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Abstract

In recent years, machine learning methods especially supervised learning methods

have achieved great progress in both methodologies and applications. However, in

supervised learning, each training sample requires a label to indicate its ground-

truth. In many machine learning tasks, it is hard to get sufficient accurately labelled

training samples. Weakly supervised learning is an extended setting of supervised

learning to more general tasks. In this thesis, we focus on proposing novel methods

for inaccurate supervision and incomplete supervision under the setting of weakly

supervised learning.

In inaccurate supervision, problems with nondeterministic labels, such as

stochastic supervision problems, are rarely discussed. In stochastic supervision, the

supervision is a probabilistic assessment rather than a deterministic label. In Chap-

ter 2, we provide four generalisations of stochastic supervision models, extending

them to asymmetric assessments, multiple classes, feature-dependent assessments,

and multi-modal classes, respectively. Corresponding to these generalisations, four

new EM algorithms are derived. We show the effectiveness of our generalisations

through illustrative examples of simulated datasets, as well as real-world examples

of two famous datasets, the MNIST dataset, and the CIFAR-10 dataset.

For incomplete supervision problems, we focus on improving the semi-

supervised learning in one domain/task by transferring knowledge from another

domain/task or from many domains/tasks. In Chapter 3, a novel domain-adaptation-

based method is proposed to improve a typical application of semi-supervised learn-

ing: the pose estimation, in which the implicit density estimation problem in the

domain adaptation is solved by using a neural network to approximate it. The pro-
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posed method transfers the knowledge from the training samples in the synthetic

data domain to improve the learner in the real data domain, and achieves state-of-

the-art performance. In Chapter 4, we focus on transferring knowledge from many

tasks to improve the semi-supervised few-shot learning. We use meta-learning to

transfer knowledge from many meta-train tasks. A tailor-made ensemble method

for few-shot learning is proposed to relieve the pseudo-label noise problem in the

semi-supervised few-shot learning. The proposed method also achieves state-of-

the-art performances in two widely used benchmark datasets (miniImageNet and

tieredImageNet) in few-shot learning.
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Impact
This thesis potentially can contribute to both methodology and application aspects

of machine learning. The impact of the work presented in the thesis can benefit both

inside and outside of academia.

For the impact on the inside of academia, there are several potential contribu-

tions. Firstly, the proposed four generalisations of the stochastic supervision model

in Chapter 2 can be applied to ensemble learning and self-training to produce some

novel methods and work for the machine learning community. Secondly, the pro-

posed semi-supervised few-shot learning method in Chapter 4 can be extended to

other types of data, such as sequential data and hyperspectral data. Thirdly, the

proposed semi-supervised few-shot learning method improves the performance of

few-shot image classification tasks, so it potentially can be applied to many machine

learning applications, such as handwriting classification, Person ReID, and object

detection.

For the impact on the outside of academia, the proposed method in Chapter

3 can be applied to many applications of hand pose estimation, such as computer

games to improve the human-computer interaction. The proposed method in Chap-

ter 4 can improve the performances of few-shot learning algorithms and extend the

application scenarios of these algorithms, since these algorithms do not need many

labelled samples. Our method also can reduce the workload of labelling data, since

the pseudo label provided by our model can be seen as the proposal for the true la-

bel. The wide use of these machine learning algorithms potentially can create many

new apps on computers and smartphones to provide fast and convenient service for

our life.



Contents

1 Introduction 18

1.1 Weakly supervised learning . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Taxonomy of weakly supervised learning . . . . . . . . . . 18

1.2 Inaccurate supervision . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Summary of inaccurate supervision . . . . . . . . . . . . . 20

1.2.2 Contribution to stochastic supervision . . . . . . . . . . . . 20

1.3 Incomplete supervision . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 Summary of semi-supervised learning . . . . . . . . . . . . 21

1.3.2 Contribution to semi-supervised learning with domain

adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.3 Contribution to semi-supervised few-shot learning with

meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 26

I Contribution to Inaccurate Supervision 29

2 Generalisations of stochastic supervision models 30

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Inaccurate supervision of weakly-supervised learning . . . . 30

2.1.2 Stochastic supervision model . . . . . . . . . . . . . . . . . 31

2.1.3 Generalisations of the stochastic supervision model . . . . . 33

2.2 Generalised models and their EM algorithms . . . . . . . . . . . . 34



Contents 8

2.2.1 Generalisation-1: asymmetric stochastic supervision . . . . 34

2.2.2 Generalisation-2: multi-class stochastic supervision . . . . . 39

2.2.3 Generalisation-3: feature-dependent stochastic supervision . 41

2.2.4 Generalisation-4: multi-modal classes . . . . . . . . . . . . 44

2.3 Real-data experiments . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Real-world datasets . . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Experiment settings . . . . . . . . . . . . . . . . . . . . . . 50

2.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II Contribution to Incomplete Supervision 58

3 Semi-supervised domain adaptation with implicit importance weight

estimation for hand pose 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . 66

3.3.2 Weighted empirical risk minimisation . . . . . . . . . . . . 68

3.3.3 Weighting net . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.4 Hand pose estimation net . . . . . . . . . . . . . . . . . . . 73

3.3.5 Implementation details . . . . . . . . . . . . . . . . . . . . 74

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Datasets and evaluation metrics . . . . . . . . . . . . . . . 77

3.4.2 Hyperparameter settings . . . . . . . . . . . . . . . . . . . 78

3.4.3 Comparison to state-of-the-art methods with only a par-

tially labelled real training set . . . . . . . . . . . . . . . . 79

3.4.4 Comparison to state-of-the-art methods with a fully labelled

real training set . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.5 Ablation studies . . . . . . . . . . . . . . . . . . . . . . . 81



Contents 9

3.5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . 84

4 Pseudo-label robust self-training for semi-supervised few-shot classifi-

cation 86

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 Supervised few-shot learning . . . . . . . . . . . . . . . . . 89

4.2.2 Semi-supervised few-shot learning . . . . . . . . . . . . . . 90

4.2.3 Ensemble few-shot learning . . . . . . . . . . . . . . . . . 91

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 C-way K-shot learning . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Construction of base classifier and the ensemble strategy . . 92

4.3.3 Episodic training and testing . . . . . . . . . . . . . . . . . 95

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.2 Network architecture and implement details . . . . . . . . . 98

4.4.3 Comparisons with the state-of-the-arts . . . . . . . . . . . . 99

4.4.4 Ablation studies . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 General Conclusions 103

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.1 Multiple stochastic supervision model . . . . . . . . . . . . 105

5.2.2 Multiple stochastic supervision ensemble for semi-

supervised few-shot classification . . . . . . . . . . . . . . 106

Appendix 108

A An appendix about the loss function of the weighting net 108

Bibliography 110



List of Figures

1.1 Illustration of stochastic supervision, by comparing supervised

learning and stochastic supervision. There are mainly three aspects

of the difference between supervised learning and stochastic super-

vision. Firstly, the stochastic supervision model receives inaccurate

supervision (probabilistic assessment) rather than deterministic su-

pervision. Secondly, in the stochastic supervision model, the anno-

tator can be either human or model. Thirdly, the stochastic supervi-

sion model uses both features and assessments to make a prediction. 22

1.2 Upper panel: illustration of semi-supervised learning. In semi-

supervised learning, the training data are partially labelled, and the

model learns from both labelled and unlabelled data. Lower panel:

illustration of semi-supervised few-shot learning, a special case of

semi-supervised learning, where only few data are labelled for each

class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



List of Figures 11

1.3 The structure of this thesis. Our contributions to weakly supervised

learning are in Chapter 2, Chapter 3, and Chapter 4. Chapter 1 is the

introduction. The work in Chapter 2 provides four new generalisa-

tions of the stochastic supervision model of inaccurate supervision.

The work in Chapter 3 provides a novel domain-adaptation based

method for semi-supervised learning of incomplete supervision.

The work in Chapter 4 provides a novel method for semi-supervised

few-shot learning, which is not only based on meta learning but also

based on the self-training methods (that use stochastic supervision

to provide assessments for unlabelled data). In Chapter 5 we pro-

vide conclusions and future work. . . . . . . . . . . . . . . . . . . 28

2.1 (a) Supervisor assessments with equal variances and symmetrical

means between the two classes. Red curve: assessments density

estimated by Titterington’s model. Blue curve: assessments den-

sity estimated by the generalisation-1. (b) Supervisor assessments

with unequal variances and asymmetrical means between the two

classes. The rest caption is as for Figure 2.1(a). . . . . . . . . . . . 37

2.2 Three extreme cases of supervisor assessments. (a) Supervisor as-

sessments with large unequal variances and symmetrical means be-

tween the two classes. Red curve: assessments density estimated by

Titterington’s model. Blue curve: assessments density estimated by

the generalisation-1. (b) Supervisor assessments with large equal

variances and asymmetrical means between the two classes. The

rest caption is as for Figure 2.2(a). (c) Supervisor assessments with

large unequal variances and asymmetrical means between the two

classes. The rest caption is as for Figure 2.2( a). . . . . . . . . . . . 38



List of Figures 12

2.3 (a) Joint distribution of feature and (one dimension of) assessment

for three classes in red, blue, and green, respectively. The contour

plots were estimated by the generalisation-2. Each contour is la-

belled by its corresponding density. (b) Distributions of the feature

for three classes in red, blue, and green, respectively. . . . . . . . . 42

2.4 Joint distributions of feature and assessment. Dashed contour plots

were estimated by Titterington’s original stochastic supervision

models. Solid contour plots were estimated by the generalisation-3.

Each contour is labelled by its corresponding density. . . . . . . . . 44

2.5 (a) Joint distributions of feature and assessment for two classes with

subclasses: Class-A with two subclasses (red); Class-B with three

subclasses (blue). Dashed contour plots were estimated by Titter-

ington’s original stochastic supervision models. Solid contour plots

were estimated by the generalisation-4. Each contour is labelled

by its corresponding density. (b) Distributions of feature for two

classes with subclasses: Class-A with two subclasses (red); Class-

B with three subclasses (blue). . . . . . . . . . . . . . . . . . . . . 48

2.6 Classification accuracies of Titterington’s model and the generalisation-

3 on 20 test sets of MNIST. Comparing to the original stochastic

supervision model, our generalisation-3 has higher classification

accuracy on the MNIST dataset. . . . . . . . . . . . . . . . . . . . 55

2.7 Classification accuracies of Titterington’s model and the generalisation-

4 on 20 test sets of CIFAR-10. Comparing to the original stochastic

supervision model, our generalisation-4 has higher classification

accuracy on the CIFAR-10 dataset. . . . . . . . . . . . . . . . . . . 56

2.8 Classification accuracies of Titterington’s model, generalisation-3

and generalisation-4 on 20 test sets of EMNIST. Comparing to

the original stochastic supervision model, our generalisation-3 and

generalisation-4 has higher classification accuracy on the EMNIST

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



List of Figures 13

3.1 Motivation. Since labelling real samples by human annotators

are expensive, real labelled data based methods often do not have

enough training samples. Synthetic data based methods have

enough labelled samples, but there exists a domain gap between

synthetic training data and real test data. This work aims to provide

a method that only requires a limited number of real labelled data

and reduces the effect of the domain gap by adapting and reweight-

ing all training samples. . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Overview of the proposed method. The proposed method aims to

use a few labelled real depth images and plenty of labelled synthetic

depth images and unlabelled real depth images to train a hand pose

estimation network to predict locations of hand joints. The blue

lines indicate the labelled hand pose, while the red lines are for the

predicted hand pose. All illustrative example in this figure, includ-

ing both real depth images and synthetic depth images, are extracted

from the NYU dataset. . . . . . . . . . . . . . . . . . . . . . . . . 66



List of Figures 14

3.3 The problem setting and system architecture of the proposed

method: Stacks of rectangles represent some neural networks; x

denotes an input image and z stands for the features in the la-

tent space; the red part is the weighting net g(z), the blue part

belongs to the hand pose estimation net which contains four mod-

ules { f1(x),h(z), f2(z),r(z)}, and the green part is the shared latent

space. The feature extractor f1(x) learns a shared feature space to

transfer knowledge of feature representation from labelled synthetic

data. The weighting net g(z) learns to weighting training samples

to transfer knowledge of instances from labelled synthetic data.

The domain adaptation branch h(z) learns to minimize domain gap

between real data (both labelled and unlabelled) and synthetic data.

The reconstruction branch learns to recover an image of another

view to ensure features in the shared latent space are pose invariant

for different view. The pose regression net f2(z) learn a mapping to

utilise feature representation in the shared latent space to estimate

the pose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Comparison with other state-of-the-art 2D input based methods on

the NYU dataset. Our method has the maximum area under the

curve, in terms of the fraction of frames where all joints of a frame

are within a maximum 3D distance from the ground truth. . . . . . . 81

3.5 Comparison with other state-of-the-art 2D input based methods on

the NYU dataset, in terms of average joint error. The results are

consistent with those in Figure 3.4: our method has the minimum

mean error here, and we have the maximum area under the curve

in Figure 3.4. Compared with the fraction of frames within a max-

imum 3D distance, the mean error is more tolerant to a single large

error of a joint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of Figures 15

3.6 Qualitative results from our method. The joint locations are shown

on the depth images. The prediction of joints is shown in red and

the corresponding ground truth is shown in blue. . . . . . . . . . . . 83

4.1 The self-training procedure and the construction of base classifiers

of the proposed method: The classifier 0 is fitted by C-way K-shot

labelled samples and provides pseudo labels (denoted by pseudo-

labelled set 1) of the unlabelled subset. The classifier 1 is then

fitted by the labelled support set and the pseudo labelled support

set 1. Repeating the self-training process, we finally obtain m base

classifiers. We use the last q classifier to construct the ensemble and

make the prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . 93



List of Tables

2.1 Adjusted R2 when regressing the assessment against the features for

the MNIST and EMNIST datasets. . . . . . . . . . . . . . . . . . . 50

2.2 Comparing the generalisation-1 with the original model on two-

class classification tasks. . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Comparing the generalisation-2 with the original model on multi-

class classification tasks. . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Comparison of different hand pose estimation methods on the NYU

hand dataset [1] with only 1,000 labelled real samples. We compare

the mean joint error with other state-of-the-art methods. . . . . . . . 79

3.2 Comparison of different hand pose estimation methods on the NYU

hand dataset [1]. We compare the mean joint error with other state-

of-the-art methods. The upper block is for 2D input based meth-

ods. The lower block is for 3D input based methods. GAN: gener-

ative adversarial nets; DA: domain adaptation. . . . . . . . . . . . . 80

3.3 Ablation study on the effect of the adversarial training with the

weighting net on the performance. . . . . . . . . . . . . . . . . . . 84

3.4 The effect of the number of labelled real training samples. . . . . . 84



List of Tables 17

4.1 Performance comparison of different few-shot learning methods for

5-way 1-shot and 5-way 5-shot classifications on mini-ImageNet:

mean accuracy and its 95% confidence interval. The upper block

shows the performance of supervised few-shot learning methods.

The lower block shows the performance of semi-supervised few-

shot learning methods. The MetaGAN is the only method that

provides results both on supervised and semi-supervised few-shot

learning tasks in mini-ImageNet. Since MetaGAN has many differ-

ent settings, I only show the results with the highest performance. . 100

4.2 Performance comparison of different few-shot learning methods for

5-way 1-shot and 5-way 5-shot classifications on tiered-ImageNet:

mean accuracy and its 95% confidence interval. The upper block

shows the performance of supervised few-shot learning methods.

The lower block shows the performance of semi-supervised few-

shot learning methods. . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Performance comparison under different settings for 5-way 1-shot

classification. Mean accuracy from (Supervised that only utilising

labelled training samples) using labelled support set only or from

(Self-training that utilising both labelled and unlabelled samples)

also using unlabelled support set with pseudo label providedself-

training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Performance comparison under different settings for 5-way 1-shot

classification. Mean accuracy from using different numbers of base

classifiers. Bottom row: number of parameters in each model(M

means a million). . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



Chapter 1

Introduction

1.1 Weakly supervised learning
Supervised learning is a typical machine learning method, which learns a predic-

tive model from many labelled training data to predict the class (classification task)

or value of response (regression task) of unlabelled data. In recent years, super-

vised learning have achieved great success for many machine learning applications.

In supervised learning, the training dataset contains training samples; each train-

ing sample contains a pair of a feature vector and a label of the feature vector; the

feature vector includes the covariates that we used to predict; and the label is the

variable that indicates the class (classification) or real value of response (regres-

sion). However, supervised learning often requires many labelled data to train a

model with good quality of prediction, but, in many machine learning tasks, ac-

quiring accurately labelled training samples is expensive or even impossible, hence

the difficulty in obtaining sufficient high-quality training samples limits the usage

of supervised learning. Thus, it is helpful to develop machine-learning models to

be able to work with weak supervision[2], therefore, extending supervised learning

algorithms to the weakly supervised settings is an important research problem in

machine learning.

1.1.1 Taxonomy of weakly supervised learning

The weakly supervised learning tasks involve various settings of problems. Ac-

cording to a widely recognised taxonomy [2], weakly supervised learning tasks can
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be divided into the following three different types: 1) inaccurate supervision; 2)

incomplete supervision, and 3) inexact supervision.

Inaccurate supervision takes the uncertainty of labels into account. In the in-

accurate supervision, the supervision information is not necessarily the real label.

The supervision information can be a label with noise, a score or a softmax vector.

For example, in the classification task, a training example may be similar to sev-

eral classes and difficult to categorise, so the annotator gives the sample a softmax

vector to indicate the probability of class belonging. The annotator can be either a

human or a pre-trained model. The supervision information provided by the anno-

tator has the uncertainty of class belonging or target value, we use the terminology

introduced by [3] and [4] to call the supervision “stochastic supervision”.

In the setting of incomplete supervision, only a small subset of the training set

is labelled. Incomplete supervision is a common scenario in many machine learn-

ing applications. For example, in hand pose estimation, we can easily get a large

number of hand images, however, annotating the joint locations of a hand in an

image is relatively expensive. The incomplete supervision tasks are often roughly

categorised into two sub-types: semi-supervised learning and active learning. Ac-

tive learning still needs human annotation; in this thesis, we will not involve active

learning. In semi-supervised learning, a specially difficult case is semi-supervised

few-shot learning. In the semi-supervised few-shot learning [5], each class only has

few shots of examples that are labelled, which is insufficient to train a good learner.

In order to solve this problem, it is natural to transfer knowledge from another do-

main (via domain adaptation) that is similar to the current domain and has sufficient

labelled samples, or to transfer shared public knowledge from many similar learn-

ing tasks by meta-learning. The knowledge can be the training instances, the class

centroids [6], the distance metric in the feature space [7] and the parameters of the

neural network [8].

The last type of weakly supervised learning is inexact supervision. In the in-

exact supervision, the training samples only have coarse labels. For example, in a

cancer diagnostic application, we only know which image has a tumor but we do
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not know the location of the tumor. The settings of inexact supervision methods are

very different in different applications.

