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A bstract

Calculations are presented for electronic excitation of H 2 by electron impact. 

For the initial calculations, ab initio R -m atrix scattering techniques are used to 

represent scattering from the ground to five low lying electronic states of H2. Each 

target state  is represented by a full configuration interaction treatm ent within a 

basis of Slater type orbitals, optimised to give accurate vertical excitation ener

gies. All total symmetries including 2$ g are included in the scattering calculation. 

Eigenphase sums and integral cross sections are presented for this model together 

with assignments of the resonance structures produced.

This model is then extended to include the lowest seven electronic states of 

H 2 at the equilibrium geometry. Eigenphase sums and resonance feature analysis 

are presented for excitation from the ground to the six excited states included in 

the calculation. Integral cross sections are also presented for these processes and 

extensive comparison made with experimental data.

Differential cross sections calculated using the seven state  model are presented 

for both resonant and non-resonant energy regions and comparison m ade with 

previous experimental and theoretical results.

A method of adapting scattering calculations to calculate bound states of 

molecules within the R-m atrix method is presented. This method is based on 

atomic method of Seaton (1985). The results of test calculations on the bound 

states of C H  and H e H , at fixed internuclear separation, are presented together 

with results for the vibrational bound states of H eH .  The development of this 

method made it possible to calculate transition dipoles for excitation processes. 

Results for the transitions dipoles of i / 2, as a function of internuclear separation, 

are presented and comparison made with available theoretical data.
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C hapter 1

Introduction

1.1 General Introduction

In the last twenty years there has been a great interest in the area of electron- 

molecule collisions. These processes are not only of fundamental importance in 

the areas of physics and chemistry, where they are used in the study of fusion 

plasmas and radiation physics, but are also of importance in areas such as as

tronom y were a detailed knowledge of collision processes is necessary in order to 

understand interstellar m atter and the earth ’s ionosphere. Recently the introduc

tion of increased computing power and facilities has made it possible to develop 

new methods for solving the complex theory of molecule scattering.

Collisions between electrons and molecules are clearly more varied than between 

electrons and atoms. As well as electronic excitation, radiative recombination and 

ionisation, electron-molecule collisions can also give rise to rotational and vibra

tional excitation, dissociation, dissociative attachm ent and dissociative ionisation. 

For a sum m ary of all the possible collision processes see Burke and Shimamura 

(1990). The non-spherical nature of the molecule makes the long range collision 

processes more complex than for the atomic case by introducing effects such as
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multipole interactions between states of the same orbital angular momentum. The 

possibility of exciting nuclear degrees of freedom introduces im portant resonance 

effects which are not found in electron-atom collisions. Because of the increased 

complexity of the collision problem it became necessary to modify the methods 

used previously for studying electron-atom collisions and to introduce new ones. 

A brief discussion of some of the more useful methods developed to study molecule 

scattering and to  calculate the bound states of a molecular system is given below.

1.2 Scattering M ethods

Several m ethods have been developed to study low energy electron collisions with 

molecules. Some of these methods have used the laboratory frame as their frame 

of reference (Takayanagi and Geltman 1965), but these methods have so far only 

proved suitable for light, diatomic molecules due to the complex nature of the 

representation. Most of the methods used recently to produce successful results 

have used the molecular frame of reference with the internuclear distance assumed 

to  be fixed. Relaxation of the fixed nuclei approximation and the effects of nuclear 

motion will be discussed later.

One of the techniques used to solve the fixed nuclei approximation is the sin

gle centre expansion technique. This method treats the target orbitals and the 

scattered electron as an expansion about the centre of mass of the molecule. The 

m ain problem associated with this method is tha t a large number of terms in the 

expansion are needed for convergence. For certain target molecules, including H 2 , 

the static potential is straightforward to expand as a single centre expansion, but 

this is not true for all diatomic molecules. The method is, however, widely used in 

the study of polyatomic molecular targets. The representation of the exchange po

tential as a single centre expansion is far more complex, however, various methods
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have been used to overcome these difficulties (Burke and Sinfailam 1970, Morrison 

1979, M cNaughten et al 1990).

W ithin the single centre expansion method, an iterative m ethod was used to 

trea t exchange by Collins, Robb and Morrison (1978) in the study of electron

i c  scattering. These calculations produced good results for energies up to 1 eV. 

Morrison and co-workers went on to develop a method of treating exchange using 

a model exchange potential. These model exchange potentials are local potentials 

which im itate the exchange terms in the scattering equations. Morrison and Collins 

(1981) have made a comparison of two different model exchange potentials for a 

num ber of diatomic molecules. They conclude tha t a  free electron gas type model 

potential treatm ent compares well with exact static exchange calculations. More 

recently Buckman et al (1991) used a method which treats exchange as separable, 

bu t non-local, to study vibration excitation of H 2 . Very good agreement was 

obtained between these results and their experimental work for energies below 5 

eV.

The single centre expansion m ethod has also been used in combination with 

other m ethods such as the Linear Algebraic method and the Kohn Variational 

m ethod.

The Linear Algebraic method was adapted by Collins and Schneider (1981) 

from similar techniques used to solve nuclear collision and electron-atom problems. 

By using G reen’s functions and reducing integrals to quadratures, it represents the 

electron-molecule system by a set of linear algebraic equations which are solved 

by an iteration-variation method. This method is well suited to vector super

com puters and is useful for strong non-local potentials, though it shows no real 

advantage for local, multipolar potentials. This m ethod is therefore most useful 

when the electron is close to the target molecule and suggests the division of space 

into two regions, an inner region where this method is appropriate and an outer
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region where an alternative method would be more suitable. See for example the 

R -m atrix m ethod described below. The major disadvantage of the Linear Alge

braic m ethod is th a t the polarisation of the target molecule is treated as a separate 

potential and therefore the risk of over-polarisation can be large. This method was 

used to study e lec tron-/^  scattering (Schneider and Collins 1985), along with two 

other m ethods in a coordinated study which will be described below.

The Kohn variational method for electron-molecule collisions was developed by 

Collins and Robb (1980) from techniques used previously for nuclear collision and 

electron-atom  problems. The method relies on having a good trial wavefunction 

for the system. It has been shown from the study of several diatomic molecules, 

including H 2 (Collins and Robb 1980), tha t the method is reasonably efficient and 

accurate for producing K-matrices, from which cross sections are calculated, and 

eigenphases over a wide range of energies. The m ethod is susceptible to spurious 

singularities in the solution, however, Miller and Jansen op de Haar (1987) have 

produced a complex Kohn variational method which avoids these singularities. 

The Kohn variational method has also been employed by Armour and co-workers 

to  study positron-molecule scattering. Results have been produced for positron- 

H 2 scattering (Armour and Baker 1987) and positron-A^ scattering (Armour et 

al 1991) and the method is currently being extended to study other diatomic 

molecules.

The L 2 m ethod for studying molecular scattering was developed from the use 

of bound state  techniques and computer codes. The wavefunction of the system is 

expanded as a set of L 2 discrete basis functions which are square integrable. This 

m ethod produces eigenphases of the system at discrete energies determined by the 

particular basis set used. The method assumes th a t only weakly coupled, low I 

values make significant contributions to the integral cross section and it is not 

possible to produce continuous values of eigenphases with a single basis represen
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tation. The m ethod has been applied to e lectron-/^  and e le c tro n -^  scattering 

(M cCurdy et al 1976). The results agree well with previous theoretical studies 

which use the /-spoiling approximation. This method has also been incorporated 

into the R-m atrix, and various T-m atrix methods, where it is used to represent 

polarisation effects sufficiently accurately to enable the study of resonances.

The Schwinger variational method was developed for studying molecule scat

tering by Takatsuka and McKoy (1981, 1984). It produces the T-m atrix of the 

system. The main advantage of this method over the Kohn variational method 

is th a t the trial function does not have to  have the correct asym ptotic form as 

long as it is a good approximation to the exact wavefunction in the region of 

the effectiveness of the potential. The single centre expansion is frequently used 

in this m ethod and better convergence for long range potentials is achieved by 

an iterative procedure. The Schwinger multichannel variational m ethod has been 

used to  study electron scattering from H 2 by Lima et al (1985,1988), Gibson et 

al (1984,1987), and more recently by Huo and Weatherford (1991). As with the 

Linear Algebraic treatm ent of this system, the m ajor weakness of this m ethod is 

the representation of the correlation and polarisation effects.

Another m ethod which has been used to study electron-molecule collisions 

by calculating the T-m atrix is the distorted wave approximation developed by 

Rescigno et al (1974). In this approximation both the incident and the scattered 

electronic wavefunctions are represented by distorted waves. The effective d istort

ing potential is obtained by averaging over the internal degrees of freedom of the 

target molecule. As the collision energy decreases the distortion will increase until 

this m ethod is no longer appropriate, however, it has also been extended to the 

study of low energy collision processes. The m ajor disadvantage of this method 

is th a t, although correlation effects can be represented by a distorted wave rep

resentation, polarisation effects cannot. This method has been used to study the
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electron-H 2 system by Fliflet and McKoy (1980) and Lee et al (1982, 1990) and the 

results produced were in good agreement with results obtained using a Schwinger 

variational m ethod neglecting polarisation effects.

The R -m atrix method, along with the Schwinger variational m ethod, is the 

m ethod th a t would seem to be the most useful for further study of diatomic and 

polyatomic collision processes. The R-m atrix was originally used by Wigner (1946 

a, b) and W igner and Eisenbud (1947) for the study of nuclear collisions and later 

adapted for use in electron-atom collisions by Burke et al (1971). It has been 

used in the field of atomic collisions for the study of various processes including 

scattering, photoionisation, atomic polarisabilities, spectral line shifts, free-free 

transitions and photoabsorption, reviews of which are found in Burke and Robb 

(1975) and Burke (1982).

The R-m atrix method was developed for use in the study of electron-molecule 

collisions by Schneider (1975) and Burke et al (1977) and it is this treatm ent that 

is of interest here. The molecular R-matrix method has been used previously to 

study integral and m omentum transfer cross sections for electron scattering from 

various diatom ic molecules, reviews of which are given by Buckley et al (1984) 

and Burke and Noble (1986). The method has also been extended to the study 

of positron-molecule collisions by Tennyson (1986), Tennyson and Morgan (1987) 

and Danby and Tennyson (1990).

The main feature of the R-matrix method is tha t it divides space into an 

internal and an external region separated by a sphere of radius u, centred on 

the centre of mass of the target molecule. The sphere is chosen to just enclose the 

target charge distribution. This is very similar to the frame transform ation method 

used by Chang and Fano (1972). In the internal region the potential is strong and 

m ulticentred, and exchange and correlation effects between the incident electron 

and the target are im portant. In the external region exchange and correlation
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effects are neglected and only the long range polarisation potential is im portant.

In order to express the complex process in the internal region Schneider (1975) 

used a set of prolate spheroidal coordinates with which to expand the wavefunction. 

These prolate spheroidal coordinates give good results for diatomic molecules, 

bu t are not appropriate for polyatomic molecules. Burke et al (1977) however 

favoured a multicentre, discrete basis representation in the internal region. This 

m ethod used sets of Slater-type orbitals, with effectively negligible am plitude at the 

boundary, centred on the atomic centres, and a set of Slater type orbitals which did 

not vanish at the boundary, centred on the centre of mass of the target molecule. 

The molecular orbitals were then defined in term s of the orbitals centred on the 

atom ic centres and the continuum molecular orbitals were expressed in term s of 

all the sets of orbitals (i.e. three sets for the diatomic case). The set of orbitals 

centred on the centre of mass of the molecule in the inner region provides the 

link between the m ulticentred treatm ent in the inner region and the single centre 

expansion approach in the external region.

The R -m atrix method employed here uses a set of numerical basis functions, 

instead of Slater type orbitals, centred on the centre of mass of the target molecule 

(Gillan et al 1987). Slater type orbitals are difficult to integrate over due to the 

cusp at the origin. Indeed no integral package has yet been w ritten which uses 

Slater type orbitals to deal with non-planer molecules. The numerical basis func

tions used here, however, are more suitable for integration. The use of these 

numerical basis functions means, however, tha t a Bloch operator (Bloch 1957) 

m ust be added to the Hamiltonian m atrix to ensure th a t the Hamiltonian is Her- 

m itian. The m ethod is therefore no longer a strictly variational one, as the Buttle 

correction is based on perturbation theory. However, in practice the method still 

behaves in a variational manner.

By setting up and diagonalising the Hamiltonian m atrix in the internal region
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a set of eigenenergies and eigenvectors can be produced. These eigensolutions 

can then be used to form the basis set in the inner region from which all the 

physical solutions of the wave equation can be expanded. The great advantage 

of this m ethod is th a t the diagonalisation only has to be performed once for each 

symmetry of the electron-molecule system, and solutions at all energies can then 

be found at comparatively little cost.

The inner region functions are matched to the outer region functions at the 

R-m atrix boundary by a m atrix known as the R-matrix. The R-m atrix relates 

the functions a t the boundary to their derivatives as will be explained in more 

detail in the next chapter. This matching can then be used to produce the K- 

m atrix  (reactance m atrix) and the T-m atrix from which scattering information is 

determined.

Nesbet et al (1986) developed a method which combines the R-m atrix m ethod 

with a matrix-variational approach. This method divides space in a similar way 

to the R-m atrix m ethod, but uses numerical asym ptotic functions for the contin

uum  basis functions. As with the matrix-variational m ethod the continuum basis 

functions are energy dependent which means tha t the inner region calculation has 

to  be repeated for each energy range. The number of continuum functions used is 

therefore kept to a minimum. This method has produced results which compare 

reasonably well with experimental data for elastic electron-/^  scattering, but has 

not yet been extended to include nuclear motion or applied to any other system.

1.3 A Com parative Study

The R-m atrix m ethod was used to study electron-i/2  scattering by Baluja et al

(1985) in a coordinated study to compare the R-m atrix m ethod, the Linear Alge

braic m ethod (Schneider and Collins 1985) and the Schwinger multichannel vari
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Figure 1.1: Integral cross section for excitation from the ground to the b 3E+ state 

of # 2 - The solid curve represents the work of Baluja et al (1985), the dashed 

curve th a t of Schneider and Collins (1985) and the dotted curve tha t of Lima et 

al (1985).

ational m ethod (Lima et al 1985) for a specific model. The three methods were 

used to  represent elastic scattering and electronic excitation from the ground to 

the first excited state  of H 2 , the b 3£ j  state. This transition is of interest as it 

is spin forbidden and can only take place by exchange. It therefore represents a 

good test of the effectiveness of the method of including exchange effects. The 

models used also included electron correlation effects to relax the strict orthog

onality condition between the bound and continuum states. The integral cross 

sections produced by these three models are shown in figure 1.1. It can be seen
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th a t the results produced were in good agreement with each other. They were also 

in reasonable agreement with experimental data.

