(3) Determine a scalar such that ^ k+1̂ = 0^ + pM y(k)
produces an acceptable iteration

(4) Set k=k+l and return to step 2 unless a specified
termination criterion has been met, in which case 
accept 0^ as our estimate of Q_,

Our standard least squares approach of Section 2.2 took 
yOO = Afl(k) as defined by equation (2.2.8), tacitly assuming 
that an associated p ^  = 1 produced an acceptable
iteration? the stopping criterion was based on equation
(2.2.6). In view of the comments at the end of Section
3.5 we may sometimes need to introduce partial shifts 
< 1.

Generally, an iteration is acceptable if and only if there 
exists a positive definite matrix such that
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2 (k) . _g(k) a (k) (4.2.8)

where

(4.2.9)

so that we obtain

£(k+D  _ £(k) _ p(k) (k) a(k) (4.2.10)

Iterative schemes based on (4.2.10) are called gradient

One or two possibilities are given below? for further 
details and proof of the above result see e.g [3].

The simplest gradient method is that of steepest descent,

which the objective function decreases most rapidly,

generally recommended for practical applications, the 
steepest descent method may prove useful in cases where 
our current parameter estimates are insufficiently 
accurate to provide convergence of the standard non-linear 
least squares methods.

Newton1s method sets

methods and differ in the manner of choosing and

which sets R ^  = Ip (the (pxp) identity matrix) ? as its 
name implies the resulting direction -q^ is the one in

at least initially. The problem of determining an 
appropriate step length remains. Although not
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where the (pxp) Hessian matrix has (j,l)th element

H (k) _ d\
jl d0^dO1 (k) (j,l=l...p) (4.2.11)

and takes = 1. The underlying motivation for Newton's 
method is that if rp(£_) is a quadratic function then 
(provided is positive definite) the method converges in 
a single iteration

0.(k+l) = - [H*k* j”1 (4.2.12)

to the minimum. In any case, provided we are within some 
neighbourhood of the minimum in which is positive,
convergence will be quadratic.

Putting

N (k) . x (k)T (k)

note that and N ^  differ by the correction matrixM M  A/

(say) whose (j,l)th element is given by 

fkl 32FC(h)
cji - F wh <FO*^> - FC<*>> jrjrr .(k)n j J- u

(4.2.13)

Replacing in (4.2.12) by the approximation N^, we are
led to the iterative scheme
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£.(k+l) = - [N^k^]_ 1 g^k  ̂ (4.2.14)
which defines the Gauss-Newton method; it is precisely our 
non-linear least squares method based on equations (2.2.5) 
and (2.2.8). The goodness of this approximation obviously 
depends on the matrix C^, which is likely to be small in 
view of the (FO*(h) - FC(h)) terms appearing in (4.2.13). 
Whether the Newton method is sufficiently more efficient 
to make the evaluation of second derivatives worthwhile is 
an open question, though the following tentative 
conclusions ([3]p.91) justify the Gauss(-Newton) approach:

' (1) If the model fits the data well, the Gauss 
method often requires no more iterations 
than the Newton method [2].

(2) If the model does not fit well, the Newton 
method may require fewer iterations than 
the Gauss method, but the computing times 
for the two methods are roughly the same 
[29].'

We next consider the Marquardt method [55] which basically 
combines the steepest descent and Gauss-Newton methods. 
It is based on

r (K) = [N^k* + A*k* I l”1 (4.2.15)P

where A^ is chosen to ensure that gfk) is positive
definite. We continue to take = 1. Note that as A^
increases we approach the steepest descent direction,
whilst for small A^ we effectively have the Gauss-Newton
method. The Marquardt method typically proceeds with
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initial iterations moving in the steepest descent 
direction before gradually changing to an approximate 
Gauss-Newton approach. It has proved to be very reliable 
in practice; it is recommended that it be tried when other 
standard methods fail to converge.

A few concluding remarks will now be made about non-linear 
parameter estimation schemes; specifically, brief comments 
will be made on the areas of initial parameter estimates, 
step lengths, stopping rules and convergence. Initial 
estimates are a necessary preliminary requirement before 
our iterative schemes may be invoked; in crystallographic 
studies such accurate estimates will typically be 
available (together with a specified covariance matrix)
based on prior chemical constraints, symmetry
considerations, results from similar previous analyses, 
etc. For crystal structure refinement methods with which 
this thesis is concerned, we generally assume that they 
are sufficiently accurate to ensure (in the
centrosymmetric case) that most observed reflections 
within a non-trivial (sin B) / X limit will be given the 
correct sign based on the corresponding calculated value, 
as discussed in Section 3.2.

For the standard Gauss-Newton method the assumed step 
lengths (/?̂  = 1) will generally provide acceptable
iterations, especially in the neighbourhood of the true 
underlying parameter values. If, however, our residual
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sum of squares ipk+1 > tpk at any stage, we may resort to 
various correction schemes. One such scheme is given by 
the program of Booth and Peterson [9], which basically 
uses a quadratic interpolation to locate a local minimum 
of ip(9_) / before beginning the iterative cycle again; this 
method always converges [39]. Specifying appropriate step 
lengths is most difficult in cases where we must resort to 
steepest descent type methods. In such cases, however, 
use can probably be made of the Marquardt compromise in 
which the problem reduced to choice of the appropriate 
in equation (4.2.15) to use in conjunction with = 1. 
Guidelines are given in [55].

As we have seen, for our iterative estimation procedures 
we shall typically wish to cycle until the difference 
between successive estimates of 0_ becomes sufficiently 
small in an arbitrary but specified sense e.g. as defined 
by (2.2.6). For general comments on appropriate such 
stopping rules see [14]. Crystallographers traditionally 
consider the R - factor defined by

Z | (FO* (h) - FC (h)) |
E |FO(h)| (4.2.16)
h

when making decisions on whether to accept the current 
parameter estimate? the number of observations appearing 
in R and their nature (e.g. position of the corresponding 
h in reciprocal space) influence its value. There are
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many pitfalls associated with putting too much weight on 
this statistic, however, (see e.g. [33]); its value as a 
measure of how well our current model fits the observed 
data still provides a useful check at any stage of our 
analysis though and models producing high R-values (which 
crystallographers should be able to quantify for any given 
crystal structure analysis) are unlikely to be acceptable. 
More acceptable perhaps as a method of accessing the 
correctness of a structure is an analysis of a difference 
map (see Section 2.4) based on the refined structure. 
This should reveal no fluctuations in electron density 
greater than those expected on the basis of the estimated 
precision of the electron density. Alternative stopping 
rules and further comments are given in Chapter 3 in which 
they form an integral part of the underlying theory.

Finally, a brief note on convergence: convergence proofs
are difficult for non-linear parameter estimation schemes. 
Also, even when a method may be known to converge in 
theory, convergence may be slow in practice and/or 
computational requirements infeasibly high. For our 
purposes we content ourselves with the knowledge that our 
schemes are likely to provide at least locally optimal 
values for Q_ (e.g. local minima for V'Ci.)) in the standard 
least squares framework of Section 2.2.

167



4.3 Review of Some of the Work of Bates and Watts

We shall be considering the non-linear model in which the 
relationship between the values of a response yi (i=l..n) 
collected at corresponding experimental settings x* can be 
written

yi = f(X±,£) = (4.3.1)

where 0. = (&1 .. 0p)T is our set of unknown parameters and 
the ei are independent and identically distributed N(0,<r2) 
errors. The solution locus is described by

U(l) = (^(1) ••• »7n (l)T

where
rj± (i.) = f (^,0)? 

f(x,0.) is termed the model function.

Most algorithms for computing the least squares estimate
A0. and most inference methods for non-1 inear models are 
based on a local linear approximation to the model [14]. 
This effectively replaces the solution locus by its 
tangent plane at for some fixed trial parameter
value 0q . A uniform co-ordinate system is simultaneously 
imposed on that tangent plane. The adequacy of the planar 
assumption component of the linear approximation used will 
be fixed i.e. invariant under re-parameterisation. This 
may be quantified by the intrinsic curvature derived in
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the original paper [4] of Bates and Watts. We note that 
the planar assumption must be satisfied to a sufficient 
degree before it is sensible to discuss whether the 
uniform co-ordinate assumption is acceptable. The 
validity of the uniform co-ordinate assumption may then be 
measured by the parameter effects curvature derived in 
[4]? this is not fixed, and suitable re-parameterisations 
may reduce this curvature as discussed in their follow-up 
paper [5]. The main results of these two papers will now 
be summarised. Note also that the two papers reviewed 
here have since formed the basis of the book of non-linear 
regression analysis [6] by the same authors. Further 
details on the general areas of fitting non-linear models 
to data and improved presentation of inferential results 
of non-linear analyses may also be found there, together 
with comments on the geometrical properties of non-linear 
least squares.

Let an arbitrary straight line in parameter space through 
■£o be represented by

1(b) = S_Q + bh

where h is any non-zero (pxl) vector. The corresponding 
curve on the solution locus may be written

Hh (b) = n. (!0 + bh)

The tangent to the curve ,ah(b) at b=0 may be written
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Ah = Y-h (4.3.2)

where V. is the (nxp) matrix whose jth column Vj is defined 
by

v . =
-J

1
.3 I-* Sr,n

" j
3-0 -

(j=l. . .p) (4.3.3)

The tangent plane n at 22.(ĵ ) may be defined as the set of 
all such linear combinations of the vectors (Vj). 
Similarly, by defining second partial derivative vectors 
(vjk) by

a23..H
" i 99*

(j,k=l..p) (4.3.4)

and collecting them into the (pxp) matrix of n vectors 
V.., the second derivative of rih (b) at b=0 can be written

ih = h TV.. h (4.3.5)

(i.e. each element of is a term of the form hT Yi h 
where Yi the ith face of the array y..). can be
written as three components: rihN normal to the tangent
plane, iihp parallel to jjh, and ifhG parallel to the tangent 
plane normal to ih, so

• • N P , •• G
nh  = + + *h
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If we think of £ h as an acceleration vector, the 
tangential components, which are caused by the model 
parameterisation, may be combined into a tangential 
acceleration

•• T •• P , •• G
nh  = ah  + ah  '

This can be converted into a parameter effects curvature 
in the direction h as

Kj^ = || iihT || / || ah II2 • (4.3.6)

Similarly, the intrinsic curvature may be defined by

KhN = || || / || Bh II2 • (4.3.7)

Unlike KhT this is independent of the parameter isation and 
has the important geometrical interpretation of being the 
inverse of the radius of the circle that best approximates 
the solution locus in the direction of at 9_q .

Defining the standard radius

p = s >/" p (4.3.8)
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II

where s2 is an estimate of a2 based on v degrees of 
freedom, we arrive at the final definitions for the 
parameter effects curvature (7hT) anc* the intrinsic 
curvature (7hN) to be given by

h

and

T T7* = K, p (4.3.9)

N N7 " = K, p . (4.3.10)

We may take as measures of the severity of non-linearity 
the maximum curvatures

Nmax lh

Tmax 7. ?
h h

an algorithm for the evaluation of r and r is given in
[4]. We shall concentrate here on the formulation of an 
appropriate curvature array (and its interpretation), 
which will enable us to calculate the quantities (4.3.9) 
and (4.3.10) and will play a central role in the ensuing 
theory.

