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Abstract 

Parkinson’s disease (PD) is a progressive neurodegenerative condition for which there 

are currently no treatments to stop or slow disease progression. A number of genome-

wide association studies (GWASs) of PD patients compared to controls have identified 

genetic variants associated with disease risk, however these cannot inform us about 

the genetic factors and biology underpinning progression. 

The aim of this PhD is to identify genetic variants associated with disease progression. 

I first examined the frequency and baseline clinical features of patients carrying rare 

pathogenic Mendelian mutations (including variants in LRRK2, SNCA, Parkin, and 

PINK1) in the Tracking Parkinson’s cohort. I showed that Parkin and PINK1 carriers 

had better cognition than other early-onset patients at baseline despite having longer 

disease duration, suggesting slower progression. In analysis of longitudinal data, I also 

showed that GBA carriers appeared to have more rapid motor and cognitive 

progression than non-carriers. 

Prior to conducting GWASs, I sought to understand the clinical predictors of 

progression and showed that age at onset and gender were associated with 

progression to clinical milestones.  

Following a new method from the Huntington’s disease progression GWAS, I used 

principal components analysis (PCA) to combine multiple motor and cognitive scales 

in PD to create composite progression scores. I showed that APOE 4 was strongly 

associated with cognitive progression, and identified a novel signal in ATP8B2 which 

was nominally associated with motor progression. 

Finally, I conducted large-scale GWASs of survival to clinical milestones: mortality, 

Hoehn and Yahr stage 3, and dementia, using data from Tracking Parkinson’s, Oxford 

Discovery, Parkinson’s Progression Markers Initiative, Queen Square Brain Bank, UK 

Biobank, and Calypso studies. I identified loci in or near APOE, ADRA2A, and 

SH3GL2 which were nominally associated with progression to mortality. I also showed 

that the APOE 4 variant, rs429358, was strongly associated with progression to 

dementia. 
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Chapter 1 : Introduction 

Overview 

Parkinson’s disease (PD) is a progressive neurodegenerative disease. There are 

currently no treatments that stop or slow the progression of PD. There is strong 

evidence that genetic variants contribute to disease risk, and more recently there is 

growing evidence that genetics contribute to the rate of disease progression. The 

relationship between intrinsic disease heterogeneity, risk, and progression is complex. 

The aim of this project is to identify genetic determinants of progression in PD. This 

work will help us to better understand the biology of progression and potentially identify 

drug targets for new disease-modifying treatments. 

Epidemiology, diagnosis, and pathology of PD 

PD was first described by James Parkinson in 1817 in An Essay on the Shaking Palsy 

[1]. PD is characterised by a collection of features known as parkinsonism – 

bradykinesia (slowness of movement and decrease in amplitude or speed of repeated 

movements), in combination with either rest tremor or rigidity [2,3]. The diagnosis of 

PD can be supported by the presence of postural instability, as included in the original 

Queen Square Brain Bank clinical diagnosis criteria, but this usually occurs in the later 

stages of PD [3]. 

Pathologically, PD manifests with the selective loss of dopamine neurons in the pars 

compacta of the substantia nigra. The pathological hallmark of PD and gold standard 

for diagnosis is the presence of Lewy bodies, which are abnormal deposits of the 

protein α-synuclein [4]. These are found in surviving neurons in the substantia nigra 

as well as surrounding brain areas of patients with PD [2,5]. The Braak staging 

hypothesis, based on post-mortem examination of donors with different disease 

extent, suggests that Lewy body pathology begins in the brainstem and spreads 

progressively to other areas of the brain: the pons, substantia nigra, limbic system, 

temporal cortex, and finally to multiple regions in the cortex [6]. This may be mediated 

through cell to cell spread of α-synuclein pathology [7,8]. 

PD affects up to 1,903 out of 100,000 people aged over 80 [9,10]. Although the 

prevalence of PD increases with age, it is not just a disease of the elderly; it affects 41 
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in 100,000 people aged between 41 to 50 [9]. It is estimated that 6.2 million people 

worldwide are affected by PD currently, and this is expected to increase to up to 12.9 

million in the next 20 years as the population ages and life expectancy increases [11]. 

Clinical progression in PD 

PD progression is heterogeneous 

The clinical progression of PD seems to follow a general pattern [8]. Diagnosis is 

generally made on the basis of motor symptoms, including bradykinesia, rigidity, and 

tremor. In the early stages after diagnosis and with treatment, these may be 

accompanied by treatment complications, such as fluctuations and dyskinesia 

(involuntary movements). Other motor milestones, such as dysphagia (swallowing 

difficulties), postural instability, and falls, develop in later disease stage [8]. Major non-

motor milestones, including dementia and hallucinations, may develop later in the 

disease course. However, other non-motor symptoms may present earlier in disease, 

such as mild cognitive impairment. In addition, there are some non-motor symptoms 

which may be present long before the diagnosis of PD and initial motor symptoms. 

These can include constipation, hyposmia, and Rapid Eye Movement (REM) sleep 

behaviour disorder [12]. 

Our knowledge on the disease course of PD comes from longitudinal studies with 

extensive periods of follow-up. The Sydney Multicentre Study is a long-running study 

of L-dopa naïve, newly diagnosed, idiopathic PD patients, initially in a randomised trial 

of low-dose L-dopa compared to low-dose bromocriptine [13,14]. This study is widely 

reported as indicating the long-term outcomes in patients with PD. 38% of patients 

had died within 10 years [14]. By 15 years, 94% of patients had experienced 

dyskinesia, 56% had experienced dystonia, 50% had experienced dysphagia 

(choking), 81% had experienced falls, 81% had experienced freezing, 48% dementia, 

36% had mild cognitive impairment, 50% hallucinations, autonomic failure (35% 

hypotension, 41% urinary incontinence), and 65% had died [15]. By 20 years, 74% of 

patients had died, most patients were no longer independent, 87% had experienced 

falls, autonomic dysfunction was common, 74% had experienced hallucinations, and 

83% had dementia [16]. This suggests that most patients who had died were 

bedridden, and more severe disease at baseline (including factors such as dementia, 
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Hoehn and Yahr stage 3, early development of instability) was predictive of mortality 

[15]. This suggests that there is a general progression towards common disease 

milestones, and most patients seem to follow this pattern. 

Although the Sydney Multicentre Study indicates the overall long-term outcomes, 

other longitudinal studies show that clinical progression is heterogeneous. The 

CamPaIGN study (Cambridgeshire Parkinson's Incidence from GP to Neurologist) 

showed that in an incident cohort of newly diagnosed patients, outcomes were very 

heterogenous after 10 years of follow-up [17]. By 10 years, 45% of patients had died, 

50% of patients had developed dementia, and 68% had reached Hoehn and Yahr 

stage 3 with postural instability. However, there was a proportion of patients (23%) 

who still had a good outcome after 10 years, surviving with no postural instability, and 

intact cognition [17]. The Sydney Multicentre Study similarly found a proportion of 

patients (10%) who, after 10 years of follow-up, still were in early Hoehn and Yahr 

stages, did not have troublesome fluctuations, dementia, or hallucinations, and were 

very responsive to treatment [14]. Data from these studies shows that although there 

seems to be a pattern for the development of key symptoms and milestones, there is 

substantial variability in the rate of disease progression between patients. 

The heterogeneity of clinical progression is further confirmed in studies identifying 

subtypes of patients with different rates of progression. There have been many 

subtype studies using a variety of clustering methods, and each classifying slightly 

different subgroups of PD patients. However, taken together, these studies show that 

the rate of disease progression is heterogeneous, and can often be clustered 

according to groups of patients defined by baseline characteristics. Using a data driven 

approach, Lewis et al. identified 4 subgroups of patients: young onset patients with 

slower disease progression, tremor dominant, non-tremor dominant, and rapid motor 

disease progression without cognitive impairment [18]. Here, progression was 

evaluated from a single observation (rather than longitudinal data) by dividing the 

Unified Parkinson’s Disease Rating Scale (UPDRS) Part III motor score by years of 

disease duration. However, this has been supported by other studies showing that 

subtypes defined using baseline features have different rates of progression in 

longitudinal assessments [19,20]. 

The pathology of progression 
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It is possible that clinical disease progression is related to the extent and severity of 

neuropathology. Several PD studies suggest that this may be the case; for instance, 

dementia and cognitive impairment are correlated with Lewy body neuropathologic 

stage [21], and Lewy body load in the neocortex and other regions [22,23]. A recent 

systematic review of postmortem PD cases suggested that α-synuclein pathology had 

the strongest association with dementia in PD [24]. 

However, there are many other studies which conflict with these suggestions that Lewy 

body pathology is correlated with clinical progression. Some studies have reported 

cortical Lewy body pathology in individuals without a neurological diagnosis and PD 

patients without cognitive impairment [25,26]. Neuropathological assessment in the 

Sydney Multicentre Study showed that pathological staging was not consistent in all 

groups of patients. In young onset PD patients with typical long disease duration, Lewy 

body pathology seemed to follow the hierarchical pattern predicted by Braak staging 

and this correlated with clinical progression [27]. However, some patients had rapidly 

progressing disease with dementia, short survival, and high neocortical Lewy body 

loads. The last group of patients had older onset, more complex disease, and shorter 

survival; these patients had diffuse Lewy body loads and often co-occuring amyloid 

plaque pathology. These distinct groups suggest that the progression of pathology 

does not follow the same pattern in all patients, and that other neuropathological 

substrates may contribute to progression [27]. The systematic review by Smith et al. 

also found that co-occuring amyloid pathology was common in PD cases with 

dementia [24].    

Taken together, these studies suggest that Lewy body load is not the sole driver of 

clinical progression and dementia. Other types of pathology, such as amyloid, tau, and 

vascular disease, may drive progression [16,24,28,29] and may indeed be correlated 

and interact with Lewy body pathology [22,30]. 

Measuring clinical progression 

The lack of clear pathological markers of progression means there is no gold standard 

for measuring clinical progression in PD. The Movement Disorders Society Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS) Part III and Part II are most 

commonly used in clinical trials. These measure motor symptoms in a clinician 
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examination (Part III) and the patient-reported motor experiences of daily living (Part 

II) [31]. 

However, there are many other ways of assessing symptom severity in PD as well as 

other aspects, such as quality of life and impact on patients’ daily experiences. In 

addition, motor assessments are affected by medication and can be conducted when 

the patient is either in an ‘off’ or ‘on’ state, with regard to whether their PD medication 

is in effect or not. In order to measure progression accurately, scales must be sensitive 

to change over time otherwise they do not provide enough information about variability 

and progression. The scales that are the most sensitive to change over time over a 1 

year period (with the largest change scores) are the Hoehn and Yahr scale, the 

UPDRS Part II, and the UPDRS Part III [32]. In a population-based sample assessed 

with remote questionnaires, the most sensitive measures were the Schwab & England 

Activities of Daily Living Scale, the activities of daily living section of the Parkinson’s 

Disease Questionnaire (PDQ) 39, and the visual analogue scale found in the quality 

of life instrument EQ-5D [32]. Overall, the measures of impairment and disability were 

more sensitive to change over time than the quality of life scales, possibly because 

quality of life is a subjective report and may adapt to change over time. 

This study clearly shows that different scales measure slightly different aspects of PD 

clinical signs and progression – whether disability/impairment, ‘objective’ symptoms, 

or quality of life. There is no clear answer of which scale is best, as different scales 

may be better suited to measuring different things, for example the Hoehn and Yahr 

scale may be more sensitive to detecting symptoms which are not responsive to 

treatment (such as axial symptoms) whereas the UPDRS motor assessment may not 

change as much because treatment has been optimised [32]. 

The question of whether mortality is the gold standard of PD progression also cannot 

be clearly answered. Unlike in other rapidly progressing diseases, such as 

Progressive Supranuclear Palsy (PSP), where time from disease onset to death is a 

good marker for rate of progression, PD has a long disease duration. The cause of 

death may not be PD or its complications, unlike other diseases. The Sydney 

Mutlicenter Study found that PD contributed to death in only 53% of patients [15]. In 

addition, survival time in PD may not reflect rate of progression, for example, some 

patients live for longer but have very poor quality of life towards the end of life. 
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In addition, there are many different ways of analysing clinical progression – whether 

absolute symptom severity, time to clinical milestones, or change from baseline 

scores. Again, there is no clear consensus as to which method is the best, and this is 

compounded by the fact that there is no gold standard of progression by which to 

compare different methods. 

To summarise, the nature of PD progression, measurement, and analysis of 

progression, is complex. However, this work is essential because clinical trials aim to 

test new therapies that could potentially stop or slow disease progression, often after 

the point of PD diagnosis. In order to develop new disease modifying treatments, we 

need to better understand the biology of disease progression. One way to do this is to 

study genetic factors. 

The role of genetics in PD: Rare variants 

Genetics have already shaped our understanding of PD risk and biology. Evidence 

from family based studies has shown that genetic factors influence both PD risk as 

well as clinical features and progression.  

Mutations in SNCA, LRRK2, PARK2 (parkin), PINK1, DJ1, and a few other genes, 

have been shown to increase the risk of developing PD in a small proportion of patients 

[33]. Importantly, identification of these genetic factors have highlighted a number of 

pathways and potential targets that are important for neurodegeneration in PD. For 

example, SNCA mutations, in particular whole-gene multiplications, suggest that the 

overproduction of α-synuclein is a key process for neurodegeneration in PD and could 

be targeted as a therapeutic approach [34]. LRRK2 mutations are the most common 

cause of PD, and while there is still much that is not known about the activity of LRRK2 

and its role in the pathology of PD, there is evidence that mutations in LRRK2 are 

associated with increased kinase activity [35,36]. This has led to trials of Lrrk2 kinase 

inhibitors as a potential therapeutic strategy for PD [37].  

SNCA mutations, particularly whole-gene triplications, are associated with a more 

severe phenotype including more severe dementia, rapid progression, hallucinations, 

and autonomic dysfunction [38–41]. LRRK2 mutations are suggested to be associated 

with milder disease, less cognitive impairment, and slower motor progression than 

idiopathic PD [42–44]. However, other studies have not confirmed these findings [45]. 
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PARK2 (parkin) and PINK1 are recessive genes typically associated with early-onset 

PD/parkinsonism. Both these genes are important for regulating mitochondrial function 

and mitophagy, which is the clearance of damaged mitochondria from the cell [46,47], 

and disruption of this pathway may be an important mechanism in the pathogenesis 

of PD [48]. The mitophagy pathway has been being targeted as another potential 

therapeutic strategy. 

Parkin and PINK1 mutations are generally associated with younger age at onset, 

slower disease progression, dystonia in some cases, good response to L-dopa, and 

less cognitive impairment [49–57]. 

The glucocerebrosidase (GBA) gene is a risk loci for PD and is associated with a 

smaller increase in disease risk than mutations in other genes – approximately 5-fold 

increase in the risk of PD [58]. Although the risk conferred is not as large as the other 

Mendelian genes, GBA mutations are more common in PD; prevalence ranges from 

2% to 30% depending on the population [58–61].  

Exactly how GBA mutations contribute to the development of PD is still unknown, 

however they have highlighted the potential role of the glucocerebrosidase enzyme 

(GCase) and the lysosomal pathway as a pathogenic mechanism [62]. GBA mutations 

are associated with earlier onset, more rapid progression to mortality, motor 

impairment, and dementia, as well as more frequent neuropsychiatric symptoms [63–

71]. 

Although these genetic factors are rare, there is early evidence that the affected 

pathways are also involved in idiopathic PD patients [72]. In addition, there is overlap 

in the genes that contain pathogenic rare variants and those that contain common 

variants that increase risk for idiopathic PD, as discussed in the next section [73] . 

Therefore, it is hoped that potential therapies that target these biological pathways will 

be important not just for patients carrying mutations in these genes but also for other 

PD patients. 

Common variants in PD risk 

In recent years, there have been a number of loci identified which are associated with 

disease. This is based on the common disease/ common variant hypothesis, which 
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suggests that a common, complex disease such as PD is likely to be caused by 

multiple common genetic variants which are present in the general population [74]. 

Each variant confers only a small increase in risk but collectively they can contribute 

to the development of disease. 

A number of genome-wide association studies (GWASs) in PD have identified loci 

associated with disease risk [75–80]. These are conducted by comparing large 

numbers of PD patients and healthy controls. The most recent meta-analysis of PD 

GWAS analysed over 37,000 PD cases and 1.4 million controls [75]. This identified 90 

independent signals across 78 loci that were associated with PD risk. 

These GWASs have identified hits in LRRK2 and SNCA, which have also been 

implicated in autosomal dominant PD. This confirms that these genes are important 

for disease risk, both in rare high-risk penetrant mutations, and common variants that 

contribute small amounts of risk [81]. Secondly, case-control GWASs have contributed 

to evidence that certain pathways are important for PD risk, such as lysosomal function 

[75].  Finally, these GWASs have identified novel genes and pathways that are being 

investigated as potential targets for new therapies. 

Importantly, these GWASs have large numbers of PD patients and controls, but do 

not have detailed clinical data and so cannot identify common variants that are 

associated with PD phenotypes or progression. This is the primary aim of this project. 

Genetics of PD progression: Candidate gene studies 

There is a growing body of evidence that genetic factors are not only important for the 

development of PD, but are also associated with clinical features and progression. 

This is evident for rare variants in Mendelian genes, as discussed previously. Most of 

these studies have been carried out in clinical referral series, and have not been 

systematically studied in a large-scale population-based cohort. Additionally, these 

pathogenic mutations are present in only a small proportion of the PD population (< 

10%). 



 29 

I hypothesise that other genetic factors contribute to the variability in disease 

progression. Understanding this association will be crucial to the development of new 

therapies to stop or slow PD progression. 

There have been several candidate-gene studies of common variants associated with 

PD progression. The most frequently studied are the MAPT haplotypes and APOE 4 

genotypes. Studies in two longitudinal cohorts have suggested that the MAPT H1/H1 

haplotype is associated with more rapid cognitive progression and dementia [17,82–

84]. Other cross-sectional studies show that MAPT H1/H1 carriers have worse 

performance in cognitive tasks [85] and have more frequent dementia [86]. However, 

these findings have not been confirmed in other large studies, including longitudinal 

cohorts [87–89]. 

The APOE 4 allele has also been extensively studied in PD, and is an important risk 

factor for Alzheimer’s disease (AD). Several longitudinal and cross-sectional studies 

have shown that the 4 allele is associated with the rate of cognitive decline in a range 

of scales [87–89] and is more frequent in PD patients with dementia [90]. However, 

other longitudinal incident cohorts have not replicated this finding [91,92]. A recent 

meta-analysis found a small, significant overrepresentation of APOE 4 carriers in PD 

dementia cases (odds ratio 1.74), however suggested that this may be confounded by 

heterogeneity between studies, small sample sizes, and publication bias [92]. 

Latourelle and colleagues used machine learning methods in a relatively small study 

cohort (N = 312) to show that genetic variation was a predictive marker of motor 

progression. Progression was defined as the rate of change in the MDS-UPDRS Part 

II and III combined. In particular, two variants rs9298897 (located in the intron of the 

LINGO2 gene) and rs17710829 were associated with progression [93]. Further 

replication of these results in independent cohorts is needed.  

In addition, the PD Genetic Risk Score (GRS) has been suggested to be associated 

with motor and cognitive progression in PD in two studies [94,95]. The GRS is an 

individual score based on the cumulative weighted number of PD risk variants, from 

case-control GWASs. However, these studies have been conducted with small sample 

sizes (285 and 336 patients respectively), and with earlier versions of the GRS based 

on fewer loci. These findings need to be confirmed in large-scale studies. 
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The problem with candidate gene studies is that they are subject to confirmation bias 

and cannot identify new variants associated with progression. However, these studies 

have contributed to our knowledge that genetics plays a role in PD phenotypes and 

progression. 

Genome-wide association studies of progression 

GWASs of phenotypes and progression are relatively new, not just in PD but also in 

other diseases. However, analysing phenotypes, either in discrete or quantitative 

traits, is important to identify genetic variants that influence heterogeneity of 

phenotypes within patients only. The benefits of genome-wide approaches to disease 

phenotypes can be seen in well-powered studies of PD age at onset [96], and 

progression in other diseases such as Huntington’s disease (HD). 

A recent genome-wide meta-analysis of 28,568 PD cases showed that loci in SNCA 

and TMEM175/ GAK were associated with age at onset in PD [96]. These two loci are 

both well-established PD risk loci from case-control GWASs. In addition, this study 

also confirmed previous candidate gene studies showing that GBA variants (N370S, 

E326K, and T369M) are associated with younger age at onset. 

Importantly, the results of this study suggest there is partial but not complete overlap 

between the genetics of PD risk and PD age at onset. The GRS was associated with 

age at onset, however, other well-established PD risk loci were not associated with 

age at onset, including GCH1 and MAPT. 

This study highlights the differences in the genetic architecture underlying PD risk and 

that of PD phenotypes, such as age at onset and disease progression. Therefore, 

therapies that target pathways involved in PD risk may not be effective at slowing 

progression in individuals who already have PD, as different pathways and 

mechanisms may be more important for the progression of disease. 

GWASs in other diseases have successfully identified genetic determinants of 

progression and pointed to particular mechanisms that could be targeted. One of these 

is the GWAS of HD progression [97]. This study of approximately 2,000 HD patients 

clearly showed that a locus overlapping the MSH3 gene was associated with disease 

progression. MSH3 is involved in the DNA mismatch repair pathway and has been 
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implicated in the pathogenesis of HD through somatic expansion of the CAG repeat. 

This study has drawn attention to MSH3 and this pathway as a potential therapeutic 

target in HD. 

There are clear differences between the analyses of progression in HD and PD. HD is 

a more homogeneous population with a single gene cause and more predictable 

progression. In addition, progression in different domains are well correlated in HD. 

The PD population is more heterogenous, with a number of genetic causes in a small 

proportion of cases, and more variability both between and within subjects in terms of 

progression. It is clear that accurate measures of disease progression will be needed, 

and likely larger sample sizes to overcome heterogeneity in PD cohorts. 

Recently, the first large-scale GWAS of PD progression was conducted [98]. This 

examined a range of progression measures, including change in the MDS-UPDRS, 

Hoehn and Yahr staging, the Mini Mental State Examination (MMSE), and Montreal 

Cognitive Assessment (MoCA) in 12 longitudinal cohorts. Overall, analyses included 

4,093 PD patients with 25,254 follow-up visits, although not all patients had data on 

all the measures so individual GWAS numbers are smaller. However, this study has 

demonstrated a number of key points. 

Firstly, it shows that there are single variants and loci that can be detected in sample 

sizes of approximately 4,000 PD cases. While this number is still relatively small for a 

GWAS, there were two loci that reached genome-wide significance. 

Secondly, the study identified a novel locus, rs382940, associated with more rapid 

progression to Hoehn and Yahr stage 3 in survival analysis. This variant is in an 

intronic region of SLC44A1, solute carrier family 44 member 1. This gene has not been 

previously reported in PD, and this finding needs to be replicated in independent 

datasets. 

Thirdly, this GWAS has confirmed previous findings from candidate gene studies. In 

targeted analyses (not genome-wide significant), GBA variants (T369M and E326K) 

were associated with more rapid motor and cognitive progression, and the APOE 4 

tagging variant, rs429358, was associated with lower MoCA and MMSE scores [98].  
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Finally, the results suggest that the loci underpinning PD risk are, to a large extent, 

distinct from those that are involved in PD progression. Iwaki et al. tested 88 risk 

variants from the most recent PD case-control GWAS, of which 10 passed analysis-

wide significance (p < 0.002). Certain PD risk variants were associated with clinical 

features, including cognition, motor progression, and daytime sleepiness [98]. 

However, the majority of PD risk variants were not associated with any markers of 

progression. Further studies are needed to replicate these results and identify whether 

the genetic architecture of PD risk differs from that of PD progression. 

The challenges addressed by this PhD/ Aims 

This PhD addresses the following challenges: 

1. Establishing the frequency and baseline clinical characteristics of pathogenic 

Mendelian mutations in PD in a large UK cohort (Chapter 3) 

2. Understanding the clinical predictors of progression (Chapter 4) 

3. Conducting genome-wide association studies using composite scores of motor, 

cognitive, and cross-domain progression (Chapter 5) 

4. Conducting genome-wide association studies of survival to clinical milestones 

in PD: mortality, Hoehn and Yahr stage 3 or greater, and dementia (Chapter 6) 
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Chapter 2 : Methods 

Cohorts: Recruitment, inclusion/exclusion criteria, and clinical assessments 

Tracking Parkinson's 

Tracking Parkinson's is a multi-centre observational study recruiting patients from 72 

centres across the UK. Patients with a clinical diagnosis of PD, meeting the UK Brain 

Bank diagnostic criteria, were recruited [99]. Ethics approval was provided by West of 

Scotland Research Ethics Service. The study was carried out in accordance with the 

Declaration of Helsinki and is registered as NCT02881099 at ClinicalTrials.gov. 

Recent onset PD 

Patients who were diagnosed with PD within 3.5 years of study entry were recruited 

as recent onset participants. These participants were assessed every 18 months with 

detailed, standardised clinical assessments, including motor, cognitive, and other non-

motor assessments. 

Established young onset PD 

Patients with age at diagnosis  50 years and with time from diagnosis > 3.5 years  

were recruited as young onset participants. These patients were not assessed 

longitudinally so were only included for baseline analyses. 

Oxford Discovery  

The Oxford Parkinson's Disease Centre Discovery study (Oxford Discovery) is another 

UK observational multi-centre study. PD patients were recruited from neurology clinics 

in the Thames Valley area. Patients who met the UK Brain Bank diagnostic criteria for 

PD and were diagnosed within the last 3 years were recruited to the study [100]. 

Ethical approval for the study was granted by the Berkshire Regional Ethics 

Committee. Participants were excluded if they had non-idiopathic parkinsonism, 

dementia preceding PD by one year, or cognitive impairment which meant informed 

consent could not be obtained [100]. Participants were assessed every 18 months 

using standardised clinical assessments similar to Tracking Parkinson's. 
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Parkinson's Progression Markers Initiative (PPMI) 

Patients with PD were recruited at multiple centres across Europe, America, and 

Australia if they met the following inclusion criteria [101] (https://www.ppmi-info.org/):  

1. Asymmetric resting tremor or asymmetric bradykinesia or two of bradykinesia, 

resting tremor, and rigidity 

2. Diagnosis within 2 years  

3. Hoehn and Yahr Stage I or II at baseline 

4. Untreated for PD, and not expected to require PD medication within 6 months 

at baseline 

5. Dopamine transporter (DAT) imaging showing DAT deficit 

6. 30 years or older at time of PD diagnosis 

Participants were assessed every 3 months in the first year, then every 6 months until 

the end of the fifth year and every year following. Cognitive assessments were only 

performed at yearly visits. The Montreal Cognitive Assessment (MoCA) was 

performed at the screening visit and not at baseline, so the screening assessment and 

corresponding disease duration was used for analysis. For motor assessments, the 

annual assessments were conducted in the “practically defined off” state, where the 

participant did not take their PD medications since the night before the visit, and for at 

least 12 hours prior to the visit. As the cognitive assessments and “practically defined 

off” motor assessments were conducted at annual visits, I only included data for 

annual visits in the analysis. I downloaded the PPMI clinical data on 14/08/2019 and 

performed all the data cleaning and merging. 

Queen Square Brain Bank 

Patients with a pathologically confirmed diagnosis of PD, regardless of clinical 

diagnosis, and that had DNA available at the UCL Queen Square Institute of 

Neurology were included for analyses. Summary clinical data was queried and 

provided by Mr Hallgeir Jonvik (UCL). This included age at onset, gender, age at 

death, clinical diagnosis, and pathological diagnosis. 

https://www.ppmi-info.org/
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Calypso 

Patients were recruited between 2006 and 2008 through 3 methods: a community-

based prevalence study in Cardiff, referrals from neurologists, geriatricians, and PD 

nurses, and self-referral  [102]. Patients met the UK Brain Bank diagnostic criteria for 

PD and provided consent for review of their medical records. Vital status was obtained 

from the NHS Spine by Ms Miriam Pollard in June 2020. 

UK Biobank 

The UK Biobank is large, prospective, population-based study and an open-access 

resource of phenotypic, genotypic, and health record data for 500,000 participants 

[103,104]. Participants aged between 40 and 69 were recruited to one of 22 centres 

across the UK [104]. Access to the UK Biobank data was through Application 46450. 

PD cases were identified from hospital episode statistics (HES) (ICD10 code, in either 

the primary or secondary position), self-report, or death. Data was downloaded on 

13/06/2020, after the death register records were updated (up to April 2020). 

PD patients were classed as either prevalent or incident cases following the 

‘Definitions of Parkinson’s Disease and the major causes of Parkinsonism: UK 

Biobank Phase 1 Outcomes Adjudication’ document (version 1.0, March 2018; 

http://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/alg_outcome_pdp.pdf).  

Briefly, prevalent cases were defined as patients who had the first PD ICD code 

(ICD10 code G20) date prior to the baseline assessment, or self-reported PD at the 

baseline assessment. Incident cases were defined as patients with PD detected by 

HES with the PD ICD code date after the date of baseline assessment. Patients with 

PD coded in any position in the death register records, but who did not have PD in the 

HES records at any point, were also defined as incident cases. 

