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Abstract

Calculations are presented for electronic excitation of H; by electron impact.
For the initial calculations, ab initio R-matrix scattering techniques are used to
represent scattering from the ground to five low lying electronic states of H,. Each
target state is represented by a full configuration interaction treatment within a
basis of Slater type orbitals, optimised to give accurate vertical excitation ener-
gies. All total symmetries including 2®, are included in the scattering calculation.
Eigenphase sums and integral cross sections are presented for this model together
with assignments of the resonance structures produced.

This model is then extended to include the lowest seven electronic states of
H, at the equilibrium geometry. Eigenphase sums and resonance feature analysis
are presented for excitation from the ground to the six excited states included in
the calculation. Integral cross sections are also presented for these processes and
extensive comparison made with experimental data.

Differential cross sections calculated using the seven state model are presented
for both resonant and non-resonant energy regions and comparison made with
previous experimental and theoretical results.

A method of adapting scattering calculations to calculate bound states of
molecules within the R-matrix method is presented. This method is based on
atomic method of Seaton (1985). The results of test calculations on the bound
states of CH and HeH, at fixed internuclear separation, are presented together
with results for the vibrational bound states of HeH. The development of this
method made it possible to calculate transition dipoles for excitation processes.
Results for the transitions dipoles of Hj, as a function of internuclear separation,

are presented and comparison made with available theoretical data.
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Chapter 1

Introduction

1.1 General Introduction

In the last twenty years there has been a great interest in the area of electron-
molecule collisions. These processes are not only of fundamental importance in
the areas of physics and chemistry, where they are used in the study of fusion
plasmas and radiation physics, but are also of importance in areas such as as-
tronomy were a detailed knowledge of collision processes is necessary in order to
understand interstellar matter and the earth’s ionosphere. Recently the introduc-
tion of increased computing power and facilities has made it possible to develop
new methods for solving the complex theory of molecule scattering.

Collisions between electrons and molecules are clearly more varied than between
electrons and atoms. As well as electronic excitation, radiative recombination and
ionisation, electron-molecule collisions can also give rise to rotational and vibra-
tional excitation, dissociation, dissociative attachment and dissociative ionisation.
For a summary of all the possible collision processes see Burke and Shimamura
(1990). The non-spherical nature of the molecule makes the long range collision

processes more complex than for the atomic case by introducing effects such as
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multipole interactions between states of the same orbital angular momentum. The
possibility of exciting nuclear degrees of freedom introduces important resonance
effects which are not found in electron-atom collisions. Because of the increased
complexity of the collision problem it became necessary to modify the methods
used previously for studying electron-atom collisions and to introduce new ones.
A brief discussion of some of the more useful methods developed to study molecule

scattering and to calculate the bound states of a molecular system is given below.

1.2 Scattering Methods

Several methods have been developed to study low energy electron collisions with
molecules. Some of these methods have used the laboratory frame as their frame
of reference (Takayanagi and G'eltrnan 1965), but these methods have so far only
proved suitable for light, diatomic molecules due to the complex nature of the
representation. Most of the methods used recently to produce successful results
have used the molecular frame of reference with the internuclear distance assumed
to be fixed. Relaxation of the fixed nuclei approximation and the effects of nuclear
motion will be discussed later.

One of the techniques used to solve the fixed nuclei approximation is the sin-
gle centre expansion technique. This method treats the target orbitals and the
scattered electron as an expansion about the centre of mass of the molecule. The
main problem associated with this method is that a large number of terms in the
expansion are needed for convergence. For certain target molecules, including Hj,
the static potential is straightforward to expand as a single centre expansion, but
this is not true for all diatomic molecules. The method is, however, widely used in
the study of polyatomic molecular targets. The representation of the exchange po-

tential as a single centre expansion is far more complex, however, various methods
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have been used to overcome these difficulties (Burke and Sinfailam 1970, Morrison
1979, McNaughten et al 1990).

Within the single centre expansion method, an iterative method was used to
treat exchange by Collins, Robb and Morrison (1978) in the study of electron-
H, scattering. These calculations produced good results for energies up to 1 eV.
Morrison and co-workers went on to develop a method of treating exchange using
a model exchange potential. These model exchange potentials are local potentials
which imitate the exchange terms in the scattering equations. Morrison and Collins
(1981) have made a comparison of two different model exchange potentials for a
number of diatomic molecules. They conclude that a free electron gas type model
potential treatment compares well with exact static exchange calculations. More
recently Buckman et al (1991) used a method which treats exchange as separable,
but non-local, to study vibration excitation of H;. Very good agreement was
obtained between these results and their experimental work for energies below 5
eV.

The single centre expansion method has also been used in combination with
other methods such as the Linear Algebraic method and the Kohn Variational
method.

The Linear Algebraic method was adapted by Collins and Schneider (1981)
from similar techniques used to solve nuclear collision and electron-atom problems.
By using Green'’s functions and reducing integrals to quadratures, it represents the
electron-molecule system by a set of linear algebraic equations which are solved
by an iteration-variation method. This method is well suited to vector super-
computers and is useful for strong non-local potentials, though it shows no real
advantage for local, multipolar potentials. This method is therefore most useful
when the electron is close to the target molecule and suggests the division of space

into two regions, an inner region where this method is appropriate and an outer
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region where an alternative method would be more suitable. See for example the
R-matrix method described below. The major disadvantage of the Linear Alge-
braic method is that the polarisation of the target molecule is treated as a separate
potential and therefore the risk of over-polarisation can be large. This method was
used to study electron- H, scattering (Schneider and Collins 1985), along with two
other methods in a coordinated study which will be described below.

The Kohn variational method for electron-molecule collisions was developed by
Collins and Robb (1980) from techniques used previously for nuclear collision and
electron-atom problems. The method relies on having a good trial wavefunction
for the system. It has been shown from the study of several diatomic molecules,
including H; (Collins and Robb 1980), that the method is reasonably efficient and
accurate for producing K-matrices, from which cross sections are calculated, and
eigenphases over a wide range of energies. The method is susceptible to spurious
singularities in the solution, however, Miller and Jansen op de Haar (1987) have
produced a complex Kohn variational method which avoids these singularities.
The Kohn variational method has also been employed by Armour and co-workers
to study positron-molecule scattering. Results have been produced for positron-
H; scattering (Armour and Baker 1987) and positron-N, scattering (Armour et
al 1991) and the method is currently being extended to study other diatomic
molecules.

The L? method for studying molecular scattering was developed from the use
of bound state techniques and computer codes. The wavefunction of the system is
expanded as a set of L? discrete basis functions which are square integrable. This
method produces eigenphases of the system at discrete energies determined by the
particular basis set used. The method assumes that only weakly coupled, low !
values make significant contributions to the integral cross section and it is not

possible to produce continuous values of eigenphases with a single basis represen-
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tation. The method has been applied to electron-H; and electron-N; scattering
(McCurdy et al 1976). The results agree well with previous theoretical studies
which use the l-spoiling approximation. This method has also been incorporated
into the R-matrix, and various T-matrix methods, where it is used to represent
polarisation effects sufficiently accurately to enable the study of resonances.

The Schwinger variational method was developed for studying molecule scat-
tering by Takatsuka and McKoy (1981, 1984). It produces the T-matrix of the
system. The main advantage of this method over the Kohn variational method
is that the trial function does not have to have the correct asymptotic form as
long as it is a good approximation to the exact wavefunction in the region of
the effectiveness of the potential. The single centre expansion is frequently used
in this method and better convergence for long range potentials is achieved by
an iterative procedure. The Schwinger multichannel variational method has been
used to study electron scattering from H, by Lima et al (1985,1988), Gibson et
al (1984,1987), and more recently by Huo and Weatherford (1991). As with the
Linear Algebraic treatment of this system, the major weakness of this method is
the representation of the correlation and polarisation effects.

Another method which has been used to study electron-molecule collisions
by calculating the T-matrix is the distorted wave approximation developed by
Rescigno et al (1974). In this approximation both the incident and the scattered
electronic wavefunctions are represented by distorted waves. The effective distort-
ing potential is obtained by averaging over the internal degrees of freedom of the
target molecule. As the collision energy decreases the distortion will increase until
this method is no longer appropriate, however, it has also been extended to the
study of low energy collision processes. The major disadvantage of this method
is that, although correlation effects can be represented by a distorted wave rep-

resentation, polarisation effects cannot. This method has been used to study the
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electron- H; system by Fliflet and McKoy (1980) and Lee et al (1982, 1990) and the
results produced were in good agreement with results obtained using a Schwinger
variational method neglecting polarisation effects.

The R-matrix method, along with the Schwinger variational method, is the
method that would seem to be the most useful for further study of diatomic and
polyatomic collision processes. The R-matrix was originally used by Wigner (1946
a, b) and Wigner and Eisenbud (1947) for the study of nuclear collisions and later
adapted for use in electron-atom collisions by Burke et al (1971). It has been
used in the field of atomic collisions for the study of various processes including
scattering, photoionisation, atomic polarisabilities, spectral line shifts, free-free
transitions and photoabsorption, reviews of which are found in Burke and Robb
(1975) and Burke (1982).

The R-matrix method was developed for use in the study of electron-molecule
collisions by Schneider (1975) and Burke et al (1977) and it is this treatment that
is of interest here. The molecular R-matrix method has been used previously to
study integral and momentum transfer cross sections for electron scattering from
various diatomic molecules, reviews of which are given by Buckley et al (1984)
and Burke and Noble (1986). The method has also been extended to the study
of positron-molecule collisions by Tennyson (1986), Tennyson and Morgan (1987)
and Danby and Tennyson (1990).

The main feature of the R-matrix method is that it divides space into an
internal and an external region separated by a sphere of radius a, centred on
the centre of mass of the target molecule. The sphere is chosen to just enclose the
target charge distribution. This is very similar to the frame transformation method
used by Chang and Fano (1972). In the internal region the potential is strong and
multicentred, and exchange and correlation effects between the incident electron

and the target are important. In the external region exchange and correlation
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effects are neglgcted and only the long range polarisation potential is important.

In order to express the complex process in the internal region Schneider (1975)
used a set of prolate spheroidal coordinates with which to expand the wavefunction.
These prolate spheroidal coordinates give good results for diatomic molecules,
but are not appropriate for polyatomic molecules. Burke et al (1977) however
favoured a multicentre, discrete basis representation in the internal region. This
method used sets of Slater-type orbitals, with effectively negligible amplitude at the
boundary, centred on the atomic centres, and a set of Slater type orbitals which did
not vanish at the boundary, centred on the centre of mass of the target molecule.
The molecular orbitals were then defined in terms of the orbitals centred on the
atomic centres and the continuum molecular orbitals were expressed in terms of
all the sets of orbitals (i.e. three sets for the diatomic case). The set of orbitals
centred on the centre of mass. of the molecule in the inner region provides the
link between the multicentred treatment in the inner region and the single centre
expansion approach in the external region.

The R-matrix method employed here uses a set of numerical basis functions,
instead of Slater type orbitals, centred on the centre of mass of the target molecule
(Gillan et al 1987). Slater type orbitals are difficult to integrate over due to the
cusp at the origin. Indeed no integral package has yet been written which uses
Slater type orbitals to deal with non-planer molecules. The numerical basis func-
tions used here, however, are more suitable for integration. The use of these
numerical basis functions means, however, that a  Bloch operator (Bloch 1957)
must be added to the Hamiltonian matrix to ensure that the Hamiltonian is Her-
mitian. The method is therefore no longer a strictly variational one, as the Buttle
correction is based on perturbation theory. However, in practice the method still
behaves in a variational manner.

By setting up and diagonalising the Hamiltonian matrix in the internal region
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a set of eigenenergies and eigenvectors can be produced. These eigensolutions
can then be used to form the basis set in the inner region from which all the
physical solutions of the wave equation can be expanded. The great advantage
of this method is that the diagonalisation only has to be performed once for each
symmetry of the electron-molecule system, and solutions at all energies can then
be found at comparatively little cost.

The inner region functions are matched to the outer region functions at the
R-matrix boundary by a matrix known as the R-matrix. The R-matrix relates
the functions at the boundary to their derivatives as will be explained in more
detail in the next chapter. This matching can then be used to produce the K-
matrix (reactance matrix) and the T-matrix from which scattering information is
determined.

Nesbet et al (1986) developed a method which combines the R-matrix method
with a matrix-variational approach. This method divides space in a similar way
to the R-matrix method, but uses numerical asymptotic functions for the contin-
uum basis functions. As with the matrix-variational method the continuum basis
functions are energy dependent which means that the inner region calculation has
to be repeated for each energy range. The number of continuum functions used is
therefore kept to a minimum. This method has produced results which compare
reasonably well with experimental data for elastic electron- H; scattering, but has

not yet been extended to include nuclear motion or applied to any other system.

1.3 A Comparative Study

The R-matrix method was used to study electron-H, scattering by Baluja et al
(1985) in a coordinated study to compare the R-matrix method, the Linear Alge-

braic method (Schneider and Collins 1985) and the Schwinger multichannel vari-
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Figure 1.1: Integral cross section for excitation from the ground to the b 3T} state
of H,. The solid curve represents the work of Baluja et al (1985), the dashed
curve that of Schneider and Collins (1985) and the dotted curve that of Lima et
al (1985).

ational method (Lima et al 1985) for a specific model. The three methods were
used to represent elastic scattering and electronic excitation from the ground to
the first excited state of H,, the b 3L} state. This transition is of interest as it
is spin forbidden and can only take place by exchange. It therefore represents a
good test of the effectiveness of the method of including exchange effects. The
models used also included electron correlation effects to relax the strict orthog-
onality condition between the bound and continuum states. The integral cross

sections produced by these three models are shown in figure 1.1. It can be seen

21



that the results produced were in good agreement with each other. They were also
in reasonable agfeement with experimental data.

This study was able to demonstrate the importance of including exchange and
correlation effects. Previous calculations which did not include these effects gave
integral cross sections that were significantly too low. The only one of these
three methods that attempted to include polarisation effects was the R-matrix
method. Including polarisation lead to a reduction in the integral cross section
at low energies, however, in chapters 3, 4 and 5, it has been shown that the
representation used was insufficient. By improving the polarisation representation
the integral cross section at higher energies are reduced and resonance information

can be obtained.