1.2 Inaccurate supervision

1.2.1 Summary of inaccurate supervision

Inaccurate supervision has received much research attention in recent years, how-

ever, most of the current studies are based on the label noise setting [9]. In the label

noisy setting, the training set ({xn}N
n=1,{yn}N

n=1) contains paired training sample

feature vector xn and the corresponding label yn, just like that in supervised learn-

ing. The main difference from supervised learning is the label yn may contain label

noise (i.e., mislabelling). The key part of the problem is how to find mislabelled

data. Most of the existing methods try to first identify/detect and then rectify misla-

belled data. After that, they either train the model on the cleaned data or relabel the

mislabelled data [10]. In [11] and [12], graph-based methods are applied to remove

suspicious mislabelled training samples. Since the label noise is related to the label,

taking into consideration the relationship between the true label and the noisy label

can help us identify the mislabelled data. Many recent studies try to model the joint

probability of true label and noisy label. In [13], the true label is viewed as a latent

variable, a transition matrix between the true label and the noise label is learned by

an EM algorithm. Northcutt.et.al [14] proposed a process that contains three steps,

pruning, counting, and ranking, to improve the efficiency of calculating the joint

probabilities of the true label and the noise label.

1.2.2 Contribution to stochastic supervision

The aforementioned methods for inaccurate supervision only focus on the label

noise setting that only allows for deterministic labels. However, in many real ap-

plications, labelled data often require expensive tests and measurements to provide

an accurate label. However, we can easily receive weak supervision such as an in-

accurate label provided by either a human or a model. The inaccurate labelled data

are often labelled by certain experts/supervisors with subjective labelling to some

extent. In many situations, an expert (or a model) even cannot provide deterministic



1.3. Incomplete supervision 21

labels. For example, in medical diagnostic, accurate diagnostic of whether a patient

has a disease may require many very expensive tests and wait for a long time to do

the test, however, we can obtain subjective diagnostic by a general practitioner or a

prediction model (such as an app in a smartphone). A prediction model or an expert

may not be perfectly sure whether a patient has a certain disease, and they can only

provide a subjective assessment. The assessment is often expressed in a probabilis-

tic manner. For example, in a classification task, the stochastic supervision can be a

softmax vector or a score vector. An illustrative example is provided in the Figure

1.1.

Compared with a given deterministic label (or a one-hot vector), the stochastic

supervision not only provides the annotator’s assessment of class belonging but also

the relation of different classes. However, there have been little research on stochas-

tic supervision models. Aitchison and Begg [15] and Krishnan and Nandy [3] first

introduced the stochastic supervision models for discriminant analysis. Tittering-

ton [4] introduced a new stochastic supervisor model that can accept assessment (a

random variable) in the range of (−∞,∞), and thus the assessment can be modeled

by Gaussian distributions. However, Titterington [4]’s model has many strict as-

sumptions. In order to generalise Titterington’s model to more settings, we provide

four generalisations of Titterington’s model in Chapter 2, making it more flexible

and generic to deal with more complicated real-world classification tasks.

1.3 Incomplete supervision

1.3.1 Summary of semi-supervised learning

Incomplete supervision also has received much attention in the machine learning

community in recent years. Incomplete supervision has many different directions,

in this thesis, we only focus on the semi-supervised setting. The illustrative example

of semi-supervised learning is shown in the Figure 1.2.

The semi-supervised learning algorithms can be roughly categorised into five

types: generative model based methods, discriminative model based methods,

graph-based methods, ensemble-based methods and deep learning based methods.
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Figure 1.1: Illustration of stochastic supervision, by comparing supervised learning and
stochastic supervision. There are mainly three aspects of the difference be-
tween supervised learning and stochastic supervision. Firstly, the stochastic
supervision model receives inaccurate supervision (probabilistic assessment)
rather than deterministic supervision. Secondly, in the stochastic supervision
model, the annotator can be either human or model. Thirdly, the stochastic
supervision model uses both features and assessments to make a prediction.
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Figure 1.2: Upper panel: illustration of semi-supervised learning. In semi-supervised
learning, the training data are partially labelled, and the model learns from
both labelled and unlabelled data. Lower panel: illustration of semi-supervised
few-shot learning, a special case of semi-supervised learning, where only few
data are labelled for each class.

[16] and [17] assume that all labelled and unlabelled data are generated by a gen-

erative model and the corresponding label of the unlabelled data is a latent vari-

able. They further proposed an EM algorithm to estimate labels of unlabelled data.

[18] and [19] proposed two discriminative model based methods. They extend the

support vector machine (SVM) to a semi-supervised setting. The semi-supervised

SVMs not only consider the labelled data but also consider the unlabelled data.

The hyper-plane is required to cross the low-density region of both labelled and

unlabelled data. [20], [21] and [22] proposed several graph-based semi-supervised

learning algorithms. In these methods, nodes of the graph represent the training

sample and edges correspond to the relation or distance between training samples.

However, these methods are transductive since the graph has to be reconstructed
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when a new instance is added to the data set. The ensemble-based semi-supervised

learning method tries to use several different classifiers to assign pseudo-labels for

unlabelled data. [23] and [24] proposed multi-view based ensemble methods. Each

base classifier is trained with different features (different views). The pseudo-label

is given by the ensemble of different base classifiers. For deep learning based meth-

ods, the temporal ensembling[25] proposed a self-ensembling method for semi-

supervised learning by taking an exponential moving average of the output of net-

works with different training epoch, different regularisation, and different augmen-

tations. The mean-teacher [26] is an upgraded temporal ensemble method. The

mean-teacher taking an exponential moving average on the model parameter rather

than the predicted labels. Comparing to temporal ensembling, the mean-teacher

can effectively and fast update ensembles when learning a large dataset [26] since

temporal ensembling can only epoch-wise update ensemble while mean-teacher can

step-wise update. Recently, there are many holistic methods try to unify state-of-

the-art methods in a single framework. The MixMatch [27] uses MixUp to mix

labelled and unlabelled data. The entropy of predicted labelled was reduced by the

sharping operation. The ReMixMatch[28] improves the MixMatch by the distribu-

tion alignment and augmentation anchor methods. The distribution alignment aligns

the marginal distribution of real label and the marginal distribution of predicted la-

bels. The augmentation anchor force the prediction of strongly augmented data

concise with the prediction of the corresponding (same input) weakly augmented

data. The FixMatch [29] further chooses the most confident pseudo labelled data

to train the model. These methods achieved state-of-the-art performances in semi-

supervised learning, however, these methods require many labelled samples and it

is hard to extend to few-shot learning tasks.

1.3.2 Contribution to semi-supervised learning with domain

adaptation

However, the above methods only use labelled training samples from a single do-

main (i.e., the task domain). In semi-supervised learning, only using the labelled

data of the specific task is often insufficient to train a high-quality model. In many
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machine learning applications, there are sufficient labelled training samples from

other related domains (tasks). Transferring useful knowledge from a correlated do-

main can improve the model’s performance in the test task. In order to exploit the

knowledge from another domain, in Chapter 3, we proposed a domain-adaptation

based method to use the training samples from another domain. Since hand pose

estimation is a typical machine learning application that suits both semi-supervised

learning and domain adaptation, we develop a novel semi-supervised learning algo-

rithm for hand pose estimation.

1.3.3 Contribution to semi-supervised few-shot learning with

meta-learning

Furthermore, semi-supervised few-shot learning is a very difficult case for semi-

supervised learning, because in the few-shot learning tasks each classification task

only contains very few labelled samples such that the labelled training samples are

too few to train a good model. It is hence natural to transfer useful knowledge from

many similar tasks and share the knowledge to each task (meta-learning) in order

to improve the model performance. In Chapter 4, we provide an ensemble-based

method for the extremely difficult semi-supervised few-shot learning task.

1.4 Aim of the thesis
As we discussed in section 1.2, since currently the stochastic supervision model still

does not receive much research attention while the existing stochastic supervision

model has relatively strong assumptions, providing generalisations of the stochastic

supervision model is worth of research. Meanwhile, as we discussed in section

1.3, the existing semi-supervised learning algorithms in hand pose estimation only

utilise labelled samples in the current domain. It is often insufficient to train a

good model so that using labelled samples from another domain potentially can

improve the model performance. For ensemble-based semi-supervised learning,

existing methods are hard to apply to few-shot learning cases. Designing a tailor-

made ensemble strategy for few-shot learning and combining with meta-learning

(by transferring knowledge from many similar tasks) potentially can improve the
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performance of semi-supervised few-shot learning algorithms.

The aim of this thesis is to develop novel methods for weakly supervised learn-

ing tasks. More specifically, the aim of the thesis is to develop novel methods

for stochastic supervision under inaccurate supervision and for the semi-supervised

learning model under incomplete supervision, both in the weakly supervised learn-

ing framework.

1.5 Structure of the thesis

In this thesis, we focus on two problems in weakly supervised learning: inaccu-

rate supervision and incomplete supervision. We propose several novel methods to

address these two problems.

For inaccurate supervision, in Chapter 2, we propose four generalisations of

the stochastic supervision model. The first generalisation extends the stochastic su-

pervision models to asymmetric assessments cases. The second generalisation ex-

tends stochastic supervision models from two-class classification to multiple class

classification. The third generalisation takes the dependence between feature and

assessment into account. The fourth generalisation generalises the stochastic su-

pervisor model to the multi-modal class case, where each class can contain several

subclasses.

For incomplete supervision, we focus on improving the semi-supervised learn-

ing algorithm by transferring knowledge from another domain or from many tasks.

In Chapter 3, we propose a novel method based on domain adaptation and implicit

density estimation for a typical application of semi-supervised learning: the pose

estimation. We use a generative adversarial net, a type of deep neural network, to

solve the implicit density estimation problem in the domain adaptation. We transfer

the knowledge of the training samples from the synthetic data domain to the real

data domain to improve the learner in the real data domain. The proposed method

achieves state-of-the-art performance.

Moreover, in Chapter 4, we focus on transferring knowledge from many tasks

to improve a very difficult semi-supervised learning problem: semi-supervised few-
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shot learning. We utilise meta-learning to transfer knowledge from many meta-

training tasks. We also propose a tailor-made ensemble method for few-shot learn-

ing to solve the pseudo-label noise problem in semi-supervised learning. Our

method also achieves the state-of-the-art performance in two widely used few-shot

learning benchmark datasets.

In Chapter 5, we provide a conclusive discussion and propose two future work:

a multiple stochastic supervision model, which extends the stochastic supervision

model to ensemble learning, and a multiple stochastic supervision ensemble for

semi-supervised few-shot classification, which combines both inaccurate supervi-

sion with incomplete supervision problems. The EM algorithms of the two future

work are also derived to fit the models.

The structure of the thesis is summarised in Figure 1.3.
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Figure 1.3: The structure of this thesis. Our contributions to weakly supervised learning
are in Chapter 2, Chapter 3, and Chapter 4. Chapter 1 is the introduction.
The work in Chapter 2 provides four new generalisations of the stochastic su-
pervision model of inaccurate supervision. The work in Chapter 3 provides
a novel domain-adaptation based method for semi-supervised learning of in-
complete supervision. The work in Chapter 4 provides a novel method for
semi-supervised few-shot learning, which is not only based on meta learning
but also based on the self-training methods (that use stochastic supervision to
provide assessments for unlabelled data). In Chapter 5 we provide conclusions
and future work.
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Chapter 2

Generalisations of stochastic

supervision models

The stochastic supervision model is an important research direction to address in-

accurate supervision problems in weakly supervised learning. When the labelling

information is not deterministic, traditional supervised learning algorithms cannot

be directly applied. In this case, stochastic supervision models provide a valuable

alternative to classification. However, these models are restricted in several aspects,

which critically limits their applicability.

In this chapter, we aim to provide four generalisations of stochastic supervi-

sion models, extending them to asymmetric assessments, multiple classes, feature-

dependent assessments, and multi-modal classes, respectively. Corresponding to

these generalisations, we derive four new EM algorithms. We show the effective-

ness of our generalisations through illustrative examples of simulated datasets, as

well as real-world examples of three widely used classification datasets, the MNIST

dataset, the CIFAR-10 dataset, and the EMNIST dataset.

2.1 Introduction

2.1.1 Inaccurate supervision of weakly-supervised learning

The aim of various statistical learning methods is to infer the class belonging y of an

input instance x. Classification and clustering are two extreme ends in the sense of

the amount of labelling information provided for the inference of y. In classification,
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the deterministic labels {yn}N
n=1 of N training instances {xn}N

n=1, represented by a

binary or multilevel categorical random variable y, are usually provided in advance

to train a classifier f (y|x) on the information from both the input and output spaces

via ({xn}N
n=1,{yn}N

n=1). The trained (supervised) classifier is then used to infer the

real label y of a test instance x. In contrast, in clustering, no labelling information

is provided at all, hence a clustering method f (y|x) is built on the information from

only the input space via {xn}N
n=1.

In between classification and clustering, there exists many weakly-supervised

classification [30, 31, 32, 33, 34] problems with various types of information pro-

vided to help inference. One example is called semi-supervised classification [35,

36], where only part of the deterministic labels {yn}N
n=1 are provided for classifier

training. Another example is called imperfect supervision [37, 38, 39, 9, 40], where

there are some wrong deterministic labels provided in {yn}N
n=1. Multiple instance

learning [41] also deals with weakly-supervised setting, where deterministic labels

are provided for bags of multiple instances rather than for each specific instance.

In this paper, we discuss another weakly-supervised classification scheme called

stochastic supervision, which, in contrast to all the cases aforementioned, provides

no deterministic labels {yn}N
n=1 but only probabilistic assessments {zn}N

n=1 for infer-

ence of y. In other words, only some side information about the output is provided.

2.1.2 Stochastic supervision model

A motivation for stochastic supervision is that, in many applications, labelled data

often require expensive tests and measurements to provide an accurate label. How-

ever, we can easily receive weak supervision such as an inaccurate label provided by

either a human or a model. These inaccurate labelled data are often labelled by cer-

tain experts or say supervisors with subjective labelling to some extent, and in many

situations, an expert (or model) cannot provide deterministic labels. For example,

in medical diagnostic, accurate diagnostic of whether a patient has a disease may re-

quire many expensive tests and wait for a very long time to do the test, however, we

can obtain subjective diagnostic by an expert (for example a general practitioner) or

a prediction model (for example an app in a smartphone). A prediction model or an
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expert may not be perfectly sure whether a patient has a certain disease, and they

can only provide a subjective assessment, which is often expressed in a probabilis-

tic manner. Although the weak supervision (probabilistic supervision) provided by

an expert/model is not perfect, however, it is greatly cheaper than an accurate real

label and often very fast to see the assessment. These probabilistic assessments can

be represented by continuous random variables, from a space different from the dis-

crete space of output label y. On the basis of these assessments (or say probabilistic

labels), the statistical classification problem, of fitting a model to the training data

and inferring the real labels of the test data, was studied under the nomenclature of

stochastic supervision [15, 3, 4, 42, 43, 44]. The stochastic supervision model aims

to improve the classification accuracy (of a given model/expert) by inferring the real

label from the probabilistic assessments and features.

The research of stochastic supervision models for discriminant analysis was

pioneered by Aitchison and Begg [15] and Krishnan and Nandy [3]. As with [3] we

assume two classes, namely class 0 and class 1, with proportions π1 and π2 = 1−π1,

respectively. In each class, the data available, including both the d-dimensional

feature vector x of an instance and its supervisor’s assessment z that the instance

belongs to class j, follow a class-dependent distribution f j(x,z), for j = 0,1. The

task is to infer the real label y of the instance (x,z).

In [3], the class-dependent joint data-generating distribution f j(x,z) was fur-

ther factorised as f j(x,z) = f j(x)q j(z), by assuming that the features x and the as-

sessment z are independent of each other in each class. By supposing the features

x are continuous random variables in the range of (−∞,∞), it was assumed that

x|y = 0 ∼ N(µ1,Σ) and x|y = 1 ∼ N(µ2,Σ), two class-dependent d-variate Gaus-

sian distributions. We denote the pdfs of x|y = 0 and x|y = 1 as f1(x) and f2(x),

respectively. In the meantime, as the probabilistic assessment z is a continuous ran-

dom variable in the range of [0,1], it was assumed that z|y = 0 ∼ Beta(a,b) and

z|y = 1∼Beta(b,a), two Beta distributions symmetric between the two classes. We

denote the pdfs of z|y = 0 and z|y = 1 as q1(z) and q2(z), respectively. That is to say,

the model in [3] assumes that the data-generating process in class j follows a Gaus-
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sian distribution f j(x) for features x and a Beta distribution q j(z) for assessment

z. Although the assessment z is given for each training instance x, the real label

(denoted by y) is unknown, which leads to the likelihood of the training instance,

or say the joint distribution of x and z, as p(x,z) = π1 f1(x,z)+π2 f2(x,z) . Hence

this is a latent variable (finite mixture) problem, and the model was fitted by an EM

algorithm in [3].

However, there are two problems with Krishnan and Nandy’s stochastic super-

vision model. Firstly, it cannot accept any assessment that z > 1 or z < 0, while

in some real problems the assessment can be a random variable in the range of

(−∞,∞). Secondly, the EM algorithm for this model is complicated, because there

is no exact solution in the M-step for the estimation of certain parameters due to the

adoption of the Beta distributions for assessment z.

In order to overcome the two issues above, Titterington [4] introduced a new

supervisor’s assessment w = log z
1−z to replace the original z. This transforma-

tion is called additive logistic transformation [45], which extends the range of the

assessment from [0,1] to the real line and thus the assessment can be modelled

by Gaussian distributions. In Titterington’s model, supervisor assessments q1(w)

and q2(w) are assumed to follow two univariate Gaussian distributions N(−∆,Ω)

and N(∆,Ω), respectively, where ∆ > 0 and Ω > 0. In this model, the constraints

of equal variances and symmetry in the assessment distributions between the two

classes are preserved. Then Titterington [4] provided an EM algorithm to estimate

parameters {π1,µ1,µ2,Σ,Ω,∆}.

2.1.3 Generalisations of the stochastic supervision model

In this chapter, we aim to generalise Titterington’s model in four aspects, to make

it more flexible and generic to deal with more complicated real-world classification

tasks. We note that the first three aspects have been suggested and discussed by

Titterington in section 5.2 of [4], though no detailed derivation was provided as we

shall present in this paper. Our four generalisations are briefly described as follows.

1. Asymmetric assessments. In both Krishnan and Nandy’s and Titterington’s

models, the two class-dependent distributions of assessments q j(z) (or q j(w))
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were symmetric and with equal variances. Our first generalisation aims to

relax this restriction on the parameter setting of supervisor’s assessments.

2. Multiple classes. The past models were for two-class discrimination. Our

second generalisation is designed for classification of multiple classes.

3. Feature-dependent assessments. In Krishhan and Nandy’s [3] and Tittering-

ton’s [4] work, the assessment and the features were modelled independent of

each other. Our third generalisation aims to model their dependence.

4. Multi-modal classes. In the past research on stochastic supervision, each class

was modelled by a Gaussian distribution, implying that there was only a sin-

gle population for each class, which we call it a uni-modal class. In our

fourth generalisation, we model the cases that each class contains multiple

subclasses, making the class a multi-modal class.

We shall detail the four generalisations in four subsections of section 2.2 along

with four EM algorithms and some numerical illustrations. In section 2.3, we

present real-data examples to demonstrate the effectiveness of the generalisations.