The date of PD diagnosis was defined according to UK Biobank guidelines, using the 

earliest date of the PD code (HES, self-report, or death register). 

Patients who did not self-report PD at baseline but at a follow-up visit, and who did not 

have PD in any HES records or death register records, were not classified as either 

prevalent or incident. I assigned these patients as a separate ‘undefined’ category. 

http://biobank.ctsu.ox.ac.uk/showcase/showcase/docs/alg_outcome_pdp.pdf
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This is in line with the UK Biobank guidelines, which only included PD self-report at 

the baseline assessment.  

Genotyping 

Tracking Parkinson's 

At study entry, blood samples were collected from every participant and DNA was 

extracted from an ethylene diamine tetraacetic acid sample by Ms Catherine Bresner 

and Prof Nigel Williams’ team (Cardiff University). DNA samples were genotyped using 

the Illumina HumanCore Exome array with custom content. This covered 

approximately 250,000 common variants, 250,000 rare variants, and over 27,000 

custom variants that have been implicated in neurological and psychiatric disorders 

[99]. Genotyping was performed by Ms Catherine Bresner (Cardiff University) and Dr 

Leon Hubbard (Cardiff University). Genotype data was in genome build 

hg19/GRCh37. 

PD gene sequencing and genotyping 

Almost all samples were genotyped for the LRRK2 G2019S mutation using the 

‘Kompetitive’ allele-specific polymerase chain reaction (KASP) assay (LGC Genomic 

Solutions). Subsets of samples were also screened for mutations in GBA, Parkin, and 

PINK1 with Sanger sequencing.  

Whole exome sequencing 

Whole exome sequencing was performed in a subset of young-onset and familial 

patients (N=489). Exome sequencing was performed by Macrogen 

(http://www.macrogen.com/) using the Agilent SureSelect capture kit (Santa Clara, 

CA, USA). Quality control and annotation was performed by Dr Alan Pittman (UCL). 

Variant calls and individual genotypes that did not meet quality filters were excluded. 

Samples were aligned to the human genome (build hg19). The Genome Analysis 

Toolkit (GATK) was used for local realignment, base quality score recalibration, and 

multi-sample variant calling (Unified Genotyper). GATK Variant Quality Score 

Recalibration and recommended GATK training sets were used to create a high-

quality set of variant calls [105]. ANNOVAR was used to annotate variants with 
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information on functional consequence, minor allele frequency (MAF), variant type and 

previous reporting [106]. I screened the annotated exome sequencing data for 

pathogenic variants in SNCA, LRR2K, Parkin, PINK1, DJ-1 and VPS35. 

Multiplex ligation-dependent probe amplification (MLPA) 

MLPA was performed to detect and confirm copy number variation in Parkin, PINK1, 

DJ1 and SNCA . MLPA was performed in a subset of young-onset patients and familial 

patients by Ms Theresita Joseph. It was conducted with the MRC Holland SALSA 

MLPA P051 Parkinson kit (version D1), according to the manufacturer’s instructions. 

Oxford Discovery 

DNA samples from Oxford Discovery were genotyped on the Illumina HumanCore 

Exome-12 v1.1 and the Illumina InfiniumCoreExome-24 v1.1 arrays. Each of these 

arrays included approximately 500,000 variants, half of which were exome variants. 

Genotype data was in genome build hg19/GRCh37. Genotype quality control and 

imputation was conducted by Dr Stephanie Miller (University of Oxford). 

Parkinson's Progression Markers Initiative 

Whole genome sequencing (WGS) data from the PPMI was used for all analyses. 

Only variants that passed filters in the joint calling process were included. Data was 

merged and filtered by Dr Hirotaka Iwaki (NIH). Data was in genome build hg38. 

Queen Square Brain Bank 

DNA samples were genotyped on the Illumina NeuroChip array version 1.1. This is a 

custom array containing a tagging variant backbone (the Illumina Infinium 

HumanCore-24 array) of approximately 300,000 variants together with approximately 

180,000 manually curated custom variants implicated in neurological diseases [107]. 

I conducted DNA sample quality control and preparation for genotyping by performing 

Qubit fluorometry (to determine the concentration of stock DNA samples) and dilution 

at the UCL Institute of Neurology. I delivered plates of DNA samples to UCL Genomics 

(based at the UCL Institute of Child Health and the UCL Zayed Centre for Research) 

where they were genotyped with the NeuroChip array.  
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I conducted genotype calling from raw intensity data using Illumina GenomeStudio 

v2.0. Raw data from different genotyping batches were combined to improve accuracy 

of clustering of the intensity data. Together with Ms Lesley Wu (UCL), I performed 

quality control steps in GenomeStudio. I manually reclustered common variants (MAF 

> 1%) with GenTrain score between 0.4 and 0.7 (inclusive) on the autosomal 

chromosomes. I did not manually recluster rare variants (MAF < 1%) and variants on 

the sex chromosomes as these were later excluded in PLINK. Samples with a call rate 

< 90% were excluded, and variants with GenTrain score < 0.4 were excluded. All 

SNPs with AA T mean > 0.3, BB T mean < 0.7 or cluster separation < 0.3 were 

excluded in GenomeStudio before exporting to PLINK format. 

Calypso 

DNA samples from the Calypso study were genotyped as part of the Wellcome Trust 

Case Control Consortium 2 GWASs [80,108]. Samples were genotyped on the 

Illumina BeadArray Human660-Quad array by the Wellcome Trust Sanger Institute 

(WTSI), Cambridge. 

UK Biobank 

DNA samples from UK Biobank were genotyped on the Applied Biosystems UK 

BiLEVE Axiom Array by Affymetrix and UK Biobank Axiom Array [103]. I used version 

2 of the genotype data (available as genotype calls). I performed quality control and 

imputation on the subset of PD cases separately. 

Statistical methods 

Correlation 

Correlation is a method to describe the relationship between two variables. The 

correlation coefficient indicates the strength of the linear relationship between two 

variables – how closely the individual points fall to the line of best fit. For continuous 

variables, this is indicated by the Pearson product-moment correlation. For each point, 

the difference of the x from the x mean is multiplied by the difference of the y value 

from the y mean; this is then summed for all the points and divided by the sums of 

squares (indicated by the formula below): 
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The r value can vary from -1 to 1. An r of 1 or -1 indicates a perfect correlation, where 

none of the observed data points deviates from the straight line. An r coefficient of 

greater than 0.5 suggests a large correlation, a coefficient of 0.3 to 0.5 suggests a 

moderate correlation, and a coefficient of 0.1 to 0.3 suggests a weak correlation. 

Importantly, the correlation coefficient does not give information about the slope of the 

line of best fit. 

Linear regression 

A linear regression examines the relationship between a dependent or outcome 

variable, and one or more predictor/ independent/ explanatory, variables. This 

assumes there is a linear relationship between the outcome variable and the 

explanatory variables. It can be used for prediction, whereas correlation cannot. 

A line of best fit is derived using least squares, whereby the sum of squared distances 

from each data point to the line is minimised (also known as the residuals). The beta 

coefficient of the slope (1) indicates the increase in the dependent variable (Y) 

associated with each unit increase in the independent variable. The intercept (0) 

indicates the mean of the dependent variable when the value of the independent 

variable/s is 0. 

𝒀 =  𝜷𝟎 + 𝜷𝟏. 𝑿 

Linear regression is intended for use when the dependent variable is continuous. 

When the dependent variable is binary and categorical, logistic regression can be 

used. In this case, the exponential of the slope beta coefficient gives the change in 

odds of the dependent variable. 

The fit of the model can be assessed using R2, which is the proportion of the variability 

explained by the regression model. R2  is calculated as the sum of squared errors of 

the proposed model divided by the sum of the squared errors of the null model (the 
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mean), subtracted from 1. The adjusted R2 is more useful when there are multiple 

independent variables, as it is adjusted for the number of predictors in the model and 

only increases if the additional variables reduce the overall error of predictions. 

Mixed effects models  

Mixed effects models, also known as linear mixed models, are an extension of simple 

linear models. These can be used to analyse data that are hierarchical or correlated, 

for example, the observations from the same individual over time which are likely to 

be correlated. Mixed effects models consist of fixed effects and random effects. The 

fixed effects are the same as the explanatory variables in simple regression; these are 

variables that are expected to have an effect on the outcome/dependent variable. The 

random effects refer to group-specific variation that we try to control for. Random 

effects models allow us to estimate the associations between the predictors and 

outcomes while accounting for the correlation between observations from the same 

group (e.g. one individual, or one class). Random effects can be included for the 

intercept and the slope. The random effect for the intercept means that the intercept 

varies across clusters, but the slope is the same (e.g. individual variation in baseline 

performance). The random effect slope allows for variation around the population 

average slope (e.g. individual-specific variation in the rate of progression). I conducted  

mixed effects models using the ‘lme4’ package in R. 

Survival (time to event) analysis  

Survival analysis, or time to event analysis, is useful when analysing duration times 

(as these are always positive), and when there is censoring, for example, when an 

individual withdraws from the study or completes the last follow-up visit before the 

outcome of interest is observed [109].  

The survival curve/function indicates the probability of surviving or meeting the 

outcome beyond a timepoint t. It can be estimated by the Kaplan-Meier curve. Each 

drop/step on the Kaplan-Meier curve indicates the proportion of individuals who have 

met the outcome at that timepoint, and the bars indicate individuals who have been 

censored (observation has stopped before the individual has met the outcome) [110]. 

The Kaplan-Meier curve estimates the probability of surviving to the end of a given 
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time period, conditional on surviving up to the beginning of that time period [110,111]. 

The log rank test can be used to compare the survival curves of two groups. 

While the Kaplan-Meier curve uses a step function to estimate the survival function, 

the Weibull model estimates the survival function using a smooth line, based on the 

Weibull distribution. This model can include covariates.  

The Cox Proportional Hazards model is another way of estimating the survival 

function, and can also analyse the effect of covariates on the outcome. It is semi-

parametric, whereas the Weibull model is parametric, meaning that the Cox model has 

less strict assumptions about the distribution of the time to event data. As it is more 

flexible, the Cox model is the most widely used in survival analyses. Both the Weibull 

and Cox models assume proportional hazards, meaning that the hazard ratios for the 

independent variables are constant over time. Censoring should be independent from 

the outcome of interest. The regression coefficients from the Cox model are on a log 

scale and the exponents of the coefficients gives the hazard ratio. I conducted survival 

analyses using the ‘survival’ and ‘survminer’ packages in R. 

The hazard ratio is a ratio of two hazard functions (hazard function for group 1 divided 

by the hazard function for group 2) [110] . This is different to a relative risk (or risk 

ratio), which is a ratio of two probabilities (probability of the event in group 1 divided 

by the probability of the same event in group 2) [112]. This is again different from the 

odds ratio. Odds refer to the probability of an event occurring in a group divided by the 

probability of the event not occurring in the same group. The odds ratio is the odds of 

an event for group 1 divided by the odds of the same event in group 2 [112]. 

Importantly, the hazard ratio is related to the timing of the event, with the hazard rate 

at any given time interval (almost an instantaneous rate) [111]. In contrast, the odds 

ratio and relative risk only refer to the cumulative probabilities and total number of 

events over an entire study using a defined, single endpoint. 

Another important point to highlight is that the hazard ratio does not give an indication 

of how much faster or slower the event occurs between the groups, only the probability 

of meeting the outcome. To estimate the time-based parameters (how much faster or 

slower the groups progress to the event), the mean and median times to the event can 

be compared [111]. 
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There are several methods to estimate the R2 in survival models, which are used to 

approximate the R2 from linear regression models. These are often called pseudo R2. 

One common method is the Nagelkerke R2, which is a method to estimate the 

improvement of the fitted model from the null model [113]. 

Meta-analysis 

Meta-analysis is a set of methods to combine data from multiple studies. It is useful 

for GWASs to increase power to detect association signals, as individual studies may 

be small and underpowered. In addition, meta-analysis only requires summary 

statistics and not individual level data from each GWAS, thus increasing the ability to 

share data from multiple studies. I conducted meta-analysis of GWASs using METAL 

[114]. In R, meta-analysis was conducted using the ‘meta’ package. 

There are two common methods for meta-analysis: fixed effects and random effects. 

Fixed effects meta-analysis assumes that the true effect size is the same every study. 

The random effects meta-analysis assumes that each study is estimating different 

(though similar) effects, sampled from a distribution and variability that depends on 

the variance between studies [115,116]. The aim of random-effects meta-analysis is 

to understand the distribution of effects across studies. If there is no between-study 

heterogeneity, then the fixed and random effects models produce the same results. If 

there is greater between-study heterogeneity, the random effects estimates usually 

have larger variance.  

There are two commonly used statistics to describe heterogeneity in meta-analysis. 

Cochran’s Q is calculated as the weighted sum of squared differences between 

individual study effects and the summary effect [115]. It is based on a chi-squared 

distribution with the degrees of freedom based on the number of studies (n – 1). This 

is used to determine if there is statistically significant heterogeneity. If the number of 

studies is small, this test may be underpowered to detect heterogeneity so a threshold 

of p < 0.1 is recommended [115,117]. 

The I2 statistic estimates the percentage of variability in the results that is due to real 

differences and not to chance. Unlike Cochran’s Q, it accounts for the number of 

studies. It is calculated by dividing the Q minus degrees of freedom by Q itself. When 

I2 is 0%, the variability in effects between the studies can be explained by chance. If it 
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is over 50%, it indicates there is substantial heterogeneity between the studies that is 

not due to chance alone. 

Principal Components Analysis 

Principal Components Analysis (PCA) is a method of data reduction. This is helpful 

when there are many variables present which may be related to each other.  PCA is a 

way of simplifying  the dataset to reveal the underlying structure as Principal 

Components which explain the most variability. It is useful to reduce dimensionality of 

the data without losing information (e.g. by removing variables). The eigenvector is 

the direction of the Principal Component, while the corresponding eigenvalue is the 

variance in the data in that direction. The most significant variance is found on the first 

component, and each subsequent component is orthogonal to the last (linearly 

independent and uncorrelated) and has less variance. The number of eigenvectors 

and eigenvalues from PCA corresponds to the number of dimensions (the number of 

input variables) in the dataset.  

Genetic methods 

Genome-wide association studies 

A GWAS is an unbiased search across the genome for common variants associated 

with disease status (in case-control studies) or phenotypes. The common disease, 

common variant hypothesis suggests that complex traits are linked to multiple, 

numerous common variants. In PD, it is likely that both the common disease common 

variant hypothesis and the multiple rare variant hypothesis can be true at the same 

loci [118]. It is likely that both common and rare risk alleles exist at a single locus.  

A GWAS is conducted in unrelated individuals, in contrast to traditional linkage studies 

which analyse family members. GWASs focus on single nucleotide polymorphisms 

(SNPs), usually those with minor allele frequency (MAF) greater than 1% or 5%. Each 

variant is statistically tested for association with disease (in the case-control studies) 

or a phenotype of interest. In order to correct for multiple testing, a p-value threshold 

of 5 x 10-8 is typically used in GWASs. Power in these studies is affected by the effect 

size of the loci, the allele frequency, sample size, and the standard deviation of the 

characteristic/ trait. GWASs can be conducted under different genetic models; the 
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most common is the additive model which assumes that risk increases with each minor 

allele (0, 1, and 2). The alternative genetic models are the dominant model (e.g. {AA, 

AT} vs. TT) and the recessive model (e.g. AA vs. {AT, TT}). GWASs can be conducted 

with a variety of statistical models, such as logistic regression (in case-control studies), 

linear regression (for quantitative phenotypes) and others models. For linear or logistic 

regression models, I conducted GWASs in rvtests using the single variant Wald test 

[119]. This fits the alternative model (as opposed to the null model) and estimates the 

effect size, and can be used for both binary and continuous traits. For other statistical 

models, such as survival analysis, I used R v3.6 on the UCL kronos High Performance 

Computing (HPC) cluster to  conduct GWASs. 

A quantile-quantile (QQ) plot is a plot of the observed vs. expected p-values, or the 

corresponding 2 test statistics, from an association study. Deviation from the null (the 

expected values) through the entire distribution suggests there may be a systematic 

source of spurious association - likely population stratification or cryptic relatedness 

[120]. Deviation just at the tail end of the distribution indicates true associations at 

susceptibility loci [120]. Related to the QQ plot, the lambda value (also known as the 

genomic inflation factor) is calculated by dividing the median of the observed 2 

distribution by the median of the expected 2 distribution. 

Annotation of GWAS results 

I used the online platform Functional Mapping and Annotation (FUMA) of Genome-

Wide Association Studies (https://fuma.ctglab.nl/) (version 1.3.6) to annotate GWAS 

summary statistics [121]. FUMA can be used to help prioritise genes which may be 

relevant to disease by adding information from biological datasets and tools. FUMA 

identifies independent SNPs and risk loci, annotates them with their functional 

consequences, and maps them to genes.  

FUMA can perform both positional and eQTL mappings to map SNPs to genes 

(SNP2GENE process). In positional mapping, SNPs are mapped to genes based on 

physical position (up to 10kb away). Gene annotation is performed using Ensembl 

genes (build 85). SNPs are mapped to rsIDs using the dbSNP build 146. The 1000 

Genomes Phase3 EUR reference panel is used to account for the LD structure. 

https://fuma.ctglab.nl/
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I ran FUMA with standard settings, with the exception of performing eQTL mapping in 

addition to positional mapping. Here, FUMA can map SNPs to genes that they are 

likely to affect expression of, up to 1 Mb away (cis-eQTLs), using data from GTEx v6 

and v7. 

From the mapping, FUMA generates a list of prioritised genes which are used for the 

GENE2FUNC process. This provides data on gene expression in different tissues, 

tissue specificity (whether there is a difference between the genes of interest and pre-

defined differentially expressed genes in each tissue type), and gene sets (whether 

the genes of interest are overrepresented in any pre-defined gene sets including those 

from the Molecular Signatures Database [MsigDB], and Gene Ontology [GO]) [121]. 

In particular, I looked for enrichment of gene-sets or pathways in Gene Ontology (GO; 

MsigDB c5), Reactome (MsigDB c2), and the Kyoto Encyclopedia of Genes and 

Genomes (KEGG; MsigDB c2). 

Multi-marker Analysis of GenoMic Annotation (MAGMA) 

Multi-marker Analysis of GenoMic Annotation (MAGMA)  is a tool for gene and gene-

set analysis of GWAS results [122]. It can be run through the FUMA online platform. 

Gene and gene-set analysis can be more powerful than the single SNP vs. phenotype 

analysis that is conducted in GWAS [122]. 

In gene analysis, MAGMA aggregates SNP-level p-values to the level of the whole 

gene. It quantifies the association that each gene has with the phenotype of interest. 

SNPs are mapped to genes based on physical position. The standard setting in FUMA 

is without a window around the gene, however I also ran MAGMA in FUMA with a 

window of 35kb upstream and 10kb downstream of each gene, as most transcriptional 

regulatory elements fall within this interval. Gene locations for protein coding genes 

are based on the National Centre for Biotechnology Information (NCBI) build 37.3 

definitions (genome build GRCh37/hg19) (https://ctg.cncr.nl/software/magma).  

The MAGMA analysis is run independently of the SNP2GENE positional mapping 

described above, hence the window size for mapping SNPs to genes can be different. 

https://ctg.cncr.nl/software/magma
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The MAGMA gene analysis is independent from and differs from the GENE2FUNC 

tests in that it tests all the SNP p-values, whereas the GENE2FUNC annotation in 

FUMA only tests for enrichment of prioritised genes. 

In gene-set analysis, MAGMA tests whether the genes in a gene-set are associated 

with the phenotype of interest, and whether these are more strongly associated than 

other genes [122]. Gene-set analysis is performed for curated gene sets (c2.all) and 

GO terms obtained from MsigDB v6.2 (biological processes [c5.bp], cellular 

components [c5.cc], and molecular functions [c5.mf]). Bonferroni correction is applied 

for the number of gene sets that are tested (n = 10678 in FUMA v1.3.6). 

Code availability 

I have made all my analysis scripts and code publicly available at 

https://github.com/huw-morris-lab. 

 

 

  

https://github.com/huw-morris-lab
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Chapter 3 : Association of rare Mendelian mutations with clinical 

features 

Introduction 

PD affects approximately 140 in 100,000 people within the UK [123]. It is caused by 

genetic mutations in LRRK2, SNCA, Parkin (PARK2), and PINK1 in up to 10% of 

patients according to previous studies [124–126]. These genetic factors also influence 

clinical features of the disease, such as age at onset [66,67,124,127,128], motor 

features, presenting symptoms, disease progression [69] and cognition [63,68,129]. 

However, many previous studies have focussed on highly selected cohorts recruited 

from specialist clinics. This is likely to lead to bias in both estimates of frequency and 

clinical characteristics associated with specific genetic mutations. 

In order to overcome some of these issues, I analysed data from Tracking Parkinson’s, 

a large-scale, population-based prospective cohort study of recently diagnosed and 

early onset PD patients in the UK. It is the largest single cohort study of PD and is 

relatively unbiased. Analysis of this cohort is important to: 1) develop more accurate 

estimates of genetic risk and the likelihood of a known genetic cause overall, as well 

as in specific patient sub-groups; 2) estimate the likelihood of further high risk genes 

that have not yet been identified, and 3) understand the contribution of Mendelian 

gene variation to the phenotype of PD. 

Several studies have examined the frequency of gene mutations in early onset PD 

patients [130,131]. However, some mutations, such as those in LRRK2, are also 

present at a significant rate in non-familial late onset PD patients [132]. Previous 

studies have also sometimes used single techniques such as partial Sanger 

sequencing, which are not able to detect copy number variation (which is common in 

Parkin) and less common point mutations. In my analysis, mutations were 

comprehensively identified using a range of different genetic screening methods, 

including whole-exome sequencing, Multiplex Ligation-dependent Probe Amplification 

(MLPA), and Sanger sequencing. 
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The aim of this study is to describe the frequency of pathogenic Mendelian gene 

variants in the general PD population and in specific disease sub-groups. In addition, 

I sought to understand the relationship between Mendelian mutations and clinical 

phenotype at presentation, with some preliminary longitudinal analysis of GBA and 

LRRK2 carriers. 

Methods 

PD patients were recruited to Tracking Parkinson’s from sites across the UK. Patients 

were required to have a clinical diagnosis if PD fulfilling Queen Square Brain Bank 

criteria [133]. 

Patients with disease duration of less than 3.5 years at time of diagnosis were 

recruited as ‘recent onset’ participants. Patients with disease duration of greater than 

3.5 years at time of diagnosis and age at onset ≤ 50 years were recruited as 

‘established young onset’ participants. Patients were recruited regardless of ethnicity, 

including Jewish ethnicity. Full eligibility criteria, exclusion criteria and methods of 

recruitment have been described previously [99]. Importantly, unlike most studies of 

this type, patients were recruited irrespective of any prior information on genetic status. 

Participants’ motor features and non-motor features were assessed using 

standardised and validated scales. 

Pathogenic mutations in the studied genes were defined according to MDSGene 

(http://www.mdsgene.org) [51,134], and the Parkinson Disease Mutation Database 

(PDmutDB; http://www.molgen.vib-ua.be/Parkinson’s diseaseMutDB/). Variants that 

did not meet pathogenicity criteria according to MDSGene (variants classified as 

‘benign’) were not reported. 

Genetic analysis of PD gene mutations 

Point mutations in Parkin, PINK1, and GBA were identified with Sanger sequencing. 

The full results of GBA sequencing and analysis of baseline clinical features have 

been reported separately [135], however here I conducted a preliminary analysis of 

GBA carriers longitudinally. 

http://www.mdsgene.org/
http://www.molgen.vib-ua.be/PDMutDB/
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Whole exome sequencing was performed at UCL in a subset of young-onset and 

familial patients (N=489). Exome sequencing data was screened for pathogenic 

variants in SNCA, LRRK2, Parkin, PINK1, DJ-1 and VPS35. 

2,106 patients with Parkinson’s disease were genotyped for the LRRK2 G2019S 

mutation using the ‘Kompetitive’ allele-specific polymerase chain reaction (KASP) 

assay (LGC Genomic Solutions).  

SNP array genotyping was completed for 2116 samples. Samples were genotyped 

using the Illumina HumanCore Exome array supplemented with custom content. 

Imputation was performed by Dr Leon Hubbard (Cardiff University). Genotypes were 

aligned to the 1000 Genomes Phase 3 v5 mixed population reference panel [136] 

(build hg19/ GRCh37) and imputed using Minimac3 [137] on the Michigan Imputation 

Server. 

Genotyping in young-onset patients 

Patients with age at onset ≤ 50 were screened for point mutations in Parkin and PINK1 

using Sanger sequencing. MLPA was performed to detect and confirm copy number 

variation in Parkin, PINK1, DJ1 and SNCA. Of 424 patients, 291 (68.7%) were 

successfully genotyped for Parkin and PINK1 with both MLPA and Sanger 

sequencing. Eleven patients were screened for copy number variants using MLPA but 

were not Sanger sequenced. Exome sequencing was performed in 269 patients.  

For our final phenotype-genotype analyses, I included young-onset patients if MLPA 

had been completed, and either Sanger sequencing or exome sequencing, or both, 

had been completed. The combination of these methods was selected in order to 

detect both copy number variants and point mutations in Parkin and PINK1. In total, 

302 patients with age at onset ≤ 50 were included for final analysis. 

Genotyping in late-onset patients 

Exome sequencing was performed in 219 late-onset patients with a positive family 

history of PD and 1 patient with missing AAO and a positive family history. 

In late-onset patients with 2 or more additional family members affected by PD, MLPA 

was performed in 65 of 74 (87.8%) patients. 
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For the final phenotype-genotype analyses, I included late-onset patients if either 

LRRK2 KASP genotyping or exome sequencing had been successfully completed. In 

total, 1701 late-onset patients were included for final analysis, as well as 2 patients 

with missing AAO. 

In total, 2005 patients with PD were included for final analysis (302 young-onset, 1701 

late-onset, 2 missing AAO). 

Statistical analysis 

Demographic characteristics were compared using t-tests, Fisher’s exact tests for 

proportions, or two-sample proportion tests. Linear regression was used for 

comparisons of demographic characteristics with covariate adjustment. To assess the 

association between clinical outcomes and genetic status, I used linear regressions of 

continuous scores against gene status (mutation positive or mutation negative) 

adjusting for age at assessment, disease duration at study entry, sex and LEDD.  

Hoehn and Yahr stage, MoCA subdomain and dystonia comparisons were conducted 

using ordered logistic regression. Motor subtype was analysed using multinomial 

logistic regression with the tremor dominant group as the comparator. All p-values 

were 2-tailed. I applied the Bonferroni correction for multiple testing for the number of 

independent tests in Table 3.5 and 3.7. Analysis was conducted using version 1 

(31/05/3019) of the Tracking Parkinson’s clinical dataset. Statistical analysis was 

conducted using STATA (version 14, StataCorp, Texas, USA) and R (version 3.5.1). 

Prevalence estimates 

I estimated the absolute numbers of PD patients with a Mendelian genetic cause in 

the UK using the following approach. I used age-specific prevalence rates from a 

previous UK meta-analysis [123] and applied the rates to the Office of National 

Statistics Great Britain mid-2016 population estimates [138] to derive an approximate 

number of all PD  patients. The age distribution of the PD population (as a percentage) 

was used to standardise the rates of genetic PD within our cohort (per 100,000).  From 

this, I derived the new age-standardised rate of genetic PD. I applied this age-

standardisation method because our over-sampling of young onset cases has resulted 

in a non-representative age-distribution of patients. This new rate was then applied to 

the total PD population to estimate the absolute number of patients with a Mendelian 
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genetic cause in the UK population. It is important to note that as I have derived the 

rates from our incident cases (excluded established young onset cases), I have 

assumed that the rates are representative of all prevalent cases. This may not be true 

if these Mendelian forms of PD are associated with better or worse survival, in which 

case our estimates will be either an under- or over-estimate of the true numbers. 95% 

confidence intervals were calculated using the Poisson distribution. 

Longitudinal analysis 

I conducted preliminary longitudinal analysis of GBA and LRRK2 carriers. Only recent 

onset PD patients were followed longitudinally, and not established early onset 

patients, so not all mutation carriers had longitudinal data available. There was only 

one recent-onset PD patient with a Parkin mutation, so longitudinal analysis was not 

possible. Longitudinal change in the MDS-UPDRSIII and the MoCA was analysed 

using mixed effects models, adjusting for age at onset, gender, and their interactions 

with years from the baseline visit. This analysis was conducted with the lme4 and 

lmerTest packages in R. Version 2 (17/06/2020) of the Tracking Parkinson’s clinical 

dataset was used for longitudinal analysis. 