To determine the curvature array we first form an 
orthogonal-triangular decomposition of y. [13],

and
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y. = 8 ? (4.3.11)

where Q is an (nxn) orthogonal matrix and £ is an (nxp) 
matrix with zeros below the main diagonal. The upper 
(pxp) sub-matrix of R is denoted Rj and we define

L = R1”1 . (4.3.12)

By letting multiplications using square brackets indicate 
summations over the appropriate index consistent with the 
dimensions, while multiplications without square brackets 
indicate summations over the second or third index for 
premultiplication and postmultiplication respectively, a 
curvature array A.. may be written

A.. = [QT ] [LT V.. L] . (4.3.13)

This can be regarded as the second derivative array for 
the parameters

4 = LT (1 - 1) (4.3.14)

in a rotated set of sample space co-ordinates.

The first p faces of &. . constitute the parameter-effects 
curvature array A..T. By denoting the first p columns of 
Q by U., we may also write

A..T = [U.T ] [LT V.. L] . (4.3.15)
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Similarly, by denoting the remaining (n-p) columns of Q by 
N, we obtain the intrinsic curvature array

A..N = [NT ] [LT V.. L] . (4.3.16)
The value of the arrays A. ,T and A. .N lies in the fact 
that for any unit vector d, we have

■7^ = II dT A..T d || (4.3.17)

and

7 ^  = II flT A. .N d || (4.3.18)

i.e. relatively simple expressions for the evaluation of 
parameter effects and intrinsic curvatures respectively in 
various directions. In particular, equation (4.3.18) may 
be used to determine (the reciprocals of) the radii of 
curvature needed in Section 4.5.

Bates and Watts [5] consider further the adequacy of a (1- 
a ) linear approximation confidence region consisting of 
those values of 6_ for which

(I ~ 1)T V.T V. ( 0 - 1 )  < F(p,i/; a) (4.3.19)

where V. is calculated for the scaled responses (i.e.
divided by the standard radius p) and F (/>,*/? a) is the 
upper a probability point of the F distribution with p and 
v degrees of freedom. This may be determined by comparing 
the curvatures
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(4.3.20)

and rT to the curvature 1/Ra/ where Ra is the radius of the 
(1-a) conservative confidence region disc for r_

II x II * Ra

- where _r is defined by

L = U.T (2(4) - 2(1)) (4.3.21)

An explicit expression for Ra is derived in their paper.

We shall now give interpretations of the individual 
curvatures ajkl. The â j are compansion terms: they cause 
compression or expansion of scale along a <j>} parameter 
line. The ajkk are arcing terms: they cause changes in the

parameter lines as we move along them. The ajkj are fanning 
terms: they cause changes in the Uj direction of the <f>k 

parameter curves as we move across the <f>-} parameters 
curves. The ajkl are torsion terms: they cause a change in 
the Uj direction of the uk tangent vector due to a unit 
change on A perfect parameterisation to eliminate
parameter effects would be one which reduced all 
individual curvatures in the array (henceforth

d r
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abbreviated to A) to zero.

The geometric significance of the parameter effects 
curvature is as follows. The uniform co-ordinate 
assumption replaces the curved ^ parameter lines on the 
approximating tangent plane by a grid of straight, 
parallel, equispaced lines. By interpreting t_ of equation 
(4.3.21) as the tangent plane co-ordinate vector, we see 
that this assumption will be justified - and zero 
parameter effects curvature ensue - if, for all parameter 
values 0*, we may recover 9_* from the projection of

A
n(IL*) ~ n(fi) onto the tangent plane. This will be the 
motivation behind the attempts of the next Section to find 
re-parameterisations to eliminate parameter effects.

Returning to our previous theory, by writing x = H(^), 
appropriate confidence regions in the Q_ parameters may be 
formed, bounded by

(1 + L H-1(r) : || i || = Ra > • (4.3.22)

Because of the difficulties in the evaluation of H"1 - the 
second order Taylor Series approximation

H  ̂(_r) = _L ” A x)/2

is often inadequate - it is generally found that re- 
parameterisation (and subsequent linear approximation) is 
a better approach to the problem of dealing with parameter
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effects. Some relevant resultant theory [5] is summarised 
below.

Consider a re-parameterisation in which the new parameters 
±  are non-linear transformations of £.,

= Gjd) (j=l..p),

with inverse transformation

= *.(£) (j=l...p).

Dropping tildes for notational convenience, form the (pxp) 
Jacobian matrix G. (with elements 5Gj/dOk) and the (pxpxp) 
second derative array G. . (with elements d2G^/dOkd0l) . Then 
the new parameter effects array A (say) may be written in 
terms of the original via

A = A-ClT1] [iT-^G."1] [G. . ] L]. (4.3.23)

This equation forms the starting point for seeking re- 
parameterisations to give zero parameter effects.

Setting A equal to zero gives

[G._1] [G. . ] = [ (V.TV. )““1V.T ] [V..] = T* (say) (4.3.24)

when re-written in terms of the original parameters and 
derivative matrices. The target transformation <f>* = G*(0) 
should therefore satisfy

177



[ G.*"1] [G..*] = T*

or, equivalently,

G..* = [G.*] [T*] (4.3.25)

where T* is the resulting target transformation curvature 
array given above. We could seek to solve these equations 
completely generally in order to provide a global solution 
for G* or, alternatively, we could seek to obtain a 
particular solution to equation (4.3.25) in which T* is

Aevaluated at 6 i.e. to solve

G..* = [G.*] [T*(J)] . (4.3.26)

Neither of those methods appear to be of much practical 
use, however, not least because they will involve 
transformations which do not permit ready interpretation 
of the parameters. More promising may be the use of a 
particular class of transformation, such as Ross's 
expected-value transformation [59]. Problems of
invertibility still exist, though it may be possible to 
restrict the transformation to overcome this; although 
this may not eliminate parameter-effects completely, it 
can substantially reduce them. In the next Section we 
shall present ideas of our own aimed at eliminating the 
parameter-effects curvature.

The theory of this Section has laid the foundations for
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the remainder of the Chapter, in which we seek improved 
methods of non-linear parameter estimation.

4.4 Possible Re-parameterisations Based on Seeking
Orthogonal Mappings from Tangent Plane to Solution
Locus

Using the notation of the previous Section, we return to 
the non-linear model of equation (4.3.1). We note that 
observed data leads to parameter estimates (via least 
squares) based on our tangent plane approximation, which 
we shall here assume to be acceptable. It is the relation 
between such points on the tangent plane and their 
analogues on the solution that will now be discussed. 
This is not fixed and alternative parameter estimates may 
be suggested by various mappings from tangent plane to 
solution locus.

We recall that the least squares estimate £ of i is the 
value which minimises the sum of squares of residuals

A

n 2S(A) = E (yi - «?4 (D) i=l

In practice, n ( i . )  is typically approximated by

P dn
(4.4.1)
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i.e. an approximation about initial value (LQ which is 
linear in the individual parameter increments. 
Geometrically, we drop a perpendicular from the observed 
(n dimensional) data point D (say) onto the (p 
dimensional) approximating tangent plane ir at P = n.((Lo) • 
The corresponding point on the (p dimensional) solution 
locus, Q0 = r}(6_) , will not in general lie on this
perpendicular as we see below. Our discussion is related 
to that on the geometry of non-linear least squares found 
in [24].

Figure 4.4.1 shows the solution locus (with units of 6 

shown on it) for a non-linear model with n = 2
observations and p = 1 parameter (0). Assume without loss 
of generality that our initial approximation 80 = 0 and

Figure 4.4.1: Solution locus for a non-linear model
with 2 observations and 1 parameter
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that the point marked 0 - 1 is the point on the solution 
locus ri obtained when 0 = 1 etc. The (line) tangent n to 
the solution locus at 0o is also shown graduated with units 
of 0 which are obtained from the rate of change found at 
00• These units will be equally spaced; the fact that 
those on the solution locus are not results from the non- 
linearity and the non-uniformity of the co-ordinate 
system. It is this non-uniformity that gives rise to the 
parameter effects curvature of Section 4.3.

The least squares estimate of 0 based on the linear 
assumption is the corresponding value of 0 at the point, 
Dr, on the tangent line n such that DD„. is perpendicular to 
7r (where D is the 2-dimensional data point). In the next 
iteration of the linearisation procedure we will use the 
tangent line at the point Q0 (the point on n  corresponding 
to our least squares estimate just found). It is proposed 
here to try to seek the alternative new approximation 
point Q 1 (the point on n  lying on DE>p . In cases of high 
parameter effects curvature - where the rate of change at 
0O, and hence the linearised units of 0, are small, but 
the actual units increase sharply as in Figure 4.4.2 - 
such an alternative will accelerate our iteration 
procedure. Equivalently, we may seek a re-
parameterisation such that the mapping from tangent plane 
to solution locus maps D„. to Q1 as opposed to Q0, in order 
to simultaneously speed up the convergence procedure and 
reduce the parameter effects curvature as discussed in the
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20

Figure 4.4.2: Solution locus for a non-linear model with 
2 observations and 1 parameter (exhibiting 
high parameter effects curvature)

previous Section. The extension of this basic idea to the 
model defined by equation (4.3.1) with general n > p £ 1 
is relatively simple, though pictorial representation is 
not. Suitable re-parameterisations are sought below.

Let Q be a general point on the solution locus i.e.

Q = (^(1) -------------* (4.4.2)

Let Qr be the projection of Q onto the approximating 
tangent plane at n(i0) . We then have

= Mitt,,) ••••*»„ <*(,>> +J x (*k " *kT <4 -4 -3>

for some 0* (in general f £) where
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v T =  ( ^ A  
- j  KdO

drin
S.,

By construction, Q_ satisfies

&  ” ‘ *k= 0 (k = 1..p) (4.4.4)

Equation (4.4.4) gives us a set of (p) linear equations in
*icthe p unkowns 9  ̂ , namely

n
E ( v A i . )i=l "i(V  ' E 9_2x  

k=l d0,_
( C  - ek0)) !2i

l,
= 0

1,

(j = 1--P) (4.4.5)

from which we may deduce

H(!0) - ail) + *(£* - £Q) . X U *  - 1Q) = 0 (4.4.6)

where X (equivalently V. of Section 4.3) is the (nxp) 
design matrix with columns vk (k = l..p). Solution of the 
equations (4.4.5) yields

where

9* = l Q + A-1 C

n

(4.4.7)

A (kl)= if vki Vli (k,l=l--p) (4.4.8)

and
n

C (k) = i ^ i  (liie.) - li(£0) )vki (k=1--P) (4.4.9)
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with
a„.

