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Abstract 34 

Background: Epidemiological data suggest that cancer patients have a reduced risk of subsequent 35 

Parkinson’s disease (PD) development, but the prevalence of PD in melanoma patients is often 36 

reported to be increased. Causal relationships between cancers and PD have not been fully explored. 37 

Objectives: To study causal relationship between different cancers and PD. 38 

Methods: We used GWAS summary statistics of 15 different types of cancers and two-sample 39 

Mendelian randomization to study the causal relationship with PD.  40 

Results: There was no evidence to support a causal relationship between the studied cancers and PD. 41 

We also performed reverse analyses between PD and cancers with available full summary statistics 42 

(melanoma, breast, prostate, endometrial and keratinocyte cancers) and did not find evidence of causal 43 

relationship. 44 

Conclusions: We found no evidence to support a causal relationship between cancer and PD and the 45 

previously reported associations could be a result of genetic pleiotropy, shared biology or biases. 46 

  47 



 48 

Introduction 49 

Parkinson’s disease (PD) is a complex disorder, influenced by numerous environmental and 50 

genetic factors. Observational studies have suggested associations between PD and different types of 51 

cancers (lung, skin, pancreatic cancers and others) [1-7], such that cancer patients have lower risk of 52 

subsequent PD development [8] and overall PD is associated with a reduced risk of subsequent cancer 53 

development [1, 2]. However, risk of PD is increased in melanoma patients [9] and the prevalence of 54 

melanoma and brain tumors may be increased in patients with PD [3-6]. In the absence of a causal 55 

effect, apparent associations may be explained by confounding factors (such as toxins that casually 56 

influence the risk of specific cancers and PD), shared genetic susceptibility or biological pathways, or 57 

ascertainment bias [10, 11]. 58 

In Mendelian randomization (MR), similar to randomized control trials, single-nucleotide 59 

polymorphism (SNPs) are used to randomly divide participants into two groups defined by genotype, 60 

assuming that genotype distribution is a random process during meiosis, and therefore it should not be 61 

affected by confounders. MR uses SNPs associated with an exposure of interest (such as cancer 62 

susceptibility) as proxies to determine the causal association between that exposure and an outcome  63 

[12]. Summary level data from genome wide associational studies (GWASs) are used to construct 64 

instrumental variables (IVs) from GWAS significant SNPs. In the current study, we performed bi-65 

directional MR to examine whether certain types of cancers have causal relationships with PD and 66 

vice versa. 67 

Methods 68 

Mendelian randomization 69 

For the construction of genetic instruments, we selected studies from the GWAS Catalog [13] using 70 

the R package MRInstruments [14, 15]. First, we searched for traits using keywords “cancer”, 71 



“carcinoma”, “glioma”, “lymphoma”, “leukemia”, “melanoma”. We then selected the most recent 72 

available GWAS for each cancer, with a minimum of 1000 cases and at least the same number of 73 

controls of European ancestry. Additionally, recent GWASs on melanoma [16] and combined analysis 74 

of keratinocyte cancers [17] were added as they were not available in the GWAS catalog. Fifteen 75 

studies were selected for this part of the analysis (Supplementary Table 1). UK biobank (UKB) 76 

participants were included in some of these studies (colorectal cancer, combined analysis of 77 

keratinocyte cancers, endometrial cancer, lung cancer, melanoma, uterine fibroids). 78 

To perform MR in the reverse direction (the causal relationship between PD and different 79 

cancer types) we required full summary statistics which we obtained through GWAS Catalog or direct 80 

contact with authors. We were able to collect full summary statistics for melanoma [16], breast [18], 81 

prostate [19], endometrial [20] and keratinocyte cancers (basal cell and squamous cell carcinoma) [17].  82 

We used GWAS summary statistics from the latest PD GWAS excluding 23andMe and UKB 83 

data, to avoid potential bias due to overlapping samples [21]. After the exclusions, a total of 15,056 84 

PD patients and 12,637 controls were included in the summary statistics [21].  85 