1.4 Bound states

The calculation of bound states of molecules has also been an active area of research
since the introduction of improved computing power and facilities. A large amount
of bound state information is necessary in order to calculate properties such as
radiative transition probabilities, photoionisation cross sections and opacities in
stellar atmospheres and interiors.

Quantum chemical methods for producing molecular bound states have proved
very successful for studying low lying bound states. These methods generally
represent the target molecule by using a linear combination of atomic orbitals
and Gaussian type orbitals and using a configuration interaction (CI) technique.
Very large CI expansions are used, often employing millions of configurations.
However, these methods are not suitable for producing the high lying Rydberg
states just below the ionisation energy of the molecule. An alternative method

was therefore needed and recently Kaufmann et al (1989) adapted a Gaussian
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type orbital expansion to look at Rydberg series.

The R-matrix codes developed for scattering calculations are ideally suited to
the calculation of bound states as the complex internal region calculation is the
same for both cases. The difference lies in the calculation of the external region
wavefunction and the matching conditions at the R-matrix boundary. Within the
field of the atomic R-matrix method Ojha and Burke (1983) developed a method
of searching for bound states, but it had the limitation that only bound states
with energies close to the R-matrix poles could be found. This method was later
adapted for the molecular case, see for example the work on H, by Tennyson et al
(1986) and on CH by Tennyson (1988), but was again unsuitable for calculating
the Rydberg states of the system.

The method described by Seaton (1985) for the calculation of atomic bound
states using the R-matrix method, however, is able to produce the bound states
of a system from a single construction of the R-matrix. In the internal region the
wavefunctions are set up as described for the scattering case. Solutions in the outer
region must tend to zero as r, the distance of the electron from the centre of mass
of the target, tends to infinity and must be able to be matched to the inner region
functions at the R-matrix sphere. These outer region functions can be found by
a combination of analytical and simple numerical methods. By imposing suitable
boundary conditions and matching the inner and outer region functions, all the
bound states of the system can in principle be calculated. This method has proved
very useful in the study of atomic systems and was used for the Opacity Project
(Seaton 1987, Berrington et al 1987) which produced large numbers of atomic ion
bound states.

This method has been converted to find the bound state energies of molecules,
see Chapter 6. Once the molecular wavefunctions in the inner and outer region

have been calculated the method of matching the solutions is identical for the
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atomic and molecular cases. In order to find the atomic bound state energies
Seaton (1985) used a search for zeros of the matching matrix, which indicates a
bound state, over a range of quantum defect number. For each principal quantum
number there are only a small number of bound states for a given symmetry in
the atomic case, however, this is not in general true for the molecular case and
therefore a modification to the searching procedure had to be developed. This will

be discussed in some detail later.

1.5 Nuclear motion

The fixed nuclei approximation, frequently used in the methods described above,
is valid when the time of interaction between the electron and the molecule is small
compared to the vibration and rotational period of the molecule. This is usually
the case except near to the threshold of a channel or near to a resonance position
where the time of interaction is greatly increased. Even when these conditions are
not satisfied it is still possible to use the fixed nuclei approximation as rotational
and vibrational effects can be corrected for in a second part of the calculation.
This is known as the adiabatic-nuclei or Born-Oppenheimer approximation and it
relies on the assumption that the electronic and the nuclear motion can be treated
separately.

When this assumption is no longer valid, for example in the region of a reso-
nance or close to the ionisation energy of the target molecule, the non-adiabatic
effects have to be included. A method for including vibrational non-adiabatic ef-
fects was developed within the R-matrix method by Schneider et al (1979). The
wavefunction of the system is expanded as products of fixed-nuclei functions and
basis functions representing the nuclear motion. This treatment has been used to

study systems such as N, (Morgan 1986, Gillan et al 1987) and HC! (Morgan et
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al 1990).

In order to include the effects of rotational motion of the target molecule,
Arthurs and Dalgarno (1960) introduced a rigid rotor model for the target molecule.
This method neglects the vibrational motion of the target and uses the laboratory
frame to obtain the correct asymptotic form of the wavefunction. The total angular
momentum of the electron-target system is a constant and the eigenfunctions of the
total angular momentum vector are used as a basis to expand the wavefunction of
the system. This method, however, is not suitable for use within the molecular R-
matrix method as it employs the laboratory frame and not the molecular frame of
reference used in the inner region of the R-matrix method. An alternative method
was used by Tennyson and Morgan (1987) for the study of positron-C'O scattering
within the R-matrix method. They used the multipole-extracted adiabatic-nuclei
approximation which models rotational motion by using the static, space-fixed,
first Born approximation. This method gave reasonably good results for scatter-
ing energies below the positronium formation threshold energy, but the results

were less pleasing at higher energies.

1.6 Present work

In this work the molecular R-matrix method has been used to study the integral
and differential cross sections for electron-H, scattering. Elastic scattering and
scattering from the ground to the first six electronically excited states of H; have
been considered. Chapter 2 sets out the theory of the molecular R-matrix method
and gives a description of the computer codes used in this work. Chapter 3 presents
preliminary results for a six state model and outlines some of the difficulties en-
countered when trying to produce this data. Chapter 4 discusses the integral cross

sections for the full seven state model with special reference to the resonance fea-
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tures found. Chapter 5 presents the differential cross sections calculated for the
full seven state model. These calculations represent an improvement on previous
studies of the system in two respects: firstly the target representation is a full CI
representation and secondly, previous calculations were restricted to the study of
two target states whereas these calculations consider the lowest seven states.

The molecular R-matrix method can also be used to find the bound states of
molecules. Following the algorithm set out in Seaton (1985) for the calculation
of atomic bound states using the R-matrix method, a computer program module
has been developed to calculate molecular bound states together with a module
to calculate the transition moments between them. These program modules, and
results obtained for the diatomic molecules H,, HeH and C H which demonstrate

the effectiveness of the method, are presented in Chapter 6.
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Chapter 2

Molecular R-matrix theory

As has already been mentioned the basic feature of the R-matrix method is that
space is divided into two regions separated by a sphere of radius a. The complex
inner region calculation follows the same theory for both scattering and bound state
calculations and this will be discussed in some detail. The theoretical method used
to obtain scattering information in the outer region will be presented as well as
the theory, adapted from Seaton (1985), which was used in the computer program
module to calculate the bound states of molecules. The use of these bound state
in the calculation of transition dipoles is also described. The various modules of
the computer package used in this work will be discussed in relation to the relevant

theory.

2.1 Inner region

In the inner region the target molecular orbitals g; are represented by the expan-

sion:

oi = Dipi, (2.1)
1
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where p; are Slater type orbitals (STOs) centered on the nuclear centres of the tar-
get molecule and Dy; are coefficients which are found by performing a self consistent
field (SCF) calculation. The functions p; are then known as LCAO-MO-SCF or
linear combination of atomic orbitals molecular orbitals in the SCF approxima-
tion. The SCF approximation involves including electron—electron interaction in
an average field approximation. The forces on a particular electron within the
average field of all the other target particles®'®calculated and the electron is al-
lowed to move in this field. This, however, affects the average field exerted on
the other electrons, which are then allowed to alter their positions in turn. This
process is repeated until some minimum energy for the system within the SCF
approximation is reached.

In order to perform a target CI calculation configurations of the N electron
target molecule ¢I¥ have to be built up from the SCF target molecular orbitals.
The target molecular wavefunctions 1Y are then expanded as a linear combination

of these configuration:

v = cudl. (2.2)

1

The coefficients ¢;; are calculated by diagonalising the N electron Hamiltonian
HN:
(WY | HY [$]) = erbir, (2.3)

where the e are the target energies.

The target molecular orbitals p; must be augmented by a set of continuum
orbitals in the inner region in order to perform an N +1 electron calculation. This
is achieved by first setting up effective atomic orbitals u; centred on the centre of
mass of the target molecule. These u; take the form of numerical basis functions

which satisfy the equation:

2L +1) \
A S LA e\ (r) = 2.4
(o = 2 4 V() + Bui(r) =0, (24)
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subject to the boundary conditions

and
a du;
athedei} = 2.6
u’_ dr e b’ ( )

where k? = 2e;, V, is a suitable potential (for example the Coulomb potential) and
b is an arbitrary constant taken to be zero in this work.

The continuum molecular orbitals 7; for a diatomic molecule can then be rep-
resented in the inner region by the partial wave expansion:

ni(r) = > v ui(r)Yim, (B)Ai + Y pfBij + Y pPCij, (2.7)
i i i
where the V) jmi, are spherical harmonics, p#! and p? are Slater type orbitals centred
on the target nuclei A and B. The coefficients A;;, B;; and C;; are determined by
Schmidt and Lagrange orthogonalisation (Tennyson et al 1987).

The eigenstate wavefunctions gb,]cv +1 of the inner region N+1 electron system,
with eigenenergies e, in Hartrees, can then be represented by the expansion:

P = AZ Y (X1...XN); (PN+10N+1) @i + ZXm(Xl---XNH)ﬁmk, (2.8)
t,J

m

where A is the antisymmetrisation operator and x, = (rn, on), where ry is the spa-
tial coordinate of the n** electron and oy, is its spin coordinate. The 7; are formed
by coupling the spin function of the scattered electron to the continuum molecular
orbitals 7;. The first term in equation (2.8) therefore represents a summation over
all configurations where the target electrons are in a target configuration and the
N + 1t electron is in one of the continuum orbitals.

The functions x; in equation (2.8) correspond to configurations where all N +1
electrons are placed in the target molecular orbitals. They are added to allow for
short range correlation and polarisation effects between the scattered electron and

the target molecule.
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The coefficients a;;; and §;; are determined by diagonalising the Hamiltonian

matrix in the inner region so that

(YN Hygr + L |90 1) = exbra, (2.9)

where Hp 1 is the Hamiltonian of the N+1 electron system and L4 is the Bloch
operator (Bloch 1957) included to ensure that the Hamiltonian is hermitian in the

inner region. It is defined by the equation:

N41
1 _ . d b _ .
Ini =5 30 S W Wiy, ()80 =) (e~ D (7 Yoy, (7] (210)
=1 J ¢ '
A CI target representation can be used to reduce the size of the Hamiltonian
matrix to be diagonalised. If the coefficients a;;x in equation (2.8) are not allowed
to vary fully, so that only the N electron configurations ¢ included in the CI

target representation are included, then equation (2.8) may be rewritten:

P =AY Yy (xaxn) ) i(Ns1oNs1) ek + ) Xm(X1-XN+1) Bk
1 7 m
(2.11)
where the N electron target wavefunctions ¥} are given by equation (2.2). By

defining the Hamiltonian matrix element H;;;» for going from configuration ¢! 7;
to ¢V} by:
Hijiryr = (¢ n;| H|¢Vn}), (2.12)

for going from configuration ¢¥9; to x.. by:

Hijm = (¢} n;| Hxm), (2.13)
and for going from configuration x,, to x.. by:

Hym = (xXm|H|Xom), (2.14)

a Hamiltonian matrix of reduced size can be defined by the three equations:

Hijpy = ZciIHiji'j’Ci‘I', (2.15)

11!
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Hijm = z cirHijm, (2.16)
and

H: = Hpm, (2.17)

=
where the coefficients ¢;; are those of equation (2.2). It can be seen that no saving
is made for configurations where all the electrons are in target molecular orbitals,
but the number of these is typically much smaller than the number of configura-
tions where the N + 1** electron is in a continuum orbital. As an example the
seven target state work on electron-H; scattering discussed in Chapter 4 generated
a Hamiltonian matrix that was 5396 x 5396 elements large for the X, symme-
try. Using this contraction method the size was reduced from 5396 configurations
squared to 428 configurations squared of which 209 of the configurations where of
the type where all N + 1 electrons are in the target molecular orbitals.
The Schrodinger equation (;f the N + 1 electron system in the inner region is
given by:
(Hny1+ Lyya — E)¥ = Ly, V. (2.18)

where ¥ is the total wavefunction of the system. This has the solution:

U =(Hyny1 + Lyyr — E) 'Ly 0. (2.19)
The inverse operator can be expanded in the basis defined by equations (2.8)
and (2.9) so that:
¥n ) o L [9)
U) = . 2.20
R (2.20)

Premultiplying this equation by the channel function < Y Y},.m,‘_l and defining the

reduced radial functions F; as:
Fi(r) = (9} Viym, 1), (2.21)

the surface amplitudes f;; by:
for = (6] Vi, l3) (2.22)
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and using the Bloch operator defined by equation (2.10) it follows that at the

R-matrix boundary:
Z Ri;(E)( a——— — bF})r=a, (2.23)
which defines the R-matrix given by

Ri(E) = Zf,k(a )(ex — E)7 fix(a). (2.24)

P11 and

In practice it is not possible to include an infinite number of states
the sum in equation (2.24) has to be truncated to a finite number of terms Ny for
each value of £. The error produced by this truncation is particularly important
in this case due to the artificial boundary conditions (equations (2.5) and (2.6))
at the R-matrix sphere. The Buttle correction (Buttle 1967, Shimamura 1978) is

therefore added to the diagonal terms of the R-matrix to remove the error incurred

and is defined as:

Bu(p) = = Y, Ll (225)

112
1=N;+1 2kl‘ E
where uy; is the i** eigensolution of equation (2.4) and k% = 2e;; the relevant
eigenenergy.

2.2 Inner region program suite

The computer program suite used in this work to solve the inner region prob-
lem was adapted from the quantum chemical package ALCHEMY (McLean 1971,
Noble 1982). A flow chart of this suite is given in figure 2.1.

The module SCF is where the atomic Slater type orbitals are input and a self
consistent field target calculation is performed. The module outputs target molec-

ular orbitals which are linear combinations of the atomic orbitals as in equation

(2.1).
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Figure 2.1: Inner region flow chart.
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The module NUMBAS is where the numerical continuum orbitals are generated
in accordance with equations (2.4), (2.5) and (2.6). The potential V, can be input
separately or the module has the capability of calculating several simple potentials.
The maximum number of partial waves retained must be input and no attempt is
made to orthogonalise the orbitals to the target. This module also calculates the
Buttle correction defined by (2.25).

