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Abstract 
 
Artificial intelligence (AI) research in endoscopy is being translated at rapid pace with a 
number of approved devices now available for use in luminal endoscopy. However, the 
published literature for AI in biliopancreatic endoscopy is predominantly limited to early pre-
clinical studies including applications for diagnostic EUS and patient risk stratification.  
Potential future use cases are highlighted in this manuscript including optical characterisation 
of strictures during cholangioscopy, prediction of post-ERCP acute pancreatitis and selective 
biliary duct cannulation difficulty, automated report generation and novel AI-based quality 
key performance metrics. To realise the full potential of AI and accelerate innovation, it is 
crucial that robust inter-disciplinary collaborations are formed between biliopancreatic 
endoscopists and AI researchers.         
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Introduction 
 
Gastrointestinal endoscopy has some of the most translationally advanced artificial 
intelligence (AI) applications in medicine. There are multiple regulatory approved devices and 
published landmark prospective randomised controlled trials for AI in luminal endoscopy [1]. 
This appears to be a watershed moment for the specialty. However,  it is important to 
recognise that the vast majority of progress has been limited to diagnostic upper and lower 
gastrointestinal endoscopy. This is primarily due to the identification of optimal use cases, 
supporting lesion detection and characterisation, where major inter-observer variation exists 
in routine clinical practice [2].  
 
In comparison to luminal endoscopy, there have been few publications of AI studies related 
to biliopancreatic endoscopy. It is therefore timely to consider whether AI has a role in 
biliopancreatic endoscopy and if so, how we can accelerate research in this field by mirroring 
the successfully translation of AI in luminal endoscopy. This article will provide a narrative 
review of the existing published literature related to AI in biliopancreatic endoscopy and also 
consider future directions.  
 
 
Current Evidence 
 
 
1) Patient selection  

 
Appropriate risk stratification and selection of patients is critical prior to proceeding to ERCP 
with therapeutic intent, particularly given the relatively high risk of complications and 
morbidity when compared with other areas of endoscopy. This is highlighted by the 
frequently encountered clinical scenario of suspected bile duct stones (choledocholithiasis 



(CDL)). Although the advent of less invasive imaging modalities such as Magnetic Resonance 
Cholangiopancreatography (MRCP) and Endoscopic Ultrasound (EUS) have helped in case 
selection, this can still represent a challenge.  

 
Several risk prediction models for the presence common bile duct (CBD) stones have been 
published, with the majority using logistic regression. Jovanovic et al. developed an artificial 
neural network (ANN) using a dataset of 291 patients who had been prospectively recruited 
at a single referral centre [3]. All patients underwent ERCP which was considered the 
diagnostic gold standard. Transabdominal ultrasound was performed to measure the CBD and 
also determine the presence of hyperechogenic shadow(s). For inclusion, patients needed a 
firm clinical and/or biochemical suspicion of CDL, such as classical symptoms of right upper 
quadrant pain and cholestatic liver function tests results. Those with a history of sclerosing 
cholangitis, prior cholecystectomy and other diseases that could alter imaging and 
biochemical markers of CDL were excluded. In addition, patients with overt clear signs of 
cholangitis or pancreatitis were excluded. ERCP demonstrated that 234 (80.4%) patients had 
positive findings of the presence of CLD without other pathology. A previously established 
multivariate logistic regression model achieved an area under curve of 0.787, which was 
significantly outperformed by the ANN model with an area under the curve of 0.884. 
Furthermore, the ANN correctly identified 92.3% and 69.6% patients with positive and 
negative findings on ERCP. When considering high risk and low risk groups for CDL the 
accuracy of the ANN was 92% and 70% respectively. It should be noted however that the 
study utilised a relatively small dataset, and also is unlikely to be representative of normal 
clinical practice in that the study group had a higher proportion of positive findings. This study 
highlights the promise of ANN risk prediction models applied to ERCP but this would require 
development with much larger datasets and subsequent prospective validation.   

 
    
 
Diagnostic EUS 

 
 

Endoscopic ultrasound can accurately differentiate between pancreatic ductal 
adenocarcinoma (PDAC) and many benign conditions of the pancreas. However, in certain 
situations the diagnosis of PDAC can be challenging, particularly in the setting of chronic 
pancreatitis (CP).  
 
