
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-021-05952-5

1 3

Large scale multi‑label learning using Gaussian processes

Aristeidis Panos1   · Petros Dellaportas1,2,3 · Michalis K. Titsias4

Received: 18 December 2019 / Revised: 3 November 2020 / Accepted: 1 February 2021 
© The Author(s) 2021

Abstract
We introduce a Gaussian process latent factor model for multi-label classification that can 
capture correlations among class labels by using a small set of latent Gaussian process 
functions. To address computational challenges, when the number of training instances is 
very large, we introduce several techniques based on variational sparse Gaussian process 
approximations and stochastic optimization. Specifically, we apply doubly stochastic vari-
ational inference that sub-samples data instances and classes which allows us to cope with 
Big Data. Furthermore, we show it is possible and beneficial to optimize over inducing 
points, using gradient-based methods, even in very high dimensional input spaces involv-
ing up to hundreds of thousands of dimensions. We demonstrate the usefulness of our 
approach on several real-world large-scale multi-label learning problems.

Keywords  Multi-label learning · Gaussian process · Variational inference · Bayesian 
nonparametrics

1  Introduction

Multi-label classification is a supervised learning problem where data instances are asso-
ciated with multiple classes (Tsoumakas and Katakis 2007; Read et al. 2011; Zhang and 
Zhou 2013; Gibaja and Ventura 2014, 2015). It can be viewed as a generalization to the 
more traditional multi-class classification problem, where each data point can belong only 
to a single class. Multi-label learning has attracted a lot of attention in the recent literature, 
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due to its numerous applications ranging from text and image classification to computa-
tional advertising and recommender systems (Gibaja and Ventura 2014, 2015; Prabhu and 
Varma 2014; Jain et  al. 2016). Two main challenges in multi-label learning are: (i) the 
modelling challenge associated with introducing suitable models to capture the correla-
tion across different labels, and (ii) the computational or scalability challenge associated 
with dealing with datasets having very large number of labels, training instances and input 
dimensions.

In this paper, we tackle the problem of multi-label learning using a probabilistic frame-
work based on Gaussian processes (GPs) (Rasmussen and Williams 2005). From a GP per-
spective multi-label learning shares similarities with the standard approaches for multi-task 
or multi-output Gaussian regression suitable for real-valued output data (Teh et al. 2005; 
Alvarez et al. 2012; Bonilla et al. 2008; Moreno-Muñoz et al. 2018). The difference is that 
in multi-label learning the output data are binary, thus requiring Bernoulli or binary regres-
sion type of likelihoods. Based on this, we introduce a multi-label extension of the semi-
parametric latent factor model (Teh et al. 2005) that allows to capture the correlation of 
multiple labels using a small set of shared latent GP functions. Our work bear many simi-
larities with Dai et al. (2017) and it can be seen as a special case of the more general model 
presented in Moreno-Muñoz et al. (2018) where both continuous and discrete outputs are 
allowed and a variant number of latent GP functions can be deployed.

Furthermore, to address the computational challenges when training the model, we 
make use of sparse GP approximations (Csato and Opper 2002; Lawrence et  al. 2002; 
Seeger et  al. 2003; Quiñonero-Candela and Rasmussen 2005; Snelson and Ghahramani 
2006; Titsias 2009; Hensman et  al. 2013; Bui et  al. 2017) together with stochastic vari-
ational inference (Hoffman et  al. 2013). Specifically, by using the sparse GP variational 
inference framework which employs inducing variables (Titsias 2009) as well as its sto-
chastic and non-Gaussian likelihood variants (Hensman et  al. 2013; Lloyd et  al. 2015; 
Hensman et al. 2015; Dezfouli and Bonilla 2015; Sheth et al. 2015), we derive an algo-
rithm that can scale to arbitrarily large numbers of data instances. More precisely, the main 
techniques we introduce regarding scalable GPs are: (i) stochastic variational inference that 
allows us to train the GP multi-label model by sub-sampling both data instances and labels, 
and (ii) optimization of the inducing inputs, using gradient-based methods, in extremely 
high dimensional input spaces involving possibly hundreds of thousands of dimensions; we 
show that such optimization can significantly improve predictive performance.

It is also noted that the main goal of the paper is to present a Bayesian non-parametric 
model that is able to scale well to extreme dimensions while at the same time achieves 
performance similar to other state-of-the-art methods that make use of non-probabilistic 
models. The remainder of the paper has as follows: Sect.  2 provides a brief discussion 
about related work. Section 3 describes the form of the multi-label GP model while Sect. 4 
discusses scalable variational inference for sparse GP models. Section 5 demonstrates the 
method using a series of large scale multi-label datasets. Finally, the paper gives some per-
formance characteristics of our method in Sect. 6 concludes with a discussion in Sect. 7.

2 � Related work

In the last decade, a multitude of methods have been developed to tackle multi-label 
classification problems (Tsoumakas and Katakis 2007; Zhang and Zhou 2013). Algo-
rithms such as multi-label random forest (Kocev et  al. 2007) or multi-label k-nearest 
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neighbours (Zhang and Zhou 2007) have achieved superior performances than other 
methods. Nevertheless, all the aforementioned methods fail to scale with the large 
dimensions describing the eXtreme Multi-label Learning (XML). The last few years, all 
the proposed XML algorithms fall mainly into two main categories: Label-embedding 
methods, Tree-based methods.

Label-embedding methods are based on the assumption that the label space can be effi-
ciently approximated by a low-rank structure. The first methods that tried to apply this 
concept were WSABIE (Weston et al. 2011) and LEML (Yu et al. 2014). Nonetheless, the 
low-rank representation of the output space failed to lead to high performance due to the 
information loss followed by the long tail distribution of the labels. This hindrance was 
later circumvented by SLEEC (Bhatia et  al. 2015) and AnnexML (Tagami 2017) where 
a number of local low-rank embeddings are trained separately based on a partition of the 
feature space.

Tree-based methods (Prabhu and Varma 2014; Jain et  al. 2016; Jasinska et  al. 2016; 
Niculescu-Mizil and Abbasnejad 2017; Si et  al. 2017; Siblini et  al. 2018; Prabhu et  al. 
2018; Wydmuch et al. 2018; Khandagale et al. 2020) can be seen as transformation meth-
ods that aim to divide the initial large-scale problem into a multiple small-scale sub-prob-
lems by recursively partitioning the feature or label space. Those subsets are connected 
with the nodes of the trees. These methods are usually known for their fast training and 
prediction time at the expense of predictive performance.

Despite these two major categories, there are recently developed methods (Yen et  al. 
2016, 2017; Babbar and Schölkopf 2017) which are based on one-vs-rest strategies and/or 
linear models. For instance, DiSMEC (Babbar and Schölkopf 2017) achieves state-of-the 
art performance by minimizing Hamming loss with �2 regularization while an imposed 
threshold help to reduce model size. These methods are heavily relied on distributed 
hardware to reduce training and test time. Deep learning methods have also emerged in 
the XML field (Nam et al. 2017) which make extensive use of GPU resources and more 
sophisticated text preprocessing techniques (Liu et al. 2017; You et al. 2019).