INTS generates the 1-electron, 2-electron and property integrals over the re-
stricted inner region.

MOS produces molecular orbitals and their boundary amplitudes, given by
equation (2.22), from the target orbitals generated by SCF and the continuum
orbitals generated in NUMBAS. MOS can be used to Schmidt orthogonalise the
target orbital set, or the target-continuum orbital set and it can also be used to
Lagrange Orthogonalise the continuum orbitals to a specified number of target
orbitals of the same symmetry (Tennyson et al 1987). This procedure may be
needed to eliminate linear dependance.

TRANS orders the atomic orbital integrals generated by INTS and transforms
them into molecular orbital integrals using the molecular orbital coefficients gen-
erated in MOS.

In the module CONGEN electron configurations to be included in the CI cal-
culation are picked by hand. It is therefore used to determine which terms are
included in the expansions of equation (2.8). SPEEDY determines which inte-
grals, computed by INTS and transformed by TRANS, will be needed for the
configurations generated in CONGEN. SORT then sorts these integrals into the
most convenient order for the module CI. CI performs a configuration interac-
tion calculation. It diagonalises the Hamiltonian as in equation (2.9) to yield the
eigenenergies ex and the coefficients ¢;j; and B of equation (2.8). In the case of

a CI target calculation this yields the coefficients ay;x and By of equation (2.11).
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The other module of interest here is TMT which is used to produce the dipole
and quadrupole moments of the target, required in the outer region calculation,
from data generated in the inner region and inner region moments for N + 1

electron transitions. This module will be discussed in more detail in section 2.7.

2.3 Outer region scattering calculation

In the outer region it is assumed that the effects of electron exchange between the
scattering electron and the target can be ignored and that the wavefunction can

be expanded in the single centre, close coupling form:

¥ = Z &i(XI..XN, 0'N+1)7‘—1G;(7'N+1)}/1'-m['.(f‘N_H), (226)

Following the method used in the inner region this equation can be substituted
into the Schrodinger equation and projected onto the channel functions to give a
set of coupled differential equation for the reduced radial functions G; for a given

internuclear separation:

(D 6, =2 3 V()G (), (227)

dr? r2

where

k} =2(E - EY), (2.28)

EV are the eigenenergies associated with the target state ¢ and V;; is the potential

1

in the outer region.
For a scattering calculation the equations (2.26) are subject to the asymptotic

boundary conditions (r — o)
Gij — ki_%(Sinoiéij + cosb; K;) for open channels (2.29)

Gi; — 0 for closed channels (2.30)
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which also define the K-matrix K;; that couples the open channels The 6; are given
by:
1 z L2
0; = k;r — §li7r + Fln]k,-r +argl'(l; +1— z;), (2.31)
where I'(l; + 1 — iz/k;) is a complex gamma function and z is the residual charge

of the molecule. From the K-matrix the eigenphase sum § is given by
6= Zarctan (KR (2.32)

where K is the diagonalised K-matrix. The T-matrix can be obtained from the

matrix equation

. T= (2.33) .

1-:K’
From the T-matrix the integral cross-section o(z — 1'), for going from state ¢ to
state ¢/, can be found for a linear molecule (Burke 1979) from the equation

T (25 +1)
oY 2.34
U(Z—*Z) kzz 25_*_1)%;' Izl ( )

where S is the total spin angular momentum, S; is the spin angular momentum
of state ¢ and A is the total electronic angular momentum projected onto the
molecular axis. The T-matrix can also be used to calculate the differential cross
section, see Malegat (1990).

In the present work the outer region functions were obtained by first propa-
gating the R-matrices (Baluja et al 1982, Morgan 1984) to a suitable radius and
then using (Gailitis) asymptotic expansion techniques (Noble and Nesbet 1984) to
solve equation (2.27).

2.4 Outer region program suite

Figure 2.2 shows the flow diagram for the outer region suite of programs used. It

should be noted that inner region modules of figure 2.1 are individual programs
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that are the run separately and independently of one another. The solid lines
linking the various modules are data flow indicators. However, the outer region
package is one program that is divided into modules. The solid lines in figure
2.2 again indicate data flow, but the dashed lines represent calls to modules from
within other modules.

The outer region program is managed by the module DRIVER which sets up
computer memory allocations and calls the various modules.

The module INTERF is used to interface between the inner and the outer region
codes. It takes the input from the inner region together with additional target data,
including internuclear separation, energy levels of the target states and multipole

‘moments. It constructs the surface ‘arr’lpiitl‘ldés ’f,'kv givén byveduati(')ny(f.??') at the
R-matrix boundary from the information generated in the inner region and adds
in the Buttle correction of equation (2.25).

RSOLVE is the main driving module of the outer region which produces the
K-matrices of the system (equation (2.29)). It makes calls to VIBRMT, which sets
up the necessary data if a non-adiabatic calculation is being performed, RPROP
which propagates the R-matrix to a given radius and CFASYM which calculates
wavefunctions in the asymptotic region.

EIGENP produces eigenphases from K-matrices using equation (2.32) and RE-
SON is an automatic resonance detection program which produces resonance posi-
tions and widths by fitting detected resonances to a Breit-Wigner form (Tennyson
and Noble 1984). Within this form the eigenphase 7 is expressed as a function of

the scattering energy, E, in the form:
N

Ztan [ E ] + Za, (2.35)

1=

where I'"** is the width and E"” is the position of the resonance. The second sum
in this equation is a power series used to represent the underlying trend of the

eigenphase across the region of the resonance.
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TMATRX is used to produce the T-matrices of the system (see equation (2.33))
from the K-matrices and additional vibrational data via a subroutine call to VIB-
INT if a non-adiabatic calculation is being performed. From the T-matrices MCQD
computes multichannel quantum defects (see section 2.5), the integral cross sec-
tions are computed by the module IXSECS and the differential cross sections by
the module DCS (Malegat 1990).

2.5 Bound state calculation

In the inner region the total wavefunction of the bound N + 1 electron system ¥;

" can be expanded in terms of the complete set of functions i,/)fcv +1 of equation (2.8):°

=Y o, (2.36)
, k

The coefficients Cy; are known as the bound state coefficients. In order to calculate
these bound states, the outer region functions must tend to zero as the distance
of the scattering electron tends to infinity. Within the R-matrix method they
must also be able to be matched to the inner region functions at the R-matrix
boundary. In the present work these outer region functions were obtained by first
using a Gailitis expansion technique (Noble and Nesbet 1984) at a suitable radius,
and then propagating inwards to the R-matrix boundary using the Runge Kutta
Nystrom method to solve the asymptotic equations numerically.

The matching conditions, at the R-matrix boundary, for a bound state are:

Fi=) P;X; (2.37)
J
and
dF; dP;
ari 5~ abi 2.38
dr - dr Xis (2:38)

where the F; are the reduced radial functions described in section 2.1, the F;;

are the outer region functions and X is a column vector needed to construct the
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bound state coefficients \1 Cks given by the equation:

‘LCsz Z 2( fik E) Z( dCI;J - ﬂPtJ)XJ (239)

€ —

By combining equations (2.23), (2.37) and (2.38) the standard form of the

matching condition is given by:
> BiiXj =3 (P = [} R(E)Qui])X; =0, (240)
3 J k

where

dPy;

..... Equation (2.40) has the standard form of an. eigenvalue equation and it therefore . . = . |
only has solutions at discrete values of energy FE, the bound state energies, where
the determinant of the matrix B;; will be zero.
A problem arises at energiés E close to the R-matrix pole energies ex. At
these energies the R-matrix (equation (2.24)), and hence the matrix B;; (equation
(2.40)), is undefined. It therefore becomes necessary to eliminate these poles and
this is done using the method described by Burke and Seaton (1984).

Equation (2.24) is first rewritten as:

S

Ry = 2a(ex — E)

where the total energy E is close to the pole energy e,

Si; = fix(a)fik(a) (2.43)
and
Ty = 3 oo fula)lex = E)™ (o) (2.44)
k#K

A solution of the eigenvalue problem:
Z SiiUsk = Z Uiksk (2.45)
i k
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is then sought. It can be shown (Burke and Seaton 1984) that this equation is

satisfied when Uj; is given by:

fikfivig/TiTjp fori=1toyg

for j=1 to (I-1) Uj=19 -Ti/Tin fori=j7+1 (2.46)
0 fori> (5 +1)
and
for j=1 Uit = fix/T1, (2.47)

for : = 1 to I where I is the total number of channels and

Z %) %. (2.48)
p R
The matrix Uj; is normalised to
) ULU; = 6 (2.49)
1
where Ug is the transpose of U;;. The solution for s is then:
Sp = 6“1“2,. (2.50)

By combining equation (2.40) with equation (2.42) and premultiplying by the

matrix Ug the matching condition becomes:

1
for i=1to (J—1) Y LuXe=0 (2.51)
=1
and
Ly — -————1‘2M X =0, 2.52
;[ = Gaen T M) (2.52)
where
Z (P — [Z Tim@mi]) (2.53)
and

M:J Z tl QIJ (2'54)
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Figure 2.3: Outer region bound state flow chart.

The quantity (ex —F) now only appears in one of the matching equations (equation
(2.52)). This equation can then be multiplied by the (ex — E) factor to redefine

the matrix B;;:

for =1 to (I - 1) By = Ly (2.55)

and

BIi’ = (eK - E)LI,-/ - I‘zM[,'/, (256)

thus eliminating any singularities.

The bound states of a system are found using the computer module BOUND
shown in figure 2.3. As for the scattering case DRIVER is the control module
and the module INTERF provides the interface between the inner and the outer
region calculations. The module BOUND makes calls to subroutines VIBRMT,

42



RPROP and CFASYM in order to include vibrational information, propagate the
R-matrix and perform the asymptotic calculations respectively in exactly the same
way that the scattering module RSOLVE did. The calculation of the bound states
is performed within the module BOUND itself.

Zero’s of the determinant of B;;, defined by equations (2.55) and (2.56), can
be searched for by calculating the determinant at successive energy points and
detecting any change in sign of the determinant. In practice, for ionic molecules,
it is often more convenient to search over effective quantum number v (Seaton
1966, 1985) given by:

2

E=E-2

ot (2.57)

where E; is the energy of the lowest molecular state. The effective quantum number

is related to the principal quantum number n by the equation:
p=n—v (2.58)

and p is the quantum defect. In the atomic case there are only a small number
of bound states for a given value of the principal quantum number n, but for
molecules this is not necessarily the case. It was therefore necessary to develop a
new method of searching for bound state energies.

For a given value of n an estimate for the number of poles likely to be found
was calculated by considering the number of open channels with allowed values of
£. This information was then used to construct an evenly spaced grid in quantum
defect space of effective numbers from n — % to n + % For each grid point the
R-matrix pole nearest in energy to the grid point was found and the determinant of
the matrix Bjj, given by equations (2.55) and (2.56), was calculated. If there was
no change of sign in the determinant between successive grid points then a check
was made for the possibility of two poles between the grid points by fitting the

determinant function to a quadratic. Once a change in sign had been detected a
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Newton-Raphson search was performed to obtain an initial estimate of the bound
state energy.

This initial estimate of the bound state energy, E;, was then assumed to be
very close to the true value, E, and the first two terms of a Taylor series expansion

were used to set up the standard eigenvalue equation:

dB,J (El

EB'J(E X;= Z(BU(EI (Eo — Er) ))X =0. (2.59)

This relation was then applied recursively (Seaton 1985, appendix 3) until the
change in the energy produced for one application of the formula was below a
certam value
| Smce the calculatlon of the detlerr’m;lant ‘of B;; takes a cons:derable amount
of computer time an option was added so that instead of setting up an even
grid of effective quantum number a grid could be used that was dense around
the points where a bound state might be expected and sparse in between these
points. This was made possible by the use of a quantum defect grid instead of an
energy grid, since for each value of n there is likely to be a bound state energy
with approximately the same value of quantum defect number as for n —1 (Seaton
1966). See figure 2.4. The arrows represent the bound state quantum defect values
and the vertical lines represent the grid points. Thus for a given value of n, bound
state energies are searched for near to the bound state energies found for n — 1,
by adding 1 onto their effective quantum numbers.

For molecules with no residual charge the use of a quantum defect grid is not
possible. An option was therefore included to set up an energy grid instead which

could be used for all types of molecular targets.
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Figure 2.4: Quantum Defect grid.

2.6 Calculation of transition dipoles

The development of the bound state computer module made it possible to calculate
photoionisation cross sections using the module PHOTO and to develop another
module TDIP to calculate transition dipoles from which oscillator strengths can
be calculated, see figure 2.3.

Previously the module TMT was used to calculate dipole and quadrupole mo-
ments of the N electron system for use in the outer region program package to
produce both scattering information and bound state. It can also be used to cal-
culate inner region transition moments of the N + 1 electron system. In order
to do this the module TMT requires input from the inner region packages (see
figure 2.1). It requires the transformed property integrals generated in the module
TRANS, the sorted energy expression generated in SORT and the CI wavefunction

information generated in the module CI. TMT then produces a transition matrix
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Tir using the dipole length approximation:

N+1 -
Tow = (Yp 1D erilyi" ™). (2-60)
=1

The module BOUND is then used to generate bound states ¥; of the N +1
electron system with bound state coefﬁcient4 Cis, see equation (2.36).

The transition dipole ¢ for going from state i to state i’ is given by:

- N+1 - : o
i = (U] Z |0 = Z CkiTir Crriv, (2.61)
=1 kk?

From the transition dipole the oscillator strength fi;» can be calculated using the
definition (Schadee 1978):
2 (2 - 60,A+A’)

= S = %omth) o Bzl 2.62
3 B Bt (262)

fiwr

in atomic units. At present the-module TMT can only be used for non-CI targets.
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Chapter 3

Six state model for H,

~ Even for the seemingly simple H, molecule there are still several areas where -
our knowledge of its characteristics is weak (McConkey et al 1988). These areas
include the electronic excitation integral cross sections, dissociative recombination
and differential cross section. An attempt has been made here to produce accurate
results for the integral (and in Chapter 5 differential) cross sections for electronic
excitation of molecular hydrogen by electron impact using the R-matrix method
described in Chapter 2.