We constructed genetic instruments for cancer susceptibility and PD using SNPs with GWAS 86 

significant p-values (<5×10−8) from each study. The extracted data included rs-numbers, log odds 87 

ratios, standard errors, p-values, alleles, and effect allele frequency. SNPs for each exposure were 88 

clumped using standard parameters (clumping window of 10,000 kb, r2 cutoff 0.001) to discard 89 

variants in LD. Additionally, we calculated r2, which reflects the proportion of variability explained 90 

by genetic variants and F-statistics to estimate the strength of IVs selected for exposures as previously 91 

described [22, 23]. We calculated estimated power to detect an equivalent effect size of OR 1.2 on PD 92 

risk utilizing an online Mendelian randomization power calculation 93 

(https://sb452.shinyapps.io/power/) [24]. 94 

https://sb452.shinyapps.io/power/


MR methods implemented in the Two-sample MR R package [14, 15] were used and are 95 

described in detail elsewhere [25-27]. Firstly, we performed Steiger filtering to exclude SNPs that 96 

explain more variance in the outcome than in the exposure [15]. We then used the inverse variance 97 

weighted (IVW) method, in which we pooled estimates from individual Wald ratios for each SNP and 98 

meta-analyzed using random effects [25-27]. We applied MR Egger to detect net directional pleiotropy 99 

and provide a better estimate of the true causal effect allowing to detect possible violations of 100 

instrumental variable assumptions [27]. Additionally, we used weighted median (WM) which is a 101 

median of the weighted estimates and provides consistent effect even if 50% of IVs are invalid [28]. 102 

These sensitivity analyses were performed to explore heterogeneity and horizontal pleiotropy. 103 

Heterogeneity was tested using Cochran’s Q test in the IVW and MR-Egger methods [29]. For each 104 

method, we constructed funnel plots to detect pleiotropic outliers (Supplementary Figure 1-6). 105 

Additionally, we performed MR-PRESSO test to detect outlier SNPs which may be biasing estimates 106 

through horizontal pleiotropy, and then adjust for them [30]. 107 

Data availability: 108 

All code used in the current study is available at https://github.com/gan-orlab/MR_Cancers-PD  109 

Results 110 

Mendelian randomization does not support a causal role for different cancers and PD 111 

We selected 15 cancer GWAS studies for MR analysis (Table 1). The variance in the exposure 112 

variables explained by SNPs ranged from 0.016 to 0.059 (Table 2). All instruments had F-statistics of 113 

>10, which is the standard cut-off applied to indicate sufficient instrument strength (Table 2; 114 

Supplementary Table 1). 115 

No causal effect of any cancer on PD was observed applying various MR methods (Table 1; 116 

Supplementary Table 1, Supplementary Figure 1-2).  117 

https://github.com/gan-orlab/MR_Cancers-PD


To test for potential violations of MR assumptions, we performed sensitivity analyses. Significant 118 

heterogeneity was apparent for cutaneous squamous cell carcinoma (IVW, Q p-value=0.02) and 119 

combined analysis of keratinocyte cancers (MR Egger, Q p-value=0.012; IVW, Q p-value=0.012, 120 

Supplementary Table 2, Supplementary Figure 3).  121 

Tests for pleiotropy were performed to detect SNPs affecting the outcome through alternative 122 

pathways. There was some evidence for net horizontal pleiotropy for brain tumors (p=0.011) and 123 

cutaneous squamous cell carcinoma (p=0.029, Supplementary Table 2) which may have resulted in 124 

bias to IVW estimates, but the slopes from Egger regression were imprecisely estimated. Using MR-125 

PRESSO, we detected an outlier SNP for cutaneous squamous cell carcinoma (rs4710154). The 126 

distortion test did not suggest significant changes in the effect estimates after this outlier was removed 127 

(Supplementary Table 2). The sensitivity analyses revealed no clear evidence for bias in the IVW 128 

estimate due to invalid instruments with other cancers.  129 

Additionally, we performed reverse MR with melanoma, keratinocyte, prostate, endometrial 130 

and breast cancers for which we had full summary statistics using PD-associated SNPs as exposure 131 

and cancer summary statistics as outcome and did not find any evidence for causal relationships 132 

(Supplementary Table 3; Supplementary Figure 4-6). We found evidence for directional pleiotropy 133 

between PD and breast cancer and keratinocyte cancers, and a borderline distortion test with MR-134 