GBA variants were classified using the same criteria as previously published in this 

cohort [135] and similar studies [71]. Group 1 are variants that are pathogenic for 

Gaucher’s Disease (GD) in the homozygous state and associated with PD risk in the 

heterozygous state, including L444P and N370S. Group 2 are variants that have been 

linked to GD when occurring with other variants and are also associated with PD risk, 

including E326K and T369M. Group 3 are variants of unknown significance. Patients 

carrying these variants (and no other Group 1 or Group 2 variants) were grouped with 

patients who were screened and negative for GBA mutations. I compared patients 

carrying any pathogenic GBA variant (Group 1 and 2 combined) to non-carriers, as 

well as stratified analysis of Group 1 and Group 2 variants separately.  

 

Results 

Table 3.1 shows the baseline demographics for participants that met PD diagnostic 

criteria. Data are presented separately for three groups below, according to inclusion 



 52 

criteria for recruitment. Early-onset patients were separated into recently diagnosed 

and established PD patients, as only the recent onset patients represent an incident, 

largely population-based cohort. For this reason, only recent onset patients were used 

to estimate the prevalence of genetic forms of PD in the UK. 

1. Recent late onset Parkinson’s disease patients (AAO > 50, disease duration ≤ 

3.5 years at time of diagnosis),  

2. Recent early onset Parkinson’s disease patients (AAO ≤ 50, disease duration 

≤ 3.5 years at time of diagnosis) 

3. Established early onset Parkinson’s disease patients (AAO ≤ 50, disease 

duration > 3.5 years at time of diagnosis). 

37 patients received a revised alternative diagnosis other than PD or had conflicting 

dopamine transporter (DaT) scan results and were excluded from further analysis. On 

rare occasions, LRRK2 mutations may be present in progressive supranuclear palsy 

or atypical parkinsonian patients [139,140], however I did not identify any pathogenic 

mutations in these patients. None of the rediagnosed patients carried a GBA mutation. 

Summary of genotyping 

For young-onset patients, I included samples for final analysis if MLPA had been 

completed, and either Sanger sequencing or exome sequencing or both had been 

successfully completed. In total, 302 patients with age at onset ≤ 50 were included for 

final analysis of Parkin and PINK1. 

For late-onset patients, I included patients for final analysis if the samples had been 

genotyped with the LRRK2 KASP assay for G2019S, and/or exome sequencing. In 

total, 1701 late-onset patients were included for final analysis, as well as 2 patients 

with missing age at onset. 

In total, 2005 PD patients with were included for final analysis (302 early-onset, 1701 

late-onset, 2 missing age at onset). 
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Table 3.1. Baseline demographics for all PD patients with known age at onset in 

Tracking Parkinson’s. 

 Recent, late 
onset patients 
(AAO>50, ≤3.5 
years from 
diagnosis) 
 N=1799 

Recent, early 
onset patients 
(AAO≤50, ≤3.5 
years from 
diagnosis) N=197 

Established early 
onset patients  
(AAO≤50, >3.5 
years from 
diagnosis) 
N=227 

Total 
N=2223 

Age at recruitment (years)  69.3 (7.5) 48.8 (6.2) 54.5 (7.7) 66.0 (10.2) 

Age at onset (years) 66.4 (7.7) 43.7 (5.6) 41.1 (7.1) 61.8 (12.1) 

Disease duration at 
diagnosis (years) 

1.3 (0.9) 1.4 (1.0) 11.4 (6.4) 2.4 (3.8) 

Disease duration at entry 
(years) 

2.9 (2.1) 5.2 (6.6) 13.1 (7.4) 4.0 (4.6) 

Family history (n, (%)) 

No family history 1442 (80.2%) 145 (73.6%) 166 (73.1%) 1753 (78.9%) 

1 additional affected 
family member 

267 (14.8%) 
 

41 (20.8%) 47 (20.7%) 355 (16.0%) 
 

2 additional affected 
family members 

59 (3.3%) 8 (4.1%) 8 (3.5%) 75 (3.4%) 

3 additional affected 
family members 

11 (0.6%) 2 (1.0%) 4 (1.8%) 17 (0.8%) 

4 or more additional 
affected family members 

4 (0.2%) 0 (0.0%) 1 (0.4%) 5 (0.2%) 

Consistent with dominant 
inheritance  

305 (17.0%) 
 

49 (24.9%) 57 (25.1%) 411 (18.5%) 

Consistent with recessive 
inheritance  

36 (2.0%) 
 

2 (1.0%) 
 

3 (1.3%) 41 (1.8%) 

Consanguinity 

Non-consanguineous 1741 (96.8%) 191 (97.0%) 220 (96.9%) 2152 (96.8%) 

Consanguineous 16 (0.9%) 2 (1.0%) 2 (0.9%) 20 (0.9%) 

Ethnicity 

White 1742 (96.8%) 188 (95.4%) 211 (93.0%) 2141 (96.3%) 

Asian or Asian British 16 (0.9%) 3 (1.5%) 8 (3.5%) 27 (1.2%) 

Black or Black British 10 (0.6%) 3 (1.5%) 2 (0.9%) 15 (0.7%) 

Chinese 0 (0.0%) 0 (0.0%) 2 (0.9%) 2 (0.1%) 

Mixed 4 (0.2%) 0 (0.0%) 0 (0.0%) 4 (0.2%) 

Other 2 (0.1%) 1 (0.5%) 0 (0.0%) 3 (0.1%) 

Sex     

Male 1181 (65.7%) 124 (62.9%) 149 (65.6%) 1454 (65.4%) 

 
AAO = Age at onset 
 
Consistent with dominant inheritance=family members from multiple generations 
affected. 
 
Consistent with recessive inheritance=family members only from the same 
generation affected. 
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Summary of mutations identified  

I identified 14 different pathogenic mutations in LRRK2, SNCA, Parkin, and PINK1 in 

29 out of 2005 patients (1.4%, 95% CI 0.9-2.0%) (Tables 3.2 and 3.3). This estimate 

is conservative as not all samples were comprehensively tested, therefore the true 

mutation rate may be higher. 

18 patients carried a mutation in LRRK2, 1 patient carried a SNCA mutation, 8 patients 

carried biallelic Parkin mutations and 2 patients carried biallelic PINK1 mutations. No 

patients were found carrying pathogenic mutations in VPS35 or DJ1. No patient 

carried pathogenic mutations in more than one gene. 3 patients carried the LRRK2 

G2019S mutation and additionally one or more mutations in GBA (p.E326K and 

p.P122H). The mean age at onset for patients carrying mutations in both LRRK2 and 

GBA mutations was 43.2 years (SD=5.1), compared to an onset age of 56.5 years 

(SD=12.9) for LRRK2 mutation carriers without GBA mutations.  

I identified 9 patients carrying single heterozygous pathogenic mutations in Parkin and 

PINK1. Previous analysis of this cohort showed no differences between carriers of 

single heterozygous Parkin mutations (including mutations of uncertain pathogenicity) 

and non-carriers other than in olfaction [141], therefore patients with single 

heterozygous mutations in recessive genes were analysed as non-carriers. One 

patient carried 3 pathogenic mutations in Parkin. 

Mutations were common in patients with very early onset and patients with multiple 

family members also affected by PD. 18.8% (3/16; 95% CI 6.6 – 43.0%) of patients 

with onset ≤ 30 carried pathogenic mutations. In early-onset patients, 18.2% (4/22; 

95% CI 7.3 – 38.5%) of patients with 2 or more additional affected family members 

carried pathogenic mutations. In late-onset patients, 4.2% (3/72; 95% CI 1.4-11.5%) 

of patients with 2 or more additional affected family members carried pathogenic 

mutations.   

Notably, the LRRK2 G2019S mutation was more common in early-onset patients 

(2.2%, 9/408; 95% CI 0.7 – 3.6%, Table 3.4) than in later onset patients (0.4%, 7/1701; 

95% CI 0.1 – 0.7%), p=0.001 (Fisher’s exact test, OR = 5.5, 95% CI 1.8-17.3). In 

addition, early onset patients were equally likely to have recessive (2.5%, 10/408) and 
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dominant pathogenic mutations (2.2%, 9/408). Pathogenic mutations were only 

identified in patients reporting ‘White’ ethnicity (N=2005 genotyped).  

IBD analysis was conducted based on 25,781 SNPs in linkage equilibrium. This 

showed that none of the mutation carriers were related to each other (pi-hat <0.1 for 

all, indicating no closer relations than third-degree relatives).  

Table 3.2. Overall frequency of dominant gene mutation carriers for known pathogenic 

variants in successfully genotyped patients.Percentages and 95% CIs are shown in 

brackets. 

 Early onset N=408 Late onset N=1701 All N=2003 

LRRK2 9 (2.2%; 0.8-3.6%) 9 (0.5%; 0.2-0.9%) 18 (0.9%; 0.5-1.3%) 

SNCA 0 (0%; 0.0 – 0.9%) 1 (0.06%; 0.01-
0.3%) 

1 (0.05%; 0.04-
0.1%) 

All autosomal 
dominant (LRRK2 
and SNCA) 

9 (2.2%; 0.8-3.6%) 10 (0.6%; 0.2-1.0%) 19 (0.9%; 0.5-1.4%) 

 

Table 3.3. Overall frequency of biallelic recessive gene mutation carriers for known 

pathogenic variants in successfully genotyped early onset patients (age at onset ≤ 

50).Percentages and 95% CIs are shown in brackets. 

Parkin Early onset N = 302 

Homozygous 0 (0%; 0.0-0.1.3%) 

Compound heterozygous 8 (2.6%; 0.8-4.5%) 

PINK1  

Homozygous 1 (0.3%; 0.06-1.9%) 

Compound heterozygous 1 (0.3%; 0.06-1.9%) 

All autosomal recessive (Parkin and 
PINK1 biallelic mutations) 

10 (3.3%; 1.3-5.3%) 
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Table 3.4. Rate of known dominant pathogenic mutations based on clinical 

presentation. 

 LRRK2 
N=18 

SNCA 
N=1 

Rate of all 
pathogenic 
dominant 
mutations 

Age at onset    

≤20 years (N=4) 0/4 (0%) 0/4 (0%) 0/4 (0%) 

≤30 years (N=18) 0/18 (0%) 0/18 (0%) 0/18 (0%) 

≤40 years (N=118) 2/118 (1.7%) 0/118 (0%) 2/118 (1.7%) 

≤50 years (N=408) 9/408 (2.2%) 0/408 (0%) 9/408 (2.2%) 

≤60 years (N=784) 10/784 (1.3%) 1/784 (0.1%) 11/784 (1.4%) 

≤70 years (N=1552) 17/1552 (1.1%) 1/1552 (0.06%) 18/1552 (1.2%) 

≤80 years (N=2050) 18/2050 (0.9%) 1/2050 (0.05%) 19/2050 (0.9%) 

All (N=2109) 18/2109 (0.9%) 1/2109 (0.05%) 19/2109 (0.9%) 

Mean age of onset in years 
(SD) 

54.3 (12.9)  54.1 (12.6) 

Family history    

No other family members 
affected 

8/1658 (0.5%) 0/1658 (0%) 8/1658 (0.5%) 

1 other family member affected 7/344 (2.0%) 0/344 (0%) 7/344 (2.0%) 

2 other family members affected 1/72 (1.4%) 1/72 (1.4%) 2/72 (2.8%) 

3 other family members affected 2/17 (11.8%) 0/17 (0%) 2/17 (11.8%) 

4 or more family members 
affected 

0/5 (0%) 0/5 (0%) 0/5 (0%) 

 

LRRK2 

I identified 18 patients carrying heterozygous LRRK2 mutations, either G2019S 

(N=16) or R1441C (N=2). 55.6% (10/18) carriers reported a positive family history of 

PD. 

Both LRRK2 R1441C carriers reported a family history of PD. As the R1441C mutation 

was only screened through exome sequencing in familial and/or early-onset patients, 

these results for R1441C cannot be used to compare familial vs. non-familial patients.  

I only included LRRK2 G2019S mutation carriers for the analysis of family history. 

G2019S mutations were more common among patients with a positive family history 

(1.9%, 95% CI 0.5-3.1%) than patients without a family history of PD (0.5%, 95% CI 

0.1-0.8%), p=0.009 (Fisher’s exact test, OR = 3.9, 95% CI 1.3-11.8). However, within 

the G2019S carriers, 50% had a positive family history and 50% did not have a family 

history of PD (50%, 95% CI 25.5-74.5%). 
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LRRK2 mutation carriers (G2019S and R1441C carriers together) had an earlier mean 

onset (54.3 years, 95% CI 47.9-60.7) compared to non-carriers (61.7 years, 95% CI 

61.2-62.2; p=0.01). Age at onset for LRRK2 carriers ranged from 35.2 to 78.7 years. 

LRRK2 mutations were more frequent in early onset (2.2%, 95% CI 1.0-4.2%) 

compared to late onset patients (0.5%, 95% CI 0.2-1.0%), p=0.003 (Fisher’s exact 

test, OR = 4.2, 95% CI = 1.5-12.1).  

Clinical features of LRRK2 carriers compared to non-carriers are presented in Table 

3.5 (excluding patients with recessive gene mutations). I did not include the SNCA 

carrier in this analysis given that previous literature suggests that LRRK2 and SNCA 

mutation carriers have different clinical features [142]. I did not find any differences in 

clinical features between LRRK2 carriers and non-carriers.  

SNCA 

SNCA copy number variants were screened with MLPA in 65 patients with familial PD 

with 2 or more family members affected. One patient (1.5%) carried a heterozygous 

whole gene duplication was identified, who reported 2 additional family members 

affected by PD. I was  unable to compare the clinical features of SNCA carriers to non-

carriers given that only one carrier was identified. 



Table 3.5. Comparison of motor features, fluctuations and non-motor features by LRRK2 mutation status (LRRK2 carriers vs. non-

carriers).Patients carrying biallelic recessive mutations and one patient carrying a SNCA mutation were excluded from analyses. 

Scores in the first 2 columns are means (SD), except for Hoehn and Yahr stage, symptoms present at diagnosis and motor subtype 

which are shown as N or proportions (%). Increasing scores and increasing beta values for motor and non-motor variables are 

associated with worse symptoms, with the exception of the MoCA test scores. Increasing scores and increasing beta values for the 

MoCA test are associated with better cognition. 

Variable Mutation negative 
N=2082 

LRRK2 positive 
N=18 

Beta (95% CI) 
LRRK2 carriers vs. non-carriers 

p-valuea 

Age at entry, years 66.0 (10.1) 60.1 (10.4) -5.2 (-9.9, -0.5) 0.030b 

Age at onset, years 61.8 (11.9) 54.3 (12.9) -5.2 (-9.9, -0.5) 0.030b 

Disease duration, years 4.0 (4.4) 5.2 (4.5) 0.7 (-1.3, 2.8) 0.482c 

Delay to diagnosis - time from symptom onset to 
diagnosis, years 

1.8 (2.9) 1.5 (1.3) -0.4 (-1.8, 1.0) 0.580c 

Motor features     

MDS-UPDRS III total score 23.4 (12.7) 28.6 (15.2) 6.7 (0.1, 13.3) 0.047 

Severity score MDS-UPDRS-III/years from 
symptom onset 

10.4 (11.8) 9.4 (7.3) 0.6 (-5.7, 6.8) 0.862d 

Upper limb score, max 56 10.7 (6.3) 12.1 (6.3) 2.1 (-0.9, 5.1) 0.163 

Lower limb score, max 32 5.1 (3.9) 6.8 (5.5) 1.7 (-0.2, 3.6) 0.085 

Gait and freezing, max 8 1.1 (1.1) 1.6 (1.7) 0.4 (-0.1, 0.9) 0.097 

Hoehn and Yahr stage   0.3 (-0.7, 1.2) 0.595 

0-1.5 (%) 950 (46.0%) 7 (38.9%)   

2 or 2.5 (%) 957 (46.3%) 10 (55.6%)   

3+ (%) 160 (7.7%) 1 (5.6%)   

Symptoms present at diagnosis (%)     

Tremor 1499/2017 (74.3%) 13/18 (72.2%) 0.3 (-0.8, 1.6) 0.586 

Rigidity 1410/1925 (73.2%) 13/18 (72.2%) -0.08 (-1.2, 1.2) 0.891 

Bradykinesia 1554/1966 (79.0%) 12/18 (66.7%) -0.8 (-1.8, 0.3) 0.121 

Postural problems 363/1898 (19.1%) 4/18 (22.2%) 0.009 (-1.5, 1.2) 0.989 

Other 456/1827 (25.0%) 4/16 (25 %) 0.2 (-1.1, 1.3) 0.731 
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Motor subtype (%) 

Tremor dominant 835/1892  (44.1%) 7/17 (41.2%)   

Non-tremor dominant/ PIGD 813/1892 (43.0%) 10/17 (58.8%) -2.8 (-0.5, 1.8) 0.246 

Mixed 244/1892 (12.9%) 0/17 (0%) -8.7 (NA)* NA* 

Motor complications     

MDS-UPDRS-IV total score 1.3 (2.8) 2.8 (3.3) 0.1 (-0.9, 1.2) 0.794 

Dyskinesias - MDS-UPDRS IV part 1 and 2 sum, 
max 8 

0.3 (1.0) 0.4 (0.9) -0.2 (-0.5, 0.1) 0.259 

Fluctuations - MDS-UPDRS IV part 3, 4 and 5 sum, 
max 12 

0.9 (1.9) 2.1 (2.6) 0.3 (-0.4, 1.1) 0.408 

Dystonia, max 4 0.2 (0.6) 0.3 (0.6) 0.01 (-0.2, 0.3) 0.915 

Non-motor features     

Cognition - total MoCA score, max 30 25.2 (3.5) 25.4 (3.2) -0.2 (-1.9, 1.4) 0.761 

Visuospatial, max 5 4.3 (1.1) 4.2 (1.2) -0.2 (-0.7, 0.3) 0.359 

Naming, max 3 2.9 (0.3) 2.9 (0.3) -0.05 (-0.2, 0.1) 0.535 

Attention, max 6 5.2 (1.0) 5.3 (0.8) 0.1 (-0.4, 0.6) 0.690 

Language, max 3 2.4 (0.8) 2.4 (0.7) -0.03 (-0.4, 0.3) 0.865 

Abstraction, max 2 1.6 (0.6) 1.7 (0.7) 0.003 (-0.3, 0.3) 0.983 

Recall, max 5 2.7 (1.6) 2.9 (1.8) 0.05 (-0.7, 0.8) 0.898 

Orientation, max 6 5.8 (0.5) 5.8 (0.5) -0.03 (-0.2, 0.2) 0.756 

LADS Anxiety score, max 18 4.5 (3.8) 5.8 (3.8) 0.9 (-0.8, 2.6) 0.287 

LADS Depression score, max 18 4.5 (3.3) 5.1 (3.3) 0.3 (-1.2, 1.8) 0.706 

Sleep disturbance -ESS score 7.1 (4.8) 9.7 (6.8) 1.6 (-0.7, 3.8) 0.173 

REM Sleep Behaviour Disorder Screening 
Questionnaire score 

4.8 (3.2) 6.4 (3.5) 1.0 (-0.5, 2.5) 0.191 

Autonomic function: SCOPA total score 9.3 (5.8) 10.8 (6.4) 2.6 (-1.1, 6.3) 0.170 

SD = standard deviation; CI = confidence interval; MDS-UPDRS = Movement Disorder Society Unified Parkinson’s Disease Rating 
Scale; PIGD = postural instability gait difficulty; MoCA= Montreal Cognitive Assessment; LADS = Leeds Anxiety and Depression 
Scale; ESS= Epworth Sleep Scale; RBDSQ = Rapid Eye Movement Sleep Behaviour Disorder Screening Questionnaire; SCOPA = 
SCales for Outcomes in PArkinson's disease. 
a P value of clinical features of LRRK2 carriers together compared to non-carriers, excluding patients with recessive gene mutations 
and one patient with SNCA mutation. Adjusting for age at entry, gender, disease duration at entry/assessment and LEDD total, 
unless otherwise specified. b Adjusting for gender and disease duration at entry. c Adjusting for gender and age at entry. d Adjusting 
for age, gender and LEDD total. *Insufficient count to fit model



Early-onset patients 

I identified 19/302 (6.3%) early-onset patients carrying pathogenic mutations in both 

dominant and recessive genes. The proportions of mutation carriers by age at onset 

and family history are presented in Table 3.6. Recessive gene mutation carriers had 

an earlier mean onset (32.7 years) compared to non-carriers (41.1 years), p<0.001, 

excluding dominant mutation carriers. 

When considering all early-onset mutation carriers (Parkin, PINK1, LRRK2 and SNCA) 

mutation carriers, the mean onset was also younger than non-carriers (37.5 vs. 41.1 

years; p=0.02). Mutations were more frequent in patients with a positive family history 

(11.0%) than in patients with no family history of PD (4.2%), p=0.04 (Fisher’s exact 

test, OR = 2.8, 95% CI 1.0-8.1). 

Table 3.6. Cumulative rate of pathogenic mutations based on clinical presentation in 

successfully genotyped early onset PD patients (age at onset ≤ 50), N=302. 

 PINK1 
(biallelic) 
N=2 

Parkin 
(biallelic) 
N=8 

All recessive 
gene 
mutations 
N=10 

Age at onset    

≤20 years (N=4) 0/4 (0%) 2/4 (50%) 2/4 (50%) 

≤30 years (N=18) 0/16 (0%) 3/16 (18.8%) 3/16 (18.8%) 

≤40 years (N=118) 1/110 (0.9%) 6/110 (5.5%) 7/110 (6.4%) 

≤50 years (N=408) 2/302 (0.7%) 8/302 (2.6%) 10/302 (3.3%) 

Mean age of onset in years (SD) 42.3 (5.5) 30.3 (11.5)  

Family history    

No other family members affected 1/213 (0.5%) 4/213 (1.9%) 5/213 (2.3%) 

1 other family member affected 1/67 (1.5%) 1/67 (1.5%) 2/67 (3.0%) 

2 other family members affected 0/15 (0%) 3/15 (20%) 3/15 (20%) 

3 other family members affected 0/6 (0%) 0/6 (0%) 0/6 (0%) 

4 or more other family members 
affected 

0/1 (0%) 0/1 (0%) 0/1 (0%) 
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Parkin 

Of all early-onset patients that were successfully genotyped for Parkin, biallelic 

pathogenic Parkin mutations were present in 2.6% (8/302, 95% CI 0.8-4.4%). No 

Parkin carriers had homozygous mutations; all mutations were present in compound 

heterozygous state. 

Parkin mutations were present in 20% (3/15, 95% CI 7.0-45.2%) of early onset patients 

with 2 additional family members affected by PD. However, there was no significant 

difference in the frequency of mutations in early onset patients with a positive family 

history (4.2%, 95% CI 0.2-8.4%) and without a family history (1.9%, 95% 0.05-3.7%), 

p>0.2 (Fisher’s exact test, OR = 2.3, 95% CI 0.4-12.9). Early-onset patients from large 

PD families (2 or more additional family members affected) were more likely to carry 

a Parkin mutation (13.6%) than early onset patients with 1 or no additional family 

members affected (1.6%), p=0.01 (Fisher’s exact test, OR = 8.5, 95% CI 1.2-47.9). 

The clinical features of Parkin and PINK1 mutation carriers compared to early-onset 

non-carriers are presented in Table 3.7. Parkin carriers had younger onset than early 

onset patients with LRRK2 mutations (42.9 years, 95% CI 39.3-46.6), p=0.009. There 

was no difference in age at onset of Parkin and PINK1 carriers, p>0.2.   

PINK1 

Bi-allelic PINK1 mutations were present in 0.7% (2/302, 95% CI 0.2-2.4%) of all 

screened early-onset patients. Mutations were present in 1.1% (1/89) of early-onset 

patients with a positive family history and 0.5% (1/213) of patients with no family 

history. Mutations were not more frequent with patients with a positive family history, 

p=0.50 (Fisher’s exact test, OR = 2.4, 95% CI 0.03-189.7). 

Parkin and PINK1 mutation carriers had earlier age at study entry and earlier age at 

onset than other early-onset non-carriers, adjusting for gender and disease duration 

(Table 3.7). They also had longer disease duration than non-carriers, adjusting for age 

at entry and gender (Table 3.7). 

Parkin and PINK1 mutation carriers also reported more postural problems at diagnosis 

than non-carriers and tended to report a higher rate of dyskinesias, after adjusting for 
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age at entry, gender, disease duration and LEDD total, although this did not survive 

correction for multiple testing.  They also tended to have more gait and freezing 

problems at assessment, after adjusting for age, gender, disease duration and LEDD 

total (p=0.021), although this was not significant after correction for multiple testing. 

Finally, Parkin and PINK1 carriers had better cognition than non-carriers as assessed 

by the MoCA, even after adjusting for age, gender, disease duration and LEDD 

(p=0.007). This appears to be driven by better performance in the attention subdomain 

(p=0.004) though one must be cautious in interpreting the sub-domains as they may 

be overly simplistic. 

 



Table 3.7. Comparison of motor features, fluctuations and non-motor features of early onset patients by recessive gene status (Parkin 

and PINK1 carriers vs. non-carriers), excluding patients carrying dominant gene mutations.Scores in the first 4 columns are means 

(SD), except for Hoehn and Yahr stage, symptoms present at diagnosis and motor subtype which are shown as N or proportions (%). 

Increasing values and increasing betas for motor and non-motor variables are associated with worse symptoms, with the exception 

of the MoCA test scores. Increasing values and increasing betas for the MoCA test are associated with better cognition. Cells with 

only a single case are indicated with brackets (N=1). 

Variable Mutation negative Mutation positive (bi-allelic) Beta (95% CI) p-valuea 

 N=292 Total N=10 Parkin N=8 PINK1 N=2 Carriers vs. non-carriers 

Age at entry, years 51.9 (8.1) 50.9 (11.1) 51.8 (12.2) 47.5 (5.9) -7.0 (-10.9, -3.1) 0.001b 

Age at onset, years 41.1 (6.2) 32.7 (11.5) 30.3 (11.5) 42.3 (5.5) -7.0 (-10.9, -3.1) 0.001b 

Disease duration, years 10.4 (7.6) 18.2 (14.4) 21.9 (14.4) 5.2 (0.4) 8.9 (5.0, 12.7) <0.001c 

Delay to diagnosis, years 2.4 (4.2) 4.5 (4.1) 5.2 (4.4) 2.2 (0.1) 2.2 (-0.6, 5.1) 0.123c 

Motor features 

MDS-UPDRS-III total score 26.1 (14.9) 29.0 (24.0) 33.0 (23.6) 5.0 (N=1) -3.3 (-14.4, 7.8) 0.564 

Severity score MDS-UPDRS-III/years from 
symptom onset 

4.1 (6.8) 2.4 (2.9) 2.7 (3.1) 0.9 (N=1) -2.5 (-7.7, 2.8) 0.356d 

Upper limb score, max 56 11.6 (6.7) 13.9 (8.8) 15.3 (8.7) 8.5 (9.2) -1.1 (-5.5, 3.3) 0.621 

Lower limb score, max 32 6.2 (4.4) 7.7 (5.6) 8.5 (6.0) 4.5 (3.5) -0.1 (-3.1, 3.0) 0.973 

Gait and freezing, max 8 1.6 (1.5) 3.2 (1.9) 3.6 (1.7) 1.5 (2.2) 1.1 (0.03, 2.1) 0.043 

Hoehn & Yahr stage     1.8 (0.1, 3.6) 0.049 

0-1.5 (%) 107 (36.7%) 1 (11.1%) 1 (12.5%) 0 (0%)   

2 or 2.5 (%) 140 (48.1%) 4 (44.4%) 3 (37.5%) 1 (100%)   

3+ (%) 44 (15.1%) 4 (44.4%) 4 (50%) 0 (0%)   

Symptoms present at diagnosis 

Tremor 188/263 (71.5%) 7/10 (70.0%) 6/8 (75.0%) 1/2 (50.0%) -0.9 (-2.4 0.8) 0.275 

Rigidity 204/255 (80%) 8/9 (88.9%) 6/7 (85.7%) 2/2 (100%) 0.7 (-1.2, 3.7) 0.561 

Bradykinesia 209/257 (81.3%) 9/10 (90.0%) 7/8 (87.5%) 2/2 (100%) 15.1 (-55.4, NA) 0.986 

Postural problems 39/252 (15.5%) 6/9 (66.7%) 6/7 (85.7%) 0/2 (0%) 2.3 (0.7, 4.0) 0.005 

Other 54/229 (23.6%) 3/9 (33.3%) 3/7  (42.9%) 0/2 (0%) 0.4 (-1.6, 2.0) 0.684 
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SD = standard deviation; CI = confidence interval; MDS-UPDRS = Movement Disorder Society Unified Parkinson’s Disease Rating 
Scale; PIGD = postural instability gait difficulty; MoCA= Montreal Cognitive Assessment; LADS = Leeds Anxiety and Depression 
Scale; ESS= Epworth Sleep Scale; RBDSQ = Rapid Eye Movement Sleep Behaviour Disorder Screening Questionnaire; SCOPA 
= SCales for Outcomes in PArkinson's disease. 
a P value of clinical features of Parkin and PINK1 carriers together compared to non-carriers, excluding patients with dominant gene 
mutations. Adjusting for age at entry, gender, disease duration at entry/assessment and LEDD total, unless otherwise specified. b 
Adjusting for gender and disease duration at entry. c Adjusting for gender and age at entry. d Adjusting for age, gender and LEDD 
total. 