A number of groups have developed computer-aided diagnostic systems, with early 
retrospective studies using more traditional computer vision and machine learning 
approaches. The first study using an artificial neural network (ANN) for this indication at EUS 
was published in 2001, where 21 patients with pancreatic cancer and 14 with chronic 
pancreatitis based on histology were included [4]. A representative single EUS image was 
selected for each patient. Similar diagnostic accuracies were reported for the 
endosonographer at the time of the procedure, a retrospective review by an 
endosonographer blinded to the clinical information, and the computer diagnosis, achieving 
85%, 83% and 80% respectively. At this level of accuracy, the sensitivity for the computer was 
set at a maximum of 100% and achieved a corresponding specificity of 50%. Another 
subsequent study utilised an ANN approach for the same clinical problem, extracting the 



highest quality EUS still images from 22 patients with pancreatic cancer, 12 with chronic 
pancreatitis and 22 normal [5]. Pancreatic cancer diagnoses were established using EUS-
guided FNA, whilst chronic pancreatitis diagnoses were based on clinical presentation and 
imaging/EUS findings. Following selection of regions of interest (ROIs) on the EUS images, 
features were extracted and selected for ANN training. The model was able to classify 
pancreatic cancer with a sensitivity of 93%, specificity of 92%, positive and negative predictive 
value of 87% and 96% respectively. Meanwhile, a larger study including 332 EUS images (202 
pancreatic cancer and 130 non-cancer images from 172 patients) reported that their ANN 
achieved 87.5% accuracy, 83.3% sensitivity and 93.3% specificity for classifying pancreatic 
cancer [6]. Of note, the performance improved when images were classified on the basis of 
patient age.  
 
A different approach, using digital imaging processing based on a support vector machine 
algorithm, was applied by another research group to 153 pancreatic cancer and 62 non-
cancer patients (43 chronic pancreatitis and 20 normal pancreas) [7]. EUS findings were 
correlated with cytological findings after FNA. ROIs were delineated on still EUS images and 
texture features were extracted to develop and validate the model which achieved an average 
accuracy, sensitivity, specificity, positive and negative predictive value of 97.98%, 94.32%, 
99.45%, 98.65% and 97.77% respectively for the diagnosis of pancreatic cancer. Another 
group developed an algorithm using a similar method to create a support vector machine 
predictive model on a larger dataset of 262 patients with pancreatic cancer and 126 with 
chronic pancreatitis reporting an average accuracy, sensitivity, specificity, positive and 
negative predictive value of 94.2%, 96.25%, 93.38%, 92.21% and 96.68% respectively [8].   
 
The application of AI to obtain quantitative assessments and classifications based on a new 
imaging method, rather than relying on qualitative, subjective assessments by endoscopists, 
has always been an attractive concept. A prospective, multi-centre, observational trial, 
evaluated diagnostic performance in 112 patients with pancreatic cancer and 55 with chronic 
pancreatitis, using EUS guided fine needle aspirations (EUS-FNA), Contrast-enhanced 
harmonic EUS (CEH-EUS) and ANN classification based on parameters obtained from post-
processing of CEH-EUS recordings [9]. The study produced impressive results for the ANN, 
which demonstrated a sensitivity of 94.64% and specificity of 94.44%, when compared with 
EUS-FNA (sensitivity 84.82% and specificity 100%) and CEH-EUS (sensitivity 87.5% and 
specificity 92.72%). The same research group also applied a post-processing ANN analysis to 
EUS elastography images, initially in a feasibility study involving 68 patients [10]. The ANN 
was able to differentiate benign from malignant pancreatic with an average testing 
performance of 95.31% and area under the receiver operating curve of 0.957. A subsequent 
multicentre study evaluating EUS-elastography in 258 patients (211 with pancreatic cancer 
and 47 with chronic pancreatitis) demonstrated a superior performance of the ANN 
(sensitivity 87.59% and specificity 82.94%) when compared to two experienced endoscopists 
(first reader sensitivity 84.4% and specificity 46.8%, second reader sensitivity 75.4% and 
specificity 53.2%).  
 
More recently,  a deep-learning based approach using a convolutional neural network (CNN) 
was applied to EUS images, with the aim of improving the diagnosis of autoimmune 
pancreatitis (AIP) [11]. This retrospective study utilised a database of still images and videos 
from 583 patients (146 AIP, 292 PDAC, 72 CP and 73 normal pancreas). AIP cases were verified 



according to the HISORt criteria. PDAC diagnoses were based on cytology/histology, whilst CP 
and normal pancreas were based on expert opinion. For the video analysis, the CNN was able 
to distinguish AIP from PDAC with 90% sensitivity and 93% specificity, and overall was 90% 
sensitive and 85% specific for distinguishing AIP from all studied diagnoses (PDAC,CP and 
normal pancreas). The authors also conducted an occlusion heatmap analysis to determine 
key discriminatory features of AIP and PDAC images, such as post-acoustic enhancement deep 
to a dilated pancreatic duct which was highly predictive of PDAC.   
 