Several recent experimental studies have concentrated on integral cross section
measurement (Watson and Anderson 1977, Ajello et al1982, 1984, Hall and Andric
1984, Pasquerault et al 1985, Mason and Newell 1986b, Khakoo and Trajmar
1986b, Nishimura and Danjo 1986, Khakoo et al 1987), a review of which has
recently been made by Tawara et al (1990). These measurements are very difficult
to make and, therefore, the integral cross section results are not always reliable.
There has also been considerable theoretical effort in this area (Fliflet and McKoy
1980, Arrighini et al 1980, Lee et al 1982, Redmon et al 1985, Baluja et al 1985,
Schneider and Collins 1985, Lima et al 1985, Gibson et al 1987, Rescigno and
Schneider 1988, Lima et al 1988, Lee et al 1990). In this chapter and the next
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these results are compared with the ones obtained in this work.

Previous experimental studies of molecular hydrogen have shown that the inte-
gral cross section for several excitation processes displays a highly resonant char-
acter in the 10-15 eV energy region. These studies (Comer and Read 1971, Schulz
1973, Spence 1974, Weingartshofer et al 1975, Bose and Linder 1979, Mason and
Newell 1986a), haye produced a large amount of data which has revealed features
associated with several series of resonances. Theoretice-xlly, stabilisation and Fesf
hbach methods have been used (Eliezer et al 1967, Buckley and Bottcher 1977,
Bardsley and Cohen 1978, DeRose et al 1988) in this energy region Aand 7recently

scattering techniques (da Silva et al 1990) have also been used to study this res-

for the structure. The present calculations were found to be sufficiently detailed

to be able to produce resonance information which is discussed here.

3.1 Representation of the target molecule

Previous attempts to calculate electronic excitation cross sections for H, have
been restricted to studying two states of the target molecule at a time (Baluja et
al 1985, Schneider and Collins 1985, Lima et al 1985, Gibson et al 1987, Rescigno
and Schneider 1988). These attempts used a single-configuration wave function
representation for the electron states considered. Recently studies including sev-
eral coupled channels (da Silva et al 1990) and target correlation (Lee et al 1990)
have been carried out and it is clear that improved data can only be obtained by
adopting a similar approach. In this calculation the target molecule was repre-
sented by six target states, which made it possible to calculate excitation from the
ground to five low lying excited states of H, using the same model. Each electronic

state was represented by a full CI wavefunction within the basis of STOs used.

48



In order to achieve this six state representation it was first necessary to choose
a set of STOs. The (1s,2s,2p,) set of g, orbitals, optimised for the X* X} ground
state of H; by Fraga and Ransil (1961), were used. Initially the o, orbital expo-
nents were chosen to be the same as those for the o, orbitals. The 7, orbitals used
were those of Nesbet et al (1986) for a (2p,3px,3dx) set and the =, orbital expo-
nents were chosen to be the same as those of the 7, set. This was the first basis set
used and the target molecular orbitals produced by an SCF calculation were then
used to perform a full CT target calculation for the XX}, °E}, o®EF, &I, B'SY
and C'Il, state of H,. For a full CI calculation all possible electron configurations
that are allowed for a given symmetry and within the basis of molecular orbitals
* chosen are included. The target state energies produced at a fixed internuclear
separation of 1.4 a, for this first basis, together with a comparison with effectively
exact quantum-chemistry calculations are given in table 3.1.

The aim of this calculation was to obtain a good representation for all six target
states using the same, small set of molecular orbitals. It can be seen that this first
basis was not particularly effective and a great deal of time was spent in order
to improve the target representation. The program SCF is capable of optimising
orbitals for a given symmetry, but some trial and error methods of optimisation
were also required to reach the final representation.

The o, orbital exponents were optimised by performing an SCF calculation
on the lowest state of 'Y} symmetry and the same procedure was used to find
the exponents of a (2p,,3pr,3d,) set of , orbitals using the lowest state of 'II,
symmetry. The results of these successive optimisation (i.e. basis 2 to basis 4)
can be seen in table 3.1. This set of orbitals, however, was not able to represents
diffuse target states accurately, so the diffuse 2s(o,) orbital was added to the g,
orbital set (basis 5). Table 3.2 gives the exponents of all the orbitals used in the

fifth basis on which the results of this chapter are based.
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State 1° Basis 2"® Basis 3™ Basis 4" Basis 5 Basis ‘Exact’
XIE; -1.17060  -1.17018 -1.16553 -1.16569 -1.165844 -1.1744744°
BT 10.80 11.13 10.44 10.45 10.45 10.62¢
1a®TH 1981 2205 2196  21.96 1277  12.54%
A1, 13.38 13.33 12.65 12.58 12.59 12.73¢
By} 13.94 15.50. 13.17 13.16 13.15 12.75°
Cc'm, 14.56 14.46 13.09 13.11 13.10 13.23¢
®Kolos and Wolniewicz (1965)
*Kolos and Wolniewicz (1968)
°Kolos and Rychlewski (1977)
dRothenberg and Davidson (1966)
Table 3.1: Ground state energies (in Hartrees) and vertical excitation energies (in

eV) of H, for several different target representations.
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Orbital Exponent Orbital Exponent

1ss,  1.378 1s0,  1.081

9250,  1.176 955,  0.800

2s0, 0.800 )
20, 1820 2o,  1.820 |
2pm, 0574  2pm, 1.084

3pr,  0.636 3pmy 1.084

3dr, 1.511 3dm, 2.470

Table 3.2: Exponents of the STOs used in the six state target representation of
H,.

It can be seen from table 3.1 that the vertical excitation energies obtained agree
with the ‘exact’ results to within 0.4 eV. These small differences were corrected for
by shifting the diagonal elements of the Hamiltonian matrix by the appropriate

amounts.

3.2 Scattering calculation

Having obtained a target representation, a set of continuum orbitals was generated
numerically as described in Chapter 2, with V = 0. Some investigation was done
to see which model potential used to generate the numerical basis functions gave
the best results, but the model was found not to be very sensitive to this. The best
possible number of continuum orbitals to include was also the subject of consider-

able investigation. Including too few would result in inaccurate calculations, but
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including too many could cause computational problems. The program module
which is most affected by this is TRANS where all the molecular integrals required
to construct the Hamiltonian matrix are computed. Table 3.3 shows the effect of
varying the number of continuum orbitals used, by choosing the maximum energy
solution to be included, on a 24 configuration CI test single target state calculation
with an R-matrix radius of 20 a, and total symmetry 2%, using the fourth basis
set of table 3.1. It can be seefd that the éigenphase sums are approximately stable
for values of the maximum energy that are greater than 5, but not below.

In the present calculation all solutions below 5 Ryd with £ < 6 and m < 3
were included in the inner region calculation which meant that the calculations
" ran close to the limit of the Rutherford Cray XMP scratch disk space.

Directly related to this problem is the one of R-matrix sphere size. A large ra-
dius was required in this work because of the diffuse nature of the target, however,
increasing the radius also increases the number of continuum orbitals needed for
an accurate representation of the scattering process. Table 3.4 shows the effect of
changing the R-matrix radius on the number of numerical basis functions gener-
ated for a 2 CI target calculation using basis 4 and for a total symmetry of 2X,. It
can be seen that increasing the R-matrix radius dramatically increases the number
of basis functions and, therefore, the size of the calculation. It can also be seen
that size of the R-matrix sphere also changes the energy of the lowest R-matrix
pole.

Some experimentation was, therefore, required to obtain the most suitable ra-
dius and it was found that an R-matrix radius of 20 a, provided the best compro-
mise for these calculations. This large radius, approximately double the usual size
for a molecular calculation, meant that the number of quadrature points needed
to evaluate the long-range portions of the necessary integrals (Noble 1982) had to

be increased and after further tests approximately double the default number of
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Maximum Energy 10 8 6 ) 4
(Ryd). _
No. of continuum 55 49 43 37 34

functions
Lowest R-matrix |-1.129639 -1.129639 -1.129638 -1.129637 -1.129636

pole (Hartrees)

Scattering Energy Eigenphase Sum (radians)

(eV)

1.22 -0.6160  -0.6159  -0.6160  -0.6163  -0.6192
3.40 -0.9764 -0.9769 -0.9778 -0.9802 -0.9758
6.67 -1.272 -1.272 -1.271 -1.271 -1.282
11.02 1.639 1.638 1.636 1.631 1.641
13.61 1.547 1.547 1.547 1.548 1.532
14.97 1.507 1.507 1.508 1.510 1.487
16.33 1.470 1.470 1.470 1.469 1.455
20.41 1.381 1.379 1.375 1.366 1.391

Table 3.3: Effect of changing the maximum energy of the solutions generated for

the continuum functions on the target representation.
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R-matrix radius 10 12 20

No. of continuum functions 27 33 4 57

Lowest R-matrix pole (Hartrees) | -1.115336 -1.122450 -1.131470

T@ble-3.4: Effect of changing the R-matrix radius on the target representation.

points were found to be necessary.
A great deal of time was spent on determining the best possible method of
~orthogonalisation. If insufficient orthogonalisation procedures are taken out the
effects of linear dependence can be to produce R-matrix poles that are too low in
energy. If too much orthogonalisation is used then too much is omitted from the
calculation and the resulting representation is not adequate. Tests were carried
out using no Lagrange orthogonalisation, Lagrange orthogonalisation to one target
orbital and Lagrange orthogonalisation to two target orbitals for the o4, oy, 7, and
7, orbital sets. In the final six state calculations one orbital from the o4, o, and
7y and two orbitals from the =, sets were Lagrange orthogonalised to the target
orbitals of the same symmetry. This gave a set made up of 49 oy, 38 0y, 37 7y,
35 g, 36 64, 25 by, 25 ¢, and 23 ¢, continuum orbitals. The full set of target and
continuum orbitals was then Schmidt orthogonalised to the set of target orbitals
to give an orthonormal set of molecular orbitals.

In the inner region all possible configurations, for a given total symmetry,
where the target electrons were in target orbitals and the scattered electron was in
a continuum orbital, were included. All possible configurations with all electrons in
the target molecular orbitals were also included in order to allow for high-£ terms.
Because a full CI target representation was used, all these configurations could be

included without the risk of over correlation. The inner region Hamiltonian matrix
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was then set up, reduced and diagonalised as described in Chapter 2.

The memory problems caused by the size of these calculations lead to the
modification of the program module CI (Tennyson 1990) described in the previ-
ous chapter. In the previous version the uncontracted Hamiltonian matrix was
constructed and written to disk. The full Hamiltonian was then read into core
in order to perform the contraction process described in Chapter 2. In the new
version the uncontracted Hamiltonian elements are read into core a band at a time
and the contraction process vectorised.

In the outer region solutions were obtained by setting up the R-matrix at the
R-matrix boundary and then propagation it (Morgan 1984) to a suitable radius.
" Solutions were then obtained by applying asymptotic expansion techniques (No-
ble and Nesbet 1984). Some experimentation was needed to determine the best
propagation radius to use. Too small a radius produces errors caused by matching
conditions at the boundary not being fulfilled, but increasing the radius increases
the amount of computational work that has to be done in the outer region. The
radius of propagation was gradually increased until no mismatching occurred and
the results obtained here are for a propagation radius of 100 a,. All diagonal and
off-diagonal dipole and quadrupole moments, calculated using the module TMT,
were retained. From these results K-matrices, eigenphase sums, T-matrices and

integral cross sections were calculated as described in Chapter 2.

3.3 Results

Figures 3.1 to 3.8 show the eigenphase sums obtained for each total symmetry up
to ®,. The filled triangles indicate the threshold energies of the excited states of
the target molecule. The curves are all plotted on a grid of scattering energies

separated by 0.01 eV with small gaps at the threshold energies. The results have
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Symmetry | E,., (€V) | T'yes (€V) Assignment
2yt 10.96 | 1.39 101102
12.30 0.073 a
25t 10.62 |b 35} threshold
10.97 ‘feature’
12.76 ¢ %I, threshold
1, 12.60 0.066 c
11, 10.62 b 3%} threshold
11.06 -{ 0.46 -
11.78 0.96

Table 3.5: Resonance positions, E,.,, and widths T, for H,.

been smoothed using the fact that the eigenphases are arbitrary to a factor of

modulo 7.

These eigenphases were then used in the program module RESON to produce
resonance information. Two terms were used in the polynomial fit to the back-
ground (see equation (2.35)). A summary of the most significant results obtained
below the energy of the C II, threshold, is given in table 3.5. In order to obtain
these final results it was necessary, in certain cases, to repeat the scattering calcu-
lation at a much smaller energy separation, but there still remained some features

which could not be fitted to a resonance form. This will be discussed in the next

section along with the assignments given in the table.

The remaining figures in this chapter represent integral cross sections. Figure
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3.9 shows the effect on the shape of the cross section for excitation from the ground
to the first excited state of H,, considering the 25, symmetry only, of increasing
the number of target states in the representation. Results are given for two state
(X 15}, b 3%}), four state (X 'ZF, b 3%}, a L}, B 'E}) and six state (X 'Z},
b 3%}, a 3%}, B XY, ¢ %I, C 'II,) calculations. The two state calculations of
Baluja et al (1985) are also shown for comparison.

Figures 3.10 to 3.14 show the integral cross sections for excitation from the
| grouﬁd to the five excited states considered in this model. The contributions from

all eight symmetries up to ?®, have been included.

3.4 Discussion

The eigenphase sums given in figures 3.1 to 3.8 display a large number of features
previously only observed in atomic collision calculation (e.g. Clarke and Taylor
1982). This is a result of the sophistication of the model used and the fact that the
R-matrix method is ideally suited to this sort of calculation where a large number
of scattering energies must be considered. This ability to repeat the calculations at
many energies made it possible to map out resonance features to determine their
positions and widths.

