
Bayesian inference in

neural circuits
and synapses

Aitchison, L.D.
Bachelor’s, Physics, University of Cambridge, UK (2010)

Masters, Systems Biology, University of Cambridge, UK (2011)

Gatsby Computational Neuroscience Unit

University College London

Sainsbury Wellcome Centre

25 Howland Street

London

W1T 4JG

THESIS

Submitted for the degree of

Doctor of Philosophy, University of London

2017

1



I, Laurence Aitchison, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the thesis.

2



Abstract

Bayesian inference describes how to reason optimally under uncertainty. As the

brain faces considerable uncertainty, it may be possible to understand aspects

of neural computation using Bayesian inference. In this thesis, I address several

questions within this broad theme. First, I show that confidence reports may, in

some circumstances be Bayes optimal, by taking a “doubly Bayesian” strategy:

computing the Bayesian model evidence for several different models of partici-

pant’s behaviour, one of which is itself Bayesian. Second, I address a related

question concerning features of the probability distributions realised by neural

activity. In particular, it has been show that neural activity obeys Zipf’s law,

as do many other statistical distributions. We show the emergence of Zipf’s law

is in fact unsurprising, as it emerges from the existence of an underlying latent

variable: firing rate. Third, I show that synaptic plasticity can be formulated as

a Bayesian inference problem, and I give neural evidence in support of this propo-

sition, based on the hypothesis that neurons sample from the resulting posterior

distributions. Fourth, I consider how oscillatory excitatory-inhibitory circuits

might perform inference by relating these circuits to a highly effective method

for probabilistic inference: Hamiltonian Monte Carlo.
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Introduction

Every second, the brain receives a huge volume of complex, structured sensory

information (Jacobson, 1951). The brain must disentangle this information —

working out what opportunities and threats are in the surrounding environment

and choosing actions accordingly. For instance, is the complex pattern of light

on the retina a bush or a tiger, and thus, should you run away?

Marr and Poggio (1976) proposed three levels at which we can understand neural

systems. At the computational level, we ask about the system’s overall goal.

For instance, one possible computation is probabilistic inference. At the algo-

rithmic level, we ask what sequence of steps the brain might use to achieve its

goal. For instance, one algorithm for performing inference is Metropolis-Hastings

Monte Carlo (MHMC) sampling (Robert and Casella, 2011). Finally, at the im-

plementation level, we ask how the algorithm is implemented in real biological

hardware.

We focus on one computation: probabilistic inference, and one class of inference

algorithms: sampling algorithms.

In general, probabilistic inference takes a model that describes how sensory data

might be generated from latent causes, and then inverts the model, to find the

latent causes that might have given rise to the observed sensory data (Bayes and

Price, 1763). Probabilistic inference is interesting from a neuroscientific perspec-

tive because it is theoretically well-motivated, and practically effective. Theoret-

ically, axiomatic formulations of Bayes theorem have shown that any calculus of

uncertainty obeying certain, intuitively obvious, axioms, gives rise to Bayesian

probability theory (Knuth and Skilling, 2012). Practically, while there are many

approaches to solving simpler machine-learning tasks (for instance, there are a

huge number of methods for solving supervised learning problems, one example

being random forests (Breiman, 2001)), once the models reach a high-enough

level of complexity (e.g. unsupervised heirarchial or non-parametric models), the

only viable approach is Bayesian machine-learning (Feller and Gelman, 2014).

Performing probabilistic inference requires the use of a probabilistic inference

algorithm. There are many such algorithms, each with advantages and disadvan-

9



tages (Frey and Jojic, 2005), and it remains unclear which one is used by the

brain (Pouget et al., 2013). We focus on one particular family of algorithms,

sampling algorithms, which state that neural activity at one particular instant

represents one plausible explanation of the sensory data, and as neural activity

changes over time, the brain is effectively exploring multiple plausible explana-

tions for the data. Formally, a snapshot of neural activity represents a sample

from the posterior distribution over latent variables given observed data. The

idea that the brain samples, known as the sampling hypothesis (Hoyer and Hy-

varinen, 2003; Fiser et al., 2010), has biological and compuational advantages

over other competing ideas. Biologically, sampling multiple plausible explana-

tions of the sensory data provides a natural explanation for variability in neural

responses (Hoyer and Hyvarinen, 2003). Furthermore, two observed features of

neural variability match predictions given by the sampling hypothesis: variability

is supressed by stimulus onset (Churchland et al., 2010; Orbán et al., 2013), and

spontaneous activity changes over an animal’s lifetime in order to match evoked

activity (Berkes et al., 2011b). Computationally, sampling algorithms can be

applied to almost every probabilistic model, and give the right answer if given

enough computation time (Robert and Casella, 2011). In contrast, approximate

inference techniques have, by necessity, approximation biases, which cannot be

eliminated by the addition of more computation time (Ghahramani et al., 2000).

Furthermore, many approximation techniques can be applied only to relatively

narrow classes of model.

Here, I present four projects related to these overarching themes. First, we

consider whether confidence reports appear to result from underlying Bayesian-

optimal neural computations, or from another heuristic process. Using a “doubly-

Bayesian” procedure, in which we perform Bayesian model selection over a set

of models of neural processing, one of which is itself Bayesian, we show that in

some circumstances decisions appear Bayes optimal, whereas in other circum-

stances they do not. Second, it has been shown that neural activity displays

an interesting statistical property known as Zipf’s law: if we take each possible

pattern of neural activity, and rank them from most to least frequent, then the

frequency is inversely proportional to the rank. This pattern is observed in many

other domains, including e.g. antibodies and word frequencies. We show that

in neural activity, and in some of these domains, Zipf’s law emerges because of

an underlying latent variable (firing rate in the case of neural activity). Third,

I consider synaptic plasticity as a Bayesian inference problem, and show that

this approach makes a variety of predictions about how learning rates scale with

presynaptic firing rates. Furthermore, if we assume that synapses sample EPSPs

from their posterior distributions over firing rates, we make a further predic-

tion about how EPSP variability should change with presynaptic firing rates; I

confirm this prediction with a novel reanalysis of data from Ko et al. (2011).
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Finally, I consider how sampling-based probabilistic inference might be imple-

mented in oscillatory excitatory-inhibitory neural circuits by using Hamiltonian

Monte Carlo.

The first (Aitchison et al., 2015), second (Aitchison et al., 2016) and fourth

(Aitchison and Lengyel, 2016) chapters have been published. The third chapter

has been reviewed by Nature, and we are preparing an appeal.
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Literature Review

Here we survey computational and algorithmic models of neural circuits and

synapses. In order to better understand why I focus on one computation (prob-

abilistic inference) and one algorithm (sampling), here we consider these ap-

proaches in the context of other possible approaches. In particular, before moving

on to the computation that we focus on, probabilistic inference, we consider two

other computational approaches: information maximization and deep-belief net-

works. Likewise, before moving on to the family of algorithms that we focus on,

sampling, we consider two other families of algorithms for performing inference,

maximum a-posteriori algorithms, and approximate inference algorithms.

Computation: Mutual Information Maximization

Shortly after the birth of information theory (Shannon, 1948), there were pro-

posals that sensory systems maximize the mutual information between sensory

stimulus, s, and neural activity, r (Attneave, 1954; Barlow, 1961). The mutual

information is defined to be the difference of two entropies (Shannon, 1948),

I (r; s) = H [r]−H [r|s] , (1)

where the entropy of the neural response is,

H [r] = −
∑
r

P (r) logP (r) , (2)

and the entropy of the neural response conditioned on the sensory data is,

H [r|s] = −
∑
s

P (s)
∑
r

P (r|s) logP (r|s) . (3)

Entropies are always non-negative (Cover and Thomas, 1991), with a large en-

tropy indicating a very random distribution (e.g. a uniform distribution), and a

small entropy indicating a less random, or more deterministic distribution (e.g. a

very high probability for only one option). Thus, we can see there are two factors

that contribute to a large mutual information. First, the transformation from
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sensory data to neural activity should be as deterministic as possible, implying

that H [r|s] ≈ 0. Second, the range of possible responses, r, should be as broad as

possible, giving a large H [r]. In combination, we can see that if the response is to

have a large mutual information, it must deterministically map different sensory

data items to as wide a range of neural responses as possible.

It was initially argued that a maximally informative representation of the sen-

sory data might somehow disentangle the latent causes describing the state of the

world (Attneave, 1954; Barlow, 1961). However, looking again at the definition

of the mutual information, we see that mutual information maximization will not

necesserily disentangle latent causes (Dayan and Abbott, 2001). The reasoning

is simple: mutual information maximization finds a deterministic transform that

uses the full range of possible neural responses as effectively as possible. This

does not require that the resulting deterministic function will somehow disen-

tangle the latent causes. That said, in some special cases, mutual information

maximization does coincide with probabilistic inference, for instance, there is a

link between infomax based independent components analysis (ICA) (Bell and

Sejnowski, 1995), and maximum-likelihood based ICA (Pearlmutter and Parra,

1996; MacKay, 1996).

However, it does appear that mutual information maximization is important

whenever there are informational bottlenecks — when there is a large amount

of information that needs to travel down a constrained channel. One of the

first examples of this principle was given by Laughlin (1981). He showed that

the neural response in Large monopolar cells (LMCs) in the insect compound

eye has a uniform distribution, maximizing the first term in Equation (1), and

thus maximizing the mutual information between the sensory data and the re-

sponse. Mutual information maximization is also used to explain properties of

retina ganglion cells (RGCs), because these cells form an important bottleneck

— all the visual information received by the retina must be communicated by

106 retinal ganglion cells (RGCs) (Bruesch and Arey, 1942). Mutual information

maximization can therefore be used to understand many properties of RGCs, in-

cluding receptive fields with an inhibitory surround that becomes facilitatory at

low contrast (Atick and Redlich, 1990), the proportion and opponency of colour

photoreceptors (Atick et al., 1992; Garrigan et al., 2010), properties of tiling in

the retina (Borghuis et al., 2008) and the proportion of on vs off cells (Ratliff

et al., 2010; Karklin and Simoncelli, 2011). Furthermore, information theoret-

ical approaches have been applied to single synapses. Toyoizumi et al. (2004)

derived an STDP rule, based on the notion that the neuron maximizes the mu-

tual information between the postsynaptic spike train and the presynaptic spike

trains. Goldman (2004) showed that vesicle release failures can, under some cir-

cumstances, lead to an increase in the information transferred across the synapse

per vesicle. However, the relevance of these ideas is unclear — while one can view
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the neuron as an information bottleneck, its primary function is not to transmit

as much information as possible, but to compute a useful function of its input,

and it remains unclear whether these notions necessarily overlap.

Computation: Deep neural networks

Recently, deep neural networks have been found to offer state of the art perfor-

mance on a wide range of tasks, from handwritten digit recognition (e.g. Ciresan

et al. (2010)), object recognition (e.g. Krizhevsky et al. (2012)), and speech recog-

nition (e.g. Graves et al. (2013)), to more specialised tasks, like translation (e.g.

Sutskever et al. (2014)), and finding the boundary between neurons in electron

microscopy images (e.g. Turaga et al. (2010)). Such networks might therefore be

expected to offer us insights into the computations performed by the brain, and

indeed, the representation in each layer of a neural network has been shown to

mirror, to some extent, the representation in each stage of neural visual processing

(Yamins et al., 2014).

However, there are three arguments that suggest that deep neural networks, at

least in their current form, will not provide fundamental insight into the compu-

tations performed by the brain. First, in order to train a deep neural network,

it is necessary to have a huge amount of labelled training data (Deng, 2014;

Schmidhuber, 2015). In contrast, the brain does not receive such a vast volume

of labelled data. Instead, the brain must extract the statistical structure in unla-

belled data — a process known as unsupervised learning (Hinton, 2007), perhaps

aided by a small number of labelled examples (Hinton et al., 2006). Second,

the procedure by which all such networks are trained involves backpropagating

information about errors in the network’s output through the whole network.

While this is straightforward computationally (Rumelhart et al., 1986), it is very

difficult in neural hardware, which allows signals to travel along the axon in

only one direction (though there may be ways to get around this issue (Lillicrap

et al., 2014; Bengio et al., 2015)). Third, these networks are trained in a su-

pervised fashion — meaning that they are designed only to extract a relatively

small amount of information, usually just object identity. While they may, inci-

dentally, extract more information, it is by no means certain that such networks

will extract, for instance, part-whole relationships (Hinton et al., 2011; Szegedy

et al., 2013). Despite these difficulties, deep-neural-networks do constitute a use-

ful proof-of-existence — they demonstrate that many difficult tasks can, in fact,

be performed by networks that are similar, at least at a very shallow level, to

those in the brain.
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Probabilistic Inference

Probabilistic inference based approaches begin by specifying a probabilistic gen-

erative model. Probabilistic generative models explicitly describe the relationship

between latent causes and observations (Pearl, 1988; Koller and Friedman, 2009),

by specifying how to generate a possible observation from a particular set of latent

causes. Probabilistic inference then goes backwards, inferring the latent causes

that might have given rise to that particular observation. Importantly, in order

to work out plausible latent causes, it is important to have not only a likelihood,

describing how link between observations and latents, but also a prior, describing

the probability of each latent cause (e.g. if I hear a fire alarm, it is probably

because there is a drill or test, not because the building is on fire) (Adams et al.,

2004; Mulder et al., 2012).

Probabilistic generative models have multiple advantages over approaches de-

scribed previously. First, unlike information maximization, it should be able to

disentangle the latent causes underlying the stimulus, because that is its explicit

goal (Stoianov and Zorzi, 2012). Second, unlike deep belief networks, the goal

is to model every latent variable that is necessary to explain the image — so all

relevant information (including, for instance part-whole relationships) should be

present in the inferred latent variables, unlike in a deep belief network, where the

only goal is to match the labels in the training set.

Moreover, there are a significant number of studies suggesting that people’s be-

haviour is Bayes optimal, reviewed in (Pouget et al., 2013). For instance, inte-

gration of information from different sensory modalities is believed to be Bayes

optimal (Alais et al., 2010). In particular, humans optimally combine visual

and haptic or proprioceptive information in order to determine the size of ob-

jects (Ernst and Banks, 2002), or to determine hand location (van Beers et al.,

1999b). Similarly, animals can optimally combine visual and auditory information

(Raposo et al., 2012), and humans and animals can optimally integrate informa-

tion across time (Brunton et al., 2013). A separate branch of work has provided

evidence that humans use Bayes-optimal models in motor control (reviewed in

(Körding and Wolpert, 2006; Wolpert, 2007; Orbán and Wolpert, 2011; Wolpert

and Landy, 2012)). For instance, Wolpert et al. (1995) showed that people opti-

mally integrate information from proprioception and motor commands in order

to estimate hand position after movements in the dark.

However, probabilistic generative models raise almost as many questions as they

answer. In particular, there are many families of algorithms that perform infer-

ence — that extract plausible settings for the latent variables from an observation

— each with advantages and disadvantages for use in neural computation. The

most important distinction between probabilistic inference algorithms is whether
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they find only a single best explanation for the sensory data, or find the full range

of plausible explanations, represented as a full probability distribution. Thus, we

begin by considering these two families of algorithm.

Formally, the best explanation for the sensory data is given by maximum a-

posteriori (MAP) inference,

latents∗ = argmaxlatents [P (observations|latents)P (latents)] . (4)

MAP approaches are extremely simple and thus are relatively easy to map on

to neural hardware (e.g. Olshausen and Field (1996)). Two features contribute

to their simplicity. First, the representation is simple. In particular, the system

only needs to represent a single setting of the latent variables, rather than a full

distribution over plausible settings. Second, the inference algorithm is simple. In

particular, the system simply needs to perform optimization (e.g. gradient ascent

(Cauchy, 1847)) to find the setting of the latents that maximizes the objective,

P (latents, observations), with the observations held fixed.

MAP inference has been used in two complementary approaches to neuroscientific

research.

The first approach is to write down a probabilistic model of natural stimuli, per-

form MAP inference and learning, then compare the response of latent variables

in the model to real neurons. This is exemplified by the classic study by Olshausen

and Field (1996), in which they demonstrate that MAP inference and learning

gives receptive fields very similar to those observed in real neurons. Using more

realistic priors (or equivalently, loss functions) leads to more realistic receptive

fields (Rehn and Sommer, 2007). A similar approach can also successfully explain

properties of auditory receptive fields (Lewicki, 2002), and to understand some

visual extra-classical receptive field effects (Rao and Ballard, 1999).

The second approach is to write down a biologically plausible neural network that

implements some form of MAP inference. These include Rozell et al. (2008),

who focused on a temporal version of the sparse coding problem, Deneve and

colleagues, who developed a family of neural networks that use an optimal spike-

based representation of continuous quantities (Boerlin and Denève, 2011; Bour-

doukan et al., 2012; Barrett et al., 2013; Boerlin et al., 2013), and Hu et al.

(2012) who developed methods that are fundamentally spike-based (as opposed

to other methods that typically use spikes to approximately represent continuous

quantities).

However, the MAP approach has a critical problem: experimentally, it is found

that humans make effective use of information about uncertainty, information

that is thrown away by MAP (Ernst and Banks, 2002; van Beers et al., 1999b;

Raposo et al., 2012; Brunton et al., 2013; Wolpert et al., 1995). Nevertheless,
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these approaches have huge value, not only as a testbed for methods that are

later extended to be fully probabilistic, but also because we cannot, at present,

exclude the possibility that at least some sensory areas use MAP-like inference.

This failure leads us to think about approaches that try to characterise the full

range of plausible explanations for the observed data. In particular, this range is

represented as a probability distribution, computed using Bayes theorem,

P (latents|observations) ∝ P (latents)P (observations|latents) (5)

This approach has the critical advantage that all information about uncertainty

is retained, allowing for more effective task performance. However, this approach

yet again raises more questions, because there are again multiple approaches that

neural systems could take for performing inference and representing the result-

ing inferred distributions. Here we focus on two such approaches, parametric

approximate distributions, and sampling.

Neural activity could encode the parameters of a distribution that approximates

the inferred posterior. These approximate distributions are usually part of the

exponential family,

Q(latents) ∝ exp (T(latents) · θ) , (6)

where θ is the natural parameter vector, T(latents) is the sufficient statistic

vector. Importantly, an exponential family distribution can be parameterised by

its natural parameters, θ, or its mean parameters, µ = E [T(latents)]. There

is a one-to-one mapping between these parameters, so the representations are

equivalent — though the inference strategies afforded by each representation are

very different.

First, we consider approaches based on natural parameters, which are often known

in neuroscience as probabilistic population codes (PPCs) (Ma et al., 2006; Beck

et al., 2007, 2008). PPCs were regarded as interesting because they facilitate

easy combination of information from multiple sources. For instance, if we have

visual and haptic information, represented as,

P (visual observations|latents) ∝ exp (T(latents) · θvisual) (7)

P (haptic observations|latents) ∝ exp (T(latents) · θhaptic) (8)

and prior information represented in a similar form,

P (latents) ∝ exp (T(latents) · θprior) (9)

then the posterior distribution can be represented by the sum of the natural
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parameters,

P (latents|observations) ∝ exp (T(x) · (θprior + θvisual + θhaptic)) . (10)

Thus, if the natural parameters are represented as firing rates, then it would

be very easy to combine these distributions — the brain would simply need to

add together the firing rates. However, PPC-like variational inference schemes

are difficult develop for more complex and interesting models of realistic sensory

stimuli (though see Beck et al. (2012)).

Second, mean parameter based approaches state, simply, that a posterior distri-

bution is represented by the expectation, under that posterior, of a variety of

functions (often these functions are the sufficient statistics vector, T(x)). For

instance, Zemel et al. (1998) proposed that neural firing rates, ri, represent the

posterior distribution over a single variable, s, by taking the expectation under

the posterior of a set of basis functions,

ri =

∫
P (s|observations)φi(s)ds. (11)

This proposal might seem to preclude representation of uncertainty about mul-

tiple stimuli, (if, for instance, you take s to be a single scalar, describing the

orientation of a stimulus). In fact, this is not true, as s can be an arbitrary

object (e.g. a vector describing the orientation of multiple stimuli). It is then

possible to find the posterior distribution over this function, and to report ex-

pectations under that posterior (Sahani and Dayan, 2003). Oddly, these schemes

are not, at present an active subject of research in neuroscience. However, recent

results in Machine learning showing that it is possible to infer expectations under

a posterior distribution using only regression-like techniques (Fukumizu et al.,

2013) might rejuvenate the area.

An alternative approach is to use a large number of samples from the posterior

distribution P (latents|observations) to represent that distribution. Neuroscien-

tifically, this implies that neural activity represents a particular setting for the

latent variables, and variability over time in neural activity samples multiple

plausible settings for the latent variables.

Sampling has a long history in computational neuroscience, with one particularly

important early advance being the Boltzmann Machine (BM) (Ackley et al.,

1985). The BM specifies a distribution over the binary vector x, where xi = 1

indicates that cell i is active, whereas xi = 0 indicates that the cell is inactive.

Formally, the Boltzmann Machine probability distribution is given by,

P (x) ∝ exTWx. (12)
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Inference and learning in the BM is relatively straightforward. To perform infer-

ence, the typical method is Gibbs sampling — repeatedly sampling one element

of the vector, xi conditioned on all the other elements, x/i (some of which may

be observed, and hence fixed). Importantly, the exact expression for this update

is remarkably similar to the update equation for stochastic binary neurons,

P
(
xi = 1|x/i

)
= σ

∑
j

Wijxj

 , (13)

where σ is the sigmoid function,

σ (E) =
1

1 + e−E
. (14)

To learn a Boltzmann Machine, the typical method is the Hebbian-like Boltzmann

Machine learning rule,

∂ logP (x)

∂W
=
〈
xxT

〉
Data
−
〈
xxT

〉
Model

, (15)

where the first expectation is computed based on the data (Gibbs sampling any

unobserved units) and the second expectation is computed based only on the

model (Gibbs sampling all units).

The Boltzmann Machine is very interesting because it is able to perform sampling-

based inference and learning despite its extreme simplicity. However, there is

one way in which the Boltzmann Machine looks very different from a true neural

circuit — the Gibbs updates are serial, only one cell is updated at a time, whereas

in a typical neural circuit, you update every cell in parallel at each time step.

There are two methods by which this problem can be alleviated.

The first method is to divide the units into observed units, v, and latent, or hidden

units, h, then to ensure that there are no recurrent connections from observed

to observed units, or from hidden to hidden units, so the only connections run

from hidden to observed units. This restricted model is known as the restricted

Boltzmann Machine (RBM) and takes the form,

P (v,h) ∝ ebTv v+bThh+hTWv. (16)

Importantly, this restriction makes it possible to sample all the hidden units con-

ditioned on the visible units (or all the visible units conditioned on the hiddens),
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in parallel in one step,

P (h|v) =
∏
i

P (hi|v) =
∏
i

σ

bh,i +
∑
j

Wijvj

 , (17)

P (v|h) =
∏
j

P (vj |h) =
∏
i

σ

(
bv,j +

∑
i

hiWij

)
. (18)

An alternative approach is to notice that it is, in fact, possible to sample a

Boltzmann Machine in continuous time, with neuron-like units. In particular,

(Buesing et al., 2011) showed that units that turn on with some probability, then

turn off after a fixed length of time (representing the membrane time constants

of the downstream cells), can sample from a fully-connected BM.

The Boltzmann Machine and its variants achieved considerable success in the

machine learning community, but at present it has fallen out of favour, being

replaced by deep neural networks based on backprop.

The next suggestion for a sampling scheme was the Helmholtz Machine (Dayan

et al., 1995; Dayan and Hinton, 1996; Dayan, 1998). The Helmholtz Machine

introduced the concept that there might be two models: a generative model,

representing the data-generating process, and a separate recognition model, with

different parameters, which is used to infer the latent states associated with in-

coming data. Formally, there are again latent, or hidden units, h and observed,

or visible, units v. The generative model is given by Pθ (v|h)Pθ (v), and the

recognition model is given by a separate distribution, Qφ (h|v). The advantage

of this approach is that inference is very fast — instead of having to invert the

generative model, which can be very slow, as it almost always involves an it-

erative procedure, the data is simply pushed through the (usually feedforward)

recognition model. To train the recognition and generative models, and to en-

sure that they are consistent, the Helmholtz Machine uses a remarkably simple

scheme. To train the recognition model, we generate data from the generative

model, Pθ (v,h). We then have both v and h, so training the parameters of

the recognition model, φ, by, for instance gradient ascent, is straightforward. To

train the generative model, we take data, v, then generate h using the recogni-

tion model. As before, we now know both v and h, so training the parameters

of the generative model, θ is straightforward. This learning scheme forces the

generative and recognition models to be consistent with each other, and with the

observed data. Sadly, models learned by the Helmholtz Machine turn out to be

relatively poor, perhaps because the training procedure lacks a single objective

function. However, the fundamental innovative idea in the Helmholtz Machine

— the recognition model — is now being used to great success in variational

autoencoders (Mnih and Gregor, 2014).

20



In recent years, researchers have sought direct experimental tests of the sampling

hypothesis. Thus far, this approach has yielded two interesting results. First, the

sampling hypothesis predicts that variability in neural activity is suppressed upon

stimulus onset (Orbán and Lengyel, 2011), as, indeed, is observed (Churchland

et al., 2010) (though other models also predict this, see, for instance Deco and

Hugues (2012)) The sampling hypothesis makes this prediction because, with no

stimulus the animal is uncertain about the “true” state of the external world,

so many different states are plausible, leading to high variability. In contrast,

with a stimulus, the animal is relatively certain about the “true” state of the

external world, so only a small range of states are plausible, leading to low vari-

ability. Second, the sampling hypothesis makes a strong prediction about the

relationship between spontaneous activity (i.e. neural activity with no stimulus),

and average evoked activity (i.e. neural activity with a stimulus, averaged over

all possible stimuli). In particular, we take spontaneous activity to represent

the animal’s prior, and evoked activity to represent the animal’s posterior in-

ferences. If the animal has learned a good model of the visual world, then the

prior should represent the baseline probability of each setting of the latent vari-

ables. Importantly, this prior is learned by observing data, inferring the latent

variables, then working out how often each setting of the latent variables occurs.

Thus, spontaneous activity (representing the prior) should match average evoked

activity (representing average posterior inferences over many different stimuli).

Moreover, this match should improve as the animal develops, and hence learns a

better model. This was, indeed, observed (Berkes et al., 2011b).

This literature review has described a collection of related approaches to under-

standing neural computation. While each of these methods has arguments for

and against their usefulness, there is, at present, too little data to enable us to

conclusively rule in or out any particular approach. As such, perhaps the only

way to make progress is to pick one approach, perhaps one that has more ar-

guments in its favour, and make theoretical advances enabling that approach to

be tested experimentally — an approach that I have taken here for the sampling

hypothesis.
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Chapter 1

Doubly Bayesian analysis of

confidence

1.1 Abstract

Humans stand out from other animals in that they are able to explicitly report

on the reliability of their internal operations. This ability, which is known as

metacognition, is typically studied by asking people to report their confidence in

the correctness of some decision. However, the computations underlying confi-

dence reports remain unclear. In this paper, we present a fully Bayesian method

for directly comparing models of confidence. Using a visual two-interval forced-

choice task, we tested whether confidence reports reflect heuristic computations

(e.g. the magnitude of sensory data) or Bayes optimal ones (i.e. how likely a

decision is to be correct given the sensory data). In a standard design in which

subjects are first asked to make a decision, and only then give their confidence,

subjects were mostly Bayes optimal. In contrast, in a less-commonly used design

in which subjects indicated their confidence and decision simultaneously, they

were roughly equally likely to use the Bayes optimal strategy or to use a heuris-

tic but suboptimal strategy. Our results suggest that, while people’s confidence

reports can reflect Bayes optimal computations, even a small unusual twist or

additional element of complexity can prevent optimality.

1.2 Introduction

Humans and other animals use estimates about the reliability of their sensory

data to guide behaviour (e.g. (Kepecs et al., 2008; Kiani and Shadlen, 2009;

Komura et al., 2013)). For instance, a monkey will wait until their sensory data is

deemed sufficiently reliable before taking a risky decision (Komura et al., 2013).
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Humans can go further than other animals: they can explicitly communicate

estimates of the reliability of their sensory data, by saying, for instance, “I’m sure”

— an ability that is important for effective cooperation (Bahrami et al., 2010;

Fusaroli et al., 2012; Shea et al., 2014). This ability to report on the reliability

of our internal operations is known as “metacognition”, and is typically studied

by asking people to report their confidence in the correctness of some decision

(Fleming et al., 2012). However, the computations underlying confidence reports

remain a matter of debate (see Box 1 in Shea et al. (2014), for a brief overview).

For instance, in an orientation-discrimination task, reports might — as a heuristic

— reflect the perceived tilt of a bar. Alternatively, reports might reflect more

sophisticated computations, like Bayesian inference about the probability that a

decision is correct. An accurate understanding of confidence reports is important

given its role in high-risk domains, such as financial investment (e.g. (Broihanne

et al., 2014)), medical diagnosis (e.g. (Berner and Graber, 2008)), jury verdicts

(e.g. (Tenney et al., 2007)), and politics (e.g. (Johnson, 2004)).

Here, we ask: how do people compute their confidence in a decision? We are

particularly interested in whether confidence reports reflect heuristic or Bayes

optimal computations. The latter would be consistent with a wide array of work

showing that other aspects of perception and decision making are Bayes optimal

(Ma and Jazayeri, 2014). However, as far as we know, whether confidence re-

ports reflect Bayes optimal computations has not been directly tested. We use

a standard psychophysical task in which subjects receive sensory data, make a

decision based on this data, and report how confident they are that their decision

is correct. Our goal is to determine how subjects transform sensory data into a

confidence report. In essence, we are asking: if we use x to denote the sensory

data (x can be multi-dimensional) and c to denote a confidence report, what is

the mapping from x to c? Alternatively, what is the function c(x)?

To answer this question, we follow an approach inspired by signal detection theory

(Green and Swets, 1966). We hypothesize that subjects compute a continuous

decision variable, zD(x), and compare this variable to a single threshold to gen-

erate a decision, d. Likewise, we hypothesize that subjects compute a continuous

confidence variable, zC(x; d), an internal representation of the evidence in favour

of the chosen decision, d, and compare this variable to a set of thresholds to gen-

erate a level of confidence, c (the evidence in favour of one decision is different

from the evidence in favour of the other decision, so the confidence variable must

not only depend on the sensory evidence, x, but also the decision, d). Within

this framework, a heuristic computation is a reasonable, but ultimately some-

what arbitrary, function of the sensory data. For instance, if the task is to choose

the larger of two signals, x1 or x2, a heuristic confidence variable might be the

difference between the two signals: zC
∆ (x; d = 2) = x2 − x1 (the subscript ∆ de-

notes difference). The Bayes optimal confidence variable, on the other hand, is
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the probability that a correct decision has been made: zC
B(x; d) = P (correct|x, d)

(the subscript B denotes Bayesian).

The question of whether confidence reports reflect Bayes optimal (or simply

Bayesian) computations has important implications for inter-personal communi-

cation. In particular, probabilities, as generated by Bayes optimal computations,

can easily be compared across different tasks (e.g. perception versus general

knowledge), making them easier to map onto reports. In contrast, heuristic com-

putations typically lead to task-dependent internal representations, with ranges

and distributions that depend strongly on the task, making it difficult to map

them onto reports consistently, or compare them between different people.

To our knowledge, it is impossible to determine directly the confidence variable,

zC(x; d); instead, we can consider several models, and ask which is most consis-

tent with experimental data. Choosing among different models for the confidence

variable, zC(x; d), is straightforward in principle, but there are some subtleties.

The most important subtlety is that if the task is “too simple”, it is impossible

to distinguish one model from another. Here, “too simple” means that the sen-

sory data, x, consists of a single signal, which we write x to indicate that it is

scalar. To see why, let’s say we wanted to distinguish between some heuristic

confidence variable, say zC
H(x; d) = x, and the Bayes optimal confidence variable,

zC
B(x; d) = P (correct|x, d). Suppose we found empirically that a subject reported

low confidence when the heuristic variable, zC
H(x; d), was less than 0.3 and high

confidence when the heuristic variable was greater than 0.3. Clearly there is a

deterministic mapping from the heuristic variable to the confidence reports, but

is it in any way unique? The answer is no. For example, if the Bayesian variable

is greater than 0.4 whenever the heuristic variable is greater than 0.3, then it is

also true that our subject reported low confidence when the Bayesian variable

was less than 0.4 and high confidence when the Bayesian variable was greater

than 0.4. Thus, there is absolutely no way of knowing whether our subjects’

confidence reports reflect the heuristic or the Bayesian confidence variable. In

general, there is no way to distinguish between any two functions of x that are

monotonically related — one can simply map the thresholds through the relevant

function, as shown in Figure 1.1.

The situation is very different when x is a vector (i.e. two or more sensory signals).

As in the one-dimensional case, consider two models: a heuristic model, zC
H(x; d),

and a Bayes optimal model, zC
B(x; d). In general, if x is a vector, it is not possible

to get the same mapping from x to c using zC
H(x; d) and zC

B(x; d). In particular,

when zC
H(x; d) and zC

B(x; d) provide a different ordering of the x’s — whenever

we have zC
H (x1; d) > zC

H (x2; d) and simultaneously zC
B (x1; d) < zC

B (x2; d) — then

it is not possible to find pairs of thresholds that lead to the same region in x-

space. Thus, although we cannot say much about the confidence variable for
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Figure 1.1: For one-dimensional sensory data, x, any monotonic transfor-
mation, z(x), can give the same mapping from x to c. In particular, the
best we, as experimenters, can do is to determine the mapping from x to c,
which, for discrete mappings, corresponds to a set of thresholds (the verti-
cal lines intersecting the horizontal axis). We can, however, get the same
mapping from x to c by first transforming x to z (the curved black line),
then thresholding z. The relevant thresholds are simply given by passing
the x-thresholds through z(x) (giving the horizontal lines intersecting the
vertical axis). Therefore, there is no way to determine the “right” z(x) —
any z(x) will fit the data (as long as z(x) is a strictly monotonic function
of x).

one-dimensional signals, we can draw strong conclusions for multi-dimensional

signals.

This difference between one-dimensional and multi-dimensional sensory data is

one of the key differences between our work and most prior work. Previous models

based on signal detection theory have typically assumed that the sensory data is

one-dimensional (e.g. (Galvin et al., 2003; Kunimoto et al., 2001; Maniscalco and

Lau, 2012)), leaving them susceptible to the problem described above. There is

also a variety of “dynamic” signal detection theory models in which sensory data

is assumed to accumulate over time (see Pleskac & Busemeyer (2010) Pleskac and

Busemeyer (2010), for an overview). Such models are able to explain the interplay

between accuracy, confidence, and reaction time — something that we leave for

future work. However, in these models, the sensory data is also summarised

by a single scalar value, making it impossible to determine whether subjects’

confidence reports reflect heuristic or Bayes optimal computations.

Here we considered multi-dimensional stimuli in a way that allows us to directly

test whether subjects’ confidence reports reflect heuristic or Bayes optimal com-

putations. In our study, subjects were asked to report their confidence in a visual

two-interval forced-choice task. This allowed us to model the sensory data as

having two dimensions, with one dimension coming from the first interval and

the other from the second interval. We considered three models for how subjects

generated their confidence — all three models were different “static” versions of
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the popular race model in which confidence reports are assumed to reflect the

balance of evidence between two competing accumulators (originally proposed by

Vickers (1979), and more recently used in studies such as Kepecs et al. (2008),

and de Martino et al. (2013). The first model, the Difference model, assumed –

in line with previous work – that subjects’ confidence reports reflected the dif-

ference in magnitude between the sensory data from each interval. The second

model, the Max model, assumed that subjects’ confidence reports reflected only

the magnitude of the sensory data from the interval selected on a given trial —

thus implementing a “winner-take-all” dynamic (Wang, 2008). The third model,

the Bayes optimal model, assumed that subjects’ confidence reports reflected the

probability that their decision was correct given the sensory data from each in-

terval. Furthermore, we tested two different methods for eliciting confidence —

both being used in research on metacognition (Fleming et al., 2012). In the stan-

dard two-response design, subjects first reported their decision, and only then,

and on a separate scale, reported their confidence. In the less-commonly used

one-response design, subjects reported their confidence and decision simultane-

ously on a single scale. We were interested to see whether the more complex

one-response design – in which subjects, in effect, have to perform two tasks at

the same time – affected the computations underlying confidence reports as ex-

pected under theories of cognitive load (e.g. (Sweller, 1988; Lavie, 2005)) and

dual-task interference (e.g. (Kahneman, 1973; Pashler, 1994)).