Another retrospective study applied deep learning to EUS images of patients prior to 
undergoing pancreatectomy for pathologically confirmed intraductal papillary mucinous 
neoplasms (IPMNs) [12]. A total of 3,970 still EUS images were included from 50 patients 
(benign IPMN = 27, malignant IPMN = 23) and used for training and evaluating a CNN. The 
mean AI values (predictive value of malignant IPMN in each image) was 0.808 and 0.104 for 
malignant and benign IPMNs respectively. Using the AI value, the area under the ROC curve 
(AUROC) for ability to diagnose malignant IPMNs was 0.91. When a cutoff point of 0.41 was 
used for AI malignant probability (mean AI value of all images in each patient), the accuracy 
of the model was 0.94 which was higher than the human pre-operative EUS diagnostic 
accuracy of 0.56.  
 
         
 
Reduced radiation exposure during ERCP 
 
Ionizing radiation remains a central requirement of ERCP, but represents a cumulative risk to 
the patient, endoscopist, and attending staff. A prospective, non-randomised, non-blinded, 
study evaluated the ability of an AI-enabled fluoroscopy (AIF) system to reduce radiation 
exposure during image-guided endoscopic procedures [13]. The AIF system minimises 
radiation exposure by a secondary collimator by blocking radiation to areas outside the region 
of interest that the endoscopist is typically focused on during therapeutic image-guided 
endoscopy. A CNN was trained to identify the ROIs. In the study, 100 consecutive patients 
were included, alternating between the AIF system and conventional fluoroscopy for image 
guided endoscopic procedures (>85% ERCP in both cohorts). The ROI was correctly identified 
using the AIF system in 48 patients, with the other 2 cases needing manual control by the 
technician. The AIF system resulted in a significantly lower radiation exposure to patients and 
scatter effect to endoscopists.  
 
Future applications 
 
Whilst there is currently a paucity of published literature and evidence relating to AI in 
biliopancreatic endoscopy, it is worth exploring where the key principles and concepts could 
readily translate to other potential use cases.  
 
Cholangioscopy 
 
Endoscopic retrograde cholangiopancreatography (ERCP) remains a central tool in facilitating  
a pathological diagnosis and delivering therapeutic interventions in the biliopancreatic 
system. A major drawback of this technique is that it relies on indirect visualization of the bile 



duct, using fluoroscopic imaging. The diagnosis of lesions (e.g. stones, strictures) and their 
anatomical location, relies on inexactly targeted sampling,  and 2-dimensional imaging, which 
provide poor sensitivity rates when it comes to diagnosing malignancy [14]. An important step 
forward has come with the development of improved direct visualization systems - 
cholangioscopy.  
 
The first commercially available direct visualization system was the so-called mother-baby 
technique. In this technique, developed in the 1980s, a slim cholangioscope was passed 
through the working channel of a therapeutic duodenoscope, into the bile duct. This 
technique requires two endoscopists to control both the cholangioscope and the 
duodenoscope at the same time. Whilst demonstrating the potential of cholangioscopy the 
technique did not enter wide use, due to scope fragility and other limitations. In 2005 the first 
single-operator cholangioscope (SOC) was introduced. The Spyglass Legacy (Boston Scientific, 
Natick, MA, USA) overcame the limitations of the first mother-baby technique; only one 
operator was required, and better image quality was achieved, albeit still of only moderate 
quality. The cholangioscope is passed down the working channel of a standard therapeutic 
duodenoscope. Development of a digital, single-operator video cholangioscope, with better 
image resolution and a wider view has been seen with the introduction of the Spyglass DS II 
cholangioscope (Boston Scientific, Natick, MA, USA) in 2018. Due to its technical 
improvements and the ability to introduce accessories into the bile duct, the clinical use of 
peroral cholangioscopy has grown significantly over the past decades.  Direct cholangioscopy, 
using thin nasoendoscopes may also be performed. Although endoscope passed into the 
biliary tree may be challenging (due in part to biliary intubation from the duodenum) excellent 
visualisation may be achieved. 
 