Motor subtype (%) 

Tremor dominant 79/257 (30.7%) 2/8 (25.0%) 1/6 (16.7%) 1/2 (50%)   

Non-tremor dominant/ PIGD 150/257 (58.4%) 6/8 (75.0%) 5/6 (83.3%) 1/2 (50%) 0.4 (-1.4, 2.3) 0.646 

Mixed/ Indeterminate 28/257 (10.9%) 0/8 (0%) 0/6 (0%) 0/2 (0%) -9.5 (NA, NA) >0.1 

Motor complications 

MDS-UPDRS-IV total score 5.0 (4.9) 6.2 (5.7) 6.1 (6.3) 6.5 (3.5) 2.3 (-0.5, 4.5) 0.105 

Dyskinesias (presence and severity; max 
8) 

1.3 (1.9) 2.3 (2.5) 2.1 (2.8) 3.0 (1.4) 1.2 (0.03, 2.3) 0.04 

Fluctuations, max 12 3.0 (2.9) 3.3 (4.0) 3.4 (4.3) 3.0 (4.2) 0.9 (-0.8, 2.6) 0.309 

Dystonia, max 4 0.7 (1.1) 0.6 (1.3) 0.6 (1.4) 0.5 (0.7) 0.1 (-0.7, 0.8) 0.891 

Non-motor features 

Cognition - total MoCA score, max 30 25.6 (3.6) 27.6 (2.2) 27.4 (2.3) 29.0 (N=1) 3.0 (0.8, 5.2) 0.007 

Visuospatial, max 5 4.4 (1.1) 4.3 (0.5) 4.4 (0.5) 4.0 (N=1) 0.07 (-0.6, 0.8) 0.847 

Naming, max 3 2.9 (0.3) 2.9 (0.3) 2.9 (0.4) 3.0 (0.0) 0.08 (-1.2, 0.3) 0.441 

Attention, max 6 5.1 (1.0) 5.6 (0.5) 5.5 (0.5) 6.0 (0.0) 0.9 (0.3, 1.6) 0.004 

Language, max 3 2.5 (0.7) 2.3 (0.8) 2.4 (0.7) 2.0 (1.4) -0.07 (-0.5, 0.4) 0.767 

Abstraction, max 2 1.7  (0.6) 1.6 (0.7) 1.6 (0.7) 1.5 (0.7) 0.09 (-0.4, 0.5) 0.704 

Recall, max 5 3.1 (1.6) 4.2 (1.3) 4.3 (1.4) 4.0 (1.4) 0.9 (-0.2, 2.0) 0.116 

Orientation, max 6 5.7 (0.7) 6.0 (0.0) 6.0 (0.0) 6.0 (0.0) 0.3 (-0.08, 0.6) 0.131 

LADS Anxiety score, max 18 6.6 (4.2) 6.1 (2.6) 6.3 (2.8) 5.5 (2.1) -0.4 (-3.3, 2.4) 0.763 

LADS Depression score, max 18 5.8 (3.5) 5.8 (2.3) 6.4 (1.8) 3.5 (3.5) -0.2 (-2.7, 2.4) 0.901 

Sleep disturbance, ESS score 9.0 (5.7) 8.5 (7.6) 9.5 (8.3) 4.5 (2.1) -0.1 (-4.2, 4.0) 0.961 

REM Sleep Behaviour Disorder Screening 
Questionnaire score 

5.8 (3.4) 4.3 (2.5) 4.4 (2.8) 4.0 (0.0) -1.2 (-3.6, 1.1) 0.307 

Autonomic function: SCOPA total score 10.8 (6.9) 12.3 (7.4) 9.5 (4.8) 20.5 (9.2) 0.1 (-5.0, 5.3) 0.959 



Prevalence 

In the recent onset cohort (both early-onset and late-onset), the rate of pathogenic 

mutations was 1.0% (17/1787). This is a large-scale cohort unselected for age at 

onset, family history and genetic status. I used this to estimate the frequency of 

pathogenic mutations in the general UK PD population. The crude prevalence rate of 

genetic forms of PD is 951 per 100 000 (95% CI 892-1013, using the Poisson 

distribution). Age specific rates are presented in Table 3.8. The age-standardised rate 

of genetic forms of PD was 708 per 100 000 (95% confidence interval 657-762 per 

100 000), standardised to the mid-2016 Great Britain population. This provides an 

estimate of approximately 725 genetic PD patients in a total of 102,403 patients in the 

UK currently living, using estimates from a meta-analysis [123] and the Office of 

National Statistics Great Britain population estimates for mid-2016 [138] assuming 

these genes do not impact on survival. A recent report from Parkinson’s UK using 

primary care diagnosis estimated a larger number PD patients in the UK (145,519) in 

2018 [143]. If this figure is more accurate, then the number of genetic PD cases would 

be larger (estimated at 1030). 

Table 3.8. Age specific and crude prevalence rate of genetic forms of PD, using data 

from recent onset patients only. 

Age Parkinson’s 
disease genetic 
patients in cohort 

Total number of 
Parkinson’s 
disease patients 
in cohort 
(screened) 

Age specific rates 
per 100,000 
Parkinson’s 
disease patients 

0-29 0 0 0 

30-39 1 11 9091 

40-49 4 58 6897 

50-59 4 219 1826 

60-69 5 728 687 

70-79 2 633 316 

≥80 1 138 725 

Total  17 1787  

Crude prevalence per 
100,000 Parkinson’s 
disease patients 

951 (525-1442)   

Age adjusted 
prevalence per 
100,000 Parkinson’s 
disease patients*  

708 (612-713)   

 
*Age distribution derived from age-specific PD rates [123] applied to the UK mid-
2016 population estimates [138]. 
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Longitudinal analysis of GBA carriers 

In the longitudinal dataset, an additional 9 patients were rediagnosed with a non-PD 

condition. None of these patients carried a pathogenic mutation. These patients were 

removed from analysis, leaving 1,960 PD patients with longitudinal data. The mean 

follow-up time was 3.6 years (median 3.4 years, SD = 2.1 years).  

44 patients carried a GD-pathogenic mutation (Group 1) and 115 patients carried a 

PD-pathogenic mutation (Group 2; Table 3.9). 28 patients carried GBA mutations of 

uncertain significance; these were grouped with non-carriers. In total, 159 patients 

carried a GBA mutation (GD or PD-pathogenic) and 1,623 patients were screened and 

negative for GBA pathogenic mutations. The mean follow-up time for GBA carriers 

was 3.6 years (SD 2.1 years) compared to 3.7 years for non-carriers (SD 2.1 years). 

Mean disease duration at baseline was 3.0 years (SD 2.3 years) in GBA carriers 

compared to 3.2 years in non-carriers (SD 3.0 years). 

Table 3.9. Classification and frequency of GBA variants in 1,782 patients with 

longitudinal data that were screened for GBA. 

Cases, n 
(%) 

Recognised GD 
pathogenic 
mutations (Group 1) 

PD-associated 
non-GD variants  
(Group 2) 

Rare variants of unknown 
significance 
(Group 3) 

29  p.L444P   

10 p.N370S   

5 p.R463C   

2 p.G202R   

2 p.R359S   

83  p.E326K  

35  p.T369M  

1 for 
each 
variant 
(0.06%) 

  p.D409H, p.F213I, p.G189V, 
p.G377S, p.K157Q, p.L383Xfs, 
p.L66P, p.M123T, p.N382Xfs, 
p.R163S, p.R257Q, p.S173S, 
p.E481Xfs, p.G10S, p.G325W, 
p.R170H, p.T323I, p.L175I, 
p.P55S, p.R262H, p.R329H, 
p.R395C, p.T267I, p.L268L 

6   p.A456P 

6   p.V460V 

2   p.D140H 

2   p.I308T 

2   Ex4 hemizygous deletion 

Based on classification used in Malek et al. [135] in the same cohort. Note that some 
patients carried more than one variant.  
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GBA carriers (GD- and PD-pathogenic variants combined) tended to progress more 

rapidly in the MDS-UPDRSIII compared to non-carriers, after adjusting for age at onset 

and gender (beta = 0.7, p = 0.04) (Figure 3.1). When analysing GD-pathogenic carriers 

separately compared to non-carriers, there was no difference in the MDS-UPDRSIII 

change (beta = 0.5, p = 0.41) but there was a nominal difference between the PD-

pathogenic carriers compared to non-carriers (beta = 0.7, p = 0.06). 

 

Figure 3.1. Means (+/- standard error) of the MDS-UPDRSIII total score by GBA 

status.Any data points with < 5 individuals were removed. The number of patients in 

each group at each timepoint is annotated with the corresponding colour label. Visits 

are at 1.5 year intervals, with visit 1 being the baseline visit.  

 

 

GBA carriers also had worse decline in the MoCA compared to non-carriers (beta = -

0.3, p = 0.001). Here, negative effect sizes (betas) indicate worse cognitive decline as 

higher scores in the MoCA indicate better cognition (Figure 3.2). This effect appeared 

to be larger in the GD-pathogenic variant carriers compared to non-carriers (beta = -

0.4, p = 0.004) than in the PD-pathogenic variant carriers compared to non-carriers 

(beta = -0.2, p = 0.04). 
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Figure 3.2. Means (+/- standard error) of the MoCA total score by GBA status.Any 

data points with < 5 individuals were removed. The number of patients in each group 

at each timepoint is annotated with the corresponding colour label. Visits are at 1.5 

year intervals, with visit 1 being the baseline visit. 

 

Longitudinal analysis of LRRK2 carriers 

There were 12 LRRK2 carriers with longitudinal data available. One patient carried a 

LRRK2 mutation and a GBA mutation (G2019S and E326K); this patient was excluded 

from analysis, Other GBA carriers were also excluded. After excluding GBA carriers, 

there were 11 (0.6%) LRRK2 carriers and 1,685 patients screened and negative for 

LRRK2. 

Mean follow-up was 4.5 years in LRRK2 carriers (SD 2.6 years) compared to 3.7 years 

in non-carriers (SD 2.1 years). The mean disease duration at baseline was 3.0 years 

in LRRK2 carriers (SD 1.6 years) compared to 3.1 years in non-carriers (SD 3.0 years).  

There was no difference in progression in the MDS-UPDRSIII between LRRK2 

carriers and non-carriers (beta = -1.4, p = 0.2). In the MoCA, there no association 

between LRRK2 status and cognitive progression (beta = 0.4, p = 0.1) (Figure 3.3).  
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Figure 3.3. Means (+/- standard error) of the MoCA total score by LRRK2 status, 

excluding GBA carriers.Any data points with < 5 individuals were removed. The 

number of patients in each group at each timepoint is annotated with the 

corresponding colour label. Visits are at 1.5 year intervals, with visit 1 being the 

baseline visit. 
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Discussion 

This study is the largest study examining the rate of known PD gene mutations. I report 

an overall rate of mutations of 1.4% (29/2005), across both early-onset and late-onset 

patients. In combination with GBA gene analysis in the same cohort [135], my results 

suggest that up to 10% of PD patients carry a known genetic variant that could 

potentially be targeted by new drug therapies. For instance, G2019S and other 

mutations in the LRRK2 gene have been shown to increase kinase activity, and 

LRRK2 kinase inhibitors that counteract this activity are currently being tested in phase 

1 clinical trials as a potential therapeutic target (reviewed in [37,144,145]. 

Firstly, I showed that there are systematic clinical differences at baseline between 

Parkin and PINK1 mutation carriers compared to other early-onset non-carriers. 

Parkin and PINK1 had longer disease duration at baseline. These patients had more 

postural problems at diagnosis and better cognition than other early-onset patients, 

even after adjusting for age, disease duration, gender, and LEDD. 

Secondly, this has enabled more accurate estimation of the prevalence of known 

pathogenic mutations in the general PD UK population, assuming there are no survival 

effects. I show clearly that LRRK2 mutations are present at a significant rate in patients 

with onset under 50 years (2.2%), and that SNCA mutations are present in 1.5% of 

patients with a strong family history of PD (2 or more additional family members 

affected). In addition, my results highlight the importance of systematically screening 

for copy number variants in Parkin, PINK1, and SNCA, as these may be missed with 

methods such as exome sequencing. However, overall these mutations are rare in the 

PD population. 

The strengths of this study lie in the relatively unbiased, population-based patient 

ascertainment. This increases the generalisability of our findings, in particular the 

prevalence estimates of PD patients carrying pathogenic mutations. A further strength 

of this study is inclusion of both early and late-onset patients, where previous genetic 

studies have tended to focus on early-onset patients. 
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LRRK2 and SNCA 

Mutations in LRRK2 (PARK8, dardarin) were first identified in autosomal dominant, 

mostly late-onset families with Parkinson’s disease [146–148]. The frequency of 

LRRK2 mutations varies widely; mutations are more common in familial PD (5-6%) 

[149,150] than in sporadic disease (~1%) [151,152], but are present at higher 

frequencies in Ashkenazi Jewish (up to 28%) and North African patients (up to 41%) 

[43,125,153–156]. I found that LRRK2 mutations were present at a rate of 0.9% 

overall, most commonly the G2019S mutation. This is comparable with a previous 

community-based cohort in the UK [154] and other Caucasian North American and 

UK cohorts with estimates between 0.4 and 1.7% [152,154,157–159]. 

R1441C mutations were present in 0.4% of early-onset and familial patients. This is in 

keeping with other studies showing the rarity of LRRK2 R1441C mutations in 

Caucasian populations, with previous studies reporting frequencies between 0% and 

0.3% [158,160,161].  

Almost half of the LRRK2 carriers did not report a family history of PD, in keeping with 

other studies [151,156]. This is likely because LRRK2 mutations have incomplete 

penetrance, which is strongly age-dependent [43,132,156,162]. As the population 

ages, it is likely that increasing numbers of relatives carrying LRRK2 will develop PD, 

and the prevalence of this form of PD will increase in the UK. 

I did not find any differences in baseline motor or non-motor features between LRRK2 

carriers and non-carriers. There was also no evidence of differences in longitudinal 

progression, however this analysis only included 11 LRRK2 carriers. This study is 

limited by the small number of LRRK2 carriers, and larger sample sizes may reveal 

differences in progression. Previous cross-sectional studies suggest that LRRK2 

mutations are associated with less severe clinical symptoms [150], lower risk  of 

cognitive impairment and better cognitive performance [43,163,164].  

Recently, the first longitudinal study of LRRK2 found that carriers had slower motor 

progression in the UPDRSIII, and nominally slower cognitive progression the MoCA, 

though this did not reach significance [44]. That cohort of 144 LRRK2 carriers were 

later in disease stage (8 years at baseline) whereas in this study the mean disease 

duration of LRRK2 carriers was 4.5 years at baseline. A potential explanation is that 
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differences in LRRK2 carriers are only apparent later disease stages, and this may 

explain why I did not clinical differences at baseline or in longitudinal analysis. Further 

longitudinal follow-up of LRRK2 carriers in large case series is needed.  

Furthermore, Saunders-Pullman et al. analysed Ashkenazi Jewish PD patients with 

and without LRRK2 mutations [44]. It remains to be seen whether clinical progression 

is different in Ashkenazi Jewish PD LRRK2 carriers compared to other populations. It 

is possible that the genetic background on which LRRK2 mutations occur may modify 

the effects on progression, and some of this may differ with Ashkenazi Jewish 

ancestry. One study has shown that the PD Genetic Risk Score influences the 

penetrance of the LRRK2 G2019S mutation [165]. Smaller studies have suggested 

that variants in DNM3 [166] and SNCA [167] may influence LRRK2 penetrance and 

age at onset, though these findings have not been consistently replicated. 

SNCA mutations were first identified in large PD families with an autosomal dominant 

pattern of inheritance [34,41,168]. SNCA mutations are rare in studies of Caucasian 

patients [169–171]. I found one patient carrying a heterozygous duplication, 

comprising 1.5% of patients reporting 2 or more additional family members affected 

by PD. This is in line with previous studies reporting a mutation prevalence of 1.7% to 

5.8% in familial PD patients [40,172–174].  

It has previously been reported that SNCA mutation carriers have more frequent and 

more severe dementia, rapid progression, hallucinations and autonomic dysfunction 

[38–41,125,164,174–176]. SNCA triplications cause a more severe phenotype while 

duplications tend to cause more ‘typical’ Parkinson’s disease [173,177,178]. I was  not 

able to compare clinical features in this cohort due to the rarity of SNCA mutations. 

Early-onset PD 

I found pathogenic mutations in 6.3% (19/302) of early-onset patients, including 

mutations in both dominant and recessive genes. These are comparable to the 

frequencies previously reported in other early-onset cohorts [130,131,179]. In 

accordance with previous studies [130,180], I showed that mutations were more 

common in patients with earlier onset.  
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Compound heterozygous Parkin mutations were identified in 2.6% of early-onset 

patients. While this is lower than other prevalence estimates in Caucasian populations 

[53,55,181,182], these findings are in accordance with a previous UK community-

based study which found that Parkin mutations accounted for 3.7% of patients with 

onset under 45 years [131]. Mutations tended to be more common in familial (4.2%) 

than in sporadic patients (1.9%), and  20% of patients with 2 additional family members 

affected carried Parkin mutations. Previous studies suggest that Parkin mutations are 

more common in familial patients [130]. 

PINK1 mutation carriers were present in 0.7% of early-onset patients. This is 

comparable to the rate reported in a previous community-based study [131]. Mutations 

are more common in Asian and Italian patients [50,56,183–185], reflecting population-

specific allele frequencies. Our findings are consistent with the low prevalence 

estimates in Northern Europe and North American patients [186,187]. However 

contrary to previous reports [131], I did not find that mutations were more frequent in 

patients with a family history of PD (1.1%) compared to sporadic patients (0.5%). This 

may be due to the small number of PINK1 carriers. 

After controlling for age and disease duration, I found that Parkin and PINK1 carriers 

had earlier onset, reported more postural symptoms at diagnosis and had better 

cognition compared to other early-onset patients. This suggests that Parkin and PINK1 

carriers have slower progression, despite longer disease duration at study entry. I was 

not able to confirm differences in progression as only recent-onset patients were 

followed longitudinally. 

This baseline data is consistent with previous studies showing that Parkin and PINK1 

mutations are generally associated with slower disease progression and less cognitive 

impairment [49,50,53,54,56,57,164,175,179,185]. Some studies have suggested that 

atypical features, such as dystonia, and psychiatric symptoms may be more common 

in PINK1 and Parkin carriers [50,164,188], however I did not find evidence to support 

this. There is also substantial variability of the frequency of these symptoms in 

previous reports [164]. My findings are in line with a recent MDSGene systematic 

review, which suggested that recessive gene mutation carriers have less common 

cognitive decline, good treatment response and otherwise clinically typical disease 

[51]. While a few conflicting reports suggest there are no clinical differences between 
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Parkin carriers and non-carriers [189], my findings in a large population-based study 

suggest that there are clinical differences between mutation carriers and non-carriers. 

This may be associated with the lack of Lewy body pathology in the brain at post-

mortem [190,191], although there are small numbers of Parkin cases with pathological 

data and there is variability in findings [176,192]. 

GBA 

Analysis of this same cohort at baseline showed that GBA carriers had earlier age at 

onset, more advanced Hoehn and Yahr stage, and more frequent PIGD motor subtype 

than non-carriers [135]. However, there were no differences in baseline cognition in 

the MoCA or motor severity in the MDS-UPDRSIII.  

In my longitudinal analysis, I found that GBA carriers had more rapid motor and 

cognitive progression than non-carriers. This contributes to evidence from both cross-

sectional and longitudinal studies that GBA carriers have more rapid clinical 

progression and more severe clinical phenotypes that non-carriers. Cross-sectional 

studies indicate that GBA carriers have more severe cognitive impairment, motor 

impairment, neuropsychiatric symptoms and autonomic dysfunction [60,65,68,129]. 

Longitudinal studies show that GBA carriers have more rapid progression to dementia, 

motor impairment, and mortality [64,66,69,71,193].  

This study found differences in longitudinal progression, but not baseline symptom 

severity, of GBA carriers, and this is likely because patients were assessed earlier in 

disease stage at baseline (mean disease duration 3 years) when compared to other 

cross-sectional studies (ranging from 6 to 9 years). This suggests that clinical 

differences in GBA carriers may only emerge later in disease course. 

Studies also suggest that different GBA mutations have different effects on symptom 

severity and progression. Patients carrying ‘severe’ GBA mutations including L444P 

and N370S progress more rapidly than patients with ‘milder’ mutations such as E326K 

and T369M, though all carriers still progressed more rapidly than non-carriers 

[71,194]. In this study, there was some evidence that the GD-associated mutations 

were linked with more rapid cognitive progression, but not motor progression, than 

PD-associated GBA mutations. This analysis is still limited by the relatively small 

number of GBA carriers, especially when divided into subgroups by mutation type. 
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This may explain why I did not see stronger effects for severe vs. mild mutation 

carriers. In addition, the N370S mutation has sometimes been classified as a mild 

mutation because it is associated with non-neuropathic GD [66,193,195]. However, 

overall, my results are consistent with previous studies showing that GBA carriers 

have more rapid progression than non-carriers. 

Limitations 

This cohort was predominantly Caucasian and no pathogenic mutations were 

identified in non-Caucasian groups. Therefore, these results have limited application 

in other populations. Further studies are needed to establish the prevalence and 

clinical features of mutation carriers in other ethnic groups. For instance, previous 

studies have shown that PINK1 mutations are more common in Asian patients [56].   

These results are also limited by the lack of complete screening of all cases. Exome 

sequencing, MLPA, and Parkin and PINK1 sequencing of all patients was not feasible 

due to cost limitations and the size of the cohort. Recessive gene mutations are rare 

in patients with older onset [130,131], however Parkin mutations have been found in 

late-onset patients with onset up to 78 years [196,197]. Therefore, there may have 

been a small number of mutation carriers that were not detected with these screening 

methods. This data therefore represents a minimal estimate of the frequency of 

pathogenic mutations, and the true numbers may be slightly higher. In addition, the 

genetic rates are based on both incident and prevalent cases. This is based on the 

assumption that survival and hence prevalence is not influenced by these genes, but 

if some genes (e.g. Parkin and PINK1) are associated with better survival then I may 

have underestimated the number of cases in the general population. 

A further limitation is that, while this is a large cohort study, the rarity of pathogenic 

mutations means that our group difference comparisons may be under-powered to 

detect modest phenotypic differences. 

Finally, this cohort is likely to still have some biases in it, given that this was not a 

rigorous community-based study collecting all cases of the condition. PD patients were 

recruited from specialist clinics at secondary care centres [99], however this included 

geriatric and general medicine clinics as well as neurology clinics. This goes some 

way to reduce recruitment bias where other studies have recruited from more 
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specialist neurology clinics only. A previous community-based study of early-onset PD 

in Cardiff found no mutation carriers compared to a higher rate of carriers in referral-

based series from neurologists and PD specialists in Wales and the UK [131]. 

However, this study only identified 14 early-onset patients in the community-based 

cohort and concluded that these types of studies may be underpowered for genetic 

epidemiology [131]. They suggest that the similar rate of mutations in the Wales and 

the UK cohort indicate that referral bias is not affecting estimates of mutation 

prevalence, although both these cohorts were still recruited from consultant 

neurologists and PD specialists, so may be missing PD cases in the community. It is 

also well-known that PD patients in specialist clinics are not fully representative of 

those in the community and general population [198], and this may affect my 

conclusions about the prevalence and clinical features of pathogenic mutations. 

Conclusions 

I show that Mendelian gene mutations are a rare but important cause of PD. Patients 

carrying Parkin or PINK1 differ from other early-onset patients in baseline clinical 

features and potentially disease progression. It is likely that the progression of PD is 

determined by a range of genetic variants including common and rare variants. 

Though rare variants may have larger effects on progression, common variants are 

likely to be important for a larger number of patients and will be the main focus for the 

remainder of this thesis. 
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Chapter 4 : Clinical predictors of progression 

Introduction 

Prior to conducting GWASs to identify genetic determinants of progression, I first 

analysed the clinical variables that were associated with progression. This can be 

helpful in determining which clinical factors to include as covariates in the genetic 

models, as well as more broadly predicting the outcome in individual incident PD 

patients. 

There is a clear difference between modelling progression for the purpose of 

prediction, compared to identifying relevant biological factors underpinning 

progression. When studying the biology of progression, it may not be appropriate to 

adjust for factors that may be intermediate phenotypes/markers or on the causal 

pathway between genotype and progression, as doing so may mask true associations 

[102,199]. The scenario may be different when trying to predict progression more 

accurately, as including more covariates/predictors may improve the accuracy of 

prediction. For example, REM sleep behaviour disorder (RBD) is associated with 

progression to dementia and cognitive impairment [200–202] and so might assist in 

an algorithm to predict dementia risk in early-stage PD patients, but it would not be 

appropriate to include as a covariate in a PD-dementia GWAS as it would reduce the 

power of the study. Here, my aim is to study the biological factors underpinning 

progression, however these genetic factors could later be incorporated into predictive 

models of PD progression. 

Associated clinical factors may relate to co-pathology (likely important in ageing), 

aspects of the disease process (e.g. visual hallucinations reflecting cortical 

involvement in PD dementia) or disease heterogeneity/subtype.  

Many previous studies have examined clinical predictors of progression in PD 

(summarised in Table 4.1). Age of onset, motor subtype or non-tremor dominant 

presentation, baseline impairment, and early cognitive impairment or dementia, are 

among clinical variables that have been shown in multiple studies to be associated 

with progression – whether mortality, disability, or motor or cognitive progression 

measured in various ways (reviewed in [203–206]). There are also other factors 
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suggested to predict progression, such as gender, urate, and increased levodopa 

responsiveness, which have not been robustly replicated across studies [205,207]. 

Some of these studies have been very large retrospective studies using health record 

data but with only basic demographic variables available for analysis (such as Willis 

et al. [208]), whereas other studies are prospective cohort studies with in-depth clinical 

data collection but smaller sample sizes (Table 4.2). 

Here, I tested a set of pre-specified clinical variables for their association with clinical 

milestones, based on previous literature: age at onset, gender, motor subtype, 

baseline severity, estimated progression prior to study entry, disease duration at study 

entry, and education. In addition, I examined disease progression in the first year of 

follow-up to determine whether this was predictive of later disease progression. 



Table 4.1. Summary of studies analysing clinical predictors of different outcomes in PD: mortality, motor progression (such as Hoehn 

and Yahr stage, MDS-UPDRS/UPDRS scores), cognitive progression (such as MoCA scores, classification of dementia), and other 

markers of disability (such as the Schwab and England Activities of Daily Living scale, nursing home placement).Studies are listed 

more than once if multiple outcomes (e.g. mortality and dementia) were investigated. Only longitudinal prospective or retrospective 

studies are included. Studies are listed in no particular order. Each variable in a study is reported as predictive if it was significant in 

multiple regression models only (if performed; some studies did univariate analysis only). 

  MORTALITY MOTOR PROGRESSION COGNITIVE PROGRESSION DISABILITY 

Variable Predictive Not predictive Predictive Not predictive Predictive Not predictive Predictive Not predictive 

Older age at 
onset/ 
diagnosis  

Auyeung2012   Alves2005   Schrag2016 Keener2018 Alves2005   

Keener2018   Zhao2010   Levy2000   Hely1999   

Marras2005   Williams-Gray2013   Willis2012       

Hely1999       Cereda2016       

Willis2012       Pigott2015       

Williams-Gray2013       Williams-Gray2013       

Hely2005       Domellöf2015       

    Liu2017    
    Pedersen2013    

Male gender 

Marras2005 Keener2018   Zhao2010 Levy2000 Keener2018   Hely1999 

Willis2012 Hely1999   Williams-Gray2013 Willis2012 Schrag2016     

  Hely2005     Cereda2016 Pedersen2013     

  Williams-Gray2013     Pigott2015 Williams-Gray2013     

         Liu2017 Domellöf2015     

Baseline 
motor severity  

Keener2018 Hely1999 Zhao2010 Williams-Gray2013 Levy2000 Keener2018   Hely1999 

Marras2005 Hely2005     Pigott2015 Schrag2016     

Levy2002 Williams-Gray2013     Pedersen2013       

        Williams-Gray2013       

    Liu2017    

        Domellöf2015       

Prestudy 
motor 
progression 

Marras2005 Hely2005         Hely1999   

Hely1999               

Disease 
duration  

  Keener2018 Alves2005 Burn2006 Cereda2016 Keener2018 Alves2005 Hely1999 

  Hely1999 Zhao2010     Levy2000     

          Schrag2016     

          Burn2006     

          Pedersen2013     

          Pigott2015     

  Keener2018 Alves2005 Williams-Gray2013   Keener2018   Alves2005 
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Levodopa 
dose 

  Williams-Gray2013       Williams-Gray2013     

Baseline 
cognition/ 
dementia 

Auyeung2012 Hely2005 Alves2005 Burn2006 Schrag2016 Keener2018 Alves2005 Hely1999 

Keener2018 Williams-Gray2013   Williams-Gray2013 Pigott2015 Burn2006     

Hely1999       Pedersen2013       

Willis2012       Williams-Gray2013       

    Liu2017    

        Domellöf2015       

Incident 
dementia 
(after 
baseline) 

Levy2002              

Willis2012               

Depression  

Keener2018 Levy2002   Burn2006 Liu2017 Keener2018   Alves2005 

  Williams-Gray2013   Williams-Gray2013   Schrag2016     

          Pigott2015     

          Pedersen2013     

          Domellöf2015     

          Williams-Gray2013     

Education 

Keener2018       Levy2000 Keener2018     

        Cereda2016 Schrag2016     

        Liu2017 Pedersen2013     

          Domellöf2015     

Motor subtype  

Auyeung2012 Williams-Gray2013 Vu2012 Burn2006 Burn2006 Keener2018     

Keener2018   Williams-Gray2013     Schrag2016     

          Williams-Gray2013     

          Domellöf2015     

Smell         Schrag2016       

Sleep disorder 
e.g. RBDSQ 

        Schrag2016       

        Marion2008       

Table 4.2. Sample sizes (number of PD patients) in each study by outcome. Studies listed for each outcome correspond to Table 4.1. 