We used Bayesian model selection to assess how well the models fit our data; thus

our analysis was “doubly Bayesian” in that we used Bayesian model selection to

test whether our subjects’ behaviour was best explained by a Bayes optimal model

(Huszár et al., 2010). We found that the commonly used Difference model was

the least probable model irrespective of task design. Subjects’ confidence reports

in the two-response design were far more likely to reflect the Bayes optimal model

rather than either heuristic model. In contrast, in the one-response design, the

confidence reports of roughly half of the subjects were in line with the Bayes

optimal model, and the confidence reports of the other half were in line with

the Max model, indicating that, perhaps, the increased cognitive load in the

one-response paradigm caused subjects to behave suboptimally. In sum, our

results indicate that while it is possible to generate confidence reports using

Bayes optimal computations, it is not automatic — and can be promoted by

certain types of task.
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1.3 Methods

Participants

Participants were undergraduate and graduate students at the University of Ox-

ford. 26 participants aged 18-30 took part in the study. All participants had

normal or corrected-to-normal vision. The local ethics committee approved the

study, and all participants provided written informed consent.

Experimental details

1.3.0.0.1 Display parameters and response mode. Participants viewed

an LED screen (ViewSonic VG2236wm-LED, resolution = 800 × 600) at a dis-

tance of 57 cm. The background luminance of the screen was 62.5 cd/m2. The

screen was connected to a personal laptop (Toshiba Satellite Pro C660-29W)

via a VGA splitter (Startech 2 Port VGA Video Splitter) and controlled by the

Cogent toolbox (http://www.vislab.ucl.ac.uk/cogent.php/) for MATLAB (Math-

works Inc). Participants responded using a standard keyboard.

1.3.0.0.2 Design and procedure. Participants performed a two-interval

forced-choice contrast discrimination task. On each trial, a central black fixation

cross (width: 0.75 degrees of visual angle) appeared for a variable period, drawn

uniformly from the range 500-1000 milliseconds. Two viewing intervals were then

presented, separated by a blank display lasting 1000 milliseconds. Each interval

lasted ∼ 83 milliseconds. In each interval, there were six vertically oriented Ga-

bor patches (SD of the Gaussian envelope: 0.45 degrees of visual angle; spatial

frequency: 1.5 cycles/degree of visual angle; baseline contrast: 0.10) organised

around an imaginary circle (radius: 8 degrees of visual angle) at equal distances

from each other.

In either the first or the second interval, one of the six Gabor patches (the visual

target) had a slightly higher level of contrast than the others. The interval and

location of the visual target were randomized across trials. The visual target

was produced by adding one of 4 possible values (0.015, 0.035, 0.07, 0.15) to the

baseline contrast (0.10) of the respective Gabor patch.

After the second interval there was a blank display, which lasted 500 milliseconds,

and a response display. The response display prompted participants to indicate

which interval they thought contained the visual target and how confident they

felt about their decision. Participants were split into two groups. Each group

performed a slightly different version of the task. The difference lay only in how
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Figure 1.2: Schematic of experimental design and task. A One-response
design. Participants indicated their decision and their confidence simulta-
neously. B Two-response design. Participants indicated their decision and
their confidence sequentially. The displays have been edited for ease of il-
lustration (e.g. Gabor patches are shown as dots, with the visual target
being the darker dot). All timings are shown in milliseconds. See text for
details.

decisions and confidence were indicated; the stimuli seen by the two groups were

identical.

For the first group, which had 15 participants, the response display consisted of

a central black horizontal line with a fixed midpoint (Figure 1.2A). The region

to the left of the midpoint represented the first interval; the region to the right

represented the second interval. A vertical white marker was displayed on top of

the midpoint. Participants were asked to indicate which interval they thought

contained the visual target by moving the vertical marker to the left (first interval)

or to the right (second interval) of the midpoint. The marker could be moved

along the line by up to six steps on either side, with each step indicating higher

confidence (1: “uncertain”; 6: “certain”). Participants pressed “N” or “M” to

move the marker left or right, respectively, and locked the marker by pressing

“B”.

For the second group, which had 11 participants, initially the response display

consisted of a central black question mark (Figure 1.2B). Participants indicated

which interval they thought contained the visual target, pressing “N” for the first

interval and “M” for the second interval. After having indicated their decision,

the response display switched to a central black horizontal line. A vertical white

marker was displayed at the left extreme of the horizontal line. Participants indi-

cated how confident they felt about their decision by moving the vertical marker

along the line by up to six steps, with each step towards the right indicating
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higher confidence (1: “uncertain”; 6: “certain”). Participants pressed “N” or

“M” to move the marker left or right, respectively, and locked the marker by

pressing “B”.

After having made their response(s), participants were presented with central

text with either “correct” if their decision about the target interval was correct

or “wrong” if it it was incorrect. The feedback display lasted 2000 milliseconds.

Participants were then presented with central white text saying “next trial” before

continuing to the next trial. Participants completed 16 practice trials followed

by 480 experimental trials. The two groups were analysed separately. We refer

to the two groups as “one-response” and “two-response”, respectively.

Confidence models

To model responses, we assumed the following: On each trial, subjects receive

a pair of sensory signals, x. Subjects transform those sensory signals into a

continuous decision variable, zD(x), and then compare this variable to a single

threshold to make a decision, d. Finally, subjects transform the sensory signals

and the decision into a continuous confidence variable, zC(x; d), and then compare

this variable to a set of thresholds to obtain a confidence report, c. This section

starts by describing our assumptions about the sensory signals, x, then moves

on to the models for how subjects might compute their decision and confidence

variables. Finally, we describe the Bayesian inference technique used to fit the

parameters and find the most probable model.

1.3.0.0.3 Sensory signals. We assumed that subjects on each trial receive

two sensory signals, x = (x1, x2), drawn from two different Gaussian distribu-

tions, with x1 giving information about interval 1 and x2 giving information

about interval 2. If the target is in interval 1, then

P (x1|s, i = 1, σ) = N
(
x1; s, σ2/2

)
(1.1a)

P (x2|s, i = 1, σ) = N
(
x2; 0, σ2/2

)
, (1.1b)

whereas if the visual target is in interval 2, then

P (x1|s, i = 2, σ) = N
(
x1; 0, σ2/2

)
(1.2a)

P (x2|s, i = 2, σ) = N
(
x2; s, σ2/2

)
. (1.2b)

Here s specifies the contrast added to the visual target, s ∈
{0.015, 0.035, 0.07, 0.15} as described in Design and Procedure, i ∈ {1, 2}
denotes the target interval, and σ characterizes the level of noise in the subject’s

perceptual system. The variance of each sensory signal is σ2/2, which means
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that the variance of x2 − x1 is σ2 as commonly assumed by psychophysical

models.

1.3.0.0.4 Decision and confidence variables. We considered three models

for how subjects compute their decision variable, zD(x), and their confidence

variable, zC(x; d). We refer to these models as the Difference model (∆), the

Max model (M), and the Bayesian model (B). The Difference model proposes

that the decision and the confidence variable reflect the difference between the

two sensory signals,

zD
∆(x) = x2 − x1 (1.3)

zC
∆(x; d) =

x1 − x2 for d = 1

x2 − x1 for d = 2 .
(1.4)

In the next section we discuss how the decision, d (which is 1 for interval 1 and

2 for interval 2) is made.

The Max model proposes that the decision variable reflects the difference between

the two sensory signals and the confidence variable reflects only the sensory signal

received from the selected interval,

zD
M(x) = x2 − x1, (1.5)

zC
M(x; d) = xd. (1.6)

Finally, the Bayesian model proposes that the decision variable reflects the proba-

bility that interval 2 contained the visual target, and that the confidence variable

reflects the probability that the decision about the target interval is correct,

zD
B(x) = P (i = 2|x1, x2, σ) (1.7)

zC
B(x; d) = P (i = d|x1, x2, σ) , (1.8)

where

P (i = d|x1, x2, σ) =

∑
s P (x1|s, i = d, σ)P (x2|s, i = d, σ)∑
s,i′ P (x1|s, i = i′, σ)P (x2|s, i = i′, σ)

. (1.9)

To derive this expression, we used Bayes’ theorem and assumed that the two

conditions have equal prior probability (P (i = 1) = P (i = 2) = 1/2). The three

models make different predictions about how the sensory signals contribute to

the confidence variable, zC(x; d), and therefore give rise to different confidence

reports.
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1.3.0.0.5 Choosing decisions and confidence reports. To make a deci-

sion, the subject compares the decision variable to a single threshold, and chooses

interval 2 if the variable is larger than the threshold, and interval 1 otherwise,

d(x) =

2 if zD(x) > θD

1 otherwise.
(1.10)

Likewise, to choose a confidence level, the subject compares their confidence

variable to a set of thresholds, and the confidence level is then determined by the

pair of thresholds that the confidence variable lies between. More specifically,

the mapping from a confidence variable, zC(x; d), to a confidence report, c, is

determined implicitly by,

θCd,c−1 < zC(x; d) ≤ θCd,c, (1.11)

Valid confidence values, c, run from 1 to 6; to ensure that the whole range of

zC(x; d) is covered, we set θd,0 = −∞ and θd,6 = +∞.

Finally, we assumed that with some small probability b, subjects lapsed — they

made a random decision and chose a random confidence level. Inclusion of this

so-called lapse rate accounts for trials in which subjects made an otherwise low-

probability response; e.g. they chose the first interval when there was strong

evidence for the second. Such trials are probably due to some error (e.g. motor

error or confusion of the two intervals), and if we did not include a lapse rate to

explain these trials, they could have a strong effect on model selection.

Model comparison

We wish to compute the probability of the various models given our data. The

required probability is, via Bayes’ theorem,

P (m|data) ∝ P (m)P (data|m) (1.12)

where m is either ∆ (Difference model), M (Max model) or B (Bayesian model).

The data from subject l consists of two experimenter-defined variables: the target

intervals, il, and the target contrasts, sl, and two subject-defined variables: the

subject’s decisions, dl, and the subject’s confidence reports, cl. Here, the bold

symbols denote a vector, listing the value of that variable on every trial, for

instance the interval on the kth trial is ilk. We fit different parameters to every

subject, so the full likelihood, P (data|m), is given by a product of single-subject
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likelihoods,

P (data|m) =
∏
l

P (dl, cl, il, sl|m) . (1.13)

Because il and sl are independent of the model, m, we may write

P (data|m) ∝
∏
l

P (dl, cl|il, sl,m) . (1.14)

To compute the single-subject likelihood we cannot simply choose one setting

for the parameters, because the data does not pin down the exact value of the

parameters. Instead we integrate over possible parameter settings,

P (dl, cl|il, sl,m) =

∫
P (dl, cl|il, sl,m,θl, σl, bl)P (θl)P (σl)P (bl) dθldσldbl,

(1.15)

where θl collects that subject’s decision and confidence thresholds. This in-

tegral is large if the best fitting parameters explain the data well (i.e. if

P (dl, cl|il, sl,m,θl, σl, bl) is large for the best fitting parameters), as one might

expect. However, this integral also takes into account a second important factor,

the robustness of the model. In particular, a good model is not overly sensitive to

the exact settings of the parameters — so you can perturb the parameters away

from the best values, and still fit the data reasonably well. This integral opti-

mally combines these two contributions: how well the best fitting model explains

the data, and the model’s robustness. For a single subject (dropping the subject

index, l, for simplicity, but still fitting different parameters for each subject), the

probability of d and c given that subject’s parameters is the product of terms

from each trial,

P (d, c|i, s,m,θ, σ, b) =
∏
k

P (dk, ck|ik, sk,m,θ, σ, b) , (1.16)

We therefore need to compute the probability of a subject making a decision, dk,

and choosing a confidence level, ck, given the subject’s parameters, the target

interval, ik, and target contrast, sk. We do this numerically, by sampling: given

a set of parameters, θ, σ and b we generate an x from either Eq. (1.1) or (1.2)

(depending on whether ik is 1 or 2). We compute zD(x) from either Eq. (1.3),

(1.5) or (1.7) (depending on the model), and threshold zD(x) to get a decision, d.

Next, we combine x and d to compute zC(x; d) from either Eq. (1.4), (1.6) or (1.8)

(again, depending on the model), and threshold zC(x; d) to get a confidence re-

port, c. We do this many times (105 in our simulations); P (dk, ck|ik, sk,m,θ, σ, b)
is proportion of times the above procedure yields d = dk and c = ck.

To perform the integral in Eq. (1.15), we must specify prior distributions over the
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parameters σ, b and θ. While it is straightforward to write down sensible priors

over two of these parameters, σ and b, it is much more difficult to write down a

sensible prior for the thresholds, θ. This difficulty arises because the thresholds

depend on zD(x) and zC(x; d), which change drastically from model to model.

To get around this difficulty, we reparametrise the thresholds, as described in the

next section.

1.3.0.0.6 Representation of thresholds. We reparametrise the decision

and confidence thresholds in essentially the same way, but it is helpful to start

with the decision threshold, as it is simpler. We exploit the fact that for a given

model, there is a one to one relationship between the threshold, θD, and the

probability that the subject chooses interval 1,

pd=1 ≡ P (d = 1|m,θ, σ, b) =

∫ θD

−∞
P (zD|m,σ, b) dzD . (1.17)

Therefore, if we specify the threshold, we specify pd=1. Importantly, the converse

is also true: if we specify pd=1, we specify the threshold. Thus, we can use pd=1

to parametrise the threshold. To compute the threshold from pd=1, we represent

P (zD|m,σ, b) using samples of zD, which we can compute as described at the end

of the previous section. To find the threshold, we sweep across possible values

for the threshold, until the right proportion of samples are below the threshold

(pd=1), and the right proportion of samples are above the threshold (pd=2).

The situation is exactly the same for confidence reports: if we specify the thresh-

olds, we specify the distribution over confidence reports, pc|d,

pc|d ≡ P (c|d,m,θ, σ, b) =

∫ θd,c

θd,c−1

P (zC|d,m, σ, b) dzC . (1.18)

Combining decision and confidence thresholds, we obtain the joint distribution

over decisions and confidence reports, p, whose elements are

pd,c ≡ P (d, c|m,θ, σ, b) , (1.19)

Thus, specifying the confidence and decision threshold specifies the joint distri-

bution over decisions and confidence reports, p. Importantly, the reverse is also

true: specifying p specifies the confidence and decision thresholds. In order to

find the confidence thresholds, we take the same strategy as for decisions — we

represent P (zC|d,m, σ, b) using samples of zC, then sweep across all possible val-

ues for the thresholds, until we get c = 1 the right fraction of the time (i.e. pc=1|d),

and c = 2 the right fraction of the time (i.e. pc=2|d) etc. (see Figure 1.3 or 2 for

a schematic diagram of this method). Note that, to condition on a particular

decision, we simply throw away those values of zC associated with the wrong
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Figure 1.3: Schematic diagram of our method for mapping thresholds to
confidence probabilities. The lower panel displays the (fixed) distribution
over zC, P (zC|d,m, σ, b) (which does not depend on the thresholds). The
left panel displays the distribution over confidence reports, determined by
p. The large central panel displays the fitted function mapping from zC

to c, which consists of a set of jumps, with each jump corresponding to a
threshold. The thresholds are chosen so that the total probability density
in P (zC|d,m, σ, b) between jumps is exactly equal to the probability of the
corresponding confidence level (see colours).

decision.

1.3.0.0.7 Performing the integral in Eq. (1.15). Changing the represen-

tation from thresholds, θ, to probabilities, p, gives a new single-subject likelihood,

P (d, c|i, s,m) =

∫
P (d, c|i, s,m,p, σ, b)P (p)P (σ)P (b) dpdσdb. (1.20)

To perform the integral, we need to specify prior distributions over the parame-

ters, σ, b, and p. For σ, we use

P (σ) = Gamma (2, 0.05) ∝ σe−σ/0.05 (1.21)

as this broadly covered the range of plausible values of σ. We chose a very broad

range of values for b — evenly distributed in log space between 10−3 and 10−1,

P (log10 b) = Uniform (−3,−1) . (1.22)

Finally, we chose an uninformative, uniform prior distribution over p,

P (p) = Dirichlet (p; 1) , (1.23)

where 1 is a matrix whose elements are all 1.
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The most straightforward way to compute the single-subject likelihood in

Eq. (1.20) is to find the average (expected) value of P (d, c|i, s,m,p, σ, b) when

we sample values of p, σ and b from the prior,

P (data|m) = EP(p)P(σ)P(b) [P (d, c|i, s,m,p, σ, b)] . (1.24)

However, the likelihood, P (d, c|i, s,m,p, σ, b), is very sharply peaked; being very

high in a very small region around the subject’s true parameters, and very low

elsewhere. The estimated value of the integral is therefore dominated by the few

samples that are close to the true parameters, and as there are only a few such

samples, the sample-based estimate of P (d, c|i, s,m,p, σ, b) has high variance.

Instead, we use a technique called importance sampling. The aim is to find an

equivalent expectation, in which the quantity to be averaged does not vary much,

allowing the distribution to be estimated using a smaller number of samples —

in fact, if the term inside the expectation is constant, then the expectation can

be estimated using only one sample. Importance sampling uses

P (d, c|i, s,m) = EQ(p)P(σ)P(b)

[
P (d, c|i, s,m,p, σ, b)P (p)

Q (p)

]
. (1.25)

The integral form for this expectation is,

P (d, c|i, s,m) =

∫
P (d, c|i, s,p, σ, b)P (p)

Q (p)
Q (p)P (σ)P (b) dpdσdb, (1.26)

which is trivially equal to Eq. (1.20). To ensure that the term inside the expecta-

tion in Eq. (1.25) does not vary much, we need to choose the denominator, Q (p),

so it is approximately proportional to the numerator, P (d, c|i, s,m,p, σ, b)P (p).

To do so, we exploit the fact that the numerator is proportional to a posterior

distribution over p (considering only dependence on p),

P (d, c|i, s,m,p, σ, b)P (p) ∝ P (p|d, c, i, s,m, σ, b) . (1.27)

Remembering that pd,c is just the probability of a particular decision and confi-

dence value, aggregating across all trial types, it is straightforward to construct

a good approximation to the posterior over p. In particular, we ignore the influ-

ence of i, s, m, σ and b, so the only remaining information is the decisions and

the confidence reports, d and c, irrespective of trial-type. These variables can be

summarised by n, where nd,c, is the number of times that a subject chose decision

d and confidence level c. The resulting distribution over p can be written,

Q (p) = P (p|d, c) = Dirichlet (p; 1 + n) , (1.28)

which turns out to be a good proposal distribution for our importance sampler.
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Figure 1.4: The probability of the three models given the data. AB The
log-likelihood differences between the models, using the Difference model
as a baseline. Note the small error bars, representing two standard-errors,
given by running the algorithm 10 times, and each time using 1000 samples
to estimate the model evidence (Eq. (1.25)). CD The posterior probability
of the models, assuming a uniform prior. Left column, one response. Right
column, two responses.

1.4 Results

Model selection

To compare models, we look at the posterior probability of each of our models

given the data, P (m|data). As, a-priori, we have no reason to prefer one model

over another, we use a uniform prior, P (m) = 1/3, so, assuming that every sub-

ject uses the same model, then the posterior is proportional to P (data|m), which

we showed how to compute in the Model Comparison Section. The Bayesian

model is better by a factor of around 104 for the one-response data and around

1025 for the two-response data (Figure 1.4).

For the above model comparison, we assumed that all subjects used the same

model to generate their confidence reports. It is quite possible, however, that

different subjects use different models to generate their confidence reports. In

particular, we might expect that there is some probability with which a ran-

dom subject uses each model, P (ml) (where l is the subject index, so ml is the

model chosen by subject l). Under this assumption, we can analyse how well

the models fit the data by inferring the probability with which subjects choose
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Figure 1.5: Single-subject analysis. AB Subjects are assumed to use
each model with some probability. The coloured regions represent plausible
settings for these probabilities. For the one-response dataset, we see that
subjects are roughly equally likely to use the Max and Bayesian models.
For the two-responses dataset, we see that subjects are far more likely to
use the Bayesian model. To read these plots, follow the grid lines in the
same direction as axis ticks and labels, so for instance, lines of equal prob-
ability for the Max model run horizontally, and lines of equal probability
for the Bayesian model run up and to the right. CD The difference in
log-likelihood between the Bayesian model and the Difference model (on
the y-axis) against the difference in log-likelihood between the Max model
and Difference model (on the x-axis). The size of the crosses represents the
uncertainty (two standard errors) along each axis (based on the 10 runs of
the model selection procedure, mentioned in Figure 1.4).

to use each model, P (ml), using a variational Bayesian method presented by

Stephan et al. (2009). In agreement with the previous analysis, we find that

for the two-response dataset, the probability of any subject using the Bayesian

model is high: subjects are significantly more likely to use the Bayesian model

than either the Max or Difference models (p < 0.006; exceedence probability

(Stephan et al., 2009); Figure 1.5B). For the one-response dataset, on the other

hand, subjects use the Bayesian model only slightly more than the Max model

(Figure 1.5A). The log-likelihood differences for individual subjects are plotted

in Figure 1.5CD, with uncertainty given by the size of the crosses. Again, for the

two-response dataset, but not for the one-response dataset, the difference between

each subject’s log-likelihood for the Bayesian and Max models is larger than 0

(two-response: t(10) = 3.47, p < .006; one-response: t(14) = 0.954, p ≈ .35;

two-sided one-sample t-test).
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Model fits

While the model evidence is the right way to compare models, it is important to

check that the inferred models and parameter settings (for inferred parameters

for each subject see Tables 1.1 and 1.2) are plausible. We therefore plotted the

raw data — the number of times a participant reported a particular decision and

confidence level for a particular target interval and target contrast — along with

the predictions from the Bayesian model. In particular, in Figure 1.6, we plot

fitted and empirical distributions over confidence reports given a target interval

and contrast from an example participant (for all subjects and all models see

Figs 1.10 and 1.11). To make this comparison, we defined “signed confidence”,

whose absolute value gives the confidence level, and whose sign gives the decision,

Signed confidence =

−c for d = 1

c for d = 2.
(1.29)

These plots show that our model is, at least, plausible, and highlights the fact

that our model selection procedure is able to find extremely subtle differences

between models. Plotting psychometric curves (Figure 1.7) gave similar results.

Again, to plot psychometric curves, we defined “signed contrast”, whose absolute

value gives the contrast, and whose sign gives the target interval,

Signed contrast =

−s for i = 1

s for i = 2.
(1.30)

Differences between models

For model selection to actually work, there need to be differences between the

predictions made by the three models. Here, we show that the models do indeed

make different predictions under representative settings for the parameters.

To understand which predictions are most relevant, we have to think about ex-

actly what form our data takes. In our experiment, we present subjects with

a target in one of the two intervals, i, with one of four contrast levels, s, then

observe their decision, d and confidence report, c. Overall, we therefore obtain

an empirical estimate of each subject’s distribution over decision and confidence

reports (or equivalently signed confidence, see previous section), given a target

interval and contrast. This suggests that we should examine the predictions that

each model makes about each subject’s distribution over decisions and confidence

reports, given the target interval, i, and contrast, s. While these distributions

are superficially very similar (Figure 1.8), closer examination reveals two inter-

esting, albeit small, differences. Importantly, these plots display theoretical, and
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Figure 1.6: Simulated (Bayesian model) and actual confidence distribu-
tions for one subject (one response), and each target interval and contrast.
The plots on the left are for targets in interval 1 (i.e. i = 1), whereas the
plots on the right are for targets in interval 2 (i.e. i = 2). We use signed
confidence on the horizontal axis (the sign indicates the decision, and the
absolute value indicates the confidence level). The blue line is the empir-
ically measured confidence distribution. The red line is Bayesian model’s
fitted confidence distribution. The red area is the region around the fitted
mean confidence distribution that we expect the data to lie within. We
computed the error bars by sampling settings for the model parameters,
then sampling datasets conditioned on those parameters. The error bars
represent two standard deviations of those samples. This plot demonstrates
that the Bayesian model is, at least, plausible.
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Figure 1.7: Simulated (Bayesian model) and actual psychometric curves
for two subjects. The horizontal axis displays signed contrast (the sign
gives the target interval, and the absolute value gives the contrast level).
Colour code is the same as in Figure 1.6: the blue line is the empirically
measured psychometric curve; the red line is the Bayesian model’s fitted
mean psychometric curve; and the red area represents Bayesian error bars.
A One subject from the one-response design. B One subject from the two-
response design. As with Figure 1.6, this plot demonstrates the plausibility
of the Bayesian model.

hence noise-free results, so even small differences are meaningful, and are not

fluctuations due to noise.

First, the Max model differs from the other two models at intermediate contrast

levels, especially s = 0.07, where the Max model displays bimodality in the

confidence distribution. In particular, and unexpectedly, an error with confidence

level 1 is less likely than an error with confidence levels 2 to 4. In contrast, the

other models display smooth, unimodal behaviour across the different confidence

levels. This pattern arises because the Max model uses only one of the two

sensory signals. For example, when s = 0.07 and i = 2 (so the target is fairly

easy to see, and is in interval 2), then x2 is usually large. Therefore, for x1 to be

larger than x2, prompting an error, x1 must also be large. Under the Max model,

x1 being large implies high confidence, and, in this case, a high confidence error.

Second, the three models exist on a continuum, with the Max model using the

narrowest range of confidence levels, the Bayesian model using an intermediate

range, and the Difference model using the broadest range. These trends are

particularly evident at the lowest and highest contrast levels. At the lowest

contrast level, s = 0.015, the distribution for the Max model is more peaked,

whereas the distribution for the Difference model is lower and broader, and the

Bayesian model lies somewhere between them. At the highest contrast level,

s = 0.15, the Max model decays most rapidly, followed by the Bayesian model,

and then the Difference model.

To understand this apparent continuum, we need to look at how the models

map sensory data, defined by x1 and x2, onto confidence reports. We therefore

plotted black contours dividing the regions of sensory-space (i.e. (x1, x2)-space)

40



0.0

0.1

0.2

0.3

−6 −2 2 6
Signed confidence

P
(d

, c
|i,

 s
, m

, p
ar

am
s)

    i=1,   s=0.015

0.0

0.1

0.2

0.3

−6 −2 2 6
Signed confidence

P
(d

, c
|i,

 s
, m

, p
ar

am
s)

    i=2,   s=0.015

0.0

0.1

0.2

0.3

−6 −2 2 6
Signed confidence

P
(d

, c
|i,

 s
, m

, p
ar

am
s)

    i=1,   s=0.035

0.0

0.1

0.2

0.3

−6 −2 2 6
Signed confidence

P
(d

, c
|i,

 s
, m

, p
ar

am
s)

    i=2,   s=0.035

0.0

0.1

0.2

0.3

−6 −2 2 6
Signed confidence

P
(d

, c
|i,

 s
, m

, p
ar

am
s)

    i=1,   s=0.07

0.0

0.1

0.2

0.3

−6 −2 2 6
Signed confidence

P
(d

, c
|i,

 s
, m

, p
ar

am
s)

    i=2,   s=0.07

0.0

0.1

0.2

0.3

−6 −2 2 6
Signed confidence

P
(d

, c
|i,

 s
, m

, p
ar

am
s)

    i=1,   s=0.15

0.0

0.1

0.2

0.3

−6 −2 2 6
Signed confidence

P
(d

, c
|i,

 s
, m

, p
ar

am
s)

    i=2,   s=0.15

Bayesian

Difference

Max

Figure 1.8: Different models lead to different distributions over confidence.
Same as Figure 1.6, but displaying theoretical distributions induced by the
three different models. The parameters were not fit to data; instead, they
were set to fixed (but reasonable) values: σ = 0.07, b = 0 and pd,c = 1/12.
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Figure 1.9: The mapping from stimulus-space to confidence induced by
different models. The axes represent the two stimulus dimensions (cf. in-
terval 1 and 2). The red dots represent the mean values of x1 and x2 for
each stimulus. The black lines separate regions in stimulus space that map
to a given confidence level. A Difference model. B Max model. C Bayesian
model. The model parameters are the same as in Figure 1.8.

that map to different confidence levels (Figure 1.9). These plots highlight striking

differences between the models. In particular, the Difference model has diagonal

contours, whereas the Max model has contours that run horizontally, vertically

or along the central diagonal at x1 = x2. In further contrast, the Bayesian model

has curved contours with a shape somewhere between the Difference and Max

models. In particular, for large values of x1 and x2, the contours are almost

diagonal, as in the Difference model whereas for small values of x1 and x2, the

contours are more horizontally or vertically aligned, as in the Max model.

To see how differences in the mapping from sensory-space to confidence reports

translate into differences in the probability distribution over confidence reports,

we consider the red dots, representing different target intervals and contrasts.

For instance, a high-contrast target in interval 2 (s = 0.15), is represented by the

uppermost red dot in each subplot. Importantly, red dots representing stimuli lie

along the horizontal and vertical axes (green). The angle at which the contours

cross these axes therefore becomes critically important. In particular, for the

Difference model the contours pass diagonally through the axes, and therefore

close to many red dots (representing stimuli), giving a relatively broad range of

confidence levels for each stimulus type. In contrast, for the Max model, the

contours pass perpendicularly through the axes, minimizing the number of red

dots (representing stimuli) that each contour passes close to, giving a narrower

range of confidence levels for each stimulus type. The contours of the Bayesian

model pass through the axes at an angle between the extremes of the Difference

and Max models — as expected, giving rise to a range of confidence levels between

the extremes of the Difference and the Max model.

In principle, these differences might allow us to choose between models based

only on visual inspection of P (d, c|i, s,m, params). However, in practice, the dis-

tribution over decision and confidence reports, averaging over trial type, pd,c is
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not constant, as we assumed above, but is far more complicated. This additional

complexity makes it impossible to find the correct model by simple visual inspec-

tion. More powerful methods, like Bayesian model selection, are needed to pick

out these differences.

1.5 Discussion

We tested whether subjects’ confidence reports in a visual two-interval forced-

choice task reflect heuristic or Bayes optimal computations. We assumed that

subjects receive a two-dimensional sensory signal, x, and, based on that signal,

make a decision (about which interval a target is in), and report their confidence

in that decision. We also assumed that this process is mediated by intermediate

variables: subjects transform those sensory signals into a continuous decision

variable, zD(x), compare this variable to a single threshold to make a decision,

d, transform the sensory signals and the decision into a continuous confidence

variable, zC(x; d), and compare this variable to a set of thresholds to obtain a

confidence level, c. We compared three possible ways of computing the confidence

variable, zC(x; d): the Difference model, which computes the difference between

the sensory signals; the Max model, which uses only the sensory signal from the

selected interval; and the Bayesian model, which computes the probability that

a correct decision has been made. We used Bayesian model selection to directly

compare these models. For the more standard, and perhaps more natural, design

in which subjects first make a decision, and only then give a confidence rating

(i.e. the two-response design), the Bayesian model emerged as the clear winner.

However, for the less standard design, in which subjects make a decision and give

a confidence rating simultaneously (i.e. the one-response design), the results were

more ambiguous — our data indicated that around half of the subjects favoured

the Bayesian model while the other half favoured the Max model.

One possible reason for the difference is that, in the one-response design, the

computations underlying confidence reports were simplified so as not to interfere

with the computation of the decision, as expected under theories of cognitive load

(e.g. (Sweller, 1988; Lavie, 2005)) and dual-task interference (e.g. (Kahneman,

1973; Pashler, 1994)). Alternatively, despite the instructions being the same, the

two types of task design might simply promote qualitatively different computa-

tions, with the one-response design promoting a “first-order” judgement about the

stimulus intensity, whereas the two-response design promotes a “second-order”

judgement about the correctness of a decision which — perhaps critically — has

already been made. Surprisingly, the commonly used Difference model was by

far the least probable model in both task designs.

A caveat in any Bayesian model selection is that we cannot test all possible
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heuristic computations. However, given the results in Figure 1.8 and 1.9, it

seems our three models range across the continuum of sensible models — though

it is certainly possible that, perhaps, the best model (at least for the one-response

data) sits somewhere between the Bayesian and the Max models. More generally,

our results indicate that very subtle changes in a task can lead to large changes

in the computations performed, and in particular whether subjects use Bayes

optimal computations.

Relation to other studies

Barthelmé and Mamassian (2009) went part-way towards realizing the potential

of using multidimensional stimuli. Subjects were asked to indicate which of two

Gabor patches they would prefer to make an orientation judgement about. In-

terestingly, and in contrast to our results, they found that subjects were more

likely to use a heuristic strategy (similar to the Max model) than a Bayes optimal

strategy. However, there were three aspects of their study that make it poten-

tially less relevant to the question of whether confidence reports reflects Bayes

optimal computations. First, our model selection procedure is fully Bayesian,

and therefore takes account of uncertainty in model predictions, whereas their

procedure was not. In particular, under some circumstances a model will make

strong predictions (e.g. “the subject must make this decision”), whereas under

other circumstances, the model might make weaker predictions (e.g. “the subject

is most likely to make this decision, but I’m not sure — they could also do other

things”). Bayesian model selection takes into account the strength or weakness

of a prediction. Second, in real life (and in our study), people tend to report

confidence using verbal (e.g. “not sure” to “very” sure) or numerical (e.g. 1

to 10) scales. In contrast, in Barthelmé and Mamassian (2009), subjects simply

made a forced choice between two stimuli. Third, in their study, the Difference

model made exactly the same predictions as the Bayes optimal model, making it

impossible to distinguish these computations.

There are, of course, other approaches for addressing the question of whether the

confidence variable is Bayes optimal. Barthelmé and Mamassian (2010) showed

that subject’s confidence variable can take into account two factors (contrast and

crowding) that might lead to uncertainty — as opposed to using only one fac-

tor. Similarly, de Gardelle and Mamassian (2014) showed that subjects were

able to accurately compare the confidence variable across different classes of

stimuli (in this case orientation discrimination versus spatial frequency discrim-

ination). These studies provide some, albeit indirect, evidence that confidence

reports might indeed reflect probability correct, in agreement with our work.
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Variability in confidence

Confidence reports have been observed to vary with a range of factors that we

did not consider here. For example, people have been shown to be overconfident

about the accuracy of their knowledge-based judgements, but underconfident

about the accuracy of their perceptual judgements (see Harvey (1997) for a re-

view). People’s general level of confidence may also vary with social context.

When groups of people resolve disagreement, the opinions expressed with higher

confidence tend to carry more weight (e.g. (Sniezek and Henry, 1989)), so group

members tend to increase their confidence to maximize their influence on the

group decision (Bang et al., 2014; Mahmoodi et al., 2013). They may also adjust

their confidence reports to indicate submission or dominance, or cut their losses

if they should turn out to be wrong (e.g. (Fleming and Dolan, 2010)). Lastly,

people’s confidence reports may vary with more general social factors such as

profession, gender and culture: finance professionals are more confident than the

average population (e.g. (Broihanne et al., 2014)); men are more confident than

women (e.g. (Barber and Odean, 2001)); and people from Western cultures are

more confident than people from East Asian cultures (e.g. (Mann et al., 1998)).

Our method allows us to think about the variability in confidence reports as

having two dimensions. The first (perhaps more superficial) dimension relates

to the average confidence level, or confidence distribution. We might imagine

that this dimension is primarily modulated by social context, as described above.

The second (perhaps deeper) dimension relates to the computations underlying

confidence reports. In our data, there do indeed appear to be individual differ-

ences in how people generate their confidence reports, and very subtle changes to

the task appear to affect this process. We might therefore expect shifts in how

people generate their confidence reports for tasks of different complexity. For

example, it is not straightforward to solve general-knowledge questions, such as

“What is the capital of Brazil?”, using Bayesian inference. While one could in

principle compute the probability that one’s answer is correct, the computational

load may be so high that people resort to heuristic computations (e.g. using

the population size of the reported city). Future research should seek to identify

how confidence reports change between task domains and social contexts — in

particular, whether such changes are mostly due to changes in the computation

used to generate the confidence variable (cf., zC(x; d)), or due to changes in the

mapping of this variable onto some confidence scale (e.g. using thresholds to map

to a discrete scale).
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Two types of optimality

Many studies have asked whether confidence reports, and hence metacognitive

ability, are optimal (see Fleming and Lau (2014), for a review of measures of

metacognitive ability). However, our work suggests that there are (at least) two

kinds of optimality. First, the transformation of incoming data into an internal

confidence variable (i.e. zC(x; d)) could be optimal — that is, computed using

Bayesian inference. Second, the mapping of the confidence variable onto some

external scale of confidence could be optimal (i.e. c (zC(x; d))), but this depends

entirely on the details of the task at hand. For instance, without some incentive

structure, there is no reason why subjects should opt for any particular map-

ping, as long as their mapping is deterministic (i.e. reported confidence increases

strictly with their confidence variable). Importantly, it does not seem that sub-

jects use an optimal mapping, as evidenced by the large amount of research on

“poor calibration” — that is, the extent to which the reported probability of be-

ing correct matches the objective probability of being correct for a given decision

problem (e.g. (Harvey, 1997; Moore and Healy, 2008)). Even when there is an

incentive structure, subjects only improve their calibration and never reach per-

fection (e.g. (Fleming and Dolan, 2010; Zylberberg et al., 2014)). Future research

should seek to identify why poor calibration arises, and how it can be corrected.