2.2 Generalised models and their EM algorithms

2.2.1 Generalisation-1: asymmetric stochastic supervision

The first generalisation aims to relax the assumption of the parameter setting

of supervisor’s assessments of a stochastic supervision model. In Titterington’s

model [4], the distributions of assessments in two classes are w|y = 0 ∼ N(−∆,Ω)

and w|y = 1 ∼ N(∆,Ω),w ∈ R. They are symmetric in the sense that their vari-

ances are the same and their means are the additive inverses of each other. The

symmetric assumption makes the model easy to fit, however, this assumption is not

realistic in practice. Titterington [4] also discussed this assumption and suggest to

generalise this assumption as his future work. In this work, we generalise them to

w|y = 0∼ N(∆1,Ω1) and w|y = 1∼ N(∆2,Ω2). We denote the pdfs of w|y = 0 and

w|y = 1 as q1(w) and q2(w), respectively.
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2.2.1.1 Formulation of generalisation-1

Our notation is established as follows. The observable dataset is denoted by

X = {X ,W}, the latent variable set by Y = {Y}, and the parameter set by θ =

{π1,π2,µ1,µ2,Σ,Ω1,∆1,Ω2,∆2}. X = {xn},xn ∈ Rp, W = {wn},wn ∈ R and Yn for

n = 1, . . . ,N are instances, assessments and real labels of the instances respectively.

For each instance, yn = (yn1,yn2) is a two-dimensional latent variable vector (a one-

hot vector representing its real label) such that for class j we have yn j ∈ {0,1} and

for two classes together we have ∑
2
j=1 yn j = 1. That is, yn is a latent indicator vector

with only one element being true. xn is the feature vector of a training sample, and

we assume that, for a given class, xn is Gaussian distributed: xn|yn j = 1∼ N(µ j,Σ).

Hence, for complete data (Y ,X ) = {(yn,xn,wn),n = 1, . . . ,N}, the complete-data

likelihood is

p(Y ,X ) =
N

∏
n=1
{yn1[π1 f1(xn)q1(wn)]+ yn2[π2 f2(xn)q2(wn)]} .

Since this model contains latent variables yn, we can estimate the model pa-

rameters by deriving an EM algorithm. In general, an EM algorithm [46] is an

iterative algorithm providing a maximum likelihood solution for incomplete data.

We can also use the EM algorithm for models with latent variables. In each of its

iterations, the EM algorithm has two alternating steps, the expectation (E-)step and

the maximisation (M-)step.

In the E-step, we fix current parameters and compute the expecta-

tion of the complete-data log-likelihood function with respect to the condi-

tional distributions of latent variables given observed data X : Q(θ ,θ old) =

EY |X ,θ old(log p(Y ,X |θ)).

In the M-step, we find new parameters by maximising the expectation obtained

in the E-step: θ new = argmaxθ Q(θ ,θ old).
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2.2.1.2 EM algorithm of generalisation-1

E-step For the generalisation-1, in the E-step, we compute the posterior probabili-

ties of latent variables γ(yn j) = p(yn j = 1|X ,θ). By the Bayes rule, we have

γ(yn j) =
p(xn,wn,yn j|θ)

p(xn,wn|θ)
=

π jN(xn|µ j,Σ j)N(wn|∆ j,Ω j)

∑
2
j=1 π jN(xn|µ j,Σ j)N(wn|∆ j,Ω j)

,

which are called responsibilities that class j takes for explaining xn [47].

M-step In the M-step, we take partial differential of l(θ) = Q(θ ,θ old) with respect

to θ = {π1,π2,µ1,µ2,Σ,Ω1,∆1,Ω2,∆2} and set it equal to zero to obtain updated

parameters θ new. It follows that

µ
new
1 =

N
∑

n=1
γ(yn1)xn

N
∑

n=1
γ(yn1)

, µ
new
2 =

N
∑

n=1
γ(yn2)xn

N
∑

n=1
γ(yn2)

,

indicating that the updated mean µnew
j of the features in class j becomes a weighted

average of all data points from the two classes, weighted by the responsibilities; and

similarly

∆
new
1 =

∑
N
n=1 γ(yn1)wn

∑
N
n=1 γ(yn1)

, ∆
new
2 =

∑
N
n=1 γ(yn2)wn

∑
N
n=1 γ(yn2)

,

i.e., the updated mean ∆new
j of assessments in class j becomes a weighted average

of all assessments over the two classes.

Also, the updated covariance matrix of the features is

Σ
new =

N
∑

n=1

2
∑
j=1

γ(yn j)(xn−µ j)(xn−µ j)
T

N
∑

n=1

2
∑
j=1

γ(yn j)

,

a weighted pooled covariance matrix; and similarly the updated variances of class-

specific assessments are

Ω
new
1 =

∑
N
n=1 γ(yn1)(wn−∆1)

2

∑
N
n=1 γ(yn1)

, Ω
new
2 =

∑
N
n=1 γ(yn2)(wn−∆2)

2

∑
N
n=1 γ(yn2)

.
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Since the two mixing weights have to satisfy π0 + π1 = 1, we can set

∂ l(θ)/∂π j + λ = 0, where λ is a Lagrange multiplier. It then follows that

πnew
1 = 1

N

N
∑

n=1
γ(yn1) , πnew

2 = 1−πnew
1 , indicating that each of the updated mixing

weights is an average of the responsibilities.

2.2.1.3 Illustrative examples for generalisation-1
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Figure 2.1: (a) Supervisor assessments with equal variances and symmetrical means be-
tween the two classes. Red curve: assessments density estimated by Tittering-
ton’s model. Blue curve: assessments density estimated by the generalisation-
1. (b) Supervisor assessments with unequal variances and asymmetrical means
between the two classes. The rest caption is as for Figure 2.1(a).

As shown in Figure 2.1(a) and Figure 2.1(b), compared with Titterington’s

original model, the generalisation-1 is more flexible in accommodating the distri-

butions of supervisor’s assessments of various shapes. Let us appreciate it from two

aspects.

Firstly, we simulate the supervisor’s assessments from two Gaussian distribu-

tions with equal variances and symmetrical means; this setting satisfies the assump-

tion underlying Titterington’s model. In this case, as shown in Figure 2.1(a), the

generalisation-1 performs similarly to Titterington’s model.

Secondly, we simulate the supervisor’s assessments from two Gaussian dis-

tributions with unequal variances and asymmetrical means; this setting does not

satisfy the assumption underlying Titterington’s model. In this case, as shown in

Figure 2.1(b), the generalisation-1 has much better fitting performance than Titter-

ington’s model.
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(a) (b)

(c)

Figure 2.2: Three extreme cases of supervisor assessments. (a) Supervisor assessments
with large unequal variances and symmetrical means between the two classes.
Red curve: assessments density estimated by Titterington’s model. Blue curve:
assessments density estimated by the generalisation-1. (b) Supervisor assess-
ments with large equal variances and asymmetrical means between the two
classes. The rest caption is as for Figure 2.2(a). (c) Supervisor assessments
with large unequal variances and asymmetrical means between the two classes.
The rest caption is as for Figure 2.2( a).

Besides the moderate unequal variances and asymmetrical case shown in Fig-

ure 2.1(b), we also present the superior fitting performances of the generalisation-

1 in three extreme cases in Figure 2.2: supervisor’s assessments simulated from

two Gaussian distributions with large unequal variances and symmetrical means in

Figure 2.2(a), large equal variances and asymmetrical means in Figure 2.2(b) and

large unequal variances and asymmetrical means in Figure 2.2(c). Obviously, the

generalisation-1 can provide better fittings than Titterington’s model under these

extreme unequal variances and asymmetrical cases.
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2.2.2 Generalisation-2: multi-class stochastic supervision

Original stochastic supervision models were only for two-class discrimination. In

practice, multi-class classification problems are also prevailing. Hence here we

extend Titterington’s model to multi-class cases, as suggested by Titterington [4].

2.2.2.1 Formulation of generalisation-2

Suppose there are J classes. As with [4], the supervisor’s assessment of an instance

x is now a J-variate vector of ‘probabilities’, z = (z1, . . . ,zJ), and we can define a

new assessment vector w j = log z j
zJ

for j = 1, . . . ,J−1, which extends the supervi-

sor’s assessments from (0,1) to (−∞,∞). Then we can assume that, for each class

j, the assessments w= (w1, . . . ,wJ−1) follow (J−1)-variate Gaussian distributions:

q j(w) = N(∆ j,Ω j), where q j(w) is the pdf of w|y = j.

Then, given the real label yn = (yn1, . . . ,ynJ) is unknown, the joint distribu-

tion of the observed features xn and assessment wn of the nth instance becomes

p(xn,wn) = ∑
J
j=1 π j f j(xn,wn), where f j(xn,wn) = f j(xn)q j(wn) and π j = p(yn j =

1) is the mixing weight of class j.

Before going further, we recall some notation to be used for the generalisation-

2:

• set of the latent labels Y = {yn}, for n= 1, . . . ,N, where yn is a J-variate latent

vector of real labels, and we have yn j ∈ {0,1} and ∑
J
j=1 yn j = 1;

• set of the class mixing weights Π= {π j}, for j = 1, . . . ,J, where π j is a scalar;

• set of the class means U = {µ j}, for j = 1, . . . ,J, where µ j is a d-variate

vector;

• set of the class covariances Σ = {Σ j}, for j = 1, . . . ,J, where Σ j is a d× d

matrix;

• set of the assessment means ∆ = {∆ j}, for j = 1, . . . ,J, where ∆ j is a (J−1)-

variate vector; and

• set of the assessment covariances Ω = {Ω j}, for j = 1, . . . ,J, where Ω j is a

(J−1)× (J−1) matrix.
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In order to make it clear, I will use a 1000 class(J=1000) classification task as an

example. In this classification task, z = (z1, . . . ,z1000) is a 1000 dimensional soft-

max vector. The real label yn = (yn1, . . . ,yn1000) is a 1000 dimensional one-hot

vector. In order to derive the EM algorithm in a non-trivial case, we use the logis-

tic transformation (w j = log z j
z1000

) to transform the z. The transformed assessment

w = (w1, . . . ,w999) is a 999 dimensional real value vector. We assume w are mix-

ture of Gaussian distributed with 1000 components (since we have 1000 classes).

For each component, q j(w) = N(∆ j,Ω j) is a 999 dimensional Gaussian distribu-

tion.

In this notation, the parameter set for the generalisation-2 is θ = {Π,U,Σ,∆,Ω};

the complete-data likelihood of observed data X and latent data Y is

p(Y ,X |θ) = ∏
N
n=1 ∑

J
j=1 yn j[π jN(xn|µ j,Σ j)N(wn|∆ j,Ω j)], and the marginal like-

lihood of observed data X is p(X |θ) = ∏
N
n=1 ∑

J
j=1 π jN(xn|µ j,Σ j)N(wn|∆ j,Ω j).

2.2.2.2 EM algorithm of generalisation-2

E-step In the E-step we can update posterior distribution of latent variables by set-

ting qnew(Y ) = p(Y |X ,θ old). Since

p(Y |X ,θ old) =
N

∏
n=1

∑
J
j=1 yn j[π jN(xn|µ j,Σ j)N(wn|∆ j,Ω j)]

∑
J
j=1 π jN(xn|µ j,Σ j)N(wn|∆ j,Ω j)

,

we have the class responsibilities as

γ(yn j) =
π jN(xn|µ j,Σ j)N(wn|∆ j,Ω j)

∑
J
j=1 π jN(xn|µ j,Σ j)N(wn|∆ j,Ω j)

.

M-step In the M-step, we update θ by θ new = argmaxθ ∑Y qnew(Y ) log p(Y ,X |θ).

Since the mixing weights π j satisfy the sum-to-one constraint, as in section 2.2.1

we introduce a Lagrange multiplier λ and set ∂ l(θ)/∂π j + λ (∑J
j=1 π j − 1) = 0,

which results in the updated mixing weights as πnew
j = 1

N

N
∑

n=1
γ(yn j), which is again

an average of the responsibilities over all the data points. Similarly to the M-step in

section 2.2.1, we can obtain the updated means and covariance matrices of features
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and assessments as

µ
new
j =

N
∑

n=1
γ(yn j)xn

N
∑

n=1
γ(yn j)

, Σ
new
j =

N
∑

n=1
γ(yn j)(xn−µ jk)(xn−µ jk)

T

N
∑

n=1
γ(yn j)

,

∆
new
j =

N
∑

n=1
γ(yn j)wn

N
∑

n=1
γ(yn j)

, Ω
new
j =

N
∑

n=1
γ(yn j)(wn−∆ j)(wn−∆ j)

T

N
∑

n=1
γ(yn j)

.

2.2.2.3 An illustrative example for generalisation-2

In Figure 2.3(a), we depict a simple example of three classes with a one-dimensional

feature x (in the horizontal axis) and one dimension of the assessment w (in the

vertical axis). The joint distribution of the feature and the assessment is thus a

three-component mixture of Gaussian distributions. Figure 2.3(a) shows that the

generalisation-2 works in this case. From Figure 2.3(b), we can observe that the

feature’s distributions of the three classes seriously overlap. However, with the

assessments information added, we can see that the three classes are much more

separable, as shown in Figure 2.3(a).

2.2.3 Generalisation-3: feature-dependent stochastic supervi-

sion

The original stochastic supervision model assumes features and assessments are in-

dependent. This is a strong assumption since in reality features and assessments

are dependent (From the table 2.1, we can see in reality feature and assessment are

dependent). Titterington [4] was also aware of this problem and he suggested to

generalise the stochastic supervision model to the scenarios that the supervisor’s

assessment w is dependent on the features x. In the generalisation-3, we assume

that there is a linear relationship between the assessment and the features. To check

the validity of this assumption, we can calculate the Pearson correlation coefficient

between x and w or the adjusted R2 [48] when regressing w against x. In the exper-
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Figure 2.3: (a) Joint distribution of feature and (one dimension of) assessment for three
classes in red, blue, and green, respectively. The contour plots were estimated
by the generalisation-2. Each contour is labelled by its corresponding density.
(b) Distributions of the feature for three classes in red, blue, and green, respec-
tively.
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iment part, we also checked this assumption.

2.2.3.1 Formulation of generalisation-3

The formulation of this generalisation is quite similar to that of the original stochas-

tic supervision model, except that the distribution of assessment is now conditional

on the features by replacing q j(w) with q j(w|x). This makes the joint distribution

of (xn,wn) as p(xn,wn) = ∑
J
j=1 π j f j(xn)q j(wn|xn).

As suggested in [4], a simple way to model q j(wn|xn) is to use the Gaussian

distribution N(α j + β T
j xn,Ω j), and in this case the joint distribution f j(xn,wn) is

simply another Gaussian distribution N(ν j,Ψ j), where

ν j =

 µ j

α j +β T
j µ j

 , Ψ j =

 Σ j Σ jβ j

β T
j Σ j Ω j +β T

j Σ jβ j

 ,

α j is a (J−1)-variate vector, and β j is a d× (J−1) matrix.

2.2.3.2 EM algorithm of generalisation-3

E-step In the E-step, we can compute the responsibilities as

γ(yn j) =
π j f j(xn,wn)

∑
J
j=1 π j f j(xn,wn)

.

M-step In the M-step, we can update ν j by setting

ν j =
∑

N
n=1 γ(yn j)an

∑
N
n=1 γ(yn j)

,

where an is a concatenated vector of xn and wn. Similarly, the updated covariance

matrix is

Ψ j =
∑

N
n=1 γ(yn j)(an−ν j)(an−ν j)

T

∑
N
n=1 γ(yn j)

.

2.2.3.3 An illustrative example for generalisation-3

A simple example of dependent assessment and feature is illustrated in Figure 2.4.

The joint distribution of assessment and feature follows a bivariate Gaussian dis-

tribution with positive non-diagonal elements in the covariance matrix. The y-axis
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Figure 2.4: Joint distributions of feature and assessment. Dashed contour plots were esti-
mated by Titterington’s original stochastic supervision models. Solid contour
plots were estimated by the generalisation-3. Each contour is labelled by its
corresponding density.

in Figure 2.4 shows the assessment while the x-axis shows the feature. The Pear-

son correlation coefficient between the feature and assessment of the blue class is

0.8378 while that of the red class is 0.2994. It is clear that, compared with Tit-

terington’s original model, which assumes the independence between features and

assessments, the generalisation-3 fits the joint distribution of the feature and the

assessment much better, when they are indeed dependent.

2.2.4 Generalisation-4: multi-modal classes

In the original work of Krishnan and Nandy’s model [3] and Titterington’s model [4]

and the three generalisations we have presented, each class is modelled by a Gaus-
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sian distribution, implying that there was only a single population for each class,

which we call a uni-modal class. In practice, however, the distribution of each

class can be much complicated, often having multiple modes, which cannot be de-

scribed by a standard probabilistic distribution. In this context, we propose our

generalisation-4 to model the cases that each class contains multiple subclasses,

which makes the class a multi-modal class.

In fact, almost all continuous densities can be approximated with arbitrary ac-

curacy by a mixture of Gaussian distributions [47]. For supervised discriminant

analysis, the mixture of Gaussians have been studied well in [49, 50, 51, 52]. In

the scenario of the stochastic supervision model, which is not deterministically su-

pervised and is itself a mixture of Gaussians, we extend the model to a mixture of

mixtures of Gaussian distributions [53, 54].

2.2.4.1 Formulation of generalisation-4

Suppose there are J classes and, for each class j, there are K j subclasses. The total

number of subclasses is K = ∑
J
j=1 K j.

We assume for each subclass the features x follow a Gaussian distribution

N(µ jk,Σ jk), such that each class can be modelled by a mixture of Gaussian dis-

tributions f j(x): f j(xn) = ∑
K j
k=1 φ jkN(µ jk,Σ jk), where φ jk = p(tn jk = 1|yn j = 1) is

the mixing weight of subclass k within class j, and tn j = (tn j1, . . . , tn jK j) is a latent

vector, such that tn jk ∈ {0,1} indicating the membership of a subclass belonging to

a class, and ∑
K j
k=1 tn jk = 1.

Given that the real label is also unknown and the instances were generated

from J different classes, we have the distribution of features x as a mixture of J

different mixtures f j(x) of Gaussian distributions: p(xn) = ∑
J
j=1 π j f j(xn) , where

π j = p(yn j = 1) is the mixing weight of class j in the whole dataset, and yn =

(yn1, . . . ,ynJ) is a latent variable vector of real class label such that yn j ∈ {0,1} and

∑
J
j=1 yn j = 1.

Moreover, as before, for each class j, the supervisor’s assessment w follows a

univariate Gaussian distribution N(∆ j,Ω j).

The notation for the generalisation-4 can be summarised as
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• set of features X = {xn}, for n = 1, . . . ,N;

• set of the supervisor’s assessments W = {wn}, for n = 1, . . . ,N;

• set of the latent class labels Y = {yn}, for n = 1, . . . ,N;

• set of the latent subclass labels T = {tn jk}, for n = 1, . . . ,N, j = 1, . . . ,J,

k = 1, . . . ,K j};

• set of the class mixing weights Π = {π j}, for j = 1, . . . ,J;

• set of the subclass mixing weights Φ = {φ jk}, for j = 1, . . . ,J, k = 1, . . . ,K j;

• set of the subclass means U = {µ jk}, for j = 1, . . . ,J, k = 1, . . . ,K j;

• set of the subclass covariances Σ = {Σ jk}, for j = 1, . . . ,J, k = 1, . . . ,K j;

• set of the assessment means ∆ = {∆ j}, for j = 1, . . . ,J; and

• set of the assessment covariances Ω = {Ω j}, for j = 1, . . . ,J.

We also define X = {X ,W}, T = {Y,T}, and θ = {Π,Φ,U,Σ,∆,Ω}. The

complete-data likelihood becomes

p(X ,T |θ) =
N

∏
n=1

J

∑
j=1

K j

∑
k=1

yn jtn jk[π jφ jkN(xn|µ jk,Σ jk)N(wn|∆ j,Ω j)],

and the marginal likelihood of the features becomes

p(X ) =
N

∏
n=1

J

∑
j=1

{
π jN(wn|∆ j,Ω j)

K j

∑
k=1

φ jkN(xn|µ jk,Σ jk)

}
.