PRESSO for breast cancer (Supplementary Table 3). MR-PRESSO identified an outlier SNP for both 135 

PD and breast and prostate cancer (rs4630591). Additionally, the rs510306 SNP was found to be an 136 

outlier for prostate cancer. For keratinocyte cancers, three outlier SNPs were detected (rs4630591, 137 

rs6599388 and rs4889603). 138 

 139 

Discussion 140 

In the current study, we performed a comprehensive analysis to examine whether the reported 141 

associations between different cancers (Table 1) and PD may be causal. Our results provide no 142 



evidence to support causal effects, and indicate that the observed associations may be due to other 143 

reasons including shared biology, confounders or biases. MR methods have limited availability and 144 

statistical power to differentiate horizontal and vertical pleiotropy, but high power to detect pleiotropy 145 

itself. Although MR can help reduce confounding and the possibility of reverse causality, a recent 146 

study demonstrated that MR is not immune to survival bias [31]. PD is an age-related disease and 147 

inverse observational study associations may occur spuriously if the exposure of interest (here cancer) 148 

causes premature mortality. This situation is known as ‘survivor bias’ and can occur in case-control 149 

settings, including in MR studies. On the other hand, early mortality from cancer could reduce cancer 150 

prevalence in PD [8]. The higher occurrence of brain cancers in PD might be related to closer medical 151 

attention (i.e., more frequent MRI in PD patients compared to the general population). 152 

The most thoroughly studied genetic relationship between cancer and PD is for melanoma [32]. 153 

Previous MR studies did not demonstrate evidence of a causal relationship between PD and melanoma 154 

[22]. However, a recent, comprehensive analysis suggested a significant genetic correlation between 155 

melanoma and PD, with gene expression overlap [10], that could probably explain the increased 156 

frequency of melanoma in PD. One of the possible explanations for the link between cancers and PD 157 

is pleiotropy. In our study, we only examined causality using MR and did not estimate possible shared 158 

biology. To study possible shared biology, methods such as linkage disequilibrium score regression 159 

and transcriptome wide association study can be used to examine correlations between two traits 160 

occurring through shared genetic architecture. Unfortunately, we were only able to collect full 161 

summary statistics of mostly sex-specific cancers (prostate, breast, endometrial cancers), which cannot 162 

be used with the PD GWAS data since it is not sex-stratified. This approach should be used in future 163 

studies. We cannot rule out that pleiotropic effects within the IVs cancel out each other if they have 164 

effects in opposite direction. There are genes involved in pathogenesis of both PD and cancers. It was 165 

suggested that familial PD genes (PINK1, DJ1, LRRK2 etc.) may play a role in cancers [33-35]. 166 



GPNMB variants were associated with PD [36] and overexpression of GPNMB have been 167 

demonstrated in PD as well as in various cancers including melanoma [37, 38]. 168 

In our analyses using MR-PRESSO, we identified a few outlier SNPs. For cutaneous squamous 169 

cell carcinoma and PD, the rs4710154 SNP, located near the FGFR1OP gene, was an outlier. This 170 

gene was previously implicated in skin cancer and in several inflammatory disorders including Crohn’s 171 

disease [39]. This SNP was not previously associated with PD. Another outlier SNP, rs4630591, near 172 

the KANSL1 gene (encoding for KAT8 Regulatory NSL Complex Subunit 1) was identified for PD 173 

and breast and prostate cancers. This gene has been previously reported as the first cancer 174 

predisposition fusion gene [40], and this SNP was associated with breast cancer in transcriptome wide 175 

association study [41]. The rs510306 SNP near the IGSF9B gene has not been previously implicated 176 

in prostate cancer. For PD and keratinocyte cancers, three outlier SNPs were detected (rs4630591, 177 

rs6599388 and rs4889603). The rs6599388 SNP is located in TMEM175 and rs4889603 is located in 178 