Conclusions

We asked how people generate their confidence reports. Do they take a heuristic

approach, and compute some reasonable, but ultimately arbitrary, function of the

sensory input, or do they take a more principled approach, and compute the prob-

ability that they are correct using Bayesian inference? When subjects first made

a decision and then reported their confidence in that decision, we found that

their confidence reports overwhelmingly reflected the Bayesian strategy. How-

ever, when subjects simultaneously made a decision and reported confidence, we

found the confidence reports of around half of the subjects were better explained

Bayesian strategy, while the confidence reports of the other half of the subjects

were better explained by a heuristic strategy.
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1.6 Supplementary Figures

Participant σ b Model

1 0.087 0.016 Difference
2 0.057 0.063 Difference
3 0.067 0.021 Difference
4 0.072 0.033 Difference
5 0.074 0.007 Difference
6 0.087 0.001 Difference
7 0.075 0.003 Difference
8 0.091 0.011 Difference
9 0.067 0.026 Difference
10 0.159 0.003 Difference
11 0.068 0.003 Difference
12 0.061 0.015 Difference
13 0.091 0.004 Difference
14 0.050 0.004 Difference
15 0.128 0.004 Difference
1 0.099 0.004 Max
2 0.072 0.021 Max
3 0.076 0.006 Max
4 0.092 0.007 Max
5 0.086 0.005 Max
6 0.096 0.002 Max
7 0.089 0.001 Max
8 0.105 0.004 Max
9 0.082 0.015 Max
10 0.150 0.001 Max
11 0.080 0.002 Max
12 0.077 0.001 Max
13 0.112 0.001 Max
14 0.060 0.002 Max
15 0.144 0.002 Max
1 0.094 0.001 Bayesian
2 0.066 0.041 Bayesian
3 0.077 0.017 Bayesian
4 0.083 0.059 Bayesian
5 0.082 0.011 Bayesian
6 0.095 0.002 Bayesian
7 0.085 0.008 Bayesian
8 0.107 0.019 Bayesian
9 0.082 0.001 Bayesian
10 0.136 0.002 Bayesian
11 0.075 0.002 Bayesian
12 0.073 0.002 Bayesian
13 0.100 0.002 Bayesian
14 0.058 0.002 Bayesian
15 0.143 0.005 Bayesian

Table 1.1: The best fitting parameters for the one-responses dataset. The first
variable, σ, represents the subject’s noise level, and the second variable, b, repre-
sents their lapse rate. These parameters are sensible: σ is of the order of values
used to generate a target Gabor patch, which ranges up to 0.15, and b is typically
lower than 1%.
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Participant σ b Model

1 0.059 0.002 Difference
2 0.080 0.116 Difference
3 0.053 0.052 Difference
4 0.060 0.008 Difference
5 0.072 0.007 Difference
6 0.075 0.025 Difference
7 0.079 0.004 Difference
8 0.141 0.002 Difference
9 0.092 0.003 Difference
10 0.078 0.016 Difference
11 0.062 0.052 Difference
1 0.073 0.001 Max
2 0.087 0.112 Max
3 0.056 0.068 Max
4 0.074 0.003 Max
5 0.081 0.005 Max
6 0.094 0.022 Max
7 0.090 0.001 Max
8 0.148 0.004 Max
9 0.106 0.018 Max
10 0.096 0.063 Max
11 0.072 0.074 Max
1 0.068 0.002 Bayesian
2 0.097 0.001 Bayesian
3 0.060 0.039 Bayesian
4 0.069 0.002 Bayesian
5 0.079 0.003 Bayesian
6 0.082 0.015 Bayesian
7 0.087 0.006 Bayesian
8 0.134 0.002 Bayesian
9 0.102 0.002 Bayesian
10 0.085 0.018 Bayesian
11 0.079 0.001 Bayesian

Table 1.2: As Table 1.1, but for the two-responses dataset.
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Figure 1.10: The empirical and fitted distributions over signed confidence
given the signed contrast for the one-response dataset. The lines show the
fitted models, and the points show the data. Each row gives the complete
responses for one subject. Each column gives the responses for a particular
signed contrast value. The axis has been square-root transformed, in order
to emphasize differences in low probabilities.
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Figure 1.11: As Figure 1.10, but for the two-responses dataset.
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Chapter 2

Zipf’s law in neural data

2.1 Abstract

Zipf’s law, which states that the probability of an observation is inversely propor-

tional to its rank, has been observed in many domains. While there are models

that explain Zipf’s law in each of them, those explanations are typically domain

specific. Recently, methods from statistical physics were used to show that a

fairly broad class of models does provide a general explanation of Zipf’s law.

This explanation rests on the observation that real world data is often generated

from underlying causes, known as latent variables. Those latent variables mix

together multiple models that do not obey Zipf’s law, giving a model that does.

Here we extend that work both theoretically and empirically. Theoretically, we

provide a far simpler and more intuitive explanation of Zipf’s law, which at the

same time considerably extends the class of models to which this explanation can

apply. Furthermore, we also give methods for verifying whether this explanation

applies to a particular dataset. Empirically, these advances allowed us extend

this explanation to important classes of data, including word frequencies (the

first domain in which Zipf’s law was discovered), data with variable sequence

length, and multi-neuron spiking activity.

2.2 Introduction

Both natural and artificial systems often exhibit a surprising degree of statistical

regularity. One such regularity is Zipf’s law. Originally formulated for word

frequency (Zipf, 1932), Zipf’s law has since been observed in a broad range of

domains, including city size (Gabaix, 1999), firm size (Axtell, 2001), mutual fund

size (Gabaix et al., 2003), amino acid sequences (Mora et al., 2010), and neural

activity (Mora and Bialek, 2011; Tyrcha et al., 2013).
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Zipf’s law is a relation between rank order and frequency of occurrence: it states

that when observations (e.g., words) are ranked by their frequency, the frequency

of a particular observation is inversely proportional to its rank,

Frequency ∝ 1

Rank
. (2.1)

Partly because it is so unexpected, a great deal of effort has gone into explaining

Zipf’s law. So far, almost all explanations are either domain specific or require

fine-tuning. For language, there are a variety of domain-specific models, be-

ginning with the suggestion that Zipf’s law could be explained by imposing a

balance between the effort of the listener and speaker (Zipf, 1949; Cancho i and

Solé, 2003; Corominas-Murtra et al., 2011). Other explanations include mini-

mizing the number of letters (or phonemes) necessary to communicate a message

(Mandelbrot, 1953), or by considering the generation of random words (Li, 1992).

There are also domain-specific models for the distribution of city and firm sizes.

These models propose a process in which cities or firms grow by random amounts

(Gabaix, 1999; Axtell, 2001; Ioannides and Overman, 2003), with a fixed total

population or wealth and a fixed minimum size. Other explanations of Zipf’s law

require fine tuning. For instance, there are many mechanisms that can generate

power laws (Newman, 2005), and these can be fine tuned to give an exponent

of −1. Possibly the most important fine-tuned proposal is the notion that some

systems sit at a highly unusual thermodynamic state — a critical point (Mora

and Bialek, 2011; Saremi and Sejnowski, 2013, 2014; Tkačik et al., 2014, 2015).

Only very recently has there been an explanation, by Schwab et al. (2014), that

does not require fine tuning. This explanation exploits the fact that most real-

world datasets have hidden structure that can be described using an unobserved

variable. For such models — commonly called latent variable models — the

unobserved (or latent) variable, z, is drawn from a distribution, P (z), and the

observation, x, is drawn from a conditional distribution, P (x|z). The distribution

over x is therefore given by

P (x) =

∫
dz P (x|z)P (z) . (2.2)

For example, for neural data the latent variable could be the underlying firing

rate or the time since stimulus onset.

While Schwab et al.’s result was a major advance, it came with some restrictions:

the observations, x, had to be a high dimensional vector, and the conditional

distribution, P (x|z), had to lie in the exponential family with a small number

of natural parameters. In addition, the result relied on nontrivial concepts from

statistical physics, making it difficult to gain intuition into why latent variable

models generally lead to Zipf’s law, and, just as importantly, why they sometimes
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do not. Here we use the same starting point as Schwab et al. (Eq. (2.2)), but take

a very different theoretical approach — one that considerably extends our the-

oretical and empirical understanding of the relationship between latent variable

models and Zipf’s law. This approach not only gives additional insight into the

underlying mechanism by which Zipf’s law emerges, but also gives insight into

where and how that mechanism breaks down. Moreover, our theoretical approach

relaxes the restrictions inherent in Schwab et al.’s model (high dimensional ob-

servations and an exponential family distribution with a small number of natural

parameters). Consequently, we are able to apply our theory to three important

types of data, all of which are inaccessible under Schwab et al.’s model: word fre-

quencies, models where the latent variable is the sequence length, and complex

datasets with high-dimensional observations.

For word frequencies – the domain in which Zipf’s law was originally discovered –

we show that taking the latent variable to be the part of speech (e.g. noun/verb)

can explain Zipf’s law. As part of this explanation, we show that if we take

only one part of speech (e.g. only nouns) then Zipf’s law does not emerge –

a phenomenon that is not, to our knowledge, taken into account by any other

explanation of Zipf’s law for words. For models in which the latent variable is

sequence length (i.e. observations in which the dimension of the vector, x, is

variable), we show that Zipf’s law emerges under very mild conditions. Finally,

for models that are high dimensional and sufficiently realistic and complex that

the conditional distribution, P (x|z), falls outside Schwab et al.’s model class, we

show that Zipf’s law still emerges very naturally, again under mild conditions.

In addition, we introduce a quantity that allows us to assess how much a given

latent variable contributes to the observation of Zipf’s law in a particular dataset.

This is important because it allows us to determine, quantitatively, whether a

particular latent variable really does contribute significantly to Zipf’s law.

2.3 Results

Under Zipf’s law (Eq. (2.1)) frequency falls off relatively slowly with rank. This

means, loosely, that rare observations are more common than one would typically

expect. Consequently, under Zipf’s law, one should observe a fairly broad range

of frequencies. This is the case, for instance, for words — just look at the previous

sentence: there are some very common words (e.g. “a”, “of”), and other words

that are many orders of magnitude rarer (e.g. “frequencies”, “consequently”).

This is a remarkable property: you might initially expect to see rare words only

rarely. However, while a particular rare word (e.g. “frequencies”) is far less likely

to occur than a particular common word (e.g. “a”), there are far more rare

words than common words, and these factors balance almost exactly, so that a
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random word drawn from a body of text is roughly equally likely to be rare, like

“frequencies” as it is to be common, like “a”.

Our explanation of Zipf’s law consists of two parts. The first part is the above

observation — that Zipf’s law implies a broad range of frequencies. This notion

was quantified by Mora and Bialek, who showed that a perfectly flat distribution

over a range of frequencies is mathematically equivalent to Zipf’s law over that

range (Mora and Bialek, 2011) — a result that applies in any and all domains.

However, it is important to understand the realistic case: how a finite range of

frequencies with an uneven distribution might lead to something similar to, but

not exactly, Zipf’s law. We therefore extend Mora and Bialek’s result, and derive

a general relationship that quantifies deviations from Zipf’s law for arbitrary

distributions over frequency — from very broad to very narrow, and even to multi-

modal distributions. That relationship tells us that Zipf’s law emerges when the

distribution over frequency is sufficiently broad, even if it is not very flat. We

complete the explanation of Zipf’s law by showing that latent variables can, but

do not have to, induce a broad range of frequencies. Finally, we demonstrate

theoretically and empirically that, in a variety of important domains, it is indeed

latent variables that give rise to a broad range of frequencies, and hence Zipf’s

law. In particular, we explain Zipf’s law in three domains by showing that,

in each of them, the existence of a latent variable leads to a broad range of

frequencies. Furthermore, we demonstrate that data with both a varying number

of dimensions, and fixed but high dimension, leads to Zipf’s law under very mild

conditions.

A broad range of frequencies implies Zipf’s law

By “a broad range of frequencies”, we mean the frequency varies by many orders

of magnitude, as is the case, for instance, for words: “a” is indeed many orders of

magnitude more common than “frequencies”. It is therefore convenient to work

with the energy, defined by

E(x) ≡ − logP (x) = − log Frequency (x) + const. (2.3)

where, as above, x is an observation, and we have switched from frequency to

probability. To translate Zipf’s law from observations to energy, we take the log

of both sides of Eq. (2.1) and use Eq. (2.3) for the energy; this gives us

Zipf’s law holds exactly ⇐⇒ log r(E) = E + const., (2.4)

where r(E) is the rank of an observation whose energy is E .

Given, as discussed above, that Zipf’s law implies a broad range of frequencies, we
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expect Zipf’s law to hold whenever the low and high energies (which translate into

high and low frequencies) have about the same probability. Indeed, previous work

(Mora and Bialek, 2011) showed that when the distribution over energy, P (E),

is perfectly constant over a broad range, Zipf’s law holds exactly in that range.

However, in practice the distribution over energy is never perfectly constant; the

real world is simply not that neat. Consequently, to understand Zipf’s law in

real-world data, it is necessary to understand how deviations from a perfectly

flat distribution over energy affect Zipf plots. For that we need to find the exact

relationship between the distribution over energy and the rank.

To find this exact relationship, we note, using an approach similar to (Mora and

Bialek, 2011), that if we were to plot rank versus energy, we would see a stepwise

increase at the energy of each observation, x. Consequently, the gradient of the

rank is 0 almost everywhere, and a delta-function at the location of each step,

dr(E)

dE =
∑
x

δ
(
E − E(x)

)
. (2.5)

The right hand side is closely related to the probability distribution over energy.

That distribution can be thought of as a sum of delta-functions, each one located

at the energy associated with a particular x and weighted by its probability,

P (E) =
∑
x

P (x) δ
(
E − E(x)

)
= e−E

∑
x

δ
(
E − E(x)

)
, (2.6)

with the second equality following from Eq. (2.3). This expression says that the

probability distribution over energy is proportional to e−E× the density of states,

a standard result from statistical physics (Pathria and Beale, 2011). Comparing

Eqs. (2.5) and Eq. (2.6), we see that

dr(E)

dE = eEP (E) . (2.7)

Integrating both sides from −∞ to E and taking the logarithm gives

log r(E) = E + logPS (E) (2.8)

where PS (E) is P (E) smoothed with an exponential kernel,

PS (E) ≡
∫ E
−∞

dE ′P
(
E ′
)
eE
′−E . (2.9)

Comparing Eq. (2.8) to Eq. (2.4), we see that for Zipf’s law to hold exactly over

some range (i.e. log r(E) = E+const., or r(x) ∝ 1/P (x)), we need PS (E) = const.

over that range. This is not new; it was shown previously by Mora and Bialek

using essentially the same arguments we used here (Mora and Bialek, 2011). What
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is new is the exact relationship between P (E) and r(E) given in Eq. (2.8), which

is valid whether or not Zipf’s law holds exactly. This is important because the

distribution over energy is never perfectly flat, so we need to reason about how

deviations from PS (E) = const. affect Zipf plots — something that our analysis

allows us to do. In particular, Eq. (2.8) tells us that departures from Zipf’s law

are due solely to variations in logPS (E). Consequently, Zipf’s law emerges if

variations in logPS (E) are small compared to the range of observed energies.

This requires the distribution over energy to be broad, but not necessarily very

flat (see Eq. (2.22) and surrounding text for an explicit example). Much of the

focus of this paper is on showing that latent variable models typically produce

sufficient broadening in the distribution over energy for Zipf’s law to emerge.

Narrow distributions over energy are typical

The analysis in the previous section can be used to tell us why a broad (i.e.

Zipfian) distribution over energy is special, and a narrow distribution over energy

is generic. Integrating Eq. (2.6) over a small range (from E to E + ∆E) we see

that

P (E to E + ∆E) ≈ e−EN (E to E + ∆E) (2.10)

where N (E to E+∆E) is the number of states with energy between E and E+∆E .

As we just saw, for a broad, Zipfian distribution over energy, we require P (E) to

be nearly constant. Thus, Eq. (2.10) tells us that for Zipf’s law to emerge, we

must have N (E to E + ∆E) ∝ eE (an observation that has been made previously,

but couched in terms of entropy rather than density of states (Mora and Bialek,

2011; Schwab et al., 2014; Tkačik et al., 2014, 2015)). However, there is no reason

for the number of states to take this particular form, so we do not, in general, see

Zipf’s law. Moreover, because of the exponential term in Eq. (2.10), whenever

the range of energies is large, even small imbalances between the number of states

and the energy lead to highly peaked probabilities. Thus, narrow distributions

over energy are generic — a standard result from statistical physics (Pathria and

Beale, 2011).

The fact that broad distributions are not generic tells us that Zipf’s law is not

generic. However, the above analysis suggests a natural way to induce Zipf’s law:

stack together many narrow distributions, each with a peak at a different energy.

In the following sections we expand on this idea.
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Latent variables lead to a broad range of frequencies

We now demonstrate that latent variables can broaden the distribution over en-

ergy sufficiently to give Zipf’s law. We begin with generic arguments showing that

latent variables typically broaden the distribution over energy. We then show em-

pirically that, in three domains of interest, this broadening leads to Zipf’s law.

We also show that Zipf’s law emerges generically in data with varying dimensions

and in latent variable models describing data with fixed, but high, dimension.

General principles

To obtain Zipf’s law, we need a dataset displaying a broad range of frequencies

(or energies). It is straightforward to see how latent variables might help: if the

energy depends strongly on the latent variable, then mixing across many different

settings of the latent variable leads to a broad range of energies. We can formalise

this intuition by noting that for a latent variable model, the distribution over x is

found by integrating P (x|z) over the latent variable, z (Eq. (2.2)). Likewise, the

distribution over energy is found by integrating P (E|z) over the latent variable,

P (E) =

∫
dzP (E|z)P (z) . (2.11)

Therefore, mixing multiple narrow (and hence non-Zipfian) distributions, P (E|z),
with sufficiently different means (e.g., coloured lines in Fig. 2.1A) gives rise to a

broad (and hence Zipfian) distribution, P (E) (solid black line Fig. 2.1A). This

tells us something very important: “special” Zipfian distributions, with a broad

range of energies, can be constructed merely by combining many “generic” non-

Zipfian distributions, each with a narrow range of energies. Critically, to achieve

large broadening, the mean energy, and thus the typical frequency, of an ob-

servation must depend on the latent variable; i.e. the mean of the conditional

distribution, P (E|z), must depend on z. Taking words as an example, one set-

ting of the latent variable should lead mainly to common (and thus low energy)

words, like “a”, whereas another setting of the latent variable should lead mainly

to rare (and thus high energy) words, like “frequencies”.

Our mechanism (mixing together many narrow distributions over energy to give

a broad distribution) is one of many possible ways that Zipf’s law could emerge

in real datasets. It is thus important to be able to tell whether Zipf’s law in a

particular dataset emerges because of our mechanism, or another one. Critically,

if our mechanism is operative, even though the full dataset displays Zipf’s law

(and hence has a broad distribution over energy), the subset of the data associated

with any particular setting of the latent variable will be non-Zipfian (and hence

have a narrow distribution over energy). In this case, a broad distribution over
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Figure 2.1: PEEV measures the average width of P (E|z) relative to P (E).
PEEV is close to 0 if the widths are the same, and close to 1 if P (E|z) is,
on average, much narrower that P (E). In all panels, the black line is P (E),
and the coloured lines are P (E|z) for three different settings of the latent
variable, z. A. For high PEEV, the conditional distributions, P (E|z), are
narrow, and have very different means. B. For intermediate PEEV, the
conditional distributions are broader, and their means are more similar.
C. For low PEEV, the conditional distributions are very broad, and their
means are very similar.

energy, and hence Zipf’s law, emerges because of the mixing of multiple narrow,

non-Zipfian distributions (each with a different setting of the latent variable).

To complete the explanation of Zipf’s law, we only need to explain why, in that

particular dataset, it is reasonable for there to be a latent variable that controls

the location of the peak in the energy distribution.

Of course there is, in reality, a continuum — there are two contributions to the

width of P (E). One, corresponding to our mechanism, comes from changes in the

mean of P (E|z) as the latent variable changes; the other comes from the width of

P (E|z). To quantify the contribution of each mechanism towards an observation

of Zipf’s law, we use the standard formula for the proportion of explained variance

(or R2) to define the proportion of explained energy variance (PEEV; see Methods

2.5 for further details). PEEV gives the proportion of the total energy variance

that can be explained by changes in the mean of P (E|z) as the latent variable,

z, changes. PEEV ranges from 0, indicating that z explains none of the energy

variance, so the latent variable does not contribute to the observation of Zipf’s

law, to 1, indicating that z explains all of the energy variance, so our mechanism

is entirely responsible for the observation of Zipf’s law. As an example, we plot

energy distributions with a range of values for PEEV (Fig. 2.1). The black line

is P (E), and the coloured lines are P (E|z) for different settings of z. For high

values of PEEV, the distributions P (E|z) are narrow, but have very different

means (Fig. 2.1A). In contrast, for low values of PEEV, the distributions P (E|z)
are broad, yet have very similar means, so the width of P (E) comes mainly from

the width of P (E|z) (Fig. 2.1C).
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Categorical data (word frequencies)

It has been known for many decades that word frequencies obey Zipf’s law (Zipf,

1932), and many explanations for this finding have been suggested (Zipf, 1949;

Mandelbrot, 1953; Li, 1992; Cancho i and Solé, 2003; Corominas-Murtra et al.,

2011). However, none of these explanations accounts for the observation that,

while word frequencies overall display Zipf’s law (solid black line, Fig. 2.2B),

word frequencies for individual parts of speech (e.g. nouns vs conjunctions) do

not (coloured lines, Fig. 2.2B; except perhaps for verbs, which we discuss below).

We can see directly from these plots that the mechanism discussed in the previous

section gives rise to Zipf’s law: different parts of speech have narrow distributions

over energy (coloured lines, Fig. 2.2A), and they have different means. Mixing

across different parts of speech therefore gives a broad range of energies (solid

black line, Fig. 2.2A), and hence Zipf’s law. In practice, the fact that different

parts of speech have different mean energies implies that some parts of speech (e.g.

nouns, like “ream”) consist of many different words, each of which is relatively

rare, whereas other parts of speech (e.g. conjunctions, like “and”) consist of only

a few words, each of which is relatively common. We can therefore conclude that

Zipf’s law for words emerges because there is a latent variable, the part-of-speech,

and the latent variable controls the mean energy. We can confirm quantitatively

that Zipf’s law arises primarily through our mechanism by noting that PEEV is

relatively high, 0.58 (for details on how we compute PEEV, see Methods 2.5).

We have demonstrated that Zipf’s law for words emerges because of the combina-

tion of different parts of speech with different characteristic frequencies. However,

to truly explain Zipf’s law for words, we have to explain why different parts of

speech have such different characteristic frequencies. While this is really a task

for linguists, we can speculate. One potential explanation is that different parts

of speech have different functions within the sentence. For instance, words with a

purely grammatical function (e.g. conjunctions, like “and”) are common, because

they can be used in a sentence describing anything. In contrast, words denoting

something in the world (e.g. nouns, like “ream”) are more rare, because they can

be used only in the relatively few sentences about that object. Mixing together

these two classes of words gives a broad range of frequencies, or energies, and

hence, Zipf’s law. Finally, using similar arguments, we can see why verbs have

a broader range of frequencies than other parts of speech — some verbs (like

“is”) can be used in almost any context (and one might argue that they have a

grammatical function) whereas other verbs (like “gather”) refer to a specific type

of action, and hence can only be used in a few contexts. In fact, verbs, like words

in general, fall into classes (Levin, 1993).
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divided into classes (Levin, 1993)). The red line has a slope of −1, and
closely matches the combined data.
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Data with variable dimension

Two models in which the data consists of sequences with variable length have

been shown to give rise to Zipf’s law (Li, 1992; Mora et al., 2010). These models

fit easily into our framework, as there is a natural latent variable, the sequence

length. We show that if the distribution over sequence length is sufficiently broad,

Zipf’s law emerges.

First, Li (1992) noted that randomly generated words with different lengths obey

Zipf’s law. Here “randomly generated” means the following: a word is generated

by randomly selecting a symbol that can be either one of M letters or a space, all

with equal probability; the symbols are concatenated; and the word is terminated

when a space is encountered. We can turn this into a latent variable model by

first drawing the sequence length, z, from a distribution, then choosing z letters

randomly. Thus, the sequence length, z, is “latent”, as it is chosen first, before

the data are generated — it does not matter that in this particular case, the

latent variable can be inferred perfectly from an observation.

Second, Mora et al. (2010) found that amino acid sequences in the D region of

Zebrafish IgM obey Zipf’s law. The latent variable is again z, the length of the

amino acid sequence. The authors found that, conditioned on length, the data

was well fit by an Ising-like model with translation-invariant coupling,

P (x|z) ∝ exp

 z∑
i=1

h (xi) +
z∑

i,j=1

J|i−j| (xi, xj)

 (2.12)

where x denotes a vector, x = (x1, x2, ..., xz), and xi represents a single amino

acid (of which there were 21).

The basic principle underlying Zipf’s law in models with variable sequence length

is that there are few short sequences, so each short sequence has a high probability

and hence a low energy. In contrast, there are many long sequences, so each long

sequence has a low probability and hence a high energy. Mixing together short

and long sequences therefore gives a broad distribution over energy and hence

Zipf’s law.

Models in which sequence length is the latent variable are particularly easy to

analyze because there is a simple relationship between the total and conditional

distributions,

P (x) = P (z|x)P (x) = P (x|z)P (z) . (2.13)

The first equality holds because z, the length of the word, is a deterministic

function of x, so P (z|x) = 1 (as long as z is the length of the vector x, which is

what we assume here); the second follows from Bayes theorem. To illustrate the
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general approach, we use this to analyze Li’s model (as it is relatively simple). For

that model, each element of x is drawn from a uniform, independent distribution

with M elements, so the probability of observing any particular configuration

with a sequence length of z is M−z. Consequently

P (x) = M−zP (z) . (2.14)

Taking the log of both sides of this expression and negating gives us the energy

of a particular configuration,

E (x) = z logM − logP (z) ≈ z logM. (2.15)

The approximation holds because logP (z) varies little with z (in this case its

variance cannot be greater than (M + 1)/M , and in the worst case its variance

is O((log Var [z])2); see Methods 2.5). Therefore, the variance of the energy is

approximately proportional to the variance of the sequence length, z,

Var [E (x)] ≈ (logM)2 Var [z] . (2.16)

If there is a broad range of sequence lengths (meaning the standard deviation of

z is large), then the energy has a broad range, and Zipf’s law emerges. More

quantitatively, our analysis for high-dimensional data below suggests that in the

limit of large average sequence length, Zipf’s law emerges when the standard

deviation of z is on the order of the average sequence length. For Li’s model (Li,

1992), the standard deviation and mean of z both scale with M , so we expect

Zipf’s law to emerge when M is large. To check this, we simulated random words

with M = 4. Even for this relatively modest value, P (E) (black line, Fig. 2.3A) is

relatively flat over a broad range, but the distributions for individual word lengths

(coloured lines, Fig. 2.3A) are extremely narrow. Therefore, data for a single word

length does not give Zipf’s law (coloured lines, Fig. 2.3B), but combining across

different word lengths does give Zipf’s law (black line, Fig. 2.3B; though with

steps, because all words with the same sequence length have the same energy).

Of course, this derivation becomes more complex for models, like the antibody

data, in which elements of the sequence are not independently and identically

distributed. However, even in such models the basic intuition holds: there are

few short sequences, so each short sequence has high probability and low energy,

whereas the opposite is true for longer sequences. In fact, the energy is still

approximately proportional to sequence length, as it was in Eq. (2.15), because

the number of possible configurations is exponential in the sequence length, and

the energy is approximately the logarithm of that number (see Methods 2.5, for a

more principled explanation). Consequently, in general a broad range of sequence

lengths gives a broad distribution over energy, and hence Zipf’s law.
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However, as discussed above, just because a latent variable could give rise to

Zipf’s law does not mean it is entirely responsible for Zipf’s law in a particular

dataset. To quantify the role of sequence length in Mora et al.’s antibody data,

we computed PEEV (the proportion of the variance of the energy explained by

sequence length) for the 14 datasets used in their analysis. As can be seen in

Fig. 2.4A, PEEV is generally small: less than 0.5 in 12 out of the 14 datasets.

And indeed, for the dataset with the smallest PEEV (0.07), Zipf’s law is obeyed

at each sequence length (Fig. 2.4B). This in fact turns out to hold for all the

datasets, even the one with the highest PEEV (0.72; Fig. 2.4C).

The fact that Zipf’s law is observed at each sequence length complicates the in-

terpretation of this data. Our mechanism — adding together many distributions,
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each at different mean energy — plays only a small role in producing Zipf’s law

over the whole dataset. And indeed, an additional mechanism has been found:

a recent study showed that antibody data is well modelled by random growth

and decay processes (Desponds et al., 2016), which leads to Zipf’s law at each

sequence length.

High-dimensional data

A very important class of models are those where the data is high-dimensional.

We show two things for this class. First, the distribution over energy is broadened

by latent variables — more specifically, for latent variable models, the variance

typically scales as n2. Second, the n2 scaling is sufficiently large that deviations

from Zipf’s law become negligible in the large n limit.

The reasoning is the same as it was above: we can obtain a broad distribution

over energy by mixing together multiple, narrowly peaked (and thus non-Zipfian)

distributions. Intuitively, if the peaks of those distributions cover a broad enough

range of energies, Zipf’s law should emerge. To quantify this intuition, we use

the law of total variance (Weiss, 2006),

Varx [E(x)] = Varz
[
Ex|z [E(x)]

]
+ Ez

[
Varx|z [E(x)]

]
(2.17)

where again x is a vector, this time with n, rather than z, elements. This expres-

sion tells us that the variance of the energy (the left hand side) must be greater

than the variance of the mean energy (the first term on the right hand side). (As

an aside, this decomposition is the essence of PEEV; see Methods 2.5).

As discussed above, the reason latent variable models often lead to Zipf’s law is

that the latent variable typically has a strong effect on the mean energy (see in

particular Fig. 2.1). We thus focus on the first term in Eq. (2.17), the variance

of the mean energy. We show next that it is typically O(n2), and that this is

sufficiently broad to induce Zipf’s law.

The mean energy is given by

Ex|z [E(x)] = −
∑
x

P (x|z) logP (x) . (2.18)

This is somewhat unfamiliar, but can be converted into a very standard quantity

by noting that in the large n limit we may replace P (x) with P (x|z), which

converts the mean energy to the entropy of P (x|z). To see why, we write

Ex|z [E(x)] = −
∑
x

P (x|z) logP (x|z) +
∑
x

P (x|z) log
P (x|z)
P (x)

. (2.19)
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For low dimensional latent variable models (more specifically, for models in which

z is k dimensional with k � n), the second term on the right hand side is

O(k/2 log n). Loosely, that’s because it’s positive and its expectation over z is

the mutual information between x and z, which is typically O(k/2 log n) (Bialek

et al., 2001). Here, and in almost all of our analysis, we consider low dimensional

latent variables; in this regime, the second term on the right hand side is small

compared to the energy, which is O(n) (recall, from the previous section, that

the energy is proportional to the sequence length, which here is n). Thus, in

the large n and small k limit — the limit of interest — the second term can be

ignored, and the mean energy is approximately equal to the entropy of P (x|z),

Ex|z [E(x)] ≈ −
∑
x

P (x|z) logP (x|z) ≡ Hx|z(z). (2.20)

Approximating the energy by the entropy is convenient because the latter is intu-

itive, and often easy to estimate. This approximation breaks down (as does the

O(k/2 log n) scaling (Bialek et al., 2001)) for high dimensional latent variables,

those for which k is on the same order as n. However, the approximation is not

critical to any of our arguments, so we can use our framework to show that high

dimensional latent variables can also lead to Zipf’s law; see Methods 2.5.

At least in the simple case in which each element of x is independent and identi-

cally distributed conditioned on z, it is straightforward to show that the variance

of the entropy is O(n2). That is because the entropy is n times the entropy of one

element (Hx|z(z) = nHxi|z(z)), so the variance of the total entropy is n2 times

the variance of the entropy of one element,

Varz
[
Hx|z(z)

]
= n2Varz

[
Hxi|z(z)

]
, (2.21)

which is O(n2), and hence the variance of the energy is also O(n2). Importantly,

to obtain this scaling, all we need is that Varz
[
Hxi|z(z)

]
∼ O(1).

In the slightly more complex case in which each element of x is independent,

but not identically distributed conditioned on z, the total entropy is still the

sum of the element-wise entropies: Hx|z(z) =
∑

iHxi|z(z). Now, though, each

of the Hxi|z(z) can be different. In this case, for the variance to scale as n2,

the element-wise entropies must covary, with O(1) and, on average, positive,

covariance. Intuitively, the latent variable must control the entropy, such that

for some settings of the latent variable the entropy of most of the elements is

high, and for other settings the entropy of most of the elements is low.

For the completely general case, in which the elements of xi are not independent,

essentially the same reasoning holds: for Zipf’s law to emerge the entropies of

each element (suitably defined; see Methods 2.5) must covary, with O(1) and, on

average, positive, covariance. This result — that the variance of the energy scales
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as n2 when the elementwise entropies covary — has been confirmed empirically

for multi-neuron spiking data (Tkačik et al., 2014, 2015) (though they did not

assess Zipf’s law).

We have shown that the variance of the energy is typically O(n2). But is that

broad enough to produce Zipf’s law? The answer is yes, for the following reason.

For Zipf’s law to emerge, we need the distribution over energy to be broad over

the whole range of ranks. For high-dimensional data, the number of possible

observations, and hence the range of possible ranks, increases with n. In par-

ticular, the number of possible observations scales exponentially with n (e.g. if

each element of the observation is binary, the number of possible observations

is 2n), so the logarithm of the number of possible observations, and hence the

range of possible log-ranks, scales with n. Therefore, to obtain Zipf’s law, the

distribution over energy must be roughly constant over a region that scales with

n. But that is exactly what latent variable models give us: the variance scales as

n2, so the width of the distribution is proportional to n, matching the range of

log-ranks. Thus, the fact that the variance scales as n2 means that Zipf’s law is,

very generically, likely to emerge for latent variable models in which the data is

high dimensional.

We can, in fact, show that when the variance of the energy is O(n2), Zipf’s law

is obeyed ever more closely as n increases. Rewriting Eq. (2.8), but normalizing

by n, we have

1

n
log r(E) =

E
n

+
1

n
logPS (E) . (2.22)

The normalized log-rank and normalized energy now vary across an O(1) range,

so if logPS (E) ∼ O(1), the last term will be small, and Zipf’s law will emerge.

If the variance of the energy is O(n2), then logPS (E) typically has this scal-

ing. For example, consider a Gaussian distribution, for which logPS (E) ∼
− (E − E0)2 /(2n2). Because, as we have seen, the energy is proportional to n,

the numerator and denominator both scale with n2, giving logPS (E) the required

O(1) scaling. This argument is not specific to Gaussian distributions: if the vari-

ance of the energy is O(n2), we expect logPS (E) to display only O(1) changes

as the energy changes by an O(n) amount.

This result turns out to be very robust. For instance, as we show in Methods

2.5, even delta-function spikes in the distribution over energy (Fig. 2.5A) do not

disrupt the emergence of Zipf’s law as n increases (Fig. 2.5B). (The distribu-

tion over energy is, of course, always a sum of delta-functions, as can be seen

in Eq. (2.6). However, the delta-functions in Eq. (2.6) are typically very close

together, and each one is weighted by a very small number, e−E . Here we are

considering a delta-function with a large weight, as shown by the large spike in
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Figure 2.5: The relationship between P (E) (left panel) and Zipf plots
(E versus log-rank, right panel). As in Fig. 2.4, E increases downward on
the y-axis in panels B and D. A and B. We bypassed an explicit latent
variable model, and set P (E) = Uniform(E ; 0, 30)/2 + δ(E − 15)/2. The
deviation from Zipf’s law, shown as a blip around E = 15, is small. This is
general: as we show in Methods 2.5, departures from Zipf’s law scale as 1/n
even for large delta-function perturbations. C and D. We again bypassed
an explicit latent variable model, and set P (E) = Uniform(E ; 0, 10)/2 +
Uniform(E ; 20, 30)/2. The resulting hole between E = 10 and 20 causes a
large deviation from Zipf’s law.

Fig. 2.5A.) However, “holes” in the probability distribution of the energy (i.e.

regions of 0 probability, as in Fig. 2.5C) do disrupt the Zipf plot. That is be-

cause in regions where P (E) is low, the energy decreases rapidly without the

rank changing; this makes logPS (E) very large and negative, disrupting Zipf’s

law (Fig. 2.5D). Between holes, however, we expect Zipf’s law to be obeyed, as

illustrated in Fig. 2.5D.

