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Robotic instrument segmentation with
image-to-image translation

Emanuele Colleoni1, Danail Stoyanov1

Abstract—The semantic segmentation of robotic surgery video
and the delineation of robotic instruments are important for en-
abling automation. Despite major recent progresses, the majority
of the latest deep learning models for instrument detection and
segmentation rely on large datasets with ground truth labels.
While demonstrating the capability, reliance on large labelled
data is a problem for practical applications because systems
would need to be re-trained on domain variations such as
procedure type or instrument sets. In this paper, we propose
to alleviate this problem by training deep learning models on
datasets that are synthesised using image-to-image translation
techniques and we investigate different methods to perform this
process optimally. Experimentally, we demonstrate that the same
deep network architecture for robotic instrument segmentation
can be trained on both real data and on our proposed syn-
thetic data without affecting the quality of the output models’
performance. We show this for several recent approaches and
provide experimental support on publicly available datasets,
which highlight the potential value of this approach.

Index Terms—Medical Robots and Systems, Deep Learning
Methods, Image-to-Image Translation, Surgical Robot Simula-
tors, Surgical tool segmentation.

I. INTRODUCTION

COMPUTER Assisted Interventions (CAI) can support
enhanced capabilities in robotic surgery by enabling

cognitive functions in conjunction to the articulated instrumen-
tation. Such CAI systems may include effective transfer of pre-
operative planning to the intra-operative surgical site, critical
structure localization and preservation, and even autonomous
task execution [1], [2]. Knowing the location and pose of
instruments during surgery is a fundamental building block
for such systems and has been demonstrated as practical
using vision algorithms on endoscopic video [3]. Labelling,
however, remains a challenge for supervised deep learning
vision models in surgical data [2] .

The reliability and robustness of tool detection and seg-
mentation using vision has improved significantly with deep
learning advances [3]. Recently, solutions to alleviate the
need for supervisory labels in surgical video models have
been proposed utilizing surgical simulation and image-to-
image translation (I2I) techniques to produce synthetic surgical
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Fig. 1: Surgical workflow of the proposed method. Synthetic
frames with segmentation labels are produced using image to
image translation on simulated instruments to transform them
into realistic surgical tools. These are finally blended on a
surgical background to obtain full synthetic frames.

data [4], [5]. Simulation data can generate reliable training
labels but has significant limitations in reproducing realistic
photometric style features such as colors, texture and illu-
mination conditions. Yet the domain gap between simulation
and real endoscopic images could be bridged because recent
advances in I2I allow the transfer of style features from
different image domains without the need for paired-samples,
thus making possible to transfer the realistic style from real
surgical frames to simulation ones, where labels are provided
automatically [6].

In this paper, we develop the I2I paradigm for training
surgical instrument detection and segmentation models. Our
method generates simulation images of robotic instruments
and we perform a comparative analysis of different I2I style
feature transfer approaches to determine optimal performance.
We then experimentally show that the synthesised data can be
used to train vision models with performance equivalent to
those trained on real data and we investigate how image and
segmentation quality metrics relate to optimize our results.
Importantly, we show that by training the same network ar-
chitecture using synthetic and real data produces no discernible
difference, which highlights a promising advance towards
avoiding supervised learning in surgical applications.

II. RELATED WORK

Deep neural architectures for stylized image synthesis from
features extracted at different depths of source data domains
[7] have received intense interest in recent years [8]. Various
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Fig. 2: Architecture of the I2I model employed in the proposed workflow. Only one discriminator is illustrated for simplicity.

efforts have focused on advancing style transfer with photore-
alistic improvements, computational efficiency and synthesis
outside the training domain. In surgical applications, style
transfer from real to simulation images in retinal surgery
images has been reported [9] but still requires accurate la-
belling of all represented structures in the input space to
learn a mapping from one image to another. Major advances
in avoiding labelling have been achieved with generative
adversarial networks (GANs) [10], [11] and in particular for
realistic image synthesis with cycle-GANs [12]. Image content
and style loss functions based on the features extracted by
each encoder during image translation have been shown to be
particularly effective to reduce the image artifacts introduced
by GANs and to enforce the content to be consistent [13] and
we utilize this paradigm in the proposed method.