The results of the resonance analysis are found in table 3.5. In several cases
resonance like features were found just below threshold energies, but the jump in
eigenphase sum was less than that associated with a true resonance (i.e. 7). This
was particularly noticeable just above the b 357 threshold in both the 2%, and the
?T1, symmetries. Another resonance like feature was found in the 2, symmetry
against a sharply falling background which made it impossible to fit the resonance
using the program module RESON. The broad resonance in the 2X, symmetry is

due to the well known (Schulz 1973) repulsive 1o}102 state of H; .
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Figure 3.10: Integral cross section, in a2, for excitation from the X 'X7 state to the
b 3%} state, as a function of energy, in eV. Theory: solid curve, six state model;
dotted curve, Baluja et al (1985). Experiment: solid circle, Nishimura and Danjo

(1986); solid square, Khakoo et al (1987); solid triangle, Hall and Andric (1984).
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Figure 3.11: Integral cross section, in a2, for excitation from the X 'E} state to

the a 32; state, as a function of energy, in eV.

Figure 3.12: Integral cross section, in aZ, for excitation from the X 'X} state to

the ¢ 3II, state, as a function of energy, in eV.
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Figure 3.13: Integral cross section, in a2, for excitation from the X 'I} state to

the B 1L} state, as a function of energy, in eV.
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Figure 3.14: Integral cross section, in a2, for excitation from the X 'L} state to

the C 'II, state, as a function of energy, in eV.
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The results here were obtained for fixed nuclei. In order to compare these
results with experimental resonances labeled a to g (Schulz 1973) the present
results must be shifted by the difference in energy between the vertical excitation
energy and the adiabatic excitation energy of the parent state. The a and ¢
resonances both have the parent state ¢ I, shifting the resonance positions to
11.29 eV and 11.59 eV for the 2T, and 2II, respectively. These results agree
well with the previous experimental results of Schulz 1973 and Mason and Newell
(1986a) who found the resonances in the 11.28-11.34 and 11.43-11.50 eV range
and with the theoretical results of Buckley and Bottcher (1977) who found the two
resonances at 12.16 and 12.70 eV respectively and Eliezer et al (1967) who found

- the -a series resonance at 12.32 eV

These calculations did not show any evidence for the b series resonance of
Comer and Read (1971) and Buckley and Bottcher (1977) with parent state B
1%} nor did it find the d, e or higher series of resonances.

Figure 3.9 shows the effect of including more target states in the calculation.
It can be seen that the present two state calculation agrees well with the two state
calculation of Baluja et al (1985) if the sharply peaked resonances are ignored.
These pseudoresonances are caused by neglecting open channels in the calculation.
By including more target states the cross section becomes larger close to threshold
and smaller at large energies. This is due to the improved representation of the
target polarisation and to the loss of flux to other processes allowed for in the more
complex target representation. The resonance close to the threshold in the four
and six state calculations do not appear to be pseudoresonances, but are physical
in origin. This type of resonance is also seen in several other symmetries which
lead to the resonance analysis described above.

Figure 3.10 shows the integral cross sections obtained for the excitation process

X 'E} — b 3%} state. The results obtained by Baluja et al (1985) are again
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smaller at low energies and larger at high energies. Experimental results have also
been given, but it can be seen that the experimental errors and the number of
experimental points available mean that it is impossible to resolve the resonant
structure close to threshold.

Figures 3.11 to 3.14 show cross sections for excitation to the other four excita-
tion processes. No experimental data has been plotted since this will be discussed
in the next chapter wﬁere a more complex model has been used. These figures do,
however, show distinct resonance features. Like the X '3} — b 3E} p—roc;ass the
X Bt — a 3L} process and the X 15} — ¢ 31I, excitation process also display
resonance features close to threshold.

- In this chapter results have been presented for electron- H, scattering using a
full CI six target state calculation. Integral cross sections have been calculated
for excitation from the ground to the five excited states included in the calcula-
tion. The calculations were sufﬁciently complex to allow an investigation into the
resonant structure of the integral cross sections and the agreement between these
results and those of previous experimental and theoretical work has been accept-
able. In the next chapter a more sophisticated model is used to study the same
cross sections and resonances and a more detailed comparison with previous work

1s given.
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Chapter 4

Integral cross sections for Ho

- The seven state target calculations discussed in this chapter are an extension of -
the six state target calculations discussed in the previous chapter. In addition to
the previous six states the E,F 12; state has also been included. This state has
been shown by da Silva et al (1990) to be of importance in their test calculations
in the resonant energy region. Inclusion of this state also means that none of the
lowest states have been excluded. Indeed, above the highest state included here,
the C 'II, state, there is a gap of 1.7 eV before the next highest i 3II, and I 'II,

states, if the internuclear distance is taken to be fixed at 1.4 a,, see figure 4.1.

4.1 Calculation

It was found that the set of STOs used in the previous chapter was not able
to adequately represent the E,F 12; state. Some experimentation was therefore
carried out on the exponent of the 2so, orbital in order to improve the target
representation. Table 4.1 shows the results of this investigation and table 4.2
summarises the set of STOs chosen to b;e used in the seven state model discussed
here. It should be noted that the only difference between this set of STOs and the

one used in the previous chapter is that the exponent of the 2so, orbital has been

67



E =1 n=
.ol . . . . . . V<ng‘1 .,nb'l
-06 N -
Cram
ng1, ng?
-07
-08
09
-10 nFng1
-1t

12 3 4 5 6 7 Rlaw

Figure 4.1: Potential energy curves of H, taken from Kolos (1978).
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Exponent | 6 State Basis 7 State Basis ‘Exact’

of 2s0, 0.800 0.900 0700  0.600

xsf -1.16584  -1.16586 -1.16582  -1.1658134  -1.1744744°
550 10.45 1045  10.45 10.45 10.62°

3Ly | 1277 0 13.04. . 12,56 . . 1247 . . 12.54°

A, 12.59 12.59  12.59 12.59 12.73¢

B'S 13.15 13.14  13.15 13.15 12.75

E,F'T} 14.00 1448 13.58 13.40 13.14¢

c'l, 13.10 13.10  13.11 13.11 13.23¢

*Kolos and Wolniewicz (1965)
Kolos and Wolniewicz (1968)
¢Kolos and Rychlewski (1977)
YRothenberg and Davidson (1966)
¢Interpolated from Kolos and Dressler (1985)

Table 4.1: Ground state energies (in Hartrees) and vertical excitation energies (in

eV) of H, for several different target representations.
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Orbital Exponent Orbital Exponent
1s(o,) 1.378 1s(oy) 1.081
2s(oy) 1.176 2s(o,) 0.800
2s(oy)  0.600

2poy, 1.820 2po, 1.820
2pm, 0.574 2pm, 1.084
3pm, 0.636 3pm, 1.084
3dr, 1.511 3dr, 2.470

Table 4.2: Exponents of the STOs used in the seven state target representation of
H,.

changed from 0.800 to 0.600.

As in the previous chapter a full CI target calculation was performed for the
seven target states and the internuclear separation was fixed at 1.4 a,. Again
the results were no more than 0.4 eV different from the ‘exact’ quantum chem-
ical results and the diagonal Hamiltonian matrix elements were shifted by the
appropriate amount to compensate for this.

The continuum orbitals were generated as described in the previous chapter,
with an R-matrix radius of 20 a,, and all solutions below 5 Ryd with ¢ < 6 and
m < 3 were retained.

It was found that, even for a one state calculation, the new, more diffuse set
of STOs suffered from problems with linear dependence if the previous orthog-

onalisation procedures were used. After some investigation it was found that it
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was necessary to Lagrange orthogonalise one orbital from the o, and 7, and two
orbitals from the o, and 7, sets to the target orbitals of the same symmetry. This
gave a set made up of 48 oy, 38 0y, 37 7, 35 Ty, 36 by, 25 by, 25 ¢, and 23 ¢,
continuum orbitals. The set of target and continuum orbitals was then Schmidt
orthogonalised to the set of target orbitals as in the previous calculation.
Scattering calculations were then performed with an R-matrix propagation
radius of 100 a, and with all diagonal and off-diagonal dipole and quadrupole
moments retained. K-matrices, eigenphase sums, T-matrices and integral cross
sections were then calculated as before. The resonances were detected and fitted

to a Breit-Wigner form using the module RESON.

4.2 Results

Figures 4.2 to 4.9 show the eigenphase sums for the total symmetries 2y, to 29,.
They represent scattering calculations separated in energy by 0.01 eV with small
gaps at the thresholds, marked by triangles on the base lines. The results have
been smoothed by multiples of 7 where necessary. By comparing these results
with those of the previous chapter, shown in dotted lines on these figures, it can
be seen that the eigenphases for the seven state calculation are consistently higher
than for the six state calculation, as would be expected.

Table 4.3 summarises the resonance positions and widths detected in these
calculations. Where necessary a finer energy grid than 0.01 eV has been used
to clarify the shape of the eigenphase sums and where possible assignments have
been made using the experimental classification scheme (Schulz 1973). In the
lowest four symmetries considered here, rapid rises in the eigenphase sum of less
than one could not be fitted to a resonance form. Where these effects were seen

they have been described in the table as ‘features’. In the higher four symmetries
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Figure 4.3: 2X} eigenphase sums for electron-H, collisions as a function of scat-

tering energy in eV. Solid curve: seven state model; dotted curve: six state model.
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Figure 4.5: %I1, eigenphase sums for electron-H; collisions as a function of scatter-

ing energy in eV. Solid curve: seven state model; dotted curve: six state model.
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0.8
S
3
72} .
0 \
/2]
=
A 0.4
=
S
20
0.0 "—A/|///|A A | AA
10 11 12 13

Energy (eV)

Figure 4.7: 2A, eigenphase sums for electron-H, collisions as a function of scat-

tering energy in eV. Solid curve: seven state model; dotted curve: six state model.
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Figure 4.8: 20, eigenphase sums for electron- H, collisions as a function of scatter-

ing energy in eV. Solid curve: seven state model; dotted curve: six state model.
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Figure 4.9: 2®, eigenphase sums for electron- H; collisions as a function of scatter-

ing energy in eV. Solid curve: seven state model; dotted curve: six state model.
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Symmetry | E.es (€V) | I'res (€V) | Assignment

2n 10.94 1.24 lo}lo?
12.10 0.106 a loj2r,2m)
legr o1 | | Heature

12.54 0.073 c/e lo)2m 2]

1, 12.50 0.018 c/e lo,2n)20,
12.95 0.175 ‘feature’

1, 11.05 0.46 ‘feature’
12.80 0.080 d loj2nl20) ?

2A, 12.55 0.21 ‘resonance’
13.16 0.058 ‘resonance’

Table 4.3: Resonance positions, E,.,, and widths, Iy, for H; using the seven state

model.
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Figure 4.10: Integral cross section, in a2, for elastic scattering as a function of
-energy, in eV. Theory: full curve, seven-state model; open square, Gibson et al -
(1984); open circle, Nesbet et al (1986). Experiment: solid circle, Nishimura et al
(1985); solid triangle, Khakoo and Trajmar (1986a).

there are eigenphase sums which exhibit resonance-like features, but are not of
sufficiently large magnitude to be thought of as true resonances.

Figures 4.10 to 4.16 show the integral cross sections for elastic scattering and
for the six electronic excitation processes considered here. These results were
obtained by summing up the results from the first eight symmetries and available

experimental and previous theoretical results are plotted for comparison.

4.3 Discussion

The eigenphase sums, shown in figures 4.2 to 4.9, for the seven target state model
agree well with the corresponding results for the six target state model given in the
previous chapter for energies below 12 eV. Above this energy the effect of including
the E,F 'S¥ state can be clearly seen. Recently da Silva et al (1990) have shown

that one of the 2X, resonances is particularly sensitive to the inclusion of this state
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Figure 4.11: Integral cross section, in a2

, for excitation to the b 3L} state, as a
function of energy, in eV. Theory: full curve, seven-state model; broken curve,
Baluja et al (1985). Experiment: solid circle, Nishimura and Danjo (1986); solid
triangle, Khakoo et al (1987); solid inverted triangle, Hall and Andric (1984).
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Figure 4.12: Integral cross section, in a2, for excitation from the X 'Y} state to
the a L} state, as a function of energy, in eV. Theory: full curve, seven-state
model; open circle, Lima et al (1988). Experiment: solid triangle, Khakoo and

Trajmar (1986b).
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Figure 4.13: Integral cross section, in a2, for excitation from the X 'X state to
the ¢ 31, state, as a function of energy, in-eV. Theory: full curve, seven-state -
model; dotted curve, Lee et al (1982); open circle, Lima et al (1988). Experiment:
solid diamond, Mason and Newell (1986b); solid triangle, Khakoo and Trajmar
(1986b). |
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Figure 4.14: Integral cross section, in a2, for excitation from the X 'X7 state to the
B 1T} state, as a function of energy, in eV. Theory: full curve, seven-state model;
open square, Gibson et al (1987); open triangle, Redmon et al (1985). Experiment:

solid square, Ajello et al (1984); solid triangle, Khakoo and Trajmar(1986b).
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Figure 4.15: Integral cross section, in a2, for excitation from the X X} state to the
"C 1, state, as a function of energy, in eéV. Theory: full curve, seven-state model; -
dotted curve, Lee et al (1982); open diamond, Arrighini et al (1980). Experiment:

solid circle lower limit of Watson and Anderson (1977).
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Figure 4.16: Integral cross section, in a2, for excitation from the X 12; state to the
B T} state, as a function of energy, in eV. Theory: full curve, seven-state model;
dotted curve, Lee et al (1982); open diamond, Arrighini et al (1980). Experiment:
solid square, Ajello et al (1984); solid triangle, Khakoo and Trajmar (1986b).
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Symmetry | Label 6 7 Eliezer Buckley and DeRose
state state et al (1967) Bottcher (1977) et al (1988)

25t lollo? 10.96 10.94  10.68 10.94
g a 12.30 1210  12.32 12.16
2pt cle 12.54 12.41 <12.31
211, c/e 12.60 12.50 1270

- Table 4.4: Resonance positions for' H, in comparison with previous calculations:

even though it is a closed state at the energy in question. The possibility that
inclusion of higher lying states could have a significant effect on these eigenphase
sums cannot, therefore, be ignored. This sensitivity to the model used is likely to
be caused by a large number of resonances overlapping. Small changes in their
positions and widths would have a large effect on the eigenphase sums because of
interference effects.