A few Bayesian methods have also been proposed (He et al. 2012; Kapoor et al. 2012; 
Jain et al. 2017; Gaure et al. 2017; Papanikolaou and Tsoumakas 2018), however they can-
not be trained on XML datasets and/or they attain poor performance comparing to state-
of-the art methods. Our method bears similarities with most of those works. Specifically, 
it is a latent factor model that probabilistically finds a low rank representation of the label 
matrix Y conditioned on the inputs X, thus, it is also connected to the label-embedding 
approaches, however, most of these approaches are not probabilistic, so they cannot easily 
be incorporated to a larger model (possible handling additional types of observed data) or 
make use of stochastic or on-line statistical learning algorithms. A probabilistic method 
that is mostly related to ours is the approach by Jain et al. (2017) who constructed a bilin-
ear latent factor model of Y conditioned on X. Some aspects of our method can be thought 
of as kernelized GP-based extensions of certain linear latent variables in Jain et al. (2017), 
with the additional difference that we base inference on variational methods while Jain 
et al. (2017) use Gibbs sampling or on-line EM.

Finally, a previous GP-based method for multi-label learning was proposed by He et al. 
(2012) and it was based on the multi-task GP model of Bonilla et al. (2008). This method 
makes use of basic Nyström-type methods to approximate the full multi-task kernel matrix 
of size KN × KN with a matrix of size KM × KM (N is the number of training data points 
and M ≪ N ; see next section) which leads to complexity O(K3M3) , i.e. cubic with respect to 
the number of labels K , rendering this method impractical for XML problems. Instead, our 
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method utilizes variational sparse GP methods and stochastic optimization to obtain a fully 
scalable algorithm having a sub-linear complexity over the class labels and data points.

3 � The multi‑label GP factor model

Suppose a training dataset D = (�(i), �(i))N
i=1

 where each �(i) ∈ ℝ
D is the input vector and 

�(i) ∈ {−1, 1}K is the binary vector that indicates the class labels assigned to �(i) , so that 
yk = 1 indicates presence of the k-th label while yk = −1 indicates absence. We will col-
lectively denote all input vectors by X ∈ ℝ

N×D and the binary labels by Y ∈ {−1, 1}N×K so 
that rows of these matrices store respective data points. We wish to model these data using 
a flexible probabilistic model that captures the correlation between different labels. We 
consider a multi-label extension of the semiparametric latent factor model (SLFM) of Teh 
et al. (2005) that combines a linear latent variable model with GPs. Specifically, SLFM is 
a general-purpose multi-output GP model (Teh et al. 2005; Álvarez and Lawrence 2011; 
Alvarez et al. 2012) that uses a small number of P latent GPs (factors) to generate the K 
outputs through a linear mapping. The full hierarchical model for generating the training 
examples is,

where hp denotes a latent function drawn from a GP with zero-mean and kernel function 
k(�(i), �(j)) that depends on kernel hyperparameters � (although � is suppressed through-
out to keep the notation uncluttered). Further, �(i) = [h

(i)

1
… , h

(i)

P
]⊤ ∈ ℝ

P denotes the vec-
tor of all function values evaluated at input �(i) , i.e. h(i)

p
≡ hp(�

(i)) , while the parameters 
Φ ∈ ℝ

K×P and � ∈ ℝ
K correspond to the factor loadings matrix and the bias vector of the 

linear mapping. By using these parameters the latent vector �(i) is deterministically mapped 
into � (i) = [f

(i)

1
,… , f

(i)

K
]⊤ ∈ ℝ

K , such that each

defines the so-called utility score that finally generates the k-th binary label through a sig-
moidal/Bernoulli likelihood. Notice that while the labels are conditionally independent 
given �(i) , they become fully coupled once these variables are integrated out. The full joint 
distribution is given by

where p(�p) = N(�p|�,KX) is an N-dimensional Gaussian distribution induced by evaluat-
ing the GP prior at the training inputs X with KX denoting the kernel or covariance matrix, 
[KX]ij = k(�(i), �(j)) . An equivalent way to write the above model is by using the concept of 

(1)hp ∼ GP(0, k(�(i), �(j))), p = 1,… ,P,

(2)� (i) = Φ�(i) + �, i = 1,… ,N,

(3)�(i) ∼ p(�(i)|�(i)) =
K∏

k=1

�(y
(i)

k
f
(i)

k
), i = 1,… ,N,

(4)f
(i)

k
=

P∑

p=1

�kph
(i)
p
+ bk,

(5)
N∏

i=1

p(�(i)|�(i))
P∏

p=1

p(�p),
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kernels for multi-task or vector-valued functions (Bonilla et  al. 2008; Álvarez and Law-
rence 2011; Alvarez et  al. 2012). More precisely, observe that the utility scores f (i)

k
 that 

directly interact with the data in (3) follow a GP prior with mean given by the bias bk (that 
depends on the label but not on the input) and covariance function

For regression problems with Gaussian likelihoods the above multi-task GP is known as 
the intrinsic correlation model (Stoyan 1996; Bonilla et  al. 2008), a specific case of co-
kriging in geostatistics; see Alvarez et al. (2012) for a full review. Here, we use this model 
for multi-label learning where the tasks correspond to different class labels.

Inference in the above model is very challenging since real applications in multi-label 
classification involve both very large number of training instances N and very large number 
of class labels K (Zhang and Zhou 2013; Gibaja and Ventura 2014, 2015). In the next sec-
tion we propose an efficient variational inference algorithm that combines sparse GPs with 
stochastic variational inference (Hoffman et al. 2013) and scales as O(PM3) where M ≪ N.

4 � Scalable variational inference

The approximate inference procedures derived in this section are mainly based on the rep-
resentation that uses the latent GP vectors �p rather than the multi-task kernel representa-
tion in (6). The utility scores f (i)

k
 will only be used to simplify the computations of some 

final Gaussian integrals. Section 4.1 discusses the variational sparse GP formulation, while 
Sect. 4.2 shows how doubly stochastic optimization can allow to deal with arbitrarily large 
N and K.

4.1 � Sparse approximation

To deal with large number of training data we consider the variational sparse GP inference 
framework based on inducing variables introduced by Titsias (2009); see also Matthews 
et al. (2016) for a measure-theoretic derivation of this method and Bauer et al. (2016) for 
a useful discussion about its properties. For each latent function hp we introduce a vector 
�p ∈ ℝ

M of function values of hp evaluated at inputs Z, where for simplicity we take the 
inputs Z to be shared by all latent GPs. The vector �p is often referred to as inducing vari-
ables and Z as the inducing or pseudo inputs (Quiñonero-Candela and Rasmussen 2005; 
Snelson and Ghahramani 2006). In the variational sparse GP method Z plays the role of a 
variational parameter that can be optimized to improve the approximation. By following 
Titsias (2009) we augment the joint distribution in (5) with the inducing variables to obtain

Here, p(�p) = N(�p|�,KZ) is the marginal GP prior over �p and KZ is the M ×M kernel 
matrix obtained by evaluating the kernel function at Z while p(�p|�p) is the conditional GP 
prior

(6)Cov(f
(i)

l
, f

(j)

k
) = k(�(i), �(j))

P∑

p=1

�lp�kp.