Importantly, we can now see why a model in which there is no latent variable,

so the variance of the energy is O(n), does not give Zipf’s law. (To see why the

O(n) scaling of the variance is generic, see Pathria and Beale (2011)). In this

case, the range of energies is O(
√
n). This is much smaller than the O(n) range

of the log ranks, and so Zipf’s law will not emerge.

We have shown that high dimensional latent variable models lead to Zipf’s law

under two relatively mild conditions. First, the average entropy of each individual

element of the data, x, must covary as z changes, and the average covariance must

be O(1) (again, see Methods 2.5, for the definition of elementwise entropy for non-

independent models). Second, P (E) cannot have holes; that is, it cannot have

large regions where the probability approaches zero between regions of non-zero

probability. These conditions are typically satisfied for real world data.
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Neural data

Neural data has been shown, in some cases, to obey Zipf’s law (Mora and Bialek,

2011; Tyrcha et al., 2013). Here the data, which consists of spike trains from n

neurons, is converted to binary vectors, x(t) = (x1(t), x2(t), ...), with xi(t) = 1

if neuron i spiked in timestep t and xi(t) = 0 if there was no spike. The time

index is then ignored, and the vectors are treated as independent draws from a

probability distribution.

To model data of this type, we follow Tyrcha et al. (2013) and assume that each

cell has its own probability of firing, which we denote pi(z). Here z, the latent

variable, is the time since stimulus onset. This results in a model in which the

distribution over each element conditioned on the latent variable is given by

P (xi|z) = pi(z)
xi
(
1− pi(z)

)1−xi . (2.23)

The entropy of an individual element of x is, therefore,

Hxi|z(z) = −pi(z) log pi(z)−
(
1− pi(z)

)
log
(
1− pi(z)

)
. (2.24)

The entropy is high when pi(z) is close to 1/2, and low when pi(z) is close to 0

or 1. Because time bins are typically sufficiently small that the probability of a

spike is less than 1/2, probability and entropy are positively correlated. Thus, if

the latent variable (time since stimulus onset) strongly and coherently modulates

most cells’ firing probabilities — with high probabilities soon after stimulus onset

(giving high entropy), and low probabilities long after stimulus onset (giving low

entropy) — then the changes in entropy across different cells will reinforce, giving

an O(n) change in entropy, and thus O(n2) variance.

In our data, we do indeed see that firing rates are strongly and coherently mod-

ulated by the stimulus — firing rates are high just after stimulus onset, but they

fall off as time goes by (Fig. 2.6A). Thus, when we combine data across all times,

we see a broad distribution over energy (black line in Fig. 2.6B), and hence Zipf’s

law (black line in Fig. 2.6C). However, in any one time bin the firing rates do not

vary much from one presentation of the stimulus to another, and so the energy

distribution is relatively narrow (coloured lines in Fig. 2.6B). Consequently, Zipf’s

law is not obeyed (or at least is obeyed less strongly; coloured lines in Fig. 2.6C).

In our model of the neural data, Eq. (2.23), and in the neural data itself (Methods

2.5), we assumed that the xi were independent conditioned on the latent variable.

However, the independence assumption was not critical; it was made primarily

to simplify the analysis. What is critical is that there is a latent variable that

controls the population averaged firing rate, such that variations in the population

averaged firing rate are O(1) — much larger than expected for neurons that are
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Figure 2.6: Neural data recorded from 30 mouse retinal ganglion cells
stimulated by full-field illumination; see Methods 2.5, for details. A. Spike
trains from all 30 neurons. Note that the firing rates are strongly correlated
across time. B. PS (E|z) (coloured lines) when time relative to stimulus
onset is the latent variable (see text and Methods 2.5). The thick black line
is PS (E). C. Zipf plots for the data conditioned on time (coloured lines)
and for all the data (black line). The red lines have slope −1.
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either independent or very weakly correlated. When that happens, the variance

of the energy scales as n2 (as has been observed (Tkačik et al., 2014, 2015)), and

Zipf’s law emerges (see Methods 2.5).

Exponential family latent variable models

Recently, Schwab et al. (2014) showed that a relatively broad class of models

for high-dimensional data, a generalization of a so-called superstatistical latent

variable model Beck and Cohen (2003),

P (x|g) ∝ exp

−n m∑
µ=1

gµOµ(x)

 , (2.25)

can give rise to Zipf’s law. Importantly, in Schwab et al.’s model, when they refer

to “latent variables,” they are not referring to our fully general latent variables

(which we call z) but to gµ, the natural parameters of an exponential family

distribution. To make this explicit, and to also make contact with our model, we

rewrite Eq. (2.25) as

P (x|z) ∝ exp

−n m∑
µ=1

gµ(z)Oµ(x)

 (2.26)

where the dimensionality of z can be lower than m. (See Methods 2.5 for the link

between Eqs. (2.25) and (2.26).)

Ifm were allowed to be arbitrarily large, Eq. (2.26) could describe any distribution

P (x|z). However, under Schwab et al.’s model m can’t be arbitrarily large; it

must be much less than n (as we show explicitly in Methods 2.5). This puts

several restrictions on Schwab et al.’s model class. In particular, it does not

include many flexible models that have been fit to data. A simple example is our

model of neural data (Eq. (2.23)). Writing this distribution in exponential family

form gives

P (x|z) ∝ exp

−n n∑
µ=1

log
(
pµ(z)−1 − 1

)
(xµ/n)

 . (2.27)

Even though there is only one “real” latent variable, z (the time since stimulus

onset), there are n natural parameters, gµ = log
(
pµ(z)−1 − 1

)
. Consequently,

this distribution falls outside of Schwab et al.’s model class. This is but one

example; more generally, any distribution with n natural parameters gµ(z) falls

outside of Schwab et al.’s model class whenever the gµ(z) have a nontrivial de-

pendence on µ and z (as they did in Eq. (2.27)). This includes models in which

sequence length is the latent variable, as these models require a large number
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of natural parameters (something that is not immediately obvious; see Methods

2.5).

The restriction to a small number of natural parameters also rules out high di-

mensional latent variable models — models in which the number of latent variable

is on the order of n. That is because such models would require at least O(n)

natural parameters, much more than are allowed by Schwab et al.’s analysis. Al-

though we have so far restricted our analysis to low dimensional latent variable

models, our framework can easily handle high dimensional ones. In fact, the

restriction to low dimensional latent variables was needed only to approximate

the mean energy by the entropy. That approximation, however, was not neces-

sary; we can instead reason directly: as long as changes in the latent variable

(now a high dimensional vector) lead to O(n) changes in the mean energy —

more specifically, as long as the variance of the mean energy with respect to the

latent variable is O(n2) — Zipf’s law will emerge. Alternatively, whenever we

can reduce a model with a high dimensional latent variable to a model with a

low dimensional latent variable, we can use the framework we developed for low

dimensional latent variables (see Methods 2.5). The same reduction cannot be

carried out on Schwab et al.’s model, as in general that will take it out of the

exponential family with a small number of natural parameters (see Methods 2.5).

Besides the restrictions associated with a small number of natural parameters,

there are two further restrictions; both prevent Schwab et al.’s model from ap-

plying to word frequencies. First, the observations must be high-dimensional

vectors. However, words have no real notion of dimension. In contrast, our the-

ory is applicable even in cases for which there is no notion of dimension (here

we are referring to the theory in earlier sections; the later sections on data with

variable and high-dimension are only applicable in those cases). Second, the la-

tent variable must be continuous, or sufficiently dense that it can be treated as

continuous. However, the latent variable for words is categorical, with a fixed,

small number of categories (the part-of-speech).

Finally, our analysis makes it is relatively easy to identify scenarios in which

Zipf’s law does not emerge, something that can be hard to do under Schwab et

al.’s framework. Consider, for example, the following model of data consisting of

n-dimensional binary vectors,

P (x|z) ∝ exp

[
−h
∑
i

xi +A cos z
∑
i

xi cos θi +A sin z
∑
i

xi sin θi

]
(2.28)

where θi ≡ 2πi/n, h and A are constant, and z ranges from 0 to 2π. Although

this is in Schwab et al.’s model class, it does not display Zipf’s law. To see why,
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note that it can be written

P (x|z) ∝
∏
i

exp
[
− hxi +A cos (z − θi)xi

]
. (2.29)

This is a model of place fields on a ring: the activity of neuron i is largest

when its preferred orientation, θi, is equal to z, and smallest when its preferred

orientation is z + π. Because of the high symmetry of the model, the entropy is

almost independent of z. In particular, changes in z produce O(1) variations in

the entropy (see Methods 2.5); much smaller than the O(n) variations needed to

produce Zipf’s law.

This example suggests that any model in which changes in the latent variable

cause uniform translation of place fields, without changing their height or shape,

should not display Zipf’s law. And indeed, non-Zipfian behaviour was found

in a numerical study of Gaussian place fields in one dimension (Tkačik et al.,

2015). Note, though, that if the amplitude of the place fields (A in our model)

or the overall firing rate (h in our model) depends on a latent variable, then the

population would exhibit Zipf’s law. These conclusions emerge easily from our

framework, but are harder to extract from that of Schwab et al. (2014).

In conclusion, while Schwab et al.’s approach is extremely valuable, it does have

some constraints. We were able to relax those constraints, and thus show that la-

tent variables induce Zipf’s law in a wide array of practically relevant cases (word

frequencies, data with variable sequence length, and simultaneously recorded neu-

ral data). Notably, all of these lie outside the class that Schwab et al.’s approach

can handle. In addition, our analysis allowed us to easily identify scenarios in

which the latent variable model lies in Schwab et al.’s model class, but Zipf’s law

does not emerge.

2.4 Discussion

We have shown that it is possible to understand, and explain, Zipf’s law in a vari-

ety of domains. Our explanation consists of two parts. First, we derived an exact

relationship between the shape of a distribution over log frequencies (energies)

and Zipf’s law. In particular, we showed that the broader the distribution, the

closer the data comes to obeying Zipf’s law. This was an extension of previous

work showing that if a dataset has a broad, and perfectly flat, distribution over

log frequencies (e.g. if a random draw gives very common elements, like “a” and

rare elements, like “frequencies” the same proportion of the time), then Zipf’s law

must emerge (Mora and Bialek, 2011). Importantly, our extension allowed us to

reason about how deviations from a perfectly flat distribution over energy mani-

fest in Zipf plots. Second, we showed that if there is a latent variable that controls
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the typical frequency of observations, then mixing together different settings of

the latent variable gives a broad range of frequencies, and hence Zipf’s law. This

is true even if the distributions over frequency conditioned on the latent variable

are very narrow. Thus, Zipf’s law can emerge when we mix together multiple

non-Zipfian distributions. This is important because non-Zipfian distributions

are the typical case, and are thus easy to understand.

When Zipf’s law is observed, it is an empirical question whether or not it is due to

our mechanism. Motivated by this observation, we derive a measure (percentage

of explained variance, or PEEV) that allows us to separate out, and account

for, the contribution of different latent variables to the observation of Zipf’s law.

We found that our mechanism was indeed operative in three domains: word

frequencies, data with variable sequence length, and neural data. We were also

able to show that while variable sequence length can give rise to Zipf’s law on it’s

own, it was not the primary cause of Zipf’s law in an antibody sequence dataset.

For words, the latent variable is the part of speech. As we described, parts of

speech with a grammatical function (e.g. conjunctions, like “a”) have a few,

common words, whereas parts of speech that denote something in the world (e.g.

nouns, like “frequencies”) have many, rare words. Varying the latent variable

therefore induces a broad range of characteristic energies (or frequencies), giving

rise to Zipf’s law.

For data with variable sequence length, we take the latent variable to be the

sequence length itself. There are many possible long sequences, so each long

sequence is rare (high-energy). In contrast, there are few possible short sequences,

so each short sequence is common (low-energy). Mixing across short and long

sequences, and everything in between, gives a broad range of energies, and hence

Zipf’s law. We examined the role of sequence length in two datasets: randomly

generated words and antibody sequences, both of which display Zipf’s law (Li,

1992; Mora et al., 2010). For the former, randomly generated words, sequence

length was wholly responsible for Zipf’s law. For the latter, antibody sequences,

it formed only a small contribution. We were able to make these assessments

quantitative, by computing the percentage of explained variance, or PEEV. And

indeed, a recent model by Desponds et al. indicates that for antibodies, Zipf’s law

at each sequence length is most likely due to random growth and decay processes

(Desponds et al., 2016).

For high-dimensional data, small changes in the energy (or entropy) of each el-

ement of the observation can reinforce to give a large change overall, and hence

Zipf’s law. As an example, we considered multi-neuron spiking data, for which

the latent variable is the time since stimulus onset. Just after stimulus onset, the

firing rate of almost every cell (and hence the energy associated with those cells),

is elevated. In contrast, long after stimulus onset, the firing rate of almost every
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cell (and hence the energy associated with those cells) is lower. As all the cells’

energies change in the same direction (high just after stimulus onset, and low

long after stimulus onset), the changes reinforce, and so produce O(n) changes

in the total energy. Consequently, whenever the population firing rate varies

with time, Zipf’s law will almost always appear. This is true regardless of what

is causing the variation: it could be a stimulus, or it could be low dimensional

internal network dynamics. Thus, our framework is consistent with the recent

observation that in salamander retina the variance of the energy scales as n2 (the

scaling needed for Zip’s law to emerge), with higher variance when the stimulus

induces larger covariation in the firing rates (Tkačik et al., 2014, 2015). This does

not, of course, imply that the retina implements an uninteresting transformation

from stimulus to neural response. However, our findings do have implications for

the interpretation of observations of Zipf’s law.

Our work shows that there are two types of datasets in which we expect Zipf’s

law to emerge generically. First, for the reason mentioned above, any dataset in

which the sequence length varies (and is thus a latent variable) will display Zipf’s

law if the distribution over sequence length is sufficiently broad. Second, any

high-dimensional dataset will display Zipf’s law if the entropy of each element

of the observation changes with the latent variable, and if those changes are

correlated.

Previous authors have pointed out that latent variables models have interesting

properties when the data is high-dimensional. As we discussed, Schwab et al.

(2014) were the first to show that a relatively broad class of latent variable mod-

els describing high-dimensional data give rise to Zipf’s law. Their result, how-

ever, carries some restrictions: it applies only to exponential family distributions

with continuous latent variables and a small number of natural parameters. We

took a far more general approach that relaxes all of these restrictions: it does

not require high-dimensional data, continuous latent variables, or an exponential

family distribution with a small number of latent variables. Importantly, none of

the datasets that we considered lie within the class considered by Schwab et al.

(2014). However, the fact that Schwab et al.’s analysis applies to a restricted

class of models should not detract from its importance: they were the first that

we know of to show that Zipf’s law could arise without fine tuning.

In addition, in work that anticipated some forms of latent variable models, Macke

and colleagues examined models with common input (Macke et al., 2011b), similar

to the model in Eq. (2.23), as well as simple feedforward spiking neuron models

(Nonnenmacher et al., 2016). They showed that both exhibit diverging heat

capacity, for which the variance of the energy is O(n2). Although they did not

explicitly explore the connection to Zipf’s law, in the latter study (Nonnenmacher

et al., 2016) they noted that the diverging heat capacity should lead to Zipf’s law.
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These findings have important implications in fields as diverse as biology and

linguistics. In biology, one explanation for Zipf’s law is that biological systems

sit at a special thermodynamic state, the critical point (Mora and Bialek, 2011;

Saremi and Sejnowski, 2013, 2014; Tkačik et al., 2014, 2015). However, our

findings indicate that Zipf’s law emerges from phenomena much more familiar

to biologists: unobserved states that influence the observed data. In fact, as

mentioned above, for neural data our analysis shows that Zipf’s law will emerge

whenever the average firing rate in a population of neurons varies over time. Such

time variation is common in neural systems, and can be due to external stimuli,

low dimensional internal dynamics, or both.

For words, we showed that individual parts of speech do not obey Zipf’s law; it

is only by mixing together different parts of speech with different characteristic

frequencies that Zipf’s law emerges. This has an important consequence for other

explanations of Zipf’s law in language. In particular, the observation that indi-

vidual parts of speech do not obey Zipf’s law is inconsistent with any explanation

of Zipf’s law that fails to distinguish between parts of speech (Mandelbrot, 1953;

Price, 1976; Li, 1992; Gabaix, 1999; Cancho i and Solé, 2003; Corominas-Murtra

et al., 2011).

In all of these domains, the observation of Zipf’s law is important because it may

point to the existence of some latent variable structure. It is that structure, not

Zipf’s law itself, that is likely to provide insight into statistical regularities in the

world.

2.5 Methods

Ethics statement

All procedures were performed under the regulation of the Institutional Animal

Care and Use Committee of Weill Cornell Medical College (protocol #0807-769A)

and in accordance with NIH guidelines.

Experimental methods

The neural data in Fig. 2.6 was acquired by electrophysiological recordings of

3 isolated mouse retinas, yielding 30 ganglion cells. The recordings were per-

formed on a multielectrode array using the procedure described in (Bomash et al.,

2013; Nirenberg and Pandarinath, 2012). Full field flashes were presented on a

Sony LCD computer monitor, delivering intermittent flashes (2 s of light followed

by 2 s of dark, repeated 30 times) of white light to the retina (Nirenberg and

75



Meister, 1997). All procedures were performed under the regulation of the In-

stitutional Animal Care and Use Committee of Weill Cornell Medical College

(protocol #0807-769A) and in accordance with NIH guidelines.

Spikes were binned at 20 ms, and xi was set to 1 if cell i spiked in a bin and

zero otherwise. To give us enough samples to plot Zipf’s law, we estimated

pi(z), the probability that neuron i spikes in bin z, from data using the model in

Eq. (2.23), and drew 106 samples from that model. To construct the distributions

of energy conditioned on the latent variable — the coloured lines in Figs. 2.6B and

C — we treated samples that occurred within 100 ms as if they had the same

latent variable (so, for example, PS (E|z = 300) is shorthand for the smoothed

distribution over energy for spike trains in the five bins between 300 and 400

ms). Finally, to reduce clutter, we plotted lines only for z = 0 ms, z = 300 ms

etc.

PEEV, and the law of total variance

The law of total variance (Weiss, 2006) is well known in statistics; it decomposes

the total variance into the sum of two terms. Here we briefly review this law in

the context of latent variable models, and then discuss how it is related to PEEV.

The energy, E(x), can be trivially decomposed as

E(x) = Ex|z [E(x)] +
(
E(x)− Ex|z [E(x)]

)
(2.30)

where the first term, Ex|z [E(x)], is the mean energy conditioned on z,

Ex|z [E(x)] =

∫
E(x)P (x|z) dx. (2.31)

The two terms in Eq. (2.30), Ex|z [E(x)] and
(
E(x)− Ex|z [E(x)]

)
, are uncorre-

lated, so the variance of E(x) is the sum of their variances,

Varx [E(x)] = Varz
[
Ex|z [E(x)]

]
+ Varz,x

[
E(x)− Ex|z [E(x)]

]
, (2.32)

where Varx [...] is the variance with respect to P (x) and Varx,z [...] is the variance

with respect to P (x, z). As is straightforward to show, the second term can be

rearranged to give the law of total variance,

Varx [E(x)] = Varz
[
Ex|z [E(x)]

]
+ Ez

[
Varx|z [E(x)]

]
. (2.33)

This is the same as Eq. (2.17) of the main text, except here we use x rather than

x.

We can identify two contributions to the variance. The first, Varz
[
Ex|z [E(x)]

]
, is
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the variance of the expected energy, Ex|z [E(x)], induced by changes in the latent

variable, z. This represents the contribution to the total energy variance from

the latent variable (i.e. the contribution from changes in the peak of P (E|z) as z

changes) and, under our mechanism, is the contribution that gives rise to Zipf’s

law. The second, Ez
[
Varx|z [E(x)]

]
, is the variance of the energy, Varx|z [E(x)],

for a fixed setting of the latent variable, averaged over the latent variable, z.

This represents the contribution from the width of P (E|z). The proportion of

explained energy variance (PEEV) — that is, the portion explained by the first

contribution — is the ratio of the first quantity to the total variance of the energy,

PEEV ≡
Varz

[
Ex|z [E(x)]

]
Varx [E(x)]

. (2.34)

This quantity ranges from 0, indicating that z explains none of the energy vari-

ance, to 1, indicating that z explains all of the energy variance. PEEV therefore

describes how much the latent variable contributes to the observation of Zipf’s

law, though it should be remembered that PEEV may be large even if the total

energy variance is narrow, and hence Zipf’s law is not obeyed.

Computing PEEV

To compute PEEV, we need to estimate, from data, the distribution over energy

given the latent variable, and the distribution over the latent variable. Here we

consider the case in which the latent variable is category, and each observation,

x, falls into a single, known, category. In more realistic cases, P (z|x) must be

estimated from a model and P (x) from data, from which P (x|z) and P (z) can

be obtained using Bayes’ theorem.

The starting point is the number of observations, and the category, of each possi-

ble value of x. For instance, for words, we took a list of words, their frequencies,

and their parts of speech from Leech et al. (2001). We then used the frequencies

to estimate the probability of each observation, and, finally, turned those into

an energy via Eq. (2.3): E(x) = − logP (x). The empirical distribution over en-

ergy, P (E), and over energy given the latent variable, P (E|z), was therefore a

set of delta functions, with each delta-function weighted by the probability of its

corresponding observation,

P (E) =
∑
x

P (x) δ
(
E − E(x)

)
, (2.35)

P (E|z) =
∑
x

P (x|z) δ
(
E − E(x)

)
. (2.36)

The first equation is the same as Eq. (2.6); it is repeated here for convenience.

To compute the terms relevant to PEEV (Eq. (2.34)), we need moments of both
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the total energy and the energy conditioned on z. These are given, respectively,

by

Ex

[
Ek(x)

]
=
∑
x

P (x) Ek(x), (2.37)

Ex|z

[
Ek(x)

]
=
∑
x

P (x|z) Ek(x). (2.38)

Then, to compute the variances required for PEEV, we use

Varx|z [E(x)] = Ex|z
[
E2(x)

]
−
(
Ex|z [E(x)]

)2
, (2.39)

Varz
[
Ex|z [E(x)]

]
= Ez

[(
Ex|z [E(x)]

)2]− (Ez [Ex|z [E(x)]
])2

, (2.40)

where

Ez

[
Ex|z

[
Ek(x)

]]
= Ex

[
Ek(x)

]
, (2.41)

Ez

[
Ex|z [E(x)]k

]
=
∑
z

P (z)
(
Ex|z [E(x)]

)k
. (2.42)

Var [logP (z)] is O
(
(log Var [z])2)

To compute the variance of the energy for variable length data, we stated that

the variance of logP (z) is small compared to the variance of z (see in particular

Eq. (2.15)). Here we first show that for Li’s model Li (1992), the variance of

logP (z) is O(1); we then show that in general the variance of logP (z) is at most

O
(
(log Var [z])2

)
.

For Li’s model, the probability of observing a sequence of length z is proportional

to the probability of drawing z letters followed by a blank. For an alphabet with

M letters, this is given by

P (z) =
1

M

(
M

M + 1

)z
. (2.43)

The leading factor of 1/M ensures that the distribution is properly normalized

(note that z ranges from 1 to ∞). Given this distribution, it is straightforward

to show that

Varz [logP (z)] = M(M + 1)

(
log

[
1 +

1

M

])2

. (2.44)

Using the fact that log(1 + ε) ≤ ε, we see that the right hand side is bounded by

(M + 1)/M . Thus, for Li’s model, Varz [logP (z)] is indeed O(1).

To understand how the variance of logP (z) scales in general, we note that the
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variance is bounded by the second moment,

Varz [logP (z)] =
∑
z

P (z) [logP (z)]2 −
(∑

z

P (z) logP (z)

)2

≤
∑
z

P (z) [logP (z)]2.

(2.45)

Shortly we’ll maximize the second moment with the variance of z fixed. When we

do that, we find that the second moment is small compared to σ2
z , the variance

of z. However, the analysis is somewhat complicated, so first we provide the

intuition.

The main idea is to note that for unimodal distributions, the number of sequence

lengths with appreciable probability is proportional to the standard deviation of

z. If we make the (rather crude) approximation that P (z) is nonzero only for

n0 sequence lengths, where n0 ∝ σz, then the right hand side of Eq. (2.45) is

maximum when P (z) = 1/n0, and the corresponding value is (log n0)2. Conse-

quently, the second moment of logP (z) is at most O
(
(log σz)

2
)
, giving us the

very approximate bound

Varz [logP (z)] ≤ O
(

log σ2
z

2

)2

(2.46)

where we used log σz = (1/2) log σ2
z .

This does indeed turn out to be the correct bound. To show that rigorously, we

take the usual approach: we use Lagrange multipliers to maximize the second

moment of logP (z) with constraints on the total probability and the variance.

This gives us

0 =
∂

∂P (z)

[∑
z′

P
(
z′
) (

logP
(
z′
) )2 − (γ2 + α2 − 1)

(∑
z′

P
(
z′
)
− 1

)

−γ
2Z2

e2

(∑
z′

P
(
z′
)
z′

2 − µ2 − σ2
z

)]
(2.47)

where µ is the mean value of z,

µ ≡
∑
z

P (z) z. (2.48)

We use γ2 + α2 − 1 and γ2Z2/e2 as our Lagrange multiplier to simplify later

expressions. As is straightforward to show (taking into account the fact that µ

depends on P (z)), Eq. (2.47) is satisfied when P (z) is given by

P (z) = exp

[
−1−

(
γ2 + α2 − γ2Z2µ2

e2
+
γ2Z2(z − µ)2

e2

)1/2
]
. (2.49)

79



The parameters γ, α and Z must be chosen so that P (z) is normalized to 1

and has variance σ2
z . However, because z is a positive integer, finding these

parameters analytically is, as far as we know, not possible. We can, though,

make two approximations that ultimately do yield analytic expressions. The first

is to allow z to be continuous. This turns sums (which are needed to compute

moments) into integrals, and results in an error in those sums that scales as 1/σz.

That error is negligible in the limit that σz is large (the limit of interest here).

The second is to allow z to be negative. This will increase the maximum second

moment of logP (z) at fixed σ2
z (because we are expanding the space of probability

distributions), and so result in a slightly looser bound. But the bound will be

sufficiently tight for our purposes.

The problem of choosing the parameters γ, α and Z is now much simpler, as we

can do integrals rather than sums. We proceed in three steps: first, we show that

none of the relevant moments depend on µ, so we set it to zero and at the same

time eliminate α; second, we use the fact that P (z) must be properly normalized

to express Z in terms of γ; and third, we explicitly compute the second moment

of logP (z) and the variance of σ2.

To see that the second moment of P (z) and the variance of z do not depend on

µ, make the change of variables z = z′ + µ and let α2 = γ2Z2µ2/e2. That yields

a distribution P (z′) that is independent of µ. Thus, µ does not effect either the

second moment of logP (z) or the variance of z, and so without loss of generality

we can set both µ and α to zero. We thus have

P (z) = exp
[
−1− γ

(
1 + Z2z2/e2

)1/2]
. (2.50)

It is convenient to make the change of variables z = ye/Z, yielding

P (y) =
e−γ(1+y2)1/2

Z(γ)
(2.51)

where Z, which now depends on γ to ensure that P (z) (and thus P (y)) is properly

normalized, is given by

Z(γ) =

∫
dy e−γ(1+y2)1/2 . (2.52)

In terms of P (y), the two quantities of interest are

Ez
[
(logP (z))2

]
= Ey

[(
1 + γ(1 + y2)1/2

)2]
(2.53)

σ2
z =

e2

Z2(γ)
Ey
[
y2
]
. (2.54)

These expectations can be expressed as modified Bessel functions of the second
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kind (as can be seen by making the change of variables y = sinh θ). However, the

resulting expressions are not very useful, so instead, we consider two easy limits:

large and small γ. In the large γ limit, P (y) is Gaussian, yielding

lim
γ→∞

Ez
[
(logP (z))2

]
= (γ + 3/2)2 +O(1) (2.55)

lim
γ→∞

σ2
z =

e2(γ+1)

2π

(
1 +O(1/γ)

)
. (2.56)

And in the small γ limit, P (y) is Laplacian, and we have

lim
γ→0

Ez
[
(logP (z))2

]
= 5 +O(γ) (2.57)

lim
γ→0

σ2
z =

e2

2
+O(γ). (2.58)

As is straightforward to show, in both limits the second moment of logP (z) obeys

the inequality

Ez
[
(logP (z))2

]
≤
(
c0 +

log σ2
z

2

)2

(2.59)

where

c0 =

√
20− log(e2/2)

2
≈ 1.58. (2.60)

We verified numerically that the inequality in Eq. (2.59) is satisfied over the

whole range of γ, from 0 to ∞. Thus, although very naive arguments were used

to derive the bound given in Eq. (2.46), it is substantially correct.

Models in which the latent variable is the sequence length

For models in which the sequence length is the latent variable, for Zipf’s law to

hold the energy must be proportional to the sequence length, z; that is, the energy

must beO(z). To determine whether this scaling holds, we start with Eq. (2.13) of

the main text, which tells us that when the latent variable is sequence length, the

total distribution is a simple function of the latent variables: P (x) = P (x|z)P (z)

where z is the dimension of x (the sequence length). Thus, the energy is given

by

E(x) =

z∑
i=1

Ei(x)− logP (z) . (2.61)

where

Ei(x) ≡ − logP (xi|xi−1 . . . x1) . (2.62)
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Assuming the value of xi isn’t perfectly determined by the values of x1, ..., xi−1

(the typical case), each term in the sum over z is O(1), and so the first term in

Eq. (2.61) is O(z). As we saw in the previous section, the variance of logP (z) is

small compared to the variance of z. Consequently, the energy is O(z).

Latent variable models with high dimensional non-conditionally

independent data

In the main text we argued that for a conditionally independent model — a model

in which each element of x is independent conditioned on z — the variance of

the entropy typically scales as n2. Extending this argument to complex joint

distribution is straightforward, and, in fact, follows closely the method used in

the previous section.

The first step is to note that, just as in the conditionally independent case,

logP (x|z) can be written as a sum over each element of xi,

logP (x|z) =
∑
i

logP (xi|z, x1, x2, ..., xi−1) . (2.63)

Taking the expectation with respect to P (x|z) (and negating) gives the entropy,

which consists of a sum of n terms,

Hx|z(z) =
n∑
i=1

hi(z) (2.64)

where hi(z) is the entropy of P (xi|z, x1, x2, ..., xi−1), averaged over x1 to xi−1,

with z fixed,

hi(z) ≡ Ex|z [− logP (xi|z, x1, x2, ..., xi−1)] . (2.65)

The variance of the entropy is thus given by

Varz
[
Hx|z(z)

]
=
∑
ij

Covz [hi(z), hj(z)] . (2.66)

Just as in the main text, if the individual entropies (the hi) have, on average,

O(1) covariance as z changes, then the variance of the entropy is O(n2). This

illuminates a special case in which we do not see Zipf’s law: if the x1, x2, ..., xi−1

determine the value of xi when i > i0 (independent of n), then the entropy, hi,

is zero whenever i > i0. If this were to happen, the variance of the entropy

would scale at most as i20, independent of n; far smaller than the required O(n2)

scaling. However, for most types of data, including neural data, each neuron has

considerable independent noise (due, for instance, to synaptic failures (Branco

and Staras, 2009)), so the hi typically remain finite for all i.
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For complex joint distribution, the hi(z) can be hard to reason about and/or

compute. However, here we argue that it is possible to reason about the scaling

of the covariance of the hi(z)’s based on the scaling of the covariance of the

elementwise entropies Hxi|z(z), which are much simpler quantities. To see this,

note that the hi can be written

hi(z) = Hxi|z(z)− Ii(z) (2.67)

where, as in the main text, the first term is the elementwise entropy,

Hxi|z(z) ≡ −
∑
xi

P (xi|z) logP (xi|z) , (2.68)

and the second term is the mutual information between xi and x1 to xi−1, con-

ditioned on z,

Ii(z) ≡ Ex|z

[
− log

(
P (xi|z)

P (xi|z, x1, x2, ..., xi−1)

)]
= Hxi|z(z) + Ex|z [logP (xi|z, x1, x2, ..., xi−1)] . (2.69)

Combining Eq. (2.67) with Eq. (2.64), we see that

Varz
[
Hx|z(z)

]
=

∑
ij

Covz

[
Hxi|z(z), Hxj |z(z)

]
−
∑
ij

2Covz
[
Hxi|z(z), Ij(z)

]
+
∑
ij

Covz [Ii(z), Ij(z)] . (2.70)

If the Hxi|z(z) covary, then the first term is O(n2). In this situation it would

require very precise cancellation for the whole expression to be O(n). Such can-

cellation could occur if, for instance, Hxi|z(z) = Ii(z) + const.. However, unless

the constant were zero, so xi−1...x1 determine the value of xi (see Eq. (2.69)), it is

unclear how this could occur. Thus, as claimed in the main text, except in cases

in which there is highly precise cancellation, if the elementwise entropies Hxi|z(z)

covary (with O(1) covariance), the variance of the total entropy will scale as n2.

High dimensional latent variables

So far we have restricted our analysis to low dimensional latent variables. How-

ever, this is not absolutely necessary, and in fact high dimensional latent variable

can induce Zipf’s law the same way low dimensional ones can: if different settings

of the latent variable result in O(n) differences in the mean energy, Zipf’s law will

emerge. The main difference in the analysis is that we can no longer approximate
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the mean energy by the entropy, as we did in Eq. (2.20). However, it is not ac-

tually necessary to make this approximation; it is merely convenient, as it allows

us to work with the entropy, an intuitive, well-understood quantity. Indeed, if we

work directly with the mean energy, Eq. (2.18), we can see that covariation in the

individual energies leads to Zipf’s law — just as the covariation in the individual

entropies led to Zipf’s law in the previous section.

To show this explicitly, we break Eq. (2.18) into one term for each element of x,

Ex|z [− logP (x)] =
∑
x

li(x) (2.71)

where

li(x) ≡ Ex|z [− logP (xi|x1, x2, ..., xi−1)] . (2.72)

Then, writing the variance of the mean energy in terms of the li, we have

Varz
[
Ex|z [logP (x)]

]
=
∑
ij

Covz [li, lj ] . (2.73)

If the li have O(1), and positive, covariance, the variance of the energy is O(n2),

and Zipf’s law emerges. The intuition is that each element of x contributes to the

energy, − logP (x). These contributions (or their expected values) change with

the latent variable, and if they all change in the same direction, then the overall

change in the energy is O(n), so the variance is O(n2).

While the above analysis provides the underlying intuition, in practical situations

the li may be difficult to compute. We therefore provide an alternative approach.

For definiteness, we’ll set the dimension of the latent variable to the dimension

of the data, n; to make this explicit, we’ll replace z by z (≡ z1, z2, ..., zn). In

addition, we’ll assume, without loss of generality, that each latent variable —

each zi — has an O(1) range. We’ll also assume that each latent variable has an

O(1) effect on the mean energy; this ensures that the average energy has sensible

scaling with n.

Because each of the latent variables has a small effect, they need to act together

to produce the O(n) variability in the mean energy that is required for Zipf’s law.

Specifically, if any two latent variables, say zi and zj , have the same effect on the

average energy (either both increasing it or both decreasing it), they need to be

positively correlated; if they have the opposite effect (one increasing it and the

other decreasing it), they need to be negatively correlated. When this doesn’t

hold — when correlations are essentially arbitrary, or non-existent — variations

in z have an O(
√
n) effect on the average energy. In this regime, the variance of

the average energy is O(n), and Zipf’s law does not emerge. We thus conclude, at
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least tentatively (and perhaps not surprisingly) that the zi must to be correlated

for Zipf’s law to emerge.

To see this more quantitatively, we make a first-order Taylor series expansion of

the expected energy,

Ex|z [E(x)] ≈ Ex|z=µ [E(x)] +
n∑
i=1

(zi − µi)
∂Ex|z [E(x)]

∂zi

∣∣∣∣
z=µ

. (2.74)

Because each of the zi has an O(1) range and an O(1) effect on the mean energy,

each term in the sum is O(1). Thus, if the higher order terms in Eq. (2.74) can

be neglected, the zi have to be correlated for the variance of the average energy

to scale as O(n2); if they are not correlated, the variance is O(n).

Of course, ignoring higher order terms in high dimensions is dangerous, as the

number of terms grows rapidly with n (the number of kth order terms is propor-

tional to nk ). However, it turns out to give the right intuition: the Efron-Stein

inequality (Efron and Stein, 1981; Steele, 1986; Boucheron et al., 2013), along

with the assumption that each latent variable has an O(1) effect on the energy,

ensures that if the zi are independent, the variance of the energy is indeed O(n).