This study was able to dem onstrate the importance of including exchange and 

correlation effects. Previous calculations which did not include these effects gave 

integral cross sections tha t were significantly too low. The only one of these 

three m ethods th a t attem pted to  include polarisation effects was the R-matrix 

m ethod. Including polarisation lead to a reduction in the integral cross section 

at low energies, however, in chapters 3, 4 and 5, it has been shown tha t the 

representation used was insufficient. By improving the polarisation representation 

the integral cross section at higher energies are reduced and resonance information 

can be obtained.

1.4 Bound states

The calculation of bound states of molecules has also been an active area of research 

since the introduction of improved computing power and facilities. A large amount 

of bound state  information is necessary in order to calculate properties such as 

radiative transition probabilities, photoionisation cross sections and opacities in 

stellar atmospheres and interiors.

Q uantum  chemical methods for producing molecular bound states have proved 

very successful for studying low lying bound states. These methods generally 

represent the target molecule by using a linear combination of atomic orbitals 

and Gaussian type orbitals and using a configuration interaction (Cl) technique. 

Very large C l expansions are used, often employing millions of configurations. 

However, these methods are not suitable for producing the high lying Rydberg 

states just below the ionisation energy of the molecule. An alternative method 

was therefore needed and recently Kaufmann et al (1989) adapted a Gaussian
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type orbital expansion to look at Rydberg series.

The R -m atrix codes developed for scattering calculations are ideally suited to 

the calculation of bound states as the complex internal region calculation is the 

same for both cases. The difference lies in the calculation of the external region 

wavefunction and the matching conditions at the R-m atrix boundary. W ithin the 

field of the atom ic R-m atrix method Ojha and Burke (1983) developed a method 

of searching for bound states, but it had the lim itation th a t only bound states 

with energies close to the R-matrix poles could be found. This method was later 

adapted for the molecular case, see for example the work on H 2 by Tennyson et al

(1986) and on C H  by Tennyson (1988), but was again unsuitable for calculating 

the Rydberg states of the system.

The m ethod described by Seaton (1985) for the calculation of atomic bound 

states using the R-m atrix method, however, is able to produce the bound states 

of a system from a single construction of the R-matrix. In the internal region the 

wavefunctions are set up as described for the scattering case. Solutions in the outer 

region m ust tend to zero as r, the distance of the electron from the centre of mass 

of the target, tends to infinity and must be able to be matched to the inner region 

functions a t the R-matrix sphere. These outer region functions can be found by 

a combination of analytical and simple numerical methods. By imposing suitable 

boundary conditions and matching the inner and outer region functions, all the 

bound states of the system can in principle be calculated. This m ethod has proved 

very useful in the study of atomic systems and was used for the Opacity Project 

(Seaton 1987, Berrington et al 1987) which produced large numbers of atomic ion 

bound states.

This m ethod has been converted to find the bound state  energies of molecules, 

see C hapter 6. Once the molecular wavefunctions in the inner and outer region 

have been calculated the method of matching the solutions is identical for the
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atomic and molecular cases. In order to find the atomic bound sta te  energies 

Seaton (1985) used a search for zeros of the matching m atrix, which indicates a 

bound state, over a range of quantum  defect number. For each principal quantum  

number there are only a small number of bound states for a given symmetry in 

the atomic case, however, this is not in general true for the molecular case and 

therefore a modification to the searching procedure had to  be developed. This will 

be discussed in some detail later.

1.5 Nuclear m otion

The fixed nuclei approximation, frequently used in the methods described above, 

is valid when the time of interaction between the electron and the molecule is small 

compared to the vibration and rotational period of the molecule. This is usually 

the case except near to the threshold of a channel or near to  a resonance position 

where the time of interaction is greatly increased. Even when these conditions are 

not satisfied it is still possible to use the fixed nuclei approximation as rotational 

and vibrational effects can be corrected for in a second part of the calculation. 

This is known as the adiabatic-nuclei or Born-Oppenheimer approximation and it 

relies on the assumption tha t the electronic and the nuclear motion can be treated  

separately.

When this assumption is no longer valid, for example in the region of a reso

nance or close to the ionisation energy of the target molecule, the non-adiabatic 

effects have to be included. A method for including vibrational non-adiabatic ef

fects was developed within the R-m atrix method by Schneider et al (1979). The 

wavefunction of the system is expanded as products of fixed-nuclei functions and 

basis functions representing the nuclear motion. This treatm ent has been used to 

study systems such as N 2 (Morgan 1986, Gillan et al 1987) and H C l  (Morgan et
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al 1990).

In order to  include the effects of rotational motion of the target molecule, 

Arthurs and Dalgarno (1960) introduced a rigid rotor model for the target molecule. 

This method neglects the vibrational motion of the target and uses the laboratory 

frame to obtain the correct asym ptotic form of the wavefunction. The total angular 

momentum of the electron-target system is a constant and the eigenfunctions of the 

total angular m om entum  vector are used as a basis to  expand the wavefunction of 

the system. This m ethod, however, is not suitable for use within the molecular R- 

m atrix m ethod as it employs the laboratory frame and not the molecular frame of 

reference used in the inner region of the R-m atrix method. An alternative method 

was used by Tennyson and Morgan (1987) for the study of positron-CO scattering 

within the R-m atrix m ethod. They used the multipole-extracted adiabatic-nuclei 

approximation which models rotational motion by using the static, space-fixed, 

first Born approximation. This method gave reasonably good results for scatter

ing energies below the positronium formation threshold energy, but the results 

were less pleasing at higher energies.

1.6 Present work

In this work the molecular R-m atrix method has been used to study the integral 

and differential cross sections for e le c tro n -^  scattering. Elastic scattering and 

scattering from the ground to the first six electronically excited states of H 2 have 

been considered. Chapter 2 sets out the theory of the molecular R-m atrix method 

and gives a description of the computer codes used in this work. Chapter 3 presents 

preliminary results for a six state model and outlines some of the difficulties en

countered when trying to produce this data. Chapter 4 discusses the integral cross 

sections for the full seven state  model with special reference to the resonance fea
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tures found. C hapter 5 presents the differential cross sections calculated for the 

full seven state  model. These calculations represent an improvement on previous 

studies of the system in two respects: firstly the target representation is a full Cl 

representation and secondly, previous calculations were restricted to the study of 

two target states whereas these calculations consider the lowest seven states.

The molecular R-m atrix m ethod can also be used to find the bound states of 

molecules. Following the algorithm  set out in Seaton (1985) for the calculation 

of atomic bound states using the R-m atrix m ethod, a computer program module 

has been developed to calculate molecular bound states together with a module 

to calculate the transition moments between them. These program modules, and 

results obtained for the diatomic molecules H 2 , H e H  and C H  which dem onstrate 

the effectiveness of the m ethod, are presented in C hapter 6 .
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Chapter 2

M olecular R -m atrix theory

As has already been mentioned the basic feature of the R-m atrix method is tha t 

space is divided into two regions separated by a sphere of radius a. The complex 

inner region calculation follows the same theory for both scattering and bound state 

calculations and this will be discussed in some detail. The theoretical method used 

to obtain scattering information in the outer region will be presented as well as 

the theory, adapted from Seaton (1985), which was used in the computer program 

module to calculate the bound states of molecules. The use of these bound state 

in the calculation of transition dipoles is also described. The various modules of 

the computer package used in this work will be discussed in relation to the relevant 

theory.

2.1 Inner region

In the inner region the target molecular orbitals p, are represented by the expan

sion:

ft =  £ D « P i ,  (2 .1 )
I
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where pi are Slater type orbitals (STOs) centered on the nuclear centres of the ta r

get molecule and Du are coefficients which are found by performing a self consistent 

field (SCF) calculation. The functions are then known as LCAO-MO-SCF or 

linear combination of atomic orbitals molecular orbitals in the SCF approxima

tion. The SCF approximation involves including electron-electron interaction in 

an average field approximation. The forces on a particular electron within the 

average field of all the other target particlesarecalculated and the electron is al

lowed to move in this field. This, however, affects the average field exerted on 

the other electrons, which are then allowed to alter their positions in turn. This 

process is repeated until some minimum energy for the system within the SCF 

approximation is reached.

In order to perform a target Cl calculation configurations of the N  electron 

target molecule <$ have to be built up from the SCF target molecular orbitals. 

The target molecular wavefunctions are then expanded as a linear combination 

of these configuration:

(2 .2)
t

The coefficients c,-j are calculated by diagonalising the N  electron Hamiltonian 

H n :

=  eiSIP, (2.3)

where the ej are the target energies.

The target molecular orbitals must be augmented by a set of continuum 

orbitals in the inner region in order to perform an N  + 1  electron calculation. This 

is achieved by first setting up effective atomic orbitals u, centred on the centre of 

mass of the target molecule. These Ui take the form of numerical basis functions 

which satisfy the equation:

( £  -  +  V.(r) +  fc?)«,-(r) =  0 , (2.4)
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subject to the boundary conditions

Ui{ 0 ) =  0  (2.5)

and
a dui
- ~ r  =  b, (2 . 6
Ui d r1 r —a

where kf = 2 et-, V0 is a suitable potential (for example the Coulomb potential) and 

b is an arbitrary constant taken to be zero in this work.

The continuum molecular orbitals r ) j  for a diatomic molecule can then be rep

resented in the inner region by the partial wave expansion:

Vj(r) = Y  r ~1“ ;(r)V;i m,i (r )Aij + Y  PiBa +  Y  (2-7)
t  t  I

where the Yijmij are spherical harmonics, pf and pf  are Slater type orbitals centred 

on the target nuclei A  and B.  The coefficients A,j, B{j and C{j are determined by 

Schmidt and Lagrange orthogonalisation (Tennyson et al 1987).

The eigenstate wavefunctions of the inner region N -fl electron system,

with eigenenergies e* in Hartrees, can then be represented by the expansion:

^ +1 =  ^ ( x i-XN)»7i(rN+i^N+i)aijifc +  X ^ Xm(X l'”XN+1^ mfc’ (2-8^
i , j  m

where A  is the antisymmetrisation operator and xn =  (rn , 0 n), where r n is the spa

tial coordinate of the n th electron and <rn is its spin coordinate. The fjj are formed 

by coupling the spin function of the scattered electron to the continuum molecular 

orbitals r]j. The first term  in equation (2.8) therefore represents a summation over 

all configurations where the target electrons are in a target configuration and the 

N  -f 1th electron is in one of the continuum orbitals.

The functions \ i  in equation (2.8) correspond to configurations where all N + 1 

electrons are placed in the target molecular orbitals. They are added to allow for 

short range correlation and polarisation effects between the scattered electron and 

the target molecule.
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The coefficients a tjjt and /9,-jt are determined by diagonalising the Hamiltonian 

m atrix  in the inner region so tha t

( r f l+1\HN+1 +  L n +i|V # +1) =  ek6kk., (2.9)

where H n +i is the Hamiltonian of the N + l electron system and L n +i is the Bloch 

operator (Bloch 1957) included to ensure tha t the Hamiltonian is herm itian in the 

inner region. It is defined by the equation:

1 w+i j  ,
£*+» = 2 E E i ^ ( rr1)«i-.>(fO)tf(n-«)(S r - - ) ( ^ ( r r 1)«i«,J(»oi (2.10)

* = 1  j  * 1

A Cl target representation can be used to reduce the size of the Hamiltonian 

m atrix to be diagonalised. If the coefficients ay* in equation (2.8) are not allowed 

to vary fully, so th a t only the N  electron configurations <j>f included in the Cl 

target representation are included, then equation (2 .8 ) may be rewritten:

=  ^ ^ V ,f (x l . . .X N ) ^ ^ ( r N + l O • N + l ) « / j f c  +  X^Xm(Xl•'•XN+1̂ mfc,
I  j  m

(2 .11)

where the N  electron target wavefunctions ip f  are given by equation (2.2). By 

defining the Hamiltonian m atrix element H i j i > y  for going from configuration ( p f r j j  

to # WT/'. by:

Hiii'y = ( ^ V j \ m NVi), (2 -1 2 )

for going from configuration to Xm by:

H ijm = (2.13)

and for going from configuration Xm to x'm by:

H mm. =  (2.14)

a Hamiltonian m atrix  of reduced size can be defined by the three equations:

H I j I ' j ' =  ^   ̂c i l H j j i ' j ' C j 11>, (2.15)
i t9
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Hljm ~  CilHjjm i (2.16)
t

and

H'mm. = H mm,, (2.17)

where the coefficients c,/ are those of equation (2.2). It can be seen tha t no saving 

is made for configurations where all the electrons are in target molecular orbitals, 

but the number of these is typically much smaller than the number of configura

tions where the N  +  1th electron is in a continuum orbital. As an example the 

seven target state  work on e le c tro n -^  scattering discussed in Chapter 4 generated 

a Hamiltonian m atrix tha t was 5396 x 5396 elements large for the 2Y>g symme

try. Using this contraction method the size was reduced from 5396 configurations 

squared to 428 configurations squared of which 209 of the configurations where of 

the type where all N  -f 1 electrons are in the target molecular orbitals.

The Schrodinger equation of the N  +  1 electron system in the inner region is 

given by:

(Hn +i +  Tjv+i — E)W =  -Ltv+1 $ . (2.18)

where is the total wavefunction of the system. This has the solution:

=  (Hn + 1 +  L n+1 -  E y ' L N + x * .  (2.19)

The inverse operator can be expanded in the basis defined by equations (2.8) 

and (2.9) so that:

W  =  ( 2, o )
k

Premultiplying this equation by the channel function <  ^ Y i imi.\ and defining the 

reduced radial functions Ft as:

Fi(r) = W Y hmij |¥ ) , (2 .2 1 )

the surface amplitudes /,*. by:

fik = |0 *) (2 .2 2 )
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and using the Bloch operator defined by equation (2.10) it follows th a t at the 

R-m atrix boundary:

Ft(r) =  Y ,  ~  bFi)w  (2.23)
3

which defines the R-m atrix given by

K i W  =  £  E  -  E T Xf s M -  (2-24)
k

In practice it is not possible to include an infinite number of states i>k+1, and 

the sum in equation (2.24) has to be truncated to a finite number of terms Nu for 

each value of I. The error produced by this truncation is particularly im portant 

in this case due to the artificial boundary conditions (equations (2.5) and (2.6)) 

at the R -m atrix sphere. The B uttle correction (B uttle 1967, Shimamura 1978) is 

therefore added to the diagonal terms of the R-m atrix to remove the error incurred 

and is defined as:

B (F) =  — V" (2 25)
2 a J z ' + i i ku - E ’

where uu is the iih eigensolution of equation (2.4) and =  2e** the relevant 

eigenenergy.

2.2 Inner region program suite

The com puter program suite used in this work to solve the inner region prob

lem was adapted from the quantum  chemical package ALCHEMY (McLean 1971, 

Noble 1982). A flow chart of this suite is given in figure 2.1.

The module SCF is where the atomic Slater type orbitals are input and a self 

consistent field target calculation is performed. The module outputs target molec

ular orbitals which are linear combinations of the atomic orbitals as in equation 

(2 .1).
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Figure 2.1: Inner region flow chart.