In current clinical practice the two main indications for cholangioscopy are the removal of 
(difficult) bile duct stones and the assessment of indeterminate biliary strictures [15,16]. In 
patients with difficult bile duct stones (i.e. in whom conventional techniques, such as 
mechanical lithotripsy or endoscopic papillary large balloon dilatation have failed to allow 
stone clearance) high success rates are reported for cholangioscopic lithotripsy. According to 
a review by Karagyozov et al. complete bile duct clearance was achieved in 86 – 97%, with 
low adverse event rates [17,18] . In the determination of biliary strictures high success rates 
are reported, with sensitivity and specificity rates for the visual appraisal ranging from 87 – 
100% and from 79 – 96%, respectively, and from 58 – 85% and 83 – 100%, respectively, for 
cholangioscopic intraductal targeted biopsies [19–23]. Although the diagnostic accuracy rates 
for cholangioscopic intraductal biopsies may be further improved with developments in 
biopsy forcep capability, more recent studies have shown lower sensitivity and specificity 
rates for the visual appraisal of biliary strictures than reported previously [24,25]. The 
significant challenge in the assessment of biliary strictures lies in the differentiation between 
strictures with abnormal appearing mucosa that are benign, from those that are malignant. 
Certain diseases, such as primary sclerosing cholangitis (PSC), are predisposed to both benign 
and malignant stricture formation, and differentiation based on cholangioscopic appearance 
can be extremely challenging [26]. Certain cholangioscopic features have been reported to be 
associated with malignant strictures, compared to benign lesions, including 
neovascularization (dilated tortuous vessels), irregular nodularity, easy oozing or raised 
lesions [27]. In fact, Kim et al. reported a 100% positive predictive value for dilated tortuous 
vessels when it comes to detecting malignancy [28]. Recently, Sethi et al. proposed a novel 



classification system, the ‘Monaco classification’, for the evaluation of biliary strictures [29]. 
For each visual finding, consensus definitions were achieved, after which eight criteria were 
developed; ulceration, scaring, papillary projections, presence of a lesion, pronounced pit, 
abnormal vessels, presence of stricture, and mucosal features. Based on these criteria the 
experts, who were blinded for additional clinical information, achieved a diagnostic accuracy 
of 70% in determining a final diagnosis, which is quite promising. However, only considerable 
inter-observer agreement (IOA) was achieved. In this study, the vast majority of the features 
achieved only slight to fair IOA, with only one feature having moderate agreement - papillary 
projections. This is not the only study to report on low IOA for both the cholangioscopic 
features and the visual diagnosis of the stricture [24,25,30]. Furthermore, features that were 
previously reported to be consistent with malignancy, such as neovascularization, were not 
that commonly identified in malignant lesions, and importantly were also identified in benign 
lesions [24,29]. Therefore, the challenge of the visual appraisal of biliary strictures seems to 
be twofold. First, the low IOA. In these studies, experts in cholangioscopy participated, yet  
only slight to fair IOA for the vast majority of the features and for the visual diagnosis was 
reached. Secondly, features that were thought to be characteristic of malignancy were also 
identified in benign strictures, which might mean that features of benign and malignant 
strictures overlap. It is unlikely that the overall disappointing IOA can be attributed to 
suboptimal visualization, given the recent improvements in the image quality of the 
cholangioscopes, but it might be explained by subtle differences in the appearance of the 
features, and importantly by a possible significant overlap in these characteristics between 
benign and malignant lesions. Developing an international consensus on the appearance of 
features and the predictive value of different features for malignant or benign lesions might 
be a solution. However, Sethi et al. have already shown that even after consensus, experts in 
cholangioscopy only achieve low IOA.  
 
AI could offer a solution by differentiating between benign and malignant features in 
strictures. Attempts to develop ‘more interpretable’ deep learning models, using techniques 
such as class activation maps, which aim to identify which regions of images input influence 
CNNs, could provide interesting insights for diagnostic classification. However, before deep 
learning solutions can even be considered, it is imperative to develop large, standardised, 
cholangioscopy video datasets ideally between multiple centres. Advances in AI in the luminal 
endoscopy field have resulted from the interpretation of thousands of mucosal imaging cases. 
Due to the recent development of high quality cholangioscopy, and its relatively infrequent 
use (in comparison with colonoscopy) visual diagnosis studies to date have used only 
comparatively small numbers (< 100 cases). An additional challenge is the requirement of a 
robust ‘ground truth’ of a pathological diagnosis against which to set cholangioscopic 
features. This is usually straight forward in luminal endoscopy, but the suboptimal sensitivity 
of all non-surgical approaches to making a pathological diagnosis of biliary strictures 
unavoidably hampers the field.   Nevertheless, one might reflect that advances in AI in 
colonoscopy have resulted from more than 50 years of disease characterisation based on 
direct mucosal visualisation and sampling. Cholangioscopy has provided this information for 
barely 10 years.  
 