STX1B, both of which have not been previously associated with skin cancers. 179 

Our study has several limitations. This is a European-based study, and these associations or 180 

lack thereof should be studied in other populations. We excluded UKB data to decrease the chance of 181 

overlapping samples between studies, which can result in bias. As a result, some of our MR analyses 182 

might have not enough power to detect the causal effect. Lack of availability of sex-specific PD GWAS 183 

data is the another limitation, which would be important for studying the causal effect of sex-specific 184 

cancers, or with cancers that have meaningful sex differences [42]. We performed bi-directional MR 185 

with PD and cancers with available full summary statistics (melanoma, breast, prostate, endometrial 186 

and keratinocyte cancers) and did not find evidence of a causal relationships. One more limitation is 187 

that MR relies on the quality of the GWAS used for the MR, and thus, limited by the GWAS quality. 188 

Additionally, we could not consider in the current analysis important environmental exposures 189 

that would be of interest for stratified analyses (e.g. smoking in lung cancer; hormone levels in sex-190 



driven cancers). Thus, it is possible that we missed some causal effects due to gene-environment 191 

interaction or imperfect phenotype consideration. 192 

To conclude, our results do not support a causal relationship between the tested cancers and 193 

PD, and suggest that the observed associations could be a result of genetic pleiotropy, shared biology 194 

or biases. Once larger datasets become available, as well as sex-specific PD datasets, additional MR 195 

studies should be performed on cancers and PD.  196 
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Table 1. List of all cancer GWAS studies selected for Mendelian randomization analysis 643 

Trait Study 

Initial sample size 

Replication sample 

size Power 

 Cases  Controls Cases Controls  

Breast cancer 

Michailidou et al., 

2017[18] 76,192 63,082 46,785 70,064 100.00% 

Chronic 

lymphocytic 

leukemia 

Law et al., 

2017[43] 4,478 13,213 1,722 4,385 80.70% 

Colorectal 

cancer 

Law et al., 

2019[44] 31,197 61,770  - - 38% 

Cutaneous 

squamous cell 

carcinoma 

Chahal et al., 

2016[45] 6579 280,558 825 11,518 74.50% 

Combined 

analysis of 

keratinocyte 

cancers 

Liyanage et al., 

2019[17] 31,787 619,351  -  - 63.00% 

Endometrial 

cancer 

O'Mara et al., 

2018[20] 12,906 108,979  -  - 71.50% 

Lung cancer 

McKay et al., 

2017[46] 23,223 16,964  -  - 71.50% 

Lymphoma 

Sud et al., 

2017[47] 1,278 14,325 1,586 3,069 90.60% 

Melanoma 

Landi et al., 

2020[16] 36,760 375,188  -  - 68.30% 

Non-

glioblastoma 

glioma/Glioma 

Melin et al., 

2017[48] 12,469 18,190  -  - 93.10% 

Oral cavity and 

pharyngeal 

cancer 

Lesseur et al., 

2016[49] 6,009 6,585  - -  95.60% 

Pancreatic 

cancer 

Klein et al., 

2018[50] 9,040 12,496 2,737 4,752 82.80% 

Prostate cancer 

Schumacher  et 

al., 2018[19] 79,148 61,106  - - 
57.00% 

Renal cell 

carcinoma 

Scelo et al., 

2015[51] 10,784 20,406 3,182 6,301 

71.50% 

 

Uterine fibroids 

Rafnar et al., 

2018[52] 16,595 52,3330  - -  
64.90% 
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Table 2. MR analysis between exposure (cancers) and outcome (PD). 646 