Outcome Mortality studies N Motor progression studies N Cognitive progression studies N Disability studies N 

Study name, 
year, 
[reference no.] 

Auyeung2012 [209] 171 Alves2005 [210] 232 Schrag2016 [202] 390 Alves2005 [210] 232 

Keener2018 [211] 242 Zhao2010 [212] 695 Marion2008 [201] 65 Hely1999 [14] 126 

Marras2005 [203] 800 Vu2012 [213] 795 Willis2012 [208] 138728 
  

Hely1999 [14] 130 Burn2006 [214] 35 Levy2000 [215] 173 
  

Willis2012 [208] 138728 Williams-Gray2013 [17] 142 Burn2006 [214] 35 
  

Levy2002 [216] 180 
  

Cereda2016 [217] 6599 
  

Hely2005 [15] 130 
  

Pigott2015 [218] 141 
  

Williams-Gray2013 [17] 142 
  

Pedersen2013 [219] 182 
  

    
Williams-Gray2013 [17] 142 

  

    
Domellöf2015 [220] 115 

  

     Liu2017 (discovery cohort) [221] 1350   



Methods 

Cohorts 

Data from the Tracking Parkinson’s, Oxford Discovery, PPMI, QSBB, Calypso, and 

UK Biobank (UKB) cohorts were included for the analysis of mortality. Version 2 

(17/06/2020) of the Tracking Parkinson’s clinical dataset was used for this analysis. 

Only the clinical cohorts (Tracking Parkinson’s, Oxford Discovery, and PPMI) were 

used for analysis of survival to other clinical milestones: Hoehn and Yahr stage 3 or 

more, and dementia (MoCA  21 or withdrawal due to dementia). Across all three 

clinical studies, patients who received alternative diagnoses during follow up or had 

neuroimaging results conflicting with a PD diagnosis were excluded from analyses.  

Related/ duplicated individuals and ancestry outliers were removed, based on genetic 

quality control steps (see Chapter 6). In total, clinical data was available for 5,309 

patients. 

Statistical analysis 

Cox proportional hazard models were used to analyse the association between clinical 

predictors and clinical milestones in each cohort: mortality, Hoehn and Yahr stage 3 

or greater, and dementia (defined as MoCA ≤ 21 or withdrawal due to reported 

dementia or cognitive problems). This cutoff for dementia using the MoCA has been 

used in previous studies [135,222]. Time was measured from PD symptom onset, or 

estimated PD diagnosis in the UK Biobank cases. Time to event was taken as the first 

visit where the outcome was met. Individuals who were missing data at all timepoints 

for the clinical outcome being assessed were excluded (e.g. if Hoehn and Yahr stage 

data was missing at all visits for analysis of progression to Hoehn and Yahr stage 3+). 

Cox proportional hazard models were conducted in each cohort separately. Random-

effects meta-analysis using the inverse variance method was used to pool effect 

estimates across all cohorts. 

To assess pre-study progression, I created a variable for the baseline MDS-UPDRSIII 

divided by the years of disease duration at baseline. Previous studies have found that 
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this was associated with mortality [203]. I also did the same for the number of incorrect 

items in the MoCA (reverse scored out of 30). 

To assess early stage progression in the first year, I created annual progression 

scores for the first year of follow-up (first follow-up visit score minus baseline visit score 

divided by number of years from baseline to first follow-up visit), for both the MDS-

UPDRSIII and MoCA (after reverse scoring). Higher scores indicate more rapid 

progression in the first year. 

Bonferroni correction for the number of univariate tests in each clinical milestone was 

applied (0.05/13 = 0.0038). 

Multiple regression models 

Multiple regression models were performed in each cohort separately and pooled 

using random-effects meta-analysis.  

Only age at onset and gender were available in all datasets. I first performed multiple 

regression models for mortality in all datasets with age at onset and gender as 

predictors. 

Secondly, I conducted multiple regression models in the three cohorts with detailed 

clinical data: Tracking Parkinson’s, Oxford Discovery and PPMI. As some variables 

are strongly correlated and derived from each other (such as pre-study trajectory 

which is calculated from the baseline MDS-UPDRSIII or MoCA and disease duration), 

I analysed three models to avoid overadjusting for related variables. The first multiple 

regression model includes raw baseline variables only (baseline MDS-UPDRSIII and 

MoCA scores), the second with calculated pre-study trajectory variables (such as 

baseline MDS-UPDRSIII divided by disease duration), and the third with 1 year 

progression variables (annual change in the MDS-UPDRSIII and MoCA in the first 

year). All these symptom score variables aim to estimate the same latent progression, 

and it may be the case that the 1 year progression variables are stronger/more 

accurate predictors than the baseline scores alone. 
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Sensitivity analysis 

Though most studies conduct survival/time-to-event analysis using PD onset or 

diagnosis as the starting timepoint [221], this creates a potential bias as there is a 

period between PD onset and study entry in which patients cannot meet the outcome 

as they are not being assessed. More rapidly progressing patients who reach clinical 

milestones before study entry may be less likely to join clinical cohort studies. This 

bias may be particularly evident in analysis of Hoehn and Yahr stage and dementia 

Therefore, as a sensitivity analysis, I analysed time measured from study entry where 

this data was available in a subset of cohorts to determine if this changed results. This 

was conducted in the Tracking Parkinson’s, Oxford Discovery, PPMI, UK Biobank 

prevalent cases, and Calypso cohorts, where prevalent PD cases were recruited to a 

prospective study. 

 

Results 

Table 4.3 shows the baseline demographics and the number of patients meeting each 

outcome in each cohort.



Table 4.3. Demographics at baseline and the number of patients meeting each clinical milestone/outcome in each cohort. Means 

(SD) are shown unless otherwise indicated. 

 

Demographics Tracking 
Parkinson’s 

Oxford 
Discovery 

PPMI QSBB UKB PD 
incident§ 

UKB PD 
prevalent 

Calypso 
WTCCC2 

Number of PD patients 
overall 

1963 985 413 339 1157 914 196 

Number of PD patients with 
mortality data after QC 

1779 780 356 285 970 820 180 

Male (%) 65.1% 64.2% 65.4% 60.7% 60.8% 62.4% 66.3% 

Age at onset, years 64.5 (9.8) 64.5 (9.8) 59.5 (10.0) 61.8 (10.1) NA NA 59.8 (10.0) 

Age at diagnosis, years 66.3 (9.3) 66.1 (9.6) 61.0 (9.7) NA 69.5 (5.7) 57.4 (7.2) 61.5 (9.8) 

Age at study entry, years 67.6 (9.3) 67.4 (9.6) 61.5 (9.8) NA 63.9 (5.4) 62.8 (5.5) 67.5 (9.4) 

Disease duration at baseline - 
time from symptom onset to 
study entry, years 

3.2 (3.0) 2.9 (1.9) 2.0 (2.0) NA NA NA 7.7 (5.2) 

Time from diagnosis to study 
entry, years 

1.3 (0.9) 1.3 (0.9) 0.5 (0.5) NA NA 5.4 (4.8) 5.8 (4.8) 

Number of patients died (%) 133 (7.5%) 53 (6.8%) 15 (4.2%) 285 (100%) 370 (38.1%) 294 (35.9%) 121 (67.2%) 

Time from PD onset to death, 
years 

6.7 (4.5) 6.6 (2.6) 5.4 (2.6) 15.8 (7.8) 2.7 (2.3) 13.9 (6.1) 15.6 (6.1) 

Time from PD onset to 
censoring/last follow-up in 
surviving cases, years 

7.8 (3.4) 7.4 (2.7) 8.0 (2.5) NA 5.5 (1.9) 16.1 (4.4) 19.6 (4.5) 

Number of patients meeting 

H&Y3^ 

511 (28.8%) 181 (23.2%) 72 (16.8%) NA NA NA NA 

Number of patients meeting 
dementia criteria^ 

470 (26.7%) 241 (31.3%) 75 (20.2%) NA NA NA NA 
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PPMI = Parkinson’s Progression Markers Initiative; QC = Quality Control; QSBB = Queen Square Brain Bank pathologically-
confirmed PD cases; UKB = UK Biobank PD cases (including prevalent, incident, and undefined cases). 
 
Percentages are shown of the total number of PD cases in the whole cohort, as the final number included in each analyses varied. 
Not all patients had all clinical data available (e.g. age at onset, gender, clinical outcomes) and these patients were excluded 
depending on the outcome of interest and which covariates were included in the model. 
 

^ Shown as a percentage of people with data for at least one timepoint. Individuals who were missing data for the outcome of 
interest at all timepoints were excluded. 
 

§ Note that this number excludes PD incident cases who were only identified through death records.



Mortality 

5,170 individuals had data for mortality/survival. 1,408 (27.2%) died with mean time to 

death 10.1 years (SD = 7.8 years). 3,901 patients did not die with mean follow-up time 

8.7 years (SD 4.7 years). The median time to death was 8.8 years. 

Univariate associations are shown in Table 4.4. Older age at onset, male gender, 

PIGD motor subtype, baseline motor severity, more rapid pre-study motor and 

cognitive progression, more rapid progression in the MoCA in the first year, and 

shorter disease duration at study entry, were all associated with greater risk of 

mortality. 

For mortality, the proportional hazard assumption was met in almost models in all 

cohorts (p > 0.05), except for the association with gender in the UKB incident cohort, 

and disease duration in PPMI.  

On visual inspection of the Kaplan-Meier curves for the UKB incident patients, the 

effect of gender on mortality appeared to change in later disease stages, with men 

progressing more rapidly than women until approximately 7.5 years from onset. This 

is a potentially interesting finding, but was not seen in any of the other cohorts. The 

mean time to death was much shorter in UKB incident patients (2.5 years for men, 3.2 

years for women) than in other cohorts (12.6 for men, 14.2 for women).  This may 

relate to the identification of PD cases in the UKB incident cohort from HES, which 

suggests they are not a truly incident cohort but more rapidly progressing because 

they are identified from hospital visits and PD onset is likely many years before 

presentation at secondary care. I therefore restricted analysis of the UKB incident 

cohort to a maximum 7.5 years from PD onset/diagnosis and used these estimates for 

meta-analysis. The same restriction was used for the PPMI cohort in analysis of 

disease duration. 
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Table 4.4. Pooled effect estimates (from random-effects meta-analysis) for univariate 

associations between clinical predictors and mortality in univariate Cox proportional 

hazard analyses in each cohort.The hazard ratios are for a one unit increase in the 

variable of interest for numeric variables. P-values in bold indicate tests that passed 

Bonferroni correction for the number of tests for each outcome (0.05/13 = 0.0038). 

Variable Time from PD onset 

 HR  p value 

Age at onset 1.1 2.7 x 10-16 

Gender – male 1.6* 8.4 x 10-10 

Motor subtype – TD ref   

PIGD 1.8 0.0003 

Indeterminate 1.3 0.3 

Baseline severity   

BL HY2+ 1.8 0.0001 

MDS-UPDRSIII 1.04 1.3 x 10-14 

MOCA 0.9 0.12 

MDS-UPDRSIII/disease duration at entry 1.02 1.4 x 10-22 

MOCA/disease duration at entry 1.09 3.7 x 10-11 

MDS-UPDRSIII annual change in year 1 1.01 0.36 

MOCA annual change in year 1 1.2 1.3 x 10-7 

Disease duration at study entry 0.8§ 1.4 x 10-11 

Education – more than 12 years or higher 
education 

0.7 0.17 

 
*UKB incident cases restricted to 7.5 years of follow-up to meet proportional hazards 
assumption. 
§PPMI cases restricted to 7.5 years of follow-up to meet proportional hazards 
assumption. 
 

In multiple regression analyses of mortality against age at onset and gender in each 

cohort, both older age at onset (HR = 1.1) and male gender (HR = 1.6) were 

significantly associated with more rapid progression to death (pooled effect estimates 

from meta-analysis, p < 1.5 x 10-15). The Nagelkerke pseudo R2 ranged between 0.04 

to 0.49.  

In multiple regression models in the cohorts with detailed clinical data (Tracking 

Parkinson’s, Oxford Discovery and PPMI), age of onset and disease duration at study 

entry were consistently associated with mortality (Table 4.5). In the baseline and pre-

study trajectory models, PIGD subtype, male gender, and higher baseline MDS-

UPDRSIII scores or pre-study trajectory in the MDS-UPDRSIII were associated with 

more rapid progression. However, in the multiple regression model with 1 year 

progression variables, progression in the MoCA but not MDS-UPDRSIII appeared to 
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be predictive of mortality, and gender was no longer associated. The Variance Inflation 

Factors (VIFs) were all less than 5, indicating no multicollinearity between the predictor 

variables. 

Table 4.5. Associations between clinical predictors and mortality in multiple regression 

analyses, in  Tracking Parkinson’s, Oxford Discovery, and PPMI only.Separate models 

were performed for baseline variables, pre-study trajectory variables, and 1 year 

progression variables. The hazard ratios (HRs) and p-values from random effects 

meta-analysis are reported. 

Baseline variables only 

Variable HR p value 

Age at onset 1.1 5.5 x 10-25 

Gender – male 1.6 0.02 

Motor subtype – TD ref   

PIGD 1.5 0.03 

Indeterminate 1.1 0.63 

Baseline HY2+ 0.97 0.88 

Baseline MDS-UPDRSIII 1.03 0.0003 

Baseline MOCA 1.02 0.78 

Disease duration at study entry 0.7 9.3 x 10-7 

Education – more than 12 years or higher 
education 

0.97 0.90 

   

Pre-study trajectory variables 

Age at onset 1.2 5.5 x 10-33 

Gender – male 1.7 0.01 

Motor subtype – TD ref   

PIGD 1.4 0.03 

Indeterminate 1.3 0.37 

Baseline HY2+ 0.97 0.93 

Education – more than 12 years or higher 
education 

0.93 0.77 

MDS-UPDRSIII/disease duration at entry 1.02 0.002 

MOCA/disease duration at entry 0.97 0.49 

   

1 year progression variables 

Age at onset 1.1 3.6 x 10-17 

Gender – male 1.3 0.48 

Motor subtype – TD ref   

PIGD 1.5 0.07 

Indeterminate 1.2 0.69 

Baseline HY2+ 1.3 0.25 

Disease duration at study entry 0.7 0.003 

Education – more than 12 years or higher 
education 

0.9 0.75 

MDS-UPDRSIII annual change in year 1 1.0 0.96 

MOCA annual change in year 1 1.2 0.007 
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HY3+ 

2,912 individuals had data available for Hoehn and Yahr stage. 764 individuals met 

the outcome of Hoehn and Yahr stage 3 or greater, with mean time to event 5.7 years 

(SD = 3.1 years). 2,148 individuals did not meet the outcome with mean follow-up 7.5 

years (SD = 3.2 years). The median time to Hoehn and Yahr stage 3 or greater was 

5.3 years. 

For progression to Hoehn and Yahr stage 3 or greater, there were multiple predictors 

across cohorts in which the proportional hazards assumption was not met, except for 

age at onset. I therefore stratified the time interval to 0 to 5 years, 5 to 10 years, and 

more than 10 years from PD onset, based on visual inspection of Kaplan-Meier curves. 

Older age at onset, PIGD motor subtype, greater baseline motor and cognitive 

severity, progression prior to study entry in the MDS-UPDRSIII and MoCA, pre-study 

trajectory in the MDS-UPDRSIII, first year progression in the MDS-UPDRSIII, and  

disease duration at study entry, were all associated with more rapid progression to 

Hoehn and Yahr stage 3 or greater in univariate analysis (Table 4.6). However, many 

of these variables had slightly different effects at different time intervals, though mostly 

consistent in direction. Interestingly, disease duration at study entry appeared to have 

a different direction of effect according to time interval – associated with more rapid 

progression up to 10 years, but then with a protective effect after 10 years from PD 

onset. This is likely due to patients with long disease duration at study entry, who 

cannot be observed to meet the study outcome between onset and entry into the 

study, and are also likely to be slower progressing. 
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Table 4.6. Pooled effect estimates (from random-effects meta-analysis) for univariate 

associations between clinical predictors and progression to Hoehn and Yahr stage 3 

or greater.This was stratified into intervals as the proportional hazards assumption 

was not satisfied for most variables in the full time period: ≤5 years, >5 and ≤10 years, 

and >10 years from PD onset. The hazard ratios are for a one unit increase in the 

variable of interest for numeric variables. P-values in bold indicate tests that passed 

Bonferroni correction for the number of tests for each outcome (0.05/13 = 0.0038).

Variable 0 to 5 years 5 to 10 years > 10 years 

 HR  p value HR p value HR p value 

Age at onset 1.03 0.14 1.06 1.9 x 10-11 1.08 1.7 x 10-5 

Gender – male 0.9 0.41 0.96 0.76 0.8 0.49 

Motor subtype – TD ref       

PIGD 3.1 3.9 x 10-16 2.6 7.7 x 10-15 2.9 0.002 

Indeterminate 1.5 0.09 1.7 0.002 2.6 0.03 

Baseline severity       

BL HY2+ 2.1 0.17 1.7 0.001 0.8 0.56 

MDS-UPDRSIII 1.04 1.6 x 10-7 1.03 0.0002 1.01 0.27 

MOCA 0.97 0.17 0.91 0.003 0.96 0.40 

MDS-UPDRSIII/disease 
duration at entry 

1.01 0.01 1.01 0.22 1.3 1.5 x 10-5 

MOCA/disease duration 
at entry 

1.00 0.96 1.05 0.17 1.6 0.05 

MDS-UPDRSIII annual 
change in year 1 

1.01 0.10 1.03 0.0001 0.99 0.73 

MOCA annual change in 
year 1 

1.04 0.62 1.1 0.005 0.99 0.99 

Disease duration at 
study entry 

1.1 0.25 1.1 0.0001 0.8 0.0003 

Education – more than 
12 years or higher 
education 

0.7 0.0005 0.7 0.01 0.5 0.05 

 

 

In multiple regression models, also stratified by time period, age at onset, gender, 

PIGD subtype, and baseline MDS-UPDRSIII were consistently associated with 

progression to Hoehn and Yahr stage 3 or greater (Table 4.7). 
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Table 4.7. Associations between clinical predictors and progression to Hoehn and 

Yahr stage 3 or greater in multiple regression analyses, in  Tracking Parkinson’s, 

Oxford Discovery, and PPMI only.Separate models were performed for baseline 

variables, pre-study trajectory variables, and 1 year progression variables. The hazard 

ratios (HRs) and p-values from random effects meta-analysis are reported in stratified 

time intervals from PD onset, as the proportional hazards assumption was consistently 

not satisfied in models with the full time period. To correct for multiple testing in the 

three models in three different time periods, only p-values < 0.0056(0.05/9) were 

considered significant. 

Baseline variables only 

Variable 0 to 5 years 5 to 10 years > 10 years 

 HR  p value HR p value HR p value 

Age at onset 1.02 0.23 1.06 2.4 x 10-13 1.07 0.01 

Gender – male 0.9 0.36 0.8 0.17 0.8 0.65 

Motor subtype – TD ref       

PIGD 2.9 6.3 x 10-12 2.5 1.4 x 10-12 3.8 0.001 

IND 1.4 0.14 1.6 0.02 3.5 0.02 

Baseline HY2+ 1.6 0.01 1.02 0.93 0.7 0.5 

Baseline MDS-UPDRSIII 1.03 4.4 x 10-9 1.03 0.0002 1.01 0.44 

Baseline MOCA 0.99 0.83 0.97 0.37 1.02 0.76 

Disease duration at 
study entry 

0.8 0.004 1.09 0.04 0.8 0.01 

Education – more than 
12 years or higher 
education 

0.9 0.53 0.8 0.12 0.5 0.12 

       

Pre-study trajectory variables 

 HR p value HR p value HR p value 

Age at onset 1.03 0.15 1.06 8.2 x 10-14 1.1 0.03 

Gender – male 0.9 0.44 0.9 0.52 0.7 0.41 

Motor subtype – TD ref       

PIGD 2.9 3.4 x 10-12 2.5 1.6 x 10-12 3.6 0.002 

IND 1.4 0.18 1.7 0.007 3.4 0.1 

Baseline HY2+ 1.8 0.13 1.4 0.13 0.7 0.43 

Education – more than 
12 years or higher 
education 

0.9 0.44 0.8 0.08 0.5 0.13 

MDS-UPDRSIII/disease 
duration at entry 

1.02 1.3 x 10-5 1.0 0.66 1.2 0.01 

MOCA/disease duration 
at entry 

0.95 0.17 1.0 0.97 0.7 0.36 
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Table 4.7 (cont). 

1 year progression variables 

 HR p value HR p value HR p value 

Age at onset 1.02 0.10 1.07 1.2 x 10-8 1.06 0.05 

Gender – male 0.95 0.76 0.9 0.46 0.7 0.49 

Motor subtype – TD ref       

PIGD 2.5 0.006 2.6 1.2 x 10-10 4.7 0.003 

IND 1.5 0.14 1.6 0.02 3.6 0.06 

Baseline HY2+ 2.0 0.05 1.6 0.02 0.9 0.91 

Disease duration at 
study entry 

1.01 0.87 1.1 0.01 0.9 0.14 

Education – more than 
12 years or higher 
education 

0.7 0.06 0.9 0.29 0.3 0.03 

MDS-UPDRSIII annual 
change in year 1 

1.03 0.02 1.03 0.0009 0.99 0.88 

MOCA annual change in 
year 1 

1.03 0.72 1.08 0.07 0.9 0.55 

 

Dementia 

2,887 individuals had data for dementia. 783 individuals met the dementia outcome 

with mean time to dementia 4.8 years (SD = 3.1 years). 2,104 individuals did not meet 

the outcome of dementia, with mean follow-up 7.7 years (SD = 3.2 years). The median 

time to dementia was 4.2 years. 

All clinical variables tested, with the exception of 1 year progression in the MDS-

UPDRSIII, were associated with progression to dementia (Table 4.8). Some models 

did not meet the proportional hazards assumption in one or more cohorts, so these 

were analysed in stratified time intervals: 0 to 5 years, 5 to 10 years, and more than 

10 years from PD onset (Table 4.8).  

The proportional hazard assumption appeared to be not met most frequently in 

baseline symptom scale variables and disease duration at study entry, and there were 

still some models that did not meet the assumption after stratification by time. It may 

be that time from study entry, rather than PD onset, may be more appropriate  to 

analyse in these cases, due to the wide range of disease durations at study entry and 

potential bias where some patients with recent onset PD are recruited into the study 

and assessed, whereas other patients with long duration PD have a long period where 
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they are not observed to meet the outcome. It may also be helpful to analyse time from 

PD diagnosis, although this is highly correlated with age at onset. 

 
Table 4.8. Pooled effect estimates (from random-effects meta-analysis) for univariate 

associations between clinical predictors and dementia in univariate Cox proportional 

hazard analyses in each cohort.The hazard ratios are for a one unit increase in the 

variable of interest for numeric variables. P-values in bold indicate tests that passed 

Bonferroni correction for the number of tests for each outcome (0.05/13 = 0.0038). 

Variable Full time period 0 to 5 years 5 to 10 years >10 years 

 HR  p value HR  p value HR  p value HR  p value 

Age at onset 1.09 4.5 x 10-33       

Gender – male 1.6 2.5 x 10-6       

Motor subtype – 
TD ref 

        

PIGD 1.7 0.0002       

IND 1.4 0.002       

Baseline HY2+* 1.6 0.0002 1.3 0.13 1.9 0.02 1.7 0.13 

Baseline MDS-
UPDRSIII 

1.03 7.7 x 10-23       

Baseline MoCA* 0.7 2.0 x 10-35 0.8 3.8 x 10-75 0.7 1.1 x 10-54 0.7 0.02 

MDS-UPDRSIII/ 
disease 
duration at 
entry* 

1.03 5.0 x 10-5 1.01 0.04 1.01 0.07 1.1 0.29 

MoCA/disease 
duration at 
entry* 

1.2 1.3 x 10-5 1.1 0.005 1.2 6.4 x 10-6 6.5 3.5 x 10-7 

MDS-UPDRSIII 
annual change 
in year 1* 

1.02 0.22 0.99 0.85 1.01 0.13 1.06 0.04 

MoCA annual 
change in year 
1* 

1.2 5.7 x 10-5 1.02 0.47 1.3 7.9 x 10-5 0.95 0.71 

Disease 
duration at study 
entry* 

0.8 1.3 x 10-19 0.9 0.12 1.3 1.2 x 10-11 0.9 0.005 

Education – 
more than 12 
years or higher 
education 

0.5 1.2 x 10-12       

* Did not meet proportional hazard assumption in at least one cohort, so analysis 
was stratified into different time intervals. 
 
TD = Tremor Dominant subtype; PIGD = Postural Instability Gait Disorder, IND = 
Indeterminate or mixed subtype; MoCA = Montreal Cognitive Assessment 
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In multiple regression models, age at onset, disease duration, and baseline MoCA 

were consistently associated with progression to dementia (Table 4.9). 

 

Table 4.9. Associations between clinical predictors and progression to dementia in 

multiple regression analyses, in  Tracking Parkinson’s, Oxford Discovery, and PPMI 

only.Separate models were performed for baseline variables, pre-study trajectory 

variables, and 1 year progression variables. The hazard ratios (HRs) and p-values 

from random effects meta-analysis are reported in stratified time intervals from PD 

onset, as the proportional hazards assumption was consistently not satisfied in models 

with the full time period. To correct for multiple testing in the three models in three 

different time periods, only p-values < 0.0056 (0.05/9) were considered significant. 

Baseline variables only 

Variable 0 to 5 years 5 to 10 years > 10 years 

 HR  p value HR p value HR p value 

Age at onset 1.03 9.7 x 10-5 1.05 3.2 x 10-8 1.07 0.10 

Gender – male 1.1 0.40 1.9 0.03 1.2 0.83 

Motor subtype – TD ref       

PIGD 0.95 0.82 1.3 0.16 3.6 0.007 

IND 1.1 0.67 1.08 0.72 2.0 0.27 

Baseline HY2+ 0.99 0.97 1.09 0.80 11.9 0.07 

Baseline MDS-UPDRSIII 0.99 0.09 1.02 0.004 0.9 0.01 

Baseline MOCA 0.7 2.5 x 10-18 0.7 6.6 x 10-27 0.5 0.001 

Disease duration at 
study entry 

0.5 4.8 x 10-7 1.1 0.27 0.8 0.008 

Education – more than 
12 years or higher 
education 

0.9 0.7 0.6 0.002 1.5 0.40 

Pre-study trajectory variables 

 HR p value HR p value HR p value 

Age at onset 1.04 5.5 x 10-7 1.05 5.2 x 10-9 1.09 0.02 

Gender – male 1.06 0.64 2.1 0.003 1.3 0.57 

Motor subtype – TD ref       

PIGD 0.9 0.63 1.5 0.04 3.8 0.004 

IND 1.3 0.08 1.2 0.33 2.4 0.14 

Baseline HY2+ 1.4 0.009 2.2 0.08 1.9 0.24 

Education – more than 
12 years or higher 
education 

0.7 0.002 0.7 0.008 1.4 0.48 

MDS-UPDRSIII/disease 
duration at entry 

0.97 0.20 0.97 0.02 0.87 0.34 

MOCA/disease duration 
at entry 

1.2 0.03 1.3 0.007 9.7 8.6 x 10-5 
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Table 4.9 (cont). 