The use of cycle-GANs in surgical data generation for I2I
techniques has been shown with a self-attention mechanism
and a surgical tool classifier to move between different surgical
tools [5]. Similar approaches have investigated how to produce
synthetic in-vivo frames from cadaver images [14] and I2I
methodologies for phantom to real image style transfer [15].
For simulation to real transfer, which is most relevant to our
method, a Multimodal Unsupervised Image-to-Image Transla-
tion (MUNIT)-based framework for I2I for liver segmentation
has recently been shown [4]. A Structural Similarity Index
Measure (SSIM) [16] based loss was used to improve image
quality, but despite high quality results in tissue renditions,
the style of the surgical tools was often corrupted during the
translation, showing features typical of the image background,
such as vessels and specularities. More recently, a simulation
to real I2I framework for laparoscopic image synthesis has also
been reported but without investigating multiple loss combina-
tions nor experiments showing that segmentation models can
be trained solely on synthetic frames [17].

III. METHODS

The overall workflow we proposed for surgical dataset
generation is presented in Fig. 1. As first fundamental step,

a trained I2I model is required to transform images from
simulation into real domain. A descriptions of the employed
network architectures and loss functions are given in Sec. III-A
and Sec. III-B respectively. In Sec. III-C we present the
structure of the domain sets (i.e. simulation and ex-vivo/in-
vivo domains) and their generation procedure. As second step,
we produce each synthetic frame by first transforming an
image acquired from the robot simulator to have realistic style
and then we blend it onto a surgical background. In Sec. III-D
we report both those stages in details. (N.B.: In this section,
the terms ’ex-vivo or in-vivo images’ and ’real images’ are
used as synonyms.)

A. Network architecture

The I2I model architecture we used in our work is presented
in Fig. 2. Following cycle-GAN and MUNIT frameworks [12],
[13], the network is composed by two discriminators Ds, Dr
(subscripts s and r stands for simulation and real respectively)
and two generators.

Each generator is in turn composed by an encoding part
(e.g. Es, Er) and a decoding part (Gs2r, Gr2s). Encoders work as
feature extractors and their output is a series of image features
that characterizes the image content (cs / cr). On the other
hand, decoders are associated with a particular style defined
by the image domain they have to reconstruct and work to
produce domain images starting from encoder’s outputs. In
formulas: cs = Es(Is) and Is2r = Gs2r(cs), where Is is a sample
image from the simulation domain, cs are the image features
extracted by the simulation encoder and Is2r is the transformed
image. The opposite transformation can be obtained by using
Er and Gr2s on images from ex-vivo/in-vivo domain (Ir).

Images are processed into the encoders through several
convolutional blocks. As common in famous architectures
like ResNet [18], a first 7x7 convolution layer first processes
the input without modifying the image width and height but
increasing the number of channels to 64. This is followed by
two down-sampling blocks, each performing a 4x4 convolution
with stride 2 that halves the image dimensions and doubles the
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number of channels. The result is finally processed through
4 consecutive residual blocks, each one composed by two
convolutional layers, where the second output is concatenated
with the block’s input using a skip connection.

Decoders architecture is specular to the encoders one,
although the initial 7x7 convolution is not replicated and
down-sampling blocks are substituted with up-sampling ones
to recover the original image shape. Finally, we implemented
the discriminators following PatchGAN framework [19]: im-
ages are processed through 3 consecutive 4x4 down-sampling
blocks (stride=2) followed by 2 convolutional blocks (3x3,
stride=1), producing 30x30 grayscale images as output. Each
pixel evaluates a 70x70 patch of the input image and represents
the probability for that patch to be real or fake. Each convolu-
tion in all the described architectures is followed by spectral
normalization [20], Instance Normalization (IN) [21] and leaky
rectified linear unit activation function (leaky-ReLU), except
for output layers of each module, where IN is not applied. All
these techniques have been shown to be particularly effective
to improve generative models image quality and to stabilize
their training [20], [21].