Exposure 

N, SNPs 

included r2 

F-

statistic

s 

MR Egger Inverse variance weighted 

b se pval b se pval 

Breast cancer 107 0.016 38.5 0.075 0.065 0.247 0.032 0.033 0.337 

Chronic 

lymphocytic 

leukemia 7 0.035 106.11 0.047 0.640 0.944 0.099 0.077 0.197 

Colorectal 

cancer 35 0.02 53.8 -0.002 0.273 0.994 0.042 0.057 0.460 

Cutaneous 

squamous cell 

carcinoma 23 0.03 405.2 -0.097 0.077 0.223 0.051 0.048 0.288 

Combined 

analysis of 

keratinocyte 

cancers 68 0.023 216.6 -0.018 0.053 0.732 0.017 0.031 0.586 

Endometrial 

cancer 13 0.028 271.4 -0.106 0.252 0.681 -0.014 0.059 0.808 

Lung cancer 10 0.029 120.4 0.000 0.121 0.999 0.049 0.053 0.355 

Lymphoma 5 0.047 236.2 0.325 0.288 0.341 -0.013 0.068 0.845 

Melanoma 45 0.026 244.37 -0.035 0.053 0.507 -0.002 0.032 0.950 

Non-

glioblastoma 

glioma/Glioma 19 0.052 88.03 0.102 0.049 0.052 -0.021 0.023 0.356 

Oral cavity and 

pharyngeal 

cancer 4 0.059 198.2 0.008 0.376 0.986 0.094 0.064 0.144 

Pancreatic 

cancer 16 0.037 68.9 -0.221 0.152 0.168 0.003 0.041 0.934 

Prostate cancer 74 0.02 38.9 -0.091 0.060 0.130 -0.022 0.028 0.443 

Renal cell 

carcinoma 8 0.028 148.02 -0.145 0.241 0.569 -0.031 0.084 0.707 

Uterine 

fibroids 18 0.024 732.5 0.164 0.185 0.388 -0.014 0.073 0.854 

PD, Parkinson’s disease; N, number; r2, proportion of variance in exposure variable explained by 647 

SNPs; F, statistics ‘strength’ of the genetic instrumental variable; b, beta; se, standard error, pval, p-648 

value.  649 

 650 



Suplementary Table 1. MR analysis between exposure (cancers) and outcome (PD) 

Exposure 
N, 

SNPs  R2 
F-

statistics 

MR Egger 
Inverse variance 

weighted Simple mode Weighted mode 

b se pval b se pval b se pval b se pval 
Breast cancer 107 0.016 38.5 0.08 0.06 0.25 0.03 0.03 0.34 -0.01 0.13 0.92 0.01 0.07 0.84 

Chronic 
lymphocytic 
leukemia 7 0.035 106.11 0.05 0.64 0.94 0.10 0.08 0.20 -0.03 0.15 0.87 -0.03 0.12 0.83 

Colorectal cancer 35 0.02 53.8 0.00 0.27 0.99 0.04 0.06 0.46 -0.13 0.19 0.51 -0.16 0.18 0.37 
Cutaneous 
squamous cell 
carcinoma 23 0.03 405.2 -0.10 0.08 0.22 0.05 0.05 0.29 0.19 0.11 0.09 0.00 0.06 0.99 
Combined analysis 
of keratinocyte 
cancers 

68 
0.023 216.6 -0.02 0.05 0.73 0.02 0.03 0.59 -0.02 0.08 0.78 0.00 0.04 1.00 

Endometrial 
cancer 13 0.028 271.4 -0.11 0.25 0.68 -0.01 0.06 0.81 -0.04 0.12 0.73 0.04 0.11 0.73 

Lung cancer 10 0.029 120.4 0.00 0.12 1.00 0.05 0.05 0.36 0.04 0.12 0.74 0.08 0.08 0.35 

Lymphoma 5 0.047 236.2 0.33 0.29 0.34 -0.01 0.07 0.85 -0.02 0.11 0.85 -0.03 0.10 0.79 
Melanoma 45 0.026 244.37 -0.04 0.05 0.51 0.00 0.03 0.95 -0.07 0.09 0.40 -0.05 0.04 0.31 

Non-glioblastoma 
glioma/Glioma 19 0.052 88.03 0.10 0.05 0.05 -0.02 0.02 0.36 -0.05 0.06 0.43 -0.02 0.04 0.57 

Oral cavity and 
pharyngeal cancer 4 0.059 198.2 0.01 0.38 0.99 0.09 0.06 0.14 0.18 0.12 0.22 0.17 0.11 0.22 

Pancreatic cancer 16 0.037 68.9 -0.22 0.15 0.17 0.00 0.04 0.93 -0.02 0.10 0.88 0.02 0.08 0.82 

Prostate cancer 74 0.02 38.9 -0.09 0.06 0.13 -0.02 0.03 0.44 -0.07 0.08 0.36 0.00 0.05 0.94 