Thus, a necessary condition for Zipf’s law to emerge is that the zi are corre-

lated, as has been pointed out previously (Tkačik et al., 2015) (in Supporting

Information).

The fact that correlations are necessary to produce Zipf’s law provides a natural

approach to understanding models with high dimensional latent variables. The

approach relies on the observation that sufficiently correlated variables have a

“long” direction — a direction along which the typical size of |z| is O(n) (rather

than O(
√
n), as it is for uncorrelated latent variables). We can, therefore, con-

struct a low dimensional latent variable that measures distance along that di-

rection, and then use the analysis developed above for low dimensional latent

variables.

Here we illustrate this idea for binary variables, xi = 0 or 1. For definiteness,

and because it makes the ideas more intuitively accessible, we consider a con-

crete setting: neural data, with as many latent variables as neurons. As in the

main text, xi = 1 corresponds to one or more spikes in a small time bin and

xi = 0 corresponds to no spikes. Because the long direction in latent variable

space depends on the distribution P (z), it would seem difficult to make general

statements. However, in this example the data comes from neural spike trains,

and so we can make use of the fact that firing rates of neurons often covary.

Thus, a very natural low dimensional latent variable, which we denote ν, is the
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population averaged firing rate,

ν =
1

n

∑
i

pi(z) (2.75)

where pi(z) is the probability that xi = 1 given z,

pi(z) = Ex|z [xi] =
∑
x

xiP (x|z) . (2.76)

For this model the element-wise entropies have a very simple form,

Hxi|z(z) = −pi(z) log pi(z)−
(
1− pi(z)

)
log
(
1− pi(z)

)
. (2.77)

We’ll assume that all the pi(z) are less than 1/2, something that is satisfied for

realistic spike trains if the time bins aren’t too large. Consequently, increasing

pi(z) increases the element-wise entropy of neuron i.

We need two conditions for Zipf’s law to emerge: the variance of ν must be O(1),

and O(1) changes in ν must lead to O(1), and positively correlated, changes in the

element-wise entropies (assuming, as discussed in the previous section, there isn’t

very precise cancellation). So long as the firing rates go up and down together,

both conditions are satisfied, and Zipf’s law emerges. If, on the other hand, the

firing rates are not positively correlated on average, the variance of ν is O(1/
√
n),

and the population averaged firing rate provides no information about Zipf’s law.

This is an important example, as the population averaged firing rate is easy to

estimate from data.

In summary, high dimensional latent variables are, from a conceptual point of

view, no different than low dimensional ones: both lead to Zipf’s law if differ-

ent settings of the latent variables lead to average energies that differ by O(n).

However, in the high dimensional case, each latent variable has a small effect

on the energy, so a necessary condition for Zipf’s law to emerge is that the la-

tent variables are correlated. This turns out to be helpful: the correlations can

lead naturally to a low dimensional latent variable, for which our analysis of low

dimensional latent variables applies.

Peaks in P (E) do not disrupt Zipf’s law

In the main text, we noted that while holes in the distribution over energy, P (E),

disrupt Zipf’s law, peaks in this distribution do not. To see this explicitly, take

an extreme case: P (E) is composed of a delta function at E = E0, weighted by α,

combined with a smooth component, f(E), that integrates to 1−α. Here α may

be any number between 0 and 1, and in particular it need not be exponentially

small in the energy, as it is in Eq. (2.6). For this case, we can compute PS (E)
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explicitly using Eq. (2.9),

1

n
logPS (E) =

1

n
log
[
αe−(E−E0)Θ (E − E0) + fS (E)

]
(2.78)

where fS is f smoothed by an exponential kernel, Θ is the Heaviside step function,

and we have normalized by n to give us the quantity relevant for determining the

size of departures from Zipf’s law (see Eq. (2.22)). The term e−(E−E0)Θ (E − E0)

ranges from 0 to 1, so logPS (E) can be bounded above and below,

1

n
log
(
fs(E)

)
≤ 1

n
logPS (E) ≤ 1

n
log
(
α+ fs(E)

)
. (2.79)

Assuming the distribution fs(E) is such that the first term vanishes in the large

n limit (so that without the delta function Zipf’s law would hold), then the last

term must also vanish in the large n limit. Thus, even delta-function singularities

do not prevent convergence to Zipf’s law, so long as they occur on top of a finite

baseline.

Exponential family latent variable models: technical details

Schwab et al. (2014) showed that Zipf’s law emerges for a model in which the

distribution over x given the latent variable is in the exponential family. By itself,

the fact that the distribution is in the exponential family places no restrictions

on the class of models. However, their derivation required other conditions to be

satisfied, and those conditions do induce restrictions. In particular, their analysis

does not apply to models with a large number of natural parameters (it thus

does not apply when the latent variable is high dimensional), models in which

the latent variable is discrete, and models in which the latent variable is the

dimension of the data. Here we show this explicitly.

The relationship between Schwab et al.’s model and our model

Schwab et al. (2014) formulated their model as a latent variable model condi-

tioned on natural parameters, as written in the main text, Eq. (2.25). Hidden

in Eq. (2.25) is the fact that the gµ can be “tied”: the parameters gµ are drawn

from a distribution that allows delta-functions, such as δ(g1 − f(g2)) for some

function f , or even δ(g3 − g∗3). To make this explicit, and to also make contact

with our model, we rewrote Eq. (2.25) as a latent variable model conditioned

on z (Eq. (2.26)), where z is a k-dimensional latent variable. Under this model

it is easy to tie variables; for instance, letting g1 = z and g2 = f(z) (with z

one-dimensional) enforces the constraint δ(g1 − f(g2)).
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Number of latent variables

Here we show that the number of natural parameters (m in Eqs. (2.25) and

(2.26)) must be small compared to the dimension of the data, n. We start by

sketching Schwab et al. (2014) derivation, including many steps that were left to

the reader in their paper. Their starting point is the expression for the energy of

an observation,

− logP (x) = − log

∫
dz P (z) e−ng(z)·O(x)−logZ(z). (2.80)

We have written the right hand side using the form given in Eq. (2.26), except

that we explicitly include the partition function (Eq. (2.82) below), and we use

dot products instead of sums. This integral is evaluated using the saddle-point

method,

− logP (x) ≈ ng(z∗) ·O(x) + logZ(z∗). (2.81)

where z∗ maximizes the integrand. For the saddle point method to work — that

is, for the above approximation to hold — the number of latent variables, dim(z),

must be subextensive in n (i.e., dim(z)/n → 0 as n goes to infinity; see (Shun

and McCullagh, 1995) for details).

The condition dim(z) � n does not place any restrictions on the number of

natural parameters (the dimension of g). But the next step in their derivation,

computing the partition function (which is necessary for finding the energy of

an observation), does. The log of the partition function is given by the usual

expression,

logZ(z) = log
∑
x

e−ng(z)·O(x). (2.82)

In the large n limit, the sum can be approximated as an integral over O,

logZ(z) = log

∫
dOe−ng(z)·O+S(O) (2.83)

where S(O) is the entropy at fixed O,

eS(O) =
∑
x

δ (O−O(x)) . (2.84)

Note that O is in fact a discrete variable. However, eS(O) becomes progressively

denser as n increases, and as n→∞, it becomes continuous. As with Eq. (2.80),

the integral can be computed using the saddle point method, yielding

logZ(z) ≈ −ng(z) ·O∗ + S(O∗). (2.85)
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For this approximation to be valid, the dimension of O, and hence the dimension

of g (which is m), must be subextensive in n. Thus, Schwab et al.’s method

applies to model in which m� n (more technically, m/n→ 0 as n→∞). This

restricts it to a relatively small number of natural parameters.

In sum, because Schwab et al.’s method involves an m-dimensional saddle-point

integral over O, it requires the dimensionality of O (and hence g) to be small

(i.e. m/n → 0 as n → ∞; again, see (Shun and McCullagh, 1995) for details).

There are additional steps in their derivation. However, they are not trivial, and

they do not lead to additional constraints on their model, so we do not consider

them further.

Although high dimensional natural parameters are ruled out by Schwab et al.’s

method, there are many interesting cases (e.g., models of neural data), in which

the elements of g covary. In those cases, one might think that it would be

possible to reduce a high-dimensional latent variable to a low-dimensional one,

as we did in previously. While such a reduction is always possible, doing so

typically takes the model out of Schwab et al.’s class. To see this in a simple set-

ting, we reduce a model with one low-dimensional natural parameter, g, and one

high-dimensional natural parameter, g, to a model with just the low-dimensional

natural parameter. (Here g might represent the overall firing rate, and the other

natural parameters, g, might represent fluctuations around that rate.) The model

is written

P (x|g,g) = e−gO(x)−g·O(x)−logZ(g,g) (2.86)

where Z(g,g) is the partition function,

Z(g,g) =
∑
x

e−gO(x)−g·O(x). (2.87)

Marginalizing over g, we have

P (x|g) =

∫
dg e−gO(x)−g·O(x)−logZ(g,g)P (g|g) ≡ e−gO(x)−ψ(g,O(x)). (2.88)

The function ψ(g,O(x)) typically has an extremely complicated dependence on

g and x. In fact, for all but the simplest model it is not even possible to calculate

it analytically, as the partition function cannot be calculated analytically. Thus,

P (x|g) can’t be written in the exponential family with a single natural parameter.

It can, of course, be written in the exponential family with an exponential number

of natural parameters,

ψ(g,O(x)) =
∑
x′

ψ(g,O(x′))δ(x− x′) (2.89)
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where δ(x − x′) is the Kronecker delta, but this clearly takes it out of Schwab

et al.’s model class. This is closely related to the fact that exponential family

distributions are not closed under marginalisation (Seeger, 2005).

Latent variable is the sequence length

To show that a model with sequence length as the latent variable is outside of

Schwab et al.’s class, we begin by writing the distribution in exponential family

form. The simplest way to do that is to write

P (x|z) = lim
L→∞

elogP(x)−L(1−δdim(x),z) (2.90)

where δij is the Kronecker delta (δij = 1 if i = j and 0 otherwise) and, as

above, dim(·) denotes dimension (in this case the number of elements in x). This

distribution allows only values of x which have the correct length: if dim (x) = z,

the second term in the exponent is zero, giving P (x|z) = P (x); in contrast, if

dim (x) 6= z, the second term in the exponent is −L, giving a large negative

contribution to the energy, and sending P (x|z 6= dim (x))→ 0.

This distribution is not in the exponential family form, because the term, δdim(x),z

is not written as the product of a natural parameter (in this case a function of z),

and a sufficient statistic (in this case a function of x). It is not possible to write

it as a single product, but it can be written as the sum of multiple products,

δdim(x),z =
∑
i

δz,iδi,dim(x). (2.91)

This is now in the required form, because each term in the sum is the product

of a natural parameter (δz,i, which is function of z), and a sufficient statistic,

(δi,dim(x), which is a function of x). Inserting this into Eq. (2.90) gives

P (x|z) = lim
L→∞

elogP(x)−L(1−
∑
i δz,iδi,dim(x)). (2.92)

This is in the exponential family. However, there are O(n) terms in the sum,

where n is the mean sequence length, so it is not in Schwab et al.’s model class.

Entropy of a place field model

Here we compute the entropy, at fixed z, of the place field model in Eq. (2.29),

and show that it depends very weakly on z. Because the distribution over x is

conditionally independent given z, the entropy has a simple form,

Hx|z(z) =
∑
i

HB

(
p(z − θi)

)
(2.93)
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where p(z − θi) is the probability that xi = 1 given z,

p(z − θi) ≡
e−h+A cos(z−θi)

1 + e−h+A cos(z−θi)
, (2.94)

and HB(p) is the entropy (in nats) of a Bernoulli random variable,

HB(p) ≡ −p log p− (1− p) log(1− p). (2.95)

To understand how this scales with z, we make the change of variables

z = θj + δz (2.96)

where θj is chosen to minimize |δz|. The mean value theorem tells us that for

any smooth function f(z),

f(z + δz) = f(z) + δzf ′(z∗) (2.97)

where prime denotes derivative and z∗ is between z and z + δz. Consequently,

for some z∗ close to θj ,

Hx|z(z) =
∑
i

HB

(
p(θj − θi)

)
+ δz

∑
i

∂HB

(
p(z∗ − θi)

)
∂z∗

. (2.98)

Because the θi are evenly spaced, the first term is independent of z. Except at

p = 0 or 1 (which are not allowed if h andA are finite), the sum over i of the second

term is O(n). The spacing between adjacent θi is 2π/n, so |δz| ≤ π/n ∼ O(1/n).

Consequently, the second term in Eq. (2.98) scales as O(1/n) × O(n) ∼ O(1),

and so O(1) changes in z produce O(1) changes in the entropy.
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Chapter 3

Probabilistic Synapses

3.1 Abstract

Learning, especially rapid learning, is critical for survival. However, learning

is hard: a large number of synaptic weights must be set based on noisy, often

ambiguous, sensory information. In such a high-noise regime, keeping track of

probability distributions over weights — not just point estimates — is the optimal

strategy. Here we hypothesize that synapses take that optimal strategy: they do

not store just the mean weight; they also store their degree of uncertainty — in

essence, they put error bars on the weights. They then use that uncertainty to

adjust their learning rates, with higher uncertainty resulting in higher learning

rates. We also make a second, independent, hypothesis: synapses communicate

their uncertainty by linking it to variability, with more uncertainty leading to

more variability. More concretely, the value of a synaptic weight at a given time

is a sample from its probability distribution. These two hypotheses cast synaptic

plasticity as a problem of Bayesian inference, and thus provide a normative view

of learning. They are consistent with known learning rules, offer an explanation

for the large variability in the size of post-synaptic potentials, and make several

falsifiable experimental predictions.

3.2 Introduction

To survive, animals must accurately estimate the state of the external world.

This estimation problem is plagued by uncertainty: not only is information often

extremely limited (e.g., because it is dark) or ambiguous (e.g., a rustle in the

bushes could be the wind, or a it could be a predator), but sensory receptors, and

indeed all neural circuits, are noisy. Historically, models of neural computation

ignored this uncertainty, and relied instead on the idea that the nervous system
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represents a single point estimate (Poggio, 1990). However, this does not seem

to be what animals do — not only does ignoring uncertainty lead to suboptimal

decisions, it is inconsistent with a large body of experimental work (Knill and

Richards, 1996; Pouget et al., 2013). Thus, the current view is that in many,

if not most, cases, animals keep track of uncertainty, and use it to guide their

decisions (Pouget et al., 2013).

Accurately estimating the state of the world is just one problem faced by an-

imals. They also need to learn, and in particular they need to leverage their

past experience. It is believed that learning primarily involves changing synaptic

weights. But estimating the correct weight, like estimating the state of the world,

is plagued by uncertainty: not only is the information available to synapses often

extremely limited (in many cases just pre and post synaptic activity), but that

information is extremely noisy. Historically, models of synaptic plasticity ignored

this uncertainty, and relied instead on the idea that synapses make a single point

estimate of their weight (Pouget et al., 2013). However, uncertainty is important

for optimal learning — just as it is important for optimal inference of the state

of the world.

Motivated by this observation, we propose two hypotheses. The first, Bayesian

Plasticity, states that during learning, synapses do indeed take uncertainty into

account. Under this hypothesis, synapses do not just try to find a point estimate

of their weights, as is done in almost all learning rules in neuroscience; instead,

they learn a probability distribution over their weights. This allows synapses to

adjust their learning rates on the fly: when uncertainty is high, learning rates are

turned up, and when uncertainty is low, learning rates are turned down. These

adjustments allow synapses to learn faster, so there is likely to be considerable

evolutionary pressure for such a mechanism.

Bayesian Plasticity is a hypothesis about what synapses compute. It does not,

however, tell us how synapses should set their weights. For that we need a sec-

ond hypothesis. Here we propose that weights are sampled from the probability

distribution describing the synapses’s degree of uncertainty. Under this hypoth-

esis, which we refer to as Synaptic Sampling, trial to trial variability gives us a

direct readout of uncertainty: the larger the trial to trial variability in a synaptic

strength, the larger the uncertainty. Combined, these hypotheses make several

strong experimental predictions. One is consistent with re-analysis of existing

experimental data; the others, which are feasible in the not so distant future,

could falsify the model.
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3.3 Results

We begin our analysis with a derivation of learning rules under the assumption

that synapses keep track of their uncertainty (Bayesian Plasticity). That gives

us a set of rules for updating not just the mean weight (as all standard learning

rules do), but also the uncertainty. We then add to our framework a method

for choosing the PSP variability (Synaptic Sampling). Finally, we discuss the

experimental implications of our two hypotheses.

We begin with a simplified model of synaptic integration. Neurons in vivo receive

a constant barrage of spikes, and each incoming spike produces a PSP — a small

change in the postsynaptic neuron’s membrane potential. Very approximately,

PSPs combine linearly, allowing us to write the membrane potential relative to

rest as

V (t) =
∑
i

wi(t)xi(t) + ηV (t) (3.1)

where xi(t) is the synaptic input from neuron i, wi(t) is the corresponding PSP

amplitude, and ηV (t) is the membrane potential noise. For simplicity we work in

discrete time, so t = 0, 1, 2, ..., and time steps are on the order of the membrane

time constant, around 10 ms (Tripathy et al., 2015). The synaptic inputs, xi(t),

represent the number of incoming spikes in a time step. For most of our analysis,

xi(t) is either 0 (no spike) or 1 (spike), with the probability of a spike chosen

to correspond to typical firing rates observed in cortex. To take into account

variability in PSP amplitudes, wi(t) varies from time step to time step. See

Methods, Sec. 3.5 for additional details.

We are interested in how synapses learn a set of target weights, denoted wtar,i(t),

and a target membrane potential, Vtar(t); the two are related via

Vtar(t) =
∑
i

wtar,i(t)xi(t). (3.2)

These target weights have different meanings in different contexts, but broadly,

they are the weights that allow the neuron to perform its particular task as

effectively as possible. For instance, in a cerebellar Purkinje cell, the target

weights might allow the cell to best predict the occurence of an airpuff; in motor

cortex, the target weights might allow the cell to contribute to the best possible

skilled movement (e.g., a golf swing that gives a hole-in-one); and in visual cortex,

the target weights might enable the cell to pick out the most interesting visual

feature in its input. Note that the target weights are unlikely to be fixed, as

the statistics of the external world are not fixed (e.g., the stimuli predicting an

airpuff can change), nor is the organism (e.g., as you get stronger you will need
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to adapt your golf swing). Thus, we expect the target weights to change over

time, something we include in our analysis (see Methods, Sec. 3.5).

To learn the target weights, synapses get information from the presynaptic input,

backpropagating action potentials, and, for supervised and reinforcement learn-

ing, an explicit feedback signal, denoted f . The simplest feedback signal, which

corresponds to the typical supervised learning set-up (Widrow and Hoff, 1960;

Albus, 1971), is f(δ) = δ, where δ is the prediction error corrupted by additive

noise, ηδ,

δ(t) = Vtar(t)− V (t) + ηδ(t). (3.3)

We refer to this as continuous feedback, because f is a continuous function of δ.

However, our framework is flexible enough to cover many other supervised and

reinforcement learning feedback signals, including discontinuous ones, and even

unsupervised learning, for which there is no feedback signal. In particular, we

consider three scenarios. The first corresponds to cerebellar learning, in which a

Purkinje cell receives a complex spike if its output is too high, thus triggering long

term depression (Ito et al., 1982). To mimic the all-or-nothing nature of a complex

spike (Eccles et al., 1966), we use a binary feedback signal: f(δ) = sign(δ − θ).
For this feedback signal, f is 1 if the noisy error signal, δ is above a threshold,

θ, and f is −1 if it is below that threshold. The second scenario corresponds

to reinforcement learning, in which the feedback, now representing the reward,

reports the magnitude of the noisy error signal, but not its direction, f(δ) = − |δ|.
The third corresponds to unsupervised learning, in which there is no feedback

signal. Instead, synapses adjust their weights using a Hebbian-like learning rule

to find the most interesting (in this case, non-Gaussian) direction in the inputs.

See Methods, Sec. 3.5, for additional details.

For the continuous feedback signal, f = δ, there is a well known rule for finding

the optimal weights: the delta rule (Widrow and Hoff, 1960; Dayan and Abbott,

2001), which changes the mean PSP amplitude, mi, according to

∆mi = αxiδ. (3.4)

(We focus on the mean weight because the actual weight, wi, varies considerably

from one time step to the next due to stochastic vesicle release (Branco and

Staras, 2009).) This is the product of a learning rate, α (red), a presynaptic

term, xi (green) and a postsynaptic term δ (blue). Importantly, the learning

rate, α, is the same for all synapses, so all synapses whose presynaptic cells are

active (i.e., for which xi = 1) change by the same amount (the red arrow labelled

“delta rule” in Fig. 3.1).

In the absence of any other information about the history of inputs, the delta rule
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Figure 3.1: Comparison of the delta rule and the optimal learning rule.
The error bars denote uncertainty in the two synapses’ estimates of their
synaptic weights. The first synapse (w1) is reasonably certain; the second
synapse (w2) is less so. The red arrows denote possible changes in the weight
in response to a negative feedback signal. The arrow labelled “delta rule”
represents an equal decrease in the first and second weights. In contrast,
the arrow labelled “optimal” takes uncertainty into account, so there is a
larger change in the second, more uncertain, weight.

is perfectly reasonable. However, suppose that, based on previous information,

synapse 1 is relatively certain about its weight, whereas synapse 2 is uncertain

(error bars in Fig. 3.1). In that case, new information should have a larger im-

pact on synapse 2 than synapse 1, so synapse 2 should update its weight more

(red arrow labelled “optimal” in Fig. 3.1). Thus, the delta rule does not exploit

information about uncertainty, even when it is available, making it suboptimal.

To do better, synapses need to compute their uncertainty (essentially, provide

error bars), and exploit that information when updating the weights. In essence,

synapses must solve an inference problem, in which the goal is to infer the prob-

ability distribution over the target weights given available data. So instead of

keeping track of point estimates and updating those when spikes arrive, as in

the delta rule, synapses keep track of probability distributions over their weights,

and update the whole distribution when spikes arrive. That updating process is

illustrated in Fig. 3.2.

We refer to learning in which synapses keep track of probability distributions as

Bayesian Plasticity, so named because the update rules are derived using Bayes’

theorem. Synapses do not, of course, have the resources to keep track of arbi-

trary probability distributions. We therefore assume that each synapse uses an

approximate form for its probability distribution, a log normal, chosen because

it does not allow weights to change from excitatory to inhibitory (see Methods,

Sec. 3.5). Using this approximate distribution, synapses only have to keep track

of the mean and variance, denoted mi and s2
i , respectively. As we show in Sup-

plementary Information, Secs. 3.6 and 3.6, in the case of supervised learning with
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Figure 3.2: Updating the distribution over weights using Bayes theo-
rem. At time t, synapse i’s current probability distribution over the tar-
get weight, wtar,i, is given by P (wtar,i(t)|Data up to t− 1) (red curve).
The neuron receives a small amount of new information via the likeli-
hood, P (Data at t|wtar,i(t)) (green curve). This leads to a new distribution,
P (wtar,i(t)|Data up to t) (blue curve).

continuous feedback, f = δ, the update rules for the mean, mi and variance, s2
i ,

are approximately,

∆mi ≈ αi xi δ −1

τ
(mi −mprior) (3.5a)

∆s2
i ≈ −αi x2

i s
2
i −

2

τ

(
s2
i − s2

prior

)
(3.5b)

where αi is the learning rate, which now varies across synapses (see Eq. (3.6) be-

low), and τ , mprior, and s2
prior are fixed parameters. To move to the fully general

case, including reinforcement and unsupervised learning, we simply replace the

postsynaptic terms, δ in the update for the mean, and s2
i in the update for the

variance by something slightly more complicated (see Supplementary Informa-

tion, Eq. (3.59)).

The update rule for the mean weight, Eq. (3.5a), is very similar to the delta

rule, in that it is composed of a learning rate (red), a presynaptic term (green)

and a postsynaptic term (blue). However, there are two important differences.

First, as we show in Supplementary Information, Sec. 3.6, the learning rate, αi,

is proportional to each synapse’s uncertainty, as measured by s2
i ,

αi =
s2
i

s2
δ

(3.6)

where s2
δ represents the average variability in δ, and hence in the feedback signal

(see Supplementary Information, Eq. (3.48), for the definition of s2
δ). Thus, when

a synapse is more uncertain about its target weight, new information causes a

larger change in the mean weight — exactly what we expected, given Fig. 3.1.
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In contrast, as the feedback signal gets noisier, and thus less informative, the

learning rate falls. Second, there is a decay term (grey), which causes the mean

to decay back to its prior value. This accounts for the fact that the underlying

target weight, wtar,i, changes over time (as mentioned above), so information

from the recent past is more relevant than information from the distant past.

Although the update rule for the uncertainty, s2
i (Eq. (3.5b)), does not have a

counterpart in classical learning rules, it does have a natural interpretation. The

first term in Eq. (3.5b) reduces uncertainty (note the negative sign) whenever

the presynaptic cell is active (xi = 1), and thus whenever the synapse updates

its estimate of the weight. The second term has the opposite effect: it increases

uncertainty. That term arises because random drift reduces knowledge about the

target weights.

Simulations (Fig. 3.3) show that the mean weight tracks the target weight very

effectively (compare the red and blue lines, which correspond to the mean of the

inferred distribution and the target weight, respectively). Just as importantly,

the synapse’s estimate of its uncertainty tracks the difference between its estimate

and the actual target (the blue line should be inside the 95% confidence intervals

95% of the time; in practice, we have: supervised continuous, 95%; supervised

binary, 94%; reinforcement, 89%; unsupervised, 87%).

The critical aspect of the learning rules in Eq. (3.5) is that the learning rate —

the change in mean PSP amplitude, mi, per spike — increases as the synapse’s

uncertainty, s2
i , increases. This is a general feature of our learning rules, and not

specific to any one of them. Consequently, independent of the learning scenario,

we expect performance to be better than for classical learning rules, which do not

take uncertainty into account. To check whether this is true, we computed the

mean squared error between the actual and target membrane potential, V and

Vtar, for classical learning rules, and plotted them relative to our learning rules.

The results are shown in Fig. 3.4. In this figure, the red line gives the mean

squared error for the classical learning rules relative to the error for our optimal

rules. Note that the Bayesian learning rules do not have an externally imposed

learning rate parameter, so their mean squared error is a single value that does

not vary with learning rate. Even if the learning rates for the classical learning

rules are chosen optimally, performance is worse than it is for the probabilistic

learning rules, and if they are chosen sub-optimally, performance can be much

worse.

Fig. 3.4 indicates that there is a clear advantage to using uncertainty to adjust

learning rates. But does the brain actually take this strategy? Addressing that

question will require a new generation of plasticity experiments: at present, in

typical plasticity experiments only changes in weights are measured; to test our

hypothesis, it will be necessary to measure changes in learning rates, and at the
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Figure 3.3: Bayesian learning rules track the true weight and estimate un-
certainty. The blue line is the true weight, the red line represents the median
of the inferred distribution, and the red area represents 95% confidence in-
tervals. The total time course is 5 times the characteristic time over which
the target weights change (see Methods, Sec. 3.5). A. Supervised learn-
ing, continuous feedback (f = δ). B. Supervised learning, binary feedback
(f = Θ (δ − θ)). C. Reinforcement learning (f = −|δ|). D. Unsupervised
learning (no feedback).
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Figure 3.4: Bayesian learning rules have a lower mean squared error (MSE)
than classical learning rules. The red line is the mean squared error for
the classical learning rule, relative to our Bayesian learning rule (the blue
line at 1). The Bayesian learning rule does not have a tuneable learning
rate parameter, so the Bayesian mean squared error is the same for all
learning rates. A. Supervised learning, continuous feedback (f = δ). B.
Supervised learning, binary feedback (f = Θ (δ − θ)). C. Reinforcement
learning (f = −|δ|). D. Unsupervised learning (no feedback). See Methods,
Sec. 3.5, for further details.
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same time determine how those changes are related to the synapse’s uncertainty.

This presents two challenges. First, measuring changes in learning rates is diffi-

cult, as weights must be monitored over long periods of time and under natural

conditions, preferably in vivo. However, with the advent of increasingly sophisti-

cated experimental techniques, such experiments should be feasible in the not so

distant future. Second, we cannot measure the synapse’s uncertainty directly. It

is, therefore, necessary to find a proxy. Below we discuss two possible approaches.

The first approach is indirect: use neural activity measured over long periods in

vivo to estimate the uncertainty a synapse should have; then, armed with that

estimate, test the prediction that the learning rate increases with uncertainty. To

estimate the uncertainty a synapses should have, we take advantage of a general

feature of essentially all learning rules: synapses get information only when the

presynaptic neuron spikes. Consequently, the synapse’s uncertainty should fall

as the presynaptic firing rate increases. In fact, under mild assumptions, we can

derive a very specific relationship: the relative change in weight under a plasticity

protocol, ∆mi/mi, should scale as 1/
√
νi where νi is the firing rate of the neuron

presynaptic to synapse i,

∆mi

mi
∝ 1√

νi
, (3.7)

a relationship that holds in our simulations (Fig. 3.5; see also Supplementary

Information, Sec. 3.6). In essence, firing rate is a proxy for uncertainty, with

higher firing rate indicating lower uncertainty and vice versa. This prediction

can be tested by observing neurons in vivo, estimating their firing rates, then

performing long term potentiation or depression experiments to determine the

relative change in synaptic strength, ∆mi/mi.

The second approach involves the introduction of a new hypothesis, which is that

PSP variability provides a proxy for uncertainty. That we might expect a rela-

tionship between variability and uncertainty is based on the following normative

reasoning (see Methods, Sec. 3.5, for an extended discussion): the uncertainty

associated with a particular computation should depend on the uncertainty in the

weights; thus, to make optimal decisions, the brain needs to know that degree

of uncertainty; one way to communicate it is via variability in PSP amplitude.

This leads to the Synaptic Sampling hypothesis, which states that the variance

in PSP amplitude is equal to the variance of the inferred posterior distribution

over the target weight, s2
i ,

PSP variance = s2
i . (3.8)

This is analogous to setting the PSP mean to the mean of the distribution over

the target weight, mi. We call this the Synaptic Sampling hypothesis because the
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Figure 3.5: Simulations confirming that the normalized learning rate
(αi/mi, which is proportional to ∆mi/mi) is inversely related to the square
root of the firing rate. As predicted, the best fit line on a log-log plot has
a slope close to -1/2. A. Supervised learning, continuous feedback (f = δ).
B. Supervised learning, binary feedback (f = Θ (δ − θ)). C. Reinforcement
learning (f = −|δ|). D. Unsupervised learning (no feedback).
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synapses “sample” PSP amplitudes from their inferred distribution over weights.

Bayesian Plasticity combined with Synaptic Sampling tells us that synapses

with higher variability (and hence higher uncertainty) should have higher learn-

ing rates. More quantitively, Bayesian Plasticity tells us that the relative

change in PSP amplitude, ∆mi/mi, is proportional to the synapase’s uncertainty,

(Eqs. (3.5a) and (3.6)) and Synaptic Sampling relates uncertainty to variability

(Eq. (3.8)); consequently,

∆mi

mi
∝ PSP variance

PSP mean
≡ Normalized

Variability
, (3.9)

where we have defined the normalized variability to be the ratio of PSP variance

to its mean. We verify that this relationship holds in simulation in Fig. 3.6.

Equation (3.9) implies that when the PSP variance is high, learning is fast. Test-

ing that experimentally is straightforward, if technically difficult: simply monitor

the PSP mean and variance for long periods in vivo, and compare normalized

variability to changes in the mean. The in vivo requirement is important: our

analysis assumes a constant barrage of presynaptic spikes, whereas in many in

vitro preparations the vast majority of cells are silent (see Supplementary Infor-

mation, Sec. 3.6).

In addition to the experiment proposed above, there is a slightly more indirect

test of Bayesian plasticity and Synaptic Sampling. Combining Eq. (3.7) and (3.9),

we see that the normalized variability and firing rate obey the relationship,

1√
νi
∝ Normalized

Variability
. (3.10)

This is intuitively sensible: as discussed previously, higher presynaptic firing rates

means the synapse is more certain, and Synaptic Sampling states that higher

certainty should reduce the observed variability.

This relationship can be tested by estimating presynaptic firing rates in vivo, and

comparing them to the normalized variability measured using paired recordings.

Such data can be extracted from experiments by Ko et al. (2011). In those

experiments, calcium signals in mouse visual cortex were recorded in vivo under

a variety of stimulation conditions, which provided an estimate of firing rate;

subsequently, whole cell recordings of pairs of identified neurons were made in

vitro, and the mean and variance of the PSPs were measured. In Fig. 3.7A we

plot the normalized variability versus the firing rate on a log-log scale; on this

scale, our theory predicts a slope of −1/2 (red line). The normalized variability

does indeed decrease as the firing rate increases (blue line), (p < 0.003), and the

slope is not significantly different from −1/2 (p = 0.56). This pattern is broadly

matched by simulated data (Fig. 3.7B)
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Figure 3.6: Simulations confirming that that the normalized learning rate
(αi/mi, which is proportional to ∆mi/mi) is proportional to the normalized
variability (s2i /mi). The red line is the best fitting straight-line that passes
through the origin. A. Supervised learning, continuous feedback (f = δ).
B. Supervised learning, binary feedback (f = Θ (δ − θ)). C. Reinforcement
learning (f = −|δ|). D. Unsupervised learning (no feedback).
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Figure 3.7: Normalized variability (the ratio of the PSP variance to the
mean) as a diagnostic of our theory. A. Normalized variability falls as firing
rate increases. The red line, which has a slope of −1/2, is our prediction
(the intercept, for which we do not have a prediction, was chosen to give
the best fit to the data). The blue line is fit by linear regression, and the
grey region represents 2 standard errors. Its slope, -0.62, is statistically
significantly different from 0 (p < 0.003) and not significantly different
from −1/2 (p = 0.57). Firing rate was measured by taking the average
signal from a spike deconvolution algorithm (Vogelstein et al., 2010). Units
are arbitrary because the scale factor relating the average signal from the
deconvolution algorithm and the firing rate is not exactly one (Packer et al.,
2015). Data from layer 2/3 of mouse visual cortex (Ko et al., 2011). B.
Simulated normalized variability versus firing rate; supervised learning with
continuous feedback (f = δ).

It seems unlikely that this pattern emerged spuriously, as that would require a

confound that simultaneously influenced two very different types of measurement,

calcium measurements of the pre-synaptic firing rate and patch-clamp measure-

ment of the PSPs. The most obvious confound actually predicts a positive slope:

if more calcium indicator is present in the presynaptic cell, then we might expect

measured firing rates to be higher, and vesicle release probabilities to be lower

(as the indicator buffers calcium involved in vesicle release). Lower probabilities

imply higher variability, so we would expect higher measured firing rates to be

associated with higher variability — the opposite of our prediction.

3.4 Discussion

In summary, based primarily on theoretical considerations of optimality we pro-

posed that synapses do not just keep track of point estimates of their weights,

as they do in classical learning rules; instead, they compute approximate proba-

bility distributions over their weights. They then use those distributions to set

learning rates: the wider the distribution (that is, the more the uncertainty in

the target weight) the higher the learning rate. This allows different synapses
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to have different learning rates, and leads to learning rules that allow synapses

to exploit all locally available information, and so learn as rapidly as possible

— much more rapidly than classical learning rules, which do not keep track of

uncertainty (Fig. 3.4). The critical difference between our learning rules and clas-

sical ones is that the learning rates themselves undergo plasticity; the rules for

updating the mean weight are very similar to classical learning rules. Thus, our

framework is consistent with the vast majority of work on synaptic plasticity (Bi

and Poo, 1998; Abbott and Nelson, 2000; Turrigiano and Nelson, 2004; Pfister

and Gerstner, 2006; Ponte Costa et al., 2015; Ziegler et al., 2015).

The hypotheses that synapses keep track of uncertainty, which we refer to as the

Bayesian Plasticity hypothesis, makes the general prediction that learning rates,

not just synaptic strengths, are a function of pre and postsynaptic activity —

something that should be testable with the next generation of plasticity experi-

ments. In particular, it makes a specific prediction about learning rates in vivo:

learning rates should vary across synapses, being higher for synapses with lower

presynaptic firing rates.