B. Loss functions

In this work we considered 4 loss functions that has shown
to be extremely effective for high quality I2I:

1) Adversarial loss: The adversarial loss is the fundamental
building block at the core of GANs and is responsible for the
translation of domain-specific features. For a more detailed
description, please refer to [22], [10]. In this work we use the
least square adversarial loss [22], a variation of the original
formulation [10] that has shown to produce better quality
images.

Let Ir ∈ χr and Is2r ∈ χs2r denote samples from the ex-
vivo/in-vivo images distribution χr and the distribution of
synthetic images χs2r respectively. The real discriminator Dr
adversarial loss is defined as:

LDr
GAN(Dr) =

1
2
EIr [(Dr(Ir)−1)2]+

+
1
2
EIs2r [(Dr(Is2r))2],

(1)

while the adversarial loss related to the simulation encoder
Es and to the simulation-to-real generator Gs2r is:

LGr
GAN(Es, Gs2r) =

1
2
EIs2r [(Dr(Is2r)−1)2] (2)

The simulation losses LDs
GAN(Ds) and LGs

GAN(Gr2s) can be
obtained using the same formula with the distributions Is ∈ χs

and Ir2s ∈ χr2s.
2) Cycle consistency loss: Along with the other loss func-

tions described below, the cycle consistency loss [12] is
responsible for the preservation of content features during the
image translation process. This loss is defined as:

Lcyc(Es, Er, Gs2r, Gr2s) = EIs2r2s‖Is2r2s− Is‖1+

+EIr2s2r‖Ir2s2r− Ir‖1,
(3)

where Is2r2s is the same simulation image Is after being
transformed into the real domain Is2r = Gs2r(cs) and then trans-
formed back to the simulation one Is2r2s = Gr2s(cs2r), while

Simulation domain
samples

Real domain
samples

Fig. 3: Sample frames from simulation and real domain sets.

Ir2s2r was obtained with the inverse cycle transformation. Such
formulation forces the generators to prioritize transformations
of the image style while discouraging severe modifications in
the content.

3) Content loss: As described in MUNIT framework [13],
the content loss is based on the assumption that both the
considered domains share the same content features while their
style is different and domain dependent. Thus, the content of
an image from the simulation domain cs and the content of the
transformed image cs2r should be equal (and vice-versa with
cr and cr2s). From this hypothesis, X. Huang et al. formulated
the content loss as:

Lcon(Es, Er, Gs2r, Gr2s) =

Ecs‖Er(Gs2r(cs))− cs‖1+

+Ecr‖Es(Gr2s(cr))− cr‖1

(4)

In [13], the authors proposed a style loss in addition to
the content loss to perform multimodal I2I. However, since
we are investigating a unimodal approach, we chose to not
consider the style loss in our formulation. For this reason, the
considered MUNIT framework will be referred as MUNIT∗.

4) Structure similarity loss: Following [4], we chose the
structure similarity score (SSIM) [0 ≤ SSIM ≤ 2] as our final
loss. Details about the formulation of SSIM score can be found
in [16]. Since better performances are achieved when SSIM
score approaches 2, the associated loss requires the negative
form to be minimized during training.