33



The module NUMBAS is where the numerical continuum orbitals are generated 

in accordance with equations (2.4), (2.5) and (2.6). The potential VQ can be input 

separately or the module has the capability of calculating several simple potentials. 

The maximum num ber of partial waves retained must be input and no attem pt is 

made to  orthogonalise the orbitals to the target. This module also calculates the 

B uttle correction defined by (2.25).

INTS generates the 1 -electron, 2 -electron and property integrals over the re

stricted inner region.

MOS produces molecular orbitals and their boundary amplitudes, given by 

equation (2.22), from the target orbitals generated by SCF and the continuum 

orbitals generated in NUMBAS. MOS can be used to Schmidt orthogonalise the 

target orbital set, or the target-continuum  orbital set and it can also be used to 

Lagrange Orthogonalise the continuum orbitals to a specified number of target 

orbitals of the same symmetry (Tennyson et al 1987). This procedure may be 

needed to eliminate linear dependance.

TRANS orders the atomic orbital integrals generated by INTS and transforms 

them  into molecular orbital integrals using the molecular orbital coefficients gen

erated in MOS.

In the module CONGEN electron configurations to be included in the Cl cal

culation are picked by hand. It is therefore used to determine which term s are 

included in the expansions of equation (2.8). SPEEDY determines which inte

grals, computed by INTS and transformed by TRANS, will be needed for the 

configurations generated in CONGEN. SORT then sorts these integrals into the 

most convenient order for the module CL Cl performs a configuration interac

tion calculation. It diagonalises the Hamiltonian as in equation (2.9) to yield the 

eigenenergies ek and the coefficients aijk and of equation (2.8). In the case of 

a Cl target calculation this yields the coefficients a / j t  and of equation (2 .1 1 ).
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The other module of interest here is TM T which is used to produce the dipole 

and quadrupole moments of the target, required in the outer region calculation, 

from data generated in the inner region and inner region moments for N  +  1 

electron transitions. This module will be discussed in more detail in section 2.7.

2.3 Outer region scattering calculation

In the outer region it is assumed tha t the effects of electron exchange between the 

scattering electron and the target can be ignored and tha t the wavefunction can 

be expanded in the single centre, close coupling form:

^  ^t(xi..XN,cr7v+i ) r _1G i(r^ +i)y /|m/.(f;v+i). (2.26)
t

Following the method used in the inner region this equation can be substituted 

into the Schrodinger equation and projected onto the channel functions to give a 

set of coupled differential equation for the reduced radial functions G, for a given 

internuclear separation:

^  +  *?)G‘(r ) = 2 ' £ v ij(r)Gj (r), (2.27)
3

where

kf  =  2(E  -  E f ) ,  (2.28)

E-1 are the eigenenergies associated with the target state <f>; and VXJ is the potential 

in the outer region.

For a scattering calculation the equations (2.26) are subject to the asym ptotic 

boundary conditions (r —> oo)

_ i_
Gij —> ki 2(sin$i8ij +  cosOiKij) for open channels (2.29)

Gij —> 0 for closed channels (2.30)
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which also define the K-matrix Kij tha t couples the open channels, The 9{ are given 

by:

0 - =  kir -  \liir  +  ~  ln2fc,r +  argY(Ji +  1 -  z-^-), (2.31)
2i fCi

where T(/t +  1 — iz/k{)  is a complex gamma function and z  is the residual charge 

of the molecule. From the K-m atrix the eigenphase sum 8 is given by

8 =  a r c ta n ( /^ )  (2.32)
i

where K jj  is the diagonalised K-matrix. The T-m atrix can be obtained from the 

m atrix  equation
2zK

..........................................................T = - ^ , ..................................................... (2,33)
1  — zK

From the T-m atrix the integral cross-section a(i —* t#/), for going from state  i to 

state  z', can be found for a linear molecule (Burke 1979) from the equation

< » •>

where S  is the total spin angular momentum, Si is the spin angular momentum 

of state z and A is the total electronic angular momentum projected onto the 

molecular axis. The T-m atrix can also be used to calculate the differential cross 

section, see Malegat (1990).

In the present work the outer region functions were obtained by first propa

gating the R-matrices (Baluja et al 1982, Morgan 1984) to a suitable radius and 

then using (Gailitis) asymptotic expansion techniques (Noble and Nesbet 1984) to 

solve equation (2.27).

2.4 Outer region program suite

Figure 2.2 shows the flow diagram for the outer region suite of programs used. It 

should be noted tha t inner region modules of figure 2 .1  are individual programs
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Figure 2.2: Outer region scattering flow chart.
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th a t are the run separately and independently of one another. The solid lines 

linking the various modules are data flow indicators. However, the outer region 

package is one program that is divided into modules. The solid lines in figure 

2 . 2  again indicate da ta  flow, but the dashed lines represent calls to modules from 

within other modules.

The outer region program is managed by the module DRIVER which sets up 

computer memory allocations and calls the various modules.

The module IN TERF is used to interface between the inner and the outer region 

codes. It takes the input from the inner region together with additional target data, 

including internuclear separation, energy levels of the target states and multipole 

moments. It constructs the surface amplitudes /,•* given by equation (2.22) at the 

R-m atrix boundary from the information generated in the inner region and adds 

in  the B uttle correction of equation (2.25).

RSOLVE is the main driving module of the outer region which produces the 

K-matrices of the system (equation (2.29)). It makes calls to VIBRM T, which sets 

up the necessary data if a non-adiabatic calculation is being performed, RPRO P 

which propagates the R-m atrix to a given radius and CFASYM which calculates 

wavefunctions in the asym ptotic region.

EIGENP produces eigenphases from K-matrices using equation (2.32) and RE- 

SON is an autom atic resonance detection program which produces resonance posi

tions and widths by fitting detected resonances to a Breit-W igner form (Tennyson 

and Noble 1984). W ithin this form the eigenphase 77 is expressed as a function of 

the scattering energy, E, in the form:

M  r  p r e s  ^

V(E) = 2 > n -  + E a^ ) i- (2.35)
t = i  1 1 = 0

where Tres is the width and E res is the position of the resonance. The second sum

in this equation is a power series used to represent the underlying trend of the

eigenphase across the region of the resonance.
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TM ATRX is used to produce the T-matrices of the system (see equation (2.33)) 

from the  K-matrices and additional vibrational da ta  via a subroutine call to VIB- 

INI if a non-adiabatic calculation is being performed. From the T-m atrices MCQD 

computes multichannel quantum  defects (see section 2.5), the integral cross sec

tions are computed by the module IXSECS and the differential cross sections by 

the module DCS (M alegat 1990).

2.5 Bound state calculation

In the inner region the to tal wavefunction of the bound TV +  1 electron system 

can be expanded in term s of the complete set of functions of equation (2 .8 ):

^ = Z t f +1 c «  (2.36)
k

The coefficients Ckj  are known as the bound state  coefficients. In order to  calculate 

these bound states, the outer region functions m ust tend to zero as the distance 

of the scattering electron tends to infinity. W ithin the R-m atrix m ethod they 

must also be able to be matched to the inner region functions a t the R-m atrix 

boundary. In the present work these outer region functions were obtained by first 

using a Gailitis expansion technique (Noble and Nesbet 1984) at a suitable radius, 

and then propagating inwards to the R-m atrix boundary using the Runge K utta  

Nystrom method to solve the asym ptotic equations numerically.

The matching conditions, at the R-m atrix boundary, for a bound state  are:

Fi =  Z  Pv X > (2-37)
j

and

?  = <2-38>
3

where the  F, are the reduced radial functions described in section 2 .1 , the Pij

are the outer region functions and X j  is a column vector needed to  construct the



bound state coefficients | Cm  given by the equation:

( 2 J 9 )* j

By combining equations (2.23), (2.37) and (2.38) the standard form of the 

matching condition is given by:

Z  Bi jX j  =  Z ( p u -  [ Z  M E ) Q kj])Xi  =  o, (2.40)
j j k

where
j  p

Qkj = - ^ - m r  (2-41)

Equation (2.40) has the standard form of an. eigenvalue equation and it therefore 

only has solutions at discrete values of energy F , the bound state energies, where 

the determ inant of the m atrix Bij will be zero.

A problem arises at energies E  close to the R-matrix pole energies e*. At 

these energies the R-matrix (equation (2.24)), and hence the m atrix F ,j (equation 

(2.40)), is undefined. It therefore becomes necessary to eliminate these poles and 

this is done using the method described by Burke and Seaton (1984).

Equation (2.24) is first rewritten as:

2 a(eR — E)
R ij =  o ^7 +  Tij, (2.42)

where the to tal energy E  is close to the pole energy e#,

Sij = f iK{a) fjK (a) (2.43)

and

Ta =  Z  7 - /» (« ) (e* -  £ )■ '/* (« )•  (2-44)
k?K a

A solution of the eigenvalue problem:

Z  S '>U>h = Z  U'kSk (2 -45)
j k
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is then sought. It can be shown (Burke and Seaton 1984) th a t this equation is 

satisfied when Uij is given by:

f i K f j + i K / T j T j+1 for * =  1 to j

- i y r j+ 1  for i = j  + 1 (2.46)

0  for i >  ( j  + 1 )

for j  = 1 to ( I  — 1) Uij — <

and

for j  = I  Uu =  /tA '/P /,

for i =  1 to I  where I  is the total number of channels and

j

(2.47)

(2.48)
i=i

The m atrix Uij is normalised to

Y , u aU,i = iSu,

where Ujj is the transpose of Uij. The solution for Sk is then:

(2.49)

Sk =  SkiT]. (2.50)

By combining equation (2.40) with equation (2.42) and premultiplying by the 

m atrix Ufj the matching condition becomes:

/

for i =  l to (I  — 1) Lu'Xi'  =  0 (2.51)
i'= 1

and

where

and

(2.52)

(2.53)

(2.54)
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Figure 2.3: Outer region bound state flow chart.

The quantity ( e x ~ E )  now only appears in one of the matching equations (equation

(2.52)). This equation can then be multiplied by the (ex  — E)  factor to redefine 

the m atrix  B i f

for i = l  to ( I  — 1 ) Ba> =  Ln> (2.55)

and

B , ,  =  (eA- - E ) L U, -  r2M/,-, (2.56)

thus eliminating any singularities.

The bound states of a system are found using the com puter module BOUND 

shown in figure 2.3. As for the scattering case DRIVER is the control module 

and the module INTERF provides the interface between the inner and the outer 

region calculations. The module BOUND makes calls to subroutines VIBRMT,

42



RPRO P and CFASYM in order to include vibrational information, propagate the 

R-m atrix and perform the asym ptotic calculations respectively in exactly the same 

way tha t the scattering module RSOLVE did. The calculation of the bound states 

is performed within the module BOUND itself.

Zero’s of the determ inant of f?tJ, defined by equations (2.55) and (2.56), can 

be searched for by calculating the determ inant a t successive energy points and 

detecting any change in sign of the determ inant. In practice, for ionic molecules, 

it is often more convenient to search over effective quantum  num ber v  (Seaton 

1966, 1985) given by:

E  = E ‘ ~ ^  (2-57)

where Ei is the energy of the lowest molecular state. The effective quantum  number 

is related to the principal quantum  number n by the equation:

fj, — n — i/ (2.58)

and /i is the quantum  defect. In the atomic case there are only a small number 

of bound states for a given value of the principal quantum  number n, but for 

molecules this is not necessarily the case. It was therefore necessary to develop a 

new method of searching for bound state energies.

For a given value of n an estim ate for the number of poles likely to be found 

was calculated by considering the number of open channels with allowed values of 

t.  This information was then used to construct an evenly spaced grid in quantum  

defect space of effective numbers from n — |  to n -f For each grid point the 

R-m atrix pole nearest in energy to the grid point was found and the determ inant of 

the m atrix i?tj, given by equations (2.55) and (2.56), was calculated. If there was 

no change of sign in the determ inant between successive grid points then a check 

was made for the possibility of two poles between the grid points by fitting the 

determ inant function to a quadratic. Once a change in sign had been detected a
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Newton-Raphson search was performed to obtain an initial estim ate of the bound 

state  energy.

This initial estim ate of the bound state  energy, E \ , was then assumed to be 

very close to the true value, E 0 and the first two term s of a Taylor series expansion 

were used to set up the standard eigenvalue equation:

E  B n ( E ) X j  =  E (  w o + (E > -  = °- (2-59)
j j

This relation was then applied recursively (Seaton 1985, appendix 3) until the 

change in the energy produced for one application of the formula was below a 

certain value.

Since the calculation of the determinant of Bij takes a considerable amount 

of computer time an option was added so tha t instead of setting up an even 

grid of effective quantum  number a grid could be used tha t was dense around 

the points where a bound state might be expected and sparse in between these 

points. This was made possible by the use of a quantum  defect grid instead of an 

energy grid, since for each value of n there is likely to be a bound state  energy 

with approximately the same value of quantum  defect number as for n — 1 (Seaton 

1966). See figure 2.4. The arrows represent the bound state  quantum  defect values 

and the vertical lines represent the grid points. Thus for a given value of n, bound 

state energies are searched for near to the bound state  energies found for n — 1 , 

by adding 1 onto their effective quantum  numbers.

For molecules with no residual charge the use of a quantum  defect grid is not 

possible. An option was therefore included to set up an energy grid instead which 

could be used for all types of molecular targets.
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Figure 2.4: Quantum Defect grid.

2.6 Calculation of transition dipoles

The development of the bound state computer module made it possible to calculate 

photoionisation cross sections using the module PHOTO and to develop another 

module TDIP to calculate transition dipoles from which oscillator strengths can 

be calculated, see figure 2.3.

Previously the module TM T was used to calculate dipole and quadrupole mo

ments of the N  electron system for use in the outer region program package to 

produce both scattering information and bound state. It can also be used to  cal

culate inner region transition moments of the N  + 1 electron system. In order 

to do this the module TM T requires input from the inner region packages (see 

figure 2.1). It requires the transformed property integrals generated in the module 

TRANS, the sorted energy expression generated in SORT and the Cl wavefunction 

information generated in the module CL TM T then produces a transition m atrix
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Tkk> using the dipole length approximation:

N + l

Tt*. =  ( ^ +1 | ^ e , n | ^ + 1>. (2.60)
1 = 1

The module BOUND is then used to generate bound states of the N  +  1 

electron system with bound state  coefficients)Ckj, see equation (2.36).

The transition dipole t for going from state  i to state  i' is given by:

' -  N + l

t«> = (*,-1 Y ,  = E  C^ 'C k 'i ' \  (2.61)
t ' = l  kk>

From the transition dipole the oscillator strength fu> can be calculated using the 

definition (Schadee 1978):

/« « =  (2-62) 6 (2 —o0,a )

in atomic units. At present the-module TM T can only be used for non-CI targets.
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C hapter 3

Six sta te  m odel for # 2

Even for the seemingly simple H 2 molecule there are still several areas where 

our knowledge of its characteristics is weak (McConkey et al 1988). These areas 

include the electronic excitation integral cross sections, dissociative recombination 

and differential cross section. An a ttem pt has been made here to  produce accurate 

results for the integral (and in Chapter 5 differential) cross sections for electronic 

excitation of molecular hydrogen by electron impact using the R-m atrix method 

described in Chapter 2.