  



 
 
Prediction of Post ERCP acute pancreatitis 
 
Post ERCP acute pancreatitis (PEP) is the most common complication encountered in practice, 
with a number of risk factors described in the literature. The development of an accurate and 
robust prediction score for PEP could allow for more judicious case selection and optimal 
management to reduce the risk. A machine learning based model has been developed for this 
purpose and the findings published in abstract form using data from an international, 
multicentre, prospective study, entitled the ‘STARK project’ [31]. 1,150 patients were 
included with an 6.1% incidence of PEP. The model variables that were most relevant included 
total bilirubin level, body mass index, age, units of alcohol per day, previous sphincterotomy 
and procedure time. The machine learning model achieved an area under ROC curve of 0.69 
and was significantly better than a model based on logistic regression. It is likely that accuracy 
will improve as machine learning models can be developed in the future using more readily 
accessible and standardised datasets, ideally captured from routine clinical care.   
 
    
Bile duct cannulation difficulty prediction 
 
The most fundamental, and at times challenging, action in therapeutic ERCP is selective biliary 
cannulation. Numerous studies have analysed potential predictive factors associated with 
success or failure. More recently, a prospective, multi-centre, study validated a novel 
classification scheme based on the endoscopic appearance of the papilla, demonstrating that 
cannulation difficulty could be predicted based on visual appearance [32]. The scheme was 
based on only 4 papilla types. This highlights the frequent challenge with endoscopic 
classification schemes in achieving a balance between simplicity to achieve widespread 
clinical use and potential improved diagnostic accuracy with greater complexity that could 
hinder implementation. Moreover, human derived classification schemes may be a major 
over-simplification. AI offers a potential solution and could make future ‘human’ based 
classification schemes redundant, although once again a robust dataset consisting of papillary 
images linked to cannulation difficulty and other outcomes would need to be carefully 
constructed even before preliminary AI studies could begin.     
  



 
Automated reporting/quality assessment 
 
One of the great proposed benefits of AI for clinicians is the ‘gift of time’ [33]. Unfortunately, 
clinicians are facing an increasing administrative burden particularly with the advent of 
electronic health care records and endoscopy reporting systems requiring increasing data 
entry. Utilising AI to automatically generate endoscopy reports would be a welcome solution. 
It has already been demonstrated that AI models can automatically identify key anatomical 
landmarks in luminal endoscopy, record withdrawal time, quality of bowel preparation and 
recognise tools [34–36]. Furthermore, computer vision applications can now identify phases 
of intervention and actions, which will likely translate to automated generation of 
performance measures for endoscopy quality. For example, adequate documentation of EUS 
landmarks and bile duct cannulation rate are current key performance measures  defined by 
the European Society of Gastrointestinal Endoscopy (ESGE) that could be routinely captured 
by AI [37]. Moreover, AI should make us broadly reflect on the limitations of the current 
defined key performance measures. For instance, pre-clinical studies have evaluated the 
ability of AI to map the colon during withdrawal that could eventually lead to a novel metric 
for mucosal inspection [38]. It is noteworthy that few current ERCP performance indicators 
relate to intra-procedural events, an area that could be revolutionised by the calculation of 
novel AI-based metrics from routine video analysis.  
 
Next steps and challenges 
 
A translational roadmap for AI in endoscopy has been outlined previously by Mori et al. with 
current AI polyp detection software in colonoscopy positioned at the very final stages [39]. 
This pathway will now facilitate the translation of future AI innovations in endoscopy. AI in 
biliopancreatic endoscopy is at the very early stages of product development and feasibility 
studies. It is important to recognise that there are major research challenges for AI 
implementation in endoscopy that have recently been identified [40]. To ensure that AI 
solutions for bilopancreatic endoscopy are ultimately developed for clinical benefit and to 
also accelerate translation, the biliopancreatic endoscopic community should form robust 
inter-disciplinary collaborations particularly with AI researchers in engineering/computer 
science to address these. For example, current routinely created data from daily endoscopic 
and clinical practice are largely not available or captured in a standardised format for the 
purposes of machine learning. In addition, even if data are accessible, the subsequent 
requirement of expert curation and labelling for the development and validation of AI models 
represent a major hurdle [41]. This may be a particular challenge for biliopancreatic 
endoscopy, where data are multimodal, possibly requiring the integrated capture and storage 
of white light endoscopic images, endoscopic ultrasound and fluoroscopic images along with 
relevant clinical information. The formation of research consortiums with dedicated 
infrastructure to handle data sharing and storage between institutions could be critical to 
help overcome this. It would also be useful to standardise reporting for machine learning 
models developed in biliopancreatic endoscopy and define expected clinical performance 
measures so that comparisons are possible and research can lead to advances in the field. It 
is likely that this will require collaboration and input from professional endoscopy societies. 
Finally, it is important that the endoscopy community does not get caught up in the hype for 
AI but recognises that AI may serve as a helpful adjunct to improve clinical practice, rather 



than a panacea, understanding its potential limitations and recognising that meaningful 
development of AI could take more time in biliopancreatic endoscopy as compared with 
luminal endoscopy.      
 