(7)
n∏

i=1

p(�(i)|�(i))
P∏

p=1

p(�p|�p)p(�p).
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where KXZ is the cross-covariance matrix between the training inputs X and the inducing 
inputs Z while KZX = K⊤

XZ
 . For any value of Z this augmentation does not change the model 

(e.g. the exact marginal likelihood is invariant to the value of Z), however by applying a 
certain variational approximation in the space of (�p, �p) we can both reduce the time com-
plexity and also treat Z as a variational parameter. This is achieved by choosing the approx-
imate distribution to be

where p(�p|�p) is the conditional GP prior that appears also in the joint (7), while 
q(�p) = N(�p|�p,Σp) is a Gaussian variational distribution over the inducing variables for 
the p-th latent GP. Hence, �p ∈ ℝ

M is a real-valued vector of tunable variational param-
eters, while Σp ∈ ℝ

M×M is the covariance matrix of the variational distribution which is 
parametrized by M

2+M

2
 variational parameters since we only need a M ×M lower trian-

gular matrix Lp to express Σp . The corresponding q(�p) obtained by the previous choice 
of q(�p) (derived by marginalizing out up from the variational distribution in (8)) is 
q(�p) = N(�p|�h

p
,Σh

p
) where

with QXZ = KXZK
−1
Z

 and Rp

XZ
= QXZLp.

To express the lower bound on the log marginal likelihood log p(Y) under the variational 
distribution in (8) we start the derivation as in Titsias (2009) which leads to cancellation of 
each conditional GP prior p(�p|�p) and then by following the derivation suitable for scala-
ble and/or non-Gaussian likelihoods (Hensman et al. 2013; Lloyd et al. 2015; Hensman et al. 
2015; Dezfouli and Bonilla 2015) we derive the final bound. More specifically, we would like 
to approximate the true posterior P ≡ p({�p, �p}

P
p=1

|Y) with the variational distribution in 
(8). The minimization of the KL divergence KL[Q||P] is equivalently expressed as the maxi-
mization of the following lower bound on the log marginal likelihood log p(Y),

Since each Q is given by (8), each term in the second sum simplifies to become an expecta-
tion over �p,

p(�p|�p) = N
(
�p|KXZK

−1
Z
�p,KX − KXZK

−1
Z
KZX

)
,

(8)Q =

P∏

p=1

p(�p|�p)q(�p),

(9)�h
p
= QXZ�p,

(10)Σh
p
= KX − QXZKZX + R

p

XZ
R
p⊤

XZ
,

�Q

�
log

∏N

i=1
p(�(i)��(i))

∏P

p=1
p(�p��p)p(�p)

∏P

p=1
p(�p��p)q(�p)

�

= �Q

�
log

∏N

i=1
p(�(i)��(i))

∏P

p=1
p(�p)

∏P

p=1
q(�p)

�

=

N�

i=1

�Q

�
log p(�(i)��(i))

�
−

P�

p=1

�Q

�
log

q(�p)

p(�p)

�
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which is precisely the KL divergence KL[q(�p)||p(�p)] . Therefore, the derived bound can 
be written as

In the first line of this expression we have written the expectation of each log-likelihood 
term as an integral under the scalar utility f (i)

k
=
∑P

p=1
�kph

(i)
p
+ bk , defined in (4), that fol-

lows the univariate variational Gaussian distribution

where �(i)
p

 is the i-th element of the vector �h
p
 defined in (9) and s(i)

p
 the i-th diagonal element 

(i.e. variance) of the covariance matrix Σh
p
 from (10). Clearly, all expectations over the like-

lihood terms reduce to performing NK one-dimensional integrals under Gaussian distribu-
tions and each such integral can be accurately approximated by Gauss-Hermite quadrature.

Each KL divergence term of the lower bound in the second line of Eq. (11) is given by

Notice that this term and the overall bound in (11) can be computed efficiently while 
numerical stability can be achieved by a ”jitter” addition on KZ . More specifically, we only 
need to compute once the Cholesky decomposition of KZ in order to evaluate the P KL 
divergences, while the fact that we only keep the lower triangular matrix Lp of each vari-
ational covariance matrix, allows us to efficiently calculate all the remaining terms of each 
KL divergence.

To compute the bound we need firstly to perform one Cholesky decomposition of 
the matrix KZ that overall scales as O(M3) and allows us to fully calculate the sum of 
the KL divergence terms in the second line in (11). Then, with this Cholesky decompo-
sition precomputed, for each i-th data point we need to compute (�(i)

p
, s(i)

p
)P
p=1

 , an opera-
tion that scales as O(PM2) , and subsequently calculate the K variational distributions (i.e. 
their means and variances) over the utility scores in (12) which requires additional O(KP) 
time. Therefore, in order to compute the whole data reconstruction term of the bound 
(first line in Eq. (11)) we need O(NKP + NPM2) time and for the full bound we need 
O(NKP + NPM2 +M3) time. Given that N ≫ M and K ≫ P , the terms that can dominate 
are either O(NKP) or O(NPM2) which can make the computations very expensive when 
the number of data instances and/or labels is very large. Next, we show how to make the 
optimization of the bound scalable for arbitrarily large numbers of data points and labels.

4.2 � Scalable training using stochastic optimization

To ensure that the time complexity O(NKP + NPM2 +M3) for very large datasets is 
reduced to O(PM3) we shall optimize the bound using stochastic gradient ascent by fol-
lowing a similar procedure used in stochastic variational inference for GPs Hensman et al. 

�Q

[
log

q(�p)

p(�p)

]
= �q(�p)

[
log

q(�p)

p(�p)

]

(11)F = −

N∑

i=1

K∑

k=1

�
q(f

(i)

k
)

[
log(1 + e−y

(i)

k
f
(i)

k )
]
−

P∑

p=1

KL[q(�p)||p(�p)].

(12)q(f
(i)

k
) = N

(
f
(i)

k
|

P∑

p=1

�kp�
(i)
p
+ bk,

P∑

p=1

�2
kp
s(i)
p

)
,

(13)KL[q(�p)||p(�p)] =
1

2
�⊤

p
K−1
Z
�p +

1

2
tr
(
K−1
Z
Σp

)
+

1

2
log |KZ| −

1

2
log |Σp| −

M

2
.
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(2013). Given that the sum of KL divergences in (11) is already within the desired com-
plexity O(PM3) , we only need to speed up the remaining data reconstruction term. This 
term involves a double sum over data instances and class labels, a setting suitable for sto-
chastic approximation. Thus, a straightforward procedure is to uniformly sub-sample terms 
in the double sum in (11) which leads to an unbiased estimate of the bound and its gradi-
ents. It turns out that we can further reduce the variance of this basic strategy by applying a 
more stratified sub-sampling over class labels as discussed next.

Suppose B ⊂ {1,… ,N} denotes the current minibatch at the t-th iteration of stochastic 
gradient ascent. For each i ∈ B the internal sum over class labels can be written as

where Pi = {k|y(i)
k
= 1} is the set of present or positive labels of �(i) while 

Ni = {k|y(i)
k
= −1} is the set of absent or negative labels such that Pi ∪Ni = {1,⋯ ,K} . 

In typical multi-label classification problems (Zhang and Zhou 2013; Gibaja and Ventura 
2014, 2015) the size of positive labels Pi is very small, while the negative set can be 
extremely large. Thus, we can enumerate exactly the first sum and use (if needed) sub-sam-
pling to approximate the second sum over the negative labels. The whole process becomes 
somehow similar to negative sampling used in large scale classification and for learning 
word embeddings Mikolov et al. (2013). Overall, we get the following unbiased stochastic 
estimate of the lower bound,

where Li is the set of negative classes for the i-th data point. In general, the computation 
of this stochastic bound scales as O(|B|(|Pi| + |Li|)P + |B|PM2 +M3) and by choos-
ing |B| ∼ O(M) and |Pi| + |Li| ∼ O(M2) we can ensure that the overall time is O(PM3) . 
Notice that the second condition is not that restrictive and in many cases might not be 
needed, i.e. in practice we can use very large negative sets Li which for many datasets 
could be equal to the full negative set Ni .