2.2.4.2 EM algorithm of generalisation-4

The EM algorithm to fit the model can be derived as follows.
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E-step In the E-step we can update distribution of latent variables by setting

qnew(T ) = p(T |X ,θ old). We can update the class responsibilities by setting

γ(yn j) = p(yn j = 1|X ,θ old), and the subclass responsibilities by setting r(tn jk) =

p(tn jk = 1|X ,θ old), which lead to

γ(yn j) =
∑

K j
k=1 π jφ jkN(xn|µ jk,Σ jk)N(wn|∆ j,Ω j)

∑
J
j=1 ∑

K j
k=1 π jφ jkN(xn|µ jk,Σ jk)N(wn|∆ j,Ω j)

and

r(tn jk) =
π jφ jkN(xn|µ jk,Σ jk)N(wn|∆ j,Ω j)

∑
J
j=1 ∑

K j
k=1 π jφ jkN(xn|µ jk,Σ jk)N(wn|∆ j,Ω j)

.

M-step In the M-step, we can update θ by θ new = argmaxθ ∑T qnew(T ) log p(T ,X |θ).

It follows that

π
new
j =

N
∑

n=1
γ(yn j)

N
, φ

new
jk =

N
∑

n=1
r(tn jk)

N
∑

n=1
γ(yn j)

, µ
new
jk =

N
∑

n=1
r(tn jk)xn

N
∑

n=1
r(tn jk)

,

∆
new
j =

N
∑

n=1
γ(yn j)wn

N
∑

n=1
γ(yn j)

, Σ
new
jk =

N
∑

n=1
r(tn jk)(xn−µ jk)(xn−µ jk)

T

N
∑

n=1
r(tn jk)

,

Ω
new
j =

N
∑

n=1
γ(yn j)(wn−∆ j)(wn−∆ j)

T

N
∑

n=1
γ(yn j)

.

2.2.4.3 An illustrative example for generalisation-4

Figure 2.5(a) and Figure 2.5(b) illustrate an example of generalisation-4 for two

classes, Class-A with a mixture of two Gaussian subclasses while Class-B with a

mixture of three Gaussian subclasses. In this case, Class-A and Class-B are difficult

to be modelled well by a single Gaussian distribution, if the original Titterington’s

model is adopted. Our generalisation-4, however, can handle such a complicated

dataset, as shown in Figure 2.5(a). Moreover, comparing Figure 2.5(a) and Fig-
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Figure 2.5: (a) Joint distributions of feature and assessment for two classes with subclasses:
Class-A with two subclasses (red); Class-B with three subclasses (blue).
Dashed contour plots were estimated by Titterington’s original stochastic su-
pervision models. Solid contour plots were estimated by the generalisation-4.
Each contour is labelled by its corresponding density. (b) Distributions of fea-
ture for two classes with subclasses: Class-A with two subclasses (red); Class-
B with three subclasses (blue).
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ure 2.5(b), we can also observe that the data became more separable when the as-

sessment information is added to the model: in Figure 2.5(b) there is a large overlap

between the two classes when only the feature is used while in Figure 2.5(a) the

two groups of points became separable when the feature and assessment are jointly

modelled.

2.3 Real-data experiments
In stochastic supervision, as no deterministic labels were available to training, we

cannot compare its classification performance to supervised learning methods such

as linear discriminant analysis and support vector machines; on the other hand,

it would also be unfairly to favour stochastic supervision if we evaluate it with

unsupervised clustering methods such as k-means, given the latter does not even

provide any assessment information. Hence we only compare our generalisations

with other stochastic supervisors like Titterington’s model, the comparison with

which has been demonstrated in the previous sections with simulated data, and in

the following experiments with real-world data.

In our experiments, the asymmetric and multi-class settings of generalisation-

1 and generalisation-2 are also contained by the generalisation-3 and the

generalisation-4. Actually, generalisation-3 and generalisation-4 are two differ-

ent settings of generalisation-1 so that when we compare generalisation-3 and

generalisation-4 with the original one, the generalisation-1 already been evalu-

ated. It is same for the generalisation-2. When we compare generalisation-3 and

generalisation-4 with the original one, the generalisation-2 already been evaluated.

2.3.1 Real-world datasets

We use three famous real-world datasets in our experiments: the MNIST

dataset [55] is used to evaluate the effectiveness of the generalisation-3, the CIFAR-

10 dataset [56] is used to evaluate that of the generalisation-4 and the EMNIST

dataset [57] is used to evaluate both generalisations.

In MNIST, we aim to classify handwritten digits 3 and 5, which are hard to dis-

tinguish. The assessment and features show a strong linear relationship in these two
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classes, as shown in Table 2.1. In CIFAR-10, we divide the whole dataset into two

large classes: the animal class (which includes bird, cat, deer, dog, frog, and horse)

and the transportation class (which includes airplane, automobile, ship, and truck).

This setting is reasonable for the generalisation-4, because the two large classes

contain several subclasses. In EMNIST, we aim to classify three large classes: the

digits class, the capital letters class, and the lower cases class. These three classes

have 47 subclasses, including 10 digits subclasses, 26 capital letters subclasses,

and 11 lowercase subclasses. In order to check the linear relationship between fea-

tures and assessment, the adjusted-R-square between the assessment and features

are shown in Table 2.1. Thus the EMNIST data is a mixture of feature-dependent

assessments and multi-modal classes and is suitable to test both generalisations 3

and 4.

Dataset
MNIST EMNIST

Digit 5 Digit 3 Capital Letters Digits Lowercases

Adjusted R2 0.9801 0.9585 0.5585 0.6021 0.6050

Table 2.1: Adjusted R2 when regressing the assessment against the features for the
MNIST and EMNIST datasets.

2.3.2 Experiment settings

2.3.2.1 Assessments generation

Considering that stochastic supervision has assessments only and thus is not a su-

pervised learning model, during the model training we need to ignore the labelling

information and before the training we need to ‘generate’ the supervisor’s assess-

ments.

For the MNIST data, since we only implement the two class classification task,

to generate such assessments we use logistic regression to generate the probabilities

that an instance belongs to two classes as appropriate assessments. Note that the

dependency between features and assessments in the generalisation-3 is satisfied

when such an approach is adopted to generate assessments, because the posterior

probabilities generated are dependent on the features. For the EMNIST data with
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more than two classes, we use a Naive Bayes classifier to generate the posterior

probabilities as assessments.

Based on the assessments only, a simple intuitive approach to inferring y is to

directly compare different elements of assessments. For example, for a two-class

problem, let y = 1 if w > 0 and y = 0 otherwise; and for a J-class problem, set

y = argmax j∈{1,...,J} z j (or y = argmax j∈{1,...,J−1}w j if at least one w j > 0, and

y = J otherwise).

2.3.2.2 Parameters initialisation

Note that in the following initialisation settings, the samples that belong to class j

are determined by assessments rather than true labels, because we cannot use true-

label information for stochastic supervision methods.

In Titterington’s model, the EM algorithm needs initial values of parameters

π j, µ j, Σ, ∆ and Ω. Here we use the sample estimates to initialise these parameters:

π j is the fraction of the estimated number of samples in class j over the total number

of samples N, µ j is the sample mean of the samples, ∆ is the sample mean of the

assessments of class 1 and −∆ for class 2, and Σ and Ω are the pooled covariance

matrices of the features and the assessments over all J classes, respectively.

In the generalisation-3, α j and β j are obtained from the linear regression of the

samples in the jth class against their associated w. The EM algorithm of this model

needs initial values of π j, µ j, Σ j, and Ω j. We use the same initialisation settings of

π j and µ j as those for Titterington’s model. Similarly, Σ j and Ω j are initialised as

the sample covariances of the features and the assessments of class j, respectively.

In the generalisation-4, for CIFAR-10 there are 6 subclasses for animal and 4

for transportation and for EMNIST there are 10 subclasses for digits, 26 for capital

letters and 11 for lowercases. The EM algorithm of this model needs initial values

of the following parameters: π j, φ jk µ jk, Σ jk, ∆ j and Ω j. The initialisation of π j

and Ω j is the same as that for the generalisation-3; ∆ j is initialised as the sample

mean of the assessments of samples in class j. To initialise the subclass mean µ jk,

covariance matrix Σ jk and mixing weight φ jk, we apply k-means to class j: µ jk and

Σ jk are set to the subclass means and covariance matrices estimated by k-means
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on class j, respectively, and φ jk is set to the fraction of the number of samples in

subclass k of class j over the total number of samples in class j.

2.3.2.3 Validation settings

Since the stochastic supervision models require a supervisor to provide assessments,

we use a validation set to train the supervisor to provide assessments for the training

set and the test set. For the training set, we discard the real label and use the assess-

ment from the supervisor model and the training data jointly train the model. For

the test set, we perform many tests to evaluate the proposed methods. We random

sample test data from the whole test set. During each testing, we use both test data

and assessment to predict the real label. We repeat the test many times and record

classification accuracy to draw boxplots to compare the proposed extension with the

original stochastic supervision model.

In the MNIST dataset, we randomly select 2500 samples for each class in the

validation set. The training set contains 2500 training samples for each class. The

training set and the validation set and the test sets have no overlapping. We perform

20 tests; for each test, 1000 samples are randomly selected to test. We record the

classification accuracies on the test sets for all 20 evaluations.

In the CIFAR-10 dataset, we use the training/test split provided by Krizhevsky

and Hinton [56], where the training set contains 50000 images with 30000 for the

animal class and 20000 for the transportation class. In order to construct the vali-

dation set, we further divide the 50000 images in the training set into two datasets:

a validation set contains 25000 samples and a training set contains 25000 samples.

The test set contains 10000 images with 6000 for the animal class and 4000 for the

transportation class. For each experiment, we use all the training samples to train

the model and randomly select 1000 images from the test set to evaluation. We

repeat the procedure 20 times and record the 20 classification accuracies on the test

sets. All images are transformed to greyscale in the experiments.

In the EMNIST dataset, we divide the 3000 images from each subclass to a

training set with 1200 images, a validation set with 1200 images, and a test set with

600 images. The assessments of the training images of each subclass are generated
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by the Naive Bayes model trained from the validation images. For each experiment,

we use all 1200× 47 training images to train the model and randomly select 1000

images from the whole test set with 600× 47 images to test. We repeat the proce-

dure 20 times and record the 20 classification accuracies on the test sets. The pixel

values of the margin part of images in EMNIST are zeros, which leads to singular

covariance matrices. Thus we add small white noises to these images to make the

covariance matrices invertible. Since Titterington’s model is used for binary classi-

fication and we have three classes here, the one-versus-all strategy [58] is applied

here for Titterington’s model.

2.3.3 Results

In our experiments, since generalisation-3 and generalisation-4 already contain the

assumption of generalisation-1, they are two different settings of generalisation-

1. When we compare generalisation-3 and generalisation-4 with the origi-

nal one, we already evaluate generalisation-1. It is same for generalisation-2

since generalisation-3 and the generalisation-4 already contain the assumption

of generalisation-2. In order to illustrate the improvement of generalisation-1 and

generalisation-2, I provide the evaluation result in the table 2.2 and table 2.3.

Table 2.2: Comparing the generalisation-1 with the original model on two-class classifica-
tion tasks.

Setting Symmetric assessment Asymmetric assessment
Model Original Generalisation-1

Model’s setting Generalisation-3 Generalisation-4
Data set MNIST/CIFAR-10 MNIST CIFAR-10

Average accuracy 0.836/0.709 0.874 0.72

Classification accuracies on the 20 test sets of MNIST, CIFAR-10 and EM-

NIST are boxplotted in Figure 2.6, Figure 2.7 and Figure 2.8, respectively. It is

clear that the generalisation-3 and the generalisation-4 have higher boxes than Tit-

terington’s model in Figure 2.6 and Figure 2.7. This indicates the effectiveness of

our generalisations when the data satisfy the associated conditions: in our experi-

ments, the MNIST dataset satisfies the feature-assessment dependency condition in
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Table 2.3: Comparing the generalisation-2 with the original model on multi-class classifi-
cation tasks.

Setting Two-class(one-versus-all) Multi-class
Model Original Generalisation-2

Model’s setting Generalisation-3 Generalisation-4
Data set EMNIST EMNIST EMNIST

Average accuracy 0.401 0.403 0.502

the generalisation-3 and the CIFAR-10 dataset satisfies the multi-modality condi-

tion in the generalisation-4.

For the EMNIST data, the generalisation-3 and generalisation-4 produce

higher boxes than Titterington’s model and the generalisation-4 has the best clas-

sification performance. This also shows the effectiveness of our models. Note

that here the generalisation-4 has much better classification performance than the

generalisation-3. One possible reason is that the multi-modal classes have more ef-

fect on the final results than the feature-dependent assessment, since the subclasses

in each large class are clearly defined while the linear relationship between the as-

sessment and features is not strong, as shown in Table 2.1. We also note that there

is a large space for improvement in classification accuracy of EMNIST. By devel-

oping a new method that can deal with feature-dependent assessments and multi-

modal classes together, we may further improve the classification performance on

complex data such as EMNIST. We list this as our future work in the conclusions

section.

2.4 Conclusions

In this chapter, we extended stochastic supervision models in four aspects, general-

ising them to asymmetric assessments, multiple classes, feature-dependent assess-

ments, and multi-modal classes, respectively, to enhance their applicability. The

experiments on both simulated data and real-world data demonstrate the effective-

ness of our generalisations.
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Figure 2.6: Classification accuracies of Titterington’s model and the generalisation-3 on
20 test sets of MNIST. Comparing to the original stochastic supervision model,
our generalisation-3 has higher classification accuracy on the MNIST dataset.

2.5 Future work

In the future, to enhance further our models’ flexibility and generality, we shall

explore nonlinear modelling for the relationship between assessments and features,

as well as more sophisticated techniques for multi-modality modelling.

Except for nonlinear relations, the multiple supervisors is an important direc-

tion since multiple supervisors can not only increase the flexibility of the stochas-

tic supervision models but also increase the model performance by assembling the

assessments of different supervisors. Furthermore, since the multiple stochastic su-

pervision model is closely related to ensemble learning, the ensemble of multiple

stochastic supervision is an important problem to discuss and explore.
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Figure 2.7: Classification accuracies of Titterington’s model and the generalisation-4 on
20 test sets of CIFAR-10. Comparing to the original stochastic supervision
model, our generalisation-4 has higher classification accuracy on the CIFAR-
10 dataset.

Utilising the stochastic supervision model for semi-supervised learning is an-

other interesting direction since in semi-supervised learning we can use the labelled

sample to train an initial model and use the initial model to provide assessments

for unlabelled samples. This method is also closely related to self-training. Since

most existing self-training methods do not take the distribution of assessments into

account, using the stochastic supervision model for semi-supervised learning po-

tentially can improve the model performance.

Moreover, instead of using a fixed threshold of w to infer y, we propose to learn

this threshold from data. Since we use the transformation wi = logzi/zJ to transform

a softmax vector to a (J−1) dimensional normal distributed random variable, learn-

ing the threshold of w is equivalent to giving different weights to different classes.
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Figure 2.8: Classification accuracies of Titterington’s model, generalisation-3 and
generalisation-4 on 20 test sets of EMNIST. Comparing to the original stochas-
tic supervision model, our generalisation-3 and generalisation-4 has higher
classification accuracy on the EMNIST dataset.

By utilising the learned threshold, our model can adapt to more real-world scenar-

ios where different classes have different importance. In addition, we propose to

develop new algorithms that can provide superior classification performances under

more complex situations, e.g. with both feature-dependent assessment and multi-

modal classes.
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Chapter 3

Semi-supervised domain adaptation

with implicit importance weight

estimation for hand pose

Semi-supervised learning is a typical setting of incomplete supervision in weakly

supervised learning. Compared with supervised learning, semi-supervised learning

is a more general setting in machine learning applications. However, it is often in-

sufficient to train a good model if we only utilise the limited number of labelled data

of the task. In many machine learning applications, such as hand pose estimation,

there are only a limited number of labelled real data since labelling by humans is

expensive, but fortunately, there are plenty of labelled training samples in the syn-

thetic data, for example, of hand pose images. Therefore, we expect that transferring

knowledge of training instances and feature representation from the synthetic data

can improve the model performance of the semi-supervised learning algorithm.

Since hand pose estimation is a typical task suitable for semi-supervised learn-

ing and domain adaptation, in this chapter we develop a semi-supervised learning

algorithm with domain adaptation for hand pose estimation. We propose a domain

adaptation method to address the insufficient labelled real data in semi-supervised

learning under the covariate shift assumption. Since there is no explicit density

function for complicated features of hand pose data, the classic importance weight

estimation methods (e.g. density ratio estimation based on explicit distributions) fail
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in this case. Therefore, we use a deep neural network to estimate the importance

weights for implicit data distributions. Our method achieves the state-of-the-art

performance on the most widely used benchmark dataset, and we show that our

weighted loss outperforms its unweighted counterparts.

3.1 Introduction

Semi-supervised learning is an important topic in the applications of machine learn-

ing, since in many applications it is hard to get enough labelled real training sample

while unlabelled samples are easy to collect. Hand pose estimation is a machine

learning application which is suit for semi-supervised learning. Hand pose esti-

mation aims to infer the 3D locations of hand joints from one or a few images.

It is a crucial task in many applications, such as virtual/augmented reality, human-

machine interaction, and vision-based human action/activity understanding. In hand

pose estimation accurate labelling of 3D hand poses by human annotators is expen-

sive and time-consuming however, unlabelled samples are very cheap to collect.

Recently, deep learning based methods have received success in many machine vi-

sion applications [59]. For the pose estimation problem, deep learning models can

solve the feature learning and pose prediction tasks in an end-to-end manner and

have achieved the state-of-the-art performance [60]. However, these methods re-

quire a great quantity of accurately labelled real images as training samples.

In order to reduce the required amount of labelled real data of hand poses,

several attempts have been made to apply pure semi-supervised learning without

knowledge transfer from synthetic data to hand pose estimation [61, 62], since semi-

supervised learning methods only require a partially labelled training set. However,

semi-supervised learning based approaches build on a small set of labelled real

images, while such a small training set often comes from only a subset of the mul-

timodal population. For example, in hand pose estimation applications, labelled

training samples often from one or few people, however, the test set usually con-

tains samples from many different people. That is, the training set may only contain

little information of the test data. Since labelled training samples only cover few
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mode of the multi-mode distribution of the test set, the distributions of training

samples and test samples can also be quite different.

In order to complete the insufficient labelled training samples, it is necessary

to transfer knowledge of training instances and feature representation from labelled

synthetic data. Many recent studies have tried to use synthetic images created by

computer graphic software [63, 64, 65], since acquiring labelled synthetic images is

much cheaper and easier. However, since real images and synthetic images belong

to different domains (features from real images and features from synthetic images

have different distributions), exploiting labelled synthetic images introduces a do-

main gap to model fitting, resulting in a dataset shift problem in machine learning,

and thus the model fitted by synthetic images usually has a suboptimal performance

on the test set of real images. However, underlying most machine learning algo-

rithms, it is assumed that the test data and the training data have a similar distri-

bution. As discussed above, this assumption is too strong to the synthetic images

based or semi-supervised learning based hand pose estimation applications: when

the training data and the test data have different distributions, the performance of

the fitted model on the test data is prone to a remarkable decline.