Table 4.3 shows the seven state target calculation resonance features. It should
be noted that the ‘feature’ in the X} symmetry of the six state calculation has
been resolved into a resonance in the seven state calculation. Adding the extra
state also had the effect of lowering the positions of the resonances and, except for
the ‘a’ 2X} resonance, reducing their widths.

Table 4.4 compares the most significant features from table 4.3 with the results
of Chapter 3 and with other theoretical calculations which used L? methods to
study resonances.

The agreement between the seven state calculations and those of Buckley and
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Bottcher (1977) is good. The calculations of DeRose et al (1988) only provide an
upper bound on the position of the 2%, resonance, but, unlike the other L? calcu-
lations, they estimate the resonance width. Their value of 0.67 eV is much larger
than the seven state calculation of 0.073 eV and if it were correct the resonance
would be too wide for vibrational structure to be observed. DeRose et al (1988)
also found two other lower lying resonances for this symmetry, which have not
been found here or elsewhere.

Experimentally the resonances discussed here are sufficiently narrow for vi-
brational effects to give rise to resonance series. In order to make comparisons
between these results and the results of this chapter it was necessary to know the
‘parent state of the resonance considered and to shift the resonance position by -
the difference between the vertical excitation energy and the adiabatic excitation
energy of the parent state. Schulz (1973) gives the parent state of the ‘a’, ‘c’, ‘d’,
and the ‘e’ resonances as the c 31, state and shifting the results given in table 4.3
by the appropriate amount gives the results in table 4.5.

The energy position of the resonances is in reasonable agreement with the
experimental values which would add support to the assignment of the c *II, state
as the parent. The width of the ‘a’ and ‘c’ resonances calculated here are much
larger than the results of Joyez et al (1973). However, both Joyez et al (1973) and
Bose and Linder (1979) found that the widths were dependent on the isotope of
hydrogen used. These considerations are beyond the capabilities of the present
fixed nuclei calculations.

The resonance found in the I, symmetry is in the same symmetry and has ap-
proximately the correct width to be considered the ‘d’ resonance of Weingartshofer
et al (1970). The present results also give some evidence for the ‘e’ resonance,
however, in order to clarify the situation a detailed study of the differential cross

sections of these excitation process is needed. This was carried out and the results
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Position Width

Symmetry | This Schulz This Joyez Weingartshofer
work (1973) work et al (1973) et al (1970)

ot 11.09 11.28-11.34 [ 0.106 < 0.016
25+ 11.53 0.073
1, 11.49 11.43-11.50 | 0.018 < 0.016 0.08

‘Table 4.5: Seven state Resonance positions and-widths for H, in comparison with
experimental results. The results of this work have been shifted as described in

the text. All energies are in eV.

are presented in the next chapter.

A great deal of experimental and theoretical data exists for the integral cross
sections of the elastic and electronic excitation processes considered here. For this
reason only the most recent and reliable data have been included in figures 4.10
to 4.16.

It can be seen from these figures that previous theoretical calculations of in-
tegral cross sections are not able to produce resonance information. The different
techniques used to study resonances have already been discussed. The experimen-
tal points are also too far apart and not accurate enough to resolve the structure
produced by the present calculations as can be seen in figure 4.10. This is also
particularly noticeable in figure 4.11 where the present calculations show a great
deal of structure which the two state calculations of Baluja et al (1985) were not

able to produce. Unfortunately, the available experimental results are not accurate
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enough to distinguish between the two.

The results for excitation to the a >°T} state shown in figure 4.12 are interesting
in that the two theoretical sets of results agree with each other at the only available
experimental point, but differ at all other points. The present results display a
sharp threshold peak, whereas the results of Lima et al (1988) predict a more slowly
rising, broad peak. This effect is typical of the difference between calculations
which do and do not include multichannel effects.

The results of Lima et al (1988) shown in figure 4.13 greatly overestimate the
integral cross section. More recent calculations by Lee et al (1990) show that the
inclusion of correlation effects is not enough to signiﬁ;antly improve the results.
‘Only the inclusion of ‘polarisation effects' can do this. However, the distorted wave -
calculations of Lee et al (1982) give very good results for this excitation process,
but not for the processes shown in figures 4.15 and 4.16.

The present results show very different shapes for excitation to singlet states
from excitation to triplet states. Unlike excitation to the triplet states, the cross
sections for the excitation to singlet states show little structure at threshold en-
ergies and tend to increase with increasing energy. In figure 4.14 this steady
increase in cross section is also predicted by Gibson et al (1987) and by the impact-
parameter method of Redmon et al (1985) which neglects exchange. As would be
expected these impact-parameter results agree better with the present results as
the scattering energy increases.

For the other excitation to singlet state processes considered here the present
results agree well with the lower estimate experimental values of Watson and An-
derson (1977) for excitation to the E,F 'L} state shown in figure 4.15 and with
the renormalised results of Arrighini et al (1980) for excitation to the C 'II, state
shown in figure 4.16.

The results presented here show some features above the energy of the highest
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threshold included in the calculations. In particular there would appear to be
a resonance at around 23 eV. These features should be treated with care since
they are likely to be pseudoresonances caused by neglecting open channels. From
simple flux arguments, it must also be assumed that at high energies the present
calculations will tend to overestimate the total cross sections. This is demonstrated
in figure 4.11 where the two state calculation predicts a much higher cross section
at high energies than the seven state calculation.

In this chapter integral cross section results have been presented for electronic
excitation from the ground to the first six excited states of H; using a full CI seven
target state model. In general the integral cross sections have agreed well with
experimental data and represent ‘an improvernent orn previous theoretical calcula- -
tions. A richness of structure has been displayed in several excitation processes
which previous calculations have not been able to predict and no previous calcula-
tions are consistently nearer to experimental results for all the excitation processes
considered here.

The ability to produce estimates for resonance positions and widths lead to
an investigation into the differential cross sections of these excitation process dis-
cussed in the next chapter. The experimental data for differential cross sections is
much more accurate than for integral cross sections and it is only by studying the
differential cross sections that the observed angular distributions of the resonance

series can be understood.
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Chapter 5

Differential cross sections for Hy

In' this chapter the seven CI target state model of H,, discussed in the previous
chapter, has been used to calculate differential cross sections for elastic scattering
and for electronic excitation from the X 'E} ground state to the b 3%t, a 3%y,
A1, BT EF 'L} and the C 11, states of hydrogen.

The study of .differential cross sections is a more stringent test of a model
than the study of integral cross sections since the available experimental data
for differential cross sections is more accurate. This is because it is necessary to
extrapolate differential cross sections to 0° and 180° before integration in order
to produce integral cross section. Since it is difficult experimentally to obtain
differential cross sections at angles much below 10° or above around 130° this can
produce large errors as was seen in the previous chapter.

A study of the differential cross sections is also necessary to explain the ob-
served angular distributions at resonant energies in electron-H; scattering. A
consistent explanation for this structure and an accurate classification scheme for
the resonances is not possible from a study of the integral cross sections alone.

Experimental results for non resonant differential cross sections have been re-

viewed recently by Tawara et al (1990) and resonance studies have been reviewed
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by Schulz (1973) with more recent studies including those of Spence (1974), Wein-
gartshofer et al (1975), Bose and Linder (1979), Huetz and Mazeau (1983) and
Mason and Newell (1986b). Theoretically there have been many studies on non
resonant differential cross sections, including those of Arrighini et al (1980), Fliflet
and McKoy (1980), Lee et al (1982), Gibson et al (1987), Lima et al (1988) and Lee
et al (1990), but there have been no calculations on resonant excitation differential
cross sections. Where possible comparison has been made between these studies
and the results produced here. Particular attention has been payed to values of
energy for which experimental data is available.

5.1 Calculation

The results in this chapter are an extension of those in the previous chapter.
Within the set of STOs given there a full CI target calculation was performed on
the lowest seven electronic states of H, with a fixed internuclear separation of 1.4
a,. Numerical basis functions with solutions below 5 Ryd with £ < 6 and m <
3 were retained. The molecular orbitals were orthogonalised by first Lagrange
orthogonalising one orbital from the o, and 7, and two orbitals from the o, and
T sets of continuum orbitals to the target orbitals of the same symmetry and then
Schmidt orthogonalising the complete set of target and continuum orbitals.

A full CI calculation was then performed in the inner region and scattering in-
formation was obtained in the outer region by propagating the R-matrix to a radius
of 100 a, and then applying asymptotic expansion techniques (Noble ‘and Nesbet
1984). All diagonal and off-diagonal dipole and quadrupole momenf:jif‘gained.
This method produced K-matrices from which T-matrices were constructed and

from these the differential cross section were calculated using the program module

DCS (Malegat 1990) described in Chapter 2.
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Symmetry E,.s (€V) | [yes (€V) | Assignment

25+ 1094 1.2 161102
12.10 0.106 a

252+ 1254 0073 /e

1, 12.50 0.018 cle

11, 12.80 0.080 d?

Table 5.1: Resonance positions, E..s, and widths, I',.,, for H; using the seven staté

model of Chapter 4.

5.2 Results

The differential cross sections presented here have been produced by summing the
results for the first eight symmetries up to ?®, and have been calculated at 50
evenly spaced angles between 0° and 180°. The energy points have been chosen to
correspond with previous experimental data points and particular attention has
been paid to the energies of resonance features found in the previous chapter and
summarised in table 5.1.

Figure 5.1 shows the differential cross section for elastic scattering at several
energies in comparison with previous theoretical and experimental results. At 20
eV the differential cross section summed over the first six symmetries are shown
as well as the sum up to 2®,. At lower energies these cross sections are indistin-
guishable and so they have not been plotted. This is also true of figure 5.2 which
shows the results obtained for excitation from the ground to the b >} state of

H,.
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Figure 5.1: Elastic differential cross sections, in aZ, at 3 eV, 10 eV, 12 eV, 15

eV, 17.5 eV and 20 eV, as a function of angle in degrees. Theory: solid line,
present work including symmetries up to ?®,; dashed line, present work including
symmetries up to 2A,; dotted line, Snitchler et al (1991); open circles, Hara (1969);
open inverted triangle, Truhlar and Brandt (1976) model 3; open triangle, Gibson
et al (1984). Experiment: filled triangle, Khakoo and Trajmar (1986a); filled circle,
Nishimura et al (1985); filled inverted triangle, Furst et al (1984).
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Figure 5.2: Differential cross sections, in a2, for excitation to the b 3L} state at

12 eV, 13 eV, 15 eV, 17 €V and 20 eV, as a function of angle in degrees. Theory:

solid line, present work including symmetries up to 2®,; dashed line, present work

including symmetries up to 2A,; open triangle, Fliflet and McKoy (1980); open

circle, Lima et al (1988); open inverted triangle, Lee et al (1990). Experiment:
filled triangle, Khakoo et al (1987); filled circle, Nishimura and Danjo (1986).
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Figure 5.3: Differential cross sections, in a2, for electronic excitation to the a 32;, c

°II,, B'E}, E,F 'S} and C '1I, states at 20 eV, as a function of angle in degrees.
Theory: solid line, present work including symmetries up to 2®,; dashed line,
present work including symmetries up to 2A,; solid circle, Arrighini et al (1980);
open square Gibson et al (1987); open circle, Lima et al (1988); open inverted
triangle, Lee et al (1982) and Lee et al (1990). Experiment: solid triangle, Khakoo
and Trajmar (1986b).
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Figure 5.5: Differential cross sections, in a2, at the resonant energies of 12.10 eV,
12.50 eV, 12.54 eV and 12.80 eV, as a function of angle in degrees. This work:
solid line, elastic scattering; long dashed line, excitation to the b 3£} state; medium
dashed line, excitation to the a 323‘ state; short dashed line, excitation to the c
311, state; dotted line, excitation to the B X} state. Experiment: solid circle,
Joyez et al (1973) for electronically elastic scattering, normalised to the 50° data
point; solid inverted triangle, Weingartshofer et al (1970), for excitation to the B

13} state.
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Figure 5.3 shows the differential cross sections for excitation to the higher lying
electronically excited state considered here. Results produced by summing over
both six and eight partial waves have been presented as well previous theoretical
and experimental results. These results are at the higher end of the incident
electronic energy for which these calculations are valid.

The shape of the differential cross sections with respect to energy (sometimes
called the excitation functions) are shown in figure 5.4. The four energy regions
shown here correspond to the resonance positions given in table 5.1 and all eight
symmetries up to 2®, have been included in these results. The differential cross
sections at the resonance positions are shown in figure 5.4 for elastic scattering in
comparison with the experimental, electronically elastic, but vibrationally inelas-
tic, results of Joyez et al (1973) and for excitation to the B 1} state in comparison

with the experimental results of Weingartshofer et al (1970).

5.3 Discussion

The agreement between the present calculations and previous experimental results
for elastic scattering (figure 5.1) is very good except at low energies and small
angles. The most likely source of error at low energies is the neglect of vibrational
motion. Indeed at 3 eV Danby (1991) has shown that the inclusion of vibrational
effects increases the differential cross section by approximately 12% in the 0° to 30°
range compared with a model with internuclear separation fixed at the equilibrium
geometry. At 3 eV the results of Snitchler et al (1991), which include vibrational
and rotational motion, are in much better agreement with the experimental results
than those of Gibson et al (1984) and the present results which assume a fixed
internuclear separation.

Another source of error in the present results is lack of long range polarisa-
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tion effects. In previous R-matrix calculations these effects have been corrected
for by the use of polarised pseudo-state (Gillan et al 1988, Danby and Tennyson
1990), but in this calculation the inclusion of the B !X} and C 'II, states have a
similar effect at low energies. The parallel and perpendicular components of the

polarisability, ) and ay, can then be found from the equations:

1y+3|2
au=;(‘%§"_%;, (5.1)
2|p( )2 (5.2)

T E(L) - E,’
where p(*X}) and p('I1,) are the dipole moments going from the ground to the
'¥} and ', states respectively and E('X}) and E(II,) are the energies of these

states. The effective polarisabilities, ap and a3, are then given by:

az = -§~(a" —ay), (5.3)

and

Qo = o) — aa. (5.4)

The present target representation has effective polarisability of ap = 5.172 a.u.
and a; = 0.809 a.u. compared with the accurate theoretical values of 5.179 a.u.
and 1.202 a.u. (Kolos and Wolniewicz 1967).