The SSIM based loss is defined as:

Ls
SSIM(Es, Er, Gs2r, Gr2s) = 2−SSIM(Is2r2s, Is) (5)

Again, the SSIM loss in the inverse direction Lr
SSIM can be

obtained by substituting Ir2s2r and Ir in (5).
5) Overall loss: The final formulation for the loss we

employed to train our I2I model is reported below:

L(Es, Er, Gs2r, Gr2s, Ds, Dr) =

λadv ∗ (LDr
GAN +LDs

GAN +LGr
GAN +LGs

GAN)+

λcyc ∗Lcyc +λcon ∗Lcon+

λSSIM ∗ (Ls
SSIM +Lr

SSIM)

(6)

where λadv,λcyc,λcon,λSSIM are weight hyperparameters to
scale each loss module individually.
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C. Domain sets: generation and pre-processing
1) Real domain: The real domain set was built using video

frames from pre-existing ex-vivo and in-vivo datasets along
with their segmentation ground truth. Each frame was pre-
processed using its binary segmentation mask to set all the
background pixels to 0, thus extracting the tools from their
context. We performed an ablation study where we trained the
I2I network using real domain frames with no segmentation
pre-processing, showing that the model was unable to learn
the translation between simulation and real domains. Images
showing the results of this experiment can be found in the
additional materials. Sample images from both real and sim-
ulation sets are presented in Fig. 3.

2) Simulation domain: To produce the simulation domain
set, we employed the CoppeliaSim1 daVinci virtual simu-
lator developed in [23]. Depending on the availability of
kinematic data associated to real domain frames, we used a
MATLAB2/ROS3 interface to first position the tools in the
camera field of view (FOV) and then we moved the tools
according to the kinematic data stream, collecting frames
at a fixed rate. When no kinematic data were provided,
we simply randomized the tools position by adding uniform
noise in each joint of the da Vinci simulator. The procedure
was performed in loop and a video frame was collected at
each step. This technique allowed us to automatically collect
labelled simulation frames with high inter-variability. Since
this work is mainly focused on surgical tool style translation,
we did not use any background, leaving non-tool pixels set
to 0. Our datasets include only EndoWrist® Large Needle
Drivers, however, the procedure could be translated to any
minimally invasive surgery instrument.

D. Surgical background production and tool blending
Once the network was trained and simulation frames could

be transformed to have a realistic style, as shown in Fig. 1,
we blended them onto surgical background images to produce
complete surgical frames. Those background images were
generated starting from authentic frames by removing the
surgical instruments with the image inpainting tool developed
in [24]. Samples of generated background images can be found
in the additional materials. The synthetic tools were blended
onto the surgical background using the following formula:

I f ull = Itools ∗M+ Ibackground ∗ (1−M) (7)

where I f ull is the final synthetic frame, Itools is the image
containing the transformed tools, Ibackground is the surgical
background and M is the binary segmentation mask of the
simulation frame used as network input to produce Itools. An
example of full synthetic frames is shown in Fig. 4.b.

IV. EXPERIMENTS
A. Datasets

In this work we considered 2 ex-vivo and 1 in-vivo datasets
to perform our experiments:

1https://www.coppeliarobotics.com/
2https://uk.mathworks.com
3https://www.ros.org/

1) MICCAI 2015 EndoVis challenge (ex-vivo): The MIC-
CAI 2015 segmentation dataset4 comprises 4 training videos
of 45sec each and 6 additional videos for testing (4x15sec +
2x60sec), for a total of 8975 labelled frames.

2) MICCAI 2017 EndoVis challenge (in-vivo): From MIC-
CAI 2017 dataset5 we considered only the videos with En-
doWrist® Large Needle Drivers in the FOV, with an overall
amount of 4 train videos (1500 frames) and 2 test videos (150
frames), for a total of 4200 frames.

3) MICCAI 2020 from [6] (ex-vivo): This dataset is com-
posed of 14 videos (10 for training/validation and 4 for test)
and each one consists of 300 labelled frames. Frames from
MICCAI 2020 come with associated kinematic data.