Several recent experimental studies have concentrated on integral cross section 

measurement (Watson and Anderson 1977, Ajello et al 1982, 1984, Hall and Andric 

1984, Pasquerault et al 1985, Mason and Newell 1986b, Khakoo and Trajm ar 

1986b, Nishimura and Danjo 1986, Khakoo et al 1987), a review of which has 

recently been made by Tawara et al (1990). These measurements are very difficult 

to make and, therefore, the integral cross section results are not always reliable. 

There has also been considerable theoretical effort in this area (Fliflet and McKoy 

1980, Arrighini et al 1980, Lee et al 1982, Redmon et al 1985, Baluja et al 1985, 

Schneider and Collins 1985, Lima et al 1985, Gibson et al 1987, Rescigno and 

Schneider 1988, Lima et al 1988, Lee et al 1990). In this chapter and the next
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these results are compared with the ones obtained in this work.

Previous experimental studies of molecular hydrogen have shown th a t the inte

gral cross section for several excitation processes displays a  highly resonant char

acter in the 10-15 eV energy region. These studies (Comer and Read 1971, Schulz 

1973, Spence 1974, Weingartshofer et al 1975, Bose and Linder 1979, Mason and 

Newell 1986a), have produced a large amount of data  which has revealed features 

associated with several series of resonances, Theoretically, stabilisation and Fes- 

hbach methods have been used (Eliezer et al 1967, Buckley and Bottcher 1977, 

Bardsley and Cohen 1978, DeRose et al 1988) in this energy region and recently 

scattering techniques (da Silva et al 1990) have also been used to study this res

onance structure. However, there has still not yet been a consistent explanation 

for the structure. The present calculations were found to be sufficiently detailed 

to be able to produce resonance information which is discussed here.

3.1 R epresentation of the target m olecule

Previous attem pts to calculate electronic excitation cross sections for H 2 have 

been restricted to studying two states of the target molecule at a tim e (Baluja et 

al 1985, Schneider and Collins 1985, Lima et al 1985, Gibson et al 1987, Rescigno 

and Schneider 1988). These attem pts used a single-configuration wave function 

representation for the electron states considered. Recently studies including sev

eral coupled channels (da Silva et al 1990) and target correlation (Lee et al 1990) 

have been carried out and it is clear tha t improved data  can only be obtained by 

adopting a similar approach. In this calculation the target molecule was repre

sented by six target states, which made it possible to calculate excitation from the 

ground to five low lying excited states of H 2 using the same model. Each electronic 

state  was represented by a full Cl wavefunction within the basis of STOs used.
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In order to achieve this six state representation it was first necessary to choose 

a set of STOs. The ( \ s ,2s ,2pa) set of ag orbitals, optimised for the X *E+ ground 

state  of H 2 by Fraga and Ransil (1961), were used. Initially the <ru orbital expo

nents were chosen to be the same as those for the (7a orbitals. The 7t5 orbitals used 

were those of Nesbet et al (1986) for a (2pn, 3d*-) set and the 7ru orbital expo

nents were chosen to be the same as those of the 7r5 set. This was the first basis set 

used and the target molecular orbitals produced by an SCF calculation were then 

used to perform a full Cl target calculation for the A ^E*, 63E+, a3Eg , c3IIu, 

and C 1IIU state  of J72- For a full Cl calculation all possible electron configurations 

th a t are allowed for a given symmetry and within the basis of molecular orbitals 

chosen are included. The target state  energies produced at a fixed internuclear 

separation of 1.4 aG for this first basis, together with a comparison with effectively 

exact quantum-chemistry calculations are given in table 3.1.

The aim of this calculation was to obtain a good representation for a ll six target 

states using the same, small set of molecular orbitals. It can be seen th a t this first 

basis was not particularly effective and a great deal of time was spent in order 

to  improve the target representation. The program SCF is capable of optimising 

orbitals for a given symmetry, but some trial and error methods of optimisation 

were also required to reach the final representation.

The cru orbital exponents were optimised by performing an SCF calculation 

on the lowest state of *EJ symmetry and the same procedure was used to find 

the exponents of a (2pn,3pir̂ d r ) set of 7ru orbitals using the lowest state  of 1IIU 

symmetry. The results of these successive optimisation (i.e. basis 2 to basis 4) 

can be seen in table 3.1. This set of orbitals, however, was not able to represents 

diffuse target states accurately, so the diffuse 2s(ag) orbital was added to the c g 

orbital set (basis 5). Table 3.2 gives the exponents of all the orbitals used in the 

fifth basis on which the results of this chapter are based.
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State l a< Basis 2nd Basis 3rd Basis 4th Basis 5th Basis ‘Exact’

* ‘ E+ -1.17060 -1.17018 -1.16553 -1.16569 -1.165844 -1.1744744“

10.80 11.13 10.44 10.45 10.45 10.62“

a3£+ 19.81 22.05 21.96 21.96 12.77 12.546

c3n u 13.38 13.33 12.65 12.58 12.59 12.73°

£>£+ 13.94 15.50. 13.17 13.16 13.15 12.756

c Jn u 14.56 14.46 13.09 13.11 13.10 13.23d

“Kolos and Wolniewicz (1965)

6Kolos and Wolniewicz (1968)

“Kolos and Rychlewski (1977) 

dRothenberg and Davidson (1966)

Table 3.1: Ground state  energies (in Hartrees) and vertical excitation energies (in 

eV) of H. 2 for several different target representations.
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Orbital Exponent Orbital Exponent

lS(Tg 1.378 1 sau 1.081

2sag 1.176 2sau 0.800

2sag 0.800

2 pog 1.820 2pau 1.820

2piru 0.574 2p7T9 1.084

3p7Tu 0.636 3pTTg 1.084

CO 1.511 3C?7T g 2.470

Table 3.2: Exponents of the STOs used in the six state target representation of 

H 2.

It can be seen from table 3.1 tha t the vertical excitation energies obtained agree 

with the ‘‘exact’ results to within 0.4 eV. These small differences were corrected for 

by shifting the diagonal elements of the Hamiltonian m atrix by the appropriate 

amounts.

3.2 Scattering calculation

Having obtained a target representation, a set of continuum orbitals was generated 

numerically as described in Chapter 2, with V  = 0. Some investigation was done 

to see which model potential used to generate the numerical basis functions gave 

the best results, but the model was found not to be very sensitive to this. The best 

possible number of continuum orbitals to include was also the subject of consider

able investigation. Including too few would result in inaccurate calculations, but
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including too m any could cause com putational problems. The program module 

which is most affected by this is TRANS where all the molecular integrals required 

to construct the Hamiltonian m atrix are computed. Table 3.3 shows the effect of 

varying the number of continuum orbitals used, by choosing the maximum energy 

solution to  be included, on a 24 configuration Cl test single target s ta te  calculation 

with an R-m atrix radius of 20 ac and total symmetry using the fourth basis 

set of table 3.1. It can be seen th a t the eigenphase sums are approximately stable 

for values of the maximum energy tha t are greater than 5, but not below.

In the present calculation all solutions below 5 Ryd with t  <  6 and m  <  3 

were included in the inner region calculation which m eant th a t the calculations 

ran close to the limit of the Rutherford Cray XMP scratch disk space.

Directly related to this problem is the one of R-m atrix sphere size. A large ra

dius was required in this work because of the diffuse nature of the target, however, 

increasing the radius also increases the number of continuum orbitals needed for 

an accurate representation of the scattering process. Table 3.4 shows the effect of 

changing the R-m atrix radius on the number of numerical basis functions gener

ated for a 2 Cl target calculation using basis 4 and for a total sym m etry of 2S P. It 

can be seen th a t increasing the R-matrix radius dram atically increases the number 

of basis functions and, therefore, the size of the calculation. It can also be seen 

th a t size of the R-m atrix sphere also changes the energy of the lowest R-matrix 

pole.

Some experimentation was, therefore, required to obtain the most suitable ra

dius and it was found th a t an R-m atrix radius of 20 a0 provided the best compro

mise for these calculations. This large radius, approximately double the usual size 

for a molecular calculation, meant tha t the number of quadrature points needed 

to evaluate the long-range portions of the necessary integrals (Noble 1982) had to 

be increased and after further tests approximately double the default number of
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M aximum Energy 

(Ryd)

10 8 6 5 4

No. of continuum 55 49 43 37 34

functions

Lowest R -m atrix -1.129639 -1.129639 -1.129638 -1.129637 -1.129636

pole (Hartrees)

Scattering Energy Eigenphase Sum (radians)

(eV)

1.22 -0.6160 -0.6159 -0.6160 -0.6163 -0.6192

3.40 -0.9764 -0.9769 -0.9778 -0.9802 -0.9758

6.67 -1.272 -1.272 -1.271 -1.271 -1.282

11.02 1.639 1.638 1.636 1.631 1.641

13.61 1.547 1.547 1.547 1.548 1.532

14.97 1.507 1.507 1.508 1.510 1.487

16.33 1.470 1.470 1.470 1.469 1.455

20.41 1.381 1.379 1.375 1.366 1.391

Table 3.3: Effect of changing the maximum energy of the solutions generated for 

the continuum functions on the target representation.
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R-m atrix radius 10 12 20

No. of continuum functions 

Lowest R -m atrix pole (Hartrees)

27 33 57 

-1.115336 -1.122450 -1.131470

Table 3.4: Effect of changing the R-m atrix radius on the target representation.

points were found to  be necessary.

A great deal of tim e was spent on determining the best possible method of 

orthogonalisation. If insufficient orthogonalisation procedures are taken out the 

effects of linear dependence can be to produce R-m atrix poles th a t are too low in 

energy. If too much orthogonalisation is used then too much is om itted from the 

calculation and the resulting representation is not adequate. Tests were carried 

out using no Lagrange orthogonalisation, Lagrange orthogonalisation to one target 

orbital and Lagrange orthogonalisation to two target orbitals for the <r5, <ru, 7xg and 

7ru orbital sets. In the final six state calculations one orbital from the <r5, cru and 

7rg and two orbitals from the 7ru sets were Lagrange orthogonalised to the target 

orbitals of the same symmetry. This gave a set made up of 49 ag, 38 <ru, 37 7ru, 

35 7r5, 36 6g, 25 <$u, 25 <j>u and 23 <j)g continuum orbitals. The full set of target and 

continuum orbitals was then Schmidt orthogonalised to the set of target orbitals 

to give an orthonormal set of molecular orbitals.

In the inner region all possible configurations, for a given to tal symmetry, 

where the target electrons were in target orbitals and the scattered electron was in 

a continuum orbital, were included. All possible configurations with all electrons in 

the target molecular orbitals were also included in order to allow for high-^ terms. 

Because a full Cl target representation was used, all these configurations could be 

included without the risk of over correlation. The inner region Hamiltonian m atrix
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was then set up, reduced and diagonalised as described in Chapter 2.

The memory problems caused by the size of these calculations lead to the 

modification of the program module Cl (Tennyson 1990) described in the previ

ous chapter. In the previous version the uncontracted Hamiltonian m atrix was 

constructed and w ritten to  disk. The full Hamiltonian was then read into core 

in order to perform the contraction process described in Chapter 2. In the new 

version the uncontracted Hamiltonian elements are read into core a band at a time 

and the contraction process vectorised.

In the outer region solutions were obtained by setting up the R -m atrix at the 

R-m atrix boundary and then propagation it (Morgan 1984) to a suitable radius. 

Solutions were then obtained by applying asymptotic expansion techniques (No

ble and Nesbet 1984). Some experimentation was needed to determ ine the best 

propagation radius to use. Too small a radius produces errors caused by matching 

conditions at the boundary not being fulfilled, but increasing the radius increases 

the am ount of com putational work tha t has to be done in the outer region. The 

radius of propagation was gradually increased until no mismatching occurred and 

the results obtained here are for a propagation radius of 100 a0. All diagonal and 

off-diagonal dipole and quadrupole moments, calculated using the module TM T, 

were retained. From these results K-matrices, eigenphase sums, T-matrices and 

integral cross sections were calculated as described in Chapter 2.

3.3 R esults

Figures 3.1 to 3.8 show the eigenphase sums obtained for each to tal symmetry up 

to <l>g. The filled triangles indicate the threshold energies of the excited states of 

the target molecule. The curves are all plotted on a grid of scattering energies 

separated by 0.01 eV with small gaps at the threshold energies. The results have
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Symmetry Erea (eV) rres (eV) Assignment

10.96 1.39

12.30 0.073 a

2S+ 10.62 | b 3£+ threshold

10.97 ‘feature’

12.76 c 3nu threshold

2n„ 12.60 0.066 c

2n 10.62 b 3£+ threshold

11.78 0.96

Table 3.5: Resonance positions, Erea, and widths r res for H 2 •

been smoothed using the fact tha t the eigenphases are arbitrary to a factor of 

modulo 7r.

These eigenphases were then used in the program module RESON to produce 

resonance information. Two terms were used in the polynomial fit to the back

ground (see equation (2.35)). A summary of the most significant results obtained 

below the energy of the C *1^ threshold, is given in table 3.5. In order to obtain 

these final results it was necessary, in certain cases, to repeat the scattering calcu

lation at a much smaller energy separation, but there still remained some features 

which could not be fitted to a resonance form. This will be discussed in the next 

section along with the assignments given in the table.

The remaining figures in this chapter represent integral cross sections. Figure
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Figure 3.1: 2E+ eigenphase sums for electron - # 2  collisions as a function of scat

tering energy in eV.
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Figure 3.2: 2E+ eigenphase sums for electron- # 2  collisions as a function of scat

tering energy in eV.
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Figure 3.6: 2A U eigenphase sums for electron- # 2  collisions as a function of scat

tering energy in eV.
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Figure 3.7: 23>u eigenphase sums for electron - # 2  collisions as a function of scat
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Figure 3.8: 2$ 5 eigenphase sums for electron-^  collisions as a function of scatter

ing energy in eV.
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3.9 shows the effect on the shape of the cross section for excitation from the ground 

to  the first excited state  of considering the 2£ 5 symmetry only, of increasing 

the number of target states in the representation. Results are given for two state 

(X !£ + , b 3£+ ), four state  (X *£+, b 3E J , a 3£+ , B l E+) and six state  (X *£+, 

b 3£ j ,  a 3£ J ,  B *££, c 3n u, C calculations. The two state  calculations of 

Baluja et al (1985) are also shown for comparison.

Figures 3.10 to 3.14 show the integral cross sections for excitation from the 

ground to the five excited states considered in this model. The contributions from 

all eight symmetries up to 24>5 have been included.

3.4 D iscussion

The eigenphase sums given in figures 3.1 to 3.8 display a large number of features 

previously only observed in atomic collision calculation (e.g. Clarke and Taylor 

1982). This is a result of the sophistication of the model used and the fact th a t the 

R-m atrix method is ideally suited to this sort of calculation where a large number 

of scattering energies must be considered. This ability to repeat the calculations at 

many energies made it possible to map out resonance features to determine their 

positions and widths.