1 year progression variables 

 HR p value HR p value HR p value 

Age at onset 1.04 0.002 1.08 1.2 x 10-23 1.2 0.006 

Gender – male 1.2 0.53 1.7 5.2 x 10-5 1.9 0.05 

Motor subtype – TD ref       

PIGD 0.97 0.90 1.4 0.02 2.9 0.0003 

IND 1.07 0.82 1.4 0.11 14.6 0.09 

Baseline HY2+ 1.95 0.16 1.2 0.32 0.7 0.72 

Disease duration at 
study entry 

0.9 0.19 0.9 0.06 0.9 0.41 

Education – more than 
12 years or higher 
education 

0.6 0.09 0.7 0.12 0.4 0.005 

MDS-UPDRSIII annual 
change in year 1 

0.99 0.34 1.02 0.39 1.02 0.38 

MOCA annual change in 
year 1 

1.08 0.19 1.2 0.0002 1.3 0.28 

 

Sensitivity analysis – time from study entry 

When analysing progression using time from study entry, rather than time from PD 

onset, the results were very similar. There was a strong correlation between age at 

PD onset and age at study entry (r = 0.93, p < 2.2 x 10-16) in the subset of prevalent 

PD patients in prospective cohorts. 

In univariate analyses, the same predictors were significantly associated with 

progression mortality, Hoehn and Yahr stage 3 or greater, and dementia. The effect 

sizes were consistent in direction and size to the main analysis, with the exception of 

disease duration at study entry. When analysing time from study entry, longer disease 

duration at study entry was associated with more rapid progression to mortality (HR = 

1.04, p = 1.4 x 10-6), but not significant for Hoehn and Yahr stage 3+ (HR = 1.04, p = 

0.06), and dementia (HR = 1.003, p = 0.86).  

In multiple regression models for mortality, using time from study entry, the same 

predictors were significant and with effects approximately the same magnitude as in 

the analysis using time from PD onset. The only change was that pre-study trajectory 

in the MDS-UPDRSIII was no longer significantly associated with mortality. 
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In multiple regression models for Hoehn and Yahr 3 and dementia, using time from 

study entry, there were some differences in the significance of predictors though the 

direction of effects were generally the same.  

Discussion 

In this study, I examined the clinical predictors of progression measured in time to 

clinical milestones: mortality, Hoehn and Yahr stage 3 or greater, and dementia. 

To summarise the key findings:  

1. Mortality: Age at onset, gender, motor subtype, disease duration at study entry, 

baseline MDS-UPDRSIII (including pre-study trajectory), and 1 year progression in 

the MoCA were associated with mortality in multiple regression analyses. 

 

2. Hoehn and Yahr stage 3+: the Cox proportional hazards assumption was not 

satisfied for most predictors, except age at onset. In multiple regression analysis, 

older age at onset, PIGD subtype, higher baseline scores and pre-study trajectory 

in the MDS-UPDRSIII, and disease duration at study entry were associated with 

more rapid progression, though some were not consistently associated at different 

disease stages. 

 

3. Dementia: older age at onset, PIGD subtype, baseline MoCA and pre-study 

trajectory in the MoCA, and disease duration at study entry were consistently 

associated with more rapid progression in multiple regression models. There was 

some evidence that PIGD subtype and more rapid 1 year progression in the MoCA 

were also associated with dementia, but these were not consistent at different 

stages.  

 

Age at onset 

I showed that age at onset is a strong predictor of all clinical milestones. This 

association has been robustly reported in many previous studies and systematic 

reviews [204–206,223], although the review by Marras et al. suggest that older age at 

onset was only robustly associated with disability and not motor progression [204]. 
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Only a handful of studies have not confirmed this association between age at onset 

and disease progression [224–226]. This may be because age at onset was stratified 

into two groups and these were not sufficient to capture the variation in progression. 

However, when looking at prediction of mortality, it is important to consider the age-

standardised mortality rate as older patients have an increased all-cause mortality. 

This study did not include comparison to healthy controls, but previous studies have 

shown that the association between age of onset and mortality remains even after 

comparing with age-matched controls [227,228]. Even so, this analysis is complex 

because healthy controls surviving to very old ages may not be fully representative of 

the general population.  

My results replicate many previous studies, including population-based studies and 

community cohorts, showing that older age of onset is associated with greater risk of 

mortality [203,227–229]. However, when considering age-specific life expectancy, 

patients with younger onset have a greater reduction in life expectancy than patients 

with older onset [230]. 

Gender 

I found that male gender was associated with progression to mortality. The majority of 

previous studies of mortality and survival in PD show that men have increased risk of 

mortality than women [208], but when comparing this to the standardised mortality 

ratios of men and women, there does not appear to be a sex difference in PD mortality 

relative to the general population [203,227–229]. 

Interestingly, male gender was associated with more rapid progression to death, but 

not Hoehn and Yahr stage 3 in either univariate or multiple regression analysis. Other 

studies have generated conflicting results on the association between sex and motor 

progression. In the Sydney Multicentre Study, Hely et al. found that after 10 years, 

women had higher Hoehn and Yahr scores than men, although there was no 

difference in the rate of increase in other disability scales [14]. In the same cohort of 

patients at 5 years of follow-up, there was no difference between men and women in 

development of balance disorder or progression in the Columbia scale [223]. Some 

studies have reported no association between sex and motor progression 
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[212,224,225,231], while only a few suggest that men have more rapid motor 

progression [232]. 

Male gender was associated with more rapid progression to dementia in univariate 

analysis, but not in multiple regression models. Several previous studies suggest that 

men have increased risk of dementia in PD [217,218,233]. A recent study in the PPMI 

cohort found that men had lower MoCA scores at 2 year follow-up (indicating worse 

cognitive performance) in univariate analysis, but this was not significant in multiple 

regression models after backwards stepwise elimination [202]. There was also no 

association between gender and classification of cognitive impairment [202].   

Overall, this evidence from this and other studies suggests that gender is not an 

important predictor for progression to Hoehn and Yahr stage 3 or greater or dementia, 

after accounting for other baseline demographic and symptom severity scales. It is 

possible that men have more severe symptoms at study entry but the rate of 

progression is the same. 

Motor subtype 

I found that baseline motor subtype was a strong predictor of all clinical milestones, 

with the PIGD subtype progressing more rapidly than the TD subtype. This replicates 

the results of previous studies showing that the PIGD subtype is associated with worse 

prognosis, including mortality [209,211,234], and dementia [213,214], while the TD 

subtype is more benign.  

One limitation is that subtype classification can change over time, typically from TD to 

PIGD as disease progresses [213,235]. This may add noise to the classification of 

motor subtype in the Tracking Parkinson’s and Oxford Discovery cohorts, where 

patients were recruited slightly later in disease stage, so the classification at study 

entry may not reflect presentation at symptom onset. 

Baseline severity and pre-study trajectory 

Baseline severity and estimated pre-study trajectories (baseline score divided by 

disease duration) in the MDS-UPDRSIII and MoCA were associated with progression 

to death, Hoehn and Yahr stage 3, and dementia. A few previous studies have shown 
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that estimated pre-study trajectory was associated with mortality [14,203,236], and a 

number of studies indicate that baseline symptom severity is associated with later 

outcomes. A previous progression GWAS included classification of Hoehn and Yahr 

stage 2 or greater as a covariate [98], but I found this was not associated with 

progression after accounting baseline MDS-UPDRSIII and MoCA scores. However, 

not all studies will have detailed clinical assessments available.  

There are a number of limitations to consider with baseline severity and estimated pre-

study trajectories. Firstly, studies have used different scales to determine baseline 

severity or pre-study progression rate, and this may explain some of the differences 

between results. Secondly, in this analysis, Tracking Parkinson’s and Oxford 

Discovery were not incident cohorts so there was a wide range of disease durations 

at study entry and the calculation of these scores may be skewed. In addition, there 

may be a ceiling effect in the MoCA as this is only a brief screening instrument and 

may not be as sensitive as detailed neuropsychological assessments [237]. Finally, 

as Marras highlighted, there may be recall bias such that patients with particular initial 

symptoms may recall onset more accurately than patients with more subtle initial 

symptoms, and this would affect disease duration estimates [203]. 

1 year progression 

I found some evidence that progression in the first year was predictive of later 

progression. Progression after 1 year in the MoCA, but not baseline MoCA scores, 

were associated with mortality. This result could be due to two possible explanations. 

Firstly, it could be that there is less measurement error in the MoCA in the 1 year 

progression variable as this is more accurate at estimating latent progression than the 

baseline MoCA score. Secondly, 1 year progression may be a stronger predictor 

because the rate of decline is non-linear. 

In contrast, baseline performance in the MDS-UPDRSIII but not 1 year progression 

was associated with mortality. I hypothesise that this is due to a stronger ceiling effect 

in the MoCA at baseline (scored out of 30), whereas the motor MDS-UPDRSIII is on 

a larger scale. In addition, patients are diagnosed by motor symptoms so by the point 

of study entry there is more likely to be observed motor impairment than cognitive 
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impairment. In this case, the baseline MDS-UPDRSIII may be more accurate at 

estimating latent progression.  

Other studies have shown that 1 year progression [238], as well as early cognitive 

impairment and incident dementia is a predictor of progression [214,216]. The results 

of the current study suggest that 1 year progression is associated with later 

progression, and further analysis using predictive modelling methods is needed. 

Disease duration 

I found that disease duration at study entry was predictive of progression to all 

milestones. However this may be biased, as disease onset was used as the starting 

time point in survival analysis so patients with longer disease duration have a longer 

period where they cannot be observed to meet the outcome as they are not actively 

assessed in a study. In addition or alternatively, there may be a bias whereby patients 

with longer disease duration at study entry are likely to be more slower progressing 

than typical patients with the same disease duration, who may be too disabled or 

unwilling to take part in intensive research studies. Results from a sensitivity analysis 

using time from study entry suggests the first scenario is likely to be the case. These 

results showed either no effect or the opposite effect for disease duration in univariate 

models. However, the results for other predictors in multivariable models were 

generally similar. 

There is mixed evidence from other studies of the association between baseline 

disease duration and mortality [14,211], motor progression [210], cognitive 

progression [211], and other markers of disability [14,210]. Further studies of incident 

PD patients in population-based settings is needed to fully answer this question. 

Limitations 

One limitation of this study is that detailed clinical data was not available in the majority 

of cohorts in the analysis of mortality. The prospective cohorts that had systematic 

data available followed patients earlier in disease stage, and therefore included a 

smaller proportion of patients who died. This points to an important trade-off in clinical 

cohorts, where the more covariates/predictors that are assessed and included in 
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statistical models, the fewer cases will have full clinical data and can be included in 

analyses, especially for more intensive clinical scales. 

A second limitation is that the proportional hazard assumption does not appear to hold 

true for many predictors in progression to Hoehn and Yahr stage 3 and dementia. To 

overcome this, I analysed time from PD onset in three intervals, however even in the 

stratified analysis there were a few variables which did not meet the proportional 

hazards assumption. This indicates that there may be some interaction between the 

clinical predictors and time. Other models for these predictors and outcomes may be 

needed, such as the accelerated failure time model. 

When reviewing previous literature, it becomes clear that comparisons between 

studies are very difficult. Firstly, studies use different measures of motor and cognitive 

progression – some use change in different scales, whereas others use milestones or 

cut-off points in clinical scales. While various scales within the same domain (e.g. 

motor scales) are likely to be correlated, they measure different symptoms and 

aspects of progression. Furthermore, each study includes different 

predictors/covariates in multiple regression models, and this can dramatically affect 

the results of the model. Studies also use different methods for models – some use 

multiple regression while others use stepwise models, and each with slightly different 

criteria for selection. This can also dramatically influence which predictors are 

evaluated, and consequently the results of the model. Finally, due to these issues 

listed, it can be difficult to interpret whether a clinical predictor is important for 

progression if it is significant in univariate but not multiple regression or stepwise 

models. One would suggest that greater standardisation is needed between studies, 

however this issue is complex as there is no gold standard for measuring or assessing 

progression, so the nature of this research is exploratory. 

In summary, I found robust evidence that age at onset, baseline severity, and disease 

duration at study entry were associated with progression. There was moderate 

evidence that gender is associated with progression but not in multiple regression 

analysis. Some of these variables, such as baseline severity, may be on the causal 

pathway (intermediary markers) between genotype and progression. In the GWAS 

chapters, I included age at onset and gender as covariates. 
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Chapter 5 : Genome-wide association studies using a principal 

components analysis approach 

Introduction 

Progression in PD is heterogeneous, with some patients progressing rapidly while 

others remain relatively stable over time [17]. There is a clear need to identify genetic 

variants that affect symptom progression in PD.  

GWASs in PD have identified 90 independent loci associated with disease risk [75]. 

However, the majority of PD GWASs have compared cases to healthy controls to 

identify variants linked to disease status. In order to identify variants that are 

associated with disease progression, it is necessary to compare phenotypes within 

patients. 

Progression of clinical signs in PD can be measured in different ways [239] and there 

is no gold standard measure of progression, although the MDS-UPDRS Part III and 

Part II are commonly used in clinical trials. Individual scales, including the MDS-

UPDRS, are affected by measurement error particularly for change over time [240], 

including rater subjectivity and practice effects in cognitive assessments. Therefore, 

combining multiple measures may improve the accuracy of measuring progression 

[202,241]. 

Principal Components Analysis (PCA) is commonly used in clinical studies to combine 

multiple scales and identify latent components that explain the most variability in the 

data. PCA was used successfully in a GWAS of Huntington's disease (HD) 

progression to combine multiple motor, cognitive, and brain atrophy variables, to 

create a composite progression score [97].  

The aim of this approach is to improve the phenotypic measure of progression and 

increase power in genetic studies. This is particularly useful as our sample sizes for 

progression studies is still relatively small for GWASs. 

In this study, I analysed data from three large-scale, prospective, longitudinal studies: 

Tracking Parkinson's, Oxford Parkinson's Disease Centre Discovery (Oxford 

Discovery), and PPMI. Following a similar approach in HD, I combined multiple 
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measures of motor and cognitive progression using PCA to create progression scores. 

These scores were analysed in GWASs to identify variants associated with composite 

(cross-domain), motor, and cognitive progression in PD. 

Methods 

Cohorts 

For this study, I analysed genome-wide SNP array data from Tracking Parkinson's and 

Oxford Discovery, and whole genome sequencing data from PPMI.  

Clinical data from PPMI was downloaded on 14/08/2019. Only data from the annual 

visits was analysed from PPMI, as the motor assessments were performed in the 

technically defined 'off' state at these visits. 

All studies used the same Queen Square Brain Bank diagnostic criteria for PD. 

Patients who received alternative diagnoses during follow-up or had neuroimaging 

results conflicting with a PD diagnosis were excluded from analyses. 

Genotyping 

Genotyping arrays are described in Chapter 2 (Methods). Standard quality control 

procedures were conducted in PLINK v1.9. I conducted quality control steps and 

imputation on the Tracking Parkinson's data, while the Oxford Discovery data was 

filtered and imputed by Dr Stephanie Millin (University of Oxford). The cohorts were 

genotyped and filtered separately, but following the same quality control steps and 

filters. Individuals with low overall genotyping rates (< 98%), related individuals 

(Identity-By-Descent PIHAT > 0.1) and heterozygosity outliers (> 2 SDs away from the 

mean) were removed, as were individuals whose clinically reported biological sex did 

not match the genetically determined sex. 

PCA was conducted on a linkage disequilibrium (LD) pruned set of variants (removing 

SNPs with an r2 > 0.05 in a 50kb sliding window shifting 5 SNPs at a time) after 

merging with European samples from the HapMap reference panel. Individuals who 

were > 6 SDs away from the mean of any of the first 10 principal components were 

removed. 
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Variants were removed if they had a low genotyping rate (< 99%), Hardy-Weinberg 

Equilibrium p-value < 1 x 10-5, and minor allele frequency < 1%.  

Following quality control, genotypes for Tracking Parkinson's and Oxford Discovery 

were imputed separately to the 1,000 Genomes Project reference panel (phase 3 

release 5)[136] using the Michigan Imputation Server 

(https://imputationserver.sph.umich.edu). I performed post-imputation filtering on both 

the Tracking Parkinson's and Oxford Discovery datasets. Only variants with imputation 

quality >0.8 were retained, to keep only high quality calls to merge across the cohorts. 

Tracking Parkinson’s and Oxford Discovery data was lifted over to genome build hg38 

using liftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to merge with PPMI. PPMI 

data was not imputed as this was whole-genome sequencing data. 

The three datasets were then merged, with only shared variants retained. Twenty 

genetic principal components were generated from a linkage-pruned SNP set 

(removing SNPs with an r2 > 0.02 in a 1000kb sliding window shifting 10 SNPs at a 

time). The first 2 components were plotted to check that there were no differences 

between the cohorts. I removed extreme outliers from the first 5 principal components 

(> 6 SDs away from the mean). The genetic principal components were then 

recalculated after removing outliers, as extreme outliers can substantially affect the 

calculation of genetic principal components. These first 5 new principal components 

were included as covariates in the GWASs to adjust for population substructure. 

Additional outliers who were > 6 SDs away from the mean of any of the first 5 principal 

components were excluded. The plot of the first 2 principal components after removing 

outliers is shown in Figure 5.1A, and when merged with the HapMap reference 

samples (Figure 5.1B). 
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Figure 5.1. A) First two genetic principal components plotted for each cohort, from the 

final genetic PCA (after removing outliers in two passes). B) First two principal 

components, generated from a PCA merged with HapMap data.  

 

 

 

Clinical outcome measures 

Individual-level data from the three cohorts was merged. In order to increase power 

and the accuracy of the final progression scores, I performed all transformations and 

created progression scores from the merged dataset as follows (Figure 5.2). 
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Figure 5.2. Steps to create composite, motor, and cognitive progression scores. 

 

AAO = Age at onset; MDS-UPDRS = Movement Disorders Society Unified 
Parkinson’s Disease Rating Scale; PCA = Principal Components Analysis. 

 

The motor and cognitive measures were chosen prior to the analysis. Only 

assessments conducted in all cohorts were included. I selected measures shown to 

rate motor and cognitive function semi-objectively, in an attempt to minimise observer 

bias. I did not include scales which may have been affected by a combination of motor, 

cognitive, and other non-motor symptoms, such as the Schwab and England Activities 

of Daily Living Scale. 

Motor progression was assessed using the MDS-UPDRS Part III (clinician-assessed 

movement examination), MDS-UPDRS Part II (patient-reported motor experiences of 

daily living), and Hoehn and Yahr stage (clinician-assessed rating of impairment and 

disability). In PPMI, I used the motor assessments conducted in the 'off' medication 

state, as these patients were treatment-naive at study entry. 

Cognitive progression was assessed using the Montreal Cognitive Assessment 

(MoCA), semantic fluency, and item 1.1 of the MDS-UPDRS (cognitive impairment 

based on patient and/or caregiver report). 
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To ensure the different measures were comparable, I first converted raw scores into 

a percentage of the maximum score for that scale, with higher scores indicating worse 

symptoms. The MoCA was reverse scored to count the number of incorrect items out 

of the maximum score of 30. Semantic fluency was reverse scored out of the highest 

individual score at baseline in each cohort. 

Each measure was then standardised to the population baseline mean and standard 

deviation within each cohort, to ensure that measures are on the same scale and to 

adjust for any differences in the scales or task instructions between cohorts. By 

standardising to the baseline mean and SD (rather than the mean and SD of each 

visit), I also preserved data on longitudinal change which is important for analysis of 

progression. 

Analysis of progression scores 

I derived severity scores from mixed effects regression models using follow-up data 

up to 72 months. Each variable was regressed on age at onset, sex, cohort, and their 

interactions with time from disease onset. For the cognitive measures, I also included 

the following education variables as covariates: the number of years of education 

before higher education, and whether higher education was undertaken (yes/no). This 

was the format that education data was collected in Tracking Parkinson's and Oxford 

Discovery. In each model, I included terms for subject random effects to account for 

individual heterogeneity in the intercept (baseline values) and slope (rate of 

progression). 

The random effect slope values were used as the measure of 'residual' progression 

not predicted by age at onset, cohort, gender, and education, for each individual. I 

performed PCA on these values, with the input variables zero centred and scaled to 

have unit variance. 

Removal of non-PD cases 

Any patients that were diagnosed with a different condition during follow-up were 

removed from analyses. I also conducted sensitivity analyses to remove any cases 

which may have non-PD conditions but an alternative diagnosis had not yet been 

confirmed. Firstly, I repeated analyses after removing patients in Tracking Parkinson's 
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and Oxford Discovery who had a clinician-rated diagnostic certainty of PD of less than 

90%. This cutoff has been used in previous studies of these cohorts [20,242]. 

Secondly, I removed the fastest and slowest progressors in the top and bottom 5% of 

the distribution, to address the possibility of confounding by misdiagnosis with more 

benign (e.g. essential tremor) or more malignant (e.g. MSA, PSP) conditions. 

GWAS 

Statistical analysis was conducted in R v3.4.1 (https://www.r-project.org/)[243]. 

Clinical data from Tracking Parkinson's and Oxford Discovery was managed and 

cleaned by Dr Michael Lawton and Ms Sofia Kanavou (Bristol University) using STATA 

(version 15.1, StataCorp, Texas, USA). 

For each GWAS, I included the following covariates: cohort (to adjust for any 

differences in genotyping data and measurement error) and the first 5 genetic principal 

components generated from the merged genotype dataset (to adjust for population 

substructure). I conducted all GWASs in rvtests [119] using the single variant Wald 

test. Genome-wide Complex Trait Analysis conditional and joint analysis (GCTA-

COJO) was used to identify independent signals [244,245]. Individuals carrying rare 

variants in GBA, LRRK2 or other PD genes were not excluded from the GWASs. I also 

performed sex-stratified analysis to identify if there are different genetic associations 

in men and women. 

Functional Mapping and Annotation of GWAS (FUMA; https://fuma.ctglab.nl/) was 

used with standard settings to annotate, prioritise, and visualize GWAS results[121]. 

Gene-based and gene-set analyses were conducted in FUMA with MAGMA. I looked 

for enrichment of gene-sets or pathways in Gene Ontology (GO; MsigDB c5), 

Reactome, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). GTEx 

(https://gtexportal.org/) and the eQTLGen Consortium 

(http://www.eqtlgen.org/index.html)  were used to look up expression quantitative trait 

loci (eQTLs). LDlink (https://ldlink.nci.nih.gov/) was used to calculate linkage between 

SNP pairs (using LDpair) in European populations excluding the Finnish population.  

Genetic Risk Scores (GRS) were calculated using the 90 loci from the most recent 

and largest PD case-control GWAS meta-analysis [75]. The association between the 

genetic risk score and each progression score was assessed using linear regression, 
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adjusting for cohort and the first 5 genetic principal components. LD Score regression 

(LDSC) [246,247] was used to estimate the genetic correlation between the 

progression GWASs and the PD case-control GWAS using summary statistics 

excluding 23andMe samples [75]. 

GBA 

I analysed GBA rare variant carriers compared to non-carriers in a subset of patients, 

using Sanger sequencing data from Tracking Parkinson’s and whole genome 

sequencing data from PPMI. In PPMI, only the following GBA variants were covered: 

N370S, T369M, E326K, and R463C. I classified patients as carrying a pathogenic 

GBA variant, including Gaucher’s Disease variants and variants associated with PD 

but excluding novel variants, following previous studies [135,248]. I analysed GBA 

status in relation to the progression scores using linear regressions, adjusting for 

cohort and the first 5 genetic principal components. 

Levodopa-equivalent Daily Dose (LEDD)-adjusted sensitivity analyses 

Medication may affect MDS-UPDRSIII scores, in particular in Tracking Parkinson’s 

and Oxford Discovery where patients were assessed in the ‘on’ state. To address this, 

I performed a sensitivity analysis adjusting for LEDD, as described in a previous study, 

where I estimated the effect of levodopa on the MDS-UPDRSIII [242]. Merely adjusting 

for treatment as a covariate is not adequate, as therapy is not a simple confounder but 

a direct outcome of the underlying symptom – individuals who have more severe 

symptoms are more likely to be treated [199], and most likely with higher doses.  Using 

the recommended method in previous studies [199], I added a sensible constant to 

the MDS-UPDRSIII scores to estimate what they would be if the patients were 

untreated, according to LEDD at each timepoint. I used data from the ELLDOPA study 

(personal communications) [249]. First, I converted UPDRS values from the 

ELLDOPA study to the MDS-UPDRS equivalent differences [250]. Second, I used a 

square root regression model at each timepoint to estimate the effect of different 

levodopa doses on the MDS-UPDRSIII [242]. This was only performed as a sensitivity 

analyses, as it involves extrapolation and the range of LEDD in these studies exceeds 

that from the ELLDOPA data. 
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Results 

I included clinical data for 3,364 PD patients with 12,144 observations (Table 5.1). The 

mean follow-up time was 4.2 years (SD = 1.5 years), and mean disease duration at 

study entry was 2.9 years (SD = 2.6 years). 79.7% of patients had completed the 72-

month follow-up visit. 

 
Table 5.1. Cohort demographics at baseline. Means (SD) are shown unless otherwise 

indicated. 

* Tracking Parkinson’s used the modified Hoehn and Yahr stage scale, while Oxford 
Discovery and PPMI used the original scale. Hoehn and Yahr stage proportions are 
shown as a total of the number of people with non-missing Hoehn and Yahr ratings 
at baseline.  
+ Instructions and timing for the semantic fluency task was slightly different between 
cohorts (completed within 60 seconds or 90 seconds). To account for these 
differences, I standardised all scales within each cohort separately (see Methods). 

 

 

Demographics at baseline Tracking 
Parkinson’s 

Oxford 
Discovery 

PPMI 

Number of PD patients 1966 985 413 

Total number of visits analysed 5980 3137 3066 

Mean length of follow-up (years) 3.8 (1.4) 4.3 (1.7) 5.4 (1.2) 

Male (%) 65.2% 64.2% 65.4% 

Age at onset (years) 64.4 (9.8) 64.5 (9.8) 59.5 (10.0) 

Age at diagnosis (years) 66.3 (9.3) 66.1 (9.6) 61.0 (9.7) 

Age at study entry (years) 67.6 (9.3) 67.4 (9.6) 61.5 (9.8) 

Disease duration - time from symptom 
onset to assessment (years)  

3.2 (3.0) 2.9 (1.9) 2.0 (2.0) 

Time from diagnosis to assessment 
(years) 

1.3 (0.9) 1.3 (0.9) 0.5 (0.5) 

MDS-UPDRS Part III  22.9 (12.3) 26.8 (11.1) 20.7 (8.8) 

MDS-UPDRS Part II 9.9 (6.6) 8.9 (6.2) 5.8 (4.1) 

Hoehn and Yahr stage mean* 1.8 (0.6) 1.9 (0.6) 1.6 (0.5) 

Hoehn and Yahr stage proportions* 

0 to 1.5 (%) 48.1% 23.2% 44.8% 

2 to 2.5 (%) 45.1% 68.8% 54.7% 

3+ (%) 6.8% 8.1% 0.5% 

MoCA total (adjusted for education) 24.9 (3.6) 24.5 (3.5) 27.1 (2.3) 

Semantic fluency+  21.8 (6.9) 34.7 (9.0) 21.0 (5.4) 

MDS-UPDRS Part I.1 0.5 (0.7) 0.5 (0.6) 0.3 (0.5) 
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Within the motor progression PCA, using the MDS-UPDRS Part III, Part II, and Hoehn 

and Yahr Stage, the first principal component explained 61.0% of the total variance 

(Figure 5.3). Within the cognitive domain PCA, using the MoCA, semantic fluency, and 

MDS-UPDRS 1.1, the first principal component explained 59.8% of the total variance 

(Figure 5.4). 

Figure 5.3. Scree plot and plot showing the proportion of variance explained in the 

motor progression principal component analysis. 

 

Figure 5.4. Scree plot and plot showing the proportion of variance explained in the 

cognitive progression principal component analysis. 

 



 112 

I found that the first principal components for motor and cognitive progression were 

moderately correlated (r = -0.35, p < 2.2 x 10-16). The components from the PCA are 

latent components that explain the most variability in the data, and cannot therefore 

be interpreted as directional.  

Because of the correlation between the motor and cognitive components, I therefore 

conducted a PCA combining all motor and cognitive measures, to create a composite 

progression score. The first principal component from this cross-domain PCA 

accounted for 41.0% of the joint variance. Table 5.2 shows that all the raw scales were 

well correlated with the final composite progression score and that there was no single 

scale which did not correlate as well as the others. None of the composite, motor, or 

cognitive principal components were associated with cohort (all p-values > 0.9).  

 

Table 5.2. Correlation between first principal component from combined progression 

PCA and random slopes from individual measures. Pearson’s r is reported. 

 PC1 PC2 PC3 PC4 PC5 PC6 

MDS-UPDRSIII 0.65 -0.48 0.12 -0.33 -0.46 0.11 

MDS-UPDRSII 0.72 -0.28 -0.29 -0.30 0.40 -0.27 

Hoehn and Yahr 0.57 -0.54 0.30 0.51 0.17 0.08 

MoCA total 0.67 0.48 0.07 0.22 -0.26 -0.45 

Semantic fluency 0.56 0.53 0.50 -0.23 0.22 0.23 

MDS-UPDRS 1.1 0.66 0.30 -0.54 0.18 -0.05 0.37 

% of variance 

explained 

41.0% 20.1% 12.3% 9.9% 8.6% 8.1% 
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GWAS of composite progression 

After quality control, imputation, and merging, 5,918,868 variants were available for 

analysis. 2,755 PD patients had composite progression scores and passed genetic 

quality control. The GWAS lambda was 1.02. One variant rs429358 in Chromosome 

19 passed genome-wide significance (p=1.2 x 10-8, Figure 5.5, Table 5.3). This variant 

tags the APOE 4 allele. In the gene-based test, APOE, TOMM40 and APOC1 

reached significance (p < 2.8 x 10-6, correcting for the number of mapped protein 

coding genes). When I performed conditional analysis on the top SNP rs429358, there 

were no other SNPs that passed significance in this region. In the FUMA GENE2FUNC 

analysis of the prioritised genes, the Reactome pathway cytosolic sulfonation of small 

molecules pathway was significantly enriched (p = 6.9 x 10-6). There were no pathways 

in the MAGMA gene-set analysis that passed Bonferroni correction (N = 15,496 gene 

sets tested) but the top 10 pathways are shown in Table 5.4. 