B. Experimental protocol

1) Image-to-image translation models comparison (E1):
We first examined the performances of 4 different I2I frame-
works on the considered datasets to investigate which loss
function best suits the proposed task. All the considered
models share the same architecture, but they vary the loss
formulation. Specifically, we selected cycle-GAN (λadv =
1,λcyc = 10,λcon = 0,λSSIM = 0), MUNIT∗ (λadv = 1,λcyc =
10,λcon = 10,λSSIM = 0), cycle-GAN+SSIM (λadv = 1,λcyc =
10,λcon = 0,λSSIM = 10) and MUNIT∗+SSIM (λadv = 1,λcyc =
10,λcon = 10,λSSIM = 10). Cycle and SSIM loss weights were
chosen following [12] and [4] respectively. Content loss weight
was set 10 times higher than in [13] since we experimentally
observed that using λcon=1 as in the original framework led
the training loss into local minima, where Is2r was completely
black.

We trained each of these models on three pairs of real and
synthetic domain sets separately, for a total of 12 training
procedures. We built the three real domain sets by reshap-
ing frames from each dataset (only training images were
considered) to 720x576 and cropping them centrally with a
576x576 window. Then we selected frames removing images
with movement artifacts and interlacing noise and applying
the pre-processing procedure described in Sec. III-C1 to all
the remaining frames. Overall, we selected 965, 915 and 420
frames from MICCAI 2015, 2017 and 2020 respectively. We
produced the associated simulation domain sets using kine-
matic data from [6] for MICCAI 2020, while we randomised
the tools position for the remaining two datasets, as described
in Sec. III-C2.

During each training procedure, every 10 epochs, we per-
formed style transfer on a subset of 500 simulation frames
from the simulation domain sets and we quantitatively evalu-
ated the visual performances of the results.

2) Real vs synthetic datasets for surgical tool segmenta-
tion (E2): From E1, we selected the best models for each
dataset to build our synthetic segmentation sets (Sec. III-D),
thus creating 3 datasets (i.e. MICCAI 2015syn, MICCAI
2017syn, MICCAI 2020syn). Each synthetic dataset was pro-
duced using surgical backgrounds from their correspondent

4https://endovissub-instrument.grand-challenge.org/
5https://endovissub2017-roboticinstrumentsegmentation.grand-

challenge.org/
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TABLE I
Quantitative results for the considered I2I models. The results were presented in terms of Frechet Inception Distance (FID)

every 10 epochs. We highlighted in blue the best values for each epoch and in red the best model for each dataset.

Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50 Epoch 60 Epoch 70 Epoch 80 Epoch 90 Epoch 100
cycle-GAN 143.96 215.70 110.84 120.35 106.56 264.74 97.18 88.16 96.82 91.40
MUNIT∗ 207.32 203.28 192.16 131.47 116.56 121.87 118.13 116.07 101.12 95.70

cycle-GAN+SSIM 104.71 124.71 131.61 96.46 84.88 104.03 137.52 90.92 101.45 87.28
MICCAI 2015

MUNIT∗+SSIM 299.31 148.99 133.25 116.23 188.80 107.09 201.55 116.07 110.99 105.29
cycle-GAN 125.17 81.25 95.11 114.08 111.88 85.51 89.86 87.94 97.88 74.35
MUNIT∗ 195.34 110.43 94.34 80.15 76.20 82.30 97.33 80.91 66.04 68.23

cycle-GAN+SSIM 105.16 84.15 83.77 67.17 89.58 87.24 77.80 74.80 84.51 66.43
MICCAI 2017

MUNIT∗+SSIM 95.40 89.40 74.11 73.59 64.86 66.15 78.38 85.14 77.66 71.19
cycle-GAN 120.74 92.76 78.68 92.04 85.63 78.211 86.59 69.47 77.73 69.05
MUNIT∗ 172.87 203.93 128.74 119.43 109.71 101.68 103.58 109.94 104.31 98.73

cycle-GAN+SSIM 101.19 113.23 79.45 70.26 68.97 91.89 96.27 72.00 66.25 60.15
MICCAI 2020