We implemented the above stochastic bound in Python (where the one-dimensional 
integrals are obtained by Gauss-Hermite quadrature) in order to jointly optimize using sto-
chastic gradient ascent and automatic differentiation tools1 over the parameters (Φ,�) of 
the linear mapping, the PM(M+3)

2
 variational parameters {�p, Lp}

P
p=1

 of the variational distri-
butions q(�p) , the inducing inputs Z and the kernel hyperparameters �.

4.3 � Prediction

Given a novel data point �(∗) we would like to make prediction over its unknown label vec-
tor �(∗) . This requires approximating the predictive distribution p(�(∗)|Y),

−
∑

k∈Pi

�
q(f

(i)

k
)

[
log(1 + e−f

(i)

k )
]
−

∑

�∈Ni

�
q(f

(i)

�
)

[
log(1 + ef

(i)

� )
]
,

−
N

|B|
∑

i∈B

(
∑

k∈Pi

�
q(f

(i)

k
)

[
log(1 + e−f

(i)

k )
]
+

|Ni|
|Li|

∑

�∈Li

�
q(f

(i)

�
)

[
log(1 + ef

(i)

� )
])

−

P∑

p=1

KL[q(�p)||p(�p)],

1  We use tensorflow: https://​www.​tenso​rflow.​org/.

https://www.tensorflow.org/.
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Here, q(�(∗)) is the variational predictive posterior over the latent function values �(∗) evalu-
ated at �(∗) . An interesting aspect of the variational sparse GP method is that to obtain 
q(�(∗)) we need to make no further approximations since everything follows from the GP 
consistency property, i.e.

Here, GP consistency tractably simplifies each integral ∫ p(u(∗)
p
|�p, �p)p(�p|�p)d�p       to 

p(u(∗)
p
|�p) so that the obtained p(u(∗)

p
|�p) is the conditional GP prior of u(∗)

p
 given the induc-

ing variables. The final form of each univariate Gaussian q(u(∗)
p
) has a mean and variance 

given precisely by Eqs. (9) and (10) with X replaced by �(∗) . In practice, when we com-
pute several accuracy ranking-based scores that are often used in the literature to report 
multi-label classification performance Zhang and Zhou (2013), Gibaja and Ventura (2014), 
Gibaja and Ventura (2015) it suffices to further approximate q(�(∗)) by a delta mass centred 
at the MAP2. This reduces the whole computation of such scores to only requiring the eval-
uation of the mean utility vector �̄ (∗) = [f̄

(∗)

1
… f̄

(∗)

K
]⊤ such that f̄ (∗)

k
=
∑P

p=1
𝜙kp𝜇

(∗)
p

+ bk , 
where �(∗)

p
= �(�(∗), Z)K−1

Z
�p and �(�(∗), Z) is the cross covariance row vector between 

�(∗) and the inducing points Z. By using �̄ (∗) we can compute several ranking scores as 
described in the experiments section after.

5 � Experiments

Experiments are carried out on three small-scale (SS) real-world datasets, Bibtex Kata-
kis et al. (2008), Delicious Tsoumakas et al. (2008), and EUR-Lex Mencia and Fürnkranz 
(2008) and three large-scale (LS) real-world datasets, Wiki10 Zubiaga (2012), AmazonCat 
McAuley et al. (2015), and Delicious-L(arge) Wetzker et  al. (2008). All the datasets are 

(14)p(�(∗)|Y) ≈ ∫ p(�(∗)|�(∗))q(�(∗))d�(∗).

(15)

q(�(∗)) =

P∏

p=1
∫ p(u(∗)

p
|�p, �p)p(�p|�p)q(�p)d�pd�p

=

P∏

p=1
∫ p(u(∗)

p
|�p)q(�p)d�p =

P∏

p=1

q(u(∗)
p
).

Table 1   Data sets statistics: 
N and N

ts
 are the number of 

the training and test points 
respectively, D and K are the 
number of features and labels 
respectively, and K is the average 
number of positive labels in an 
instance

Data set D K N N
ts

Bibtex 1836 159 4880 2515
Delicious 500 983 12,920 3185
EUR-Lex 5000 3993 15,539 3809
Wiki10 101,938 30,938 14,146 6616
AmazonCat 203,882 13,330 1,186,239 306,782
Delicious-large 782,585 205,443 196,606 100,095

2  Estimating such accuracy scores using a more accurate Monte Carlo estimation of (14) leads to very simi-
lar results.
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publicly available; see Table 1 for summary statistics of each dataset. To the best of our 
knowledge, this is the first time that a GB-based method is applied to datasets of that large 
dimensions in the context of multi-label learning. Nevertheless, datasets of even larger 
dimensions such as WikiLSHTC325K (Partalas et al. 2015) or Amazon3M (McAuley et al. 
2015) were not able to be trained by our framework due to hardware limitations. The cur-
rent code is available at https://​github.​com/​aresP​anos/​mlgpf.

In our experiments, we applied the proposed multi-label GP factor model (MLGPF) 
using a linear and a squared exponential (se) kernel, where in both cases we freely opti-
mized the inducing inputs matrix Z resulting to methods LR and SE respectively. It is also 
worth mentioning that for those two kernels, we add D extra tunable hyperparameters – one 
for each input dimension – in order to improve our model performance in the extremely 
high dimensional datasets. We also employed a linear combination of those two kernels 
for providing extra flexibility to our model. Initialization of Z is achieved by running a 
few iterations of the k-means algorithm while the rest of the variational parameters are 
initialised by i.i.d. standard Gaussian samples. Additionally, we consider the case where 
the inducing inputs are randomly chosen from the training instances and are kept fixed 
throughout the optimization process. This is to demonstrate the crucial role of optimizing 
inducing inputs regarding the posterior approximation and the predictive performance. For 
this case, we employ the se kernel and we denote that method by SE-F. Further, it should 
be mentioned that choosing large size for the negative label set Li can dramatically reduce 
variance in the stochastic optimization of the lower bound. Fortunately, the computational 
complexity analysis of Sect. 4.2 allows us to choose Li such that |Li| ∼ O(M2) which is 
not that restrictive, and in practice, for all datasets used in the experiments, Li is selected 
to be equal to the size of the full negative set Ni  . For the evaluation of the one-dimensional 
integrals by Gauss-Hermite method in (11) we use ten quadrature points which allows to 
have a sufficiently close approximation without any increase on the computational cost of 
the algorithm.

For the small-scale datasets we run the MLGPF model ten times using ten different 
random initializations and we compute the corresponding average precision scores (see 
Table 7) and lower bounds (see Fig. 5) accompanied by their corresponding standard devi-
ations. The high computational cost and training time of the large-scale datasets restricts us 
to just a single run for the remaining three large datasets.