Vki dO,
1,

Consider now a re-parameterisation £  = G(0.) i.e

= Gj (1) (j = l..p) . (4.4

Let £(4) denote the analogue of &(£) and define the 
(pxp) Jacobian matrix G. via

d<f>.
(G>)jk = 39k

S.,
(j, k = l. .p) . (4.4

By noting that

»€i

A k ” k
d$]

~dj.
(4.4

our previous ideas lead us to seek that re- 
parameterisation for which

a ( l Q ) - a(A) + x g. - ^0).x G._1(i - <t0 ) = o;

(4.4
by comparison with (4.4.6) we set

£. - 4 0 = G. (1* - ! q)

or, equivalently,

.10)

.11)

.12)

.13)
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which suggests the re-parameterisation

<t> j = 0* (j = l..p). (4.4.14)

We emphasise that the geometric interpretation of our re- 
parameterisation is that the analogue of any point on the 
solution surface is now precisely its projection onto the 
approximating tangent plane, or equivalently, our mapping 
from tangent plane to solution surface is orthogonal to 
the tangent plane. We note also that further
simplification results by taking ^ as the linear function
of £* defined by

£ = A”1 C* (4.4.15)

where A is defined by (4.4.8) and 

* nc (k) = .E ^(i) vk . (k = l..p) (4.4.16)

The effectiveness of such a re-parameterisation will be 
quantified in Section 4.6; meanwhile, a trivial example of 
these ideas will be presented. Consider the model 
function



with observations at x = 1 and x = 2, and initial estimate 
0O = 1. The (lxl) matrix A and (lxl) scalar C* are 5 and 
(8 + 2 02) respectively, suggesting the re-parameterisation

/ 0  +  2 0 2  f i 1<j> = ~ (4.4.17)

with inverse

6 ~ (16 2 4

To fully appreciate the geometrical significance of this 
re-parameterisation we refer to Figure 4.4.3 which 
represents the solution locus y = x2 together with the 
projection of the general point Q(x,x2) onto the tangent 
line at P(l,l). The co-ordinates of the projected point 
Qt suggest the re-parameterisation

,* » + 2 » 2 + 2 
* = 5

i.e. a linear function of equation (4.4.17). With data 
y x = 1.1/ y2 = 1.2 for example, linear approximation

Aunder the new model leads to <f> - 0.7, corresponding to
A A
9 = (729-1J/4, whereas under the original model 8 = 1.1? 
the original residual sum of squares lxlO-4 is reduced to 
1.7194 x 10‘5.
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y

Figure 4.4.3: Diagram suggesting possible re-
parameteridation when rj(x,$) = 0X 
with observations at x = 1 and x = 2, 
with 0O = 1

We note next that we may use equation (4.4.12) to show 
that under a 1st order Taylor series approximation, the

| least squares increment in the £ parameters - A^ (say) -
(I is trivially related to the original least squares 

increment in the £ parameters - A 0Q (say) - via

M  = G. M 0 (4.4.18)

where G. is defined by equation (4.4.11). We turn now to 
the question of invertibility i.e. the recovery of the 
least squares increment in the original parameters - A£
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(say) - which satisfies

<kQ +  A £  =  G ( £ 0 +  A £ )

or, equivalently,

£0 + M  = K(<£0 + M ) (4.4.19)

where the inverse function £ = K(^) i.e.

0 . = K.(^) D 1 (j = i. -p)

will in general be unknown.

We may proceed by expanding the right hand side of 
(4.4.19) in a 2nd order Taylor series to obtain

d0. 

k 9*k
(4.4.20)

where S-̂ is the (pxp) matrix defined by

,j . j s .kl (k,1=1..p) (4.4.21)

Using the fact that

d2 0 .

we may deduce that satisfies
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0 = T i *2*m
§ S *1 + =m k l

-1
(G# (j,k,l=l..p)
*0

(4.4.22)

where G.k represents the kth column of G. (k=l. .p) ; 
equation (4.4.22) enables us to determine Sj (j =1-.p). In 
the special case where G. is a multiple of the (pxp) 
identity matrix -

S- - e Ip

- we find that

. ! 3 %

’kl c3 de^de.

whence equations (4.4.20) and (4.4.22) yield the result

A*j - A9oj - 25 M ° (J-1--P) (4.4.23)

where G..j is the (pxp) matrix with (kl)th element

a2*.
dey dd1

*0
We conclude this Section by considering re- 
parameterisation based on the criterion of arc length. 
Specifically, in the case of a 1-dimensional solution
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surface, we may wish to associate the point D„. on the 
tangent line (at P) with the point Q on the solution 
surface which satisfies

arc length PQ = distance PDX

(See Figure 4.4.4). Such a mapping has a simple 
interpretation and has the merit of being locally 
orthogonal if our tangent plane approximation is 
reasonable, giving rise to zero parameter effects 
curvature. Furthermore, such a parameterisation is
globally optimum, being essentially independent of the 
starting point P.

Tr

Figure 4.4.4: Mapping from tangent plane to solution 
surface based on the criterion of arc 
length

To illustrate the above approach we return to our previous 
example, in which our arc length idea now suggests the 
parameter estimate r(say) which satisfies
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r 2 3*J (1 + 4x ) 2 dx = -/5 A0q (4.4.24)

where the original increment A0O = 0.1. By using the 
substitution

x = h sin h (u)

in the integral above we may deduce that t satisfies

5 sin h"1 (2r) + 10r(l + 4r2)^ - 5 sin h_1(2) - 12V5 = 0.
(4.4.25)

The solution (r = 1.09627 to 5 decimal places) is very 
similar to the value - («/29-l)/4 found under the previous 
method of perpendicular projection, as of course is the 
new residual sum of squares 1.7182 x 10“5.

Unfortunately, there is no natural extension of the above 
approach that is practically feasible in the general case 
of p (>1) - dimensional solution surfaces. We merely note 
that the attractive properties of the arc length 
parameterisation when p = 1 make the quest for such a 
generalised approach worthwhile, though this will not be 
pursued here.
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4.5 Further Geometrical Approaches to Non-linear
Parameter Estimation Based on Fitting Circles of 
Curvature

Using the notation introduced in the previous Sections we 
may re-formulate our estimation problem in the following 
terms: given a general p-dimensional solution surface (n) 
- characterised by parameter £  - in n-dimensional space, 
and an n-dimensional data point D, we wish to find that 
(p-dimensional) parameter value which corresponds to the 
point on n nearest to D. We typically have available an 
initial guess at the solution, £$ (say), which corresponds 
to a point P on a.

Standard inference methods for non-linear models (where £  
is not planar, but a curved surface) are based on local 
linear approximations to the model, corresponding to 
imposing a tangent plane (tt) at P, together with an 
underlying uniform co-ordinate system, as discussed in 
Sections 4.3. & 4.4. The appropriateness of such a co
ordinate system - which depends upon the particular 
parameterisation used - may be quantified by the parameter 
effects curvature of Section 4.3, which we shall here 
assume has been either completely or nearly optimised. In 
particular, we shall often with to use the concept of 
'perpendicular projection' introduced in Section 4.4, 
whereby the mapping from tt to %  is orthogonal (to w) . 
First, however, the underlying motivation for the ideas of

192



the present Section will be given.

We consider the (n =) 2-dimensional case in which the 
solution surface a is a circle of radius r, and apply the 
following stability analysis. Three possibilities arise, 
depending on whether the observed data point D lies on the 
concave/convex side of a at a distance (from the true 
least squares point) greater/less than r - note that we 
eliminate the case of D lying on the concave side of the 
circle at a distance greater than r. Let P0 denote the 
point on the circle representing our initial guess at the 
least squares point, with corresponding tangent tt, and Px 
our next guess. Let PT denote the true least squares 
point. The results of an application of our method of 
perpendicular projection of the previous Section may now 
be represented as in Figure 4.5.1. Considered as a local 
analysis, for small perturbations - i.e. good starting 
point P0 - cases (a) and (b) are stable whereas case (c), 
in which D is on the convex side of a at a distance 
greater than r, isn't. Consequently, we shall henceforth 
focus our attention on such data points lying on the 
convex side of

In practice, of course, we will not initially know the 
true least squares point PT, so we will need to 
approximate r* (which will not in general be a circle) by 
the appropriate circle of curvature at P0. Let this 
circle have centre 0? the ideas of this Section seek to
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O )

(b)

(c)

jn*

IT

D

Figure 4.5.1: Stability analysis (n=2, p=l) when 
the solution surface is a circle
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utilise the direction DO rather than the standard 
direction DDr (where Dx represents the projection of D onto 
7r) . In the general case n > p £ 1, by using appropriate 
curvature measures, we shall wish to obtain better 
approximations to the solution surface - than those based 
on the tangent plane alone - and to modify our estimation 
procedure accordingly.

We shall now give a few simple examples of possible 
alternatives to the standard least-squares method, based 
on fitting appropriate circles of curvature, which may be 
expected not only to speed up convergence but also to work 
over a wider range of data values. Ideas motivated by 
such cases in which pictorial representation is feasible 
need to be extended to the general case. This is 
attempted later in the Section. We note that the 
evaluation of the appropriate radii of curvature may be 
carried out as shown in Section 4.3. It is assumed also 
that other standard quantities e.g. principal normals, 
principal/conjugate directions, directions of steepest 
descent etc may also be readily calculated.

Example 4.5.1 (n = 2,p = 1...plane curve)

Instead of fitting the tangent (line) at P, suppose we fit 
the circle of curvature with centre 0 along the principal 
normal (PN) from P (see Figure 4.5.2). The following 
possibilities present themselves.
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PN

Figure 4.5.2: Diagram showing possible geometric
approach to non-linear parameter 
estimation in case where n=2, p=l

Ideally we would seek the point on the solution surface 
lying on the line DO (and then repeat the procedure until 
convergence achieved) . For this approach, we need to know 
the corresponding parameter value, which should be 
possible here. Otherwise we could seek the point on n 

lying on the line DO, and map to ja. corresponding to the 
known updated parameter estimate (and then cycle). It is 
readily seen that this new point on ?r is an improvement on 
the previous value Dx (under perpendicular projection). 
Alternatively, we may seek to make use of our knowledge of
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the nearest point on the circle of curvature (Q) to our 
data point. A mapping from the circle to the solution 
surface is needed for this, via n is necessary. The need 
for a sensible mapping ir -+ a  is apparent, a (near) 
orthogonal one being crucial in the region of the true 
least squares point.

The possibilities cited here may be summarised as follows 
(using an obvious shorthand notation):

(a) do n a
(b) d o n 7T (-+ a)
(c) do n o = q ((—► 7r) -* a)

Example 4.5.2 (n = 3, p = 1...space curve)

In this case, the principal normal (PN) and the tangent 
(line) 7r define a plane, n* (say) , through P. Let D,,* be 
the projection of D onto w* (see Figure 4.5.3). The 
following possibilities now present themselves.

Ideally we would seek the point on the solution surface 
lying in the plane DD^O (and then repeat the procedure) . 
The same provisos as in Example 4.5.1 apply. Otherwise we 
would either seek the point on ir lying on the line D,,*0 
and proceed as before; alternatively point Q may be 
utilised as before, yielding the following possibilities:
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D

IT*

Figure 4.5.3: Diagram showing possible geometric
approach to non-linear parameter 
estimation in the case where n=3, p=l

(a) DDr*0 n n
(b) D«-*° n n S.)

(C) D,*0 n 0 = q ((-»*)-» a) .