Renal cell 
carcinoma 8 0.028 148.02 -0.15 0.24 0.57 -0.03 0.08 0.71 0.12 0.18 0.52 0.13 0.13 0.34 

Uterine fibroids 18 0.024 732.5 0.16 0.19 0.39 -0.01 0.07 0.85 0.12 0.19 0.54 0.15 0.15 0.34 

R2- proportion of variance in exposure variable explained by SNPs; F-statistics ‘strength’ of the genetic instrumenral variable b- beta; se- 

standart error, pval - p-value 



Supplementary Table 2. Heterogeneity tests and tests for directional horizontal pleiotropy between Cancers and PD 

Exposure 

Heterogeneity tests Test for directional horizontal pleiotropy 

MR 
Egger     

Inverse 
variance 
weighted     

egger 
intercept se pval 

MR-PRESSO 
global 

MR-PRESSO 
distortion 
test 

Q Q_df Q_pval Q Q_df Q_pval       pval pval 

Breast cancer 115.83 105 0.22 116.51 106 0.23 0.00 0.01 0.43 0.18 NA 
Chronic lymphocytic 
leukemia 8.09 5 0.15 8.10 6 0.23 0.01 0.10 0.94 0.25 NA 

Colorectal cancer 34.79 33 0.38 34.82 34 0.43 0.00 0.02 0.87 0.37 NA 
Cutaneous squamous 
cell carcinoma 29.94 21 0.09 37.73 22 0.02 0.03 0.01 0.03 0.01 0.14 
Combined analysis of 
keratinocyte cancers 94.79 66 0.01 95.76 67 0.01 0.01 0.01 0.41 0.01 NA 

Endometrial cancer 5.50 11 0.91 5.64 12 0.93 0.01 0.03 0.72 0.94 NA 

Lung cancer 8.34 8 0.40 8.56 9 0.48 0.01 0.02 0.66 0.43 NA 

Lymphoma 3.23 3 0.36 4.79 4 0.31 -0.08 0.07 0.32 0.39 NA 

Melanoma 54.34 43 0.12 55.13 44 0.12 0.01 0.01 0.43 0.11 NA 
Non-glioblastoma 
glioma/Glioma 9.37 17 0.93 17.57 18 0.49 -0.04 0.01 0.01 0.30 NA 
Oral cavity and 
pharyngeal cancer 4.48 2 0.11 4.60 3 0.20 0.02 0.09 0.84 0.02 NA 

Pancreatic cancer 11.44 14 0.65 13.78 15 0.54 0.04 0.03 0.15 0.50 NA 

Prostate cancer 57.22 70 0.86 58.98 71 0.85 0.01 0.01 0.19 0.82 NA 

Renal cell carcinoma 8.97 6 0.18 9.35 7 0.23 0.02 0.03 0.63 0.20 NA 

Uterine fibroids 22.90 16 0.12 24.46 17 0.11 -0.02 0.02 0.31 0.12 NA 

 

Q- Cochran’s Q test, df- degrees of freedom, se- standart error, pval- p-value, NA for distortion test if non outliers were avaliable  



Suplementary Table 3. Reverse MR analysis between exposure (Parkinson's disease) and outcome (cancers) 