We evaluate the predictive performance of our method against some of the state-
of-the-art algorithms by using the Precision@k score (P@k). For a ground truth test 
vector �(∗) ∈ {−1, 1}K and a predicted score vector �̄ (∗) ∈ ℝ

K , the P@k is defined as 
k−1

∑
l∈rankk(�̄

(∗))(�
(∗)

l
+ 1)∕2 , where rankk(�̄ (∗)) returns indices of the k largest values of 

�̄ (∗) in descending order. Here, �̄ (∗) can be evaluated using the trained MLGPF model as 
described in Sect. 4.3. Such ranking-based evaluation of multi-label models is very stand-
ard in the multi-label literature where we only care to predict the few 1s in the multi-label 
vectors, typical in many real-world examples, such as recommender systems; for example, 
see Prabhu and Varma (2014); Jain et al. (2017) and the reported results in the Extreme 
Classification Repository.3 Moreover, following common practice in the extreme label lit-
erature we examine and compare the robustness of our method against tail labels, that is 
labels that appear rarely in the dataset. This is achieved by using the propensity score ver-
sion of P@k, namely PSP@k, proposed in Jain et al. (2016). Finally, for completeness, we 

3  http://​manik​varma.​org/​downl​oads/​XC/​XMLRe​posit​ory.​html

https://github.com/aresPanos/mlgpf
http://manikvarma.org/downloads/XC/XMLRepository.html
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also report results for nDCG performance measure and its propensity version PSnDCG@k, 
see Jain et al. (2016) (Fig. 1).

The parameter settings for each dataset can be found in Table 2. Parameters are primar-
ily chosen in that way such that the memory footprint is not large enough for the 64Gb 
RAM Intel Xeon E5-2686 v4 @ 2.30GHz on which we run the experiments. Nevertheless, 
the aforementioned limitations do not impose much restriction on the performance of our 
model. A detailed comparison of the effect that different values of P and M have on our 
model using the Bibtex dataset can be found in Figs. 3 and 4 while Fig. 2 show the impor-
tance of increasing the values of P and M for the general performance of the model.

Based on both predictive performance (see Table  7) and computational time (see 
Table 3) of all three methods on small-scale datasets, we choose to solely employ the SE 
for large-scale datasets (except Wiki10, where SE-F is also used), since it combines high 
predictive power and low computational cost; attributes very important for the challenging 
task of training our model on those datasets.

Furthermore, we compare the MLGPF model with a linear combination of SE and 
LR kernels and optimized inducing inputs with six state-of-the-art-methods from the lit-
erature, namely SLEEC Bhatia et al. (2015), PFastreXML Jain et al. (2016), PD-Sparse 
Yen et al. (2016), DiSMEC Babbar and Schölkopf (2017), Parabel Prabhu et al. (2018), 
and ProXML Babbar and Schölkopf (2019) as they are reported in the Extreme Classifi-
cation Repository (ECR) (see footnote 3). Results that do not appear in ECR were gen-
erated by using the publicly available codes with the suggested configurations. All those 
results appear in Tables 4 and 5 for P@k and PSP@k, respectively. Additional results, 
including nDCG@k and PSnDCG@k are available in Table 6. The choice of the spe-
cific methods is based on the high predictive power on both small and large scale data-
sets. At this point we would like to note that despite the similarities of our work with 

Table 2   Parameter settings of the MLGPF model for each dataset used in our experiments

Dataset Bibtex Delicious EUR-Lex Wiki10 AmazonCat Delicious-L

P 159 300 500 700 600 600
M 400 400 400 600 600 400

Table 3   Training time (in hours) comparison between the MLGPF model and Parabel/ProXML over the six 
multi-label datasets

For MLGPF model, we make use of a linear combination of SE and LR kernel. Absence of results due to 
high computational time is denoted by ’–’

SS Bibtex Delicious EUR-Lex

MLGPF 1.1 2.88 15.24
ProXML 0.03 0.25 4.17
Parabel 0.003 0.02 0.06

LS Wiki10 AmazonCat Delicious-L

MLGPF 120.79 495.28 478.61
ProXML 99.39 447.65 -
Parabel 0.68 1.01 17.61
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Moreno-Muñoz et al. (2018) as we mention at the beginning, the code provided by the 
latter is not capable to deal with the extremely large number of input and label dimen-
sions and cannot be deployed for that kind of problems, rendering our tensorflow-based 
implementation more suitable. We also acknowledge that deep-learning based methods, 
see for example You et al. (2019), are known for their state-of-the-art accuracy results 
but they are heavily relied on sophisticated text pre-processing techniques and advanced 
computing hardware, and thus, we omit any comparisons with them.

Regarding predictive performance of the MLGPF model, it achieves the best P@k 
scores in Bibtex and Delicious dataset compared to the other state-of-the-art methods. 
Additionally, the predictive ability in each of the remaining datasets, even for the large-
scale ones, is very close to the best state-of-the-art method, rendering our model highly 
competitive overall. For instance, in Eurlex the P@1 score of our model exceeds more 
than 7% the PFastreXML method while in the largest dataset in our experiments, Deli-
cious-L, MLGPF attains a P@5 score very close to the SLEEC, surpassing in that way 
all the remaining methods. Similar patterns can be seen in Table 5, where our methods 
exhibits robustness against tail labels with respect to PSP@k measure.

A detailed training time comparison between our method and ProXML/Parabel is 
given in Table 3. The results indicate that the Bayesian nature of our framework and the 
large number of parameters to be optimized pay its toll when it comes to computational 
speed.

Finally, Fig. 1 and Table 7 reveal the positive correlation that the lower bound has 
with the predictive performance, while at the same time it is stressed the significance 

Table 4   Performance comparison between the MLGPF model, where a linear combination of SE and LR is 
used, and other state-of-the-art methods

The top-2 P@k (k=1,3,5) for each dataset are in bold. Absence of results due to high computational time is 
denoted by ’–’

Dataset MLGPF SLEEC PfastreXML PD-Sparse Parabel DiSMEC ProXML

Bibtex P@1 66.51 65.08 63.46 61.29 64.53 63.69 64.60
P@3 41.12 39.64 39.22 35.82 38.56 38.80 39.00
P@5 30.34 28.87 29.14 25.74 27.94 28.30 28.20

Delicious P@1 69.09 67.59 67.13 51.82 67.44 65.79 65.92
P@3 63.27 61.38 62.33 44.18 61.83 62.06 61.32
P@5 58.61 56.56 58.62 38.95 56.75 58.53 56.39

EUR-Lex P@1 82.45 79.26 75.45 76.43 81.73 82.40 83.41
P@3 68.39 64.30 62.70 60.37 68.78 68.50 70.96
P@5 56.31 52.33 52.51 49.72 57.44 57.70 58.92

Wiki10 P@1 84.92 85.88 83.57 82.69 84.31 85.20 82.48
P@3 71.75 72.98 68.61 67.13 72.57 74.60 70.73
P@5 62.22 62.70 59.10 58.13 63.39 65.90 61.47

AmazonCat P@1 92.55 90.53 91.75 90.60 93.03 93.40 92.15
P@3 77.32 76.33 77.97 75.14 79.16 79.10 78.02
P@5 62.34 61.52 63.68 60.69 64.52 64.10 63.95

Delicious-L P@1 43.27 47.85 41.72 34.37 46.97 45.50 –
P@3 40.21 42.21 37.83 29.48 40.08 38.70 –
P@5 38.02 39.43 35.58 27.04 36.63 35.50 –
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of optimizing over the inducing inputs Z (especially when the input dimensionality is 
increased). For instance, the lower bound of the SE for EUR-Lex dataset is significantly 
higher than the bound of SE-F, as shown in Fig. 1a, which leads to considerably better 
P@k scores for SE against SE-F.