Example 4.5.3 (n = 3, p = 2)

Numerous possibilities arise in this case. Suppose first 
that we were to fit the circle of curvature at P in the 
direction D^P (see Figure 4.5.4, in which for simplicity 
H is not shown) . Again we would first seek the point on 
the solution surface lying on the line DO, with analogous
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alternatives to the previous examples viz:

H H S S i

Figure 4.5.4: Diagram showing possible geometric
approach to non-linear parameter 
estimation in the case where n=3, p=2 
(for simplicity solution surface is not 
shown)

(a) DO n n
(b) DO n 7r (-► ji)
(c) DO H 0 ((—► 7r) -* n)

However, we find that case (b) above gives a simple re
scaling of the usual least squares parameter increment; 
alternative procedures may therefore be sought which will 
offer hope in cases where this direction is unpromising. 
A couple of such procedures are now discussed.
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The first possibility is to fit (2) circles of curvature 
at P in principal directions (determination of such 
directions may be found via e.g. [19] p. 357). D may then 
be projected onto the resultant planes of curvature ttj and 
7r2 (say) and these points and Dw2 may be joined to the 
corresponding centres of curvature 0 1 and 02. These lines 
will cross the tangent plane w along principal 
(orthogonal) axes centred at P and these points of 
intersection may be combined naturally to give the new 
approximation point on tt. The analysis may now continue 
as before. An attempt at pictorially representing this 
procedure is given in Figure 4.5.5.

A minor modification of the above approach is to maintain 
the direction DTP in the tangent plane and use it as one 
of a pair of conjugate directions. A similar procedure to 
that above for principal directions may be employed.

We shall now consider possible extensions to a general 
procedure based on the previous three examples. The first 
attempt would seem to be to project the data point D onto 
the approximating tangent plane w as before, and fit the 
appropriate circle of curvature in the direction D„.P lying 
in the plane through P spanned by this direction vector 
and the principal normal) . We would then wish to solve

7r' n u
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Figure 4.5.5: Diagram showing an alternative approach
to non-linear parameter estimation in 
the case where n=3, p=2 (for simplicity 
solution surface is not shown)

where 7r1 is an appropriate (n-p) dimensional space through 
D and the resultant centre of curvature 0. This should 
then give us a new approximating point on the solution 
surface, corresponding to an updated parameter estimate.
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The major drawbacks of such an approach, which although 
intuitively sound seems to be practically infeasible, may 
be listed as follows:

(1) Determination of the complementary space 7r'
(though some form of decomposition analogous to 
that for the acceleration vector nh of Section 4.3 
may prove useful)

(2) Solutions of 7r' fi
(3) Mapping: n -+ $_ (i.e. given a new point on the

solution surface, can we readily find its
underlying parameter value?).

We must be careful, especially a propos (2) above, not to 
make the modified problem much more difficult than the 
original. Although such a direct approach may work in 
particular cases, recourse will generally need to be made 
to more practical methods such as the possibilities cited 
below.

In the light of our (illustrative) examples we may seek to 
reduce the general problem (n > p ^ 1) to a sequence of 2- 
dimensional problems. The obvious candidates involve 
first the fitting of p planes through P defined by the 
principal normal (PN) and p spanning vectors for ir. The 
projection of D onto each plane in turn may be joined to 
the corresponding centre of curvature and we note where 
these lines cross the corresponding 'axes' in the tangent 
plane n (or we may project back from the corresponding 'Q'
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if necessary). We then combine these p 'co-ordinates' to
get a point on ir (corresponding to a known parameter
increment) and proceed as before. The case where the 
spanning set forms an orthonormal basis for n is outlined 
below:

(1) Fit p (orthogonal) planes through P defined by 
(unit vector) PN and the p spanning vectors 
U^-.Up (say)

(2) Find projection of D onto each plane (D^ j=l..p)
(3) Find centres of curvature (Oj j=l..p)
(4) Find DTj Oj n 7T (P + Aj Uj (say) j=l..p)
(5) Find parameter value corresponding to point

PP + E A . U. (on tt)
j=l J J

(6) Repeat procedure until convergence achieved.

Other obvious candidates for the spanning set to use are 
principal directions and conjugate directions (using DTP 
as one axis), the underlying approach being exactly the 
same. Finally, it should be noted that in cases where the 

lie above the corresponding axis they should be 
projected onto the axis either as before or via Qj (not via 
the intersection with Dxj Oj) as illustrated in Figure 
4.5.6.
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I
iI Figure 4.5.6: Possible projections arising when! lies above the axis (x n 7Tj)
f[
! Another method conducive to this type of approach is that
| of steepest descent in which we have the direction, h
i| (say), in which to adjust the parameter estimate 6̂  but
| not the appropriate step length? such a situation may be
j accommodated as follows. Simply fit the circle of

curvature at P in the direction h and join the projection 
I of D on the corresponding plane of curvature to its

centre; then pick off the step length from the 
intersection of this line with the axis h (or from the 
projection of 1Q 1 onto h) . This should yield a nearly 
optimal step length...for absolute optimality refinement 
procedures (e.g. bisection) will still need to be employed 
in this region. The consequent usefulness of this 
approach does therefore seem limited. On the related
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topic of re-scaling our normal least squares parameter 
increment, however, (as in Example 4.5.3.(b)), we note 
that (with data point D below tt) our modified procedure

crystallographic setting, this will help correct for the 
over-estimation found in crystal structure analyses, as 
discussed in Section 3.5.

Thus far we have only considered sequences of 2- 
dimensional problems based on fitting circles in various 
planes. Suppose, however, we wished to best fit the 
solution surface n based on the information provided by 
various radii of curvature. One natural way of doing this 
is to approximate n by a principal ellipsoid i.e. an 
ellipsoid that fits the solution surface at P in the sense 
that its radii of curvature match those calculated along 
principal directions. Let the principal axes be denoted 
by Xj-.Xp and the principal normal by xp+1. Then the 
resultant ellipsoid has equation

will always reduce the step length. In the

p+1 x.2
1 (4.5.1)

where P represents the point (0....0, -ap+1) and

2a .
(j=l- -P)
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rj being the radius of curvature along the Xj axis. We 
set ap+1 = min (r^.rp). We assume the projection of
our data point D = (dla...dn) onto the plane, w*, spanned

• * * •by Xj.... xp+1 has co-ordinates Dx* = (dj . . . .dp+1 ) with
* • i •dp+1 < -ap+1. Finding the nearest point (Q) on the 

ellipsoid (4.5.1) to our data point D now corresponds to 
minimising

* 2E (x. - d. ) (4.5.2)
j=l J J

subject to (4.5.1). The method of Lagrange's undetermined 
multipliers yields the solution

X . =  J J (j=l...p+l) (4.5.3)
3 1 + A/a^

where A satisfies

P+lE
j=l

 ______
_aj (l + A/a?)

= 1 (4.5.4)

We now have a 1-dimensional problem (solution of (4.5.4) 
for A) which should not prove too intractable. Having 
solved this, we will still, however, need a suitable map 
from ellipsoid to parameter space (hence n) . If we do 
this via projection of Q onto tt, perpendicular projection 
from jt to n will return to us a point on n  in the vicinity
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of Q as required.

The potential problem of determining A is somewhat
alleviated if the ellipsoid becomes a (p-dimensional) 
sphere. The problem still remains, however, of finding 
the appropriate radius of the sphere. Two candidates
immediately present themselves:
(1) The radius of curvature in the key direction D7rP
(2) The minimum radius of curvature in any direction.
Option (2) , for which convergence may be (very) slow is a 
conservative procedure. Option (1) is likely to be of 
more use. It should only be implemented, however, if the 
discrepancy between the maximum and minimum (principal) 
radii of curvature is small enough to permit such an 
approximation. As before, Q may now be found either by 
the intersection of the (n-p) -dimensional complementary 
space 7r1 with the sphere or trivially via the join of Dx* 
to its centre 0.

Alternatively we may wish to fit the 'principal 
parabaloid' with equation

2P x.
L ? =  2 x n + l  ( 4 . 5 . 5 )j=l P+1

where P now represents (0,...0,0) and aj2 = rj (j=l..p). 
The method of Lagrange's undetermined multipliers now 
yields the solution
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*
diX .  =  ------ 3-----r  ( 3 = 1 . . . p ) ,  x = d  + A ( 4 . 5 . 6 )

3 1 + A/a. p p

where A now satisfies

p d.* 2
Z (----- 3----  ) = 2 (d * + A) . (4.5.7)

j=l 3j(l+ A/aj ) p+±

Other approximating surfaces based on known radii of 
curvature may of course be used. We would expect all to 
lead to improvements over methods based on the tangent 
plane approximation alone, which does not utilise this 
extra information on the curvature of the solution surface 
at the current approximation point.

An example of our ideas involving the fitting of an 
appropriate ellipsoid appears in Section 4 . 7 .

4.6 Extension of the Ideas of Sections 4.3 and 4.4 with 
Particular Emphasis on the Crvstalloqraphic Model

The parameter effects curvature array defined by equation
( 4 . 3 . 1 5 )  for the model defined by equation ( 4 . 3 . 1 )  with 
p=l reduces to the (lxlxl) array

a = - A  z ^
A3 i=l " l

e J ei2

(4.6.1)
0-o -o
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where

A =
n drj.

E (Jbi=i dei
e-o ■>

(4.6.2)

By using the re-parameterisation

n drj.
*1 - ^ (4.6.3)

*0
motivated by the analysis of Section 4.4, we find that the 
(lxl) matrices G. and G.. of Section 4.3 become

G.=
n drj.
T --—

i=i dei
(4.6.4)

and

G. . =
n 3 rj.

• E  2i=l 3 9 *

3tj± 
39 „

(4.6.5)

*0

The new parameter effects array is given by equation 
(4.3.23) as

A = A - 1A G . (4.6.6)

which reduces to zero at 9_ = f0.

Similarly for the 2-parameter case in which 9_ = (9lf92) , 

the re-parameterisations suggested by Section 4.4 produce
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zero parameter effects at 0_ = £4 . We next consider the 
analogous results for the 3-parameter case (T = (0i,62,O3) , 

of which the model function

f(x, 0.) = cos 27r (x1 01 + x2 + x3 03) (4.6.7)

is an example. We shall then wish to extend our theory to 
cover linear combinations of distinct model functions, in 
order to give us some insight into how to handle the non
linear models appearing in crystallographic studies. The 
notation used is that of the previous Sections.

The parameter effects curvature array defined by equation
(4.3.15) for the model defined by equation (4.3.1) with 
p=3 is the (3x3x3) array given in Appendix 2. Equation
(4.4.15) leads us to consider the re-parameterisation

3 n
= E (7 . E V..) (j=l,2,3) (4.6.8)

3 k=l ]K i=l 1 K1

where the coefficients 7jk may also be found in Appendix 
2. Evaluated at 00, the (3x3) matrix G. is now 
proportional to the (3x3) identity matrix, and the (3x3x3) 
array G. . has elements Bjkl where

23 n
^ kl = i=l Vmi

) (j jk/1—1/2,3). (4.6.9)

It may be checked that the new parameter effects array
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reduces to zero. Once again, the reduction of the 
parameter effects curvature array is seen to 
quantitatively vindicate our notion of perpendicular 
projection. Before returning to our specific
crystallographic problem, we shall now consider sums of 
model functions as discussed below.