Outcome N, 
SNPs 

MR Egger Weighted median Inverse variance weighted Simple mode Weighted mode 

b se pval b se pval b se pval b se pval b se pval 

Breast 
cancer 15 

0.01 0.06 0.82 0.02 0.02 0.38 0.04 0.02 0.08 -0.02 0.03 0.59 0.00 0.02 0.86 

Endometrial 
cancer 15 

-0.03 0.10 0.78 -0.04 0.04 0.31 -0.02 0.04 0.54 0.04 0.08 0.66 
-

0.04 
0.06 0.47 

Melanoma 
14 0.00 0.06 0.99 -0.01 0.03 0.64 0.02 0.02 0.47 -0.01 0.05 0.81 

-
0.01 

0.04 0.74 

Prostate 
cancer 15 

-0.08 0.05 0.13 0.00 0.02 0.88 0.02 0.02 0.40 0.00 0.04 0.99 0.00 0.03 0.98 

Keratinocyte 
cancers 15 

0.05 0.08 0.55 0.04 0.03 0.24 0.00 0.03 0.91 0.08 0.06 0.22 0.10 0.04 0.02 

Outcome 
N, 
SNPs 

Heterogeneity tests Test for directional horizontal pleiotropy      

MR Egger 
Inverse variance 

weighted 

egger_intercept se pval 

MR-
PRESSO 
global 

MR-PRESSO 
distortion 
test     

Q Q_df Q_pval Q Q_df Q_pval pval pval     

Breast 
cancer 15 

49.72 13 0.00 50.38 
14 

0.00 0.00 0.01 0.68 <0.001 0.05 
    

Endometrial 
cancer 15 

21.80 13 0.06 21.81 14 0.08 0.00 0.02 0.95 0.07 NA 
    

Melanoma 14 12.62 12 0.40 12.70 13 0.47 0.00 0.01 0.78 0.51 NA     

Prostate 
cancer 15 

20.29 13 0.09 27.29 14 0.02 0.02 0.01 0.05 0.02 0.22 
    

Keratinocyte 
cancers 15 

38.22 
13 

0.00 39.35 
14 

0.00 -0.01 0.01 0.55 <0.001 0.60 
    

 b- beta; se- standart error, pval - p-value 
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Supplementary Figure 1. Forest plots showing point estimates of the exposures of interest, 

Exposure of interest at the top of each forest plot.  
 

Black points represent log-odds ratio of each SNP on the risk of PD. Red points represent the log-odds ration when 

combining all SNPs together (Inverse variance weighted and MR Egger methods). Lines from points represent 95% 

confidence intervals. 
  



3 
 

Breast cancer as exposure 

 

  



4 
 

Chronic lymphocytic leukemia as exposure 

 

 

  



5 
 

Colorectal cancer as exposure 

 

  



6 
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Combined analysis of keratinocyte cancers as exposure 
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Supplementary Figure 2. PD without UKBB. Plots showing point estimates of the exposures of 

interest; Exposure of interest at the top of each plot. 
A plot relating the effect sizes of the SNP-exposure association and the SNP-outcome associations with standard error 

bars. Lines correspond to causal estimates using each of the methods. 
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Chronic lymphocytic leukemia as exposure 
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Cutaneous squamous cell carcinoma as exposure 
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Combined analysis of keratinocyte cancers as exposure 

 

  



24 
 

Endometrial cancer as exposure 
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Renal cell carcinoma as exposure 
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Uterine fibroids as exposure 
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Supplementary Figure 3. PD without UKBB. Funnel plots evaluated the presence of possible 

heterogeneity across the estimates. Exposure of interest at the top of each plot. 
Each SNPs represented by dots. Inverse variance weighted and MR Egger method averaged causal effect of all SNPs. 
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Combined analysis of keratinocyte cancers as exposure 
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Pancreatic cancer as exposure 
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Prostate cancer as exposure 
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Renal cell carcinoma as exposure 
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Uterine fibroids as exposure 
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Supplementary Figure 4. Reverse MR (PD as exposure; Cancers as outcome). Forest plots 

showing point estimates of the exposures of interest, Exposure of interest at the top of each 

forest plot 
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Breast cancer as outcome 
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Endometrial cancer as outcome 

 

  



53 
 

Melanoma as outcome 
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Prostate as outcome 
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Keratinocytes cancers 
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Supplementary Figure 5. Reverse MR (PD as exposure; Cancers as outcome).  Plots showing 

point estimates of the exposures of interest; Exposure of interest at the top of each plot 
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Breast cancer as outcome 
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Endometrial cancer as outcome 
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Melanoma as outcome 
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Prostate as outcome 
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Keratinocytes cancers 
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Supplementary Figure 6. Reverse MR (PD as exposure; Cancers as outcome). Funnel plots 

evaluated the presence of possible heterogeneity across the estimates. Exposure of interest at 

the top of each plot 
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Breast cancer as outcome 
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Endometrial cancer as outcome 
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Melanoma as outcome 
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Prostate cancer as outcome 
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Keratinocytes cancers 

 

 
 