The agreement between the present results at 10 eV is very good, but at 12
eV it is less pleasing. This is probably due to the closeness of the resonance at
12.10 eV, since at higher energies the agreement is again very good. At 20 eV the
present results are no longer converged with respect to the number of partial waves
included. This is probably the major source of error at small angles between these
results and the available experimental results.

Agreement between the present results and experimental results is not as good
for inelastic processes as for the elastic process, see figures 5.2 and 5.3. The only

excitation process for which there is experimental data below 20 eV is excitation
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from the ground to the b 3X} state shown in figure 5.2. For this process the
agreement is worse in the 12eV to 13 eV energy region. This is probably due to
the closeness of several resonance features which would have the result of making
the differential cross section extremely sensitive to even small changes in energy
and internuclear distance. The shape of the differential cross section at these
two energies is different from those at higher energies for both experimental and
theoretical results. At higher energies the present results agree better with the
experimental results, almost to within the experimental errors, but the dip in the
differential cross section predicted by these calculations is consistently at a higher
angle than for the observed differential cross section.

It can be seen that at 20 eV the present results are not converged with respect
to the number of symmetries summed over for any of the processes considered here,
see figure 5.3. This could be corrected for using an approximation such as the Born
approximation (e.g. Norcross and Padial 1982). This approximation considers the
long range effect of spin conserving interactions and would not, therefore, affect
the singlet to triplet excitation processes. As the agreement for singlet to singlet
processes is no worse than for singlet to triplet processes this approach was not
used.

Although the results presented in figure 5.3 are at the higher energy limit of the
validity of these calculations the agreement with experiment is moderately good
and in general these calculations represent an improvement on previous theoretical
predictions. For example for excitation to the ¢ 3II, state the present calculations
are closer to the experimental results in both shape and magnitude than those of
Lima et al (1988) and Lee et al (1990). The present results are somewhat larger
than the experimental results of Khakoo and Trajmar (1986b). This is partly due
to the broad pseudoresonance at 17.5 eV in the 2II, symmetry which was caused

by neglecting channels open at this energy.
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For excitation to the C 'II, state the present results are of the same shape
as, but greater magnitude than, the experimental results of Khakoo and Trajmar
(1986b). This was also true for the integral cross section discussed in the previous
chapter. For the integral cross section the seven state model results were in better
agreement with those of Ajello et al (1984), but differential cross sections are not
available for comparison.

The differential cross section for excitation to the a 3%} state demonstrates the
difficulty in obtaining integral cross sections from experimental differential cross
section results. All the theoretical results predict a rapid increase in the differential
cross section at large and small angles, but from the experimental data points it
would be very difficult to extrapolate accurately to 0° and 180° in order to obtain
an integral cross section.

|apparent

Figure 5.4 clearly shows that both theb)osition and the width of the resonances
depends not only on the exit channel used for observation, but also on the angle
of observation. For example the resonance at 12.80 eV does not appe.ar to affect
the shape of the resonance for elastic scattering, but for excitation to the b 3T}
state this is not the case. This observation is in agreement with that of Huetz and
Mazeau (1983). The position of the thresholds have been marked on these figures,
but they do not seem to affect the differential cross sections considerably.

The differential cross sections at resonant energies, shown in figure 5.5, demon-
strate that the angular distributions do not, in general, have the shape of the
lowest partial wave contributing to that resonance, but are made up of contribu-
tions from several partial waves. In particular only the 12.10 eV differential cross
section angular distribution for excitation to the b 3L, is symmetric about 90°.
The present results are in good agreement with the normalised experimental results
of Joyez et al (1973) since these results are electronically elastic, but rotationally

and vibrationally inelastic. The agreement with the results of Weingartshofer et
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al (1970), however, is not good.

5.4 Conclusions

Results have been presented here for the differential cross sections for elastic scat-
tering of H, by electron impact and for electronic excitation from the ground to
the first six excited states of H, using the full CI seven state target representation
discussed in the previous chapter.

Agreement between the present calculations and previous experimental results
is very good for elastic scattering in the 10 eV to 20 eV energy range, but is
- only moderate for the inelastic processes considered here. ‘As well ‘as neglecting -
closed channels, these calculations also neglect many channels, including ionisa-
tion, which are open at 20 eV. This may produce several effects such as the pro-
duction of pseudo-resonances, neglect of short-range polarisation effects and the
overestimation of integral cross sections due to lack of channels taking flux from
the calculations. It would be difficult to estimate how great the effects of these
errors might be without further extensive tests.

At the higher energies considered here it has already been pointed out that
the present calculations are not converged with respect to the number of total
symmetries included in the calculation and this is a significant source of error
at these energies. Probably the most major source of error, especially at low
energies and at resonant energies, is caused by the neglect of nuclear motion. At
the resonance energies even small changes in the energy could produce a large
difference in the differential and integral cross sections.

These calculations have shown that a great deal of care must be exercised
when resonance positions and widths are being analysed. Both the magnitude

and the shape of the differential cross section changes not only with the angle of
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‘apparent
observation, but also with the exit channel monitored, thus producing differen

resonance positions and widths according to which excitation process is under

observation.
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Chapter 6

Bound states of Diatomic

Molecules

In this chapter results are presented which have been produced by the computer
module BOUND. Previously quantum chemical techniques have been applied to
small molecules to calculate the low lying bound states and more recently these
techniques have been adapted to calculate the higher lying Rydberg series of bound
states (Kaufmann et al 1989). The code developed here, however, is based on the
R-matrix method of determining atomic bound states (Seaton 1985) which has
proved successful at producing large amounts of atomic ion data (Berrington and
Seaton 1985). The advantage of this method over the quantum chemical techniques
is that, once a suitable R-matrix has been constructed, it is theoretically possible
to determine all the bound states converging to the relevant ionisation threshold.

An R-matrix method was developed by Ojha and Burke (1983) in order to
calculate the bound states of argon. This method was later adapted for the calcu-
lation of the bound states of molecules by Tennyson et al (1986). The disadvantage
of this method is that it can only search for bound states that are close in energy to

the R-matrix poles. While the bound state energies and wavefunctions produced
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for these states were good (Tennyson 1988), this method can not be applied to the

higher lying Rydberg states.

6.1 Modules BOUND and TDIP

The program module BOUND was written using the theory based on Seaton (1985)
and described for the molecular case in Chapter 2. Channel data and the surface
amplitudes at the R-matrix boundary are input to the module which then deter-
mines the upper and lower energy bound for a systematic search for the bound
states of the system.

For neutral target, or-if requested for positive ion targets, the module will then -
set up an even grid of energy points between the end values in order to perform
the search. Alternatively, for positive ion targets, the module will calculate the
effective quantum number of the energy limits and set up a search over values
of the principal quantum numbers included within the limits. For the lowest
value of the principal quantum number a grid of energy points, evenly spaced
in effective quantum numbers, is set up. For successive values of the principal
quantum number there is an option to reduce the number of grid points which has
already been described in Chapter 2.

For each energy grid point BOUND calculates the R-matrix and the outer
region functions with calls to the modules VIBRMT, RPROP and CFASYM and
then calculates the determinant of the matrix B defined by equations (2.55) and
(2.56). BOUND then searches for zeros in the determinant of B by searching for
changes in sign of the determinant between adjacent grid points. The possibility
of two zeros between grid points is investigated by fitting the determinant to a
quadratic form. Once a bound state has been detected BOUND then obtains an

estimate for its energy position by repeated application of the Newton-Raphson
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method. The final energy position is obtained using the Taylor series expansion
method described in Chapter 2 and the bound state wavefunction is determined
by applying equation (2.39).

From the input channel data an estimate of the number of bound states ex-
pected for a given value of principal quantum number is calculated and a warning
printed if fewer bound states are found.

The module TDIP was written to calculate the transition dipoles of a sys-
tem. TDIP takes the bound state wavefunction information from BOUND and the
transition moments computed in TMT and performs the matrix multiplication de-
scribed by equation (2.61). The perpendicular transition dipoles are multiplied by

~ a factor of 271/2 in order to conform with the convention of Whiting et al (1980).

6.2 Results

6.2.1 CH

Table 6.1 shows results obtained for the bound states of C H compared with those
of Tennyson (1988). The results of Tennyson (1988) were obtained using the R-
matrix bound state method of Ojha and Burke (1983). The present results were
obtained using BOUND and using the same target and scattering representation
as the CC3P model of Tennyson (1988). Tennyson (1988) studied several models
for the e~ + CHt — CH process for total symmetries of 2£ and Il and at
several internuclear separations between 1.5 and 4.0 a,. In this work only the
most sophisticated model at the equilibrium internuclear separation of 2.137 a,
was used for comparison.

In this model the CH* target is represented by an SCF calculation within a
set of 12 o, 7 = and 36§ STOs on the ground and the first two electronically excited
states of CH*. The R-matrix radius was taken to be 10 a, and in the N + 1
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State Present Tennyson van Dishoeck Herzberg and
(work)  (1988) (1987) Johns (1969)
Calculated Observed

C?x% 4.53 4.53 4.02 3.98
22% 6.82 6.76 6.39
32% 8.34 8.51 7.96 8.00
4% 9.01
528 9.24

. 62% . -9.26
7238 9.62
821 9.77
92y 9.83
10 22 9.95
2211 7.74 7.81 7.34 7.31
30 8.28 8.45 7.94 7.96
411 8.98 8.05
5 211 9.26 9.29
6 211 9.60
7 9.63
8 21 9.78
9 211 9.95
10 211 9.98

Ionisation

potential | 10.83 10.83 10.64

Table 6.1: Vertical electronic excitation energies and ionisation potential, in eV,

for the X 2II state of CH at its equilibrium geometry.
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calculation the three excited electronic states were included in the close coupling
expansion and polarisation was represented by including all two particle, one hole
configurations from the target ground state. The continuum functions were gen-
erated numerically and all solutions with energy below 9 Ryd were retained. The
continuum orbitals were Lagrange orthogonalised to the lowest three o orbitals
and the whole set of target and continuum orbitals were Schmidt orthogonalised.
All dipole and quadrupole moments were retained and in the outer region solutions
were found by first propagating the R-matrix to 100 a, and then using asymptotic
expansion techniques.

Previous calculated and observed values are also given in table 6.1 for compar-

" 1son.

6.2.2 HeH

The bound state results presented in tables 6.2 and 6.3 were obtained using the
representation of Sarpal et al (1991a) for the study of electron scattering from
HeH*.

From a suitable set of STOs Sarpal et al (1991a) generated target molecular
orbitals using an SCF calculation. From these molecular orbitals the lowest three
states of HeH*t were represented by a CI expansion. This is the same procedure
that was used in previous chapters to represent the H; target states, however,
for HeH* a full CI expansion could not be used. By including 4 ¢ and 1 7
orbitals in the CI expansion Sarpal et al (1991a) found that a good representation
of the target energies could be produced. This reduced the number of ¢ and =
components form 106 and 84 to 11 and 6 respectively. Calculations were carried
out at 13 geometries with internuclear separations between 1.0 and 4.0 a,. The
vibrational energy levels were then calculated using the fourth order polynomial

method of Le Roy (1971). The lowest six vibrational states of the ground state of
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Assignment  Energy 7 T. T.(exp.)
- 1s X2% -3.232158 -0.334

25 A’Y -3.094013 0.129 31339 31695
2p B2l -3.080895 0.036 28460 28888
2p C?TY  -3.035538 -0.435 18506 18837
3s D?Y -3.011379  0.117 13205 13307
3p E2I  -3.008489 0.046 12570 12647
3d F?% -3.007627 0.023 12381 12430
3d GI1 - -3.007228 0.012 - 12294 12355
3d HZA  -3.006284 -0.013 12086 12136
3p L -2.993210 -0.450 9217

4s 2B -2.984321 0.114 7267

4p 21 -2.983156 0.044 7011 7058
4d 2% -2.982844 0.024 6943

4d 211 -2.982665 0.013 6903 6931
4f 2% -2.982561 0.007 6880

4f 211 -2.982537 0.005 6875

4f 2A -2.982478 0.001 6862

41 29 -2.982351 -0.007 6835

4d 2A -2.982263 -0.013 6815 6850
4p 2% -2.976391 -0.456 5526

5¢? 2A  -2.973717 0.287 4940

5s 2% -2.972142 0.113 4594

5p 211 -2.971571  0.045 4469

5d 2% -2.971411  0.025 4434
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5d ZI1  -2.971317 0.014 4413
5{2%  -2.971260 0.006 4400
5{ 211  -2.971248 0.005 4398

" 5g 21 -2.971229 '0.003 © 4394
5{2A  -2.971211 0.000 4390
5g 2X  -2.971208 0.000 4389
5g 20 -2.971202 -0.001 4388
5d? 2A -2.971200 -0.001 4387
5{2¢ -2.971155 -0.007 4379

Table 6.2: Bound states of HeH in Hartrees at the fixed equilibrium internuclear
separation of 1.455 a,. T, is the energy in cm™? relative to the ground state of the
ion, -2.951208 Hartrees; u is the, quantum defect number. The last column gives

the ionisation potentials deduced from the experimental data of Ketterle (1990).
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Vibrational Sarpal et al (1991b) Present work
Level B %Il E 211 G

0 -3.07321 -3.07324

1 -3.05882 -3.05900

2 -3.04583 -3.04633

3 -3.03426 -3.03520
,,,,,,,,,,,, o | -30095 | -3.00090

0 -2.99973 -2.99981

1 -2.98690 -2.96790

1 -2.98574 -2.98516

2 -2.97428 -2.97579

2 -2.97315 -2.97531

3 -2.96312 -2.96426

3 -2.96200 -2.96397

H?2A

0 -2.99874 -2.99884

1 -2.98463 -2.98483

2 -2.97186 -2.97510

3 -2.96050 -2.96387

Table 6.3: Bound states of HeH in Hartrees for the lowest lying IT and A symme-

tries and their lowest lying vibrational states.
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HeH were included in these calculations.