 
Conclusions 
 
Several applications for AI in biliopancreatic endoscopy have been highlighted, with many 
more likely to be identified as AI research continues to rapidly expand. AI models could lead 
to improved patient case selection, prediction of technical or therapeutic difficulty and 
adverse events. Computer vision-based AI solutions will likely be the first to achieve 
translation, particularly to improve lesion characterisation in endoscopic ultrasound or 
cholangioscopy. The use of AI to automatically generate reports and capture quality metrics 
will likely follow. It is important to recognise that AI research in biliopancreatic endoscopy is 
at the preliminary stages of translation, consisting of early proof-of-concept or feasibility 
studies. Successful translation in luminal endoscopy, particularly colonoscopy, has provided 
a roadmap, emphasising that robust inter-disciplinary collaborations between biliopancreatic 
endoscopists and AI researchers will accelerate innovation.  
 
 
 
Practice Points 
 

• AI is not currently used in widespread routine practice in biliopancreatic endoscopy 

• Potential future applications for AI in biliopancreatic endoscopy include patient case 
selection and risk stratification, lesion characterisation in endoscopic ultrasound or 
cholangioscopy and automatic report generation with novel quality metrics. 

 
 
Research Agenda 
 

• The majority of AI studies in biliopancreatic endoscopy are pre-clinical, retrospective 
studies. Further prospective multi-centre validation studies are needed.  

• Robust inter-disciplinary collaborations between computer scientists/engineers and 
biliopancreatic endoscopists are crucial to achieve successful translation. 

• Current important research challenges include data sharing and curation, identifying 
clear use cases for clinical practice, and defining clinically relevant performance 
metrics for evaluating AI models.   

 
 
Conflict of interest 
 
Conflict of interest: none 
 
 
 
  



 
References 
 
[1] Misawa M, Kudo S, Mori Y, Maeda Y, Ogawa Y, Ichimasa K, et al. Current status and 

future perspective on artificial intelligence for lower endoscopy. Dig Endosc 2020 (in 
press) 

[2] Ahmad OF, Soares AS, Mazomenos E, Brandao P, Vega R, Seward E, et al. Artificial 
intelligence and computer-aided diagnosis in colonoscopy: current evidence and 
future directions. Lancet Gastroenterol Hepatol 2019;4:71–80. doi:10.1016/S2468-
1253(18)30282-6. 

[3] Jovanovic P, Salkic NN, Zerem E. Artificial neural network predicts the need for 
therapeutic ERCP in patients with suspected choledocholithiasis. Gastrointest Endosc 
2014;80:260–8.  

[4] Norton ID, Zheng Y, Wiersema MS, Greenleaf J, Clain JE, DiMagno EP. Neural network 
analysis of EUS images to differentiate between pancreatic malignancy and 
pancreatitis. Gastrointest Endosc 2001;54:625–9.  

[5] Das A, Nguyen CC, Li F, Li B. Digital image analysis of EUS images accurately 
differentiates pancreatic cancer from chronic pancreatitis and normal tissue. 
Gastrointest Endosc 2008;67:861–7.  

[6] Ozkan M, Cakiroglu M, Kocaman O, Kurt M, Yilmaz B, Can G, et al. Age-based 
computer-aided diagnosis approach for pancreatic cancer on endoscopic ultrasound 
images. Endosc Ultrasound 2016;5:101–7.  

[7] Zhang M-M, Yang H, Jin Z-D, Yu J-G, Cai Z-Y, Li Z-S. Differential diagnosis of pancreatic 
cancer from normal tissue with digital imaging processing and pattern recognition 
based on a support vector machine of EUS images. Gastrointest Endosc 2010;72:978–
85.  

[8] Zhu M, Xu C, Yu J, Wu Y, Li C, Zhang M, et al. Differentiation of pancreatic cancer and 
chronic pancreatitis using computer-aided diagnosis of endoscopic ultrasound (EUS) 
images: a diagnostic test. PLoS One 2013;8:e63820.  

[9] Săftoiu A, Vilmann P, Dietrich CF, Iglesias-Garcia J, Hocke M, Seicean A, et al. 
Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal 
pancreatic masses (with videos). Gastrointest Endosc 2015;82:59–69.  