We also make a second, independent, hypothesis, Synaptic Sampling. This

hypothesis states that the variability in PSP size associated with a particular

synapse matches the uncertainty in the strength of that synapse. This allows

synapses to communicate their uncertainty to surrounding circuitry — informa-

tion that is critical if the brain is to monitor the accuracy of its own computa-

tions. The same principle has been applied to neural activity, where it is known

as the neural sampling hypothesis (Hoyer and Hyvarinen, 2003; Fiser et al., 2010;

Berkes et al., 2011a; Orbán et al., 2016) (except that here variability in neural

activity matches uncertainty about the state of the external world). The neu-

ral sampling hypothesis meshes well with synaptic sampling: uncertainty in the

weights increases uncertainty in the current estimate of the state of the world,

and likewise, variability in the weights increase variability in current neural activ-

ity (see Methods, Sec. 3.5). However, while there is some experimental evidence

for the neural sampling hypothesis (Berkes et al., 2011a; Haefner et al., 2016;

Orbán et al., 2016), it has not been firmly established. Whether other proposals

for encoding probability distribution with neural activity, such as probabilistic

population codes (Pouget et al., 2013; Ma et al., 2006), can be combined with

Synaptic Sampling is an open question.

By combining our two hypotheses, we were able to make additional predictions.

These predictions focused on what we call the normalized variability — the ratio

of the variance in PSP size to the mean. First, we predicted that plasticity

should increase with normalized variability, which remains to be tested. Second,

we predicted that normalized variability should decrease with presynaptic firing

rate. We reanalysed data from Ko et al. (2011) to show that this is indeed the
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case (Fig. 3.7).

In machine learning, the idea that it is advantageous to keep track of the dis-

tribution over weights has a long history (Buntine and Weigend, 1991; MacKay,

1992; Blundell et al., 2015). The first suggestion that such a scheme might be

useful in a neuroscience context, however, was relatively recent (Pouget et al.,

2013), and the first theoretical study was even more recent (Kappel et al., 2015).

The latter study bore some resemblance to ours, in that weights were sampled

from a distribution. However, there was an important difference: the distribution

had to be fixed, and could be determined only after the animal had seen all data.

Because this is unrealistic, an online algorithm was developed in which, as in our

scheme, weights were updated on each time step. However, for this algorithm

to agree with sampling from a fixed distribution, changes in synaptic strength

per time step had to be very small (on the order of 10−4). Thus, unlike in our

scheme, there was almost no spike-to-spike variability in PSP size. So, although

this was an important step toward a probabilistic treatment of synaptic plasticity,

the algorithm was unable to deal with the realistic situation in which the distri-

bution over synaptic weights is changing continuously as the animal receives new

information, and it doesn’t produce the variability in PSP size seen in vivo.

If the Bayesian Plasticity hypothesis is correct, synapses would have to keep track

of, and store, two variables: the mean and variance of the log of the synaptic

weight (or, equivalently, the mean weight and the learning rate). The complexity

of synapses (Kasai et al., 2012; Südhof, 2012; Michel et al., 2015), and their

ability to use interesting, non-trivial learning rules (e.g. synaptic tagging, in

which activity at a synapses “tags” it for future long term changes in strength

(Frey and Morris, 1997; Redondo and Morris, 2011; Rogerson et al., 2014), and

metaplasticity, in which the learning rate can be modified by synaptic activity

without changing the synaptic strength (Abraham and Bear, 1996; Abraham,

2008; Hulme et al., 2014)), suggests that representing uncertainty — or learning

rate — is quite possible. It will be nontrivial, but important, to work out how.

Our framework has several implications, both for the interpretation of neurophys-

iological data and for future work. First, under the Synaptic Sampling hypothesis,

PSPs are necessarily noisy. Consequently, noise in synapses (e.g., synaptic fail-

ures) is a feature, not a bug. We thus provide a normative theory for one of the

major mysteries in synaptic physiology: why neurotransmitter release is prob-

abilistic. Second, our approach allows us to derive local, biologically plausible

learning rules, no matter what information is available at the synapse, and no

matter what the statistics of the synaptic input. Thus, our approach provides

the flexibility necessary to connect theoretical approaches based on optimality to

complex biological reality.

In neuroscience, Bayes theorem is typically used to analyze high level inference
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problems, such as decision-making under uncertainty. Here we have demonstrated

that Bayes’ theorem, being the optimal way to solve any inference problem, big

or small, could be implemented in perhaps the smallest computationally relevant

elements in the brain: the synapse.
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3.5 Methods

Here we provide a complete description of our model (Sec. 3.5, which includes

a table containing a list of all parameters), sketch the derivation of the learning

rules (Sec. 3.5; the full derivation is given in Supplementary Information), discuss

the advantages of our local approach to learning (Sec. 3.5), provide details of the

simulations (Sec. 3.5), give a normative explanation for the Synaptic Sampling

hypothesis (Sec. 3.5), and, finally, provide additional details of the statistical test

used for Fig. 3.7A (Sec. 3.5).

Complete description of our model

In the main text we specified how the membrane potential depends on the weights

and incoming spikes (Eq. (3.1)) and how the target membrane potential depends

on the target weights (Eq. (3.2)), and we defined the prediction error (Eq. (3.3)).

Here we describe how the weights, wi, the target weights, wtar,i, and the spikes,

xi, are generated. We also provide a summary of how the feedback signal, f ,

depends on the prediction error, δ, and we provide details of the unsupervised

learning model.

Synaptic weights

To take variability in PSP amplitudes into account, we use

wi = mi +
√
kimi ηwi , (3.11)

where ηwi is zero mean, unit variance noise. Under the Synaptic Sampling hy-

pothesis, the variability is equal to the uncertainty, so ki = s2
i /mi. However,

when comparing classical and Bayesian learning rules (Figs. 3.3 and 3.4), we set

ki = k for all synapses. This was necessary to make a fair comparison, as there is

no way to compute uncertainty for classical learning rules. The value of k came

from measured data (Song et al., 2005): we plotted s2
i vs mi and fit a straight

line that passed through the origin; k is the slope of that line; this resulted in

k = 0.0877.

When plotting learning rate versus firing rate (Fig. 3.5), we also used ki = k,

primarily for convenience. However, in Figs. 3.6 and 3.7, which explictly involved

the Synaptic Sampling hypothesis, we used ki = s2
i /mi.
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The target weights

The target weights are the weights that in some sense optimize the performance

of the animal. We do not expect these weights to remain constant over time, for

two reasons. First, both the general state of the world and the organism change

over time, thus changing the target weights. Second, we take a local, single

neuron view to learning, and define the target weights on a particular neuron to

be the optimal weights given the weights on all the other neurons in the network.

Consequently, as the weights on surrounding neurons change due to learning,

the target weights on our neuron will also change. While these changes may be

quite systematic, to a single synapse deep in the brain they are likely to appear

random.

In or model we assume that the log of the target weights follow an Ornstein-

Uhlenbeck process. Specifically, we define

λtar,i = log |wtar,i| (3.12)

(note the absolute value sign, which allows the weights to be either positive or

negative), and let λtar,i, the log weight, evolve according to

∆λtar,i(t+ 1) = −1

τ
(λtar,i(t)− µprior) +

√
2σ2

prior

τ
ηtar,i (3.13)

where τ is the characteristic time scale over which the weights change. Note

that τ is measured in time steps; to convert to time it needs to be multiplied by

∆t, the size of the time step. Under this noise process, the mean value of λtar,i,

denoted µi, and the variance, denoted σ2
i , evolve according to

µi(t+ 1) =

(
1− 1

τ

)
µi(t) +

µprior

τ
(3.14a)

σ2
i (t+ 1) =

(
1− 1

τ

)2

σ2
i (t) +

2σ2
prior

τ
. (3.14b)

We chose this particular noise process for three reasons. First, wtar,i is equal

to either +eλtar,i (for excitatory weights) or −eλtar,i (for inhibitory weights), and

thus cannot change sign as λtar,i changes with learning. Consequently, excitatory

weights cannot become inhibitory, and vice versa, so Dale’s law is preserved.

Second, spine sizes obey this stochastic process (Loewenstein et al., 2011), and

while synaptic weights are not spine sizes, they are correlated (Matsuzaki et al.,

2004). Third, this noise process gives a log-normal stationary distribution of

weights, as is observed experimentally (Song et al., 2005).

The parameters of these dynamics, µprior and σ2
prior, were set to the mean and
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variance of measured log-weights using data from Song et al. (2005). We used a

time step, ∆t, of 10 ms, within the range of measured membrane time-constants

(e.g. (Tripathy et al., 2015)), and set τ to 105 (corresponding to 1,000 seconds, or

around 15 minutes) for both types of supervised learning, and 106 (corresponding

to 10,000 seconds, or around 2 1/2 hours) for reinforcement and unsupervised

learning. These values of τ were chosen so that uncertainty roughly matched

observed variability; see Sec. 3.6.

The synaptic inputs, xi(t), with feedback

For models with a feedback signal, on each time step xi is drawn from a Bernoulli

distribution representing the number of spikes (0 or 1) from the presynaptic cell,

P (xi) = (νi∆t)
xi(1− νi∆t)1−xi . (3.15)

The firing rates, νi, are drawn from a log-normal distribution chosen to match

observed firing rates. We choose a distribution that is intermediate between the

relatively narrow ranges found by some (O’Connor et al., 2010), and the extremely

broad ranges found by others (Mizuseki and Buzsáki, 2013): we use a log-normal

distribution, with median at 1 Hz, and with 95% of firing rates being between

0.1 Hz and 10 Hz,

log νi ∼ N
(

0,

(
log 10

2

)2
)
. (3.16)

Feedback signals for supervised and reinforcement learning

The feedback signal is different for every type of learning (these are mentioned

in the text, and are repeated here for completeness).

For supervised learning with continuous feedback, the feedback signal is simply

δ,

f(δ) = δ. (3.17)

For supervised learning with binary feedback, the feedback signal is 1 if δ is above

θ, and −1 if it is below θ,

f(δ) = sign(δ − θ). (3.18)

Binary feedback is intended to model Purkinje cells, which receive a complex-

spike feedback signal relatively rarely (around once per second; corresponding

to once in 100 time steps). To match that rate, θ should be set high enough
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that δ is above θ relatively rarely. While this is possible (and we have run these

simulations), this makes comparison between the Bayesian and classical rules

difficult: it is not sufficient simply to fix θ, as this may give rise to different values

of P (f = 1) in Bayesian and classical learning. While it may be possible to resolve

these difficulties, for the purposes of fair comparison we use θ = 0. Because the

distribution over δ is symmetric around 0, this implies that P (f = 1) remains at

1/2 throughout the simulations for both classical and Bayesian learning.

For reinforcement learning, the feedback signal, representing the reward, is simply

minus the magnitude of δ,

f(δ) = − |δ| . (3.19)

Models without a feedback signal

For unsupervised learning, there is no feedback signal. Instead, information for

setting the weights comes from structure in the synaptic inputs, x, which is

generated by a very different process from supervised and reinforcement learning

(for which there was no structure in the input). Specifically, we assume that the

cell’s input is Gaussian in every direction except one, wtar, in which the input is

Laplacian. The cell’s goal is to find that one interesting direction (as was done

in Intrator and Cooper (1992)).

Formally, x is generated by,

P (x|wtar, Vtar) ∝ N (x; 0,Λ) δ
(
Vtar −wT

tarx
)
. (3.20)

where the target membrane potential, Vtar, is Laplacian distributed,

P (Vtar) =
e−|Vtar|/b

2b
. (3.21)

We let

b2 =
wT

tarΛwtar

2
, (3.22)

so that moments of x are the same whether we draw from the full distribution

(Eq. (3.20)) or just from the Gaussian, N (x; 0,Λ) — as is easy to show by direct

calculation. While our theory does not require it, in simulations, we use whitened

input, i.e., a diagonal input covariance, to match, for instance, the whitened input

from retina to V1,

Λij = δijνi∆t. (3.23)

The diagonal elements are chosen to match the variance expected from a Poisson
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process.

Note that this form allows xi to be positive or negative. To some extent, this

could be remedied by adding an offset to xi, but considerable work will be needed

to write down biologically realistic models for P (x|wtar, Vtar) in which Bayesian

inference can be performed.

Parameter settings

Parameter Value Basis

µprior -0.669
Matched to data from Song et al. (2005)

(Sec 3.5)

σ2
prior 0.863

Matched to data from Song et al. (2005)

(Sec 3.5)

n (sup., unsup.) 1000

Offers a good trade-off between biological re-

alism (Binzegger et al., 2004) and computa-

tional tractability

n (reinforcment) 100

Uses a reduced number of synapses for rein-

forcement learning because of the increased

difficulty of the learning problem

τ (supervised) 105
Supplementary Information, Sec. 3.6; corre-

sponds to 1,000 s

τ (unsup., rein.) 106
Supplementary Information, Sec. 3.6; corre-

sponds to 10,000 s

∆t 10 ms
Typical membrane time constant (Tripathy

et al., 2015)

γV 1 mV

Small value because once the effects of

stochastic vesicle release are excluded, mem-

brane potential variability is thought to be

small (Bryant and Segundo, 1976; Mainen

and Sejnowski, 1995)

γδ 1 mV

This is difficult to determine, so we use

a small nominal value for computational

tractability

k 0.0877
Matched to data from Song et al. (2005)

(Sec. 3.5)

θ 0 Sec. 3.5.
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Inference when there is a feedback signal

Here we outline how a synapse can infer a distribution over the log of its target

weight, λtar,i, using all past data. We focus on supervised and reinforcement

learning, for which there is a feedback signal, as it is relatively straightforward;

we analyze unsupervised learning, for which there is no feedback signal, in Sup-

plementary Information (see in particular Sec. 3.6).

As our model is in a well-understood class, hidden Markov models (HMMs), this

inference process is straightforward: we use the standard, two-step procedure for

inference in HMMs. In the first step the synapse incorporates new data using

Bayes theorem. The data in one time step, denoted di, includes the presynaptic

input, xi, the feedback signal, f , the cell’s membrane potential, V , and the actual

PSP amplitude, wi,

di(t) ≡ (xi(t), f(t), V (t), wi(t)) , (3.24)

and we use Di(t) to denote all past data,

Di(t) ≡ (di(t), di(t− 1), . . .) . (3.25)

Using this notation, we have

P (λtar,i|Di) = P (λtar,i|di,Di(t− 1)) ∝ P (di|λtar,i)P (λtar,i|Di(t− 1)) . (3.26)

To reduce clutter, here and in what follows all quantities without an explicitly

specified time index are evaluated at time step t; so, for instance, wtar,i ≡ wtar,i(t)

and Di ≡ Di(t).

In the second step, the synapse takes into account random changes in the target

weight,

P (λtar,i(t+ 1)|Di) =

∫
dλtar,iP (λtar,i(t+ 1)|λtar,i)P (λtar,i|Di) . (3.27)

Combining both steps takes us from the distribution at time t,

P (λtar,i(t)|Di(t− 1)), to the distribution at the time t+ 1, P (λtar,i(t+ 1)|Di(t)).

Equations (3.26) and (3.27) tell us how to make exact updates to the distribution

over the target weight. However, the exact distribution is too complex for a

synapse to work with, let alone store. To simply the problem faced by the synapse,

we specify a family of approximate distributions: a Gaussian in the log-domain,

with mean µi and variance σ2
i ,

P (λtar,i|D(t− 1)) = N
(
λtar,i;µi, σ

2
i

)
. (3.28)
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The corresponding mean, mi, and variance, s2
i , of the distribution over wtar,i are

mi ≡ E [wtar,i|D(t− 1)] = eµi+σ
2
i /2, (3.29a)

s2
i ≡ Var [wtar,i|D(t− 1)] =

(
eσ

2
i − 1

)
m2
i ≈ σ2

im
2
i , (3.29b)

the latter valid in the limit σ2
i � 1. This is, in fact, a good approximation: on av-

erage, s2
i /m

2
i ≈ 0.076 (Supplementary Information, Eq. (3.108c)); combining this

with Eq. (3.29b) gives, again on average, σi ≈ 0.073. We thus use it throughout

most of our analysis.

This approximate distribution has two advantages. First, log-normal distribu-

tions always give positive values, leading to learning rules that cannot, for in-

stance, take an excitatory synapse and turn it inhibitory. Second, if the synapse is

not given any data, then the dynamics (Equation (3.13)) imply that the distribu-

tion over λtar,i approaches a Gaussian at long times — exactly our approximating

distribution.

As we will see below, the likelihood, P (di|λtar,i) is typically not Gaussian in λtar,i;

consequently, even if P (λtar,i|Di(t− 1)) is Gaussian, P (λtar,i|Di) will not be (see

Eq. (3.26)). A natural way to remedy this is Assumed Density Filtering (ADF)

(Minka, 2001). Formally, this requires us to find the log-normal distribution with

the smallest KL-divergence; this can be achieved by matching moments,

µi(t+ 1) = E [λtar,i(t+ 1)|Di] (3.30a)

σ2
i (t+ 1) = Var [λtar,i(t+ 1)|Di] . (3.30b)

The central difficulty is computing moments of the inferred distribution, which

will require further approximations beyond the assumed density filter. This is

dealt with in more depth in Supplementary Information, Secs. 3.6 and 3.6; see in

particular Eq. (3.52).

To summarise our model for a single synapse, we can write down a dependency

graph describing how each variable is generated (see Fig. 3.8). This is a graphical

model – a compact method for describing dependencies among random variables.

This graphical model has the extremely unusual feature that the results of infer-

ence at one time step influence the data at subsequent time steps.

Problems with inference at the cellular level

Our strategy of performing Bayesian inference at the level of the synapse is ac-

tually quite unusual (and is potentially the most important theoretical advance

in the paper). The more typical approach is to perform some type of inference
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Figure 3.8: A graph describing the dependencies in our simulations. The
target weight, wtar,i(t) evolves independently of all other variables, under
the exponentiated Ornstein-Uhlenbeck process described in Eq. (3.13). The
data, di(t), which includes the feedback signal, f(t), the presynaptic in-
put, xi(t), the postsynaptic activity V (t) (see Eq. (3.24)), and the PSP
amplitude, wi(t), depends on both the target weight, wtar,i(t), and on past
inferences, mi(t) and s2i (t). In particular, the feedback signal, f(t), depends
on the target weight, and the PSP amplitude, wi(t), depends on the mean
estimate of the target weight, mi(t) (see Eq. (3.11)). Finally, the mean and
uncertainty at time t, mi(t) and si(t), depend on the mean and uncertainty
at the previous time step, mi(t − 1) and s2i (t − 1), and also on past data,
di(t− 1), through the learning rules, Eq. (3.5).

at the level of the whole cell (i.e., infer all the weights jointly). We chose our

approach because it is unlikely that synapses can communicate much information

to each other. The lack of communication is not a problem if we consider each

synapse as performing an inference problem, conditioned on the data available

to it. However, it is a problem if inference is performed at the cellular level.

To illustrate this in the simplest possible context, we consider a cell with two

synapses. Synapses are trying to infer their target weights based on the data,

d1 and d2, available at synapse 1 and 2, respectively. Without communication,

the best each synapse can do is to compute its target weight, based on its data,

P (wtar,1|d1) and P (wtar,2|d2). However, if we try to infer both weights at the

cellular level, then even making the strong approximation that the distribution

over each target weight is independent,

P (wtar,1, wtar,2|d1, d2) ≈ P (wtar,1|d1, d2)P (wtar,2|d1, d2) , (3.31)

we cannot prevent each synapse from “seeing” all the data (except in the unlikely

event that d1 really gives no information about wtar,2 and vice-versa).

It may seem highly suboptimal for each synapse to perform inference indepen-

dently, as synapses have to throw away information (for instance, wtar,1 must

average over its prior uncertainty in d2, and, likewise, wtar,2 must average over

its prior uncertainty in d1). However, from a biological point of view it is quite

natural. Nonetheless, this is an unusual approach, and considerable further work

is necessary to understand its theoretical properties.
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Figure 3.9: A schematic diagram of a stick-person jumping over a puddle.
The probability of landing in the puddle, P (wet), depends not only on the
mean estimate, but also on the uncertainty.

Details of simulations

We performed two sets of simulations, the first, for Bayesian Plasticity, with ki

fixed at k = 0.0877 (Figs. 3.3-3.5), and the second, for Synaptic Sampling, with

ki = s2
i /mi (Figs. 3.6 and 3.7) (see Sec. 3.5).

To reduce the variability in the MSE (mean squared error) estimates, for both

Bayesian and classical learning rules we ran all simulations using the same inputs,

xi, and target weights, wtar,i. We repeated the protocol 24 times, with different

inputs and target weights. Using the same inputs and target weights reduced the

variability in MSE measurements between learning rates below what might be

expected based on the 2 s.e.m. error bars in Fig. 3.4.

To avoid error bars on the MSE that were larger than the mean (something that

makes little sense, as the MSE is non-negative), we computed means and standard

deviations in the log-MSE domain, which does not have a zero lower-bound, and

then mapped back to the linear domain.

Synaptic Sampling

Here we provide an expanded normative argument for Synpatic Sampling. The

argument starts with the observation that to select the correct action, knowing

the uncertainty in task relevant quantities is critical (Ernst and Banks, 2002).

For instance, to decide whether you can jump over a puddle without getting

your feet wet, it is important to have not only an estimate of mean landing

location, but also the uncertainty in that estimate (Fig. 3.9). Uncertainty about

the landing location comes from two sources, uncertainty about the current state

of the world and uncertainty about the target weights (i.e. the weights that would

give the best estimate of landing location). To see how the brain might compute

uncertainty in landing location, we consider a simplified scenario in which we use

xtar to denote the best possible spike-based representation of the true state of
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the external world. The neuron’s estimate of landing location is a function of the

neuron’s output, V , so the optimal estimate of landing location is given by the

target output,

Vtar = wtar · xtar + noise, (3.32)

where the noise represents the small amount of uncertainty about landing location

that remains when wtar and xtar are known precisely. Note that the assumption

that the synapse combines wtar and xtar via a dot product is for simplicity only;

the cell could use any nonlinear relationship and our arguments would hold.

Of course, the brain knows neither the target weights, wtar, nor the true state

of the external world, xtar. The brain could compute a “best guess” of xtar, and

the neuron could use a “best guess” of wtar, resulting in

Vbest guess = wbest guess · xbest guess + noise. (3.33)

However, this scheme is unable to give an estimate of uncertainty — so offers

little guidance as to whether or not you should jump over the puddle.

To get an estimate of uncertainty, it is necessary to account for uncertainty both in

the state of the world, xtar, and in the relationship between the state of the world

and jump distance, parameterised by wtar. As information about xtar comes from

sensory data, and information about wtar comes from training data (e.g., from

past jumps), we can represent our (probabilistic) knowledge about these quanti-

ties as two distributions, P (xtar|Sensory Data) and P (wtar|Training Data). To

combine these distributions into a distribution over Vtar, we need to integrate

over all possible settings of xtar and wtar,

P (Vtar|Sensory Data,Training Data) = (3.34)∫
dwtar dxtar P (Vtar|xtar,wtar)P (xtar|Sensory Data)P (wtar|Training Data) .

It is difficult for neurons to compute this distribution directly (as that would

involve a complicated high-dimensional integral). However, by combining neural

and synaptic sampling, it is possible for neural circuits to evaluate the integral

via sampling; that is, by drawing samples, V , from the distribution,

V ∼ P (Vtar|Sensory Data,Training Data) . (3.35)

To do that, we simply need to set neural activity, x, to a pattern that represents

a plausible state of the world,

x ∼ P (xtar|Sensory Data) , (3.36)
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(this is known as the neural sampling hypothesis (Hoyer and Hyvarinen, 2003;

Fiser et al., 2010; Berkes et al., 2011a)), and set the synaptic weights, w, to values

that represent a plausible setting for the value of the target weights (this is our

hypothesis, Synaptic Sampling),

w ∼ P (wtar|Training Data) . (3.37)

A sample of landing location is given by combining the sampled inputs and the

sampled weights, which could be done by a single neuron,

V = w · x + noise. (3.38)

Thus, simply by drawing repeated samples, a single neuron can estimate uncer-

tainty about V , and thus about landing location.

Our argument appears to assume that the brain uses the output of a single

neuron to make predictions. This is not too implausible — the cerebellum does

contain a large number of Purkinje cells (Dean et al., 2010) that are believed

to use supervised learning to, among other things, make predictions (though

perhaps not about landing location). However, it is certainly possible that such a

computation is performed by a large multi-layer network. As long as that network

is effectively feedforward, we can still, by the logic described above, estimate its

uncertainty by combining synaptic sampling with the sampling hypothesis.

Firing rate data

To obtain the p-value for Fig. 3.7A, we performed standard linear regression: we

regressed log(variance/mean) against log(firing rate) and log(mean); the former

to test our prediction and the latter to eliminate the PSP amplitude as a possible

confound. To estimate the firing rate, we took the mean of a FOOPSI-based firing

rate estimate (Vogelstein et al., 2010) computed by the authors of (Ko et al.,

2011). This estimate is proportional to the true firing rate, with a constant of

proportionality that differs from one (Packer et al., 2015); because our predicted

relationship was linear on a log-log plot, the constant of proportionality plays no

role. Using this approach, the best fit line was statistically significantly different

from zero (p < 0.003), and its slope, −0.62 was not significantly different from

our prediction, −1/2 (p = 0.57).

However, there are multiple ways to estimate the firing rate from Calcium traces,

and it is not clear a-priori which is most sensible. Thus, we also tried estimating

the firing rate using the number of times the FOOPSI signal was above a threshold

of 0.01 (we checked that this was a sensible threshold by plotting histograms of

the FOOPSI signal). This approach also gave a significant slope (p < 0.008, and
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the best fit-line, which had a slope of -1.05, was not significantly different from

our prediction of −1/2 (p = 0.16).

3.6 Supplementary Information

Here we give detailed derivations for our learning rules and predictions. In Sec. 3.6

we derive Bayesian learning rules for supervised and reinforcement learning, for

which a feedback signal is present, including the simplified learning rules used

in Eq. (3.5) of the main text; in Sec. 3.6 we derive Bayesian learning rules for

unsupervised learning. We then discuss how to set s2
δ (Sec. 3.6) and consider

how to relate firing rates to uncertainty (Sec. 3.6). Finally, we provide a detailed

description of how we set model parameters (Sec. 3.6).

Learning rules with feedback

We begin by considering the standard classical learning rules that we use for

comparison with our Bayesian learning rules; we then move on to the derivation

of the Bayesian learning rules themselves.

Classical learning rules

To make comparisons in Fig. 3.4, we need to specify classical learning rules for

each type of learning. Each classical rule has a learning rate, α, which is allowed

to vary.

For supervised learning with continuous feedback and for supervised learning

with binary feedback, we use the delta rule, (Eq. (3.4)) Widrow and Hoff (1960).

The delta rule is suitable for binary feedback because we set the threshold, θ, to

0, so the proportion of positive and negative increments is the same.

For reinforcement learning, we use a standard policy gradient method (Williams,

1992),

∆wi = −αxi (f − E [f ]) (wi −mi) . (3.39)

We compute the expected loss, E [f ] is over past trials, using an exponential

moving average. To implement this moving average, on each timestep we updated

E [f ] via,

∆E [f ] = αreward (f − E [f ]) . (3.40)
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Figure 3.10: The mean squared error relative to the Bayesian learning
rules (as in Fig. 3.4) for classical reinforcement learning rules with different
settings of αreward (on the x-axis) and with different settings for the learning
rate, α (blue lines). The red line is set at a relative MSE of 1. While the
relative MSE does not change much with αreward, it does seem that values
are more reliable between 10−4 to 10−6, as we might expect given that the
time constant in this simulation is 105. We thus chose αreward = 10−5 for
Fig. 3.4. We do not see much change in the relative MSE as we change
αreward, because the method asymptotically finds the correct weights even
if E [f ] is not set correctly; setting E [f ] correctly merely minimises variance
in the weight updates.

A sweep across different settings of αreward (Fig. 3.10) indicated that a sensible

value was αreward = 10−5. However, the precise value is not so critical, as the

mean squared error was relatively flat over a broad range.

Bayesian learning rules

Here we derive the update rules for the mean and variance, µi and σ2
i . We begin

with the difficult part: incorporating new data using Bayes theorem, Eq. (3.26).

It is convenient to write the update rule as an integral over the prediction error,

δ,

P (λtar,i|Di) =

∫
dδP

(
λtar,i|δ, d′i,Di(t− 1)

)
P
(
δ|f, d′i

)
(3.41)

where d′i is all the data except the feedback signal (see Methods, Eq. (3.24)),

d′i = (xi, V, wi) . (3.42)

We have not conditioned on Di(t − 1) in the last term in Eq. (3.41) because

δ is independent of past data, and, recall, quantities without an explicit time

dependence should be evaluated at time t. This approach makes it considerably

easier to generalise across feedback signals, as P (λtar,i|δ, d′i,Di(t− 1)) is the same

across all feedback signals; only P (δ|f, d′i) differs.
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We start by considering how to infer λtar,i from δ (i.e., how to compute the first

term in the integral in Eq. (3.41)). As usual, we use Bayes theorem,

P
(
λtar,i|δ, d′i,Di(t− 1)

)
∝ P

(
δ|λtar,i, d

′
i

)
P
(
d′i|λtar,i

)
P (λtar,i|Di(t− 1)) . (3.43)

This is the analog of Eq. (3.26); the only difference is that di in that equation

has been replaced by (δ, d′i), and we have performed a small amount of algebra.

The second term, P (d′i|λtar,i), can be neglected as it is independent of λtar,i

(without a feedback signal, d′i tells us nothing about the target weight). The

last term, the prior, P (λtar,i|Di(t− 1)), is given by the approximating Gaussian

distribution from the previous time-step (Eq. (3.28)). We will obtain the constant

of proportionality in Eq. (3.43) automatically, when we identify the distribution

as a Gaussian.

To find an expression for the first term in Eq. (3.43), the likelihood, P (δ|λtar,i, d
′
i),

we note that δ is the sum of a large number of independent terms, and so, via

the central limit theorem, it is Gaussian. Its mean is given by

E
[
δ|λtar,i, d

′
i

]
= E [Vtar − V |λtar,i, wi] =

∑
j

xjE [wtar,j − wj |λtar,i, wi] (3.44)

where the second expression follows from Eqs. (3.1) and (3.2). To evaluate the

expectation, we note that for j 6= i, E [wtar,j − wj |λtar,i, wi] = 0, leaving only

the ith term. Using also the fact that wtar,i = ±eλtar,i (positive if wtar,i is an

excitatory weight and negative if it is inhibitory), we have

E
[
δ|λtar,i, d

′
i

]
= xi

(
±eλtar,i − wi

)
. (3.45)

Next we compute the variance of δ. If we assume that all the inputs, x, are known

(we relax this assumption shortly), then

Var [δ|λtar,i, V, wi,x] = γ2
δ + Var [Vtar − V |λtar,i, wi] . (3.46)

= γ2
δ + γ2

V +
∑
j

Var [wtar,j − wj |λtar,i, wi]x
2
j .

where again the second expression followed from Eqs. (3.1) and (3.2). Noting

that the variance of wtar,j is s2
j (Eq. (3.29b)), and that the noise variance in wj

is kjmj (Eq. (3.11)), this becomes,

Var
[
δ|λtar,i, d

′
i,x
]

= s2
δ −

(
s2
i + kjmi

)
x2
i (3.47)

where

s2
δ ≡ γ2

δ + γ2
V +

∑
j

(
s2
j + kjmj

)
x2
j . (3.48)
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Because all the dependence on the xi is through s2
δ , we can relax the assumption

that all the xi are known. Instead the synapse only needs to know s2
δ for its

distribution over δ to be Gaussian,

P
(
δ|λtar,i, d

′
i, s

2
δ

)
= N

(
δ;xi

(
±eλtar,i − wi

)
, s2
δ − x2

i

(
s2
i + kimi

))
. (3.49)

Of course, the synapse cannot know s2
δ , as that involves a summation over all the

inputs at every time step. Instead, we use an approximate value based on the

average (see Sec. 3.6).

Because of the non-linearity, eλtar,i , this is a complicated function of λtar,i. We

can linearize the problematic term using statistical linearization (Gelb, 1974).

This involves finding the straight line that minimizes the expected squared error

between the curve and a straight line,

0 =
∂

∂a
E

[(
±eλtar − (a(λtar − µ) + b)

)2
]

(3.50)

0 =
∂

∂b
E

[(
±eλtar − (a(λtar − µ) + b)

)2
]
, (3.51)

where the expectation is taken under the prior (P (λtar,i|D(t− 1))). The solution

is a = b = mi (note that mi is a signed quantity), which gives,

±eλtar,i ≈ mi (1 + λtar,i − µi) . (3.52)

Inserting Eq. (3.52) into Eq. (3.49), the likelihood becomes,

P
(
δ|λtar,i, d

′
i, s

2
δ

)
= exp

(
−(δ − xi (mi (λtar,i − µi)− (wi −mi)))

2

2
(
s2
δ −

(
s2
i + kimi

)
x2
i

) )
(3.53)

which is Gaussian in λtar,i.

Examining Eq. (3.43) and noting, as discussed immediately after that equation,

that the second term on the right hand side is independent of λtar,i, we see that

to compute the posterior we just need to multiply the likelihood, Eq. (3.53),

by P (λtar,i|Di(t− 1)). The latter distribution is also Gaussian in λtar,i (Meth-

ods, Eq. (3.28)); consequently, their product is Gaussian. Straightforward, but

somewhat tedious, algebra gives us their mean and variance,

E
[
λtar,i|δ, s2

δ , d
′
i,Di(t− 1)

]
= µi + (δ + xi (wi −mi))

ximiσ
2
i

s2
δ,i

(3.54a)

Var
[
λtar,i|δ, s2

δ , d
′
i,Di(t− 1)

]
= σ2

i

(
1− σ2

i x
2
im

2
i

s2
δ,i

)
(3.54b)
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where

s2
δ,i ≡ s2

δ − kimix
2
i −

(
s2
i −m2

iσ
2
i

)
x2
i ≈ s2

δ − kimix
2
i . (3.55)

The approximation is valid so long as σ2
i � 1 (see Methods, Eq. (3.29b)).

The next step is to substitute P (λtar,i|δ, d′i,Di(t− 1)) (which is, to reiterate,

Gaussian, with mean and variance given by Eq. (3.54)) back into Eq. (3.41) and

perform the integral over δ. Once we do that, we need to take into account

changes to the optimal weight across time (Methods, Eq. (3.13)), and then bring

the resulting distribution back into the log normal class (Methods, Eq. (3.28)),

by computing the mean and variance of λtar,i. Fortunately, as is not hard to

show, the above two steps commute: we can compute the mean and variance of

λtar,i first, and then take into account changes in the optimal weight across time.

As is also straightforward to show, the mean and variance are given by

E [λtar,i|Di] = µi + (E [δ|di] + xi (wi −mi))
ximiσ

2
i

s2
δ,i

(3.56a)

Var [λtar,i|Di] = σ2
i −

s2
δ,i −Var [δ|di]

s2
δ,i

σ2
i x

2
im

2
i

s2
δ,i

, (3.56b)

where the expectation and variance are with respect to P (δ|di), and, recall, di

now includes the feedback signal, f (see Eq. (3.24)).

To account for the random changes in weights between time steps we use

Eq. (3.14),

µi(t+ 1) =

(
1− 1

τ

)
E [λtar,i|Di] +

µprior

τ
(3.57a)

σ2
i (t+ 1) =

(
1− 1

τ

)2

Var [λtar,i|Di] +
2σ2

prior

τ
. (3.57b)

Substituting Eq. (3.56) into Eq. (3.57), and using the fact that the updates to

the mean and uncertainty are small on each time step,

|E [λtar,i|Di]− µi| � µi (3.58a)

|Var [λtar,i|Di]− σ2
i | � σ2

i , (3.58b)

and also using the fact that τ � 1, we have

∆µi =

(
miσ

2
i

s2
δ,i

)
xi (E [δ|di] + xi (wi −mi))−

1

τ
(µi − µprior) , (3.59a)

∆σ2
i = −

(
σ4
im

2
i

s2
δ,i

)
x2
i

(
s2
δ,i −Var [δ|di]

s2
δ

)
− 2

τ

(
σ2
i − σ2

prior

)
. (3.59b)
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Finally, to compute the mean and variance of δ conditioned on the data, di, we

need to compute P (δ|di). We again use Bayes theorem,

P (δ|di) = P (δ|f, xi, wi) ∝ P (f |δ)P (δ|xi, wi) (3.60)

where the prior is given by multiplying the right hand side of Eq. (3.53) by

P (λtar,i|Di(t− 1)) (which is Gaussian in λtar,i; Methods, Eq. (3.28)), and inte-

grating over λtar,i; this leads to

P (δ|xi, wi) = N
(
δ;−xi (wi −mi) , s

2
δ,i

)
. (3.61)

The likelihood, P (f |δ), is specific to the feedback signal, and hence to the type of

learning, as described below. For supervised learning with continuous feedback,

the likelihood is a delta function,

P (f |δ) = δ(δ − f), (3.62)

so the posterior over δ (Eq. (3.60)) is a delta function located at f .