MUNIT∗+SSIM 133.85 119.31 87.82 101.78 108.76 89.57 87.28 63.52 66.99 68.49

Fig. 4: Qualitative results from experiment E1. In a), sample images from simulation are translated into the real domain using
models trained with different loss functions (Sec. III-B) for 50 epochs. An example is reported for each dataset and loss. In
b) we show full synthetic frames samples created using the best selected I2I models for each dataset.

real training set and with the same amount of training frames
for fair comparison. Again, MICCAI 2020syn was produced us-
ing kinematic data from [6] as simulation input, while frames
for MICCAI 2015syn and MICCAI 2017syn were produced
using random tool poses (N.B.: from this point on, we will
refer to the dataset described in Sec. IV-A as ’real’ sets,
while addressing the datasets produced with our method as
’synthetic’).

We chose a Unet pre-trained on Imagenet (ResNet34 [18]
backbone) as our segmentation model and we trained it on
each of the 3 real and synthetic datasets separately. For the real
sets, we left the last 10% of each training video as validation
set, while for the synthetic ones we produced the same number
of validation images using our framework.

The segmentation performances of the trained models were
evaluated on the test sets of each corresponding real dataset.
Since in the second test video of MICCAI 2017 there is a
EndoWrist® Fenestrated Grasper in the FOV (see Fig. 6, 5th

column) that was not present in the training synthetic frames
but it was in the real ones, we did not consider the pixels in
the neighborhood of the tool for fair comparison in calculating
IoU score. Finally we performed a one-way ANOVA test on
the results to assess their statistical significance.

C. Performance evaluation metrics

Quantitatively evaluating generative models performances
in absence of paired samples is a difficult task that has been
deeply studied over the last few years. In particular, Frechet
Inception Distance (FID) has been widely employed as a
metric to measure images quality [11] and it is defined as:

FID2 = ‖µ1−µ2‖2
2 +Tr(C1 +C2−2

√
C1C2) (8)

where µ1, µ2 and C1, C2 are the mean values and covariances
of two gaussians G1(µ1, C1), G2(µ2, C2) fitted on features
extracted by a set of real and synthetic images respectively
using an InceptionV3 network trained on Imagenet.

Although there is no evidence that this metric could be used
to evaluate non-Imagenet images, several works showed that
FID well correlates with human quality assessment even on
these domains [25], [26], [27]. Following these paradigms and
considering that, at the best of our knowledge, there is not
a preferred or better method to evaluate generative models
quality [28], we chose FID as our evaluation metric for E1.
We chose a sub-set of 500 images from the real training set
of each dataset along with the synthetic frames produced in
E1 to calculate FID (the lower, the better) associated to each
I2I model.
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We evaluated the segmentation performances in E2 using
Intersection over Union score (IoU), that is one of the most
employed metrics for this task [3]. IoU score is defined as:

IoU =
TP

TP + FP + FN
(9)

where, for each image, TP is the number of pixels correctly
labelled as tools, while FP and FN are the pixels misclassified
as tools and background respectively.

Since we have no guarantees that a higher synthetic dataset
quality (low FID) lead to improved segmentation perfor-
mances, we trained a segmentation model for each MICCAI
2020 dataset produced using I2I models from E1 (see Table I.
We considered only MICCAI 2020 models at different epochs
for resources constraints, 40 models overall) and we plotted
the IoU score obtained by each model on MICCAI 2020real
test set as a function of the FID score of its training dataset.
Moreover, we trained a segmentation model on a dataset
produced using simulation tools without I2I. Results are shown
in Fig. 5, where each dot represents a different segmentation
model. We performed least-squares regression on the results to
highlight their relationship: the plot shows high negative linear
correlation (r value=-0.71, p value<0.001, Wald test with
α=0.05) [29] between the two considered scores. Moreover,
most of the top IoU scores were achieved by models trained
on datasets with FID score below 65. This suggests that FID,
at least for lowest values, can be considered as a valid metric
to choose the best I2I model. However, we acknowledge that
this may not be the best evaluation metric, as will be discussed
in Sec. VI-C. The red dot in Fig. 5 shows the segmentation
performances of a model trained on a dataset produced with
no I2I. The achieved IoU score below 40% shows the benefit
introduced by the proposed workflow.