The results of the resonance analysis are found in table 3.5. In several cases 

resonance like features were found just below threshold energies, but the jum p in 

eigenphase sum was less than tha t associated with a true resonance (i.e. 7r). This 

was particularly noticeable just above the b 3E j  threshold in both the 2EU and the 

2II5 symmetries. Another resonance like feature was found in the 2£ u symmetry 

against a sharply falling background which made it impossible to fit the resonance 

using the program module RESON. The broad resonance in the 2£ 5 sym m etry is 

due to the well known (Schulz 1973) repulsive la b ia l  state of .
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Figure 3.9: Integral cross section, in a2, for excitation from the X *E+ state  to the 

b 3E+ state, as a function of energy, in eV, considering only the 2E5 contribution. 

Theory: solid curve, six state  model; long dashed curve, four state  model; short 

dashed curve, two state; dotted curve, Baluja et al (1985).
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Figure 3.10: Integral cross section, in a2, for excitation from the X *E+ state to  the

b 3E+ state, as a function of energy, in eV. Theory: solid curve, six state model;

dotted curve, Baluja et al (1985). Experiment: solid circle, Nishimura and Danjo

(1986); solid square, Khakoo et al (1987); solid triangle, Hall and Andric (1984).
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Figure 3.11: Integral cross section, in aJ, for excitation from the X state to 

the a 3E+ state, as a function of energy, in eV.
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Figure 3.12: Integral cross section, in a^, for excitation from the X state to 

the c 3n u state, as a function of energy, in eV.
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Figure 3.13: Integral cross section, in a j, for excitation from the X *E+ state  to 

the B aE+ state, as a function of energy, in eV.
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Figure 3.14: Integral cross section, in a^, for excitation from the X *E+ state  to 

the C state, as a function of energy, in eV.
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The results here were obtained for fixed nuclei. In order to  compare these 

results with experimental resonances labeled a to g (Schulz 1973) the present 

results must be shifted by the difference in energy between the vertical excitation 

energy and the  adiabatic excitation energy of the parent state. The a and c 

resonances both have the parent state  c 3IIU shifting the resonance positions to 

11.29 eV and 11.59 eV for the 2Y>g and 2IIU respectively. These results agree 

well with the previous experimental results of Schulz 1973 and Mason and Newell 

(1986a) who found the resonances in the 11.28-11.34 and 11.43-11.50 eV range 

and with the theoretical results of Buckley and Bottcher (1977) who found the two 

resonances at 12.16 and 12.70 eV respectively and Eliezer et al (1967) who found 

the a series resonance at 12.32 eV.

These calculations did not show any evidence for the b series resonance of 

Comer and Read (1971) and Buckley and Bottcher (1977) with parent state  B 

*E+, nor did it find the d, e or higher series of resonances.

Figure 3.9 shows the effect of including more target states in the calculation. 

It can be seen th a t the present two state calculation agrees well with the two state 

calculation of Baluja et al (1985) if the sharply peaked resonances are ignored. 

These pseudoresonances are caused by neglecting open channels in the calculation. 

By including more target states the cross section becomes larger close to threshold 

and smaller at large energies. This is due to the improved representation of the 

target polarisation and to the loss of flux to other processes allowed for in the more 

complex target representation. The resonance close to the threshold in the four 

and six state  calculations do not appear to be pseudoresonances, but are physical 

in origin. This type of resonance is also seen in several other symmetries which 

lead to the resonance analysis described above.

Figure 3.10 shows the integral cross sections obtained for the excitation process 

X *E+ —> b 3E J state. The results obtained by Baluja et al (1985) are again

65



smaller at low energies and larger at high energies. Experim ental results have also 

been given, but it can be seen tha t the experimental errors and the number of 

experimental points available mean tha t it is impossible to resolve the resonant 

structure close to  threshold.

Figures 3.11 to 3.14 show cross sections for excitation to the other four excita

tion processes. No experimental data  has been plotted since this will be discussed 

in the next chapter where a more complex model has been used. These figures do, 

however, show distinct resonance features. Like the X —► b 3E+ process the 

X *E+ —» a 3E+ process and the X 1Ej" —► c 3IIU excitation process also display 

resonance features close to threshold.

In this chapter results have been presented for electron- # 2  scattering using a 

full Cl six target state calculation. Integral cross sections have been calculated 

for excitation from the ground to the five excited states included in the calcula

tion. The calculations were sufficiently complex to allow an investigation into the 

resonant structure of the integral cross sections and the agreement between these 

results and those of previous experimental and theoretical work has been accept

able. In the next chapter a more sophisticated model is used to study the same 

cross sections and resonances and a more detailed comparison with previous work 

is given.
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C hapter 4

Integral cross sections for H2

The seven state  target calculations discussed in this chapter are an extension of 

the six state  target calculations discussed in the previous chapter. In addition to 

the previous six states the E,F *E+ state has also been included. This state  has 

been shown by da Silva et al (1990) to be of im portance in their test calculations 

in the resonant energy region. Inclusion of this state also means tha t none of the 

lowest states have been excluded. Indeed, above the highest state  included here, 

the C 'IIu  state, there is a gap of 1.7 eV before the next highest i 3IIS and I 

states, if the internuclear distance is taken to be fixed at 1.4 a0, see figure 4.1.

4.1 Calculation

It was found tha t the set of STOs used in the previous chapter was not able 

to adequately represent the E,F 1E^' state. Some experim entation was therefore 

carried out on the exponent of the 2scr5 orbital in order to improve the target 

representation. Table 4.1 shows the results of this investigation and table 4.2 

summarises the set of STOs chosen to be used in the seven state  model discussed 

here. It should be noted tha t the only difference between this set of STOs and the 

one used in the previous chapter is tha t the exponent of the 2s<75 orbital has been
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Figure 4.1: Potential energy curves of H 2 taken from Kolos (1978).
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Exponent 

of 2s(rg

6 State Basis 

0.800 0.900 0.700

7 State Basis 

0.600

‘E xact’

-1.16584 -1.16586 -1.16582 -1.1658134 -1.1744744“

*>3S+ 10.45 10.45 10.45 10.45 10.62“

12.77 . . . 13.04, 12,56 , , 12.47, . . , 12.546

c3n„ 12.59 12.59 12.59 12.59 12.73°

B 'Z i 13.15 13.14 13.15 13.15 12.756

E ,F '  S+ 14.00 ' 14.48 13.58 13.40 13.14e

c1 n u 13.10 13.10 13.11 13.11 13.23d

“Kolos and Wolniewicz (1965)

6Kolos and Wolniewicz (1968) 

cKolos and Rychlewski (1977) 

dRothenberg and Davidson (1966) 

in te rp o la ted  from Kolos and Dressier (1985)

Table 4.1: Ground state energies (in Hartrees) and vertical excitation energies (in 

eV) of i / 2 for several different target representations.
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O rbital Exponent Orbital Exponent

1.378 1.081

2s(cra) 1.176 2s(au) 0.800

2 s(c ,) 0.600

2pag 1.820 2 pau 1.820
to e 0.574 to •ts <Q 1.084

3p7Tu 0.636 3 P^g 1.084

3c?7Tu 1.511 Zdltg 2.470

Table 4.2: Exponents of the STOs used in the seven state target representation of

h 2.

changed from 0.800 to  0.600.

As in the previous chapter a full Cl target calculation was performed for the 

seven target states and the internuclear separation was fixed a t 1.4 ac. Again 

the results were no more than 0.4 eV different from the ‘exact’ quantum  chem

ical results and the diagonal Hamiltonian m atrix elements were shifted by the 

appropriate am ount to  compensate for this.

The continuum  orbitals were generated as described in the previous chapter, 

with an R -m atrix radius of 20 ac, and all solutions below 5 Ryd with £ <  6 and 

m  <  3 were retained.

It was found th a t, even for a one state calculation, the new, more diffuse set 

of STOs suffered from problems with linear dependence if the previous orthog

onalisation procedures were used. After some investigation it was found th a t it
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was necessary to  Lagrange orthogonalise one orbital from the au and tt5 and two 

orbitals from the <7g and iru sets to the target orbitals of the same symmetry. This 

gave a set made up of 48 cr5, 38 cru, 37 7ru, 35 36 6g, 25 8U, 25 (f>u and 23 <f>g

continuum orbitals. The set of target and continuum orbitals was then Schmidt 

orthogonalised to the set of target orbitals as in the previous calculation.

Scattering calculations were then performed with an R-m atrix propagation 

radius of 100 aG and with all diagonal and off-diagonal dipole and quadrupole 

moments retained. K-matrices, eigenphase sums, T-m atrices and integral cross 

sections were then calculated as before. The resonances were detected and fitted 

to  a Breit-W igner form using the module RESON.

4.2 R esults

Figures 4.2 to 4.9 show the eigenphase sums for the total symmetries 2E5 to 24>5. 

They represent scattering calculations separated in energy by 0.01 eV with small 

gaps at the thresholds, marked by triangles on the base lines. The results have 

been smoothed by multiples of w where necessary. By comparing these results 

with those of the previous chapter, shown in dotted lines on these figures, it can 

be seen th a t the eigenphases for the seven state calculation are consistently higher 

than for the six state calculation, as would be expected.

Table 4.3 summarises the resonance positions and widths detected in these 

calculations. W here necessary a finer energy grid than 0.01 eV has been used 

to clarify the shape of the eigenphase sums and where possible assignments have 

been made using the experimental classification scheme (Schulz 1973). In the 

lowest four symmetries considered here, rapid rises in the eigenphase sum of less 

than one could not be fitted to a resonance form. W here these effects were seen 

they have been described in the table as ‘features’. In the higher four symmetries
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A A
10 11 12 13

Energy (eV)

Figure 4.2: 2£+ eigenphase sums for electron-i/2 collisions as a function of scat

tering energy in eV. Solid curve: seven state model; dotted curve: six state  model.

3 .0

10 11 12 13
Energy (eV)

Figure 4.3: 2£+ eigenphase sums for electron- # 2  collisions as a function of scat

tering energy in eV. Solid curve: seven state model; dotted curve: six state model.
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Figure 4.4: 2IIU eigenphase sums for e le c tro n -^  collisions as a function of scatter

ing energy in eV. Solid curve: seven state  model; dotted curve: six state  model.

Figure 4.5: 2II5 eigenphase sums for electron-^  collisions as a function of scatter

ing energy in eV. Solid curve: seven state model; dotted curve: six state model.
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Figure 4.6: 2A g eigenphase sums for e le c tro n -^  collisions as a function of scatter

ing energy in eV. Solid curve: seven state  model; dotted curve: six state  model.
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Figure 4.7: 2A U eigenphase sums for electron- # 2  collisions as a function of scat

tering energy in eV. Solid curve: seven state model; dotted curve: six state model.
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Figure 4.8: 24>u eigenphase sums for electron- # 2  collisions as a function of scatter

ing energy in eV. Solid curve: seven state model; dotted curve: six state  model.
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Figure 4.9: 24>5 eigenphase sums for electron-H2 collisions as a function of scatter

ing energy in eV. Solid curve: seven state model; dotted curve: six state model.
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Symmetry Eres (eV) r re5 (eV) Assignment

10.94 1.24 i* Ji* 2

12.10 0.106 a l a ^ T T ^ l

2E + ■ - - 10.91 ‘feature’

12.54 0.073 c/e  \(7)2k\2 t()

2nu 12.50 0.018 c/e  1(7)2^12(7]

12.95 0.175 ‘feature’

2n5 11.05 0.46 ‘feature’

12.80 0.080 d l<7‘2jri2«7i ?

2a 5 12.55 0.21 ‘resonance’

13.16 0.058 ‘resonance’

Table 4.3: Resonance positions, Eres, and widths, rres, for H 2 using the seven state 

model.
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20

2515 2010

Figure 4.10: Integral cross section, in a2, for elastic scattering as a function of 

energy* in eV4 Theory: full curve, seven-state model; open square, Gibson et al

(1984); open circle, Nesbet et al (1986). Experiment: solid circle, Nishimura et al

(1985); solid triangle, Khakoo and Trajm ar (1986a).

there are eigenphase sums which exhibit resonance-like features, bu t are not of 

sufficiently large magnitude to be thought of as true resonances.

Figures 4.10 to 4.16 show the integral cross sections for elastic scattering and 

for the six electronic excitation processes considered here. These results were 

obtained by summing up the results from the first eight symmetries and available 

experimental and previous theoretical results are plotted for comparison.

4.3 D iscussion

The eigenphase sums, shown in figures 4.2 to 4.9, for the seven target state  model 

agree well with the corresponding results for the six target state  model given in the 

previous chapter for energies below 12 eV. Above this energy the effect of including 

the E,F state can be clearly seen. Recently da Silva et al (1990) have shown 

tha t one of the 2£ 5 resonances is particularly sensitive to the inclusion of this state
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V

10  15  - 20  25

Figure 4.11: Integral cross section, in a^, for excitation to the b 3E+ state, as a 

function of energy, in eV. Theory: full curve, seven-state model; broken curve, 

Baluja et al (1985). Experiment: solid circle, Nishimura and Danjo (1986); solid 

triangle, Khakoo et al (1987); solid inverted triangle, Hall and Andric (1984).

0.3

0.0
2515 20

Figure 4.12: Integral cross section, in a^, for excitation from the X *E+ state  to 

the a 3E+ state, as a function of energy, in eV. Theory: full curve, seven-state 

model; open circle, Lima et al (1988). Experiment: solid triangle, Khakoo and 

Trajm ar (1986b).

78



3

2

0
15 2520

Figure 4.13: Integral cross section, in a^, for excitation from the X JE + state  to 

the c state, as a function of energy, in eV. Theory: full curve, seven-state 

model; dotted curve, Lee et al (1982); open circle, Lima et al (1988). Experiment: 

solid diamond, Mason and Newell (1986b); solid triangle, Khakoo and Trajm ar 

(1986b).
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Figure 4.14: Integral cross section, in a^, for excitation from the X *E+ state to  the

B *E+ state, as a function of energy, in eV. Theory: full curve, seven-state model;

open square, Gibson et al (1987); open triangle, Redmon et al (1985). Experiment:

solid square, Ajello et al (1984); solid triangle, Khakoo and Trajm ar( 1986b).
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Figure 4.15: Integral cross section, in a I, for excitation from the X *£+ state  to the 

C 1! ^  state, as a function of energy, in eV. Theory: full curve, seven-state model; 

dotted  curve, Lee et al (1982); open diamond, Arrighini et al (1980). Experiment: 

solid circle lower limit of Watson and Anderson (1977).
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Figure 4.16: Integral cross section, in a^, for excitation from the X state  to the 

B 1E J  state, as a function of energy, in eV. Theory: full curve, seven-state model; 

dotted curve, Lee et al (1982); open diamond, Arrighini et al (1980). Experiment: 

solid square, Ajello et al (1984); solid triangle, Khakoo and Trajm ar (1986b).
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Symmetry Label 6

state

7

state

Eliezer 

et al (1967)

Buckley and 

Bottcher (1977)

DeRose 

et al (1988)

2£ + K 1<t» 10.96 10.94 10.68 10.94

2£ t a 12.30 12.10 12.32 12.16

c/e 12.54 12.41 <12.31

2n„ c/e 12.60 12.50 12.70

Table 4.4: Resonance positions for H 2 in comparison with previous calculations.

even though it is a closed state at the energy in question. The possibility tha t 

inclusion of higher lying states could have a significant effect on these eigenphase 

sums cannot, therefore, be ignored. This sensitivity to the model used is likely to 

be caused by a large number of resonances overlapping. Small changes in their 

positions and widths would have a large effect on the eigenphase sums because of 

interference effects.