Table 5   Performance comparison, using the PSP@k metric, between the MLGPF model, where a linear 
combination of SE and LR is employed, and other state-of-the-art methods

The top-2 PSP@k (k=1,3,5) for each dataset are in bold. Absence of results due to high computational time 
is denoted by ’–’

Dataset MLGPF SLEEC PfastreXML PD-Sparse Parabel DiSMEC ProXML

Bibtex PSP@1 52.95 51.12 52.28 48.34 50.88 49.55 50.1
PSP@3 55.27 53.95 54.36 48.77 52.42 52.87 52.0
PSP@5 61.36 59.56 60.55 52.93 57.36 59.14 58.3

Delicious PSP@1 34.92 32.11 34.57 25.22 32.69 31.37 32.24
PSP@3 35.89 33.21 34.80 24.63 34.00 32.90 33.64
PSP@5 35.95 33.83 35.86 23.85 34.53 33.33 34.01

EUR-Lex PSP@1 41.25 34.25 43.86 38.28 36.36 41.20 44.83
PSP@3 45.81 39.83 45.72 42.00 44.04 45.40 48.31
PSP@5 47.58 42.76 46.97 44.89 48.29 49.30 50.69

Wiki10 PSP@1 15.33 11.14 19.02 10.58 11.66 13.60 11.31
PSP@3 15.39 11.86 18.34 11.02 12.73 13.10 11.14
PSP@5 15.43 12.40 18.43 12.21 13.68 13.80 11.40

AmazonCat PSP@1 56.28 46.75 69.52 49.58 50.93 59.10 61.92
PSP@3 63.57 58.46 73.22 61.63 64.00 67.10 65.88
PSP@5 71.75 65.96 75.48 68.23 72.08 71.20 73.58

Delicious-L PSP@1 6.85 7.17 3.15 5.29 7.25 6.5 –
PSP@3 7.89 8.16 3.87 5.80 7.94 7.6 –
PSP@5 8.72 8.96 4.43 6.24 8.52 8.4 –

Table 6   Predictive performance of the MLGPF model for the six multi-label datasets with respect to the 
nDCG@k and PSnDCG@1 scores

Dataset Bibtex Delicious EUR-Lex Wiki10 AmazonCat Delicious-L

nDCG@1 66.51 69.09 82.45 84.92 92.55 43.27
nDCG@3 61.67 64.40 72.13 74.74 85.72 41.47
nDCG@5 64.24 60.87 66.07 67.26 84.45 38.95
PSnDCG@1 52.95 34.92 41.25 15.33 56.28 6.85
PSnDCG@3 55.07 35.49 44.66 15.38 62.18 7.42
PSnDCG@5 58.67 35.64 45.98 15.40 70.98 8.28
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6 � Performance characteristics

Table 8 presents a detailed comparison of the effect that different values of the number of 
GPs P and number of inducing inputs M have on the optimization of the lower bound and 
the predictive performance of the MLGPF model. Lower bounds for the small scale data-
sets along with 95% confidence intervals are also provided; see Table 8.

6.1 � Extra experimental results

Figures  3,  4, and 5 depict various comparisons in terms of predictive performance and 
optimization of the lower bound for the Bibtex dataset. Figure 3 shows the evolution of 
the P@1 throughout epochs for different values of P and M while Fig. 4 presents the same 
information as previously but in terms of the values of the lower bound. In all the above 
figures, the SE method is used for all cases. The last Figure gives the lower bounds for the 
small scale datasets in tandem with their corresponding 95% confidence intervals based on 
the experiments of the main paper.

7 � Discussion

We have presented a GP factor model for multi-label learning and we have applied it to 
real-world large scale datasets involving hundreds of thousands input and label dimen-
sions with similar or even higher predictive performance than other state-of-the-art 
methods. To achieve scalability, we have introduced a doubly stochastic variational 

Table 7   Predictive Performance of the MLGPF model for the six multi-label datasets

For the small scale datasets we provide the mean precision values along with standard deviations over ten 
random initializations where the bold scores are the top ones across the three methods (left-most column). 
The three rows for each method represent the values (in tandem with the corresponding standard deviations) 
of P@1, P@3, and P@5

SS Bibtex Delicious EUR-Lex

LR 66.07 ± 0.09 66.72 ± 0.23 81.13 ± 0.19
40.68 ± 0.11 61.09 ± 0.16 66.83 ± 0.15
29.90 ± 0.04 55.94 ± 0.09 55.13 ± 0.05

SE 66.46 ± 0.12 69.02 ± 0.16 82.48 ± 0.13
41.05 ± 0.08 63.22 ± 0.11 68.43 ± 0.06
30.26 ± 0.06 58.64 ± 0.07 56.54 ± 0.04

SE-F 63.04 ± 0.13 66.43 ± 0.29 75.32 ± 0.17
39.27 ± 0.11 61.24 ± 0.20 62.07 ± 0.12
29.11 ± 0.06 56.83 ± 0.11 51.21 ± 0.08

LS Wiki10 AmazonCat Delicious-L

SE 83.90 92.48 42.61
70.73 77.21 39.42
61.00 62.16 37.42
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inference scheme which could be useful to other non GP-based models for multi-label 
learning, while the simplified variational approximation could be useful to other GP 
applications, involving non-Gaussian likelihoods, such as standard multi-class GP 
classification.

Regarding future research, an important computational challenge is concerned with 
the development of efficient optimization schemes over inducing inputs in extremely 
high-dimensional input spaces, which is typical in many applications of multi-label 
learning Prabhu and Varma (2014). For that, we plan to exploit the significant spar-
sity patterns of these high dimensional points and optimize inducing inputs so that such 
sparsity patterns are preserved. Furthermore, we wish to elaborate more on the mod-
elling aspects of our method such as, to modify the likelihood in order to deal with 
missing labels Jain et  al. (2017) and add extra latent variables that can capture non-
input dependent correlation between the class labels Gibaja and Ventura (2014). Finally, 
inspired by the encouraging results of the recent work on natural gradient-based opti-
mization for sparse GP models for non-conjugate likelihoods in Salimbeni et al. (2018), 
we aim to explore its efficiency to our multi-label framework in those high-dimensional 
regimes.

(b)(a)

(d)(c)

Fig. 1   Evolution of the lower bound for a Bibtex, b Delicious, c EUR-Lex, and d Wiki10. The blue line 
corresponds to maximization of the lower bound using fixed inducing inputs Z, while the red one to opti-
mized Z. The SE kernel is used for each dataset while all the other parameters are set as described in 
Table 2 (Color figure online)
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Fig. 2   Bar plots comparing both 
the P@1 and the lower bounds 
for Bibtex dataset using a, c fixed 
P={80, 159}, and b, d fixed 
M={50, 100}. For all cases the 
SE kernel is deployed while we 
run the MLGPF model for 50 
epochs

(a)

(b)

(c)

(d)
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Table 8   Predictive Performance of the MLGPF model for the six multi-label datasets

The three rows for each method (left-most column) represent the values (in tandem with the corresponding 
standard deviations) of P@1, P@3, and P@5. Those methods that have not been applied on a dataset are 
indicated with the ’–’ sign

SS Bibtex Delicious EUR-Lex

LR 66.07 ± 0.09 66.72 ± 0.23 81.13 ± 0.19
40.68 ± 0.11 61.09 ± 0.16 66.83 ± 0.15
29.90 ± 0.04 55.94 ± 0.09 55.13 ± 0.05

SE 66.46 ± 0.12 69.02 ± 0.16 82.48 ± 0.13
41.05 ± 0.08 63.22 ± 0.11 68.43 ± 0.06
30.26 ± 0.06 58.64 ± 0.07 56.54 ± 0.04

SE-F 63.04 ± 0.13 66.43 ± 0.29 75.32 ± 0.17
39.27 ± 0.11 61.24 ± 0.20 62.07 ± 0.12
29.11 ± 0.06 56.83 ± 0.11 51.21 ± 0.08

LS Wiki10 AmazonCat Delicious-Large

SE 83.90 92.48 42.61
70.73 77.21 39.42
61.00 62.16 37.42

SE-F 77.79 – –
64.23 – –
55.35 – –
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(b)(a)

(d)(c)

Fig. 3   P@1 of Bibtex dataset using a fixed M = 50, b fixed M = 100, c fixed P = 80, and d fixed P = 159
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(b)(a)

(d)(c)

Fig. 4   Lower bounds of Bibtex dataset using a fixed M = 50, b fixed M = 100, c fixed P = 80, and d fixed 
P = 159



	 Machine Learning

1 3

Acknowledgements  AP and PD were part funded by the The Alan Turing Institute under the Engineering 
and Physical Sciences Research Council grant EP/N510129/1.