D. Implementation details

All the models discussed in this work were imple-
mented in Tensorflow/Keras6 and were trained on a GPU
NVIDIA® Tesla® V100. In E1 we employed Adam optimizer
with learning rate α=0.0002 and linear decay of 4% at each
epoch starting from epoch 75, for an overall of 100 epochs. We
used a batch size of 1 and, following [11], we used historical
averaging to stabilize the adversarial training.

For segmentation models training in E2 we maintained
Adam as our optimizer with default parameters, a batch size
of 8 frames and binary cross-entropy + IoU score as loss
function [6]. Each model was trained for 200 epochs and
the best model for each dataset was selected as the one that
achieved the best performances on the validation set.

V. RESULTS

A. E1 results

The quantitative results achieved in E1 are presented in
Table I. Cycle-GAN+SSIM model obtained the best perfor-
mances in the majority of the considered training epochs
for all the datasets, achieving the best overall FID scores

6https://www.tensorflow.org/
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Fig. 5: Blue dots in the scatter plot represent the IoU scores
achieved by different segmentation models on MICCAI 2020
test set as a function of the FID score (the lower, the better)
of the synthetic training set. The red dot shows IoU and FID
scores of a segmentation model trained on a dataset produced
without I2I.

in MICCAI 2015 and MICCAI 2020. MUNIT∗+SSIM out-
performed all the other models in MICCAI 2017 dataset,
but performed poorly on all the remaining two, compared
to all the other methods. Finally, cycle-GAN model obtained
competitive results on both MICCAI 2015 and MICCAI 2020,
never reaching however the best scores for any of them, while
MUNIT∗ framework obtained the worst performances among
all the considered sets. In Fig. 4.a we present visual results of
each I2I model (rows 2-5) at epoch 50. Given these results,
we selected cycle-GAN+SSIM as our model to produce the
synthetic dataset.

B. E2 results

The quantitative results achieved by the segmentation model
trained on synthetic and real frames are shown in Fig. 7.
Overall, the model trained on real data outperformed the one
trained on synthetic images in MICCAI 2015 and MICCAI
2020 datsets, with median IoU values of 81% and 96% against
77% and 92%, respectively. On the other hand, the use of
a synthetic dataset showed training improvements for the
model in MICCAI 2020 dataset, with an IoU score of 88%.
All the results from synthetic and real sides showed to be
statistically independent from each other, with an ANOVA test
p-value<0.001 for all the datasets, as shown in the additional
materials.

VI. DISCUSSION

A. E1 discussion

In general, the qualitative results presented in Fig. 4 reveal
dependency between FID score and human quality perception.
An example is shown for MUNIT∗+SSIM, MICCAI 2015
(upper row, 5th column) and MUNIT∗, MICCAI 2020 (lower
row, 3rd column) frames, where I2I introduced pattern-like



COLLEONI et al.: ROBOTIC INSTRUMENT SEGMENTATION WITH IMAGE-TO-IMAGE TRANSLATION 7

Fig. 6: Sample segmentation masks from models trained on synthetic and real frames on the considered test datasets.

artifacts on the shaft and a general loss of details, compared
to simulation inputs (1st column). These frames were labelled
with an FID higher than all the others in the same rows,
suggesting that this metric can successfully evaluate the quality
of synthetic images.

The presence of the content loss during training showed a
deterioration of the performances in both MICCAI 2015 and
MICCAI 2017 datasets, thus surprisingly achieving best results
in MICCAI 2017 with MUNIT∗+SSIM. However, this could be
explained by the presence of SSIM loss: as shown in Table I,
cycle-GAN+SSIM and MUNIT∗+SSIM achieved the majority
of best scores in each dataset. This confirms the intuition of
the authors in [4] that SSIM loss can improve synthetic image
quality.