Table 4.3 shows the seven state  target calculation resonance features. It should 

be noted th a t the ‘feature’ in the 2£ J  symmetry of the six state  calculation has 

been resolved into a resonance in the seven state calculation. Adding the extra 

state  also had the effect of lowering the positions of the resonances and, except for 

the ‘a ’ 2£+ resonance, reducing their widths.

Table 4.4 compares the most significant features from table 4.3 with the results 

of Chapter 3 and with other theoretical calculations which used L 2 methods to 

study resonances.

The agreement between the seven state calculations and those of Buckley and
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B ottcher (1977) is good. The calculations of DeRose et al (1988) only provide an 

upper bound on the position of the 2£ u resonance, but, unlike the other L 2 calcu

lations, they estim ate the resonance width. Their value of 0.67 eV is much larger 

than  the seven state calculation of 0.073 eV and if it were correct the resonance 

would be too wide for vibrational structure to be observed. DeRose et al (1988) 

also found two other lower lying resonances for this symmetry, which have not 

been found here or elsewhere.

Experim entally the resonances discussed here are sufficiently narrow for vi

brational effects to give rise to resonance series. In order to make comparisons 

between these results and the results of this chapter it was necessary to know the 

parent state  of the fesonanfce considered and to shift the resofiancO position by 

the difference between the vertical excitation energy and the adiabatic excitation 

energy of the parent state. Schulz (1973) gives the parent state  of the ‘a ’, ‘c’, ‘d ’, 

and the ‘e1 resonances as the c 3IIU state and shifting the results given in table 4.3 

by the appropriate amount gives the results in table 4.5.

The energy position of the resonances is in reasonable agreement with the 

experimental values which would add support to the assignment of the c 3IIU state 

as the parent. The width of the ‘a ’ and ‘c’ resonances calculated here are much 

larger than  the results of Joyez et al (1973). However, both Joyez et al (1973) and 

Bose and Linder (1979) found tha t the widths were dependent on the isotope of 

hydrogen used. These considerations are beyond the capabilities of the present 

fixed nuclei calculations.

The resonance found in the 2n 5 symmetry is in the same symmetry and has ap

proximately the correct width to be considered the ‘d ’ resonance of Weingartshofer 

et al (1970). The present results also give some evidence for the ‘e’ resonance, 

however, in order to clarify the situation a detailed study of the differential cross 

sections of these excitation process is needed. This was carried out and the results
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Position W idth

Symmetry This Schulz This Joyez Weingartshofer

work (1973) work et al (1973) et al (1970)

2£J 11.09 11.28-11.34 0.106 <  0.016

11.53 0.073

2nu 11.49 11.43-11.50 0.018 <  0.016 0.08

Table 4.5: Seven state  Resonance positions and widths for H 2 in comparison with 

experimental results. The results of this work have been shifted as described in 

the text. All energies are in eV.

are presented in the next chapter.

A great deal of experimental and theoretical data  exists for the integral cross 

sections of the elastic and electronic excitation processes considered here. For this 

reason only the most recent and reliable data have been included in figures 4.10 

to 4.16.

It can be seen from these figures tha t previous theoretical calculations of in

tegral cross sections are not able to produce resonance information. The different 

techniques used to study resonances have already been discussed. The experimen

tal points are also too far apart and not accurate enough to resolve the structure 

produced by the present calculations as can be seen in figure 4.10. This is also 

particularly noticeable in figure 4.11 where the present calculations show a great 

deal of structure which the two state calculations of Baluja et al (1985) were not 

able to produce. Unfortunately, the available experimental results are not accurate
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enough to distinguish between the two.

The results for excitation to the a 3E+ state  shown in figure 4.12 are interesting 

in th a t the two theoretical sets of results agree with each other a t the only available 

experimental point, but differ at all other points. The present results display a 

sharp threshold peak, whereas the results of Lima et al (1988) predict a more slowly 

rising, broad peak. This effect is typical of the difference between calculations 

which do and do not include multichannel effects.

The results of Lima et al (1988) shown in figure 4.13 greatly overestim ate the 

integral cross section. More recent calculations by Lee et al (1990) show th a t the 

inclusion of correlation effects is not enough to significantly improve the results. 

Only the inclusion of polarisation effects can do this. However, the distorted wave 

calculations of Lee et al (1982) give very good results for this excitation process, 

but not for the processes shown in figures 4.15 and 4.16.

The present results show very different shapes for excitation to singlet states 

from excitation to triplet states. Unlike excitation to the triplet states, the cross 

sections for the excitation to singlet states show little structure at threshold en

ergies and tend to increase with increasing energy. In figure 4.14 this steady 

increase in cross section is also predicted by Gibson et al (1987) and by the impact- 

param eter method of Redmon et al (1985) which neglects exchange. As would be 

expected these im pact-param eter results agree better with the present results as 

the scattering energy increases.

For the other excitation to singlet state processes considered here the present 

results agree well with the lower estim ate experimental values of W atson and An

derson (1977) for excitation to the E,F *£+ state shown in figure 4.15 and with 

the renormalised results of Arrighini et al (1980) for excitation to the C 1n u state  

shown in figure 4.16.

The results presented here show some features above the energy of the highest
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threshold included in the calculations. In particular there would appear to be 

a resonance at around 23 eV. These features should be treated with care since 

they are likely to be pseudoresonances caused by neglecting open channels. From 

simple flux arguments, it must also be assumed th a t at high energies the present 

calculations will tend to overestimate the to tal cross sections. This is dem onstrated 

in figure 4.11 where the two state calculation predicts a much higher cross section 

at high energies than the seven state calculation.

In this chapter integral cross section results have been presented for electronic 

excitation from the ground to the first six excited states of H 2 using a full Cl seven 

target state  model. In general the integral cross sections have agreed well with 

experimental data  and represent an improvement on previous theoretical calcula

tions. A richness of structure has been displayed in several excitation processes 

which previous calculations have not been able to predict and no previous calcula

tions are consistently nearer to experimental results for all the excitation processes 

considered here.

The ability to produce estimates for resonance positions and widths lead to 

an investigation into the differential cross sections of these excitation process dis

cussed in the next chapter. The experimental data  for differential cross sections is 

much more accurate than for integral cross sections and it is only by studying the 

differential cross sections tha t the observed angular distributions of the resonance 

series can be understood.
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C hapter 5

D ifferential cross sections for # 2

In this chapter the seven Cl target state model of # 2 , discussed in the previous 

chapter, has been used to calculate differential cross sections for elastic scattering 

and for electronic excitation from the X ground state to the b 3E J , a 3E*, 

c3n u, B E,F 1'£+ and the C *11̂  states of hydrogen.

The study of differential cross sections is a more stringent test of a model 

than the study of integral cross sections since the available experimental data 

for differential cross sections is more accurate. This is because it is necessary to 

extrapolate differential cross sections to 0° and 180° before integration in order 

to produce integral cross section. Since it is difficult experimentally to obtain 

differential cross sections at angles much below 10° or above around 130° this can 

produce large errors as was seen in the previous chapter.

A study of the differential cross sections is also necessary to explain the ob

served angular distributions at resonant energies in electron - # 2  scattering. A 

consistent explanation for this structure and an accurate classification scheme for 

the resonances is not possible from a study of the integral cross sections alone.

Experimental results for non resonant differential cross sections have been re

viewed recently by Tawara et al (1990) and resonance studies have been reviewed
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by Schulz (1973) with more recent studies including those of Spence (1974), Wein- 

gartshofer et al (1975), Bose and Linder (1979), Huetz and Mazeau (1983) and 

Mason and Newell (1986b). Theoretically there have been many studies on non 

resonant differential cross sections, including those of Arrighini et al (1980), Fliflet 

and McKoy (1980), Lee et al (1982), Gibson et al (1987), Lima et al (1988) and Lee 

et al (1990), but there have been no calculations on resonant excitation differential 

cross sections. W here possible comparison has been made between these studies 

and the results produced here. Particular attention has been payed to  values of 

energy for which experimental data is available.

5.1 Calculation

The results in this chapter are an extension of those in the previous chapter. 

W ithin the set of STOs given there a full Cl target calculation was performed on 

the lowest seven electronic states of with a fixed internuclear separation of 1.4 

a0. Numerical basis functions with solutions below 5 Ryd with t  <  6 and m  < 

3 were retained. The molecular orbitals were orthogonalised by first Lagrange 

orthogonalising one orbital from the cru and 7t5 and two orbitals from the crg and 

7ru sets of continuum orbitals to the target orbitals of the same symmetry and then 

Schmidt orthogonalising the complete set of target and continuum orbitals.

A full Cl calculation was then performed in the inner region and scattering in

formation was obtained in the outer region by propagating the R-m atrix to a radius

of 100 ao and then applying asym ptotic expansion techniques (Noble and Nesbet
1 were

1984). All diagonal and off-diagonal dipole and quadrupole m om entsjretained. 

This method produced K-matrices from which T-matrices were constructed and 

from these the differential cross section were calculated using the program module 

DCS (Malegat 1990) described in Chapter 2.
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Symmetry Ej-es (eV) Tres (eV) Assignment

%+ 10.94 1.24

12.10 0.106 a

12.54 0.073 c/e

2n„ 12.50 0.018 c/e

2naip 12.80 0.080 d ?

Table 5.1: Resonance positions, Eres, and widths, r rea, for # 2  using the seven state 

model of C hapter 4.

5.2 R esults

The differential cross sections presented here have been produced by summing the 

results for the first eight symmetries up to 23>5 and have been calculated at 50 

evenly spaced angles between 0° and 180°. The energy points have been chosen to 

correspond with previous experimental data points and particular attention has 

been paid to the energies of resonance features found in the previous chapter and 

summarised in table 5.1.

Figure 5.1 shows the differential cross section for elastic scattering at several 

energies in comparison with previous theoretical and experimental results. At 20 

eV the differential cross section summed over the first six symmetries are shown 

as well as the sum up to 24>5. At lower energies these cross sections are indistin

guishable and so they have not been plotted. This is also true of figure 5.2 which 

shows the results obtained for excitation from the ground to the b 3E J state  of

h 2.
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Figure 5.1: Elastic differential cross sections, in a2, a t 3 eV, 10 eV, 12 eV, 15 

eV, 17.5 eV and 20 eV, as a function of angle in degrees. Theory: solid line, 

present work including symmetries up to 2$ 5; dashed line, present work including 

symmetries up to 2A U; dotted line, Snitchler et al (1991); open circles, Hara (1969); 

open inverted triangle, Truhlar and Brandt (1976) model 3; open triangle, Gibson 

et al (1984). Experiment: filled triangle, Khakoo and Trajm ar (1986a); filled circle, 

Nishimura et al (1985); filled inverted triangle, Furst et al (1984).
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Figure 5.2: Differential cross sections, in a2, for excitation to the b 3£+ state at 

12 eV, 13 eV, 15 eV, 17 eV and 20 eV, as a function of angle in degrees. Theory: 

solid line, present work including symmetries up to 23>5; dashed line, present work 

including symmetries up to 2A U; open triangle, Fliflet and McKoy (1980); open 

circle, Lima et al (1988); open inverted triangle, Lee et al (1990). Experiment: 

filled triangle, Khakoo et al (1987); filled circle, Nishimura and Danjo (1986).
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Figure 5.3: Differential cross sections, in a 2, for electronic excitation to the a 3E+, c 

^ITu, B E,F *E+ and C states at 20 eV, as a function of angle in degrees. 

Theory: solid line, present work including symmetries up to dashed line, 

present work including symmetries up to 2A U; solid circle, Arrighini et al (1980); 

open square Gibson et al (1987); open circle, Lima et al (1988); open inverted 

triangle, Lee et al (1982) and Lee et al (1990). Experiment: solid triangle, Khakoo 

and Trajm ar (1986b).
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Figure 5.4: Differential cross sections, in a^, as a function of energy, in eV, for 

elastic scattering and for excitation to the b 3E * , a 3E+ and c 3IIU state. Solid 

line, at 120°; long dashed line, at 90°; short dashed line, at 40°; dotted line, at 0°. 

The filled triangles on the base line indicate threshold positions and the vertical 

lines indicate the resonance positions.
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Figure 5.5: Differential cross sections, in a3, at the resonant energies of 12.10 eV, 

12.50 eV, 12.54 eV and 12.80 eV, as a function of angle in degrees. This work: 

solid line, elastic scattering; long dashed line, excitation to the b 3E+ state; medium 

dashed line, excitation to the a 3E+ state; short dashed line, excitation to the c 

3n u state; dotted line, excitation to the B *EJ state. Experiment: solid circle, 

Joyez et al (1973) for electronically elastic scattering, normalised to the 50° data 

point; solid inverted triangle, Weingartshofer et al (1970), for excitation to the B 

1E J  state.
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Figure 5.3 shows the differential cross sections for excitation to the higher lying 

electronically excited state considered here. Results produced by summing over 

both six and eight partial waves have been presented as well previous theoretical 

and experimental results. These results are at the higher end of the incident 

electronic energy for which these calculations are valid.

The shape of the differential cross sections with respect to energy (sometimes 

called the excitation functions) are shown in figure 5.4. The four energy regions 

shown here correspond to the resonance positions given in table 5.1 and all eight 

symmetries up to 24>5 have been included in these results. The differential cross 

sections at the resonance positions are shown in figure 5.4 for elastic scattering in 

comparison with the experimental, electronically elastic, b u t vibrationally inelas

tic, results of Joyez et al (1973) and for excitation to the B state  in comparison 

with the experimental results of Weingartshofer et al (1970).

5.3 D iscussion

The agreement between the present calculations and previous experimental results 

for elastic scattering (figure 5.1) is very good except at low energies and small 

angles. The most likely source of error at low energies is the neglect of vibrational 

motion. Indeed at 3 eV Danby (1991) has shown tha t the inclusion of vibrational 

effects increases the differential cross section by approximately 12% in the 0° to 30° 

range compared with a model with internuclear separation fixed at the equilibrium 

geometry. At 3 eV the results of Snitchler et al (1991), which include vibrational 

and rotational motion, are in much better agreement with the experimental results 

than those of Gibson et al (1984) and the present results which assume a fixed 

internuclear separation.