For supervised learning with binary feedback, the likelihood is a step function,

P (f = 1|δ) = Θ (δ − θ) (3.63a)

P (f = −1|δ) = 1−Θ (δ − θ) (3.63b)

so the posterior over δ (Eq. (3.60)) is a truncated Gaussian, whose mean and

variance can be computed in terms of the cumulative Normal function. We do

not reproduce the expressions here, because they are not very illuminating.

For reinforcement learning, the likelihood is

P (f |δ) = δ (f + |δ|) (3.64)

so the posterior over δ (Eq. (3.60)) is a pair of delta-functions, with different

weights, whose mean and variance are easy to compute. Again we do not repro-

duce those expressions because they are not very illuminating.

Simplifying the learning rules

While we used the full equations in simulation (Eq. (3.59)), for illustrative pur-

poses we presented simplified learning rules in the main text (Eq. (3.5)), valid

for continuous feedback, f = δ. These simplifications involve rather severe ap-

proximations; we make them so that we can illustrate the essence of the learning

rules in the simplest possible setting. We do not, though, use them in any of our

simulations
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Using the expressions for mi given in Eq. (3.29a), and assuming updates are

small, we have, to first order in the updates,

∆mi = mi

(
∆µi + 1

2∆σ2
i

)
(3.65)

Using the fact that σ2
i is small compared to m2

i (Methods, Eq. (3.29) and sur-

rounding text), and assuming that the relative updates to the mean and uncer-

tainty, ∆µi/µi and ∆σ2
i /σ

2
i , are about the same size, we may approximate this

with the first term,

∆mi ≈ mi∆µi. (3.66)

Using the approximate expression for s2
i given in Eq. (3.29b), and appling the

same reasoning as above, we arrive at an approximate update rule for s2
i ,

∆s2
i ≈ m2

i∆σ
2
i . (3.67)

Inserting these approximate expressions for ∆mi and ∆s2
i into Eq. (3.59), noting

that for continuous feedback the mean of δ is δ and the variance is zero, again

using the approximation s2
i ≈ σ2

im
2
i (Eq. (3.29b)), and neglecting the term wi−mi

in Eq. (3.59a), we have

∆mi ≈
(
s2
i

s2
δ,i

)
xiδ −

mi

τ
(µi − µprior) , (3.68a)

∆σ2
i ≈ −

(
s2
i

s2
δ,i

)
x2
i s

2
i −

2m2
i

τ

(
σ2
i − σ2

prior

)
. (3.68b)

To show that the decay term for the mean is approximately the form given in the

main text (Eq. (3.5a)) we use Eq. (3.29a) to write

mi −mprior = mi

(
1− e−(µi−µprior)−

1
2(σ2

i−σ2
prior)

)
. (3.69)

Taylor expanding and neglecting both σ2
i and σ2

prior, we arrive at

mi −mprior ≈ mi (µi − µprior) . (3.70)

To show that the decay term for the variance is in approximately the form given

in the main text (Eq. (3.5b)), we use our standard approximation for the variance,

s2
i − s2

prior ≈ σ2
im

2
i − σ2

priorm
2
prior. (3.71)

As E [mi] = mprior, we replace m2
prior with mi to give the required result.
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Bayesian learning rules without feedback

We begin by deriving classical learning rules, which will give some results and

intuition that will prove useful for Bayesian learning.

Classical learning rules

For unsupervised learning we use a maximum-likelihood learning rule. For max-

imum likelihood, there is no notion of separate target weights or membrane po-

tential, so we let wtar → w and Vtar → V . We use the generative model defined

in Methods, Sec. 3.5, wherein V is drawn from a Laplacian (Eq. (3.21)), and x

depends on V through Eq. (3.20). The objective is to alter w so as to maximize

the marginal likelihood, P (x|w), which is given by integrating out the latent

variable, V ,

P (x|w) =

∫
dV P (V )P (x|V,w) . (3.72)

The un-normalized version of the distribution P (x|V,w) is given in Eq. (3.20).

To perform the integral over V above we need the normalizer, which depends on

V ,

Z(V ) =

∫
dx

e−xTΛ−1x/2

Det(2πΛ)1/2
δ
(
V −wTx

)
(3.73)

where Det denotes determinant. Using the Fourier transform representation of

the delta-function, this becomes

Z(V ) =

∫
dq

2π
e−iqV

∫
dx

e−xTΛ−1x/2+iqwTx

Det(2πΛ)1/2
(3.74)

= e−V
2/2wTΛw

∫
dq

2π
e−(q+iV/wTΛw)2wTΛw/2

∫
dx

e−(xT−iqwTΛ)Λ−1(x−iqΛw)/2

Det(2πΛ)1/2
.

The integrals over x and q are both Gaussian, and therefore straightforward,

yielding

Z(V ) =
e−V

2/2wTΛw

(2πwTΛw)1/2
. (3.75)

The integral in Eq. (3.72) is now straightforward. Using Eq. (3.21) for P (V ), we

arrive at

P (x|w) =
e−xTΛ−1x/2

Det(2πΛ)1/2

e−|w
Tx|/b

2b
(2πwTΛw)1/2e(wTx)2/2wTΛw . (3.76)
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The gradient of the log-likelihood is, therefore, given by

∂ logP (x)

∂w
=

∂

∂w

[
−
∣∣wTx

∣∣
b

+
log wTΛw

2
+

(wTx)2

2wTΛw

]
(3.77)

= −sign
(
wTx

)
x

b
+

Λw

wTΛw
+

wTxx

wTΛw
− (wTx)2Λw

(wTΛw)2
.

Using E
[
(wTx)2

]
= wTE [xx] w = wTΛw (see Methods, Eqs. (3.20) and fol-

lowing text), we see that on average the second and fourth terms cancel. Taking

that into account and, in a slight abuse of notation replacing wTx with V , we

arrive at

∂ logP (x)

∂w
≈ −sign (V ) x

b
+

V x

wTΛw
. (3.78)

As expected, this learning rule has a classic Hebbian form: increase the weight

when V is large, and decrease the weight when V is small.

Bayesian inference

For the Bayesian learning rule, we take exactly the same approach as previously

(i.e. using Eq. (3.41)). Just as for the previous learning rules, all we need to

do is compute the moments of the posterior distribution over δ, and insert them

into the learning rules (Eq. (3.59)). In unsupervised learning, the posterior over

δ simplifies considerably, as we do not have a feedback signal, and we throw away

information about wi, xi,

P
(
δ|f, d′i

)
= P

(
δ|d′i

)
≈ P (δ|V ) . (3.79)

For unsupervised learning, it turns out to be easier to work in terms of Vtar rather

than δ. As Vtar and δ are related very simply (Eq. (3.3)) and V is known, com-

puting the moments of δ from the moments of Vtar, is trivial (we have neglected

γ2
δ for simplicity),

E [δ|V ] = E [Vtar|V ]− V, (3.80a)

Var [δ|V ] = Var [Vtar|V ] . (3.80b)

To compute P (Vtar|V ), we use Bayes theorem,

P (Vtar|V ) ∝ P (Vtar)P (V |Vtar) (3.81)
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and introduce and integrate out other quantities that appear in the generative

model,

P (Vtar|V ) ∝ P (Vtar)

∫
dxdwtarP (V |x)P (x|Vtar,wtar)P (wtar) . (3.82)

To compute P (x|Vtar,wtar) we combine the x dependence of P (x|Vtar,wtar)

(Eq. (3.20)) with the normalizer (Eq. (3.75)), and noting that the normalizer

can be rewritten as a Gaussian, which gives,

P (x|Vtar,wtar) = N (x; 0,Λ) δ
(
Vtar −wT

tarx
)
N
(
Vtar; 0,wT

tarΛwtar

)−1
. (3.83)

Now we make an approximation; because Λ is diagonal, wT
tarΛwtar is the sum of a

large number of non-negative terms. If those terms were independent, wT
tarΛwtar

would self-average: its standard deviation would be much smaller than its mean.

Because of P (Vtar|wtar,x), those terms are not quite independent. However, this

term has minimal effect on the variance, so it still self averages. Thus, we can

use,

wT
tarΛwtar ≈ ∆t

∑
i

νje
2(µj+σ2

j ) ≡ v (3.84)

Substituting this into Eq. (3.81) and writing δ
(
Vtar −wT

tarx
)

as P (Vtar|wtar,x),

gives,

P (Vtar|V ) ∝ P (Vtar)N (Vtar; 0, v)−1Q (V, Vtar) (3.85)

where

Q (V, Vtar) =

∫
dxdwtarP (V |x)P (Vtar|wtar,x)P (wtar)N (x; 0,Λ) . (3.86)

Integrating over wtar, we get,

Q (V, Vtar) =

∫
dxP (V |x)P (Vtar|x)N (x; 0,Λ) . (3.87)

As V is known and fixed, we only care about the Vtar dependence, and so we can

also write,

P (Vtar|V ) ∝ P (Vtar)N (Vtar; 0, v)−1Q (Vtar|V ) (3.88)

where

Q (Vtar|V ) ∝ Q (V, Vtar) (3.89)

Again, as V is known, instead of computing the distribution over Q (Vtar|V )

directly, it is easier to compute Q (δ|V ) = Q (δ), then convert back. The distri-
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bution over δ is very simple,

Q (δ) = N
(
δ; 0, s2

δ

)
(3.90)

(we compute a closely related quantity in Eq. (3.49)). Given the definition of δ

(Eq. (3.3)), the corresponding distribution over Vtar is

Q (Vtar|V ) = N
(
Vtar;V, s

2
δ

)
. (3.91)

Thus, we can compute P (Vtar|V ) (Eq. (3.88)) by combining two Gaussian dis-

tributions, Q (Vtar|V ) and N (Vtar; 0, v)−1, with a Laplacian, P (Vtar). This gives

rise to a mixture of two truncated Gaussian distributions, one for the rising, and

one for the decaying part of the Laplacian. Thus, the mean and variance of

P (Vtar|V ) can straightforwardly (if tediously) be computed – we do not repro-

duce these expressions here because they are not very enlightening. As described

above (Eq. (3.80)), the mean and variance of P (Vtar|V ) trivially give the mean

and variance of P (δ|V ), which we can be inserted directly into the learning rules

(Eq. (3.59)).

Setting s2
δ

Ideally, s2
δ (given in Eq. (3.48)) should be updated on every timestep. In reality,

of course, this requires a non-local computation that the synapse is unable to

perform. Therefore, for supervised and unsupervised learning, we approximate

s2
δ using its average value,

E
[
s2
δ

]
= γ2

δ + γ2
V +

∑
j

(
s2
j + kjmj

)
νj∆t. (3.92)

So long as the firing rates are stationary, this quantity changes slowly. Moreover,

s2
δ is the same for the whole cell, so could be computed by molecular machinery

in the cell (e.g. signalling cascades, tagging proteins, etc.)

For reinforcement learning, however, this approximation turns out to not be good

enough. Instead we use a better approximation, and exploit the fact that δ tells

us, via Bayes’ theorem, something about s2
δ ,

P
(
s2
δ |δ
)
∝ P

(
δ|s2

δ

)
P
(
s2
δ

)
. (3.93)

The likelihood, P
(
δ|s2

δ

)
, is given by Eq. (3.53), but with all terms in the exponent

(except δ) replaced by their means,

P
(
δ|s2

δ

)
= N

(
δ; 0, s2

δ

)
. (3.94)
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For analytic tractability, we set the prior, P
(
s2
δ

)
, to the appropriate conjugate

prior (an Inverse Gamma distribution),

P
(
s2
δ

)
= InverseGamma

(
s2
δ ;α, β

)
∝ s−2(α+1)

δ e−β/s
2
δ . (3.95)

To set α and β, we match the mean (Eq. (3.92)) and variance of s2
δ , the latter

given by

Var
[
s2
δ

]
=
∑
j

(
s2
j + kjmj

)
νj∆t (1− νj∆t) . (3.96)

The mean and variance of an Inverse Gamma distribution are given by,

E
[
s2
δ

]
=

β

α− 1
(3.97a)

Var
[
s2
δ

]
=

β2

(α− 1)2 (α− 2)
. (3.97b)

Solving for α and β, we have

α =
E
[
s2
δ

]2
Var

[
s2
δ

] + 2 (3.98a)

β = E
[
s2
δ

]
(α− 1) . (3.98b)

Substituting the prior and likelihood into Eq. (3.93) gives the posterior,

P
(
s2
δ |δ
)
∝ s−2((α+1/2)+1)

δ e−(β+δ2/2)/s2δ . (3.99)

Comparing to Eq. (3.95), we see that the posterior is another Inverse Gamma

distribution (as expected, given that we use a conjugate prior). Finally, we use

the posterior mean, as our estimate of s2
δ ,

E
[
s2
δ |δ
]

=
2β + δ2

2α− 1
=

2(α− 1)E
[
s2
δ

]
+ δ2

2(α− 1) + 1
. (3.100)

The mean value of s2
δ conditioned on δ, E

[
s2
δ |δ
]
, is, therefore, a weighted sum

of E
[
s2
δ

]
and δ2. Because α is large (both the mean and variance of s2

δ are

proportional to n, the number of synapses, and so both are large; consequently

α is also proportional to n), that quantity is weighted heavily toward E
[
s2
δ

]
.

However, the small contribution from δ turns out to be important; without it,

the mean squared error tends to be very large (data not shown).
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The relationship between variability and firing rate

We wish to find relationships between the mean and uncertainty, mi and s2
i , and

the firing rate, νi. To do so, we take the time average of Eq. (3.59b) in steady

state (where 〈∆σ2
i 〉 = 0),

0 =

〈
xiσ

4
im

2
i

s2
δ

s2
δ −Var [δ|di]

s2
δ

〉
− 2

τ

(
σ2

prior −
〈
σ2
i

〉 )
(3.101)

Here and in what follows the angle brackets indicate an average over times that are

long enough to average over fluctuations but short compared to τ , the timescale

over which the target weights change. For tractability, we ignore correlations

among the variables; consequently, Eq. (3.101) becomes

0 =
σ4
im

2
i νi∆tχi
s2
δ

+
2σ2

i

τ
−

2σ2
prior

τ
(3.102)

where we have replaced 〈xi〉 with νi∆t and made the definition

χi ≡
s2
δ − 〈Var [δ|di]〉

s2
δ

. (3.103)

Solving for σ2
i , we have

σ2
i =

(
2m2

i νi∆tχiσ
2
prior/s

2
δτ + 1/τ2

)1/2
− 1/τ

m2
i νi∆tχi/s

2
δ

(3.104)

In the limit that τνi∆t� 1, the above expression simplifies considerably,

σ2
i ≈

sδ/mi√
νi∆t

(
2σ2

prior

τχi

)1/2

. (3.105)

Using the approximation s2
i ≈ σ2

im
2
i , valid so long as σ2

i � 1 (see Methods,

Eq. (3.29b) and following discussion), we arrive at

s2
i

mi
≈ sδ√

νi∆t

(
2σ2

prior

τχi

)1/2

. (3.106)

Assuming the feedback signal typically removes a finite fraction of the prior

variance concerning δ, χi will be O(1). Thus, because the relative learning

rate, ∆mi/mi, is proportional to s2
i /mi (see main text, Eqs. (3.5b) and (3.6)),

Eq. (3.106) corroborates our prediction about learning rates via Bayesian Plas-

ticity (main text, Eq. (3.7)).

However, note that the prediction regarding plasticity will not necessarily hold

in experiments in which the network does not exhibit ongoing activity. That’s
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because without ongoing activity, only one input (the stimulated one, say input

i) is active. In that case, s2
δ ∝ s2

i (see Eq. (3.48), and note that the noise is small),

and so the learning rate, αi, does not change with s2
i (Eq. (3.6)). In contrast, if

there are many other inputs active, then there are many other contributions to

s2
δ (Eq. (3.48)), so s2

δ changes little with s2
i . Because in vitro preparations are

typically quite, this prediction must be tested in vivo.

Setting model parameters

To find a sensible timescale for synaptic sampling (i.e., a timescale upon which

the uncertainty is similar to the variability) we solve Eq. (3.106) for τ ,

τ ∼
2σ2

prior

νi∆t
s2i
m2
i

s2i
s2δ
χi

(3.107)

where

νi∆t
s2
i

s2
δ

∼ 1/2n (see Eq. (3.48)) (3.108a)

n = 1000 (Methods, Sec. 3.5) (3.108b)

s2
i

m2
i

∼ 0.076 (Average value from Song et al. (2005)) (3.108c)

σ2
prior ∼ 0.86 (from Song et al. (2005)). (3.108d)

We thus have

τ ∼ 50, 000

χi
. (3.109)

For supervised learning, χi is relatively high. We thus use χi ∼ 0.5, and hence

τ = 100, 000 timesteps, or 1, 000 s. For unsupervised and reinforcement learning,

we used τ = 1, 000, 000 timesteps or 10, 000 s to account for lower values of χi.

For reinforcement learning, the problem is so hard (i.e. χi is so small) that it was

also necessary to use n = 100.
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Chapter 4

The Hamiltonian brain

4.1 Abstract

Probabilistic inference offers a principled framework for understanding both be-

haviour and cortical computation. However, two basic and ubiquitous properties

of cortical responses seem difficult to reconcile with probabilistic inference: neu-

ral activity displays prominent oscillations in response to constant input, and

large transient changes in response to stimulus onset. Indeed, cortical models

of probabilistic inference have typically either concentrated on tuning curve or

receptive field properties and remained agnostic as to the underlying circuit dy-

namics, or had simplistic dynamics that gave neither oscillations nor transients.

Here we show that these dynamical behaviours may in fact be understood as

hallmarks of the specific representation and algorithm that the cortex employs

to perform probabilistic inference. We demonstrate that a particular family of

probabilistic inference algorithms, Hamiltonian Monte Carlo (HMC), naturally

maps onto the dynamics of excitatory-inhibitory neural networks. Specifically, we

constructed a model of an excitatory-inhibitory circuit in primary visual cortex

that performed HMC inference, and thus inherently gave rise to oscillations and

transients. These oscillations were not mere epiphenomena but served an impor-

tant functional role: speeding up inference by rapidly spanning a large volume

of state space. Inference thus became an order of magnitude more efficient than

in a non-oscillatory variant of the model. In addition, the network matched two

specific properties of observed neural dynamics that would otherwise be difficult

to account for in the context of probabilistic inference. First, the frequency of os-

cillations as well as the magnitude of transients increased with the contrast of the

image stimulus. Second, excitation and inhibition were balanced, and inhibition

lagged excitation. These results suggest a new functional role for the separation

of cortical populations into excitatory and inhibitory neurons, and for the neural
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oscillations that emerge in such excitatory-inhibitory networks: enhancing the

efficiency of cortical computations.

4.2 Introduction

Uncertainty plagues neural computation. For instance, hearing the rustle of an

animal at night, it may be impossible to ascertain the species, and thus whether

or not it is dangerous. One approach in this scenario is to respond based on

a point estimate, usually the single most probable explanation of our observa-

tions. However, this leads to a problem: if the probability of the animal being

dangerous is below 50%, then the single most probable explanation is that the

animal is harmless; and considering only this explanation, and thus failing to

respond, could easily prove fatal. Instead, to respond appropriately, it is critical

to take uncertainty into account by also considering the possibility of there being

a dangerous animal, given the rustle and any other available clues.

The optimal way to perform computations and select actions under uncertainty is

to represent a probability distribution that quantifies the probability with which

each scenario may describe the actual state of the world, and update this proba-

bility distribution according to the laws of probability, i.e. by performing Bayesian

inference. Human behaviour is consistent with Bayesian inference in many sen-

sory (Knill, 1998; Jacobs, 1999; van Beers et al., 1999a; Ernst and Banks, 2002),

motor (Wolpert et al., 1995; Körding and Wolpert, 2004) and cognitive (Gopnik

et al., 2004; Chater et al., 2006; Tenenbaum et al., 2006) tasks. There is also

evidence that probabilistic inference is performed already in early sensory corti-

cal areas (Berkes et al., 2011b; Orbán et al., 2016). In particular, simple cells

in the primary visual cortex (V1) respond maximally to Gabor filter-like stimuli

(i.e. edges), which have been shown to provide the most parsimonious explana-

tion of natural images in probabilistic theories of visual processing (Hyvärinen,

2010) (or mathematically equivalent regularisation-based approaches (Olshausen

and Field, 1996)). Furthermore, more complex probabilistic models can account

for contrast invariant tuning (Schwartz and Simoncelli, 2001) and complex cell

properties (Karklin and Lewicki, 2009), as well as surround-suppression effects in

neural data and behaviour (Coen-Cagli et al., 2012).

The apparent success of probabilistic inference in accounting for a diverse set of

experimental observations raises the question of how neural systems might repre-

sent and compute with uncertainty (Pouget et al., 2013). Nevertheless, traditional

models of neural computation ignore uncertainty, and instead rely on circuit dy-

namics that find the single best explanation for their inputs (Rao and Ballard,

1999; Olshausen and Field, 1996; Deneve et al., 1999). More recent approaches do

allow for the representation of uncertainty, including distributional (Zemel et al.,
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1998), doubly distributed (Sahani and Dayan, 2003), and probabilistic popula-

tion codes (Ma et al., 2006; Beck et al., 2008, 2011), or sampling-based network

dynamics (Hoyer and Hyvarinen, 2003; Buesing et al., 2011; Orbán et al., 2016).

However, none of these previous models capture the rich dynamics of cortical

responses. In particular, neural activities in the cortex show prominent intrinsic

oscillations (Basar and Guntekin, 2008), and large transient changes in response

to stimulus onset, which are observed in V1 (Müller et al., 1999, 2001; Ray and

Maunsell, 2010), and other cortical areas (Armstrong and Moore, 2007; Luczak

et al., 2013). In contrast, existing neural models of probabilistic inference ei-

ther have no dynamics and so predict stationary responses to a fixed stimulus,

or they have gradient ascent-like dynamics that display neither oscillations nor

transients, and eventually also converge to a steady-state response for a fixed

input. Moreover, these models typically violate Dale’s law, by having neurons

with both excitatory and inhibitory outputs. While there have been excitatory-

inhibitory (EI) networks models that did capture some of these aspects of cortical

dynamics, these have rarely been linked to any particular computation (but see

Li and Dayan (1999); Rubin et al. (2015)), let alone probabilistic inference.

Here, we present an EI neural network model of V1 that performs probabilistic

inference while retaining a computationally useful representation of uncertainty,

and has rich, cortex-like dynamics, including oscillations and transients. In par-

ticular, our network uses a sampling-based representation of uncertainty (Hoyer

and Hyvarinen, 2003; Fiser et al., 2010; Orbán et al., 2016), such that at any time

it represents a single plausible interpretation of the input, and as time passes it

sequentially samples many different interpretations. In other words, the network

represents the probability of different scenarios implicitly, by the frequency with

which it visits their representations via its dynamics. For instance, in the ex-

ample above, neural activity at one moment would represent “dangerous”, then

“not dangerous” at some later time, and then “dangerous” again, such that a

decision about how to behave can then be made based on the proportion of the

time neural activity represents “dangerous” vs. “not dangerous”. Thus, a fun-

damental consequence of a sampling-based representation for neural dynamics is

that whenever there is uncertainty, neural activity will not settle down to a single

fixed point but instead, it will continue to move between patterns representing

the different possible states of the world. More specifically, an efficient sampling-

based representation requires this continuous movement across state space to be

such that the rate at which (statistically independent) samples are generated by

the dynamics is as high as possible. We show that EI networks are ideally suited

to achieve efficient sampling by implementing a powerful family of probabilistic

inference algorithms, Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal,

2011).

HMC is based on the idea that it is possible to sample from a probability distribu-
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tion by setting up a dynamical system whose dynamics is Hamiltonian (Fig. 4.1A).

The state of such a system behaves as a particle moving on a (high dimensional)

surface, with momentum. The surface determines the potential energy of the

particle, corresponding to the negative logarithm of the probability distribution

that needs to be sampled (such that high probability states correspond to low

potential energy). These dynamics speed up inference because the momentum of

the system prevents the random walk behaviour plaguing many other sampling-

based inference schemes. In particular, the particle will accelerate as it heads

towards the minimum of the potential energy landscape, but once it reaches that

point, it will have a large momentum, so it will keep moving out the other side

(Fig. 4.1A-D). Our key insight is that HMC dynamics are naturally implemented

by the interactions of recurrently coupled excitatory and inhibitory populations

in cortical circuits. Due to these interactions, our network possessed inherently

oscillatory dynamics. Crucially, these oscillations were ideal for speeding up in-

ference, as they moved rapidly across the state space and hence represented a

whole range of plausible interpretations efficiently.

In the following, we first define the statistical model of natural visual scenes that

served as the testbed for our simulations of V1 dynamics. We then describe

the HMC-based neural network that implemented sampling under this statistical

model. We demonstrate that our dynamics sample more rapidly than noisy gra-

dient ascent (also known as Langevin dynamics), and therefore that the presence

of oscillations and transients in our network speeds up inference. Next, we show

by both theoretical analysis and simulation that our sampler reproduces three

properties of experimentally observed cortical dynamics. First, our sampler has

balanced excitation and inhibition, with inhibition lagging excitation (Okun and

Lampl, 2008). Second, our sampler oscillates, and the oscillation frequency in-

creases with stimulus contrast (Ray and Maunsell, 2010; Roberts et al., 2013).

Third, there is a transient increase in firing rates upon stimulus onset, and the

magnitude of this transient is also modulated by stimulus contrast (Ray and

Maunsell, 2010). Thus, our work provides a principled unifying account of these

dynamical motifs by relating them to a fundamental class of cortical computa-

tions: probabilistic inference.

4.3 Results

The Gaussian scale mixture model and V1 responses

In order to model the dynamics of V1 responses, we adopted a statistical model

that has been widely used to capture the statistics of natural images and conse-

quently to account for the stationary responses of V1 neurons in terms of prob-
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Figure 4.1: An example of Hamiltonian dynamics. A. Movement of
a particle under Hamiltonian dynamics (i.e. with momentum) on a two-
dimensional quadratic potential energy landscape (greyscale, darker means
lower energy) corresponding to a multivariate Gaussian probability density.
The red arrows show the trajectory, with each arrow representing an equal
time interval. Note that the particle does not just go to the lowest poten-
tial energy location: it picks up momentum (kinetic energy) as it moves,
leading it to oscillate around the energy well. B. A plot of position (red)
and velocity (blue, the derivative of position) along one dimension. C. Plot-
ting velocity and position directly against each other reveals explicitly that
the dynamics of the system is similar to that of a harmonic oscillator. D.
Plotting kinetic energy (KE) against potential energy (PE) reveals an ex-
change between kinetic energy and potential energy that contributes to the
system’s oscillatory behaviour.
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A B

Figure 4.2: A. The graphical model representation of the Gaussian scale
mixture model. The distribution over the observations (images), x, depends
on two latent variables, z and u. The vector u represents the intensity
of edge-like features (see panel B) in the images. The positive scalar z
represents the overall contrast level in the image. B. The basis functions
represented by u were 15 Gabor filters centred at five different locations,
and with three different orientations.

abilistic inference. We extended this model to account for the dynamics of V1

responses.

The Gaussian scale mixture (GSM) model is relatively simple, yet captures some

fundamental higher-order statistical properties of natural image patches by intro-

ducing latent variables, u, coordinating the linear superposition of simple edge

features and an additional latent variable, z, determining the overall contrast level

of the image patch (Portilla et al., 2001) (Fig. 4.2A). Formally, the probabilistic

generative model can be written as

P (u) = N (u; 0,C) (4.1)

P (z) = T (z; 0, 1, 0) (4.2)

P (x|u, z) = N
(
x; zAu, σ2

xI
)

(4.3)

where N (·;µ,Σ) is a multivariate distribution with mean µ and covariance Σ,

T
(
·;µ, σ2, θ

)
is a truncated (univariate) normal distribution with mean µ and

variance σ2 truncated below threshold θ (so that, in our case, z is non-negative),

x is the grey levels of pixels in an image patch, the columns of A include the

edge-like features whose combinations are used to explain images (Fig. 4.2B), C

describes their prior covariance (which is fitted to whitened data), and σ2
x = 0.1

is the level of noise present in the images. (See Table 4.1 for all parameters in

the model, and Methods for details of the procedure used to set them.)

Crucially, assuming that V1 simple cell activities represent values of u sampled

from the posterior over u given an input x under the GSM, P (u|x), provides a

natural account for a number of empirical observations. (Conversely, inference

of z may provide an account of complex-cell activations (Schwartz et al., 2004;

Karklin and Lewicki, 2009; Berkes et al., 2009), which we did not study in further

detail here.) In particular, the posterior mean of u, represented by the mean of
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Table 4.1: Values of the parameters used in our simulations.

Parameter Value Role

C
(
1− σ2

x

) (
ATA

)−1
prior covariance of u

A See Fig. 4.2B edge-detecting filters
and Methods represented by model neurons

σ2
x 0.1 variance of observation noise

τ 10 ms membrane time constant

ρ2 13 s−1 rate at which stochastic vesicle release
injects noise

Wuu,Wuv, etc. See Methods recurrent connection weights in the
network

See Methods for details of the procedure used to determine the parameters. Os-
cillation frequency in the network was jointly determined by several of these
parameters (see Eq. (4.8)), the timescale of transients was mainly determined by
ρ (see S1 Figure).

model neuron activities, matches the across-trial average responses of simple cells

in V1 (Schwartz and Simoncelli, 2001; Coen-cagli et al., 2009). Moreover, it can

also be shown that the posterior variance of u, represented by the variance of

model neuron activities, captures important aspects of the across-trial variance

of V1 responses (Orbán et al., 2016), namely the quenching of neural variability

with stimulus onset (Churchland et al., 2010). This is because, in the no-stimulus

condition, we have a blank image, x = 0. Under the GSM, x ≈ zAu, so while

it is possible to explain a blank image by setting every single element of u very

close to 0 (or, more generally, tuning u to be in the nullspace of A), a far more

parsimonious, and probable, explanation is that z (a single scalar) is close to 0.

Importantly, if z is close to 0, then x does not constrain u. Plausible values for u

therefore cover a broad range (defined by the prior over u), so u and hence neural

activity, can be highly variable. In contrast, if there is a stimulus, x 6≈ 0, we must

also have z 6≈ 0, in which case x tightly constrains the range of plausible values

of u (as x ≈ zAu), leading to lower variability. Moreover, the model naturally

implements a form of divisive gain control: a very large x can be accounted for by

making z, rather than u, large (Schwartz et al., 2009). This agreement between

the probabilistic model and empirically observed patterns of neural activity is

our key motivation for choosing the GSM model as our testbed and asking what

plausible neural network dynamics may be appropriate for sampling from its

posterior distribution.

Hamiltonian Monte Carlo in an EI network

To ensure efficient sampling from the posterior, we constructed network dynamics

based on the core principles of HMC sampling. The efficiency of HMC stems
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from its ability to speed up inference by preventing the random walk behaviour

plaguing other sampling-based inference schemes. In particular, it introduces

auxiliary variables to complement the ‘principal’ variables whose value needs to

be inferred (u in the case of the GSM). Although this extension of the state

space seemingly makes computations more challenging, it allows inference to be

substantially more efficient when dynamical interactions between the two groups

of variables are set up appropriately.

We noted that the particular interaction between principal and auxiliary vari-

ables required by HMC dynamics is naturally implemented by the recurrently

connected excitatory and inhibitory populations of cortical circuits. Thus, the

dynamics of our two-population neural network that sampled from the GSM pos-

terior were (Fig. 4.3, see Methods for a full derivation):

u̇ =
1

τ

[
Wuuu−Wuvv + 1

2τρ
2 Iinput

]
+ ρηu (4.4)

v̇ =
1

τ
[Wvuu−Wvvv − Iinput] + ρηv (4.5)

where ηu and ηv denotes standard normal white noise (or, more precisely, the

differential of a Wiener processes), the W matrices are the recurrent synaptic

weight matrices between the two populations of cells (defined in the Methods),

such that all their elements are positive, and

Iinput =
z

σ2
x

AT (x− zAu)−C−1u (4.6)

is an input current. Under these dynamics, the principal ui and auxiliary vari-

ables vi corresponded to the membrane potentials of individual neurons (or the

average membrane potential of small populations of cells), and for any input x,

the stationary distribution of u was guaranteed to be identical to the correspond-

ing posterior distribution under the GSM.

Network dynamics consisted of three components. First, recurrent dynamics

implementing HMC was specified by the first two terms in Eqs (4.4) and (4.5),

Wuuu −Wuvv and Wvuu −Wvvv. As the elements of the W matrices were all

positive (see above), the recurrent circuit implied by these dynamics had an EI

structure, with u corresponding to excitatory cells and v to inhibitory cells.

Second, there was an input current Iinput, whose strength was scaled by the (in-

ferred) level of contrast, z (Eq. (4.6)). Note again that while this signal might

increase with z, it is a prediction error, so it has a highly non-trivial relationship

with the resulting response. In fact, it can be shown that the response actu-

ally saturates as contrast increases (and results in tuning curves with contrast

invariant width) (Orbán et al., 2016). This input current specified the prob-

abilistic model by conveying a prediction error, i.e. the difference between the
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Wvu

Wuv

WvvWuu

Figure 4.3: The architecture of the Hamiltonian network. The network
consists of two populations of neurons, excitatory neurons with membrane
potential u, and inhibitory neurons v, driven by external input Iinput. Neu-
rons in the network are recurrently coupled by synaptic weights, Wuu, Wuv,
Wvu and Wvv. Red arrows represent excitation; blue bars represent inhibi-
tion.

input image, x, and the image predicted by the current activities of the exci-

tatory neurons, zAu, plus a term penalizing the violation of prior expectations

about u. While the key focus of our paper is the EI circuit implementing HMC,

rather than the specific form for the input (of which the details depend on the

underlying probabilistic model, here the admittedly simplified GSM model), we

suggest a potential implementation of Iinput by a separate population of neurons

directly representing the prediction error (x− zAu) as in theories of predictive

coding (Rao and Ballard, 1999). Such cells (perhaps in the lateral geniculate

nucleus, LGN) would have an excitatory connection from upstream areas (the

retina), representing the data, and an inhibitory disynaptic connection from the

excitatory cells, u. The output from these cells needs to excite the excitatory cells

and inhibit the inhibitory cells of our circuit, which can again be implemented via

disynaptic inhibition. This form of input is particularly well-suited to give strong,

long-lasting activation of the EI circuit, as the increase in excitation reinforces

the decrease in inhibition.

Finally, the last term in Eqs (4.4) and (4.5) represented noise. Although these

dynamics were clearly simplified in that they were fundamentally linear, such

dynamical systems have been used to model a wide variety of neural processes

(Tsodyks et al., 1997; Murphy and Miller, 2009; Hennequin et al., 2014b). Pre-

vious work has also shown that neurons combining firing-rate nonlinearities with

short-term synaptic plasticity and dendritic nonlinearities can implement such

effectively linear membrane potential dynamics (Pfister et al., 2010; Ujfalussy

et al., 2015). Moreover, such models have been found to provide a good match to

the dynamics of cortical populations at the level of field potentials (Loebel et al.,
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2007), calcium signals (Turaga et al., 2013), and firing rate trajectories (Macke

et al., 2011a; Hennequin et al., 2014b). We set the parameters of the network to

lie in a biologically realistic regime (Table 4.1, Methods).

Oscillations contribute to efficient sampling

When given an input image, our network exhibited oscillatory dynamics due to its

intrinsic excitatory-inhibitory interactions (Fig. 4.4A). Intuitively, these oscilla-

tions were useful for inference as they allowed the network to cover a broad range

of plausible interpretations of its input within each oscillation cycle. In order to

assess more rigorously the computational use of these oscillations, we compared

our network to a non-oscillatory counterpart, called Langevin sampling (Roberts

and Tweedie, 1996) (Methods). For a fair comparison of the two samplers, we

set them up to sample from the same posterior, and we kept the noise level ρ the

same in them.

The Langevin sampler was constructed by setting the recurrent weights in our

network (W matrices) to zero. Although, in general, a Langevin sampler can

still have recurrent connectivity, at least among the principal cells (by inter-

preting the dependence of Iinput on u as recurrent connections (Hennequin et al.,

2014a)), these recurrent connections are necessarily symmetric and therefore fun-

damentally different in nature from the EI interactions that we consider here.

As a consequence, Langevin dynamics showed prominent random walk-like be-

haviour without oscillations (Fig. 4.4B). Comparing the autocorrelation functions

for the Hamiltonian and Langevin samplers revealed that while their autocor-

relation functions decayed at similar rates (controlled by the timescale of the

stochastic, Langevin component), HMC had an additional, oscillating compo-

nent, (Fig. 4.4C).

The oscillatory behaviour of our HMC sampler allowed it to explore a larger vol-

ume of state space in a fixed time interval than Langevin sampling (Fig. 4.4D-E).