Suppose our model function splits into the form

^ ( x , ^ )  + f2 (x,i2) (4.6.10)

where

= (j~i»2) ,

with and £2 containing no common parameters. Suppose 
further that we have available re-parameterisations ^  for 
the individual model functions fj(x,.0j) (j=l,2), chosen to 
ensure individual zero parameter effects curvature arrays 
as discussed above. By letting U.j represent the first pj 
columns of Q in the *Q R' decomposition of Section 4.3iy /w

carried through for the model function fj(x,£j) (j=l,2), 
the re-parameterisations and lead to (Appendix 2) a 
reduced parameter effects curvature array for our model 
function (4.6.10) if U M T U.2 = 0. The argument may be 
extended to cover the sum of arbitrarily many model 
function involving disjoint subsets of parameters, a 
sufficient condition for the individual re- 
parameterisations being effective being that
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U. .T U.. = 0  (j f k) . (4.6.11)~ J ~ K  ~

Falling into this framework will be the model functions 
appearing in crystallography, namely (neglecting 
temperature factors) those of the form

R
f(x,£.) = E cos 2n (x10lr + x2 $2r + X3*3r^ (4.6.12)r=l

for which condition (4.6.11) yields

n
Z m.m.' sin 2* + x2i«2r0 + x3i e3r Q )

.sin 2ir + x2i e2s0 + x3 . O3s0)

= 0 (r,s = 1..R)
2' X3*

(4.6.13)
(m,m'= x1, x2, x3)

where 0lrO is our present estimate of the parameter 0lr etc. 
Equations (4.6.13) are not unreasonable in practice; after 
all they form the basis of the block diagonal 
approximations discussed in Section 3.5. Thus the 
individual re-parameterisations given by equation (4.6.8) 
for the model functions appearing in the summation term of 
equation (4.6.12) will be useful for crystallographic 
purposes, without at the same time being too unwieldy.
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4.7 A Summary of Results of the Applications of Some of
the Ideas from Sections 4.4 And 4.5

Throughout this Section we shall be considering the model 
(4.3.1) in which the model function

f(x,£) =  »7(x,£.) = x4 cos 27r(x101+ * 2 02+ x 3 0 3 ) , (4.7.1)

and shall be comparing our ideas against the standard 
least squares approach to non-linear parameter estimation. 
For the basis of our comparison we shall be using the 
parameter estimates at successive stages of the iterative 
procedures, together with the associated residual sum of 
squares (which we are trying to minimise),? the residual 
sum of squares shall henceforth be abbreviated to RSS.

The theory of Section 4.4 was primarily concerned with 
those cases in which the tangent plane approximation was 
reasonable, though the parameter effects curvature was 
high. By using the re-parameterisation suggested by 
equation (4.4.15) in conjunction with equation (4.4.23), 
thus enabling us to calculate the appropriate parameter 
increment, we would expect our ideas to be superior in 
such cases. This turned out to be the case in some of the 
limited examples studied, though similar results were 
obtained in general. Furthermore, in practice it was 
found that the high parameter effects curvature was 
present usually only when high intrinsic curvature also
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pertained. In view of this, successful implementation of 
the techniques of Section 4.5 was deemed to be of more 
importance in the crystallographic setting.

Henceforth we shall be primarily concerned with data 
points on the convex side of the solution locus (n) 

sufficiently far from our initial approximating point. In 
a similar vein to Example 4.5.3 (b) , we may seek to re
scale the usual least squares parameter increment based on 
fitting the appropriate circle of curvature in the least 
squares direction. We shall actually consider here the 
standard increment suggested by the projection of Q onto 
the tangent plane ir (see Figure 4.5.4). Alternatively, we 
may wish to test some of the ideas at the end of Section
4.5 based on replacing the approximating tangent plane by 
an appropriate ellipsoid. In practice, instead of the 
principal ellipsoids cited previously, we shall content 
ourselves by fitting ellipsoids consistent with the 
(intrinsic) radii of curvature in the orthogonal 
directions determined by the 'QR' decomposition of Section 
4.3. Such ideas are likely to prove particularly helpful 
in cases where the intrinsic curvature is relatively high 
- so that the usual tangent plane approximation is not 
very good. For illustrative purposes, we consider the 
following example, which typifies our findings.

We set n = 10 and suppose we have the data point

D = (-2,3,3,-7,8,4,-2,-9,5,0)
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obtained for the following experimental settings:

Xj1, = (1,2,3,4,5,6,7,8,9,10) 
x 2T = (1,0,2,0,1,1,1,2,2,2)

X3T = (4,3,2,1,4,3,2,1,2,3) 
xj = (2,4,6,8,2,4,6,8,6,4) .

We take as our initial parameter value

£oT = (-3515,.7941,.0895) ,

which gives rise to an initial RSS of 67.40. A single 
application of the standard non-linear least squares 
method produces the parameter estimate (to 4 d.p.)

(say) = (.3211,.8084,.1355),

which gives rise to an increased associated RSS, namely 
88.08. The reason for this increase is the high intrinsic 
curvature: the radius of curvature of the solution locus 
in the least squares direction alone is found to be only
0.90. However, by fitting the appropriate circle of 
curvature in this direction as suggested above, our re
scaled increment gives the parameter estimate (to 4 d.p.)

12 (say) = (.3464,.7965,.0971) 

with an RSS of 62.24.

215



The alternative method based on fitting the ellipsoid 
yielded the parameter estimate (to 4 d.p.)

13 (say) = (.3405,.8130,.0946),

with an even smaller associated RSS of 56.23. Our results 
are summarised in Table 4.7.1, together with the converged

Amestimate 0_4 (say) (to 4 d.p.) and its associated RSS.

m RSS
0q : (.3515, .7942, .0895) 67.40

: (.3211, .8084, .1355) 88.08

12 : (.3464, .7965, .0971) 62.24

£■? : (.3405, .8130, .0946) 56.23

£4 : (.3314, .8445, .0953) 53.43

Table 4.7.1: Summary of the results of the example of
this Section, for which the radius of 
curvature of the solution locus in the 
least squares direction is 0.90

As previously stated, the results above are typical of 
what we might expect in cases of high intrinsic curvature.
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In such cases, the subsequent inapplicability of the 
standard least squares method may be overcome by resort to 
methods such as those proposed here. A cautionary note is 
in order, however: even these methods are not guaranteed 
to converge, and we may additionally require low parameter 
effects curvature for any mappings ir -> n  to be acceptable 
over the range of valid approximation. Our initial 
findings of success dictate that further such analysis of 
the properties of our schemes should be undertaken.
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CHAPTER 5 
EXAMPLES OF STATISTICAL TECHNIQUES 

TO SEQUENTIAL CRYSTAL STRUCTURE DETERMINATIONS

5.1 Introduction

In this Chapter, we shall be considering the application 
of some of our ideas from Chapter 3 to sequential crystal 
structure determination. The example of Section 5.2 sees 
us comparing a weighted least squares approach based on 
(3.3.45) against alternative (Bayesian) competitors. The 
example of Section 5.3 sees the implementation of the D- 
optimality based ideas of Section 3.6. Details of the 
structure under study - namely, anthracene - are given in 
Section 5.2, together with a summary of the prior beliefs 
we shall be using. Details of the specific sequential 
procedures invoked will also be found in the relevant 
sections, together with a summary of the results obtained.

5.2 Application of the Weighting Scheme (3.3.45) in the 
Structure Determination of Anthracene bv Weighted 
Least Squares and a Comparison with Various Bavesian 
Methods of Structure Determination

In this Section we shall be investigating the structure of 
anthracene, a product in the distillation of coal-tar 
used in the manufacture of dyes. Its unit cell is 
monoclinic, that is the axes a,b,c are of unequal length 
(namely 8.561, 6.03 6, 11.163 A respectively) and the only
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non-orthogonal relationship amongst them is that the angle 
between axes a and c is 124.7°.

The asymmetric unit is known to consist of 7 carbon atoms 
and 5 hydrogen atoms, and the symmetry relationships are 
as follows: for every atom at (x,y,z) there are
equivalent atoms not only at (-x,-y,-z) but also at both 
(x+^,y,z) and (x,^-y,z). We shall have available the 240 
observed structure factors as provided by the proportional 
counter data of Phillips used in [61], together with their 
associated measurement errors based on the corresponding 
(sin 0)/A values. The parameters we shall wish to 
estimate are hierarchical: of primary concern will be the
(3x7) carbon atomic co-ordinates, though we shall also be 
estimating the (3x5) hydrogen atomic co-ordinates and (7) 
carbon isotropic thermal parameters (the corresponding (5) 
hydrogen isotropic thermal parameters being fixed). For 
scaling purposes, an overall scale factor will also be 
estimated.

The purpose of the analysis of this Section is to compare 
a structure determination using a weighted least squares 
approach based on (3.3.45) with various Bayesian 
procedures, including an existing scheme used in the 
Crystallography Unit at University College London. More 
shall now be said about this latter scheme which is a 
variant of our Bayesian approach outlined at the start of 
Section 3.3.

The main difference arises from the fact that the model
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used is now

FO* (h)/FT = ft ~ N(ft, <rQ * 2 ) (5.2.1)

i.e. we assume the structure amplitude given the sign of 
the current fitted structure factor is normally 
distributed about the true structure factor with variance 
<j0*2 (say). The analogue of equation (3.3.4) becomes the 
linearised model

y(°)/£ ~ N(X(0)M (0) , V*) (5.2.2)

where X^, are defined by equations (1.5.4), (1.5.5)
and y* is taken to be the diagonal matrix with elements 
<70*2. Analysis goes through as before resulting in the 
equations (3.3.5) - (3.3.7), but now with $ = [V*]"1. With 
this important proviso in mind, the approach proceeds 
similar to before. [A discussion of the varying approaches 
to structure determination is deferred to later in the 
Section]. The formula used in the existing programme for 
the variances a0*2 shall now be given.

We define by s2 the quantity

s2 = S (FO*(h) - FC(h))2 (5.2.3)
& -------- n-------

where the summation is evaluated from the previous stage 
of our analysis (incorporating n observations). 
Initially, crystallographers must specify an appropriate 
s2 value. We may similarly evaluate/specify the
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corresponding R-value as defined by equation (4.2.16) at 
the previous stage. We then define

2 (FO*(fc) - FC(h))2
V  = ao (b) + 10 + M

+ (2FO*(ll))2 exp(2s R Si"  ̂ (h)) (5.2.4)

where <r02 (h) is the associated error variance for our
measured structure amplitude. The theory behind such a 
scheme is briefly discussed in [58].