Regarding other artifacts generated during image transla-
tion, we noticed that all the considered models tried to modify
the tools shape, adding or erasing parts from the simulation
tools. Sample images of this phenomenon are presented in
Fig. 4 and in the additional materials. Additive artifacts can
be easily removed during the tool blending process, that
copies only the parts of the tool covered by simulation masks,
while erasing ones, that were present only in MUNIT∗ and
MUNIT∗+SSIM, do not have a fast and effective fix. This
strengthened our decision to select cycle-GAN+SSIM models
to produce synthetic datasets for E2.

B. E2 discussion

The results in E2 showed the potential of the proposed
methodology. Using only synthetic frames for both training
and validation, we were able to obtain competitive results in all
the considered datasets compared to the models trained on real
data. In MICCAI 2017 the two models showed a ∆IoU score
around 4% that can be partially explained by the presence of
suturing needles in the scene, as shown in Fig. 6. Needles
are indeed constantly present in the real frames (training/test),
allowing the model to learn to not consider them as tools even
though they have similar colors. The same did not happen
however when the model was trained on synthetic frames,
where needles were not encountered. However, the achieved
92% IoU score shows that the proposed dataset allowed the
segmentation model to well generalize on challenging in-vivo
frames with occlusions and tool-tissue interaction.

In MICCAI 2015, the lack in performances (4-5% ∆IoU)
is mainly caused by the consistent mislabelling of part of the
tools’ shaft, as shown in the first column of Fig. 6. However,

Fig. 7: Segmentation results on the considered datasets. Mod-
els’ performances were evaluated in terms of Intersection over
Union (IoU) score. All the results show statistically different
distributions (one-way ANOVA test, p-value<0.001).

the training on synthetic frames still allowed the model to
achieve appealing results compared to its competitor. This is
shown again in Fig. 6, third column, where both the models
were able to segment the EndoWrist® Monopolar Curved
Scissors present in the FOV, that, in both cases, were not seen
during the training procedure.

Finally, on MICCAI 2020 dataset, the model trained on
synthetic frames outperformed the competitor by 6-7% ∆IoU,
even though both the models were not able to correctly classify
the parts covered by blood. However this was expected, since
no blood was seen during the training phase in both cases.
These results show that the proposed framework is robust
even against human input variability and thus that realistic
datasets can be produced even using recorded kinematic data
as simulator input.

C. Limitations and future work

The main limitation for the proposed work is the need for
segmentation ground truth in order to produce real domain sets
suitable for I2I model training. Thus, advancing to a complete
unsupervised framework would be a natural extension of this
work. Another major constraint to our framework comes from
the lack of a preferred and reliable evaluation metric for our
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I2I models. A potential solution could be to evaluate them
by training multiple segmentation models on the produced
synthetic datasets, then selecting the best one based on the
IoU score obtained on a real validation set. This however
comes at the expense of further labelled data, that were not
available for this work. Additionally, the framework could be
extended to other surgical vision tasks such as 3D surgical tool
pose estimation or action recognition. Additionally, temporal
consistency, as described in [15], needs to be investigated
further to move from single frame to full surgical video
synthesis.

VII. CONCLUSIONS
In this paper, we propose a novel framework for synthetic

surgical frames generation. Our methodology makes use of a
robot virtual simulator along with I2I models to transfer the
realistic style from ex-vivo and in-vivo images onto simulation
tool frames. Once the simulated tools are passed through this
transformation, they are blended on a surgical background to
produce complete surgical images. Our method was validated
by comparing the results obtained by two segmentation models
trained on synthetic and real data respectively. We showed
that the use of synthetic frames led the segmentation network
to perform similarly to its competitor in challenging surgical
scenarios.
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