Another source of error in the present results is lack of long range polarisa-
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tion effects. In previous R-m atrix calculations these effects have been corrected

for by the use of polarised pseudo-state (Gillan et al 1988, Danby and Tennyson

1990), but in this calculation the inclusion of the B and C 1IIU states have a 

similar effect a t low energies. The parallel and perpendicular components of the 

polarisability, ay and aj_, can then be found from the equations:

= E { 'T % )-E . '  (5'1}

2H1n„)P
-  E ( m a) - E , '  (5-2)

where /z ^ E j)  and /x(1IIu) are the dipole moments going from the ground to the 

1E J and states respectively and E+) and jE ^IR ) are the energies of these 

states. The effective polarisabilities, ao and a 2, are then given by:

2
a 2 =  -(ay - a ± ) ,  (5.3)

and

a 0 =  oc|| -  a 2. (5.4)

The present target representation has effective polarisability of ao =  5.172 a.u. 

and a 2 — 0.809 a.u. compared with the accurate theoretical values of 5.179 a.u. 

and 1.202 a.u. (Kolos and Wolniewicz 1967).

The agreement between the present results at 10 eV is very good, but at 12 

eV it is less pleasing. This is probably due to the closeness of the resonance at 

12.10 eV, since at higher energies the agreement is again very good. At 20 eV the 

present results are no longer converged with respect to the number of partial waves 

included. This is probably the major source of error at small angles between these 

results and the available experimental results.

Agreement between the present results and experimental results is not as good 

for inelastic processes as for the elastic process, see figures 5.2 and 5.3. The only 

excitation process for which there is experimental da ta  below 20 eV is excitation
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from the ground to the b 3£+ state  shown in figure 5.2. For this process the 

agreement is worse in the 12eV to 13 eV energy region. This is probably due to 

the closeness of several resonance features which would have the result of making 

the differential cross section extremely sensitive to  even small changes in energy 

and internuclear distance. The shape of the differential cross section a t these 

two energies is different from those at higher energies for both experimental and 

theoretical results. At higher energies the present results agree better with the 

experimental results, almost to within the experimental errors, but the dip in the 

differential cross section predicted by these calculations is consistently at a higher 

angle than for the observed differential cross section.

It can be seen tha t at 20 eV the present results are not converged with respect 

to the number of symmetries summed over for any of the processes considered here, 

see figure 5.3. This could be corrected for using an approximation such as the Born 

approximation [e.g. Norcross and Padial 1982). This approximation considers the 

long range effect of spin conserving interactions and would not, therefore, affect 

the singlet to  trip let excitation processes. As the agreement for singlet to singlet 

processes is no worse than for singlet to triplet processes this approach was not 

used.

Although the results presented in figure 5.3 are at the higher energy limit of the 

validity of these calculations the agreement with experiment is m oderately good 

and in general these calculations represent an improvement on previous theoretical 

predictions. For example for excitation to the c 3IIU state  the present calculations 

are closer to the experimental results in both shape and magnitude than those of 

Lima et al (1988) and Lee et al (1990). The present results are somewhat larger 

than the experimental results of Khakoo and Trajm ar (1986b). This is partly due 

to the broad pseudoresonance at 17.5 eV in the 2IIU symmetry which was caused 

by neglecting channels open at this energy.
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For excitation to the C 1IIU state  the present results are of the same shape 

as, bu t greater magnitude than, the experimental results of Khakoo and Trajm ar 

(1986b). This was also true for the integral cross section discussed in the previous 

chapter. For the integral cross section the seven state  model results were in better 

agreement with those of Ajello et al (1984), bu t differential cross sections are not 

available for comparison.

The differential cross section for excitation to the a 3£+ state  dem onstrates the 

difficulty in obtaining integral cross sections from experimental differential cross 

section results. All the theoretical results predict a rapid increase in the differential 

cross section at large and small angles, but from the experimental da ta  points it 

would be very difficult to extrapolate accurately to 0° and 180° in order to obtain 

an integral cross section.
(apparent

Figure 5.4 clearly shows tha t both thejposition and the width of the resonances 

depends not only on the exit channel used for observation, but also on the angle 

of observation. For example the resonance at 12.80 eV does not appear to affect 

the shape of the resonance for elastic scattering, bu t for excitation to the b 

state  this is not the case. This observation is in agreement with tha t of Huetz and 

Mazeau (1983). The position of the thresholds have been marked on these figures, 

but they do not seem to affect the differential cross sections considerably.

The differential cross sections at resonant energies, shown in figure 5.5, demon

stra te  th a t the angular distributions do not, in general, have the shape of the 

lowest partial wave contributing to tha t resonance, but are made up of contribu

tions from several partial waves. In particular only the 12.10 eV differential cross 

section angular distribution for excitation to the b 3HU is symmetric about 90°. 

The present results are in good agreement with the normalised experimental results 

of Joyez et al (1973) since these results are electronically elastic, but rotationally 

and vibrationally inelastic. The agreement with the results of W eingartshofer et
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al (1970), however, is not good.

5.4 Conclusions

Results have been presented here for the differential cross sections for elastic scat

tering of H 2 by electron impact and for electronic excitation from the ground to 

the first six excited states of H 2 using the full Cl seven state  target representation 

discussed in the previous chapter.

Agreement between the present calculations and previous experimental results 

is very good for elastic scattering in the 10 eV to 20 eV energy range, but is 

only m oderate for the inelastic processes considered here. As well as neglecting 

closed channels, these calculations also neglect many channels, including ionisa

tion, which are open at 20 eV. This may produce several effects such as the pro

duction of pseudo-resonances, neglect of short-range polarisation effects and the 

overestimation of integral cross sections due to lack of channels taking flux from 

the calculations. It would be difficult to estim ate how great the effects of these 

errors might be without further extensive tests.

At the higher energies considered here it has already been pointed out tha t 

the present calculations are not converged with respect to the number of total 

symmetries included in the calculation and this is a significant source of error 

at these energies. Probably the most m ajor source of error, especially a t low 

energies and at resonant energies, is caused by the neglect of nuclear motion. At 

the resonance energies even small changes in the energy could produce a large 

difference in the differential and integral cross sections.

These calculations have shown tha t a great deal of care must be exercised 

when resonance positions and widths are being analysed. Both the magnitude 

and the shape of the differential cross section changes not only with the angle of
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! apparent
observation, but also with the exit channel monitored, thus producing different^ 

resonance positions and widths according to which excitation process is under 

observation.
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C hapter 6 

B ound sta tes o f D iatom ic  

M olecules

In this chapter results are presented which have been produced by the computer 

module BOUND. Previously quantum  chemical techniques have been applied to 

small molecules to calculate the low lying bound states and more recently these 

techniques have been adapted to calculate the higher lying Rydberg series of bound 

states (Kaufmann et al 1989). The code developed here, however, is based on the 

R-matrix m ethod of determining atomic bound states (Seaton 1985) which has 

proved successful at producing large amounts of atomic ion data  (Berrington and 

Seaton 1985). The advantage of this method over the quantum  chemical techniques 

is tha t, once a suitable R-m atrix has been constructed, it is theoretically possible 

to determine all the bound states converging to the relevant ionisation threshold.

An R-m atrix method was developed by Ojha and Burke (1983) in order to 

calculate the bound states of argon. This method was later adapted for the calcu

lation of the bound states of molecules by Tennyson et al (1986). The disadvantage 

of this method is th a t it can only search for bound states th a t are close in energy to 

the R-matrix poles. While the bound state energies and wavefunctions produced
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for these states were good (Tennyson 1988), this method can not be applied to the 

higher lying Rydberg states.

6.1 M odules B O U N D  and TD IP

The program module BOUND was w ritten using the theory based on Seaton (1985) 

and described for the molecular case in Chapter 2. Channel da ta  and the surface 

amplitudes at the R-m atrix boundary are input to the module which then deter

mines the upper and lower energy bound for a system atic search for the bound 

states of the system.

For neutral target, or if requested for positive ion targets, the module will then 

set up an even grid of energy points between the end values in order to perform 

the search. Alternatively, for positive ion targets, the module will calculate the 

effective quantum  number of the energy limits and set up a search over values 

of the principal quantum  numbers included within the limits. For the lowest 

value of the principal quantum  number a grid of energy points, evenly spaced 

in effective quantum  numbers, is set up. For successive values of the principal 

quantum  number there is an option to reduce the number of grid points which has 

already been described in Chapter 2.

For each energy grid point BOUND calculates the R-m atrix and the outer 

region functions with calls to the modules VIBRMT, RPRO P and CFASYM and 

then calculates the determ inant of the m atrix B  defined by equations (2.55) and 

(2.56). BOUND then searches for zeros in the determ inant of B  by searching for 

changes in sign of the determ inant between adjacent grid points. The possibility 

of two zeros between grid points is investigated by fitting the determ inant to a 

quadratic form. Once a bound state has been detected BOUND then obtains an 

estim ate for its energy position by repeated application of the Newton-Raphson
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method. The final energy position is obtained using the Taylor series expansion 

m ethod described in Chapter 2 and the bound state  wavefunction is determined 

by applying equation (2.39).

From the input channel data  an estim ate of the number of bound states ex

pected for a given value of principal quantum  number is calculated and a warning 

printed if fewer bound states are found.

The module TD IP was w ritten to calculate the transition dipoles of a sys

tem. TDIP takes the bound state wavefunction information from BOUND and the 

transition moments computed in TM T and performs the m atrix multiplication de

scribed by equation (2.61). The perpendicular transition dipoles are multiplied by 

a factor of 2-1/2 in order to conform with the convention of W hiting et al (1980).

6.2 R esults

6.2.1 C H

Table 6.1 shows results obtained for the bound states of C H  compared with those 

of Tennyson (1988). The results of Tennyson (1988) were obtained using the R- 

m atrix bound state  method of Ojha and Burke (1983). The present results were 

obtained using BOUND and using the same target and scattering representation 

as the CC3P model of Tennyson (1988). Tennyson (1988) studied several models 

for the e“ -f C H + —► C H  process for to tal symmetries of 2U and 2II and at 

several internuclear separations between 1.5 and 4.0 aD. In this work only the 

most sophisticated model at the equilibrium internuclear separation of 2.137 a0 

was used for comparison.

In this model the C H + target is represented by an SCF calculation within a 

set of 12 a , 7 7r and 36 STOs on the ground and the first two electronically excited 

states of C H +. The R-m atrix radius was taken to be 10 ac and in the N  + I
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State Present

(work)

Tennyson

(1988)

van Dishoeck 

(1987) 

Calculated

Herzberg and 

Johns (1969) 

Observed

C 2E 4.53 4.53 4.02 3.98

2 2E 6.82 6.76 6.39

3 2E 8.34 8.51 7.96 8.00

4 2E 9.01

5 2E 9.24

6 2E 9,26

7 2E 9.62

8 2E 9.77

9 2E 9.83

10 2E 9.95

2 2n 7.74 7.81 7.34 7.31

3 2n 8.28 8.45 7.94 7.96

4 2n 8.98 8.05

5 2n 9.26 9.29

6 2n 9.60

7 2n 9.63

8 2n 9.78

9 2n 9.95

10 2n 9.98

Ionisation

potential 10.83 10.83 10.64

Table 6.1: Vertical electronic excitation energies and ionisation potential, in eV, 

for the X 2II state  of C H  at its equilibrium geometry.



calculation the three excited electronic states were included in the close coupling 

expansion and polarisation was represented by including all two particle, one hole 

configurations from the target ground state. The continuum functions were gen

erated numerically and all solutions with energy below 9 Ryd were retained. The 

continuum orbitals were Lagrange orthogonalised to the lowest three a  orbitals 

and the whole set of target and continuum orbitals were Schmidt orthogonalised. 

All dipole and quadrupole moments were retained and in the outer region solutions 

were found by first propagating the R-m atrix to 100 a0 and then using asymptotic 

expansion techniques.

Previous calculated and observed values are also given in table 6.1 for compar

ison. ..........................................................................................................................................

6.2.2 HeH

The bound state  results presented in tables 6.2 and 6.3 were obtained using the 

representation of Sarpal et al (1991a) for the study of electron scattering from 

H eH + .

From a suitable set of STOs Sarpal et al (1991a) generated target molecular 

orbitals using an SCF calculation. From these molecular orbitals the lowest three 

states of H eH + were represented by a Cl expansion. This is the same procedure 

th a t was used in previous chapters to represent the H 2 target states, however, 

for HeH+  a full Cl expansion could not be used. By including 4 a  and 1 7r 

orbitals in the Cl expansion Sarpal et al (1991a) found th a t a good representation 

of the target energies could be produced. This reduced the number of cr and 7r 

components form 106 and 84 to 11 and 6 respectively. Calculations were carried 

out at 13 geometries with internuclear separations between 1.0 and 4.0 a0. The 

vibrational energy levels were then calculated using the fourth order polynomial 

method of Le Roy (1971). The lowest six vibrational states of the ground state of
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Assignment Energy fi Te X^exp.)

Is X2£ -3.232158 -0.334

2s| A2E -3.094013 0.129 31339 31695

2P B2n -3.080895 0.036 28460 28888

2p C2£ -3.035538 -0.435 18506 18837

3s D2E -3.011379 0.117 13205 13307

3P E2n -3.008489 0.046 12570 12647

3d F2£ -3.007627 0.023 12381 12430

3dG2n -3.007228 0.012 12294 12355

3d H2A -3.006284 -0.013 12086 12136

3p 2£ -2.993210 -0.450 9217

4s 2E -2.984321 0.114 7267

4P 2n -2.983156 0.044 7011 7058

4d 2E -2.982844 0.024 6943

4d 2n -2.982665 0.013 6903 6931

4f 2E -2.982561 0.007 6880

4f 2n -2.982537 0.005 6875

4f 2 A -2.982478 0.001 6862

4f 2$ -2.982351 -0.007 6835

4d 2 A -2.982263 -0.013 6815 6850

4p 2E -2.976391 -0.456 5526

5g? 2A -2.973717 0.287 4940

5s 2E -2.972142 0.113 4594

5P 2n -2.971571 0.045 4469

5d 2E -2.971411 0.025 4434
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5d 2n -2.971317 0.014 4413

5f 2S -2.971260 0.006 4400

5f 2n -2.971248 0.005 4398

5g 2n -2.971229 0.003 4394

5f 2 A -2.971211 0.000 4390

5 g 2£ , -2.971208 0.000 4389

5g 24> -2.971202 -0.001 4388

5d? 2A -2.971200 -0.001 4387

5f 2$ -2.971155 -0.007 4379

Table 6.2: Bound states of H eH  in Hartrees at the fixed equilibrium internuclear 

separation of 1.455 a0. Te is the energy in cm-1 relative to the ground state of the 

ion, -2.951208 Hartrees; n is the i quantum  defect number. The last column gives 

the ionisation potentials deduced from the experimental data  of K etterle (1990).
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Vibrational Sarpal et al (1991b) Present work

Level b 2n  e  2n  g  2n

0 -3.07321 -3.07324

1 -3.05882 -3.05900

2 -3.04583 -3.04633

3 -3.03426 -3.03520

0 -3.00095 -3.00090

0 -2.99973 -2.99981

1 -2.98690 -2.96790

1 -2.98574 -2.98516

2 -2.97428 -2.97579

2 -2.97315 -2.97531

3 -2.96312 -2.96426

3 -2.96200 -2.96397

H 2 A

0 -2.99874 -2.99884

1 -2.98463 -2.98483

2 -2.97186 -2.97510

3 -2.96050 -2.96387

Table 6.3: Bound states of H eH  in Hartrees for the lowest lying n  and A symme

tries and their lowest lying vibrational states.
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H eH  were included in these calculations.