Although the theory proposed above is based on a different 
model to that discussed in Section 3.3, our ideas there 
centred on an improved estimate of the variances of the 
appropriately signed structure factors. We shall 
therefore consider the results obtained using the above 
approach in conjunction with

(T0*2 = (FO* (h) - px)2 + a 2 (5.2.5)

(where nlt<r* are defined by equations (3.3.43), (3.3.44)).
For completeness, we shall also consider the results 
obtained from the Bayesian approach using our original 
model (3.3.30). In all three cases, the chemical 
information available - to be presently introduced - will 
be treated as observational data also. This will also be 
the case in our weighted least squares approach, with 
weights based on (3.3.45), as outlined in Section 3.3. We 
shall now give further details of the analysis and methods 
of comparison to be used.
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Our initial batch of data shall comprise all data out to 
an S-limit of .2 (where S = (sin 0)/A). The S-limit for 
successive cycles will be determined by the formula [58]

s = I?r m T  (5-2-6)

where R is the R-value just evaluated and R(-l) the R- 
value at the previous stage (initially set equal to .5). 
This is very much an ad hoc rule in keeping with the 
concluding comments of Section 3.2 and has been found to 
work well in practice. Furthermore, the initial values 
(although not consistent)

are used in the denominator of the right hand side of 
(5.2.4) .

We shall compare the differing approaches by the 
traditional method of tabulating n and R values at the 
various stages, and by also giving the corresponding 
weighted R - values defined by

2 W, (FO* (h) - FC (h)) 2
WR =  ---=-------------------

S W. FO*(h)2 
h —

- where the Wh are the diagonal elements of the matrix JJ - 
though we should note that the Bayesian approach doesn't 
purport to minimise any such criterion function. We shall
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also list a2 values, the average values of the variances of 
our estimates for the co-ordinates of the carbon atoms 
(see later discussion). The variances quoted (in units of 
A2) will refer to positions in real space. We note that 
such variances may in fact be underestimates due to the 
various approximations involved, in particular those 
accounting for the non-linearity and any phase 
uncertainty. Care must consequently be taken with their 
interpretation. Finally, we shall give the refined 
(fractional) co-ordinate estimates for the 7 carbon atoms, 
which will serve as our best means of comparison.

For our trial structure we make use of the fact that the 
anthracene molecule is known to be approximately planar 
and of the form of Figure 5.2.1, where the numbers 1-7 
represent the carbon atoms and 8-12 the hydrogen atoms. 
We are not, however, sure of the relation of the molecular 
plane to the crystal axes and unit cell and consequently 
impose prior beliefs for the atomic co-ordinates of the 
form of equation (3.2.12). The means of our prior 
distributions to be used for this example are summarised 
in Table 5.2.1, together with the analogous prior beliefs 
about the overall scale factor and isotropic thermal 
parameters. All prior variances for the atomic co
ordinates are set equal to .0025 with the remaining prior 
variances set equal to .01.

Our prior chemical information consists of the 
specification of 19 bond lengths and of 27 direction
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• 9 .11*
12.

8'

Figure 5.2.1: Basic (planar) structure of the anthracene
molecule. Numbers l 1,2' etc denote 
symmetry related atoms

cosines as summarised in Table 5.2.2: all prior means for
direction cosines are 0 and the corresponding collinear 
pairs of atoms are listed. All prior variances are .0001, 
with the corresponding prior variances on bond lengths 
being .001. We note that such information does not 
involve the isotropic thermal parameters. These
parameters are furthermore not well-determined by the 
diffraction data for the low angle observations that we 
initially incorporate into our analysis. The weighted 
least squares approach therefore fixes these parameters in 
the early stages of the refinement procedure by applying 
a partial shift rule for them of the form of (3.5.20) with 
rj=0. [The problem does not arise in the Bayesian case, 
since the shifts are constrained by the initial variances 
.01] .
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Parameter
S

y i
zi
X 2

y2
Z 2

X 3

y3
Z 3

X 4

y4
Z 4

X 5

yB
Z 5

X6
y6

y?

Prior mean 
1.2

.04784
-.07001
.34979
.09298
.08680
.28476
.04600
.04505
.14056
.08952
.20118
.06967
-.04485
-.15787
.06965
-.08924
-.31429
.14309
-.04429
-.26914
.27846

Parameter
X 8

y8
Z8

y9
Z 9

X 10

yio
■10

kll

yn
■ii
“12

yi2
'12

Bi
B,
B,
B,
Br
B,6
B7

Prior mean 
.08108 
-.01410 
.45900 
.17210 
.25000 
.33960 
.15720 
.36375 
.12510 
-.14967 
-.47907 
-.08527 
-.07525 
-.43433 
.32271

4.5
4.5
4.6
4.7
4.8
4.9 
5.0

Table 5.2.1: Summary of prior parameter beliefs for the
anthracene example of this Section. 
Parameter xr denotes the x co-ordinate of 
the rth atom etc; similarly Br the isotropic 
thermal parameter. S represents the 
overall scale factor
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Pair
bonded

of
atoms

Prior mean 
(A)

Collinear pairs 
of atoms

1 2 1.40 1 3 , 2 4
2 3 1.40 5 6 , 4 7
3 4 1.40 1 2 , 7 4
3 5 1.40 3 4 / 7 3
5 6 1.40 1 5 , 8 1
6 7 1.40 2 6 , 9 2
1 7 1.40 2 6 , 10 4
1 8 1.09 2 6 , 6 11
2 9 1.09 3 7 , 7 12
4 10 1.09
6 11 1.09
7 12 1.09
1 3 2.42
2 4 2.42
4 5 2.42
5 7 2.42
1 5 2.80
2 6 2.80
3 7 2.80

Table 5.2.2: Summary of prior chemical information for
the anthracene example of this Section

226



The results of our analyses are summarised in Tables 5.2.3 
- 5.2.7, the latter Table comparing the resultant final 
estimates. As commented after (3.3.45), we maintain the 
original data throughout, though fixed matrices # are used 
once all 240 observations are incorporated into the 
analyses. We shall now briefly comment on the results of 
our analyses.

Direct comparison of Bayesian and least squares approaches 
to crystal structure determination is difficult due to the 
differing underlying rationales - see Section 4.2 - and 
consequent difference in interpretation of the results. 
In particular, the a2 values of this Section are derived 
from the covariance matrix of the posterior distribution 
for the parameters in the former case and from the 
covariance matrix of the sampling distribution of the 
least squares estimate in the latter.

We shall consider first the results obtained under the 
Bayesian-type approaches as summarised by Tables 5.2.3 - 
5.2.5. The rationale behind Table 5.2.5 - based on the 
model (3.3.30) and prior information of the form of 
(3.2.12) - is sound as far as it goes. However, model 
(3.3.30) assumes no sign information; by ignoring 
available such information, this approach is likely 
to prove sub-optimal, especially in cases (unlike 
here) in which the initial phase discrimination is 
poor. The rationale behind Tables 5.2.3 and 5.2.4 
attempts to correct for this by using the model (5.2.1),
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Cycle n R WR
1 17 .550 .578
2 15 .328 .387
3 26 .429 .429
4 48 .339 .330
5 47 .280 .278
6 86 .197 .204
7 160 .137 .158
8 240 .098 .128
9 240 .075 .100

10 240 .072 .097
11 240 .071 .095
12 240 .071 .095
13 240 .071 .095

Table 5.2.3: Results using
(5.2.2) and 
example of thi

a2 (A2 x 1(T5)
(78100)
202
319
111
101
85.0
35.7
13.8 
7.28 
5.94 
5.56 
5.52 
5.51

Bayesian approach based on 
5.2.4) for the anthracene 
3 Section
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cle n R WR a2 (A2 X 10
1 17 .550 .953 (78100)
2 15 .400 .568 325
3 19 .201 .165 36.6
4 93 .150 .115 36.2
5 240 .099 .031 2.04
6 240 .084 .027 1.28
7 240 .083 .027 1.23
8 240 .083 .027 1.22

Table 5.2.4: Results using Bayesian approach based on
(5.2.2) and (5.2.5) for the anthracene 
example of this Section
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Cycle n R
1 17 .550
2 15 .510
3 15 .331
4 30 .348
5 69 .161
6 135 .107
7 240 .077
8 240 .070
9 240 .067

10 240 .066
11 240 .066

WR a 2 (A2 X 10
765 (78100)
544 15.9
411 35.4
365 19.6
167 5.03
097 2.29
073 1.92
069 .957
067 .939
066 .938
066 .937

Table 5.2.5: Results using the Bayesian approach based
on (3.3.30) for the anthracene example of 
this Section
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cle n R WR a2 (A2 x 10
1 17 .550 .953 ( - )
2 15 .475 .493 497
3 15 .315 .313 65.9
4 40 .162 .126 32.3
5 160 .136 .078 5.00
6 240 .068 .032 2.21
7 240 .061 .030 1.80
8 240 .061 .029 1.78
9 240 .061 .029 1.78

Table 5.2.6: Results using weighted least squares
approach based on (3.3.45) for the 
anthracene example of this Section
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though implementation of the resultant schemes raises the 
following additional problems. Determination of an 
appropriate covariance matrix (V*) is non-trivial and will 
almost certainly be influenced by our prior beliefs, thus 
raising the possibility of double-counting our prior 
information. Furthermore, by continuously updating this 
covariance matrix but maintaining the original data, 
Bayesian principals are being abused as discussed in 
Section 3.3. This may provide a degree of over-fitting 
whereby observed values close to their fitted values are 
given unduly small standard errors: this accounts for the
spuriously low WR-factors of Table 5.2.4. Note, however, 
that this will not arise for the (diagonal) elements of V* 
defined by (5.2.4), which are by definition bigger than 
the observational errors <r02(h) alone. Such error 
variances may be considered to be additive, with 
components due to observational error and sign 
uncertainty. This accounts for the larger a2 values of 
Table 5.2.3, but is not, however, felt to be a very 
realistic scheme. Notice that in the limiting case in 
which the sign uncertainty is negligible, we should obtain 
the results of Table 5.2.5. Bringing the data 
sequentially into the analysis in appropriate shells 
ensures that the sign uncertainties at any stage are 
indeed small, so that the results of Tables 5.2.3 and
5.2.5 are comparable. Finally, direct comparison of 
Tables 5.2.3 and 5.2.4 clearly show that our ideas lead to 
a marked improvement on the existing procedure, in the
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sense of quicker convergence and more realistic "a2 values.

We now turn our attention towards the weighted least 
squares approach behind Table 5.2.6. Our previous 
misgivings about maintaining the original data throughout 
apply in the evaluation of the dynamic weighting scheme. 
There are no such misgivings about double-counting the 
prior information, however, which becomes obsolete once 
the appropriate weights have been evaluated. The emphasis 
shifts instead to the observed data and finding those 
parameters that give the 'best' match between observed and 
fitted structure factors.

Despite the differing viewpoints, Tables 5.2.3 - 5.2.7 
show that the various approaches of this Section yield 
similar results for the particular example discussed here. 
This leaves crystallographers free to choose between a 
Bayesian or least squares approach according to their own 
personal preference, though the fact that the refined R- 
value was smallest for the weighted least squares approach 
may tip the balance slightly in its favour. Whichever 
method they decide to use should be clearly stated. In 
practice, the choice will often be decided by the relative 
importance of the prior information available and the 
actual observational data obtained. We conclude, however, 
by claiming that in cases in which the initial phase 
discrimination is poor, our proposed weighted least 
squares approach is to be recommended on the grounds that 
it emphasises best those structure factors that are still
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well determined, without placing undue emphasis on the 
trial structure. Further structure determinations are 
required, however, to support this claim.