In this chapter, we aim to propose an improved semi-supervised method based

on transfer knowledge of training instances and feature representation from syn-

thetic data and address the dataset shift problem that appears in both synthetic im-

ages based methods and semi-supervised learning based methods for hand pose es-

timation. The motivation of this work is illustrated in Figure 3.1. As shown in [66],

the dataset shift problem can be solved through reweighting training samples by the

density ratio between the test set and the training set. After the reweighting, the

expected loss on the test data can reach the minimum. That is, we minimise the

expected test loss by re-weighting instances in the source domain (training set): in-

stances that are more similar to the ones in the target domain (test set) are weighted

more. However, both the feature distribution of synthetic images and the feature

distribution of real images are, unfortunately, unknown implicit distributions, so

that the classical importance weight estimation methods cannot apply here since we
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cannot explicitly compute the density ratio. Therefore, in this paper, we propose

a domain adaptation method to estimate the weight of each training instance by a

weighting net. The relationship between the expected test loss minimisation and

the optimisation of the weighting net is also discussed in this paper. Our method

produces the state-of-the-art performance among all 2D input based hand pose esti-

mation methods on the most widely used NYU benchmark dataset.

Figure 3.1: Motivation. Since labelling real samples by human annotators are expensive,
real labelled data based methods often do not have enough training samples.
Synthetic data based methods have enough labelled samples, but there exists
a domain gap between synthetic training data and real test data. This work
aims to provide a method that only requires a limited number of real labelled
data and reduces the effect of the domain gap by adapting and reweighting all
training samples.

The contributions of this work can be summarised as follows:

• We propose an improved semi-supervised method based on domain adapta-

tion method with implicit importance weight estimation, which is realised by
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a deep neural network.

• We illustrate the data bias issue in the scenario of using synthetic data or

partially labelled real data for hand pose estimation and offer a solution to

this issue.

• We build a new hand pose estimation model with our proposed domain adap-

tation network and demonstrate that the model achieves state-of-the-art per-

formance.

3.2 Related work
Pose estimation is an important task for many machine vision applications, such as

motion reconstruction [67], hand tracking [68] and dance analysis [69, 70]. Many

early work of hand pose estimation are model based [71, 72]. Model-based meth-

ods fit an explicit hand model by optimise a pre-specified cost function. However,

these methods are sensitive and some models require user-based parameters [73].

Recently data-driven based hand pose estimation methods achieve great success.

These methods learn a mapping from images to hand pose [74, 75]. However, most

of these methods use hand-crafted features, which require human’s prior knowledge

to design or choose, and the performances of these methods are lower than current

deep learning based methods.

In recent years, many studies [59, 76, 60] have shown that deep learning mod-

els can achieve the state-of-the-art performances in many computer vision applica-

tions. Since deep learning not only solve the feature learning and pose prediction

tasks in an end-to-end manner but also learn a sophisticated function to predict 3D

keypoints’ location, it is natural to apply deep learning for hand pose estimation.

Tompson et al. [1] made an early attempt to apply deep learning to predict locations

of 3D keypoints. After that, Panteleris et al. [77] proposed a method which can esti-

mate 3D keypoints’ locations from a single camera and achieve the state-of-the-art

performances.

However, the number of labelled training samples play a crucial role in deep

learning [78]. Since annotating real images of hand poses requires a great amount
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of manual work, it is difficult to obtain a sufficient number of labelled training

samples. In order to solve this problem, many methods have been reported in recent

years. These hand pose estimation methods can be mainly categorised into three

classes:

1. Semi-supervised learning based hand pose estimation methods (using both

labelled and unlabelled real data).

2. Directly use synthetic data for hand pose estimation.

3. Combining semi-supervised learning with domain adaptation for hand pose

estimation (using labelled synthetic data, and labelled and unlabelled real

data).

Unlike supervised learning methods which only utilise labelled real data, many

semi-supervised learning methods also exploit unlabelled real data. Poier et al. [79]

developed a method that learns representations from unlabelled data. They assume

that good features of hand pose can get appearance information from any view-

point so that given an image from one viewpoint, the representation can minimise

the reconstruction error of appearance from other viewpoints. This loss term can

effectively use information in the unlabelled data, however, its exploitation of the

information provided by only a few labelled real samples limits the performance of

this method.

Since it is easy to obtain labelled training samples rendered from a 3D model,

using synthetic data to train a neural network is a reasonable solution [80]. However,

synthetic data is still quite different from real data, making the training data and the

test data from two different domains, hence directly using synthetic data may lead

to the problem of overfitting to the synthetic data. Although some studies [81, 80]

have tried to relieve the overfitting problem by using pre-trained features, compli-

cated augmentation, and fine-tuning techniques, synthetic data based methods are

still affected by the domain difference, and the performance is still lower than the

methods using both synthetic data and real data [82].
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Many recent studies not only exploit knowledge from synthetic data but also

extract information from unlabelled real data and few labelled real data [83, 61, 84,

85, 82]. Since these methods contain training samples from different domains, they

adopt domain adaptation methods to minimise the domain gap. The method pro-

posed in [82] learns a mapping between the real data feature space and the synthetic

data feature space. The mapping is learned by using paired training samples (pairs

of synthetic image and real image of the same pose), however, to use a large number

of paired training samples still requires the labelling of many real images.

Generative adversarial networks [86] (GANs) is a generative model that can

generate new synthetic samples that resemble to real samples. GANs have also

been extended to transfer learning [87] and domain adaptations [88]. For pose esti-

mation, Shrivastava et al. [89] and Mueller et al. [84] use GANs to transfer synthetic

images to real-like images. However, there are two drawbacks of these GANs based

methods. Firstly, GANs often suffer from the so-called mode collapse problem, and

synthetic images are often mapped to one or a few modes of real image distribu-

tions, leading to the dataset bias. Secondly, these methods often assume that the

few labelled real data have the same distribution as the test set. This assumption is

unrealistic in our applications, since the test set of hand pose estimation often from

many different people while the training samples are often only from one or few

people.

Yamada et al. [90] proposed a method to solve the domain adaptation problem

between the real training set and the test set under the covariate shift assumption.

This work is the one most relevant to our work. However, there are still many

differences between their method and ours. Firstly, we address a domain adapta-

tion problem with two heterogeneous source domains. Secondly, we work on the

feature space rather than the input space. Thirdly, we do not make the Gaussian

kernel assumption for the importance weight, and the feature distributions can be

any implicit distribution in our case.
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3.3 Proposed method
As illustrated in Figure 3.2, the objective of the proposed method is to provide an

improved semi-supervised hand pose estimation model, that can exploit informa-

tion in both partially labelled real data and fully labelled synthetic data. In this

section, we first give the formulation of our problem, then describe the approxima-

tion method of the objective function of our model and the network architecture,

and finally provide the learning algorithms. The aim of this work is to transfer

knowledge of instances and feature representation from synthetic data to improve

the performance of the semi-supervised hand pose estimation methods.

Figure 3.2: Overview of the proposed method. The proposed method aims to use a few
labelled real depth images and plenty of labelled synthetic depth images and
unlabelled real depth images to train a hand pose estimation network to predict
locations of hand joints. The blue lines indicate the labelled hand pose, while
the red lines are for the predicted hand pose. All illustrative example in this fig-
ure, including both real depth images and synthetic depth images, are extracted
from the NYU dataset.

3.3.1 Problem formulation

A hand pose estimation model can be represented by a function y = f (x) that fits

on the source domain (training set) to predict the corresponding hand poses. In our

work, the input is a depth image and the output is the 3D location of 14 keypoints

of a hand. The covariate x is a vector with size 16384×1 (a flattened depth image

with size 128× 128) and the prediction y is a 42× 1 vector denoting the 3D loca-
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tions (3× 1) of 14 joints of a hand. In the proposed method, the training set has

two source domains: the fully labelled synthetic data Ds = {(xs
i ,y

s
i )}

n1
i=1 containing

n1 labelled synthetic samples and the partially labelled original real data (or say

old collected real data) Dr−old = {(xr
i ,y

r
i )}

n2
i=1∪{(xr

j)}
n3
j=n2+1 containing totally n3

real samples, of which n2 samples are labelled and n3−n2 samples are unlabelled.

The test set Dt−new = {(xt
i)}

n4
i=1 contains n4 new unlabelled test samples. Unlike

the settings in the classic supervised learning or semi-supervised learning that as-

sumes the covariate x has the same distribution on the old training set and the new

test set, in real hand pose estimation applications, ps(xs), pr−old(xr), and pt−new(xt)

usually have different distributions. Since ps(xs) are synthetic data and pt−new(xt)

are real data, the distribution of ps(xs) and pt−new(xt) are different. For the old real

data pr−old(xr) and the new test data pt−new(xt), there are mainly two reasons that

lead to the distribution of pr−old(xr) and pt−new(xt) being also different. Firstly,

the training data often have a sample selection bias. (For example, many widely

used hand pose estimation datasets only contain hand images collect from one or a

few adults. For real applications, test samples from many different people and may

contain children’s hand pose images. Using new unlabelled real data can relieve the

sample selection bias of the original real data.) Secondly, in real applications the en-

vironment is not necessarily stationary, the changing of the environment also leads

to the data shift. Due to these reasons, we can view the new arriving unlabelled real

data as the target domain. In applications, we often use a subset of new unlabelled

real samples (with n5,n5 < n4 samples) to construct a validation set. The validation

set is utilised to estimate the difference between the old real data and new real data.

Our task is to fit a model that minimises the expected loss Ept−new(xt)[L ( f (xt),yt)]

under certain loss function L in the target domain.

The rationale of the proposed method is that, given that the joint probability

density functions of the complicated features are implicitly unknown in both the

source domains and the target domain, in order to accurately re-weight the training

samples from different source domains to well adapt to the target domain, a deep

neural network should be developed to accurately estimate the importance weights
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for the implicit density functions. Therefore, our method mainly contains two parts:

a hand pose estimation net and a weighting net. Figure 3.3 illustrates the problem

setting and system architecture of our method.

Figure 3.3: The problem setting and system architecture of the proposed method: Stacks
of rectangles represent some neural networks; x denotes an input image and
z stands for the features in the latent space; the red part is the weighting net
g(z), the blue part belongs to the hand pose estimation net which contains four
modules { f1(x),h(z), f2(z),r(z)}, and the green part is the shared latent space.
The feature extractor f1(x) learns a shared feature space to transfer knowledge
of feature representation from labelled synthetic data. The weighting net g(z)
learns to weighting training samples to transfer knowledge of instances from
labelled synthetic data. The domain adaptation branch h(z) learns to minimize
domain gap between real data (both labelled and unlabelled) and synthetic data.
The reconstruction branch learns to recover an image of another view to ensure
features in the shared latent space are pose invariant for different view. The
pose regression net f2(z) learn a mapping to utilise feature representation in
the shared latent space to estimate the pose.

3.3.2 Weighted empirical risk minimisation

The hand pose estimation net f (x) = f2( f1(x)) contains two cascading modules:

the feature extractor f1(x) = z extracts features from the covariate x and learns a

shared feature space for both synthetic data and real data; The aim of learning a

shared feature space is to find a feature representation that can reduce difference of

different data domain and improves the pose estimation accuracy. The regression

net f2(z) = y predicts the hand pose by using the extracted features in the shared
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latent space. Both f1(x) and f2(z) are neural network. f1(x) is a ResNet [91] and

f2(z) is a fully connected neural network. Since the data probability distributions

ps(xs), pr−old(xr) and pt−new(xt) in the three domains (two source domains and

one target domain) are different, the distributions of extracted features zs = f1(xs),

zr = h( f1(xr)) and zt = h( f1(xt)) also differ from each other.

The empirical risk minimisation (ERM) [92] to estimate model parameters θ ,

can be formulated as a standard way to learn the parameters;

θERM = argmin
θ

[
1
n1

n1

∑
i=1

L ( f θ
2 (z

s
i ),y

s
i )+

1
n2

n2

∑
j=1

L ( f θ
2 (z

r
j),y

r
j)

]
,

However, when ps(zs) 6= pt−new(zt) and pr−old(zr) 6= pt−new(zt), the parameters

learned by this ERM will fail to converge to the optimal parameters [66],

θ
∗ = argmin

θ
Ept−new(zt)[L ( f θ

2 (z
t),yt)],

in the target domain.

Since the following identity holds:

Ept(zt)[L ( f θ
2 (z

t),yt)] =
∫

pt−new(zt)[L ( f θ
2 (z

t),yt)]dzt

=
∫

ps(zt)
pt−new(zt)

ps(zt)
[L ( f θ

2 (z
t),yt)]dzt

=
∫

pr−old(zt)
pt−new(zt)

pr−old(zt)
[L ( f θ

2 (z
t),yt)]dzt ,

(3.1)

in order to guarantee that the estimated parameters converge to the optimal param-

eters θ ∗ in the target domain, we can use the weighted empirical risk minimisa-

tion [66] (WERM) function to fit the model:

θWERM = argmin
θ

[
1
n1

n1

∑
i=1

W1(zs
i )L ( f θ

2 (z
s
i ),y

s
i )+

1
n2

n2

∑
j=1

W2(zr
j)L ( f θ

2 (z
r
j),y

r
j)

]
,

(3.2)
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where the weights

W1(zs
i ) =

pt−new(zs
i )

ps(zs
i )

and W2(zr−old
j ) =

pt−new(zr
j)

pr−old(zr
j)

are density ratios of a given instance z between the target domain and the

corresponding source domains. The loss term 1
n1

∑
n1
i=1W1(zs

i )L ( f θ
2 (z

s
i ),y

s
i ) and

1
n2

∑
n2
j=1W2(zr

j)L ( f θ
2 (z

r
j),y

r
j) transfers the knowledge of training instances of both

real data and synthetic data to the target task.

Unfortunately, the density functions of ps(xs), pr−old(xr) and pt−new(xt) are

unknown, neither its form nor its parameters, hence we cannot directly compute

weights W1(zs
i ) and W2(zr

j), both of which are actually density ratios. Therefore,

we propose to develop a deep neural network to estimate the density ratios pt−new(zs
i )

ps(zs
i )

and
pt−new(zr

j)

pr−old(zr
j)

.

3.3.3 Weighting net

The weighting net u = g(z) estimates density ratios to assign each training sample

an importance weight to improve the model’s performance in the target domain.

The input of the weighting net is a vector of extracted features z, either from two

source domains or from the target domain, and the output is a softmax vector u =

(u1,u2,u3) and u are related to class probabilities of three domains:

(
ps(z)

ps(z)+ pr−old(z)+ pt−new(z)
,

pr−old(z)
ps(z)+ pr−old(z)+ pt−new(z)

,
pt−new(z)

ps(z)+ pr−old(z)+ pt−new(z)

)
.

There are mainly two reasons to use the samples z in the shared latent space (the

space generated by the extracted features) rather than the image x in the input space

(the space generated by the input images). Firstly, the dimension of input space

is greatly higher than that of the latent space, and the curse of the dimensionality

leads to the data distribution being too sparse to accurately estimate the density

ratio. Secondly, in the lower-dimensional latent space the overlap of the supports

of data distributions is usually larger than that in the input space. This will facil-

itate the estimation of density ratios, because, if we estimate the density ratio for
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the samples with no support overlap between distributions, the estimated density

ratio tends to be zero or extremely large. In addition, similar to the domain clas-

sifier (discriminator) in many adversarial model based domain adaptation papers,

such as [88, 93], the softmax outputs u = (u1,u2,u3) are related to class probabil-

ities
(

ps(z)
ps(z)+pr−old(z)+pt−new(z)

,
pr−old(z)

ps(z)+pr−old(z)+pt−new(z)
, pt−new(z)

ps(z)+pr−old(z)+pt−new(z)

)
. In the

following part we show that, when the weighting net becomes optimal, we can di-

rectly estimate the density ratios from u = (u1,u2,u3).

The loss function of the proposed weighting net is

Lg =
1
n1

n1

∑
i=1

[
1−

u1(zs
i )

u2(zs
i )

]
+

1
n3

n3

∑
j=1

1
2

(
u1(zr

j)

u2(zr
j)

)2

− 1
2


+

1
n1

n1

∑
i=1

[
1−

u1(zs
i )

u3(zs
i )

]
+

1
n5

n5

∑
j=1

1
2

(
u1(zt

j)

u3(zt
j)

)2

− 1
2

 ,
(3.3)

where zt
j = f1(xt

j) denotes the extracted features of xt
j ∈ Dv = {(xt

i)}
n5
i=1. This loss

function helps the weighting net to learn the density ratios. As this loss decrease, the

output of the weighting net u = (u1,u2,u3) will converge to the class probability of

three domains so that we can use the class probability to compute the density ratio.

The derivation of this loss function is attached in the appendixA. The validation set

Dv is a subset of the whole target domain Dt . We only use features of Dv to estimate

the density pt(z) of the target domain, the rest part of the Dt is kept untouched.

The following proposition shows when the weighting net converges to the op-

timum, u = (u1,u2,u3) converges to:

(
ps(z)

ps(z)+ pr−old(z)+ pt−new(z)
,

pr−old(z)
ps(z)+ pr−old(z)+ pt−new(z)

,
pt−new(z)

ps(z)+ pr−old(z)+ pt−new(z)

)

.

Proposition 3.3.1. When the weighting net arrives at the optimum, the following

properties hold:

u1

u2
=

ps(z)
pr−old(z)

,
u1

u3
=

ps(z)
pt−new(z)

,
u2

u3
=

pr−old(z)
pt−new(z)
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Proof. The expected loss of the weighting net is

E[Lg] = Eps(zs)

[
1− u1(zs)

u2(zs)

]
+Epr−old(zr)

[
1
2

(
u1(zr)

u2(zr)

)2

− 1
2

]

+Eps(zs)

[
1− u1(zs)

u3(zs)

]
+Ept−new(zt)

[
1
2

(
u1(zt)

u3(zt)

)2

− 1
2

] (3.4)

=
∫

ps(z)
[

1− u1(z)
u2(z)

]
+ pr−old(z)

[
1
2

(
u1(z)
u2(z)

)2

− 1
2

]

+ps(z)
[

1− u1(z)
u3(z)

]
+ pt−new(z)

[
1
2

(
u1(z)
u3(z)

)2

− 1
2

]
dz.

(3.5)

Since

E[Lg]≥
∫

min
u1,u2,u3

{
ps(z)

[
1− u1(z)

u2(z)

]
+ pr−old(z)

[
1
2

(
u1(z)
u2(z)

)2

− 1
2

]

+ps(z)
[

1− u1(z)
u3(z)

]
+ pt−new(z)

[
1
2

(
u1(z)
u3(z)

)2

− 1
2

]}
dz,

when the optimal u of the function fu(u) = E[Lg] must satisfy

 −ps(z)u1(−1) 1
u2

3
+ pt−new(z)(u1

u3
)u1(−1) 1

u2
3
= 0,

−ps(z)u1(−1) 1
u2

2
+ pr−old(z)(

u1
u2
)u1(−1) 1

u2
2
= 0.

(3.6)

Hence we have 
u1
u2

= ps(z)
pr−old(z)

,

u1
u3

= ps(z)
pt−new(z)

,

u2
u3

= pr(z)
pt−new(z)

.

(3.7)

Based on the above proposition, weights W1(z) and W2(z) can be approximated

by Ŵ1(z) =
u3
u1

and Ŵ2(z) =
u3
u2

.
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3.3.4 Hand pose estimation net

The hand pose estimation net contains three branches: the backbone f (x) =

f2( f1(x)), the domain adaptation branch h( f1(xr)) and the reconstruction branch

r(z).