[10] Săftoiu A, Vilmann P, Gorunescu F, Gheonea DI, Gorunescu M, Ciurea T, et al. Neural 
network analysis of dynamic sequences of EUS elastography used for the differential 
diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointest Endosc 
2008;68:1086–94.  

[11] Marya NB, Powers PD, Chari ST, Gleeson FC, Leggett CL, Abu Dayyeh BK, et al. 
Utilisation of artificial intelligence for the development of an EUS-convolutional 
neural network model trained to enhance the diagnosis of autoimmune pancreatitis. 
Gut 2020:gutjnl-2020-322821.  

[12] Kuwahara T, Hara K, Mizuno N, Okuno N, Matsumoto S, Obata M, et al. Usefulness of 
Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary 
Mucinous Neoplasms of the Pancreas. Clin Transl Gastroenterol 2019;10:1–8.  

[13] Bang JY, Hough M, Hawes RH, Varadarajulu S. Use of Artificial Intelligence to Reduce 
Radiation Exposure at Fluoroscopy-Guided Endoscopic Procedures. Am J 
Gastroenterol 2020;115:555–61.  

[14] Navaneethan U, Njei B, Lourdusamy V, Konjeti R, Vargo JJ, Parsi MA. Comparative 



effectiveness of biliary brush cytology and intraductal biopsy for detection of 
malignant biliary strictures: a systematic review and meta-analysis. Gastrointest 
Endosc 2015;81:168–76.  

[15] Ramchandani M, Reddy DN, Lakhtakia S, Tandan M, Maydeo A, Chandrashekhar TS, 
et al. Per oral cholangiopancreatoscopy in pancreatico biliary diseases--expert 
consensus statements. World J Gastroenterol 2015;21:4722–34.  

[16] Stassen P, de Jonge PJ, Ellrichmann M, Dormann A, Udd M, Webster G, et al. CLINICAL 
PRACTICE PATTERNS OF INDIRECT PERORAL CHOLANGIOPANCREATOSCOPY: AN 
INTERNATIONAL SURVEY. Endoscopy 2020;52:ePP124.  

[17] Karagyozov P, Boeva I, Tishkov I. Role of digital single-operator cholangioscopy in the 
diagnosis and treatment of biliary disorders. World J Gastrointest Endosc 2019;11:31–
40.  

[18] Brewer Gutierrez OI, Bekkali NLH, Raijman I, Sturgess R, Sejpal D V, Aridi HD, et al. 
Efficacy and Safety of Digital Single-Operator Cholangioscopy for Difficult Biliary 
Stones. Clin Gastroenterol Hepatol 2018;16:918-926.e1.  

[19] Ramchandani M, Reddy DN, Gupta R, Lakhtakia S, Tandan M, Darisetty S, et al. Role of 
single-operator peroral cholangioscopy in the diagnosis of indeterminate biliary 
lesions: a single-center, prospective study. Gastrointest Endosc 2011;74:511–9.  

[20] Navaneethan U, Hasan MK, Lourdusamy V, Njei B, Varadarajulu S, Hawes RH. Single-
operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate 
biliary strictures: a systematic review. Gastrointest Endosc 2015;82:608-614.e2.  

[21] Navaneethan U, Hasan MK, Kommaraju K, Zhu X, Hebert-Magee S, Hawes RH, et al. 
Digital, single-operator cholangiopancreatoscopy in the diagnosis and management 
of pancreatobiliary disorders: a multicenter clinical experience (with video). 
Gastrointest Endosc 2016;84:649–55.  

[22] Turowski F, Hügle U, Dormann A, Bechtler M, Jakobs R, Gottschalk U, et al. Diagnostic 
and therapeutic single-operator cholangiopancreatoscopy with SpyGlassDSTM: results 
of a multicenter retrospective cohort study. Surg Endosc 2018;32:3981–8.  

[23] Woo YS, Lee JK, Oh SH, Kim MJ, Jung JG, Lee KH, et al. Role of SpyGlass Peroral 
Cholangioscopy in the Evaluation of Indeterminate Biliary Lesions. Dig Dis Sci 
2014;59:2565–70.  

[24] de Vries AB, van der Heide F, ter Steege RWF, Koornstra JJ, Buddingh KT, Gouw ASH, 
et al. Limited diagnostic accuracy and clinical impact of single-operator peroral 
cholangioscopy for indeterminate biliary strictures. Endoscopy 2020;52:107–14.  

[25] Stassen PM, Goodchild G, de Jonge PJF, Erler NS, Poley J-W, Anderloni AA, et al. 106 
THE CURRENT DIAGNOSTIC ACCURACY AND INTER-OBSERVER AGREEMENT OF 
VISUAL IMPRESSION WITH DIGITAL SINGLE-OPERATOR CHOLANGIOSCOPY FOR THE 
DIAGNOSIS OF INDETERMINATE BILIARY STRICTURES. Gastrointest Endosc 
2020;91:AB18.  