To compare the sampling performance of HMC and Langevin dynamics rigor-

ously, we measured for both of them the error between a sample-based estimate

of the posterior mean and the true mean of the posterior. The samples from the

Hamiltonian sampler took very little time to give a good estimate of the mean

(73 ms to get the mean square error to the level obtainable by a single statis-

tically fair sample), whereas samples from the Langevin model took ∼4 times

longer (273 ms, Fig. 4.4F). This difference indicated that our HMC-inspired sam-

pler used limited noise far more efficiently than Langevin dynamics.

The efficiency of HMC is typically attributed to the suppression of the random

walk behaviour of Langevin dynamics (Neal, 2011). In our network, we were

able to relate this effect more specifically to the appearance of oscillations. HMC
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Figure 4.4: The Hamiltonian sampler is more efficient than a Langevin
sampler. A, B. Example membrane potential traces for a randomly selected
neuron in the Hamiltonian network (A) and the Langevin network (B). C.
Solid lines: the autocorrelation of membrane potential traces in A and B, for
Hamiltonian (red) and Langevin samplers (blue). Dashed lines: the auto-
correlation of the joint (log) probability for Hamiltonian (red) and Langevin
samplers (blue). Note that for the Hamiltonian sampler, the joint proba-
bility is over both u and v. D, E. Joint membrane potential traces from
two randomly selected neurons in the Hamiltonian network (D) and the
Langevin network (E), colour indicates time (from red to green, spanning
25 ms), grey scale map shows the (logarithm of the) underlying posterior
(its marginal over the two dimensions shown). F. Normalised mean square
error (MSE) between the true mean and the mean estimate from samples
taken over a time t for the Langevin (blue) and Hamiltonian dynamics (red),
with 100 repetitions (mean± 2 s.e.m.).
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dynamics had both an oscillatory and a stochastic component (Fig. 4.4A, C red),

whereas Langevin dynamics had only the stochastic component, so that it per-

formed simple noisy gradient ascent, without apparent oscillations (Fig. 4.4B, C

blue). In particular, oscillations in the HMC sampler had a time scale that was

a factor of 15 faster than that of the stochastic component shared with Langevin

dynamics. This fast time constant of the HMC sampler, τ , governed the effects

of recurrent EI interactions, which were mediated by the W matrices that the

Langevin sampler lacked (Eq. (4.32)). These architectural and dynamical dif-

ferences implied a fundamentally different strategy for exploring the state space

of these networks. The fast oscillations in the HMC sampler deterministically

explored states in (u,v)-space that lay on an equiprobability manifold, while

the slow time scale implied by the input noise served to change this manifold

stochastically (Fig. 4.4D). Indeed, the autocorrelogram of the energy (log poste-

rior probability) in the HMC sampler (Fig. 4.4C, red dashed curve) was identical

to the Langevin envelope of the autocorrelogram of states (Fig. 4.4C, red solid

curve), indicating that energy only changed on the slow time scale governed by

this stochastic component and not on the fast time scale of oscillations. (Note

that while moving along equiprobability contours in the full joint (u,v) space,

HMC dynamics may still cross probability contours when projected to a low di-

mensional marginal, as shown in Fig. 4.4D.) In contrast, Langevin dynamics could

only rely on this slow stochastic component resulting in slow movement across

energy levels (Fig. 4.4C, blue dashed curve) and the state space (Fig. 4.4C, blue

solid curve).

Balance between excitation and inhibition

As we saw above, the advantage of HMC over Langevin dynamics could be at-

tributed to the contribution of the recurrent connections, i.e. the Wuuu−Wuvv

and Wvuu −Wvvv terms in the dynamics (Eq. (4.4) and (4.5)), which respec-

tively expressed the difference between net excitation and inhibition received by

excitatory and inhibitory neurons. (Note that this difference was not affected by

Iinput as the prediction error conveyed by the input is zero on average for any

input, by definition.) Importantly, for HMC to sample from the correct posterior,

the dynamics of excitatory cells needed to track the prediction error conveyed by

Iinput, for which the recurrent term needed to be zero on average, which in turn

suggests that excitation and inhibition needed to track each other across different

stimuli (Fig. 4.5A). Indeed, the only way we could obtain Hamiltonian dynamics

that complied with Dale’s law was if the activity of inhibitory cells tracked that

of excitatory cells, i.e. if the network was balanced. As Langevin is equivalent to

having these terms set to zero, for HMC to realize its advantage over Langevin,

the variance of the recurrent term needed to be sufficiently large, which implied
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Figure 4.5: Excitation and inhibition are balanced in the Hamiltonian
network. A. Trial-average excitatory input vs. trial-average inhibitory input
across trials (dots) for a randomly selected individual cell in the network.
B. Total inhibitory input to a single cell (blue) closely tracks but slightly
lags total excitatory input (red) over the course of a trial. C. The cross-
correlation between the average excitatory and average inhibitory membrane
potentials shows a peak that is offset from 0 time.

that the magnitudes of net excitation and net inhibition each needed to be large

and momentarily imbalanced (Fig. 4.5B). These features, large excitatory and

inhibitory currents that are tracking each other with momentary perturbations,

are thought to be fundamental properties of the dynamical regime in which the

cortex operates (Okun and Lampl, 2008), and thus arise naturally from HMC

dynamics in our EI network. Furthermore, as expected in a network with an EI

architecture, excitation led inhibition in our network (Fig. 4.5C).

Stimulus-dependent oscillations

Oscillations are a ubiquitous property of cortical dynamics (Buzsaki, 2006), and

we have shown above that efficient sampling in HMC necessarily leads to oscil-

latory dynamics in general (Figs. 4.4-4.5). However, when applied specifically

to perform inference based on visual images (Fig. 4.2), our model also repro-

duced some more specific and robust properties of gamma-band oscillations in

V1, namely that the precise frequency of these oscillations increases with stimu-

lus contrast (Ray and Maunsell, 2010; Roberts et al., 2013) (Fig. 4.6).

In order to extract an LFP from our model, in line with previous approaches

(e.g. (Wilson and Cowan, 1972)), we computed the sum of membrane potentials

of all cells. (Using the sum of input currents instead would have yielded qualita-

tively similar results.) The fact that LFP oscillations in our model were in the

gamma band, i.e. around 40 Hz, was simply due to our choice of a realistic single

neuron time constant, τ = 10 ms. However, within this band, the modulation of

the oscillation frequency by the contrast of the input image was a more specific

characteristic of the dynamics of our network. As contrast increased, the amount

of evidence to pin down u increased, and so the GSM posterior from which the
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Figure 4.6: Oscillation frequency depends on stimulus contrast. A. The
membrane potential response of one neuron to stimulus onset across 4 trials
(coloured curves) shows that the variability decreases and the frequency
increases as stimulus contrast increases. The true contrast of the underlying
image increases left to right (zgen = 0.5, 1, and 2). B. Power spectrum of the
LFP (average membrane potentials) at different contrasts (coloured lines),
showing that dominant oscillation frequency increases with contrast. Note
that we plot power × frequency on the y-axis, in order to account for the
fact that noise from a “scale-free” process has 1/f frequency dependence
[59]. C. Time-dependent spectrum (Gaussian window, width 100 ms) of
the LFP (contrast levels as in A). D. The simplified dynamics (x-axis,
Eq. (4.8)) accurately predicted the dependence of oscillation frequencies on
contrast (colour code as in B) in the full network (y-axis).
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dynamics needed to sample became tighter (Orbán et al., 2016). At the same

time, the recurrent EI interactions of the HMC dynamics which gave rise to os-

cillations had a fixed time scale independent of the input (Eqs. (4.4) and (4.5)).

Using the same speed to traverse an equiprobability manifold of an increasingly

tight posterior thus naturally led to increasing oscillation frequencies.

To further quantify this intuition, we simplified the dynamics of our network by

incorporating the effects of inhibition directly into the equations describing the

dynamics of the excitatory cells (see Methods):

ü = − 1

τ2

(
z2

σ2
x

− 1

1− σ2
x

)
(u− ū) (4.7)

where ū = E [u|x, z] is the (stimulus-dependent) mean of the posterior over u.

This form explicitly exposes that our sampler (in the limit studied here) un-

derwent regular harmonic oscillations, whose frequency increased with stimulus

contrast, zgen (assuming that the inferred value of z was sufficiently close to the

actual stimulus contrast, i.e. z ' zgen), as

f(z) =
1

2πτ

√
z2

gen

σ2
x

− 1

1− σ2
x

(4.8)

Indeed, as predicted by these arguments, the network exhibited contrast-

dependent oscillation frequencies both in its membrane potentials (Fig. 4.6A) and

LFPs (Fig. 4.6B-C; note that in B, we account for the fact that a “scale-free”

noise process has 1/f frequency dependence (Milotti, 2002) by plotting power

× frequency on the y-axis). Furthermore, the quantitative predictions made by

Eq. (4.8) were in close agreement with the results of numerical simulations in

the the full model, where z is not fixed, but is inferred simultaneously with u

(Fig. 4.6D).

Stimulus-dependent transients

When we computed firing rates in the model by applying a threshold to mem-

brane potentials (Eq. (4.60)), our simulations showed large, contrast-dependent

transient increases in population firing rate at stimulus onset (Fig. 4.7A). (Were

we to consider the average membrane potential, this would not display such a

large transient, because some neurons undergo positive transients, and others un-

dergo negative transients, which cancel overall.) Such transients are also a widely

observed characteristic of responses in V1 (Müller et al., 2001; Ray and Maunsell,

2010) (as well as other sensory cortices (Bermudez Contreras et al., 2013; Luczak

et al., 2013)). These transients were also inherent to the dynamics of our network

and were not trivially predicted by simpler variants. For example, Langevin sam-

148



0

10

20

0 100
t (ms)

fi
ri

n
g

ra
te

(a
.u

.)

A

0

2

4

0 100
t (ms)

fi
ri

n
g

ra
te

(a
.u

.)

B

0

3

6

0 100
t (ms)

fi
ri

n
g

ra
te

(a
.u

.) zgen

0.5

1

2

C

0

5

10

0 1 2 3 4 5
u

z

z fixed

z inferred

D

-5

0

5

10

0 1 2 3 4 5
u

d2u
dt2

E

0

5

10

0 100
t (ms)

u

F

Figure 4.7: Large, contrast-dependent firing rate transients in the model.
A-C. Transients (or lack thereof) at different contrast levels (colour) under
the full dynamics (A), using Langevin dynamics (B), and under the full
dynamics when the value of z is fixed, z = zgen (C). Note different scales
for firing rates in the three panels to better show the full range of firing rate
fluctuations in each case. D. Dependence of the inferred value of contrast, z,
on the currently inferred magnitude of basis function intensities, u, under
the simplified dynamics (blue). For reference, red shows the value of z
when set to be fixed at z = zgen. E. There is asymmetry in ü as a function
of u, around the value of u = ū = 1, in the simplified model when z is
inferred (blue) but not when it is fixed (red). F. Transients predicted by
the simplified dynamics (Eq. (4.9), with parameters as in Fig. 4.6D, and
initial conditions u(0) = 0.1 and u̇(0) = 0) are similar to transients under
the full dynamics.

pling did not give rise to any transient increase in firing rates — rates simply rose

or fell towards their new steady state (Fig. 4.7B, most obvious for zgen = 0.5).

Even Hamiltonian dynamics did not necessarily yield transients. In particular,

the full dynamics of our network inferred contrast, z, online together with the

basis function intensities u. Assuming instead that the brain knows z = zgen,

or uses a fixed value of z sampled from P (z|x), the dynamics became simple

noisy harmonic motion. Although harmonic motion can lead to transients when

initialised properly, the transients yielded by these dynamics were much smaller

in magnitude which were near-impossible to detect in simulated population firing

rates (Fig. 4.7C).

In order to understand how transients emerged in the full Hamiltonian dynamics

of our network, sampling u and z jointly, we focussed on the interaction between

the dynamics of u and the inferred value of z. For analyzing the asymptotic

behaviour in the previous section, we assumed that z was constant (and equal to

zgen). However, in general, z depended on the network’s currently inferred value
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of u. In particular, z and u jointly accounted for the total contrast content of the

input image x (Eq. (4.3)), and thus there was an inverse scaling between their

magnitudes. Using the 1D variant of Eq. (4.7), x ≈ zAu, so z ≈ x/Au (Fig. 4.7D).

Here, we make use of a separation of time scales between the dynamics of z and

u, specifically that z will attain its stationary value (distribution) much faster

than u. This is because while the basis functions of ui’s are localised Gabor

filters, z depends on the whole image patch (or, conversely, on all the ui’s),

which means that the sensory evidence for z is much stronger than for u, and

consequently its distribution is much narrower, giving strong prediction error

signals which rapidly drive it to equilibrium. As z effectively set the stiffness

of the ‘spring’ underlying harmonic motions in our dynamics (Eq. (4.7)), the

system had high (restoring) acceleration for low values of |u| and low accelerations

for high values of |u|, resulting in high magnitude excursions in u (Fig. 4.7E).

Therefore, just after stimulus onset, u was small, so there was a large force in

the positive direction (due to the large stiffness), causing a large acceleration.

Eventually, u exceeded ū, but by that point the stiffness, and hence the restoring

force had fallen, so the system’s momentum allowed it to move a long distance,

certainly further than if the spring constant had been fixed. This asymmetry

in preferring upward to downward changes in |u| was only relevant during initial

transients as asymptotically the evidence in the image was sufficient to determine

z with high precision and so the dynamics of u became approximately linear (as in

Eq. (4.7)). Thus, the timescale of the transient was determined by the timescale

at which inferences about z attained their stationary distribution, which in turn

scaled with ρ (S1 Figure).

More formally, taking the 1D version of the simplified dynamics (Eq. (4.7)), and

substituting z ≈ x/Au gives

ü = − 1

τ2

(
x2

σ2
xA

2u2
+

1

1− σ2
x

)
(u− ū) (4.9)

Simulating this simplified dynamical system did indeed yield large transients

(Fig. 4.7F) which matched full simulations (Fig. 4.7A) and recordings in macaque

V1 (Ray and Maunsell, 2010) both in terms of the transient timescale (∼30 ms)

and the dependence of transient magnitude on contrast level (values of zgen).

The fact that these large transients were retained in the model after such severe

approximations indicated that they were robust to the exact method used for

determining z, as long as it ensured that z was consistent with both x and u.
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4.4 Discussion

Previously proposed mechanisms by which the cortex could either represent and

manipulate uncertainty or just find the most probable explanation for sensory

data failed to explain the richness of cortical dynamics. In particular, these

models either had no dynamics or only gradient ascent-like dynamics, in contrast

to neural activity in the cortex that displays oscillations in response to a fixed

stimulus, and large transients in response to stimulus onset. Moreover, these

models typically violated Dale’s law, by having neurons whose outputs were both

excitatory and inhibitory. We demonstrated that it was, in fact, possible to

perform probabilistic inference in an EI network that displayed oscillations and

transients. Moreover, having oscillations actually improved the network, in that it

was able to perform inference faster than networks that did not have oscillations.

Our model displayed four further dynamical properties that did not appear, at

first, to be compatible with probabilistic inference: excitation and inhibition were

balanced at the level of individual cells (Okun and Lampl, 2008), inhibition lagged

excitation (Okun and Lampl, 2008), oscillation frequency increased with stimulus

contrast (Ray and Maunsell, 2010), and there were large transients upon stimulus

onset which also scaled with contrast (Müller et al., 1999, 2001; Ray and Maunsell,

2010). In sum, we have given an approach by which successful, inference-based

models of stationary activity distributions in V1 (e.g. (Orbán et al., 2016)) can

be extended to match the dynamics of neural activity.

Our work suggests a new functional role for cortical oscillations, and for in-

hibitory neurons that are involved in their generation: speeding up inference.

We have demonstrated this role in the specific context of V1, but our formal-

ism is readily applicable to other cortical areas in which probabilistic inference

is supposed to take place, and similar stimulus-controlled transients and oscilla-

tions can be observed (Wang et al., 2005; Buzsáki and Watson, 2012). Neural

oscillations and probabilistic inference have been linked previously, albeit in the

hippocampus rather than sensory cortices (Savin et al., 2014). The main differ-

ences between the two approaches are that in previous work, oscillations were

controlled entirely externally, and implemented (approximately) an augmented

sampling scheme known as tempered transitions (Neal, 1996), whereas our work

builds on the theory of Hamiltonian Monte Carlo (Neal, 2011) to construct net-

work dynamics that are intrinsically oscillating. This allowed us to study the

effects of the stimulus on these oscillations that previous approaches could not

address. Computationally, Hamiltonian Monte Carlo and annealing-based tech-

niques, such as tempered transitions, have complementary advantages in allowing

network dynamics to respectively explore a given posterior mode or traverse dif-

ferent modes efficiently. Thus, a combination of these different approaches may

account for concurrent cortical oscillations at different frequencies.
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While the statistical model of images underlying our network was able to capture

some interesting properties of the statistics of natural images, it was nevertheless

clearly simplified, in that e.g. it did not capture any notion of objects, or occlu-

sion. Once such higher-order features are incorporated into the model, we expect

a variety of interesting new dynamical properties to emerge. For example, there

should be strong statistical relationships between low-level variables describing a

single object, and hence strong dynamical relationships, including synchronisa-

tion, between neurons representing different parts of the same object (Womelsdorf

et al., 2007; Fries, 2009). In the extreme, we might expect to see coherent os-

cillations between neurons representing the same object, providing a principled

unifying perspective of bottom-up (e.g. contrast) and top-down influences (e.g.

“binding by synchrony”) on cortical oscillations (Singer, 1999).

It will also be important to understand how local learning rules, modelling synap-

tic plasticity, may be able to set up the weight matrices that we found were neces-

sary for implementing efficient Hamiltonian dynamics. For example, there might

be two sets of learning rules operating in parallel, one set of rules which learns

that statistical structure of the input, perhaps mainly through the plasticity of

excitatory-to-excitatory connections (Markram et al., 2012), and another which

tunes network dynamics, perhaps primarily by inhibitory plasticity mechanisms,

to speed up the inference process, without altering the sampled distribution (Kull-

mann et al., 2012).

Finally, while the type of linear membrane potential dynamics we used in our

network could be implemented using firing rate non-linearities in combination

with synaptic and dendritic nonlinearities (Pfister et al., 2010; Ujfalussy et al.,

2015), it will nevertheless be important to understand whether it is possible to

perform inference in networks with more realistic non-linearities.

4.5 Methods

Sampler derivation

The sampler was derived by combining an HMC step, and a Langevin step to

add noise and ensure ergodicity. The most general equations describing HMC are

given by

u̇ =
1

τ

∂ logP (u,v|x, z)
∂v

(4.10)

v̇ = −1

τ

∂ logP (u,v|x, z)
∂u

(4.11)

For the HMC step, there is freedom to specify the distribution of the auxiliary

variable, P (v|u,x), and freedom to set the noise distribution. Typically, the
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distribution of the auxilliary variable is set to have 0 mean and be totally inde-

pendent of u, so that P (v|u,x, z) = P (v) = N
(
v; 0,M−1

)
. However, we know

that inhibitory cells do, in fact, respond to input. We therefore chose to use

P (v|u,x, z) = P (v|u) = N
(
v; Bu,M−1

)
(4.12)

with a free choice for B and M, which we will discuss below (Setting the param-

eters). This allowed us to split up these probability distributions into terms that

are dependent, and independent, of the data, x:

u̇ =
1

τ

∂ logP (v|u)

∂v
(4.13)

v̇ = −1

τ

∂ logP (v|u)

∂u
− 1

τ

∂ logP (u|x, z)
∂u

(4.14)

In order to add noise without perturbing the stationary distribution, we perform

a Langevin step, that is, we simultaneously add noise and take a step along the

gradient of the log-probability. Notably, this introduces a new time constant τL,

that simply controls the rate at which noise is injected into the system. As such,

τL is directly related to ρ,

ρ =

√
2

τL
(4.15)

The dynamics therefore become

u̇ =
1

τ

∂ logP (v|u)

∂v
+

1

τL

∂ logP (u,v|x, z)
∂u

+

√
2

τL
ηu (4.16)

v̇ = −1

τ

∂ logP (v|u)

∂u
− 1

τ

∂ logP (u|x, z)
∂u

+
1

τL

∂ logP (u,v|x, z)
∂v

+

√
2

τL
ηv

(4.17)

Again, we can break up the P (u,v|x, z) terms into terms that are dependent,

and independent, of v:

u̇ =
1

τ

∂ logP (v|u)

∂v
+

1

τL

∂ logP (v|u)

∂u
+

1

τL

∂ logP (u|x, z)
∂u

+

√
2

τL
ηu (4.18)

v̇ = −1

τ

∂ logP (v|u)

∂u
+

1

τL

∂ logP (v|u)

∂v
− 1

τ

∂ logP (u|x, z)
∂u

+

√
2

τL
ηv (4.19)

Now, we compute these gradients, and convert them into a neural-network (see

S1 Code)

∂ logP (v|u)

∂u
= −M (Bu− v) (4.20)

∂ logP (v|u)

∂v
= BTM (Bu− v) (4.21)
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where the gradient of the posterior is the external input

Iinput =
∂ logP (u|x, z)

∂u
=

1

σ2
x

zAT (x− zAu)−C−1u (4.22)

We can thus write the dynamics of our neural network as

u̇ =
1

τ

(
Wuuu−Wuvv +

τ

τL
Iinput

)
+

√
2

τL
ηu (4.23)

v̇ =
1

τ
(Wvuu−Wvvv − Iinput) +

√
2

τL
ηv (4.24)

where

Wuu = BTMB− τ

τL
MB (4.25)

Wuv = BTM− τ

τL
M (4.26)

Wvu = MB +
τ

τL
BTMB (4.27)

Wvv = M +
τ

τL
BTM (4.28)

Finally, we substitute τL = 2/ρ2.

Sampling z

The brain does not know zgen, so it must infer z together with u. We therefore

inferred z and u in parallel, using an additional HMC sampler for z.

In particular, we simply extended the dynamics with an additional element for

z:

ż =
1

τ

(
Wzzz −Wzvv +

τ

τL
Iinput

)
+

√
2

τL
ηz (4.29)

v̇ =
1

τ
(Wvzz −Wvvv − Iinput) +

√
2

τL
ηv (4.30)

where W is defined as above, with B = M = 1, and

Iintput =
∂ logP (u, z,x)

∂z
=

1

σ2
x

(Au)T (x− zAu)− z (4.31)
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Langevin sampler

By setting the weight matrices implementing HMC, W, to 0, we obtain the

Langevin step:

u̇ =
1

τL
Iinput +

√
2

τL
ηu (4.32)

Setting the parameters

The GSM model has three parameters, the Gabor features, A, the covariance

matrix, C, and the observation noise, σ2
x. We set A using known properties of

the visual system: the Gabor filters-like receptive fields of V1 simple cells. In

particular, we define A as a bank of Gabor filters at three orientations (0, π/3

and 2π/3), five locations (the centre, and corners, 1/6 image-widths from the

edge, where all measurements are in units of image height = image width). The

Gaussian envelope of the Gabors had minor axis 0.1, and major axis uniformly

distributed from 0.1 to 0.5 (where these measurements are in units of image

width, and give the standard deviation along the relevant axis), and the sinusoid

had wavelength 0.13 image-widths.

We can set C using the value for A, and the fact that retina and LGN are known

to whiten visual input (Dayan and Abbott, 2001). For a particular image, x, and

inferred contrast level, z, the posterior is

P (u|x, z) = N
(
u; z

σ2
x
Σ(z) ATx,Σ(z)

)
(4.33)

where

Σ(z) =
(
C−1 + z2

σ2
x
ATA

)−1
(4.34)

We know that the average posterior equals the prior (Dempster et al., 1977;

Berkes et al., 2011b), and so the prior covariance C should match the average

posterior covariance (averaging over data, x, and other latent variables, z), i.e.

C = E
[
uuT

]
= E

[
z2

σ4
x
Σ(z)ATxxTAΣ(z) + Σ(z)

]
(4.35)

We make the ansatz that

C = K
(
ATA

)−1
(4.36)
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where K is an unknown constant. Substituting this guess into Eq. (4.34), we see

that Σ(z) simplifies considerably:

Σ(z) =
(
K−1 + z2

σ2
x

)−1 (
ATA

)−1
(4.37)

and as the data are whitened (assuming this is true at any contrast level, i.e.

Ex|z
[
xxT

]
= c(z) I, with some c(z)), we indeed have

Eu

[
uuT

]
∝
(
ATA

)−1
(4.38)

confirming our ansatz.

In principle, we could find K by solving Eq. (4.35) (by substituting Eq. (4.36) to

its l.h.s., and Eq. (4.37) to its r.h.s.), however, in practice, we cannot because we

do not know c(z) in Ex|z
[
xxT

]
= c(z) I. Instead, we set K to ensure that the

inputs, ATx, have the right covariance (note that it is only possible to match the

covariance of ATx, and not of x directly, because we are using an undercomplete

basis). As the data is whitened, we expect

E
[
ATxxTA

]
= ATA (4.39)

while the predictive distribution of the GSM results in

E
[
ATxxTA

]
= AT

(
E
[
z2
]
ACAT + σ2

xI
)
A (4.40)

Setting these expressions equal, substituting for C using our ansatz (Eq. (4.36)),

and using E
[
z2
]

= 1 gives

ATA =
(
K + σ2

x

)
ATA (4.41)

yielding the solution

K = 1− σ2
x (4.42)

(Note that while this derivation is valid for the complete and undercomplete case,

a more complex analysis would be necessary for the overcomplete case.)

With these choices, the dynamics only depend on the probabilistic model through

the product
(
ATA

)−1
. This product controls the frequency spectrum: if(

ATA
)−1

has a very broad eigenspectrum (e.g. multiple orders of magnitude),

then the system will sample at different rates along different directions. This is

not desirable: we want sampling to take place as fast as possible in every direc-

tion, not to be fast in some directions, and slow in others. If we were able to set

M to
(
ATA

)−1
, then we would indeed sample at the same rate in every direction

(Neal, 2011), no matter how broad the spectrum of
(
ATA

)−1
(see “Deriving the
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1D approximate model”, below). However, to ensure that Dale’s law is obeyed,

we need the elements of M to be non-negative, so we set

B = I (4.43)

and

Mij = max
(

0,
(
ATA

)−1

ij

)
(4.44)

For the dynamics to be correct, we need this matrix to be positive definite.

While this is not guaranteed, we found that in practice the matrix turns out

to satisfy this constraint. As M is close to, but not exactly,
(
ATA

)−1
, the

eigenspectrum of ATA will have some effect on our sampler. In practice, our

eigenvalues range over a factor of 5 without weakening our results. Again, this

is valid for the undercomplete and complete cases, and a more complex analysis

would be necessary for the overcomplete case.

Next, we consider the observation noise level, σx, which describes the noise-to-

signal ratio for neurons in the visual cortex. In particular, we take the input to

be ATx. This input is made up of two components, signal from the mean of

P
(
ATx|u, z

)
, and noise from its covariance, (given by transforming Eq. (4.3)).

The covariance of this input (Eq. (4.40)) also breaks up into signal,
(
1− σ2

x

)
ATA,

and noise, σ2
xATA, terms, giving the signal to noise ratio as

√
σ2

x/ (1− σ2
x) ≈ σx.

To obtain a value for σx we perform a simple estimation. We take a V1 simple

cell that integrates N inputs from retinal ganglion cells (RGCs) (indirectly, via

the LGN), each firing a Poisson spike train of average rate r, with a temporal

integration window of ∆t. In this case, the c.v. (which corresponds to σx) is

σx =
s.d.

mean
=

√
Nr∆t

Nr∆t
=

1√
Nr∆t

(4.45)

Based on the literature, we set the values of the relevant constants as

r ∼ 1 s−1 (Zhang et al., 2009), (4.46)

∆t ∼ 10 to 100 ms (Tripathy et al., 2015), (4.47)

N ∼ 100 to 1000. (4.48)
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To obtain this range for N , we note that there are around 1000 RGCs in the

stimulated region in Ray and Maunsell (2010). (This can be computed knowing

the dependency of RGC density on eccentricity (Watson, 2014), and that the

stimulus has s.d. 0.5 degrees, so the total area is around 1 degree2, and is 3 to 5

degrees from the fovea, and then discounting, to account for the fact that not all

of these cells will be connected (Reid et al., 1995)). Thus, we obtain the interval

σx =
1√
1

to
1√
100

(4.49)

of which we use the geometric mean:

σx =
1√
10

(4.50)

To choose values for τL, τ and σ2
v, we considered biological constraints. The

external input to the inhibitory cells is governed entirely by τ , suggesting that

a biologically plausible value for τ is 10 ms (Tripathy et al., 2014). The scale of

the recurrent input terms are governed by the product 1
τM−1, suggesting that,

to ensure the recurrent input has a biologically plausible timescale of 10 ms, we

should set M−1 to be O(1) (see Eq. (4.44)).

Finally, we estimated τL, or equivalently the amount of noise per unit time,

by comparing the rate at which membrane potential variance increases in our

equations, 2σ2/τL, to the rate of increase given by stochastic vesicle release,

the primary source of ‘noise’ in cortical circuits. If a neuron is connected to s

presynaptic neurons, firing with average rate r, and the variance of a unitary

EPSP is v, then stochastic vesicle release introduces variance at the rate srv.

Setting srv = 2σ2/τL allows us to find the Langevin timescale

τL =
2σ2

srv
(4.51)

However, estimating τL is difficult, because there are huge uncertainties in σ, s, r

and v. We therefore wrote our uncertainty about each parameter as a log-normal

distribution, P (log x) = N
(
log x;µx, σ

2
x

)
where x is one of σ, s, r, or v, and

computed the induced distribution on τL. To specify the distributions, we wrote

a range, from xl to xh, that, we believed contained around 95% of the probability

mass, taking the boundaries of the range to be two standard-deviations from the

mean in the log-domain, log xl = µx − 2σx and log xh = µx + 2σx.

To estimate the required ranges, we took values from the neuroscience literature.

First, estimates of firing rates vary widely, from around 0.5 Hz (Mizuseki and

Buzsáki, 2013) to around 10 Hz (O’Connor et al., 2010). Second, the number of

synapses per cell is usually taken to be around 10000. However, it is likely that

there are multiple synapses per connection (Branco and Staras, 2009), so there
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could be anywhere from 1000 to 10000 input cells for a single downstream neuron.

Third, the average variance per spike is relatively easy to measure, data from Song

et al. (Song et al., 2005) put the value at 0.076 mV2. As other measurements

seem roughly consistent (Bremaud et al., 2007), we use a relatively narrow range

for v, from 0.05 mV2 to 0.1 mV2. Finally, the scaling factor, σ, could plausibly

range from 2.5 mV to 7.5 mV, giving a full (2 standard deviations, and both

sides of the mean) range of membrane potential fluctuations of 10 mV to 30 mV

(Stern et al., 1997).

These ranges give a central estimate of τL = 150 ms, which we used in our

simulations. In agreement with this back-of-the-envelope calculation, we find that

our sampler’s dynamics match neural dynamics when τL lies in a broad range,

from around 60 ms to around 400 ms (see S1 Figure). While τL appears relatively

large in comparison with typical neural timescales, which are often around 10 ms,

it should be remembered that τL parameterises the amount of noise injected into

the network at every time step, and as such, does not therefore have any necessary

link to other neural time constants.

Altering the model so that ui and vi are always positive

One might worry that it is possible for ui (or vi) to go negative, meaning that they

have their influence on downstream neurons will have the wrong sign. However,

it is straightforward to offset u (and hence v, through Eq. (4.12)), so that they

rarely, if ever become negative. Moreover, if we introduce the offset as

P (u) = N (u; b,C) (4.52)

P (x|u, z) = N (x; A (u− b) ,C) (4.53)

then this leaves the data distribution P (x), and hence the dynamics intact.

Deriving the 1D approximate model

u̇ =
1

τ
M (u− v) (4.54)

v̇ =
1

τ
M (u− v)− z

σ2
x

AT (x− zAu)−Cu (4.55)

Differentiating again yields

ü =
1

τ
M (u̇− v̇) (4.56)
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substituting for u̇ and v̇, and collecting the terms that depend on u, we obtain

ü = − 1

τ2
M

(
z2

σ2
x

ATA−C−1

)
(u− ū) (4.57)

where ū is the posterior mean of u with fixed z (see Eq. (4.33) (4.37) and (4.42))

ū =
z

σ2
x

(
z2

σ2
x

+
1

1− σ2
x

)(
ATA

)−1
ATx (4.58)

substituting M =
(
ATA

)−1
(i.e. the ideal value for M), and C =(

1− σ2
x

) (
ATA

)−1
(Eq. (4.36)), gives

ü = − 1

τ2

(
z2

σ2
x

+
1

1− σ2
x

)
(u− ū) (4.59)

Thus, for fixed z, each component of u evolves independently.

Simulation Protocol

We simulated stimulus onset by first running the sampler until it reached equi-

librium with no stimulus, then turning on the stimulus. To represent no stimulus

we sampled x from P (x|z = 0), and to represent stimulus, we sampled x from

P (x|z = zgen), where zgen ∈ {0.5, 1, 2}.

Computing LFPs and firing rates

To make contact with experimental data, we also computed local field potentials

(LFPs), and firing rates. There are many methods for computing LFPs, we chose

the simplest, averaging the membrane potentials across neurons, as it gave similar

results to the other methods, without tuneable parameters. To compute firing

rates, we used a rectified linear function of the membrane potential:

fi(t) =

ui(t) if ui(t) > 0

0 otherwise
(4.60)
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4.6 Supplementary Figure
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Figure 4.8: Our main results are robust to a range of ρ or equivalently
τL. The top row is a power spectrum, the middle row displays the firing
rate transient at stimulus onset, and the bottom row displays the membrane
potential at stimulus onset for multiple trials and one neuron. The different
lines in the first two rows correspond to different values of zgen. In the
bottom row, different lines correspond to different trials. A. For τL = 30 ms,
transients are small or non-existent, and no clear trends are present in the
peak frequency. B-C. For τL = 60 ms (B), and τL = 400 ms (C) the results
are similar to those in the main text. D. For τL = 1000 ms, the results are
quite different to those in the main text. In particular, the transient at
stimulus onset lasts a long time, certainly longer than the observed value of
around 50 ms.
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Summary and future work

I started by taking normative theories of the brain, and attempting to either

provide testable predictions, or, if that was not possible, to bring the theories

closer to biologically realistic neural circuits that might prove testable in future.

First I attempted to test the hypothesis that confidence is Bayes optimal, and

showed that the matter is complicated, with Bayesian inference providing the

best explanation for the data in some circumstances, but not in others.

Second, I considered whether neural activity can or should be understood by

referring to concepts from physics such as criticality. We found that some sig-

natures of criticality, particularly Zipf’s law, emerge simply because there are

underlying latent variables, such as firing rates, and not necessarily because of

any underlying analogy to critical systems.

Third, to provide testable predictions, I applied normative, Bayesian theoretical

concepts to the neural synapse. I started by considering how the synapse might

use Bayes theorem in order to learn more rapidly, which I called Bayesian Plas-

ticity. I considered two predictions made by Bayesian plasticity, though there are

certainly others. First, we predicted that synapses with lower presynaptic firing

rates would have more uncertainty, and hence use a higher learning rate. Second,

we predicted that at times when more presynaptic cells are active, learning rates

should be lower, because it is difficult to know which synapse is responsible for

any error. In the second chapter, I looked at how the synapse might communicate

its uncertainty, derived by Bayes theorem, to downstream circuits. In particular,

I supposed that the synapse might use increased variability to indicate higher

uncertainty. This gave us a further one further prediction that had some exper-

imental support, that synapses with higher presynaptic firing rates should have

lower variability.

Finally, to bring normative theories of neural circuits closer to biological reality,

I considered how such theories could be integrated with fundamental structural

and dynamical properties of neural circuits, EI structure and oscillations. To

this end, I showed that a widely used, and highly efficient algorithm, Hamil-

tonian Monte Carlo, can readily be mapped onto an EI network which exhibits
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oscillations. Furthermore, this theory predicts, as we observe, that oscillation fre-

quency and transient size increases with image contrast. Thus, thus allows us to

make predictions not only about stationary activity (as with previous normative

theories), but also dynamics.

These last two projects open out space for a large array of future work. First, the

work on synapses is promising because we applied Bayes theorem, not to a whole

cell (as is typical), but to a single synapse. This enables us to give local, biologi-

cally plausible learning rules whatever information the synapse might receive —

perhaps the voltage and membrane potential in a full biophysical model of the

cell. Thus, this approach should, in future, enable us to bring together normative

computation theories with complex, messy biological reality. Second, the work on

neural circuits is interesting because it raises the question of whether the brain’s

dynamics can give clues as to the brain’s algorithm (and hence computation). In

particular, it may be possible, by generalising our HMC approach, to show which

dynamical sampling algorithms are compatible and incompatible with observed

neural dynamics.
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