The backbone part is shared by both synthetic data and real data. It contains

two modules: the feature extraction network f1(x) and the pose regression network

f2(z). The loss function of the backbone part is the weighted L2 loss:

Lpose =
1
n1

n1

∑
i=1

Ŵ1(zs
i )‖ŷ(zs

i )− ys
i‖2 +

1
n2

n2

∑
i=1

Ŵ2(zr
i )‖ŷ(zr

i )− yr
i‖2, (3.8)

where ŷ(zs
i ) = f2(zs

i ) is the estimated pose of the ith synthetic sample and ys
i is its

corresponding ground truth. Similarly, ŷ(zr
i ) = f2(zr

i ) is the estimated pose of the

ith real sample and yr
i is the corresponding label.

Similarly to prior studies [94, 82], we use pairwise samples (xs
i ,x

r
i ) that have

the same pose between the real training set and the synthetic set to learn a mapping

from the extracted feature of real data to the shared feature space. The domain

adaptation branch h( f1(xr)) is a network whose loss function contains two loss

terms. The first loss term Lada aligns all paired training samples in the feature

space:

Lada =
k

∑
i=1
‖h( f1(xr

i ))− f1(xs
i )‖2,

where k is the number of paired training samples. Since the paired synthetic sample

and real sample have the same pose and the pose estimation net is a deterministic

function, the paired synthetic sample and real sample must have the same feature in

the feature space. This loss forces the data with the same pose but from different

domains to align to each other in the feature space. The second loss term is the ad-

versarial loss Ladv which minimises the Pearson divergence between distributions

of two source domains and the target domain:

Ladv =
1
n3

n3

∑
j=1

1
2

(
1−

u1(zr
j)

u2(zr
j)

)2
+ 1

n5

n5

∑
j=1

1
2

(
1−

u1(zt
j)

u3(zt
j)

)2
 ,
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where n5 is the number of unlabelled sample in the target domain to estimate the

density ratio.

The reconstruction branch r(z) guarantees the features extracted from unla-

belled data contain pose information and such pose information is not related to a

specific camera view. Therefore, the extracted feature from a camera’s view a must

be able to reconstruct the input image in another camera’s view (or same camera in

another angle) b [79]. The loss function of the reconstruction branch is

Lre =
1

n1 +n3

n1+n3

∑
i=1
‖r(xa

i )− xb
i ‖, (3.9)

where xa
i and xb

i are the same training sample in two different camera’s views: cam-

era a’s view and camera b’s view.

Hence the total loss of the hand pose estimation net is

Ltotal = λ0Lpose +λ1Lada +λ2Ladv +λ3Lre,

where λ0, λ1, λ2 and λ3 are weights of the loss terms.

3.3.5 Implementation details

We followed the pre-processing procedure introduced in Deepprior++ [95]. Each

sample was cropped (resized) into a 128× 128 patch (keep the central 128× 128

pixels of the image and discard margin part) around the hand location.

We used a network architecture similar to Deepprior++, since Deepprior++ is

a widely used network architecture and achieves good performance in hand pose

estimation tasks. The feature extractor f1(x) is a ResNet [91] with four residual

blocks. Each residual block has the same architecture as that in Deepprior++. The

regression net f2(z) is a simple fully connected neural network with two hidden

layers and each layer has 1024 hidden units. The output of f2(z) is a matrix with

size 3× 14. The domain adaptation branch h(z) consists of four fully connected

layers. The reconstruction branch r(z) has the same architecture of the generator of

DCGAN [96]. The weighting net g(z) is a simple 3-layer fully connected network
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and each hidden layer has 256 hidden units. Details of the pre-train and the training

algorithm can be found in Pre-train Algorithm 1 and Algorithm 2.

Algorithm 1 Pre-train algorithm
Pre-training step:

Require: Ds = {(xs
i ,y

s
i )}

n1
i=1

Require: Batch size b, learning rate γ .
for number of epochs do

for number of batches do
Sample {(xs

i ,y
s
i )}b

i=1
Update θ f1 and θ f2:

(θ f1,θ f2)t+1=(θ f1 ,θ f2)t− γ5 1
b

b

∑
i=1
‖ f2( f1(xs

i ))− ys
i‖2

end for
end for
return θ f1,θ f2 .

As the importance weight W ∈ (0,∞) can be very large, multiplying an unusu-

ally large weight may cause the optimisation algorithm to converge to a trivial desti-

nation or even fail to converge. Since weights only measure the relative importance

of training samples, in order to stabilise the training we clipped and normalised the

weight (by having Wi = b Wi
∑

b
i=1 Wi

, where b is the batch size).

As for the computational cost, we use a Nvidia TITAN Xpascal graphics card

with 12G memory to train our model. The overall training time is 46 hours.

3.4 Experiments
This section contains four experiments: two main experiments and two ablation

studies. The aim of the first main experiment is to compare the performance of

our method with other state-of-the-art (SOTA) methods, under the setting that is

prevalent in real applications (a training set with partially labelled real data). The

experiment is implemented under our assumption of limited number of labelled real

data (only 1,000 labelled real samples are provided). Since most of state-of-the-

art methods only provide their experimental results on a fully labelled dataset, we

implement the second main experiment using the whole dataset of fully labelled
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Algorithm 2 Training algorithm

Require: λ0,λ1,λ2,λ3 and learning rate γ .
Require: Ds = {(xs

i ,y
s
i )}

n1
i=1

Require: Dr−old = {(xr
i ,y

r
i )}

n2
i=1∪{(xr

j)}
n3
j=n2+1

Require: Dt−new = {(xt
i)}

n4
i=1

Require: Pre-trained θ f1,θ f2 .
for number of epochs do

for number of batches do
Sample {(xs

i ,y
s
i )}b

i=1
Sample {(xr

i ,y
r
i )}b

i=1
Sample {(xr

j}b
j=1

Sample {(xt
j}b

j=1
Update weighting net θg:

θg,t+1 = θg,t− γ5 1
b

b

∑
i=1

[
1−

u1(zs
i )

u2(zs
i )

]
+

1
b

b

∑
j=1

1
2

(
u1(zr

j)

u2(zr
j)

)2

− 1
2


+

1
b

b

∑
i=1

[
1−

u1(zs
i )

u3(zs
i )

]
+

1
b

b

∑
j=1

1
2

(
u1(zt

j)

u3(zt
j)

)2

− 1
2

 ,
(3.10)

Update hand pose estimation net θ f1 ,θ f2,θh and θr:

(θ f1 ,θ f2,θh,θr)t+1 = (θ f1,θ f2,θh,θr)t−

γ5λ0(
1
b

b

∑
i=1

Ŵ1(zs
i )‖ŷ(zs

i )− ys
i‖2 +

1
b

b

∑
i=1

Ŵ2(zr
i )‖ŷ(zr

i )− yr
i‖2)−

γ5λ1

b

∑
i=1
‖h( f1(xr

i ))− f1(xs
i )‖2−

γ5λ2
1
b

b

∑
j=1

1
2

(
1−

u1(zr
j)

u2(zr
j)

)2
+ 1

b

b

∑
j=1

1
2

(
1−

u1(zt
j)

u3(zt
j)

)2
−

γ5λ3
1
b

b

∑
i=1
‖r(xa

i )− xb
i ‖

(3.11)

end for
end for
return θ f1,θ f2.
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real samples to make a fair comparison with other SOTA methods. In the first

ablation studies, we evaluate the proposed method under different settings (using

only synthetic data, using only real data, using both synthetic and real data without

weighting, and using both types of data with weighting). The aims of this ablation

study are two-fold: firstly, to investigate whether we should use synthetic data;

secondly, to evaluate the effectiveness of our weighting strategy. In the second

ablation study, we investigate the effect of the number of labelled real samples used

for training.

3.4.1 Datasets and evaluation metrics

The setting of our problem requires not only real depth images but also depth syn-

thetic images and a few pairs of real and synthetic images. Most of the benchmark

datasets only provide real depth images. The NYU data, which contains paired

real and synthetic images, is the only public benchmark dataset that can implement

our experiments so that we have carried out the evaluation on the NYU hand pose

dataset. It is a very challenging public dataset containing hands from multiple sub-

jects with a large range of 3D poses. The training set contains 72,757 frames of real

samples and corresponding synthetic samples. The test set contains 8,252 samples.

For each training sample, 3 real depth images captured from 3 different viewpoints

and 3 rendered synthetic depth images are provided. During training, we mix real

depth images and synthetic images in the same batch.

In the first main experiment, we use only 1,000 labelled real images (500 real

images are paired with corresponding synthetic data and the rest of 500 real samples

are unpaired) and 72,757 labelled synthetic samples with labels for training. We

use 71,757 frames of unlabelled real data and 1,000 frames of labelled real data to

estimate density ratios (n1 = 72,757, n2 = 1,000 and n3 = 72,757).

Most of SOTA methods were implemented by using a whole dataset of fully

labelled real samples and, obviously, the fully labelled real dataset contains much

more information than the partially labelled dataset. In order to make a fair compar-

ison, we also implement the proposed method with the fully labelled real dataset:

in the second main experiment, we use all 72,757 labelled real samples and 72,757
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labelled synthetic samples (n1 = 72,757, n2 = 72,757 and n3 = 72,757). Although

this setting is not the purpose of the proposed method, we still achieve competitive

results compared to other SOTA methods.

We follow the standard convention [1] of hand pose estimation on this dataset:

locations of 14 joints are evaluated for each hand. We use the two most widely used

evaluation metrics:

• The average Euclidean distance between the ground truth of 3D locations and

the prediction.

• The fraction of frames that all joints in the frame are within a threshold of the

Euclidean distance to the ground truth.

3.4.2 Hyperparameter settings

Since our method contains several different losses and each loss has a quite different

magnitude and thus a weight as hyperparameter, we use the validation set as usual

to tune these weights. For the loss weights of hand pose estimation net, we set

λ0 = 1.6, λ1 = 0.2, λ2 = 0.0001 and λ3 = 0.0001. The training process of the

proposed method contains two steps. First, we use the synthetic data to pre-train

the f1(x) and f2(x) for 100 epochs. Then we let the whole hand pose estimation

net { f1(z), f2(z),h(z),r(z)} adversarially train with the weighting net g(z) for 75

epochs. The learning rate γ = 0.000016.

Since the weighting net in our method needs to estimate the density of the tar-

get domain, we split the test set into an unlabelled validation set and a test set to

keep the real test set untouched during training. We randomly select samples into

the validation set and the test set. We use from 20% to 50% samples for the valida-

tion set and from 80% to 50% samples for the test set. The unlabelled validation set

is sent to the weighting net to estimate density ratios during training. The remain-

ing test set is kept untouched and is only used in the test stage. Since the random

selection of samples and the split of the dataset affect the quantitative results, we

report the interval of our experiment results.
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3.4.3 Comparison to state-of-the-art methods with only a par-

tially labelled real training set

In this first main experiment, we implement our experiment on a common situation

in applications: only a few labelled real samples are available. In order to compare

with the SOTA methods that report their performance under the same setting, we

use only 1,000 labelled real samples.

We compare the mean joint error with other SOTA methods in Table 3.1. How-

ever, only a few SOTA methods report their performances on a training set of only

a few labelled real samples, therefore, we not only compare the performances re-

ported in their papers but also compare with those from the 3rd party implemen-

tations. The upper block of Table 3.1 contains three methods (DeepPrior [97],

DeepPrior++ [95] and Crossing Nets [62]) implemented by the LSPRPreView [79].

The lower block shows results of LPSRPreView, Crossing Nets and LSPS reported

in their papers. From Table 3.1, we can see that the proposed method achieves

state-of-the-art performance on a small set of labelled real samples.

Table 3.1: Comparison of different hand pose estimation methods on the NYU hand
dataset [1] with only 1,000 labelled real samples. We compare the mean joint
error with other state-of-the-art methods.

Method Mean Error (mm) # labelled real samples
DeepPrior (PreView) [97] 36.99 1,000

Crossing Nets (PreView) [62] 36.35 1,000
DeepPrior++ (PreView) [95] 31.01 1,000

LPSRPreView [79] 22.84 1,000
Crossing Nets [62] 17.70 1,455

LSPS [85] 16.60 1,000
Ours 10.85 1,000

3.4.4 Comparison to state-of-the-art methods with a fully la-

belled real training set

In this second main experiment, we compare our method with other state-of-the-art

methods on the NYU hand data in terms of the mean joint error, and we not only

compare with 2D input based methods, but also compare with the methods that use
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3D input:

• 3D input based methods: 3DCNN [98], SHPR-Net [99], Hand PointNet

[100], Point to Point [101] and V2V [102].

• 2D input based methods: Crossing Nets [62], LSPS [85] Lie-X [103], Deep-

Prior++ [95], Pose-REN [104], SDHI-GAN[105], ASST[106], DenseReg

[107] and CrossInfoNet [108], and Feature Mapping [82] (Feature Mapping

uses 5,000,000 extra synthetic training samples).

Table 3.2: Comparison of different hand pose estimation methods on the NYU hand
dataset [1]. We compare the mean joint error with other state-of-the-art meth-
ods. The upper block is for 2D input based methods. The lower block is for 3D
input based methods. GAN: generative adversarial nets; DA: domain adaptation.

Method Mean Error (mm) Input Note
Crossing Nets [62] 15.5 2D GAN

LSPS [85] 15.4 2D
Lie-X [103] 14.5 2D
ASST [106] 14.1 2D GAN & DA

DeepPrior++ [95] 12.3 2D
Pose-REN [104] 11.8 2D

SDHI-GAN [105] 11.4 2D GAN & DA
DenseReg [107] 10.2 2D

CrossInfoNet [108] 10.08 2D
Ours 9.36−10.11 2D

Feature mapping [82] 7.4 2D (5M extra samples) DA
3DCNN [98] 14.1 3D

SHPR-Net [99] 10.8 3D
Hand PointNet [100] 10.5 3D
Point to Point [101] 9.1 3D

V2V [102] 8.42 3D

The comparison results are summarised in Table 3.2, from which we can make

two observations. Firstly, the proposed method achieved the state-of-the-art perfor-

mance among the 2D input based methods. We note that, although the performance

of the method “Feature Mapping” is higher than us, comparing Feature Mapping

with other 2D input based methods is not very fair because Feature Mapping uses

extra 5,000,000 synthetic samples compared with other 2D based methods. Sec-

ondly, it is known that in general 3D input based methods have better performance
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then 2D input based methods, however, the performance of our method is even bet-

ter than many 3D input based methods. Moreover, our work can be extended to the

3D input case, which may further improve the performance.

In Figure 3.4, Figure 3.5 and Figure 3.6, we also provide some visualised com-

parisons with the other 2D input based methods that do not use extra training sam-

ples, as well as some qualitative results from our method.

Figure 3.4: Comparison with other state-of-the-art 2D input based methods on the NYU
dataset. Our method has the maximum area under the curve, in terms of the
fraction of frames where all joints of a frame are within a maximum 3D distance
from the ground truth.

3.4.5 Ablation studies

3.4.5.1 Effects of using two domains and the weighting strategy

In the first ablation study, we investigate two aspects of the proposed method: the

effect of only using the data from either the real domain or the synthetic domain, and

the effect of the weighting strategy. We compare the performances of four variant

models of our method in the following four settings of training:
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Figure 3.5: Comparison with other state-of-the-art 2D input based methods on the NYU
dataset, in terms of average joint error. The results are consistent with those
in Figure 3.4: our method has the minimum mean error here, and we have the
maximum area under the curve in Figure 3.4. Compared with the fraction of
frames within a maximum 3D distance, the mean error is more tolerant to a
single large error of a joint.

1. training using only real data;

2. training using only synthetic data;

3. training using both synthetic data and real data, without the adversarial train-

ing with the weighting net;

4. training using both synthetic data and real data, with the adversarial training

with the weighting net.

Since our method focuses on the situation that training set has a limit number of

labelled real data, in the experimental settings 1, 3 and 4, we use only 1,000 labelled

real samples. More specific, in the first setting, we only use 1,000 labelled real

samples to train our model; in the second setting, we only use 72,757 of labelled
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Figure 3.6: Qualitative results from our method. The joint locations are shown on the depth
images. The prediction of joints is shown in red and the corresponding ground
truth is shown in blue.

synthetic samples to train; in the third and fourth settings, we use both 1,000 labelled

real samples and 72,757 labelled synthetic samples to train. The only difference

between setting 3 and setting 4 is whether to use the weighting strategy.

Except for the differences above-mentioned, we use similar settings for all

the compared models: the weights of different losses, batch size, parameters of

the optimiser and the number of training epochs are fixed the same, and the only

difference is the learning rate. Since the weight enlarges the variance of gradients,

the optimal learning rate of adversarial training with the weighting net is smaller

than that for the non-weighting one: the learning rates in the weighting and non-

weighting cases are γw = 0.000016 and γnon−w = 0.0005, respectively. The results

reported in Table 3.3 show two patterns. Firstly, our method greatly improves the

estimation accuracy, compared with the one only using the labelled real data and

the one only using the labelled synthetic data. From the experimental results, we

can see that, under the framework of our proposed method, using both real samples

and synthetic samples is better than using only real or synthetic samples. Secondly,

the weighting strategy reduces the mean error from 12.37mm to 10.85mm; that is,

our adversarial weighting strategy improves 1.52mm (14%) in performance.
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Table 3.3: Ablation study on the effect of the adversarial training with the weighting net on
the performance.

Method Mean Error (mm) # labelled real samples
1. Real only 39.22 1,000
2. Synthetic only 18.84 0
3. Non-weighting 12.37 1,000
4. Weighting 10.85 1,000

3.4.5.2 Effect of the number of samples

In the second ablation study, we investigate the effect of the number of labelled

real samples used for training. The experimental setting is the same as before,

with the only difference in the number of labelled real samples used. We use

0, 1,000, 10,000, and all (72,757) labelled real samples, respectively, to train the

model. The results are shown in Table 3.4. The average mean errors in the testing

set are 18.84mm, 10.85mm, 10.38mm, and 9.36mm, respectively. That is, the more

real labelled samples used, the lower the mean error.

Table 3.4: The effect of the number of labelled real training samples.

# labelled real samples 0 1,000 10,000 all (72,757)
Mean Error (mm) 18.84 10.85 10.38 9.36

3.5 Conclusion and future work
In this paper, we proposed an improved semi-supervised hand pose estimation algo-

rithm based on implicit importance weight estimation method to correct the covari-

ate shift problem in hand pose domain adaptation. We showed that, with partially

labelled real data and fully labelled synthetic data, using the data from both do-

mains leads to better results than either only using the labelled real data or only

using the labelled synthetic data. The proposed weighting method can also improve

the performance of the pose estimation model, and our method produces the state-

of-the-art performance (both on partially labelled real dataset and fully labelled real

dataset) among 2D input based methods on the most widely used NYU benchmark

dataset.

As there exist some 3D based methods that have better performance than ours,
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one of our future work is to extend the method proposed in this paper to 3D input

for higher performance.