LRSE

(a) Bibtex

(b) Delicious

(c) EUR-Lex

Fig. 5   Average lower bounds (black line) with 95% confidence intervals (cyan-coloured area) for each of 
the small-scale datasets based on ten random initializations. Left colums indicates use of the linear kernel 
while the right one the SE kernel (Color figure online)



Machine Learning	

1 3

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Álvarez, M. A., & Lawrence, N. D. (2011). Computationally efficient convolved multiple output Gauss-
ian processes. Journal of Machine Learning and Research, 12, 1459–1500.

Álvarez, M. A., Rosasco, L., & Lawrence, N. D. (2012). Kernels for vector-valued functions: a review. 
Foundations and Trends R in Machine Learning, 4,(3) 195–266.

Babbar, R., & Schölkopf, B. (2017) Dismec: distributed sparse machines for extreme multi-label clas-
sification. In: Proceedings of the Tenth ACM International Conference on Web Search and Data 
Mining, ACM, pp 721–729.

Babbar, R., & Schölkopf, B. (2019). Data scarcity, robustness and extreme multi-label classification. 
Machine Learning, 108(8–9), 1329–1351.

Bauer, M., van der Wilk, M., & Rasmussen, C.E. (2016). Understanding probabilistic sparse Gaussian 
process approximations. In: Advances in Neural Information Processing Systems 29, Curran Asso-
ciates, Inc., pp. 1533–1541.

Bhatia, K., Jain, H., Kar, P., Varma, M., & Jain, P. (2015). Sparse local embeddings for extreme multi-
label classification. In: Advances in Neural Information Processing Systems, pp. 730–738.

Bonilla, EV., Chai, KM., & Williams, C. (2008). Multi-task Gaussian process prediction. In: Advances 
in neural information processing systems, pp. 153–160.

Bui, T. D., Yan, J., & Turner, R. E. (2017). A unifying framework for Gaussian process pseudo-point 
approximations using power expectation propagation. Journal of Machine Learning Research, 
18(104), 1–72.

Csato, L., & Opper, M. (2002). Sparse online Gaussian processes. Neural Computation, 14, 641–668.
Dai, Z., Alvarez, M., & Lawrence, N. (2017). Efficient modeling of latent information in supervised learning 

using Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 5131–5139.
Dezfouli, A., & Bonilla, E.V. (2015). Scalable inference for Gaussian process models with black-box 

likelihoods. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in Neu-
ral Information Processing Systems 28, pp. 1414–1422.

Gaure, A., Gupta, A., Verma, V.K., & Rai, P. (2017). A probabilistic framework for zero-shot multi-label 
learning. In: The Conference on Uncertainty in Artificial Intelligence (UAI), vol 1, p 3

Gibaja, E., & Ventura, S. (2014). Multi-label learning: a review of the state of the art and ongoing 
research. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(6), 411–444.

Gibaja, E., & Ventura, S. (2015). A tutorial on multilabel learning. ACM Computer Survey, 47(3), 
52:1–52:38.

He, J., Gu, H., & Wang, Z. (2012). Bayesian multi-instance multi-label learning using Gaussian process 
prior. Machine Learning, 88(1–2), 273–295.

Hensman, J., Matthews, A.G., & Ghahramani, Z. (2015). Scalable variational Gaussian process clas-
sification. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and 
Statistics.

Hensman. J., Fusi, N., & Lawrence, N.D. (2013). Gaussian processes for big data. In: Conference on Uncer-
tainty in Artificial Intellegence, auai.org, pp. 282–290.

Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational inference. Journal of 
Machine Learning and Research, 14(1), 1303–1347.

Jain, V., Modhe, N., & Rai, P. (2017). Scalable generative models for multi-label learning with missing 
labels. In: Precup D, Teh YW (eds) Proceedings of the 34th International Conference on Machine 
Learning, PMLR, International Convention Centre, Sydney, Australia, Proceedings of Machine Learn-
ing Research, vol 70, pp. 1636–1644

Jain, H., Prabhu, Y., & Varma, M. (2016). Extreme multi-label loss functions for recommendation, tagging, 
ranking & other missing label applications. In: Proceedings of the 22nd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, ACM, pp. 935–944.

http://creativecommons.org/licenses/by/4.0/


	 Machine Learning

1 3

Jasinska, K., Dembczynski, K., Busa-Fekete, R., Pfannschmidt, K., Klerx, T., & Hullermeier, E. (2016). 
Extreme f-measure maximization using sparse probability estimates. In: International Conference on 
Machine Learning, pp. 1435–1444.

Kapoor, A., Viswanathan, R., & Jain, P. (2012). Multilabel classification using bayesian compressed sens-
ing. In: Advances in Neural Information Processing Systems, pp. 2645–2653.

Katakis, I., Tsoumakas, G., & Vlahavas, I. (2008). Multilabel text classification for automated tag sugges-
tion. In: Proceedings of the ECML/PKDD, vol 18.

Khandagale, S., Xiao, H., & Babbar, R. (2020). Bonsai: diverse and shallow trees for extreme multi-label 
classification. Machine Learning pp. 1–21.

Kocev, D., Vens, C., Struyf, J., & Džeroski, S. (2007). Ensembles of multi-objective decision trees. In: 
European conference on machine learning. Springer, pp. 624–631.

Lawrence, ND., Seeger, M., & Herbrich, R. (2002). Fast sparse Gaussian process methods: the informative 
vector machine. In: Neural Information Processing Systems, 13, MIT Press.

Liu, J., Chang, W.C., Wu, Y., & Yang, Y. (2017). Deep learning for extreme multi-label text classification. 
In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in 
Information Retrieval, ACM, pp. 115–124.

Lloyd, C., Gunter, T., Osborne, M.A., & Roberts, S.J. (2015). Variational inference for Gaussian process 
modulated Poisson processes. In: Proceedings of the 32Nd International Conference on International 
Conference on Machine Learning - Volume 37, ICML’15, pp. 1814–1822.

Matthews, AG., Hensman, J., Turner, R., & Ghahramani, Z. (2016). On sparse variational methods and the 
Kullback-Leibler divergence between stochastic processes. In: Proceedings of the 19th International 
Conference on Artificial Intelligence and Statistics, PMLR, Cadiz, Spain, vol 51, pp. 231–239.

McAuley, J., Targett. C., Shi, Q., & Van Den Hengel, A. (2015). Image-based recommendations on styles 
and substitutes. In: Proceedings of the 38th International ACM SIGIR Conference on Research and 
Development in Information Retrieval, ACM, pp. 43–52.