 

Figure 5.5. Manhattan plot for GWAS of composite progression.The red dashed line 

indicates the genome-wide significance threshold p-value 5 x 10-8. 

 

  



Table 5.3. Top 10 independent SNPs from the GWAS of composite progression. 

 

Table 5.4. Top 10 pathways from MAGMA gene-set analysis for composite progression.This includes curated gene sets and GO 

terms from MsigDB. No gene sets/pathways passed Bonferroni correction for the number of tested gene sets (N = 15,496). 

FULL_NAME NGENES BETA BETA_STD SE P_unadjusted 

Curated_gene_sets:scibetta_kdm5b_targets_dn 74 0.37 0.02 0.09 4.23E-05 

Curated_gene_sets:boylan_multiple_myeloma_d_dn 67 0.36 0.02 0.10 1.57E-04 

Curated_gene_sets:reactome_runx3_regulates_notch_signaling 12 0.90 0.02 0.26 2.21E-04 

GO_bp:go_regulation_of_protein_k63_linked_ubiquitination 10 0.80 0.02 0.24 3.41E-04 

Curated_gene_sets:martinez_tp53_targets_dn 534 0.11 0.02 0.03 4.68E-04 

GO_bp:go_zymogen_activation 48 0.39 0.02 0.12 5.59E-04 

Curated_gene_sets:gavin_il2_responsive_foxp3_targets_dn 5 1.21 0.02 0.37 5.78E-04 

Curated_gene_sets:reactome_attachment_of_gpi_anchor_to_upar 7 1.30 0.03 0.40 6.18E-04 

GO_bp:go_attachment_of_gpi_anchor_to_protein 6 1.43 0.03 0.45 6.63E-04 

GO_bp:go_protein_quality_control_for_misfolded_or_incompletely_synthesized_proteins 24 0.48 0.02 0.15 7.98E-04 

Chr 
Position 
(GRCh38) 

SNP 
Effect 
allele 
(minor) 

Ref 
allele 

Effect 
allele freq 

Nearest gene 
Distance 
to gene 
(kb) 

Beta  SE 
p  value 
original 

p value 
conditional 
(COJO) 

19 44908684 rs429358 C T 0.14 APOE 0 0.35 0.06 1.17E-08 1.07E-08 

10 33942102 rs224750 T C 0.37 PARD3 167458 -0.21 0.04 1.09E-06 1.20E-06 

15 94318611 rs11634227 C T 0.41 MCTP2 0 -0.21 0.04 1.19E-06 1.32E-06 

19 50760039 rs4802739 C A 0.40 GPR32 10425 0.20 0.04 1.27E-06 1.05E-06 

6 119112570 rs79987229 T A 0.01 FAM184A 0 0.85 0.18 2.57E-06 1.21E-06 

15 45744252 rs17554587 C G 0.22 SQRDL 52958 0.24 0.05 3.11E-06 3.39E-06 

5 4699328 rs62343939 T C 0.05 ADAMTS16 441002 0.43 0.09 3.25E-06 3.52E-06 

5 122191027 rs17367669 T G 0.22 LOC100505841 8364 0.23 0.05 3.31E-06 3.59E-06 

7 17673826 rs10253857 T C 0.22 SNX13 116935 -0.23 0.05 3.86E-06 4.19E-06 

2 108292945 rs13424530 A G 0.44 SULT1C2 0 0.20 0.04 4.06E-06 3.25E-06 
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GWAS of motor progression 

2,848 PD patients had motor progression scores and genotype data. The lambda was 

1.02. No variants passed genome-wide significance (Figure 5.6, Table 5.5). However, 

in the gene-based test, ATP8B2 in Chromosome 1 was associated with motor 

progression (p = 5.3 x 10-6), although this did not reach significance correcting for the 

number of mapped genes (p = 2.8 x 10-6). There was no enrichment of any gene sets 

or pathways in either the FUMA GENE2FUNC or MAGMA gene set analysis, but the 

top MAGMA gene sets are shown in Table 5.6. 

I performed follow-up analyses to confirm that the results in the top SNPs were not 

driven by a single cohort, or a single scale. I conducted GWASs in each cohort 

separately (Table 5.7) and each motor scale separately (without combining in PCA). 

These results show that associations are strengthened with the PCA approach (Table 

5.8). 

The top variant in Chromosome 1, rs35950207, was associated with motor 

progression, p = 5.0 x 10-6.  I examined the associations for our top SNPs in the 

previous progression GWAS [98] 

(https://pdgenetics.shinyapps.io/pdprogmetagwasbrowser/); rs35950207 was not 

significantly associated with binomial trait analysis of Hoehn and Yahr stage 3 or more 

at baseline (beta = 0.27, p = 0.03). 

https://pdgenetics.shinyapps.io/pdprogmetagwasbrowser/
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Table 5.5. Top 10 independent SNPs from the GWAS of motor progression. 

 

Table 5.6. Top 10 pathways from MAGMA gene-set analysis for motor progression.This includes curated gene sets and GO terms 

from MsigDB. No gene sets/pathways passed Bonferroni correction for the number of tested gene sets (N = 15,496). 

FULL_NAME NGENES BETA BETA_STD SE P_unadjusted 

Curated_gene_sets:biocarta_wnt_lrp6_pathway 6 1.14 0.02 0.28 2.92E-05 

GO_mf:go_nedd8_specific_protease_activity 7 1.21 0.02 0.31 3.98E-05 

GO_bp:go_formation_of_anatomical_boundary 3 2.41 0.03 0.65 9.99E-05 

GO_mf:go_atpase_regulator_activity 39 0.44 0.02 0.12 1.37E-04 

GO_mf:go_atpase_activator_activity 24 0.58 0.02 0.16 1.44E-04 

GO_bp:go_chaperone_mediated_protein_transport 9 0.92 0.02 0.26 2.43E-04 

Curated_gene_sets:park_osteoblast_differentiation_by_phenylamil_dn 6 1.27 0.02 0.37 2.59E-04 

Curated_gene_sets:servitja_islet_hnf1a_targets_dn 97 0.28 0.02 0.08 2.64E-04 

Curated_gene_sets:watanabe_colon_cancer_msi_vs_mss_dn 55 0.36 0.02 0.11 3.45E-04 

GO_bp:go_deoxyribonucleoside_triphosphate_biosynthetic_process 5 1.34 0.02 0.40 4.61E-04 

Chr 
Position 
(GRCh38) 

SNP  
Effect 
allele 
(minor) 

Ref 
allele 

Effect 
allele 
freq 

Nearest gene 
Distance 
to gene 
(kb) 

Beta  SE 
p value 
original 

p value 
conditional 

5 122193658 rs5870994 C CTT 0.23 LOC100505841 10995 0.21 0.04 1.36E-06 1.49E-06 

9 8454921 rs7870456 T C 0.22 PTPRD 0 0.21 0.04 1.53E-06 1.68E-06 

15 94320087 rs72767442 A T 0.41 MCTP2 0 -0.18 0.04 1.69E-06 1.85E-06 

2 23493673 rs6741991 G A 0.26 KLHL29 0 0.20 0.04 2.91E-06 3.17E-06 

1 154319482 rs35950207 T C 0.31 AQP10 1585 -0.18 0.04 5.01E-06 5.40E-06 

6 119067987  T TAAAC 0.01 FAM184A 0 0.70 0.15 5.03E-06 5.40E-06 

12 5829410 rs74709761 C G 0.04 ANO2 0 -0.41 0.09 6.42E-06 8.72E-06 

11 114821560 rs4436579 T C 0.29 NXPE2 114443 0.18 0.04 7.47E-06 8.02E-06 

12 12677103 rs12813102 C A 0.04 GPR19 0 0.43 0.10 7.70E-06 1.05E-05 

15 71520619 rs4128840 A G 0.41 THSD4 0 -0.17 0.04 7.95E-06 8.53E-06 
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Table 5.7. Motor progression GWAS performed in each cohort separately. Progression scores were created in the merged cohort. 

The results for the top 5 independent hits from the combined motor progression GWAS are shown here. These show that the effects 

and allele frequencies are consistent across all three cohorts. 

SNP Nearest gene Combined Tracking Parkinson’s Oxford PPMI 

  Beta p MAF Beta p MAF Beta p MAF Beta p MAF 

rs5870994 LOC100505841 0.21 1.36E-06 0.23 0.20 5.31e-05 0.23 0.17 0.04 0.21 0.30 0.064 0.26 

rs7870456 PTPRD 0.21 1.53E-06 0.22 0.12 0.016 0.23 0.32 3.81e-05 0.23 0.36 0.052 0.21 

rs72767442 MCTP2 -0.18 1.69E-06 0.41 -0.14 0.001 0.41 -0.15 0.026 0.40 -0.40 0.005 0.41 

rs6741991 KLHL29 0.20 2.91E-06 0.26 0.10 0.040 0.25 0.17 0.022 0.26 0.65 7.19e-05 0.27 

rs35950207 AQP10 -0.18 5.01E-06 0.31 -0.15 0.0007 0.31 -0.18 0.010 0.30 -0.28 0.080 0.32 

 

 

Table 5.8. Motor progression GWAS performed for each scale separately. The results for the top 5 independent hits from the 

combined motor progression GWAS are shown here. The random slope from the mixed effects model for each scale was used as 

the progression measure. These results show that the effects are consistent across each of the different motor scales. 

SNP Nearest gene Combined MDS-UPDRSIII random 
slope 

MDS-UPDRSII random 
slope 

Hoehn and Yahr random 
slope 

  Beta p Beta p Beta p Beta p 

rs5870994 LOC100505841 0.21 1.36E-06 0.013 2.32e-05 0.012 9.43e-05 0.006 0.0008 

rs7870456 PTPRD 0.21 1.53E-06 0.008 0.008 0.008 0.012 0.010 4.74e-10 

rs72767442 MCTP2 -0.18 1.69E-06 -0.013 1.42e-06 -0.008 0.003 -0.004 0.006 

rs6741991 KLHL29 0.20 2.91E-06 0.011 0.0004 0.010 0.002 0.007 1.08e-05 

rs35950207 AQP10 -0.18 5.01E-06 -0.014 3.21e-06 -0.005 0.106 -0.006 2.79e-05 
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Figure 5.6. Manhattan plots for the GWAS of motor progression. A) Variant-based 

analysis. Genome-wide significance is the standard p-value 5 x 10-8 (not indicated in 

the figure). B) Gene-based analysis. Genome-wide significance was defined at p = 

0.05/17802 (the number of mapped protein coding genes) = 2.81 x 10-6. 

 

rs35950207 is a variant 2kb upstream of AQP10. It is an eQTL for AQP10 in whole 

blood (GTEx p = 1.7 x 10-6, eQTLGen p = 3.6 x 10-139) and other tissues (subcutaneous 

adispose, skin, esophagus, testis, and heart). It is also an eQTL for ATP8B2 in blood 

(GTEx p = 1.5 x 10-5, eQTLGen p = 7.8 x 10-42) and in the cerebellum (GTEx  p = 7.8 

x 10-5). GBA is also located in Chromosome 1 and GBA variants are associated with 

both PD risk and progression[251]. However, rs35950207 is not in linkage 

disequilibrium with any of the main GBA variants that are implicated in PD (p.E326K, 

p.N370S, p.L444P, p.T369M).  

rs17367669 in Chromosome 5 was the top SNP in the variant-based analysis, but 

there were no genes in this region that approached significance in the gene-based 
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analysis. This variant is in an intergenic region and is closest to LOC100505841, Zinc 

Finger Protein 474-Like gene. No significant eQTLs were identified for this variant.  

GWAS of cognitive progression 

2,788 patients had cognitive progression scores and genotype data. The lambda value 

was 1.02. The top variant was rs429358, which tags the APOE ε4 allele (p = 2.5 x 10-

13, Figure 5.7, Table 5.9). Figure 5.8 shows that ε4 had more severe cognitive 

progression. APOE was also significantly associated with cognitive progression in the 

gene-based analysis, in addition to APOC1 and TOMM40. There was no enrichment 

of any gene-sets or pathways, but the top pathways from the MAGMA gene set 

analysis are shown in Table 5.10. Follow-up analyses showed that the effects for the 

top 5 independent SNPs were consistent in each cohort and each scale (Tables 5.11, 

5.12). 

Figure 5.7. Manhattan plot for the variant-based GWAS of cognitive progression.The 

red dashed line indicates the genome-wide significance threshold p-value 5 x 10-8. 
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Figure 5.8. Raw MoCA scores in each cohort by APOE ε4 status (carriers vs. non-

carriers).Note that the cognitive progression score was also based on semantic 

fluency performance and Part 1.1 of the MDS-UPDRS. Any mean data points with < 

5 individuals were removed. Lines show the means  standard errors of individuals 

who had data at that timepoint. Some of the means increase over time, likely because 

of participant drop-out. However, individuals who had data for at least one timepoint 

were still included in the progression scores and GWAS analysis; this graph is for 

illustrative purposes and does not capture all the data that was used to create the 

progression scores. The PPMI cohort were assessed at different timepoints (1 year 

intervals) than Tracking Parkinson’s and Oxford Discovery (1.5 year intervals). 

 

 

When I performed conditional analysis on the top SNP rs429358, a group of SNPs still 

passed genome-wide significance, indicating independent signals (Figure 5.9). The 

top SNP was rs6857 (beta=-0.33, p=4.4 x 10-11). This is a 3’ UTR Variant in NECTIN2. 

I also conditioned on the other APOE SNP rs7412 in addition to rs429358 (if both 
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rs429358 and rs7412 harbour the C alleles then this codes the 4 allele). This did not 

change the results. 

When conditioning on both rs429358 and rs6857, there were still several SNPs that 

passed significance, the top being rs12721051, an intronic variant in APOC1. 

 

Figure 5.9. Regional association plots of the Chromosome 19 locus associated with 

cognitive progression, conditioning on the top SNP rs429358.The recombination rate 

is shown in the blue line, based on European samples (build GRCh38). Plots were 

generated using LocusZoom (LocalZoom tool; http://locuszoom.org/). Conditional 

analysis reveals a group of SNPs that remain significant after removing the effect 

associated with rs429358. The top SNP is rs6857 (purple diamond).  

 

http://locuszoom.org/
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Table 5.9. Top 10 independent SNPs from the GWAS of cognitive progression. 

 

Table 5.10. Top 10 pathways from MAGMA gene-set analysis for cognitive progression.This includes curated gene sets and GO 

terms from MsigDB. No gene sets/pathways passed Bonferroni correction for the number of tested gene sets (N = 15,496). 

FULL_NAME NGENES BETA BETA_STD SE P_unadjusted 

Curated_gene_sets:faelt_b_cll_with_vh3_21_up 38 0.54 0.02 0.12 3.99E-06 

Curated_gene_sets:gregory_synthetic_lethal_with_imatinib 127 0.28 0.02 0.07 2.02E-05 

Curated_gene_sets:zaidi_osteoblast_transcription_factors 12 1.04 0.03 0.26 4.14E-05 

GO_mf:go_amino_acid_transmembrane_transporter_activity 67 0.38 0.02 0.10 1.13E-04 

GO_bp:go_pyrimidine_nucleoside_metabolic_process 6 1.58 0.03 0.43 1.30E-04 

Curated_gene_sets:yamazaki_tceb3_targets_up 154 0.22 0.02 0.06 1.78E-04 

GO_bp:go_very_low_density_lipoprotein_particle_clearance 9 1.03 0.02 0.29 2.33E-04 

GO_bp:go_calcium_ion_transmembrane_transport_via_high_voltage_gated_calcium_channel 12 0.87 0.02 0.25 2.95E-04 

Curated_gene_sets:gavin_il2_responsive_foxp3_targets_dn 5 1.27 0.02 0.38 3.49E-04 

GO_bp:go_positive_regulation_of_cgmp_mediated_signaling 6 0.98 0.02 0.29 3.63E-04 

Chr 
Position 
(GRCh38) 

SNP 
Effect 
allele 
(minor) 

Ref allele 
Effect 
allele 
freq 

Nearest 
gene 

Distance 
to gene 
(kb) 

Beta  SE 
p  value 
original 

p value 
conditional 

19 44908684 rs429358 C T 0.14 APOE 0 -0.38 0.05 2.53E-13 4.20E-13 

12 20812884 rs143371462 G A 0.02 SLCO1B3 0 -0.64 0.13 6.76E-07 7.53E-07 

3 23951314 rs113730632 G A 0.05 NR1D2 0 0.41 0.09 1.65E-06 6.59E-07 

12 125083207 rs6488987 C T 0.36 AACS 0 0.18 0.04 1.65E-06 1.95E-06 

11 8882396 rs34105455 G A 0.13 ST5 0 -0.25 0.05 3.64E-06 3.94E-06 

8 74970819 rs2956605 A C 0.40 CRISPLD1 13654 -0.17 0.04 3.70E-06 4.02E-06 

11 107127349 rs17092224 C G 0.11 CWF19L2 198996 -0.27 0.06 3.85E-06 4.62E-06 

22 34970241 rs5755468 C T 0.37 ISX-AS1 0 -0.17 0.04 4.16E-06 4.49E-06 

9 84627637 rs148603475 T C 0.08 NTRK2 40821 -0.31 0.07 6.08E-06 8.94E-06 

20 18097908 rs1124933 A G 0.42 PET117 39947 -0.16 0.04 7.94E-06 8.50E-06 
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Table 5.11. Cognitive progression GWAS performed in each cohort separately. Progression scores were created in the merged 

cohort. The results for the top 5 independent hits from the combined cognitive progression GWAS are shown here. These show that 

the effects and allele frequencies are consistent across all three cohorts. 

SNP Nearest gene Combined Tracking Parkinson’s Oxford PPMI 

  Beta p MAF Beta p MAF Beta p MAF Beta p MAF 

rs429358 APOE -0.38 2.53E-13 0.14 -0.35 6.88e-09 0.14 -0.45 3.56e-06 0.14 -0.43 0.026 0.13 

rs143371462 SLCO1B3 -0.64 6.76E-07 0.02 -0.54 0.0002 0.02 -0.73 0.003 0.02 -1.04 0.049 0.02 

rs113730632 NR1D2 0.41 1.65E-06 0.05 0.36 0.0004 0.05 0.19 0.240 0.05 0.80 0.004 0.06 

rs6488987 AACS 0.18 1.65E-06 0.36 0.21 1.66e-06 0.37 0.05 0.428 0.36 0.29 0.042 0.34 

rs34105455 ST5 -0.25 3.64E-06 0.13 -0.15 0.018 0.13 0.10 0.0002 0.12 -0.39 0.047 0.14 

 

Table 5.12. Cognitive progression GWAS performed for each scale separately. The results for the top 5 independent hits from the 

combined cognitive progression GWAS are shown here. The random slope from the mixed effects model for each scale was used 

as the progression measure. These results show that the direction of effects and p values are consistent across each of the different 

cognitive scales. 

SNP Nearest gene Combined MoCA random slope Fluency random slope MDS-UPDRS 1.1 random 

slope 

  Beta p Beta p Beta p Beta p 

rs429358 APOE -0.38 2.53E-13 0.02 6.84e-13 0.007 4.04e-06 0.02 1.04e-07 

rs143371462 SLCO1B3 -0.64 6.76E-07 0.03 0.0001 0.02 0.0001 0.03 9.78e-05 

rs113730632 NR1D2 0.41 1.65E-06 -0.02 0.0004 -0.01 1.595e-05 -0.01 0.006 

rs6488987 AACS 0.18 1.65E-06 -0.007 0.002 -0.004 9.16e-05 -0.009 2.37e-05 

rs34105455 ST5 -0.25 3.64E-06 0.01 2.64e-05 0.006 0.0008 0.009 0.002 
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LEDD-adjusted analyses 

When I performed GWASs of composite progression and motor progression after 

adjusting for LEDD, I did not find substantial differences. No SNPs passed genome-

wide significance. The top SNP for composite progression was still rs429358, and this 

was in the same direction and similar effect size as in the main analysis (beta = 0.33, 

p = 8.8x10-8). For motor progression, the top SNP was also the same as in the main 

analysis, and ATP8B2 and AQP10 still the top genes in the MAGMA gene analysis, 

though not genome-wide significant. 

Sex-stratified analyses 

The APOE loci passed genome-wide significance only in men for composite 

progression and cognitive progression (p < 5 x 10-8). Other than this locus, there were 

no SNPs that passed significance. These analyses are underpowered and sex 

differences need to be investigated in more detail. 

Targeted assessment of PD risk loci 

Of the 90 risk variants from the PD case-control GWAS [75], 73 were present in the 

final dataset, including the SNCA and TMEM175/GAK variants associated with PD 

age at onset[96]. I extracted results for these variants from the composite, motor, and 

cognitive progression GWASs. No variants passed analysis-wide significance (p = 

0.05/73). Variants with at least one association p < 0.05 are shown in Figure 5.10. 

I found that only a small number of risk variants were associated with progression with 

p-values < 0.05. rs35749011 was associated with both composite progression (beta = 

0.40, p = 0.003) and cognitive progression (beta = -0.37, p = 0.002), but not motor 

progression (beta = 0.20, p = 0.09). This variant is in linkage disequilibrium with the 

GBA p.E326K variant (also known as p.E365K), D’=0.90, R2=0.78. 
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Figure 5.10. Heatmap of the PD GWAS risk loci and their association with composite, 

motor, or cognitive progression. Only variants with at least one association p < 0.05 

are shown in the heatmap. 
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I also extracted results for other candidate variants that have been implicated in PD 

progression (Figure 5.11). I did not find that the top variant rs382940 in SLC44A1 that 

was associated in progression to H&Y stage 3 from the Iwaki GWAS [98] was 

associated with either composite, motor or cognitive progression in our GWASs (all p-

values > 0.05). 

Figure 5.11. Heatmap of candidate variants and their association with composite, 

motor, or cognitive progression.  

 

Overall, I did not find any overlap between the variants associated with PD risk, age 

at onset, and progression. The LDSC results also suggested very little overlap 

between the each of the progression GWASs and PD case-control GWAS (all p-values 

>0.5).  

PD Genetic Risk Score 

73 PD risk SNPs were present in our genotype data, and 2 proxies were identified for 

missing variants. There was no association between the standardised GRS and 
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composite progression (beta = -0.01, p = 0.65), motor progression (beta = 0.0008, p 

= 0.97), or cognitive progression (beta = 0.02, p = 0.36). 

GBA 

GBA data was available for 2,020 patients from Tracking Parkinson’s and PPMI. 194 

patients (9.6%) carried a pathogenic variant in GBA (Table 5.13). GBA status was 

significantly associated with composite progression (beta = 0.40, p = 0.001) and 

cognitive progression (beta = -0.35, p = 0.0008), but not motor progression (beta = 

0.18, p = 0.10). 

Table 5.13. GBA variants included as pathogenic, and their frequencies.Note that 

some individuals carried more than one variant. Frequencies are shown as a 

percentage of the total number of patients in Tracking Parkinson’s and PPMI who were 

screened for GBA with sequencing (N= 2020). 

Variant Number of carriers (%) 

p.E326K 103 (5.1%) 

p.L444P 25 (1.2%) 

p.N370S 14 (0.7%) 

p.T369M 46 (2.3%) 

p.G202R 2 (0.10%) 

p.R463C 6 (0.30%) 

p.D409H 1 (0.05%) 

p.F213I 1 (0.05%) 

p.G377S 1 (0.05%) 

p.R257Q  1 (0.05%) 

 

Removal of non-PD cases 

I conducted sensitivity analyses to remove patients with potential non-PD conditions. 

Removing patients with <90% diagnostic certainty did not substantially affect my 

results; the top signals had slightly weaker associations in these sensitivity analyses. 

When I removed the extreme 5% of progressors, the top results from the main GWASs 

had larger p-values, although the direction of effects were the same (Tables 5.14, 

5.15). 
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Table 5.14. Sensitivity analysis excluding PD cases with less than 90% diagnostic certainty. The top SNPs in the main analysis are 

shown, with the results from the sensitivity analysis for comparison. 5.2% (51/985) patients were removed from Oxford Discovery, 

21.3% (419/1966) patients were removed from Tracking Parkinson’s.  

 
SNP 

Nearest gene Results for top SNPs in full dataset Results in PD cases with  90% diagnostic certainty 

  Beta p Beta p N 

Composite progression 

rs429358 APOE 0.35 1.17E-08 0.34 6.00e-07 2459 

rs224750 PARD3 -0.21 1.09E-06 -0.20 5.36e-05 2459 

rs11634227 MCTP2 -0.21 1.19E-06 -0.20 2.14e-05 2459 

rs4802739 GPR32 0.20 1.27E-06 0.22 2.86e-06 2459 

rs79987229 FAM184A 0.85 2.57E-06 0.99 3.64e-07 2459 

Motor progression 

rs5870994 LOC100505841 0.21 1.36E-06 0.19 4.19e-05 2496 

rs7870456 PTPRD 0.21 1.53E-06 0.19 0.0001 2496 

rs72767442 MCTP2 -0.18 1.69E-06 -0.15 0.0001 2496 

rs6741991 KLHL29 0.20 2.91E-06 0.19 2.27e-05 2496 

rs35950207 AQP10 -0.18 5.01E-06 -0.18 2.13e-05 2496 

Cognitive progression 

rs429358 APOE -0.38 2.53E-13 -0.39 2.05e-12 2474 

rs143371462 SLCO1B3 -0.64 6.76E-07 -0.64 3.22e-06 2474 

rs113730632 NR1D2 0.41 1.65E-06 0.43 4.34e-06 2474 

rs6488987 AACS 0.18 1.65E-06 0.19 1.69e-06 2474 

rs34105455 ST5 -0.25 3.64E-06 -0.25 1.79e-05 2474 
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Table 5.15. Sensitivity analysis excluding fastest and slowest progressing cases (top and bottom 5% of each distribution)  

SNP Nearest gene Results for top SNPs in full dataset Results in PD cases excluding extreme 5% 

  Beta p Beta p N 

Composite progression 

rs429358 APOE 0.35 1.17E-08 0.17 0.0002 2483 

rs224750 PARD3 -0.21 1.09E-06 -0.10 0.002 2483 

rs11634227 MCTP2 -0.21 1.19E-06 -0.10 0.003 2483 

rs4802739 GPR32 0.20 1.27E-06 0.11 0.004 2483 

rs79987229 FAM184A 0.85 2.57E-06 0.42 0.002 2483 

Motor progression 

rs5870994 LOC100505841 0.21 1.36E-06 0.12 0.0003 2570 

rs7870456 PTPRD 0.21 1.53E-06 0.10 0.002 2570 

rs72767442 MCTP2 -0.18 1.69E-06 -0.07 0.012 2570 

rs6741991 KLHL29 0.20 2.91E-06 0.08 0.008 2570 

rs35950207 AQP10 -0.18 5.01E-06 -0.06 0.029 2570 

Cognitive progression 

rs429358 APOE -0.38 2.53E-13 -0.17 1.28e-05 2511 

rs143371462 SLCO1B3 -0.64 6.76E-07 -0.32 0.001 2511 

rs113730632 NR1D2 0.41 1.65E-06 0.17 0.006 2511 

rs6488987 AACS 0.18 1.65E-06 0.09 0.002 2511 

rs34105455 ST5 -0.25 3.64E-06 -0.15 0.0002 2511 
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Discussion 

I used a new method of analysing clinical progression in PD, by combining multiple 

assessments in a data-driven PCA to derive scores of composite, motor, and cognitive 

progression.   

This study contributes to evidence that improving the phenotypic measure can 

increase power in genetic studies. I showed that associations at the top signals 

strengthened when using the combined motor and cognitive progression scores 

compared to using the scales separately. The HD progression GWAS also showed 

that motor, cognitive, and brain imaging measures were well correlated, and 

successfully identified a variant in MSH3 associated with composite progression[97]. 

Other studies have shown that the prediction accuracy of PD status or progression 

(such as development of cognitive impairment) is improved by combining multiple 

clinical, genetic, and biomarker factors[202,252]. 

In PD, there are many different scales for assessing symptoms. Each scale has a 

degree of measurement error [240] and different sensitivity to progression of 

underlying symptoms[32]. PCA is commonly used with clinical data. It is a data-driven 

approach that combines multiple measures to identify latent components that explain 

the most variability in the data, and these components may more accurately reflect 

disease progression. 