5.3 Application of a D-optimalitv based Algorithm in the 
Structure Determination of Anthracene

In this Section we continue to consider the structure of 
anthracene. Using the same data and prior beliefs as in 
the previous Section, similar analysis to before yields 
Table 5.3.1 for a weighted least squares structure 
refinement with weights proportional to experimental 
errors alone. Such a scheme is in line with our original 
least squares theory and was used in the formulation of 
the theory of Section 3.6. Furthermore, since the 
experimental errors used with our data set increase 
regularly with (sin B)/\, it is not unreasonable to expect 
to accurately know the errors associated with any as yet 
unobserved structure amplitudes. Accordingly, we shall 
here assume such errors to be known. We stress that in 
the general case a reliable estimate will still be readily 
available as previously discussed.

Using Table 5.3.1 we see that by cycle 5 we have measured 
74 reflections and have achieved a weighted R-factor of 
.123. Of more interest for our present purposes, however, 
are the associated average parameter variances for the 
carbon atoms, namely 5.96, 4.05, 7.21 and 5.74 (A2 x 10"5) 
for the x,y,z and overall co-ordinates respectively. We
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Cycle n R WR - 2 aX
- 2 ay

- 2 az
1 17 .550 .765 ( - ) c - ) ( - )
2 15 .425 .503 22.1 15.5 42.1
3 19 .423 .435 57.3 14.5 49.4
4 30 .232 .260 19.0 7.12 21.0
5 74 .121 .123 5.96 4.05 7.21

Table 5.3.1: Initial results using weighted least
squares approach based on observational 
error alone for the anthracene example of 
Section 5.2. All variances are A2 x 10"5

may deem our refinement procedure to be sufficiently far 
advanced for the theory of Section 3.6 to apply and 
consider the question of which additional few observations 
to measure in order to best reduce these variances.

Suppose we wish to bring in an extra 6 (say) observations. 
The standard procedure would be to continue to bring in 
reflections in order of increasing (sin 0)/A. However, 
the (diagonal approximation) theory of Section 3.6 would 
suggest that we should bring in those 6 observations that 
maximise a criterion function of the form of (3.6.25). 
Instead of using that approximate result, we may also base 
our choice on the criterion function (3.6.28). Although 
the D-optimality theory behind this latter scheme was 
based on minimising the determinant of the parameter 
covariance matrix, no diagonal approximation is assumed 
and the ensuing simultaneous reduction of atomic parameter 
variances should also reduce our average variances in a 
nearly optimal manner. It is this D-optimality based 
approach that we shall pursue here.
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The results of bringing in the extra 6 observations 
suggested by the traditional and D-optimal methods (and 
cycling to convergence) are shown in Table 5.3.2. Note 
that we start at cycle 6: the initial equivalence of
parameter variances is due to the fact that they both 
correspond to the estimate obtained after least squares 
cycle 5 incorporating the original 74 observations.

Cycle n R UR - 2 aX
- 2 ay

- 2 az
- 2 a

6(a) 80 .060 .070 1.75 1.71 2.39 1.956(b) 80 .072 .079 1.75 1.71 2.39 1.95
7(a) 80 .045 .051 1.64 1.56 2.17 1.797(b) 80 .049 .056 1.64 1.41 1.88 1.64
8(a) 80 .044 .051 1.63 1.55 2.17 1.798(b) 80 .048 .056 1.64 1.40 1.87 1.63
9(a) 80 .044 .051 1.63 1.55 2.17 1.799(b) 80 .048 .056 1.64 1.40 1.87 1.63

Table 5. 3.2; Extension Of Table 5.3.1 using an
additional 6 observations based on
(a) (sin 0)/\ (b) (3.6.28). All variances
are A2 x 10'5

The reduction in parameter variances achieved using the 
selection scheme based on (3.6.28) clearly vindicates our 
D-optimality theory in this example and offers 
encouragement for the general success of the related ideas 
of Section 3.6.
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CHAPTER 6
CONCLUDING COMMENTS AND IDEAS FOR FURTHER STUDY

6.1 Suggestions for Further Related Work to be Undertaken

We begin this section by considering some of the theory of 
Section 3.3, in particular the simplifying assumptions 
behind the model equation (3.3.30);

| FO | / FT = ft - N (| ft |, a Q2 )

We concentrate on the typical case where | FO | is in 
practice taken to be the average of the square roots of 
observed intensities, each of which is made up of the 
difference of theoretically Poisson-distributed counts. 
The first problem arises when such differences are 
negative - as may be the case for small intensities - thus 
making the evaluation of any appropriate square root 
impossible. This problem may be rectified by
consideration of a model function for the observed 
intensity (| FO |2) based on the true intensity (FT2). We 
may turn to the standard Bayesian technique of specifying 
a prior distribution for the true intensity - e.g. based 
on Wilson's statistics [72] - which incorporates its
inherent non-negativity, and then base inferences on the 
posterior distribution for the true intensity obtained in 
the usual way. Alternatively, the posterior mean and 
variance for the true structure factor (square root of the 
true intensity) may be obtained from this distribution and
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utilised as before. An approach along these lines may be 
found in [32] together with further comments on the areas 
of normality and unbiasedness.

The generalisation of the approach outlined in Section 3.3 
would involve considering the multivariate model

|F0|/ FT = ft ~ N ( ft , EQ) (6.1.1)

where | FO| , FT now represent vectors of observed, true 
values (as opposed to individual components) and the 
covariance matrix E0 is diagonal with elements a02 = <j02 (h) , 
assuming independence between observational errors. The 
analogue of the prior beliefs (3.2.19) would likewise be 
of the form

FT - N (FC, Et) (6.1.2)

where, although the diagonal elements of ET will be a 2 - 

a 2 (h) , Et will in general not be diagonal. We would then 
wish to use the multivariate version of Bayes1 theorem for 
continuous random variables - based on equations (6.1.1) 
and (6.1.2) - to obtain a posterior density function for 
the vector of true values FT conditional on our observed 
data. By using the fact that the (nxl) vector of random 
variables

X ~ N(iz,S) 

has a density function of the form
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we find the appropriate density to be proportional to

dettg"1 s”1)
(2tt)

exp -h(x - FC)T S"1 ^  - FC)

^(|FO| - |x|)T S”1 (|FO| - |x|) (6.1.3)

(where, for notational convenience, FT, ft are replaced 
by X,x). If we could then unravel the corresponding 
posterior mean vector and covariance matrix, we could then 
proceed along similar lines to before. Note that the 
theory of Section 3.3 pertains if we use a diagonal 
approximation to ET.

Summarising our findings then, we conclude that the 
approach of Section 3.3 is clearly only an approximate 
one. In particular, further attention could be given to 
the formulation of a more appropriate model. For this, we 
would have to take into account the precise nature of the 
derivation of our individual |FO(h)| values. Exact theory 
would be difficult: for example, consideration of the
distribution of the difference of two Poisson random 
variables (counts) is a non-trivial problem and further 
calculations based on taking averages and square roots 
would only add to the general intractability. Recourse 
would almost certainly have to be made to some form of



approximation. Our approximating equation (3.3.30) is 
likely to be acceptable in most practical applications. 
Problems may arise in the case of negative intensities as 
we have discussed; in such cases we may appeal to the 
results of e.g. [37], which considers the treatment of 
'unobserved' reflections (for which we only have available 
an upper bound for the structure amplitude) in the least 
squares adjustment of crystal structures. As we have also 
seen, our approach uses the available data and prior 
beliefs one observation at a time. Again this is only an 
approximation to the more general approach outlined above, 
whose computational tractability needs further 
investigation.

The above theory concentrated on the case of 
centrosymmetric structure determination. We shall now 
very briefly outline the additional problems that arise in 
the general non-centrosymmetric case. Perhaps the best 
way of proceeding is via the following argument. The 
prior density for any (individual) true structure factor 
may be represented as being concentrated around the point 
on the Argand diagram corresponding to the mode of our 
prior beliefs, namely

FC = |FC| exp(i^)

(see Figure 6.1.1). The phase <f> - previously 0 or n - may 
now take any value 0 £ <f> £ 2 n. Likewise, the
corresponding observed structure amplitude |FO| furnishes
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us with a density concentrated in an anulus based around 
the circle centred at the origin of radius |F0|. These 
two densities need to be combined appropriately to get the 
necessary posterior density for the true structure factor. 
An extra dimension has been added to the problem 
(previously all our calculations were based on the real 
axis alone) and the theory is consequently an order of 
magnitude more difficult. The basic underlying rationale 
is similar, however, and the undertaking of the 
appropriate analysis is a major area for research in the 
field of crystallographic statistics.

Figure 6.1.1: Pictorial representation of densities based 
on prior beliefs (||) and observational data
W
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Returning to the centrosymmetric case, in which we may 
have symmetry stronger than centrosymmetry alone, we find 
that certain symmetry-related sets of reflections should 
yield the same structure factors. This provides a natural 
platform from which to apply the ideas of cross- 
validation, in which a structure is refined based on one
set of reflections and the resultant configuration tested
(validated) against further results from another set. In 
such cases, of course, valuable information may also be 
afforded us as to the experimental errors present.

It is also interesting to note the further simplifications 
that can be made to the centrosymmetric structure factor 
equation (1.2.12). For example, for structures in 
which for every atom at (x,y,z) there is not only an 
equivalent atom at (-x,-y,-z) but also ones at (x+^,y,z) 
and (x,^-y,z), we obtain the equations 

R/4
4 2 f cos 27r(hx + lz ) cos 27rky h+k evenr=1 r r r r

FC = (6.1.4)
R/4

-4 2 f sin 27r(hx + lz ) sin 27rky_ h+k oddr ' r r' Jrr=l

where the summations are again taken over the asymmetric 
parts of the unit cell. Similar such expressions may be 
obtained when other symmetries pertain, and a complete 
list for all possible symmetry groups is given in the 
International Tables for X-ray Crystallography. Rather 
than using expressions such as (6.1.4), however, 
crystallographers often continue to use the original

243



equation (1.2.12). Although such a strategy enables a 
unifying approach to be made to all centrosymmetric 
structure determinations, the ready availability of the 
alternative expressions suggests that more use could and 
should be made of them in future analyses.

We next turn to the topic of appropriate weighting 
schemes. We noted in Section 2.2 that we might in general 
need to consider dynamic weighting schemes that vary with 
the current parameter estimate. For example, we might 
argue that structure factors with large (in modulus) 
calculated values but small observed values merit larger 
weights since they unequivocally tell us the direction of 
the shift needed in the fitted value. A corresponding 
component of the weighting scheme used may be based on 
e.g. |FC|: |FO| ratios. Similarly, components may be
based for example on likelihood of correct phase - sign in 
centrosymmetric case - allocation, or on some non- 
linearity criterion as suggested in Section 3.6. As is 
often the case in crystallography, numerous ad hoc rules 
of an appealing intuitive nature may readily be specified. 
Further work for the statistician lies in justifying the 
best such schemes from a theoretical viewpoint.