Chapter 4

Pseudo-label robust self-training for

semi-supervised few-shot

classification

This chapter aims to address a special semi-supervised learning problem: the few-

shot semi-supervised classification problem, where unlabelled data are available to

complement a few shots of labelled data per class. Since in the few-shot learning

labelled samples are too few to train a good learner for the current task, transfer-

ring knowledge from many related domains or tasks is a reasonable way to improve

the model performance. This process of learning transferable knowledge is called

meta-training, which extracts shared knowledge, such as features and a metric, from

many tasks and transfers to each few-shot learning task. Besides the meta-learning,

another potential way to improve a semi-supervised few-shot learning algorithm is

to utilise the softmax stochastic supervision of a classifier to provide pseudo la-

bels for unlabelled training samples to retrain the model. This learning method is

called self-training in machine learning. Self-training is an effective way for semi-

supervised learning since self-training expands the labelled training samples (al-

though the supervision is not perfect). However, in few-shot classification, a single

model based self-training is difficult to overcome the confirmation bias, due to the

noise accumulation in pseudo labelling. Therefore, in this chapter, we propose an

ensemble self-training method specifically designed for semi-supervised few-shot



4.1. Introduction 87

classification tasks, in order to relief the noise accumulation in pseudo-labelling

and the confirmation bias of self-training. The experimental results show that the

proposed method enjoys state-of-the-art performances on widely used benchmark

datasets of few-shot classification.

4.1 Introduction

Deep learning methods have achieved great successes recently, however, these

methods are data-hungry, since deep learning generally requires a great amount

of labelled data as training samples to ensure a good performance. In many appli-

cations, it is too expensive or even impossible to label a dataset of a sufficient size.

The scarcity of labelled data limits a potentially much wider use of deep learning

in practice. Developing learning algorithms that can learn from a limited amount of

data is hence a big yet important challenge to the machine learning community. Due

to these reasons, few-shot learning has attracted crucial attention in recent years.

Few-shot learning aims to learn a classification or regression model from one

or a few labelled samples per class. In this paper, we focus on the few-shot classifi-

cation problem. Few-shot learning is a relatively new area of machine learning and

most of the current few-shot classification methods follow the form of meta-learning

[109, 110], which mainly contains meta-training and meta-testing two steps to fit a

classification model. The meta-learning aims to learn some prior knowledge (such

as a divergence metric [7], initialization of parameters [111], and parameters of the

feature extractor) from many few-shot learning tasks. These prior knowledge can

help the learner fast learn in some new tasks. In the meta-training step, the model

updates these prior knowledge from many few-shot learning tasks. Each task also

contains a training step and a test step. In the training step, the model optimises the

parameters of the current task. In the test step, the model updates the parameters

that relevant to these prior knowledge (meta knowledge). In the meta-testing step,

the classification model learns to classify unseen classes based on one or a few la-

belled samples in each class; the model is retrained and tested on some new task

which has no overlapping with the meta-training tasks. Many meta-learning based
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fully supervised few-shot learning methods have made significant progress in this

area, however, these methods have a crucial drawback: they only use one or few

labelled samples in the meta-testing step. Consequently, the classifier may overfit

the labelled samples in the meta-testing. Since acquiring unlabelled data is much

cheaper and easier than labelling data, exploring the information contained in un-

labelled data to improve few-shot learning algorithms has attracted great attention.

Recently, [112] proposed a self-training based semi-supervised few-shot classifi-

cation algorithm and achieved state-of-the-art performance. However, this method

has a big issue: it only uses a single neural network based classifier for self-training.

A single classifier cannot address the confirmation bias (also called the label noise

accumulation problem in pseudo labelling) by itself; and more concerned in few-

shot learning, since deep networks are too complicated for the limited amount of

data, using a single deep network based classifier may result in a very big vari-

ance in few-shot classification tasks. An effective way to reduce model variance

is to assemble different predictions, however, many traditional ensemble learning

algorithms cannot apply to one-shot or few-shot learning due to the following two

problems. Firstly, it is hard to split the sample set since we only have one or a few

samples per class. Secondly, it is difficult to implement many different network

architectures to construct diverse prediction models for ensemble learning, since

comparing to the number of training samples, most of the architectures contain too

many parameters for few-shot classification tasks.

In order to address the above two problems and develop a label-noise (noise in

pseudo labels) robust self-training algorithm, we propose a semi-supervised ensem-

ble few-shot learning algorithm that is specially tailored for few-shot classification

tasks. The proposed method learns ensembles to relieve the confirmation bias of a

single classifier in the self-training process since different classifiers from different

views can provide different information to redress the confirmation bias. Moreover,

unlike many traditional ensemble learning algorithms, which cannot be applied to

one-shot or few-shot learning, our ensemble strategy is designed for few-shot learn-

ing, aiming to reduce the variance of deep networks in few-shot classification prob-
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lems. Meanwhile, our method is designed to deploy shared feature embedding in

different layers of a ResNet; this design enables a high-performance model with a

negligible increase in the number of parameters.

The contributions of this work can be summarised as follows. Firstly, we pro-

pose a meta-learning based semi-supervised ensemble method for few-shot clas-

sification. The proposed ensemble method leverages information from different

hierarchical levels and reduces the variance of the obtained neural network based

classification model, with only a slightly increased number of parameters. Sec-

ondly, we provide a model that can relieve the confirmation bias of a single clas-

sifier in the self-training for few-shot classification. Thirdly, our method achieves

state-of-the-art performances in two widely used benchmark datasets of few-shot

image classification.

4.2 Related work
We summarise the most relevant researches as below, rather than present a compre-

hensive survey on all related work as they are immense.

4.2.1 Supervised few-shot learning

Supervised few-shot learning for classification can be roughly grouped into two

categories: meta-learning based methods and metric based methods.

Meta-learning based methods. This line of methods either learn a good

initialization of model parameters or learn an optimizer. Their goal is a few-

shot learner that can adapt novel samples within a small number of optimization

steps. For example, [8] proposed an algorithm called model-agnostic meta-learning

(MAML), which can find a single set of model parameters that can be adapted

to individual tasks within a few steps of gradient descent. Building on MAML,

[113] proposed a probabilistic and generalized version of MAML. Unlike these two

methods which use the stochastic gradient descent, an LSTM-based meta-learner

optimizer was proposed in [111] to train another learner in the few-shot regime. In

addition, there is one kind of implicit meta-learning methods for few-shot learning,

in particular, they integrate the meta learner and base learner into one RNN based
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model [114, 115]. For example, [114] proposed a memory-augmented model called

memory-augmented recurrent network, which can obtain useful representations of

base data via gradient descent and can predict unseen samples on novel data.

Metric based methods. This category mainly learns to compare the similarity

or distance of two samples. Some work aims to learn feature embedding with a

fixed metric [116, 117]. For example, [116] used a Siamese convolutional neural

network for one-shot leaning, in which convolution layers are adopted in a VGG-

styled structure and L1 component-wise distance is used to compute the distance

between image features. Some work focus on learning a metric, such as the relation

network [7, 118], by using a learnable module, e.g. a neural network, to model the

similarity or distance metric between two samples. In addition to learning feature

embedding and learning a metric, some work focuses on learning appropriate class

prototypes, such as the prototype network [6] and its variants [119]. The proto-

type network introduced the prototype concept into the few-shot classification and

minimizing the Euclidean distance between every sample and its class prototypes.

Built on the prototype network, [119] proposed infinite mixture prototypes method

to accommodate multiple class prototypes and outperformed the prototype network

on the alphabet recognition task.

4.2.2 Semi-supervised few-shot learning

The supervised few-shot learning methods discussed above did not consider ex-

ploiting information from unlabelled samples. Therefore, built on the prototypical

network, [5] proposed a first semi-supervised few-shot classification method, in

which unlabelled samples are used to learn a more accurate class prototype. [112]

adopted self-training method to use unlabelled data, and obtained state-of-the-art

performance on the mini-ImageNet and tiered-ImageNet datasets. More specifi-

cally, it first trained a classifier on support data to predict unlabelled samples and

added those samples with high-confidence prediction into original support data to

retrain the few-shot classifier. The process is iterated and thus the design of few-shot

classifier is crucial to the final performance. In contrast to [112], our method adopts

an ensemble strategy to perform self-training, improve the accuracy and robustness
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of pseudo labelling for unlabelled samples, and reduce the variance of few-shot

classifier.

4.2.3 Ensemble few-shot learning

One big challenge of few-shot learning is overfitting. Ensemble learning [120] is an

effective approach to mitigate overfitting and reducing the variance of the model,

the key of which is to obtain both accurate and diverse ensemble members [121].

In ensemble learning, there are some classical methods, such as bagging [122] and

AdaBoost [123]; however, they are not suitable for few-shot learning. Bagging

[124] can ensure diversity by bootstrap sampling but cannot ensure the accuracies

of base classifiers in few-shot learning, since base neural networks have a big vari-

ance on few samples. AdaBoost obtains the diversity by re-weighting training data

based on the training errors generated from the previous classifier; however, in few-

shot learning, the first base classier, implemented by a complicated neural network,

may have no training error on few training samples, resulting in the inapplicability

of AdaBoost on few labelled samples. There are some new ensemble methods of

neural network, such as snapshot ensembling [125] and temporal ensembling [25];

however, they are specially tailored for large scale of labelled samples, not for few

labelled samples. Recently, [126] introduced a new ensemble mechanism for few-

shot classification, which encourages large probabilities of ground-truth classes in

two base classifiers and pushes dimension-wise orthogonality between probabilities

of non-ground-truth classes in two base classifiers; however, their model needs to

deposit a mass of model parameters and demands large amounts of memory, and

moreover, it has not considered using unlabelled data. In contrast to [126], our

method is semi-supervised and more suitable for few-shot classification.

4.3 Methodology
In this section, we provide details of the proposed method. We first give the def-

inition and formulation of meta-learning based few-shot learning, then describe in

detail the proposed ensemble strategy and self-training process of our model, and

finally provide our learning algorithms.
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4.3.1 C-way K-shot learning

The objective of few-shot (C-way K-shot) learning is: given C unseen new classes,

let the classification model ŷ = f (x) fast learn to classify unseen new classes with K

shots of labelled samples of each class. A conventional supervised learning method,

that directly trains the classifier by only using these K ×C labelled samples, is

highly likely to produce a very poor result. Hence, most of the few-shot learning

algorithms adopt meta-training, which learns prior knowledge from many related

tasks and then fast adapts to new tasks. The proposed method also follows the form

of meta-learning, which mainly contains two steps: the meta-training step and the

meta-testing step.

In the meta-training step, the proposed method learns a feature extractor and

a relation network from many classification tasks. In the meta-testing step, the

proposed method retrains a new classifier to fast adapt to the new task: learn to

classify C new classes. We adopt the episode training proposed by [117]. In meta-

learning, each episode is a classification task. Both the meta-training and meta-

testing steps contain many episodes. Each episode contains a labelled support set

S, an unlabelled support set U , and a query set Q. The whole dataset contains three

exclusive parts: meta-training set, meta-test set and meta-validation set. Suppose

the meta-training set contains T1 classes, the meta-test set contains T2 classes and

the meta-validation set has T3 classes; these three sets have no overlapping, and thus

the whole dataset contains T1 +T2 +T3 classes.

4.3.2 Construction of base classifier and the ensemble strategy

Since in few-shot learning it is hard to divide the small training set to fit differ-

ent base classifiers, how to construct base classifiers becomes a crucial problem.

Meanwhile, ensemble-based methods often lead to a large amount of parameters

and extra computational cost. Therefore, a key challenge addressed, and the main

novelty presented, in this work is how to design an ensemble method especially for

semi-supervised few-shot learning with a limited amount of parameters and com-

putational cost.

In the proposed method, each base classifier contains two modules: a feature
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Figure 4.1: The self-training procedure and the construction of base classifiers of the pro-
posed method: The classifier 0 is fitted by C-way K-shot labelled samples and
provides pseudo labels (denoted by pseudo-labelled set 1) of the unlabelled
subset. The classifier 1 is then fitted by the labelled support set and the pseudo
labelled support set 1. Repeating the self-training process, we finally obtain m
base classifiers. We use the last q classifier to construct the ensemble and make
the prediction.

extractor and a classifier. The feature extractor learns to extract discriminative fea-

tures from data and the classifier learns to predict labels based on these features.

In order to reduce the number of parameters, in our method the feature extrac-

tion network zi = gφ (xi) is shared by p selected base classifiers ŷ j = fθ j(z), for

j = 1,2, . . . , p.

To build different base classifiers, classical ensemble learning often use dif-

ferent labelled training sets, which is unfortunately infeasible in few-shot learning

due to the lack of labelled training data. Therefore, in the proposed method, we

use different pseudo labelled training sets to get different base classifiers, under the

following ensemble strategy, as illustrated in Figure 4.1. We first use the labelled

training set S0 = {(xi,yi)}n1
i=1, n1 =C×K, to fit an initial classifier fθ0 by minimis-
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ing the loss function L0:

θ0 = argmin
θ0

n1

∑
i=1

L0( fθ0(gφ (xi)),yi),

where L0( fθ0(gφ (xi),yi) =−∑
C
c=1 yic log fθ0(gφ (xi))c is the cross entropy, in which

fθ0(gφ (xi))c and yic are the cth elements of fθ0(gφ (xi)) and yi, respectively. Then we

use fθ0 to predict pseudo labels for the unlabelled training samples: ŷ j = fθ0(gφ (x j))

with x j ∈U . Since pseudo labelled data have different level of confidence, it is rea-

sonable to select and weighting pseudo labelled training samples based on their

relation score. The relation score is a similarity measure between the feature vector

of the input and the average corresponding class representation in a feature space.

Inspired by prior work [7, 112], we use a relation score to select and compute con-

fidence weights for the pseudo labelled data. We select n4 samples from the unla-

belled support set U that have the highest relation scores s jc, 0< s jc < 1 to construct

a new pseudo labelled support set P1 = {(x1, ŷ1), . . . ,(xn4, ŷn4)}. Similarly to the re-

lation network [7, 112] that learn a deep distance metric, the relation score is learned

by a relation network s jc = fsψ(C(gφ (xi),gφ (x j)c)c), where gφ (x j)c is the class cen-

tral of class c (mean of all real labelled samples gφ (xi) of class c) and C(.) is the

concatenation operation. Then we construct the second training set S1 = {S0∪P1}

and use S1 to train the second base classifier fθ1 by minimising the semi-supervised

loss function proposed by[112] as follows:

θ1 = argmin
θ1

[
n1

∑
i=1

Lθ ,φ ,ψ(xi,yi)+
n4

∑
j=1

Lθ ,φ ,ψ(x j,y j)].

Lθ ,φ ,ψ(x,y) =

−∑
C
c=1 yic log fθ1(gφ (xi))c, ifx ∈ S

−∑
C
c=1 ŷ jc log fsψ(C(gφ (xi),gφ (x j)c)c fθ1(gφ (x j))c, ifx ∈ P

(4.1)

The loss term of the labelled samples is still the cross entropy while the loss term of

the unlabelled samples is a weighted cross entropy that logarithm weighted by the
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relation score.

We repeat these steps to obtain m base classifier { fθ1, fθ2, . . . , fθm}, and finally

we select the last q (q ≤ m) base classifiers to predict the label in the test set. For

simplicity, the output of ensemble is taken as the average of outputs of q classifiers:

ŷi =
1
q

q−1

∑
k=0

fθm−k(gφ (xi)).

4.3.3 Episodic training and testing

Suppose there are M episodes of training samples in the meta-training step. In each

episode, we sample a classification task (by sampling C classes from T1 classes)

from the meta-training set and sample K labelled samples from each of the C

classes. These K ×C samples are the support set S = {(xi,yi)}n1
i=1, n1 = C×K.

The query set Q = {(xi,yi)}n2
i=1 includes the rest labelled samples of the C classes.

The unlabelled samples of the C classes are the unlabelled support set U = {x j}n3
j=1,

with n3� n1 and n3 > n4 as usual in practice.

Each training episode consists of a task update step and a meta update step.

In the task update step, parameters of the classifier is initialised by fθ∗(the meta

initialisation of classifiers), then we use the support set S and unlabelled support

set U to update parameters of classifiers fθi(z), i = 1,2, . . . , p. The parameters of

classifier fθk is learned by using the following loss function:

θk = argmin
θk

[
n1

∑
i=1

Lθ ,φ ,ψ(xi,yi)+
n4

∑
j=1

Lθ ,φ ,ψ(x j,y j)].

In the meta update steps, we use the query set to compute the classification

accuracy and update parameters of the feature extractor gφ (x), the initialisation of

classifier fθ∗(gφ (x)) and the relation network fsψ(C(gφ (xi),gφ (x j)c) by the follow-

ing formulae: (Different with the approximation in MAML[8], we do not cut down

the higher order derivative and use the first order approximation.)

gφ ← gφ −α1∇φ

n2

∑
i=1

Lθ ,φ ,ψ(xi,yi),
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fθ∗ ← fθ∗−α1∇φ

n2

∑
i=1

Lθ ,φ ,ψ(xi,yi),

fsψ ← fsψ −α2∇ψ

n4

∑
j=1

Lθ ,φ ,ψ(x j,y j).

where α1 and α2 are learning rate.

The episodes in the meta-testing step are different from the episodes in meta-

training, since in each episode now it only has the task update step. In every episode

of meta-testing, in the task update step we just use the support set S and unlabelled

support set U to retrain all base classifiers { fθ1(z), fθ2(z), fθ3(z), . . . , fθp(z)}, with

other parts of our model fixed. The query (test) set Q is only used to evaluate the

performances of the model.

The architecture of the proposed method is illustrated in Figure 4.1, the meta-

training procedure is summarised in Algorithm 3 and the meta-testing procedure in

Algorithm 4.

4.4 Experiments

In this section, we provide several experiments to evaluate our proposed method.

We compare the proposed method with other state-of-the-art few-shot classifica-

tion methods on two widely used benchmark datasets (mini-ImageNet and tiered-

ImageNet). We also conduct ablation studies to evaluate the effectiveness of our

self-training and ensemble strategies.

4.4.1 Datasets

mini-ImageNet mini-ImageNet is an image classification dataset first provided by

[117]. The mini-ImageNet dataset is one of the most widely used benchmark

datasets for few-shot learning. It contains 100 classes of images and each class

has 600 samples. We follow the conventional setting of the few-shot classification:

the dataset is split to 64 classes, 16 classes, and 20 classes for the meta-training set,

the meta-validation set, and meta-test set. The meta-training set, meta-validation

set, and the meta-test set have no overlapping of classes.
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Algorithm 3 Meta-training procedure of the proposed method
Require: Number of episodes M

for i = 1 : M do
Task update step:
Initialise the classifier fθ0 = fθ∗
Sample the labelled support set S = {(xi,yi)}n1

i=1.
Sample the unlabelled support set U = {xt

i}
n4
i=1 .

Update classifiers fθk :

fθk ← argmin
θk

[
n1

∑
i=1

Lθ ,φ ,ψ(xi,yi)+
n4

∑
j=1

Lθ ,φ ,ψ(x j,y j)]

Meta update step:
Sample the query set: Q = {(xi,yi)}n2

i=1.
Test on the query set and update the feature extractor gφ , the initialisation of
classifier fθ∗(gφ (x)), and the relation net fsψ :

gφ ← gφ −α1∇φ

n2

∑
i=1

Lθ ,φ ,ψ(xi,yi),

fθ∗ ← fθ∗−α1∇φ

n2

∑
i=1

Lθ ,φ ,ψ(xi,yi),

fsψ ← fsψ −α2∇ψ

n4

∑
j=1

Lθ ,φ ,ψ(x j,y j).

end for
return gφ , fθ∗ , fsψ .

tiered-ImageNet tiered-ImageNet is a relatively large dataset for few-shot image

classification. It was proposed by [5] and contains 779,165 images with 608 classes.