An R-m atrix radius of 10 aQ was used and the continuum orbitals calculated 

numerically as has already been described. All solutions below 10 Ryd were re

tained and the lowest six a  and 7r and the lowest three S and <j) correlation functions 

were included in the Cl expansion of the N  + 1 electron system. All dipole and 

quadrupole moments were retained in the outer region calculation. For the scat

tering calculation a propagation radius of 300 a0 was used, but for the bound 

state  calculation, which uses a slightly different method of solution in the outer 

region (see Chapter 2), a propagation radius of 50 a0 was needed. For the E and 

II to tal symmetries the lowest ten R-m atrix poles were treated non-adiabatically 

and for the A and $  symmetries seven arid five poles respectively were treated 

non-adiabatically.

Table 6.2 shows the bound states calculated, by Dr. B. K. Sarpal, using 

BOUND at the fixed equilibrium internuclear separation of 1.455 a0. These results 

have been published as Sarpal et al (1991b) and the lowest 33 electronic states of 

H eH  have been assigned and compared with experimental data. Table 6.3 com

pares the vibrational results of Sarpal et al (1991b), calculated using a Le Roy fit 

for the potential energy curves and solving the ID nuclear Schrodinger equation for 

the vibrational energy levels, with the results obtained using BOUND to include 

the vibrational motion ‘non-adiabatically’.

6.2.3 H2

Table 6.4 shows the transition energies, transition dipoles and oscillator strengths 

calculated for H 2 using BOUND to calculate the bound state  and the program 

module TD IP to calculate the transition dipoles and oscillator strengths. These 

results are then compared with previous theoretical results for transition dipoles, 

in table 6.5, and for oscillator strengths, in table 6.6. • rv,Vi' "
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State E V Fraction in Transition Oscillator
CO

(a.u.) inner region dipole strength /

% -1.168391 (0.9135) 1.0000

*£« -0.703953 1.9266 0.9995 -0.9807 0.297762 2.129301

-0.627599 2.9272 0.8240 0.4323 0.067382 1.690048

-0.601673 3.9267 0.2782 -0.3084 0.035933 2.175676

-0.600569 3.9953 0.4325 -0.0073 0.000020 0.001301

-0.589849 4.9263 0.1301 0.2202 00018705 2.236224

Jn u -0.686564 2.0644 0.9986 -0.7344 0.346449 3.048232

-0.622402 3.0670 0.7265 0.3781 0.104084 3.002661

-0.600555 3.9962 0.4311 0.0029 0.000006 0.000405

-0.599491 4.0659 0.2889 -0.2740 0.056940 3.827266

-0.589281 4.9956 0.2385 -0.0005 0.000000 0.000025

Table 6.4: Bound state energies, effective quantum  numbers z/, transition dipoles 

and oscillator strengths, / ,  for excitation from the ground state  to the lowest lying 

*£u and 1ntt of H 2 at the fixed equilibrium internuclear separation of 1.4 a0. The 

fraction of the wavefunction in the inner region and the function i/3f  are also 

shown.
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These results were obtained using the H 2 target representation of Tennyson 

(1991). This uses the <j orbitals of Shimamura et al (1990) and the 7r orbitals of 

Cohen and Bardsley (1980) to represent the X 2E+, A 2E+ and the B 2IIU states of 

H%. The continuum functions were calculated numerically and all solutions with 

energy less th a t 7 Ryd were retained. An R-m atrix radius of 14 a0 was used and a 

propagation radius of 30 a0 was used for the calculation of the bound states of H 2 . 

Bound state  calculations were carried out at 10 internuclear separations between 

1.0 and 3.5 ac and the transition dipoles calculated using the module TDIP. Table 

6.5 shows the transition dipoles calculated for fixed internuclear separation at the 

equilibrium geometry, of 1.4 a0, for transitions from the ground to the *EU and 

to the 1IIU states of H 2 . Figures 6.1 and 6.2 show the variation of the transition 

dipole with respect to changes in the internuclear separation for the lowest five 

transitions to each of these symmetries.

6.3 D iscussion

6.3.1 CH

The results obtained for the bound states of C H , shown in table 6.1, were used as 

a test case for the development of the module BOUND. The results of Tennyson 

(1988) were produced using the method of Ojha and Burke (1983). For each 

symmetry only the lowest three bound states have been given. The method used 

here, however, was able to produce a very large number of bound states, the 

lowest ten for each symmetry are given in the table. The results produced by the 

two different methods are in reasonable agreement with each other. The slight 

differences are due to the different methods of searching for the poles and also to 

the fact th a t the solution of the outer region problem has been improved since the 

calculations of Tennyson (1988). Where the two sets of results differ, the present
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State Previous

Theory

Bauschlicher and 

Langhoff (1991)

Present work

Ground state  

energy (a.u.)

-1.1745a -1.1684

A E Dipole A E length velocity A E Dipole

"Eu 0.4686c 0.98216 0.4686 0.9802 0.9796 0.4638 0.9807 

0.5459d 0.3966d 0.5455 0.3973 0.3971 0.5400 0.4323

0.5659 0.3084 

0.5670 0.0073 

0.5777 0.2202

!n u 0.48626 0.74326 0.4866 0.7212 0.7170 0.4809 0.7344 

0.5510 0.3324 0.3302 0.5451 0.3781

0.5670 0.0029 

0.5678 0.2740 

0.5783 0.0005

a Kolos and Wolniewicz (1965) 

b Rothenberg and Davidson (1966) 

c Kolos and Wolniewicz (1968) 

d Wolniewicz (1975) 

e Dressier and Wolniewicz (1985)

Table 6.5: Transition dipoles in atomic units for excitation from the ground state  to 

the lowest lying 1 Eu and 1IIU of H 2 at the fixed equilibrium internuclear separation 

of 1.4 ac. The excitation energies A E are given in Hartrees.
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State Arrighini et al (1980) 

A E

Present work 

A E

0.4678 0.2907 0.4638 0.2978

0,5427 . 0,0611, . 0,5400 ,0.0674

0.5685 0.0207 0.5659 0.0359

0.5670 0.0000

0.5777 0.0187

'Tin 0.4852 0.3492 0.4809 0.3464

0.5486 0.0940 0.5451 0.1041

0.5670 0.0000

0.5717 0.0427 0.5678 0.0569

0.5783 0.0000

Table 6.6: Oscillator strengths for excitation from the ground state  to the lowest 

lying and 1ITU of H 2 at the fixed equilibrium internuclear separation of 1.4 a0. 

The excitation energies AE are given in Hartrees.

112



5

0

0 .5
-V------v — v — V-

-o

0.0
32

Figure 6.1: Transition dipoles in a.u. as a function of internuclear separation, in 

a0, for excitation from the ground to the first five excited states of H 2 . Open 

circle, first state; open inverse triangle, second state; open square, third state; 

open triangle, fourth state; open diamond, fifth state.
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Figure 6.2: Transition dipoles in a.u. as a function of internuclear separation, in 

a0, for excitation from the ground to the first five excited 1IIU states of H 2 . Open 

circle, first state; open inverse triangle, second state; open square, third state; 

open triangle, fourth state; open diamond, fifth state.

114



results are in slightly better agreement with the observed results of Herzberg and 

Johns (1969) and the calculations of van Dishoeck (1987). The module BOUND 

also has the clear advantage of being able to calculate far more bound states than 

the m ethod of Ojha and Burke (1983).

6.3.2 HeH

The agreement between the results obtained using a Le Roy fit and those found 

from the vibrational BOUND calculation of the bound states of H eH  is good, see 

table 6.3. This is particularly pleasing as it demonstrates th a t the atomic approach 

of Seaton (1985) can not only be applied to fixed nuclei molecular calculations, 

bu t it can also be applied to the vibrational states of molecules.

Essentially there is no difference between these two calculations. The adiabatic 

m ethod of Sarpal et al (1991) first finds the bound states of the system at a grid 

of internuclear separation points. It then performs a fitting procedure after which 

the vibrational motion is accounted for. In the present method the inner region 

calculations are performed at a grid of internuclear separation points, then the 

nuclear motion is included which yields the vibrational surface amplitudes from 

which the vibrational R-m atrix and hence the vibrational bound state  can be 

calculated. The method presented here has the advantage th a t if, in the future, 

coupling between electronic states can be included in the calculation, this method 

will produce non-adiabatic results. Until then, this method makes the calculation 

of vibrational bound states much more straight forward.

In the present calculations it proved very difficult to use this approach for the 

2£  symmetry. This was because the ground X 2£  state  of H eH  is dissociative. This 

m eant th a t there are always open vibrational channels at the energies considered 

and the states are, therefore, not truly bound states, but resonances. The present 

com puter package can not yet deal with this case.
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6 .3.3 H 2

The bound state  m ethod of Seaton (1985), described in detail in chapter 2, relies 

on the outer region functions, represented by the m atrix  P , obeying the orthonor

m ality condition:

<  P |P  > o =  1, (6.1)

in the outer region. This condition is satisfied if, a t the R-m atrix boundary:

PrQ' -  QTP' = 1, (6-2)

where Q is defined in chapter 2, P ' denotes the derivative of P  with respect to 

energy and P T denotes the transpose of P . However, the outer region functions 

used in the present calculations did not satisfy equation (6.2). On evaluating the 

left hand side of this expression the m atrix obtained was found to be diagonally 

dom inant, but the off diagonal term s were as much as 5% of the diagonal elements. 

The results shown in table 6.4 were obtained by multiplying the outer region 

functions by a suitable m atrix in order to obtain a m atrix with diagonal elements 

equal to one on the evaluation of the left hand side of equation (6.2). The fraction 

of the contribution from the inner region to the to tal wavefunction of the system 

is given in table 6.4 in order to assess the effect of this error. It can be seen tha t 

for low lying states the effect of an error in the outer region would be negligible, 

but for higher states the effect would be more serious. In the future this problem 

may be solved by calculating the integral on the left hand side of equation (6.1) 

and using the result to renormalise the final total wavefunctions. However, this 

integral is not trivial to calculate because of the use of propagation techniques to 

obtain the outer region functions.

The function vzf  is also given in table 6.4. This function should vary smoothly 

as transitions to higher states are considered. It can be seen tha t for a specific 

quantum  defect the present results would appear to  follow this behavior.

116



The results shown in table 6.5 are in very good agreement with previous theo

retical results for transitions between the ground and the first 1HU and 1IIU states 

of H 2. Agreement between the other states for which there are previous theoretical 

results available is within about 10%. The present results tend to overestimate 

the transition dipoles for these transitions. The m ajor source of error is likely to 

be the error in the outer region function normalisation, since as the contribution 

from the outer region increases the agreement becomes less good.

The results shown in table 6.6 are in good agreement with the oscillator 

strengths of Arrighini et al (1980). As with the present work the calculations of 

Arrighini et al (1980) are scattering calculations, however, Arrighini et al (1980) 

have only included the singlet states of H 2. As with the transition dipoles, the 

present results would appear to overestimate the oscillator strengths for the higher 

states, which is again probably caused by the error in the outer region functions.

From figures 6.1 and 6.2 it would seem tha t the m agnitude of the transition 

dipole varies unpredictably as higher states are considered. However, on closer 

inspection of the effective quantum  numbers, the first, second, third and fifth 

states shown would appear to belong to the same series, with quantum  defect equal 

to  0.073. This is also true for the first, second and fourth states shown for the *nu 

transitions, which have a quantum  defect of approximately 0.066 and represent ‘p ’ 

wave transitions, and for the third and fifth 1n u transitions, which have a quantum  

defect of 0.004 and represent ‘f ’ wave transitions.

In the modules BOUND and TD IP there are clearly some areas which need 

improvement. In particular the outer region normalisation requires a more rigorous 

approach and the outer region contribution to the transition moment must be 

included, see Seaton (1986). However, the development of these two modules has 

made it possible to calculate large amounts of bound state  information from a single 

diagonalisation of the Hamiltonian m atrix in the inner region, for both fixed nuclei
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and vibration calculations on diatomic molecules. This has meant th a t transition 

dipoles can now be calculated to higher lying excited states than was previously 

possible. Once the improvements already mentioned have been implemented it is 

hoped th a t these two modules will be used to calculate transition dipoles, both 

from the ground state  to much high lying excited states and from excited state  to 

excited state.
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C hapter 7

C onclusions

In this work the molecular R-m atrix method has been used to study electronic ex

citation of H 2 , by electron im pact, at the fixed equilibrium internuclear separation 

of 1.4 a0. The target molecule was at first represented by a full Cl, six coupled 

electronic target state test model. This model was used to produce integral cross 

sections which revealed a large amount of resonance structure.

An improved seven electronic target state model was developed to include the 

E ,F  1E5 state  of i / 2 which was found to be im portant in the test calculations of 

da Silva et al (1990). This model was a significant advance on previous studies 

of this system, since more than two states were included at a time. Improved 

representation of correlation and polarisation also lead to resonance features, which 

could not previously be studied in this way.

This seven state  model was used to produce integral cross sections for electronic 

excitation processes and a study of the resonance positions and widths made. It 

became apparent tha t the resonance structure could only be understood by a study

of the differential cross sections. This was then performed and it was shown that
j apparent

great care must be exercised when classifying resonances since the/peak position 

and width vary, not only with the exit channel monitored, but also the angle of
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observation.

Although the agreement between the present results and previous experimental 

and theoretical results was good for the integral cross sections this agreement 

was not as pleasing for the differential cross sections. The m ajor cause of error 

is considered to be the lack of vibrational and rotational motion in this fixed 

geometry calculation. It is clear tha t any future investigation should include this 

in the target and scattering representations.

In this work a com puter module has also been developed to calculate the bound 

states of molecules. This module represents an improvement on previous mod

ules, which could calculate only the low lying bound states, since it can produce 

large numbers of Rydberg bound states. The module was been tested on the 

e~ +  C H + —► C H  at fixed geometry and shown to give good agreement with pre

vious calculated and observed results. It was also tested on the e- -f H e H + —► H eH  

system at fixed geometry, where the lowest 33 electronic bound states could be as

signed, and for a vibrational calculation, where good agreement with an alternative 

method was obtained.

The development of the bound state module also made it possible to develop a 

second module to produce transition dipoles and oscillator strengths of molecules. 

These two modules were then used to calculate the bound states and transition 

dipoles of H 2 • Few previous results exist for the transition dipoles to electroni

cally excited states of H 2 , but where they do the present results are in reasonable 

agreement with them.

It is hoped th a t in the future the bound state  code will be developed to calculate 

truly non-adiabatic results from which transition dipoles to high lying bound states 

can be computed.
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