The rationale behind the weighting scheme (3.3.45) derived 
earlier was to provide a realistic compromise between the 
observed data and our prior (Bayesian) beliefs. Such 
schemes may of course be used to improve the starting data 
for the least squares procedure as briefly discussed in
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Section 3.3. The problem still remains of updating the 
appropriate weight matrix at each stage of our refinement 
procedure. Such problems of adjustment are discussed in 
[10]: some of the pertinent points arising will now be 
summarised, which emphasise current areas of related 
research.

Suppose we wish to change the least squares weights at 
each iteration because of the dependence of the 
measurement error on the unknown parameter 9_. The effect 
of this is to replace the original least squares equations 
-c.f. (3.6.1) - b y  the equations

0 ----f-7- S W.(j-) (FC (r) - F0(h))2
3 r lr' h a

(6.1.5)
(r = {,17, f; r=l. . .R)

where the weights wh(r) now vary with the parameter 
estimates as discussed above. We no longer have a least 
squares procedure in which a fixed sum of squares of 
deviations is minimised: it is instead more closely
related to so-called quasi-likelihood procedures (see 
[56], [68]). It is interesting to note [10] that a 
necessary and sufficient condition for the quasi
likelihood function to exist is that the weight of a 
measurement is allowed to depend only on the unknown 
theoretical value of that measurement, as was the case 
with our theory of Section 3.3.

The main purpose of [10] is to show how the problem of
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uniqueness of solutions to the equations (6.1.5) is 
related to a certain curvature. The curvature in question 
is analagous to Efron's statistical curvature [27] and 
takes into account the varying weights in an appropriate 
way. It is suggested that such a curvature also 
determines the behaviour of the Gauss-Newton (least 
squares) iterative procedure, when weights are adjusted. 
Although similar results may be found in [50], and the 
area is investigated generally in [64], there is still 
plenty of scope for further related research.

The theory of Bates and Watts (see Section 4.3) that 
figured so prominently in Chapter 4 is related to the 
above work in the following sense. They conclude [5] that 
'the whole concept of measuring both intrinsic and 
parameter-effects curvatures by an array £.. in the multi
parameter situation can be extended to Efron's statistical 
curvature.' The other main point they raise in their 
discussion is the need for the design of non-linear 
experiments for small curvatures. This is a difficult and 
challenging problem and is still very much an open area 
for research. For our purposes, however, further 
investigation of the theoretical properties of our non
linear parameter estimation schemes proposed in Chapter 4 
is perhaps a more pressing concern.

One of the more challenging purely statistical problems to 
arise from the work of this thesis is the question of the 
efficiency of the modified RLS algorithm of Section 3.5
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for use in conjunction with non-linear models. Following 
Figure 3.5.1 we considered the question of whether we 
could justifiably omit Gauss-Newton cycles in the latter 
stages of the procedure. Further work lies in determining 
conditions under which such an approach would be 
acceptable, and providing further details of its 
theoretical properties. The results of the schemes 
employed in Chapter 5 - which incorporated no fixed data 
cycles during the sequential data acquisition stages - are 
promising.

As suggested in Section 1.4 we may also wish to develop 
alternative sequential strategies based on cost 
considerations and a decision theoretic approach. For the 
question of associated stopping rules we may wish for 
example (in the least squares approach) to accept as a 
stopping criterion that stage at which the accuracy of the 
fitted values is commensurate with the assessed 
experimental errors of the as yet unobserved reflections.

Finally, of course, much further work remains in the 
practical testing and development of the various schemes 
proposed in this thesis.

6.2 Conclusion

We conclude by stating that although in this thesis we 
have merely addressed some of the statistical problems 
that arise in X-ray crystallography, and have consequently 
suggested improvements to existing procedures of structure
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determination, it is clear that sensible use of 
statistical theory still has much to offer the world of X- 
ray crystallography.
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APPENDIX I

INTEGRATED INTENSITY AND RELATED CONCEPTS

For the rotation photographs described in Section 1.3 let 
ft be the constant angular velocity at which the reciprocal 
lattice region is swept through the Ewald sphere. For a 
small crystal completely bathed in a uniform beam of 
intensity I0 (expressed in units of energy per unit area 
per unit time) the integrated intensity I is given by

2
I = IQ r2 Lp £ (̂ ) A2v (Al.l)

if absorption and extinction (to be presently introduced) 
are neglected, where r represents the 'classical radius of 
an electron1, v the volume of the unit cell and V the 
volume of the crystal. The dimensionless factors L and p 
representing the Lorentz and polarisation factors 
respectively will also be presently introduced. F 
represents the structure factor and A the wavelength of 
the X-ray radiation used.

Since the only factors that vary between reflections are 
L, p and F2, we may write

Most crystallographers measure I, and hence F2, on an 
arbitrary, relative scale. Conversion to an approximate 
absolute scale may be made with the help of intensity

249



statistics at the start of each cycle of the structure 
determination. Alternatively, a scale factor may be 
included as an adjustable parameter in the resultant 
least-squares refinement.

The Lorentz and polarisation factors shall now be 
discussed. The Lorentz factor L expresses the fact that 
for a given fi, different hkl have different *times-of- 
reflection* opportunity. For rotation photographs, L has 
the simple form

L = sin 29

where 9 is the Bragg angle.

The radiation from a normal X-ray tube is unpolarised 
(i.e. emits wave trains, vibrating in all direction 
perpendicular to the direction of propagation), but after 
reflection from a crystal the beam is polarised. The 
fraction of energy lost in this process, the polarisation 
factor p, depends only on the Bragg angle 9:

_ 1 + cos2 29
P 2

The Lorentz and polarisation factors may therefore 
conveniently be combined into a single trigonometric 
expression:

21 + cos 2 9 —
LP “ 2 sin 29 ' (A1-2)

Application of this factor is essential in order to bring
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the F2 data onto a correct relative scale.

Absorption and extinction, which have so far been assumed 
to be negligible, will now be discussed. All materials 
absorb X-rays according to an exponential law:

I = IQ exp (-/it)

where I and I0 are the transmitted and incident
intensities, /t is the linear absorption coefficient, and 
t is the path length through the material (comprising an 
incident and diffracted beam length). The transmission of 
the X-ray beam through a crystal is given by

= exp (-/it)
0

The intensity diffracted by the crystal as a whole is then 
reduced by the transmission factor

A = i ; exp(-pt) dV (A1.3)

assuming the incident beam to have uniform intensity
cross-section. We find that the actual intensity produced
from the crystal is A x the intensity in the absence of 
absorption. In practice, crystal faces are frequently not 
well defined and it is necessary to resort to empirical 
methods for estimating the factor A.

During the latter stages of a crystal structure refinement 
it is often the case that the observed |f | values are 
systematically smaller than the moduli of the
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corresponding calculated F values for very strong 
reflections. Typically we find that this result may be 
characterised by the relation

^  = exp (-g I )
1c c

where the suffices 0 and c denote observed and calculated 
values, and the constant g may be estimated. This kind 
of systematic error is called extinction? its influence on 
the observed F values can be removed by multiplying the 
observed intensities by exp(-glc) and re-calculating the 
corrected observed F values.
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APPENDIX 2
GENERAL RESULTS NEEDED FOR SECTION 4.6

Following Section 4.3, the relevant Q R decomposition for 
the (nx3) matrix V. with columns vlf v2, Vg yields the (3x3) 
matrix Rx = L_1 and the (nx3) matrix U. defined by

-1 n 2A — L.- = ( E  V . ) (A2.1)
i=l

n
.S Vli V2 i-1 i=lb = L1 2 1 = J^ - ^ ----- (A2.2)

-I Jl Vli "3iC = L13 1 =------ jj----- (A2.3)

-1 " 2 2D = L__ = ( S V , /  - B ) (A2.4)^  i=i ^

V2 i V3i " BC
E = L23” = ^ ---- 5--------  (A2.5)

—1 ** 2 2 2 ^F = 1 = ( S V. . 2 - cr - E ) (A2 .6 )
i=l

and
v •

U.i;1 = -J1 (i=l...n) (A2.7)
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BV11,
<V2i ~T~)U-i2 = *D ^--- (i=l...n) (A2.8)

(v + /BE-CD, - - V .)
TT - 3i * AD ' li D v2i > . . , .U.i3 = ^ ( i = l . . . n )  . (A2.9)

The corresponding (3x3x3) parameter effects curvature 
array A. . contains elements ajkl given by

“jkl - J  U -ji<Wkl>i <A2-10>

where

» u  - h  sn  (A2-11>A

-12 -21 2 Y11 + AD -12 (A2.12)A D

W = W = (BÊ ~CD)_ _ _JL_ _|_ v (A2.13)-13 -31 -2_„ -11 ADF 12 AF “ 13A DF

2
—22 = ~~2 2 “11 ~ 2 —12 + 2 —22 (A2.14)A D  AD D

w . w = (CD.-BE1 (2BE-CDI
"32 a 2d 2f 11 a d 2f 12

ADF “13 ” 2 “22 + DF Y23 (A2.15)D F
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with

-j*
d 2a

*0

The re-parameterisation given in equation (4.6.8) - namely

n
*. = Z (7-:k 2 r/.(0) v .)
1 k=l 3K i=x 1 K1

(j=l,2,3) -

contains the coefficients

7X1 = B2 (E2 + F2) + D2 (C2 + F2) - 2BCDE

7i2 = 721 = ACDE “ AB(E2 + F2)

(A2.17)

(A2.18)

713 = 731 = AD(BE _ CD)

2 2 2 722 = A (E + F )

^23 = 732 = “A DE

■jl 2 _.2733 = A D

(A2.19)

(A2.20)

(A2.21)

(A2.22)

The corresponding (3x3) matrix G. (evaluated at 0_q ) is 
given by g. = cl3, where I3 is the (3x3) identity matrix



C = A D F (A2.23)

Returning to the sum of distinct model functions given by 
equation (4.6.10), the relevant QR decomposition of 
Section 4.3 may be written

r 1

----hI
H 

1 
1 
HI 1

U._ u._ N 0~ 1 ~ 2 ----- h 1 (A2.24)

provided that U M T U.2 = 0, where quantities with the 
subscript j are the analogous quantities for the 
individual model functions fj(x,.0j) (j=l,2). The (pxpxp)
parameter effects curvature array (where p = Pj + p2) has 
plfp2 faces of the form

~11 to

1

~21

1oi
i/

r l
O *12.

Ol1 ~22_
(A2.25)

respectively, where Ajk are faces of the arrays 

[ V . / ]  likT V..k Lk ] . (A2.26)

Note that An and A22 are faces of the original parameter 
effects arrays. Using the re-parameterisations (j=l,2) 
that yield zero individual parameter effects, note that 
the (pxp) array G. is of the form
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S-1
(A2.27)

S-2

and the (pxpxp) array G. . has p1/p2 faces of the form
1

IQ • • H 0 0 0

0 0
t

0 G. . 0~ 2
(A2.28)

respectively (where G. .j is here used to denote faces of 
the original G. .j arrays) . The new parameter effects array 
under this re-parameterisation has P!,P2 faces of the form

0 0 i
l

> to H 0

0 A. ̂
r

0 0-12

respectively, which is seen to be a definite improvement 
on the original array (A2.25).
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