All 608 classes belong to 34 super classes. We also follow the conventional set-

ting of previous work [5, 127]. The meta-training set contains 20 super classes

(351 classes), the meta-validation set contains 6 super classes (97 classes), and the

meta-test set has 8 super classed (160 classes). Classes in the meta-training, meta-

validation, and meta-test sets are disjoint.
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Algorithm 4 Meta-testing procedure of the proposed method
Require: Number of test tasks T

for t = 1 : T do
Sample one new classification task:
Sample the labelled support set S0 = {(xi,yi)}n1

i=1 of the task.
Sample the unlabelled support set U = {xt

i}
n3
i=1.

Sample the query set Q = {(xr
i ,y

r
i )}

n2
i=1 of the task.

Load the feature extractor, initialisation of classifier and the relation net gφ ,
fθ∗ , fsψ .
Initialising the classifier:
fθ0 = fθ∗
Train the initial supervised classifier:
fθ0 ← argminθ0 ∑

n1
i=1 L0( fθ0(gφ (xi)),yi).

for k = 1 : m do
Using fsψ select a subset Uk with n4 unlabelled samples from U and with
fθk−1 to construct the pseudo labelled set Pk = {(x1, ŷ1), . . . ,(xn4 , ŷn4)}, ŷ j =
fθk−1(gφ (x j)),x j ∈Uk.

fθk ← argmin
θk

[
n1

∑
i=1

Lθ ,φ ,ψ(xi,yi)+
n4

∑
j=1

Lθ ,φ ,ψ(x j,y j)]

end for
Predict labels of samples in the query set:
for j = 1 : n2 do

ŷ j =
1
q ∑

q−1
k=0 fθm−k(gφ (x j)),x j ∈ Q

end for
Use ŷ j, j = 1, ...,n2 to compute classification accuracy At of task t.

end for
return 1/T ∑

T
t=1 At

4.4.2 Network architecture and implement details

We use the network architecture proposed by [128] as the backbone of our system.

The network contains two ResNet-12: One is the feature extractor and the other

outputs the scaling and shifting parameters of the feature extractor. Each ResNet

contains four residual blocks and each residual block contains three convolutional

layers, and the convolutional layers have 64, 64, 64, 128, 128, 128, 256, 256, 256,

512, 512, and 512 (channels) kernels, respectively, with kernel size 3×3. The rela-

tion score net fs consists of two convolutional layers (64 channels with kernel size

3× 3) and two fully connected layers. All base classifiers fθ1(z), fθ2(z), . . . , fθp(z)

are a fully connected layer with 512 hidden units. The image size of the input is
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84×84 in all experiments.

In the experiments, we use all the labelled samples in the meta-training set

to pre-train (initialise) the model. Then we perform episode training to train the

model, with 15,000 iterations in the meta-training. The initial learning rate is 0.001

and it decays to half for each 1,000 iterations until the learning rate decreases to

0.0001. In both mini-Imagenet and tiered-Imagenet dataset, for each five-way one-

shot learning task, we select 20∗5 pseudo labelled samples from 30∗5 unlabelled

samples based on the relation score to train a base classifier (Each base classifier

of the current task has 21 ∗ 5 labelled and pseudo labelled training sample). For

each five-way five-shot task, we select 30 ∗ 5 pseudo labelled samples from 50 ∗ 5

unlabelled samples to train a base classifier (Each base classifier of the current task

has 35 ∗ 5 labelled and pseudo labelled training sample). For all 1-shot classifica-

tion tasks, we assemble four base classifiers fθ1(z), fθ2(z), fθ3(z), fθ4(z) to predict

the label. For all 5-shot classification tasks, considering the number of unlabelled

samples in the support set (since the number of splits of unlabelled training set de-

pends on the number of training samples in the class with the minimum number of

unlabelled samples ), we only assemble three base classifiers.

4.4.3 Comparisons with the state-of-the-arts

We evaluate our method on two conventional few-shot classification tasks: 5-way

1-shot and 5-way 5-shot. Following the conventional setting of [111, 8, 132, 133,

134], in each episode, the query set Q contains 15 samples for each class (totally

75 samples) for evaluation 1-shot and 5-shot tasks. The overall accuracy is reported

based on an average of 600 randomly selected learning tasks. The 95% confidence

interval of accuracy is also reported.

We compare our method with other state-of-the-art methods on both mini-

ImageNet and tiered-ImageNet datasets. The results of are reported in Table 4.1

and Table 4.2 for the mini-ImageNet and tiered-ImageNet datasets, respectively.

From Table 4.1 and Table 4.2, we can see the proposed method achieves the best

performance in the 1-shot classification tasks. In the 5-shot classification task, the

proposed method still performs better than most of the state-of-the-art methods ex-
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Table 4.1: Performance comparison of different few-shot learning methods for 5-way 1-
shot and 5-way 5-shot classifications on mini-ImageNet: mean accuracy and its
95% confidence interval. The upper block shows the performance of supervised
few-shot learning methods. The lower block shows the performance of semi-
supervised few-shot learning methods. The MetaGAN is the only method that
provides results both on supervised and semi-supervised few-shot learning tasks
in mini-ImageNet. Since MetaGAN has many different settings, I only show the
results with the highest performance.

FSL Methods 5-way 1-shot 5-way 5-shot Backbone Remark

Su
pe

rv
is

ed

PrototypicalNet [6] 44.42±0.84 64.24±0.72 CONV 4
Relation Net [7] 49.31±0.85 66.60±0.69 CONV 4

Adv.ResNet [129] 55.2 69.6 SRPN
MAML [8, 127] 46.47±0.82 62.71±0.71 CONV 4

Meta-LSTM [111] 43.44±0.77 60.60±0.71 CONV 4
MetaGAN [130] 52.71±0.64 68.63±0.67 ResNet 12

Matching Net [117] 48.14±0.78 63.48±0.66 CONV 4
EMFSC [126] 63.95±0.61 81.59±0.42 ResNet 12 220×220 input size

Se
m

i-
Su

p MetaGAN(Semi) [130] 50.35±0.23 64.43±0.27 ResNet 12
Few-shot SSL [5] 50.41±0.31 64.59±0.28 CON 4

LST [112] 70.01±1.9 78.7±0.8 ResNet 12
Ours 70.56±1.80 77.61±0.87 ResNet 12

Table 4.2: Performance comparison of different few-shot learning methods for 5-way 1-
shot and 5-way 5-shot classifications on tiered-ImageNet: mean accuracy and its
95% confidence interval. The upper block shows the performance of supervised
few-shot learning methods. The lower block shows the performance of semi-
supervised few-shot learning methods.

FSL Methods 5-way 1-shot 5-way 5-shot Backbone Remark

Su
pe

rv
is

ed

MAML [8, 127] 51.67±1.81 70.30±0.08 CONV 4
PrototypicalNet [6] 53.31±0.89 72.69±0.74 CONV 4

Relation Net [7] 54.48±0.93 71.32±0.78 CONV 4
MetaOptNet-SVM [131] 65.99±0.72 81.75±0.53 ResNet 12

EMFSC [126] 70.44±0.32 85.43±0.21 ResNet 12 220×220 input size

Se
m

i-
Su

p Few-shot SSL [5] 52.39±0.44 70.25±0.31 CON 4
LST [112] 77.7±1.6 85.2±0.8 ResNet 12

Ours 80.3±1.69 84.5 ResNet 12
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cept for LST [112] and EMFSC [126]. We note that EMFSC used 220×220 high-

resolution image input and ensembled 20 base classifiers), while our method only

used the conventional setting for mini-ImageNet and tiered-ImageNet with input

image size of 84× 84. We compared results with both supervised few-shot learn-

ing methods and semi-supervised few-shot learning methods. The MetaGAN[130]

is the only method that provides results of mini-ImageNet both on supervised and

semi-supervised few-shot learning tasks. The MetaGAN has many different set-

tings, I only show the results with the highest performance. I also provide the

backbone architecture of each method in the tables.

4.4.4 Ablation studies

In ablation studies, we investigate two important problems: 1) whether self-training

strategy can improve the performances; and 2) the effect of the number of classifiers

in the ensemble.

Supervised or self-training based semi-supervised We compare the performances

of supervised (only utilising labelled training samples) and the proposed self-

training (utilising both labelled and unlabelled samples) based semi-supervised

methods on 5-way 1-shot classification. The results are shown in the Table 4.3,

from which we can see that the proposed semi-supervised self-training method can

greatly improve the performance.

Table 4.3: Performance comparison under different settings for 5-way 1-shot classification.
Mean accuracy from (Supervised that only utilising labelled training samples)
using labelled support set only or from (Self-training that utilising both labelled
and unlabelled samples) also using unlabelled support set with pseudo label
providedself-training.

Supervision type

Supervised Self-training(Semi-supervised)

mini-ImageNet 57.26 70.56
tiered-ImageNet 67.99 80.3
# parameters 3M+2052 3M+2052

Number of classifiers in the ensemble The results in the Table 4.4 show two pat-

terns: First, the more classifiers the better performance, with the relative perfor-
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Table 4.4: Performance comparison under different settings for 5-way 1-shot classification.
Mean accuracy from using different numbers of base classifiers. Bottom row:
number of parameters in each model(M means a million).

Size of ensemble

1 classifier 2 classifiers 4 classifiers

mini-ImageNet 67.86 69.40 70.56
tiered-ImageNet 78.6 80.2 80.3
# parameters 3M+513 3M+1026 3M+2052

mance improvement decreasing. This indicates that the proposed method is more

pseudo-label robust than a single classifier, relieving the latter’s confirmation bias.

We also note that, in semi-supervised tasks, the ensemble size is also limited by the

number of unlabelled samples, since the more we split unlabelled training set the

less pseudo labelled data can be used for a single classifier. The number of splits

of unlabelled training set depends on the number of training samples in the class

with the minimum number of unlabelled data. Secondly, the proposed method only

introduces a negligible increase of parameters.

4.5 Conclusions
We proposed an ensemble method specially tailored for semi-supervised few-shot

image classification. The proposed method uses unlabelled samples to facilitate

the construction of different base classifiers. The self-training method also im-

proves the performance of the proposed method. The meta-learning which transfers

knowledge of features and a metric from many meta-training tasks also improves

the performance of each base classifier. Since base classifiers share most of the pa-

rameters (with shared feature extractor), the proposed method only has negligibly

more parameters than a single model, while producing much better performance

than the latter. On two of the widely used benchmark datasets for few-shot image

classification, the proposed method achieved state-of-the-art performances.



Chapter 5

General Conclusions

5.1 Conclusions

In this thesis, we provide three works for two problems in weakly supervised learn-

ing: stochastic supervision under inaccurate supervision and semi-supervised learn-

ing under incomplete supervision.

For the stochastic supervision under inaccurate supervision, we provide four

generalisations of stochastic supervision models in Chapter 2. Since the origi-

nal stochastic supervision model has many strong assumptions and limitations, the

motivation of the proposed work is to generalise the assumptions and settings of

the stochastic supervision model. The proposed four generalisations extend the

stochastic supervision model to asymmetric assessments, multiple classes, feature-

dependent assessments, and multi-modal classes, respectively. Corresponding to

these generalisations, we also derive four EM algorithms to fit the four new mod-

els. We show that the four generalisations can effectively improve the model fitting

through illustrative examples of simulated datasets. We implement extensive exper-

iments for these new generalisation. The experiment results have shown that, com-

pared with the original stochastic supervision model, these new generalisations of

stochastic supervision models not only extend the original model to a more general

setting of classification tasks but also improve the classification accuracy on three

famous and widely-used real-world classification datasets, the MNIST dataset, the

CIFAR10 dataset, and the EMNIST dataset.
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For semi-supervised learning of incomplete supervision, we provide two new

methods in Chapter 3 and Chapter 4. In Chapter 3, we provide a semi-supervised

learning algorithm for hand pose estimation based on domain adaptation. Unlike

many existing semi-supervised learning methods which only make use of labelled

and unlabelled samples on the current task, the proposed method transfers knowl-

edge of features and takes advantage of labelled samples from a related domain

(the synthetic data) to improve the model performance. The proposed method

solves the covariate shift problem in domain adaptation by using the implicit im-

portance weight estimation. Our extensive experiment results lead to two conclu-

sions. Firstly, the proposed weight estimation method can reduce the mean error

of estimation. Secondly, transferring knowledge of features and training instances

from the synthetic data can greatly improve the model performance. The proposed

method achieves the state-of-the-art performance on the NYU dataset.

In Chapter 4, we propose a new method for a challenging semi-supervised

learning problem: semi-supervised few-shot learning. The proposed method is un-

der the framework of meta-learning which transfers knowledge of features and a

metric from many meta-training tasks. The proposed method provides a tailor-made

ensemble method for few-shot learning. Many experiments are implemented on the

two widely used few-shot learning benchmark datasets, and the experiment results

show that the ensemble can improve the model performance. The proposed method

also relieves the pseudo-label noise of the stochastic supervision for the self-training

in semi-supervised learning. This work also achieves state-of-the-art performance

on two widely used few-shot learning benchmark datasets.

5.2 Future work

To address the limitations of the settings of our proposed methods, there are several

extensions of our current work that can be done in the future. We list two pieces of

potential future work in this section.
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5.2.1 Multiple stochastic supervision model

In Chapter 2 of stochastic supervision, we only consider the situation with one su-

pervisor to provide the assessment. In many machine learning tasks, such as ensem-

ble learning, there are many models that can provide the prediction(assessments).

Generalising our current stochastic supervision models to the multiple supervisor

case can not only increase the flexibility of the stochastic supervision models but

also increase the model performance by assembling the assessments of different

supervisors.

Here we also present the training algorithm of this future work. Following

the notation of Chapter 2, in this setting a J class classification task contains K

supervisors with assessments zk,k = 1, . . . ,K. Each transformed assessment wk =

(wk,1, . . . ,wk,J−1), where wk, j = log zk, j
zk,J

, j = 1, . . . ,J− 1, follows a (J− 1)-variate

Gaussian distribution: qk, j(w)∼ N(∆k, j,Ωk, j), so the complete-data likelihood is

p(Y,X ,W ) =
N

∏
n=1

J

∑
j=1

yn, j[π j f j(xn)q1, j(wn,1)q2, j(wn,2) · · ·qK, j(wn,K)].

An EM algorithm can be further derived. In the E-step, the posterior distribution of

latent variables is updated by

p(Y |X ,W,θ old) =
N

∏
n=1

∑
J
j=1 yn j[π jN(xn|µ j,Σ j)∏

K
k=1 N(wn,k|∆k, j,Ωk, j)]

∑
J
j=1 π jN(xn|µ j,Σ j)∏

K
k=1 N(wn,k|∆k, j,Ωk, j)

,

and the corresponding class responsibilities is

γ(yn j) =
π jN(xn|µ j,Σ j)∏

K
k=1 N(wn,k|∆k, j,Ωk, j)

∑
J
j=1 π jN(xn|µ j,Σ j)∏

K
k=1 N(wn,k|∆k, j,Ωk, j)

.

In the M step, the model parameter is updated by the following formula:

µ
new
j =

N
∑

n=1
γ(yn j)xn

N
∑

n=1
γ(yn j)

, Σ
new
j =

N
∑

n=1
γ(yn j)(xn−µ jk)(xn−µ jk)

T

N
∑

n=1
γ(yn j)

,
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∆
new
k, j =

N
∑

n=1
γ(yn j)wn,k

N
∑

n=1
γ(yn j)

, Ω
new
k, j =

N
∑

n=1
γ(yn j)(wn,k−∆ j)(wn,k−∆ j)

T

N
∑

n=1
γ(yn j)

.

5.2.2 Multiple stochastic supervision ensemble for semi-supervised

few-shot classification

In Chapter 4 of semi-supervised few-shot learning, we proposed a tailor-made

method for few-shot learning to construct base classifiers. The ensemble of this

method is simple and direct. Just like many discriminative model based ensemble

methods, we simply take an average of different classifiers to make predictions. In

reality, the observable assessments wk,k = 1, . . . ,K and latent real label y have more

complicated relations. It is natural to use the observable assessments wk to infer-

ence the real label y, so that we can use a multiple stochastic supervision model

to ensemble base classifier and provide pseudo labels by jointly inference the real

label during the self-training.

The algorithm to fit the model of this future work is also provided here. The

notation is the same as the previous future work. In this future work, the observable

variable is the transformed assessments wn,k, k = 1, . . . ,K of K classifiers. The latent

variable is the real label yn. We derive an EM algorithm to fit this model. We assume

that wn,k follows a (J−1)-variate Gaussian distribution: qk, j(w)∼N(∆k, j,Ωk, j). So

that the complete-data likelihood is

p(Y,W ) =
N

∏
n=1

J

∑
j=1

yn, j[π jq1, j(wn,1)q2, j(wn,2)...qK, j(wn,K)].

In the E-step, the posterior distribution of latent variables is updated by

p(Y |W,θ old) =
N

∏
n=1

∑
J
j=1 yn j[π j ∏

K
k=1 N(wn,k|∆k, j,Ωk, j)]

∑
J
j=1 π j ∏

K
k=1 N(wn,k|∆k, j,Ωk, j)

,
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and the corresponding class responsibilities are

γ(yn j) =
π j ∏

K
k=1 N(wn,k|∆k, j,Ωk, j)

∑
J
j=1 π j ∏

K
k=1 N(wn,k|∆k, j,Ωk, j)

.

In the M step, the model parameter is updated by the following formula:

∆
new
k, j =

N
∑

n=1
γ(yn j)wn,k

N
∑

n=1
γ(yn j)

, Ω
new
k, j =

N
∑

n=1
γ(yn j)(wn,k−∆ j)(wn,k−∆ j)

T

N
∑

n=1
γ(yn j)

.



Appendix A

An appendix about the loss function

of the weighting net

Let the w(x) = p(x)
q(x) is the true density between p(x) and q(x). wθ (x) is an estimator

of the density ratio w(x). The expected Bregman divergence[135] BD(w‖wθ ) be-

tween true density w(x) and the estimator wθ (x) with respect to the density q(x) is

[136]:

E(BD(w‖wθ )) =
∫

BD(w‖wθ )q(x)dx (A.1)

=
∫
[ f (w(x))− f (wθ (x))− f ′(wθ (x))(w(x)−wθ (x))]q(x)dx

(A.2)

where f (w(x)) is the convex function of a f-divergence.

We minimize A.1 with respect to wθ is equivalent to minimize the following

term:

∫
[ f ′(wθ (x))wθ (x)− f (wθ (x))]q(x)− f ′(wθ (x))

p(x)
q(x)

q(x)dx (A.3)

=
∫
[ f ′(wθ (x))wθ (x)− f (wθ (x))]q(x)dx+

∫
(−1) f ′(wθ (x))p(x)dx. (A.4)
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For the Pearson divergence, since:

f (w(x)) =
1
2
(w(x)−1)2 (A.5)

f ′(w(x)) = w(x)−1 (A.6)

minimizing A.3 is equivalent to minimizing the following formula:

∫
[
1
2

wθ (x)2− 1
2
]q(x)dx+

∫
[1−wθ (x)]p(x)dx.

Hence, the loss function of the weighting net is:

Lg =
1
n1

n1

∑
i=1

[
1−

u1(zs
i )

u2(zs
i )

]
+

1
n3

n3

∑
j=1

1
2

(
u1(zr

j)

u2(zr
j)

)2

− 1
2


+

1
n1

n1

∑
i=1

[
1−

u1(zs
i )

u3(zs
i )

]
+

1
n5

n5

∑
j=1

1
2

(
u1(zt

j)

u3(zt
j)

)2

− 1
2

 .
(A.7)
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