[26] Kalaitzakis E, Sturgess R, Kaltsidis H, Oppong K, Lekharaju V, Bergenzaun P, et al. 
Diagnostic utility of single-user peroral cholangioscopy in sclerosing cholangitis. Scand 
J Gastroenterol 2014;49:1237–44.  

[27] Parsa N, Khashab MA. The Role of Peroral Cholangioscopy in Evaluating 
Indeterminate Biliary Strictures. Clin Endosc 2019;52:556–64.  

[28] Kim H-J, Kim M-H, Lee S-K, Yoo K-S, Seo D-W, Min Y-I. Tumor vessel: A valuable 
cholangioscopic clue of malignant biliary stricture. Gastrointest Endosc 2000;52:635–
8.  



[29] Sethi A, Tyberg A, Slivka A, Adler DG, Desai AP, Sejpal D V, et al. Digital Single-
operator Cholangioscopy (DSOC) Improves Interobserver Agreement (IOA) and 
Accuracy for Evaluation of Indeterminate Biliary Strictures: The Monaco Classification. 
J Clin Gastroenterol 9000;Publish Ahead of Print. 

[30] Sethi A, Widmer J, Shah NL, Pleskow DK, Edmundowicz SA, Sejpal D V, et al. 
Interobserver agreement for evaluation of imaging with single operator 
choledochoscopy: What are we looking at? Dig Liver Dis 2014;46:518–22.  

[31] Archibugi L, Ciarfaglia G, Cárdenas-Jaén K, Poropat G, Korpela T, Maisonneuve P, et al. 
STARK STUDY: MACHINE LEARNING APPROACH TO PREDICT POST-ERCP 
PANCREATITIS IN AN INTERNATIONAL MULTICENTER PROSPECTIVE COHORT STUDY. 
Endoscopy 2020;52:OP215 

[32] Haraldsson E, Kylänpää L, Grönroos J, Saarela A, Toth E, Qvigstad G, et al. 
Macroscopic appearance of the major duodenal papilla influences bile duct 
cannulation: a prospective multicenter study by the Scandinavian Association for 
Digestive Endoscopy Study Group for ERCP. Gastrointest Endosc 2019;90:957–63.  

[33] Topol EJ. High-performance medicine: the convergence of human and artificial 
intelligence. Nat Med 2019;25:44–56.  

[34] Gong D, Wu L, Zhang J, Mu G, Shen L, Liu J, et al. Detection of colorectal adenomas 
with a real-time computer-aided system (ENDOANGEL): a randomised controlled 
study. Lancet Gastroenterol Hepatol 2020;5:352–61.  

[35] Wu L, Zhang J, Zhou W, An P, Shen L, Liu J, et al. Randomised controlled trial of 
WISENSE, a real-time quality improving system for monitoring blind spots during 
esophagogastroduodenoscopy. Gut 2019:gutjnl-2018-317366.  

[36] He Q, Bano S, Ahmad OF, Yang B, Chen X, Valdastri P, et al. Deep learning-based 
anatomical site classification for upper gastrointestinal endoscopy. Int J Comput 
Assist Radiol Surg 2020;15:1085–94.  

[37] Domagk D, Oppong KW, Aabakken L, Czakó L, Gyökeres T, Manes G, et al. 
Performance measures for ERCP and endoscopic ultrasound: a European Society of 
Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 
2018;50:1116–27.  

[38] Rau A, Edwards PJE, Ahmad OF, Riordan P, Janatka M, Lovat LB, et al. Implicit domain 
adaptation with conditional generative adversarial networks for depth prediction in 
endoscopy. Int J Comput Assist Radiol Surg 2019;14:1167–76.  

[39] Mori Y, Kudo S, Berzin TM, Misawa M, Takeda K, Hospital Y, et al. Computer-aided 
diagnosis for colonoscopy. Endoscopy 2017;49:813–9.  

[40] Ahmad OF, Mori Y, Misawa M, Kudo S, Anderson JT, Bernal J, et al. Establishing key 
research questions for the implementation of artificial intelligence in colonoscopy - a 
modified Delphi method. Endoscopy (in press) 

[41] Ahmad OF, Stoyanov D, Lovat LB. Barriers and pitfalls for artificial intelligence in 
gastroenterology: Ethical and regulatory issues. Tech Innov Gastrointest Endosc 
2020;22:80–4.  

  
 
 