Mencia, E.L., & Fürnkranz, J. (2008). Efficient pairwise multilabel classification for large-scale problems in 
the legal domain. In: Joint European Conference on Machine Learning and Knowledge Discovery in 
Databases, Springer, pp. 50–65.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed representations of words 
and phrases and their compositionality. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Wein-
berger KQ (eds) Advances in Neural Information Processing Systems 26, Curran Associates, Inc., pp. 
3111–3119.

Moreno-Muñoz, P., Artés, A., & Álvarez, M. (2018). Heterogeneous multi-output Gaussian process predic-
tion. In: Advances in Neural Information Processing Systems, pp. 6711–6720.

Nam, J., Mencía, E.L., Kim, H.J., & Fürnkranz, J. (2017). Maximizing subset accuracy with recurrent neu-
ral networks in multi-label classification. In: Advances in neural information processing systems, pp. 
5413–5423.

Niculescu-Mizil, A., & Abbasnejad, E. (2017). Label filters for large scale multilabel classification. In: Arti-
ficial Intelligence and Statistics, pp. 1448–1457.

Papanikolaou, Y., & Tsoumakas, G. (2018). Subset labeled LDA: A topic model for extreme multi-label 
classification. In: International Conference on Big Data Analytics and Knowledge Discovery, Springer, 
pp. 152–162.

Partalas, I., Kosmopoulos, A., Baskiotis, N., Artieres, T., Paliouras, G., Gaussier, E., Androutsopoulos, I., 
Amini, M.R., & Galinari, P. (2015). LSHTC: A benchmark for large-scale text classification. arXiv 
preprint arXiv:150308581

Prabhu, Y., & Varma, M. (2014). Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label 
learning. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery 
and data mining, ACM, pp. 263–272.

Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., & Varma, M. (2018). Parabel: Partitioned label trees for 
extreme classification with application to dynamic search advertising. In: Proceedings of the 2018 
World Wide Web Conference, International World Wide Web Conferences Steering Committee, pp. 
993–1002

Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian pro-
cess regression. Journal of Machine Learning Research, 6, 1939–1959.

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian Processes for Machine Learning (Adaptive Com-
putation and Machine Learning). Cambridge: The MIT Press.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification. 
Machine Learning, 85(3), 333.

Salimbeni, H., Eleftheriadis, S., & Hensman, J. (2018). Natural gradients in practice: Non-conjugate vari-
ational inference in Gaussian process models. arXiv preprint arXiv:180309151.



Machine Learning	

1 3

Seeger, M., Williams, C.K.I., & Lawrence, N.D. (2003). Fast forward selection to speed up sparse Gaussian 
process regression. In: Ninth International Workshop on Artificial Intelligence, MIT Press.

Sheth, R., Wang, Y., & Khardon, R. (2015). Sparse variational inference for generalized GP models. In: 
Bach F, Blei D (eds) Proceedings of the 32nd International Conference on Machine Learning, PMLR, 
Lille, France, Proceedings of Machine Learning Research, vol 37, pp. 1302–1311

Si, S., Zhang, H., Keerthi, S.S., Mahajan, D., Dhillon, I.S., & Hsieh, C.J. (2017). Gradient boosted deci-
sion trees for high dimensional sparse output. In: Proceedings of the 34th International Conference on 
Machine Learning-Volume 70, JMLR. org, pp. 3182–3190

Siblini, W., Kuntz, P., & Meyer, F. (2018). Craftml, an efficient clustering-based random forest for extreme 
multi-label learning.

Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In: Weiss Y, 
Schölkopf B, Platt JC (eds) Advances in Neural Information Processing Systems 18, pp. 1257–1264.

Stoyan, D. (1996). Hans wackernagel: Multivariate geostatistics. An introduction with applications. with 75 
figures and 5 tables. springer-verlag, berlin, heidelberg, new york, 235 pp., 1995, dm 68.-isbn 3-540-
60127-9. Biometrical Journal 38(4):454–454

Tagami, Y. (2017). Annexml: Approximate nearest neighbor search for extreme multi-label classification. 
In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data 
mining, ACM, pp. 455–464.

Teh, Y.W., Seeger, M., & Michael, J. (2005). Semiparametric latent factor models. In: Workshop on Artifi-
cial Intelligence and Statistics 10.

Titsias, M.K. (2009). Variational learning of inducing variables in sparse Gaussian processes. In: Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 567–574

Tsoumakas, G., Katakis, I., & Vlahavas, I. (2008). Effective and efficient multilabel classification in 
domains with large number of labels. In: Proceedings of the ECML/PKDD 2008 Workshop on Mining 
Multidimensional Data (MMD’08), sn, vol 21, pp. 53–59.

Tsoumakas, G., & Katakis, I. (2007). Multi label classification: an overview. International Journal of Data 
Warehouse and Mining, 3(3), 1–13.

Weston, J., Bengio, S., & Usunier, N. (2011). Wsabie: Scaling up to large vocabulary image annotation. In: 
Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI.

Wetzker, R., Zimmermann, C., & Bauckhage, C. (2008). Analyzing social bookmarking systems: A del. 
icio. us cookbook. In: Proceedings of the ECAI 2008 Mining Social Data Workshop, pp. 26–30.

Wydmuch, M., Jasinska, K., Kuznetsov, M., Busa-Fekete, R., & Dembczynski, K. (2018). A no-regret gen-
eralization of hierarchical softmax to extreme multi-label classification. In: Advances in Neural Infor-
mation Processing Systems, pp. 6355–6366.

Yen, I.E., Huang, X., Dai, W., Ravikumar, P., Dhillon, I., & Xing, E. (2017). Ppdsparse: A parallel primal-
dual sparse method for extreme classification. In: Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, ACM, pp. 545–553.

Yen, I.E.H., Huang, X., Ravikumar, P., Zhong, K., & Dhillon, I. (2016). Pd-sparse: A primal and dual sparse 
approach to extreme multiclass and multilabel classification. In: International Conference on Machine 
Learning, pp 3069–3077.

You, R., Zhang, Z., Wang, Z., Dai, S., Mamitsuka, H., & Zhu, S. (2019). Attentionxml: Label tree-based 
attention-aware deep model for high-performance extreme multi-label text classification. In: Advances 
in Neural Information Processing Systems, pp. 5820–5830.

Yu, H.F., Jain, P., Kar, P., & Dhillon, I. (2014). Large-scale multi-label learning with missing labels. In: 
International Conference on Machine Learning, pp. 593–601.

Zhang, M. L., & Zhou, Z. H. (2007). ML-KNN: A lazy learning approach to multi-label learning. Pattern 
Recognition, 40(7), 2038–2048.

Zhang, M., & Zhou, Z. (2013). A review on multi-label learning algorithms. IEEE Transactions on Knowl-
edge and Data Engineering. https://​doi.​org/​10.​1109/​TKDE.​2013.​39.

Zubiaga, A. (2012). Enhancing navigation on wikipedia with social tags. arXiv preprint arXiv:12025469.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1109/TKDE.2013.39

	Large scale multi-label learning using Gaussian processes
	Abstract
	1 Introduction
	2 Related work
	3 The multi-label GP factor model
	4 Scalable variational inference
	4.1 Sparse approximation
	4.2 Scalable training using stochastic optimization
	4.3 Prediction

	5 Experiments
	6 Performance characteristics
	6.1 Extra experimental results

	7 Discussion
	Acknowledgements 
	References