An R-matrix radius of 10 a, was used and the continuum orbitals calculated
numerically as has already been described. All solutions below 10 Ryd were re-
tained and the lowest six ¢ and 7 and the lowest three § and ¢ correlation functions
were included in the CI expansion of the N + 1 electron system. All dipole and
quadrupole moments were retained in the outer region calculation. For the scat-
tering calculation a pi'opagation radius of 300 a, was used, but for the bound
state calculation, which uses a slightly different method of solution in the outer
region (see Chapter 2), a propagation radius of 50 a, was needed. For the ¥ and
IT total symmetries the lowest ten R-matrix poles were treated non-adiabatically
' and for the A" and & symmetries sevén ‘and five poles réspectively wete treated
non-adiabatically.

Table 6.2 shows the bound states calculated, by Dr. B. K. Sarpal, using
BOUND at the fixed equilibrium internuclear separation of 1.455 a,. These results
have been published as Sarpal et al (1991b) and the lowest 33 electronic states of
HeH have been assigned and compared with experimental data. Table 6.3 com-
pares the vibrational results of Sarpal et al (1991b), calculated using a Le Roy fit
for the potential energy curves and solving the 1D nuclear Schrédinger equation for
the vibrational energy levels, with the results obtained using BOUND to include

the vibrational motion ‘non-adiabatically’.

6.2.3 H,

Table 6.4 shows the transition energies, transition dipoles and oscillator strengths
calculated for H; using BOUND to calculate the bound state and the program
module TDIP to calculate the transition dipoles and oscillator strengths. These
results are then compared with previous theoretical results for transition dipoles,

in table 6.5, and for oscillator strengths, in table 6.6. RO
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State E v Fraction in  Transition Oscillator v f

(a.u.) inner region  dipole  strength f

1y, |-1.168391 (0.9135)  1.0000

¥, [-0.703953 1.9266 0.9995 -0.9807 0.297762  2.129301
-0.627599  2.9272 0.8240 0.4323 0.067382  1.690048

1-0.601673  3.9267  0.2782  -0.3084  0.035933 = 2.175676 |

-0.600569  3.9953 0.4325 -0.0073 0.000020 0.001301
-0.589849  4.9263 0.1301 0.2202 00018705 2.236224

I, |-0.686564 2.0644 0.9986 -0.7344 0.346449  3.048232
-0.622402  3.0670 0.7265 0.3781 0.104084 3.002661
-0.600555  3.9962 0.4311 0.0029 0.000006  0.000405
-0.599491  4.0659 0.2889 -0.2740 0.056940  3.827266
-0.589281  4.9956 0.2385 -0.0005 0.000000  0.000025

Table 6.4: Bound state energies, effective quantum numbers v, transition dipoles

and oscillator strengths, f, for excitation from the ground state to the lowest lying

1Y, and 'II, of H, at the fixed equilibrium internuclear separation of 1.4 a,. The

fraction of the wavefunction in the inner region and the function »3f are also

shown.
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These results were obtained using the H} target representation of Tennyson
(1991). This uses the o orbitals of Shimamura et al (1990) and the 7 orbitals of
Cohen and Bardsley (1980) to represent the X 2£}, A 2} and the B *II, states of
H}. The continuum functions were calculated numerically and all solutions with
energy less that 7 Ryd were retained. An R-matrix radius of 14 a, was used and a
propagation radius of 30 a, was used for the calculation of the bound states of H,.
Bound state calculations were carried out at 10 internuclear separations between
1.0 and 3.5 a, and the transition dipoles calculated using the module TDIP. Table
6.5 shows the transition dipoles calculated for fixed internuclear separation at the
equilibrium geometry, of 1.4 a,, for transitions from the ground to the '¥, and
to the 'II, states of H,. Figures 6.1 and 6.2 show the variation of the transition
dipole with respect to changes in the internuclear separation for the lowest five

transitions to each of these symmetries.

6.3 Discussion

6.3.1 CH

The results obtained for the bound states of C H, shown in table 6.1, were used as
a test case for the development of the module BOUND. The results of Tennyson
(1988) were produced using the method of Ojha and Burke (1983). For each
symmetry only the lowest three bound states have been given. The method used
here, however, was able to produce a very large number of bound states, the
lowest ten for each symmetry are given in the table. The results produced by the
two different methods are in reasonable agreement with each other. The slight
differences are due to the different methods of searching for the poles and also to
the fact that the solution of the outer region problem has been improved since the

calculations of Tennyson (1988). Where the two sets of results differ, the present
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State Previous Bauschlicher and Present work

Theory Langhoff (1991)

Ground state -1.1745° -1.1684

energy (a.u.)

AE Dipole | AE length velocity| AE Dipole
15, 0.4686° 0.9821° 0.4686 0.9802 0.9796 0.4638 0.9807
0.5459¢ 0.3966¢ 0.5455 0.3973 0.3971 0.5400 0.4323
0.5659 0.3084
© 0.5670  0.0073
0.5777  0.2202

I, 0.4862° 0.7432° 0.4866 0.7212 0.7170 0.4809 0.7344
0.5510 0.3324 0.3302 0.5451 0.3781
0.5670 0.0029
0.5678  0.2740
0.5783 0.0005

¢ Kotos and Wolniewicz (1965)
® Rothenberg and Davidson (1966)
¢ Kolos and Wolniewicz (1968)
4 Wolniewicz (1975)
¢ Dressler and Wolniewicz (1985)

Table 6.5: Transition dipoles in atomic units for excitation from the ground state to’
the lowest lying !X, and 'II, of H, at the fixed equilibrium internuclear separation

of 1.4 a,. The excitation energies AE are given in Hartrees.
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State | Arrighini et al (1980) | Present work
AE AE

1%, |0.4678 0.2907 0.4638 0.2978
0.5427 . . 0,0611 . |0,5400 0.0674

0.5685 0.0207 0.5659 0.0359
0.5670 0.0000
0.5777 0.0187

I, |0.4852 0.3492 0.4809 0.3464
0.5486 0.0940 0.5451 0.1041
0.5670 0.0000
0.5717 0.0427 0.5678 0.0569
0.5783 0.0000

Table 6.6: Oscillator strengths for excitation from the ground state to the lowest
lying ', and I, of H; at the fixed equilibrium internuclear separation of 1.4 a,.

The excitation energies AE are given in Hartrees.

112



O
O/
O/
O/
ol
e

O/

0.5 Ty
vV T Vv
> \v

0.0 A—L—L—L— DA N\ A— 8
2

Figure 6.1: Transition dipoles in a.u. as a function of internuclear separation, in
a,, for excitation from the ground to the first five excited ', states of H;. Open
circle, first state; open inverse triangle, second state; open square, third state;

" open triangle, fourth state; open diamond, fifth state.
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Figure 6.2: Transition dipoles in a.u. as a function of internuclear separation, in

a,, for excitation from the ground to the first five excited 'II, states of H;. Open

circle, first state; open inverse triangle, second state; open square, third state;

open triangle, fourth state; open diamond, fifth state.
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results are in slightly better agreement with the observed results of Herzberg and
Johns (1969) and the calculations of van Dishoeck (1987). The module BOUND
also has the clear advantage of being able to calculate far more bound states than

the method of Ojha and Burke (1983).

6.3.2 HeH

The agreement between the results obtained using a Le Roy fit and those found
from the vibrational BOUND calculation of the bound states of HeH is good, see
table 6.3. This is particularly pleasing as it demonstrates that the atomic approach
of Seaton (1985) can not only be apphed to ﬁxed nucle1 molecular calculatlons
but it can also be applled to the v1bratlonal states of molecules |

Essentially there is no difference between these two calculations. The adiabatic
method of Sarpal et al (1991) first finds the bound states of the system at a grid
of internuclear separation points. It then performs a fitting procedure after which
the vibrational motion is accounted for. In the present method the inner region
calculations are performed at a grid of internuclear separation points, then the
nuclear motion is included which yields the vibrational surface amplitudes from
which the vibrational R-matrix and hence the vibrational bound state can be
calculated. The method presented here has the advantage that if, in the future,
coupling between electronic states can be included in the calculation, this method
will produce non-adiabatic results. Until then, this method makes the calculation
of vibrational bound states much more straight forward.

In the present calculations it proved very difficult to use this approach for the
2% symmetry. This was because the ground X 2X state of HeH is dissociative. This
meant that there are always open vibrational channels at the energies considered
and the states are, therefore, not truly bound states, but resonances. The present

computer package can not yet deal with this case.
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6.3.3 H,

The bound state method of Seaton (1985), described in detail in chapter 2, relies
on the outer region functions, represented by the matrix P, obeying the orthonor-
mality condition:

<P|P >po=1, (61)

in the outer region. This condition is satisfied if, at the R-matrix boundary:
PTQ - QTP' =1, (6.2)

where Q is defined in chapter 2, P’ denotes the derivative of P with respect to
energy and PT denotes the transpose of P. However, the outer region functions
used in the present calculations did not satisfy equation (6.2). On evaluating the
left hand side of this expression the matrix obtained was found to be diagonally
dominant, but the off diagonal terms were as much as 5% of the diagonal elements.
The results shown in table 6.4 were obtained by multiplying the outer region
functions by a suitable matrix in order to obtain a matrix with diagonal elements
equal to one on the evaluation of the left hand side of equation (6.2). The fraction
of the contribution from the inner region to the total wavefunction of the system
is given in table 6.4 in order to assess the effect of this error. It can be seen that
for low lying states the effect of an error in the outer region would be negligible,
but for higher states the effect would be more serious. In the future this problem
may be solved by calculating the integral on the left hand side of equation (6.1)
and using the result to renormalise the final total wavefunctions. However, this
integral is not trivial to calculate because of the use of propagation techniques to
obtain the outer region functions.

The function v3f is also given in table 6.4. This function should vary smoothly
as transitions to higher states are considered. It can be seen that for a specific

quantum defect the present results would appear to follow this behavior.
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The results shown in table 6.5 are in very good agreement with previous theo-
retical results for transitions between the ground and the first !X, and II, states
of H,. Agreement between the other states for which there are previous theoretical
results available is within about 10%. The present results tend to overestimate
the transition dipoles for these transitions. The major source of error is likely to
be the error in the outer region function normalisation, since as the contribution
from the outer region increases the agreement becomes less good.

The results shown in table 6.6 are in good agreement with the oscillator
strengths of Arrighini et al (1980). As with the present work the calculations of
Arrighini et al (1980) are scattering calculations, however, Arrighini et al (1980)
have ‘only iricluded the singlet states of Hj. 'As with the transition dipoles, the
present results would appear to overestimate the oscillator strengths for the higher
states, which is again probably caused by the error in the outer region functions.

From figures 6.1 and 6.2 it would seem that the magnitude of the transition
dipole varies unpredictably as higher states are considered. However, on closer
inspection of the effective quantum numbers, the first, second, third and fifth ',
states shown would appear to belong to the same series, with quantum defect equal
to 0.073. This is also true for the first, second and fourth states shown for the II,
transitions, which have a quantum defect of approximately 0.066 and represent ‘p’
wave transitions, and for the third and fifth 'II, transitions, which have a quantum
defect of 0.004 and represent ‘f’ wave transitions.

In the modules BOUND and TDIP there are clearly some areas which need
improvement. In particular the outer region normalisation requires a more rigorous
approach and the outer region contribution to the transition moment must be
included, see Seaton (1986). However, the development of these two modules has
made it possible to calculate large amounts of bound state information from a single

diagonalisation of the Hamiltonian matrix in the inner region, for both fixed nuclei
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and vibration calculations on diatomic molecules. This has meant that transition
dipoles can now be calculated to higher lying excited states than was previously
possible. Once the improvements already mentioned have been implemented it is
hoped that these two modules will be used to calculate transition dipoles, both
from the ground state to much high lying excited states and from excited state to

excited state.
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Chapter 7

Conclusions

In-this work the molecular R-matrix method has been used to study electronic ex-
citation of H,, by electron impact, at the fixed equilibrium internuclear separation
of 1.4 a,. The target molecule was at first represented by a full CI, six coupled
electronic target state test model. This model was used to produce integral cross
sections which revealed a large amount of resonance structure.

An improved seven electronic target state model was developed to include the
E,F 'E, state of H, which was found to be important in the test calculations of
da Silva et al (1990). This model was a significant advance on previous studies
of this system, since more than two states were included at a time. Improved
representation of correlation and polarisation also lead to resonance features, which
could not previously be studied in this way.

This seven state model was used to produce integral cross sections for electronic
excitation processes and a study of the resonance positions and widths made. It
became apparent that the resonance structure could only be understood by a study
of the differential cross sections. This was then performed a‘ndi it was shown that
great care must be exercised when classifying resonances since1 E}LI})]I;E?EE};\' position

and width vary, not only with the exit channel monitored, but also the angle of
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observation.

Although the agreement between the present results and previous experimental
and theoretical results was good for the integral cross sections this agreement
was not as pleasing for the differential cross sections. The major cause of error
is considered to be the lack of vibrational and rotational motion in this fixed
geometry calculation. It is clear that any future investigation should include this
in the target and scattering representations.

In this work a computer module has also been developed to calculate the bound
states of molecules. This module represents an improvement on previous mod-
ules, which could calculate only the low lying bound states, since it can produce

‘large numbers of Rydberg bound states. The module was been tested on the -
e+ CHY — CH at fixed geometry and shown to give good agreement with pre-
vious calculated and observed results. It was also tested on thee"+HeH* — HeH
system at fixed geometry, where the lowest 33 electronic bound states could be as-
signed, and for a vibrational calculation, where good agreement with an alternative
method was obtained.

The development of the bound state module also made it possible to develop a
second module to produce transition dipoles and oscillator strengths of molecules.
These two modules were then used to calculate the bound states and transition
dipoles of H,. Few previous results exist for the transition dipoles to electroni-
cally excited states of H, but where they do the present results are in reasonable
agreement with them.

It is hoped that in the future the bound state code will be developed to calculate
truly non-adiabatic results from which transition dipoles to high lying bound states

can be computed.
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