My progression GWASs have identified two main findings. Firstly, I replicated previous 

findings for APOE ε4. Many studies have shown that the ε4 allele is associated with 

cognitive impairment and dementia in PD [85,87,88,92], and possibly in healthy 

individuals separate from the risk of Alzheimer’s disease (AD)[253]. One possible 

mechanism is that APOE is associated with amyloid- pathology, as comorbid AD 

pathology is common in PD patients with dementia (PDD) at postmortem[24]. 

Alternatively, APOE may drive cognitive decline independently of amyloid/AD 

pathology. Recent  animal model work has shown that the ε4 allele is independently 

associated with -synuclein pathology and toxicity[254]. In addition, the ε4 allele is 

overrepresented in Dementia with Lewy Body cases with ‘pure’ Lewy body pathology, 

compared to PDD cases[255]. A systematic review showed that limbic and neocortical 

-synuclein pathology had the strongest association with dementia in PD[24]. Further 
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work is needed to determine the mechanisms by which APOE influences cognitive 

decline. 

In the APOE locus, there may be multiple independent signals for cognitive 

progression. This is similar to AD, where there have been multiple risk loci located in 

Chromosome 19 in addition to APOE, including TOMM40, APOC1, and more distant 

genes. This study was not powered to conduct analyses stratified by APOE genotypes 

as has been done in AD[256]. Further work is needed to fine-map this region and 

determine if there are other genes that contribute to cognitive progression. 

I identified a novel signal in ATP8B2 associated with motor progression in a gene-

based analysis. This gene encodes an ATPase phospholipid transporter (type 8B, 

member 2). Phospholipid translocation may be important in the formation of transport 

vesicles[257]. This gene has not previously been reported in PD or other diseases, 

and needs to be tested in other independent cohorts. 

Our sensitivity analysis adjusting for LEDD suggests that levodopa may influence the 

absolute scores in the MDS-UPDRSIII but does not influence the rate of progression, 

and this has been shown in a previous study[258]. I also found that the mean rate of 

change in the MDS-UPDRSIII was comparable between Tracking Parkinson’s/Oxford 

Discovery and PPMI, despite the different medication states. Together, these suggest 

that medication has not influenced our results for motor progression. 

Importantly, this study suggests that the genetics of PD risk and progression are 

largely separate. I performed a targeted analysis of the 90 risk loci identified in PD 

case-control GWAS [75]. GBA p.E326K was nominally associated with composite and 

cognitive progression. Analysis of sequencing data showed that GBA status was 

strongly associated with composite and cognitive progression, but not motor 

progression. Previous studies show that GBA variants are associated with rapid  

progression and mortality [63,64,66,68,71,194], however many of these studies have 

longer follow-up, or patients with longer disease duration at initial examination (6 to 15 

years). This may explain why I did not find a strong effect for GBA, and is supported 

by analysis of GBA in patients earlier in disease stage [135]. In addition, previous 

studies have used different methods to measure progression. This unbiased genome-
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wide search suggests that, in addition to GBA, there are potentially other genes that 

are important for PD progression.  

My targeted analysis showed that only a few PD risk variants were nominally 

associated with progression. This is similar to the findings of the previous PD 

progression GWAS [98,259]. These results suggest that there is minimal overlap in 

the genetic architecture of PD risk and PD progression. Similarly, the PD age at onset 

GWAS showed only a partial overlap with the genetics of PD risk [96]. It is now 

possible to study progression through the integration of detailed clinical data with 

genome-wide genetic variation in large-scale studies, and this can improve our 

understanding of the biology of progression. 

I did not replicate the finding for the SLC44A1 variant that was associated with 

progression to Hoehn and Yahr stage 3 in a previous PD progression GWAS [98]. I 

have used different methods and a different phenotype to analyse PD progression. 

Further progression GWASs are needed to replicate both sets of results, and other 

metrics for PD progression could be analysed, such as mortality. 

While no other large genome-wide GWASs have investigated PD progression, many 

candidate gene studies have nominated common genetic factors associated with 

progression. Aside from APOE, common variants in MAPT [17,82–84], COMT [84,85], 

BDNF, MTHFR, and SORL1 [260] have been reported to influence cognitive decline 

(reviewed in Fagan & Pihlstrom [261]) . For motor progression, other than GBA, 

common variants in SNCA have been suggested to influence the rate of decline, 

although these studies are small and have not been confirmed in large studies 

[87,262–265]. A small GWAS of motor and cognitive progression identified suggestive 

loci in C8orf4 and CLRN3 [266], although these have not been replicated. A novel 

machine learning approach found that variation in LINGO2 was associated with 

change in the MDS-UPDRS [93], although again this finding needs independent 

replication. I did not replicate these findings, possibly because the GWAS were 

underpowered to detect variants with smaller effects, or because I have analysed 

progression using different methods. However, many of these candidate gene studies 

are small and some associations have not been convincingly replicated. 
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This study has some limitations. Follow-up was limited to 72-months, and longer 

follow-up is needed to detect variants which may influence progression in later disease 

stages, such as GBA.  

This study may also be underpowered to detect variants with smaller effects on 

progression, although this is one of the largest progression GWASs in PD. Although 

the HD GWAS identified significant signals in smaller samples [97], analysis of PD 

progression is more complex due to the slower rate of progression, greater 

heterogeneity in genetic risk and rate of progression between patients, and greater 

dissociation between motor and cognitive progression. Our findings need to be tested 

in independent cohorts, and the lack of independent replication is another limitation of 

this study. 

A third limitation is that symptom progression may be influenced by non-SNP variants 

(such as rare variants or structural variants) and gene-gene interactions that would be 

missed by GWASs, or environmental factors and comorbidities. 

A final limitation is the potential inclusion of patients that have non-PD conditions. I did 

not find that my results changed substantially when I excluded patients with diagnostic 

certainty < 90%. However certainty data was not available for PPMI, and abnormal 

dopamine transporter scans cannot differentiate between PD and other degenerative 

parkinsonian conditions [267]. Despite this, my sensitivity analyses suggests that our 

results are not being driven by non-PD conditions. In support of this, my GWASs also 

did not identify loci that are associated with PSP risk, including MAPT, MOBP [268], 

or the variant rs2242367 near LRRK2 associated with PSP progression [269]. 

Many of the top variants had weaker signals when I excluded the 10% fastest and 

slowest progressing patients. This may be in part due to loss of statistical power. With 

the duration of follow-up in these studies, it is likely that the majority of majority of non-

PD patients have been excluded, as diagnostic accuracy improves after 5 years of 

disease duration [17,270], however it is possible that some have not been excluded. 

Analysis of pathologically-confirmed PD cases is needed to resolve this issue. 

Alternatively, this may indicate that genotypes have different effects in the most 

extreme progressors. This could be due to co-morbidities such as vascular 
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burden[222], or interactions between synuclein and co-pathologies (such as amyloid, 

and tau)[271,272] in the rapid progressors which exacerbates clinical progression. 

This study is the first to use a PCA data reduction method to assess PD progression 

for genome-wide analysis, based on a successful approach in HD. I robustly replicated 

the association between APOE 4 and cognitive progression, and have identified  

other genes which may be associated with progression. These advances are essential 

to understand the biology of disease progression and nominate therapeutic targets to 

stop or slow PD progression. 
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Chapter 6 : Genome-wide association studies using survival 

analysis to clinical milestones 

Introduction 

Previous progression GWAS studies in PD have identified loci associated with clinical 

progression markers, such as rate of change in the MDS-UPDRS, MoCA, and Hoehn 

and Yahr staging [98]. 

However, to date, no GWAS studies in PD have analysed variants that are associated 

with progression to mortality. Mortality is an  objective marker of disease progression, 

while assessing change in clinical rating scales may be subjective. 

Survival analysis is useful as it incorporates data on cases that have met the outcome 

and those that are still surviving.  It may be more sensitive to rapidly progressing 

patients, for example patients who are unable to complete the full motor and cognitive 

assessments at follow-up visits. 

The aim of this study was to conduct GWASs of survival to key clinical milestones in 

PD: mortality, Hoehn and Yahr stage 3 or greater, and dementia (defined by a MoCA 

score  21 or withdrawal due to dementia). I analysed large cohorts with longitudinal 

data available, including Tracking Parkinson’s, Oxford Discovery, PPMI, QSBB, 

Calypso, and incident and prevalent PD cases from UK Biobank. 

Methods 

Cohorts 

Data from the Tracking Parkinson’s, Oxford Discovery, PPMI, QSBB, Calypso, and 

UK Biobank (UKB) cohorts were included for the analysis of mortality. Version 2 

(17/06/2020) of the Tracking Parkinson’s clinical dataset was used for this analysis. 

Only the clinical cohorts (Tracking Parkinson’s, Oxford Discovery, and PPMI) were 

used for analysis of progression to Hoehn and Yahr stage 3, and dementia. Across all 

three clinical studies, patients who received alternative diagnoses during follow up or 

had neuroimaging results conflicting with a PD diagnosis were excluded from 

analyses.  
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Genotyping 

Genotyping arrays are described in Chapter 2 (Methods). Standard quality control 

procedures were performed in PLINK v1.9. Genotype data from the six studies were 

called, genotyped and filtered separately, but following the same quality control steps.  

Individuals with low overall genotyping rates (<98%), related individuals (Identity-By-

Descent PIHAT > 0.1), and heterozygosity outliers (>2SDs away from the mean) were 

removed, as were individuals whose clinically reported biological sex did not match 

genetically determined sex. 

PCA was conducted on a linkage disequilibrium (LD) pruned set of variants (removing 

SNPs with an r2 > 0.05 in a 50kb sliding window shifting 5 SNPs at a time) after merging 

with European (CEU) samples from the HapMap reference panel. Individuals who 

were more than 6 standard deviations away from the mean of any of the first 10 

principal components were removed. 

Variants were removed if they had a low genotyping rate (<99%), Hardy-Weinberg 

Equilibrium p value < 1 x 10-5 and minor allele frequency < 1%. 

Following quality control, genotypes were imputed separately  using the Michigan 

Imputation Server [137] (https://imputationserver.sph.umich.edu), using Minimac3 or 

Mimimac4 and Eagle version 2.4. The Oxford Discovery and Tracking Parkinson’s 

data was imputed to the 1,000 Genomes Project reference panel (phase 3 release 5) 

[136]. I imputed the QSBB, and UK Biobank data was imputed to the Haplotype 

Reference Consortium panel (r1.1). Only variants with high imputation quality scores 

(R2) > 0.8 were retained for analysis, and imputation dosages were converted into 

hard call genotypes. 

In order to remove individuals who were in more than one study and related individuals 

across different cohorts, I also merged individual level genotype data after imputation 

and quality control in each cohort. One individual from each pair of related individuals 

(PIHAT > 0.1) was excluded. In order to identify population outliers, twenty genetic 

principal components were generated from a linkage-pruned SNP set (removing SNPs 

with an r2 > 0.02 in a 1000kb sliding window shifting 10 SNPs at a time). The first 2 

components were plotted to check that there were no differences between the cohorts. 

I removed extreme outliers from the first 5 principal components (> 6 SDs away from 

https://imputationserver.sph.umich.edu/
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the mean). The genetic principal components were then recalculated after removing 

outliers, as extreme outliers can substantially affect the calculation of genetic principal 

components. These first 5 new principal components were included as covariates in 

the GWASs to adjust for population substructure. There were no additional outliers 

who were > 6 SDs away from the mean of any of the first 5 principal components. I 

did this separately for the datasets in hg19/GRCh37 build (all except PPMI, as not 

enough individuals met the outcome) for the mortality GWAS.  

For the GWASs of HY3 and dementia, I merged individual level data in hg38 build for 

the Tracking Parkinson’s, Oxford Discovery and PPMI cohorts after lifting over the 

Tracking Parkinson’s and Oxford Discovery data from hg19/GRCh37 to hg38 

coordinates using liftOver. 

UK Biobank 

PD cases were defined as either prevalent, incident, or undefined PD as described in 

Chapter 2. The date of PD diagnosis was defined according to the UK Biobank 

guidelines, using the earliest PD code date from HES, or self-report.  

For cases that were only identified through death records, it was not possible to 

determine the approximate date of PD diagnosis. The UK Biobank guidelines suggest 

that the date of death is used as the date of PD diagnosis, however this clearly cannot 

be used for survival analysis where the outcome is mortality. For this reason, these 

cases (N = 129) were excluded from analysis.  

Death data was downloaded on 13/06/2020. I used the DEATH and DEATH_CAUSE 

tables which have the most updated death register data, according to guidance in UK 

Biobank document ‘Mortality data: Linkage to  death registries’ (version 2.0, June 

2020; http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/DeathLinkage.pdf). 

Death data was received every month from NHS Digital and the NHS Central Register 

(NHSCR) for participants in Scotland.  

The last date of death in the full dataset and also in the subset of PD cases was 

21/04/2020. It was assumed that any participants who were not registered as dead 

were still alive. Therefore, the date of last follow-up was set as 01/04/2020, to account 

for some time delay in registering deaths. This is in line with guidance later released 

http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/DeathLinkage.pdf
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by UK Biobank 

(http://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=Data_providers_and_dates) 

which recommended a censoring date of 31/04/2020 for death data up to May. 

If there were multiple differing death records, only the cause of death from the first 

death certificate (ins_index = 0) was used. Only 60 participants in the whole dataset 

had a second death record.  

Genetic principal components were generated on the PD cases only (incident and 

prevalent cases separately), as opposed to the data that was available on the whole 

UKB cohort, as the PD participants may have been sampled from a slightly different 

population. The first 5 genetic principal components in each cohort were included as 

covariates in the survival analysis.  

Clinical outcome measures and statistical analysis 

I assessed progression to specific clinical milestones: mortality, Hoehn and Yahr 

Stage 3 or more, and dementia (MoCA score  21 or withdrawal due to dementia). 

This cutoff for dementia using the MoCA has been used in previous studies [135,222]. 

Time was measured from PD symptom onset, or estimated PD diagnosis in the UK 

Biobank cases. Time to event was taken as the first visit where the outcome was met. 

Individuals who were missing data at all timepoints for the clinical outcome being 

assessed were excluded (e.g. if Hoehn and Yahr stage data was missing at all visits 

for analysis of progression to Hoehn and Yahr stage 3+). 

Cohorts were excluded if less than 20 individuals met the outcome of interest during 

the follow-up period (or < 5% of the total cohort size). Small numbers can produce 

unreliable effect size estimates and extremely wide confidence intervals.  

Progression was assessed using Cox proportional hazard survival models. I ran 

GWASs adjusting for age at onset, sex, and the first 5 genetic principal components, 

to adjust for population stratification. I also carried out GWASs without any clinical 

covariates, to determine the base model - e.g. if the variants for PD progression 

overlap with PD age at onset then adjusting for age at onset would lose this signal. 

http://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=Data_providers_and_dates
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Meta-analysis and annotation 

Meta-analysis was performed in METAL, using an inverse variance weighted fixed 

effect model. Genomic control correction was performed to adjust the overall alpha 

error. Summary statistics from each cohort were annotated with rsIDs, and only SNPs 

that were present in all datasets were included in the final results. I excluded variants 

with p-value < 0.05 for Cochran’s Q-test for heterogeneity (HetPVal) and I squared > 

80. Variants with MAF variability greater than 15% across the cohorts were also 

excluded. I considered variants with p < 5 x 10-8 as genome-wide significant, as is the 

standard threshold for GWAS. Forest plots were generated in R v 3.6.2 using the meta 

package. 

GWAS results were uploaded to FUMA (https://fuma.ctglab.nl/) with standard settings 

to annotate, prioritise, and visualize GWAS results [121]. SNPs were mapped to genes 

with positional mapping and eQTL mapping. In FUMA, I looked for enrichment of 

prioritized genes in pre-defined gene-sets or pathways in Gene Ontology (GO; 

MsigDB c5), Reactome, and Kyoto Encyclopedia of Genes and Genomes (KEGG). 

MAGMA gene and gene-set analysis was also performed in FUMA. GTEx 

(https://gtexportal.org/) and the eQTLGen Consortium 

(http://www.eqtlgen.org/index.html)  were used to look up expression quantitative trait 

loci (eQTLs). LDlink (https://ldlink.nci.nih.gov/) was used to calculate linkage between 

SNP pairs (using LDpair) in European populations excluding the Finnish population.  

Heritability for mortality was estimated using Linkage Disequilibrium Score Regression 

(LDSC) for summary statistics from meta-analysis [246,247]. Heritability estimation 

using GCTA was not possible as the phenotype is not a standard quantitative trait. I 

did not attempt to estimate heritability for the other outcomes as the sample sizes were 

smaller, and likely too small for LDSC. 

Analysis of PD risk variants and GRS 

Association results for the 90 PD risk loci [75] were extracted from the meta-analysis 

results of mortality, Hoehn and Yahr stage 3, and dementia. Bonferroni correction was 

applied for the number of variants tested (p = 0.05/72). 

https://fuma.ctglab.nl/
https://gtexportal.org/
http://www.eqtlgen.org/index.html
https://ldlink.nci.nih.gov/
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I also examined candidate variants that have previously been associated with 

progression, including a locus associated with progression to mortality in PSP. These 

results were extracted from the meta-analysis. Bonferroni correction was applied for 

the number of variants tested. 

The GRS was calculated for each individual using PLINK, using the 90 loci from the 

most recent and largest PD case-control GWAS meta-analysis [75]. The association 

between the standardised GRS and progression to each outcome was assessed using 

a Cox proportional hazards regression, adjusting for age at onset, gender and the first 

5 genetic principal components in each cohort. Results were then meta-analysed 

using random-effects meta-analysis. 

Cause of death 

To determine whether the top genetic signals for progression to mortality were related 

to PD or non-PD causes (e.g. general immunity, or COVID), I conducted a sub-

analysis in patients by cause of death. In the QSBB cohort, only primary cause of 

death data was available. Here, I classified the primary cause of death as either PD-

related and end of life related, or ‘interrupted’. Interrupted death causes included: 

cardiac arrest/ heart failure/ myocardial infarct/ heart disease, carcinoma, 

glioblastoma, gastric intestinal bleed or perforation, head injury, sudden death, or 

other accidental death causes.   

In the UK Biobank cohort, full primary cause of death and contributory causes of death 

data was available in ICD10 codes (up to 15 levels). Death cause data is structured 

as primary (level 1) and contributory (level 2) causes, with the primary cause of death 

as the disease or condition stated to be the underlying cause of death. Only one 

primary cause of death was listed for each participant. I classified the cases as PD-

related if PD was listed as the primary cause of death. If PD was not listed as a primary 

cause of death, I classified these cases as interrupted. 

I conducted survival analysis on the interrupted vs. non-interrupted PD cases 

separately to identify if there was a difference in the top GWAS signals, which may 

suggest the genetic associations with mortality are not PD specific. 
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AD Polygenic Risk Scores 

In order to determine whether the association results for PD progression are due to 

APOE specific effects or AD genetic risk in general, I analysed the association 

between the AD Polygenic Risk Scores (PRS) and PD progression – specifically 

mortality and dementia. Summary stats from Jansen et al. (2019) [273] were used to 

create AD PRSs for each individual. This is the largest AD GWAS conducted to date, 

with 71,880 AD cases (including 47,793 proxy cases defined as individuals from UK 

Biobank with one or both parents diagnosed with AD), and 383,378 controls 

(including 328,320 proxy controls) [273]. I created AD PRSs at different p-value 

thresholds, as studies have shown that a large proportion of the polygenic risk signal 

lies below the standard threshold for GWAS significance (5 x 10-8) [274,275]. Following 

previous studies in AD and PD [274,275], I created PRSs including SNPs that met pre-

defined significance thresholds in the original AD GWAS (p < 1 x 10-4, 0.001, 0.1, and 

up to 0.5). The APOE region (hg19 coordinates 19:45,020,859–45,844,508) [273] was 

excluded from the PRS, as previous studies have done [275,276], in order to 

determine whether the GWAS association results were APOE specific or due to AD 

risk in general. 

The PRS was created for individuals in each cohort separately and standardised within 

each cohort. Cox proportional hazards regression models were used to assess the 

association between the AD PRS and PD progression, adjusting for age at onset, 

gender, and the first 5 genetic principal components. PRSs were created using 

PRSice2 [277] with standard LD clumping thresholds (clumping SNPs within a 250 Mb 

window and r2 > 0.1). To improve  the LD estimation for clumping, the 1000 Genomes 

European samples (N = 503) were used as an external reference panel, as is 

recommended for small samples in particular [278]. Results from the different cohorts 

were then meta-analysed in R using random-effects meta-analysis. Bonferroni 

correction for the number of PRSs tested was applied to correct for multiple testing (p 

= 0.05/9 = 0.0056). 

Power calculations 

Power calculations specifically for survival/time-to-event outcomes were performed 

using the R package ‘survSNP’ [279]. The alpha level was set to 5 x 10-8 and the 
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sample size was fixed at the sample size of the mortality GWAS (N = 4831). The 

median for the survival function in the population was based on the median time to 

death (6 years from PD onset). Plots were generated to illustrate the power for different 

effect sizes, allele frequencies, and the proportion of individuals meeting the outcome. 

Results 

Summary of cohort characteristics 

Table 6.1 shows the demographics at baseline and the number of patients who met 

each clinical milestone in each cohort. No studies had a genomic inflation factor 

(lambda) of greater than 1.2. 
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Table 6.1. Demographics at baseline and the number of patients meeting each clinical milestone/outcome in each cohort. Means 

(SD) are shown unless otherwise indicated. 

Demographics Tracking 
Parkinson’s 

Oxford 
Discovery 

PPMI QSBB UKB PD 
incident§ 

UKB PD 
prevalent 

Calypso 
WTCCC2 

Number of PD patients 
overall 

1963 985 413 339 1157 914 196 

Number of PD patients with 
clinical mortality data and 
genetic data after QC+  

1779 780 356 285 970 820 180 

Mean length of follow-up, 
years 

3.8 (1.4) 4.3 (1.7) 5.4 (1.2) NA NA NA NA 

Male (%) 65.1% 64.2% 65.4% 60.7% 60.8% 62.4% 66.3% 

Age at onset, years 64.5 (9.8) 64.5 (9.8) 59.5 (10.0) 61.8 (10.1) NA NA 59.8 (10.0) 

Age at diagnosis, years 66.3 (9.3) 66.1 (9.6) 61.0 (9.7) NA 69.5 (5.7) 57.4 (7.2) 61.5 (9.8) 

Age at study entry, years 67.6 (9.3) 67.4 (9.6) 61.5 (9.8) NA 63.9 (5.4) 62.8 (5.5) 67.5 (9.4) 

Disease duration at baseline - 
time from symptom onset to 
study entry, years 

3.2 (3.0) 2.9 (1.9) 2.0 (2.0) NA NA NA 7.7 (5.2) 

Time from diagnosis to study 
entry, years 

1.3 (0.9) 1.3 (0.9) 0.5 (0.5) NA NA 5.4 (4.8) 5.8 (4.8) 

MDS-UPDRS Part III  22.9 (12.3) 26.8 (11.1) 20.7 (8.8) NA NA NA NA 

MDS-UPDRS Part II 9.9 (6.6) 8.9 (6.2) 5.8 (4.1) NA NA NA NA 

Hoehn and Yahr stage mean* 1.7 (0.6) 1.9 (0.6) 1.6 (0.5) NA NA NA NA 

0 to 1.5 (%) 48.2% 23.2% 44.8% NA NA NA NA 

2 to 2.5 (%) 45.0% 68.8% 54.7% NA NA NA NA 

3+ (%) 6.8% 8.1% 0.5% NA NA NA NA 
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PPMI = Parkinson’s Progression Markers Initiative; QC = Quality Control; QSBB = Queen Square Brain Bank pathologically-
confirmed PD cases; UKB = UK Biobank PD cases (including prevalent, incident, and undefined cases). 
Percentages are shown of the total number of PD cases in the whole cohort, as the final number included in each analyses varied. 
Not all patients had all clinical data available (e.g. age at onset, gender, clinical outcomes) and these patients were excluded 
depending on the outcome of interest and which covariates were included in the model. 
* Tracking Parkinson’s used the modified Hoehn and Yahr stage scale, while Oxford Discovery and PPMI used the original scale. 
Hoehn and Yahr stage proportions are shown as a total of the number of people with non-missing Hoehn and Yahr ratings at 
baseline.  
+ Note that the final number of patients included in the analysis may be slightly less, as some patients were missing data on 
covariates included in the GWAS.  
^ Shown as a percentage of people with data for at least one timepoint. Individuals who were missing data for the outcome of 
interest at all timepoints were excluded. 
§ Note that this number excludes PD incident cases who were only identified through death records.

MoCA total (adjusted for 
education) 

25.2 (3.5) 24.5 (3.5) 27.1 (2.3) NA NA NA NA 

Number of patients died (%) 133 (7.5%) 53 (6.8%) 15 (4.2%) 285 (100%) 370 (38.1%) 294 (35.9%) 121 (67.2%) 

Time from PD onset to death, 
years 

6.7 (4.5) 6.6 (2.6) 5.4 (2.6) 15.8 (7.8) 2.7 (2.3) 13.9 (6.1) 15.6 (6.1) 

Time from PD onset to 
censoring/last follow-up in 
surviving cases, years 

7.8 (3.4) 7.4 (2.7) 8.0 (2.5) NA 5.5 (1.9) 16.1 (4.4) 19.6 (4.5) 

Number of patients meeting 

H&Y3^ 

511 (28.8%) 181 (23.2%) 72 (16.8%) NA NA NA NA 

Number of patients meeting 
dementia criteria^ 

470 (26.7%) 241 (31.3%) 75 (20.2%) NA NA NA NA 
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UK Biobank summary 

PD cases were identified from HES, self-report, and death register records. Figure 6.1 

shows the number of PD patients that were identified from each source. 

Figure 6.1. Venn diagram showing the number of PD patients identified from each 

source in UK Biobank. This includes incident, prevalent, and undefined PD cases. 

 

HES = Hospital Episode Statistics 

 

In total, there were 2,256 PD cases. Out of these, 1,286 were classified as incident 

cases, 914 were classified as prevalent cases, and 56 were undefined (PD was only 

self-reported at a follow-up, not at baseline). 

In total, 884 PD patients had died. Out of these, there were 440 (49.8%) PD cases 

defined from HES and/or self-report that also had PD listed as a cause of death (ICD10 

code G20). There were 315 (35.6%) PD cases identified from HES and/or self-report 

that had died that did not include PD as a cause of death. The remaining 129 (14.6%) 

cases were identified as PD only from the death reports. 

129 individuals who were identified as PD cases only from the death records were 

excluded from analyses. 2,127 PD participants with clinical data were included for 
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analyses. 755 PD cases who were identified from HES and/or self-report had died 

during period of follow-up (last date of death 21/04/2020). The mean time from PD 

diagnosis to death was 10.1 years (SD = 6.1). 1,372 PD cases did not die during the 

period of follow-up, with mean follow-up time 7.6 years (SD = 7.0). 

GWAS of mortality 

The PPMI cohort was excluded from the meta-analysis of mortality as not enough 

individuals died during the period of follow-up. 4,831 PD patients with both clinical and 

genetic data (in hg19/GRCh37 build) after quality control filters were included for 

analysis, although individuals who were missing event data and/or covariate data were 

excluded from each GWAS. The plot of the first 2 principal components after removing 

outliers is shown in Figure 6.2, and when merged with the HapMap reference samples 

(Figure 6.3). 

Figure 6.2. Plot of the first two genetic principal components after removing outliers 

and related individuals in the merged dataset (excluding PPMI).This shows the cohorts 

overlap and there are no further population outliers.  

 

PROBAND = Tracking Parkinson’s; QSBB = Queen Square Brain Bank; UKB = UK 
Biobank. 



 147 

Figure 6.3. Plot of the first two genetic principal components merged with HapMap 

data. The samples from the current studies overlap with the European ancestry 

samples (CEU) from HapMap. 

 

CEU =Utah residents with Northern and Western European ancestry from the CEPH 
collection; CHB = Han Chinese in Beijing, China; JPT = Japanese in Tokyo, Japan; 
YRI = Yoruba in Ibadan, Nigeria; PC = Principal Component. 
 

 

4,814 PD patients were included in the meta-analysis of survival/mortality, adjusting 

for age at onset (or age at diagnosis in UK Biobank), gender and the first 5 principal 

components in each cohort.  

The UK Biobank PD patients were separated into prevalent and incident cases and 

analysed as separate cohorts. Undefined PD cases from UK Biobank were excluded. 

5,099,774 SNPs were present in all 5 cohorts, and 4,872,144 variants passed filtering 

criteria for heterogeneity and MAF variability. No genome-wide significant SNPs were 

removed when filtering for heterogeneity and MAF variability. The lambda/genomic 

inflation factor was 1.01 (after SNP filtering). 
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Out of the 4,814 patients included in the final meta-analysis, 1,256 (26.1%) patients 

died. The mean time from PD onset to death was 10.1 years (SD = 7.8 years). The 

mean follow-up time for individuals who did not die was 8.7 years (SD = 4.8 years). 

The mean age at onset overall was 64.0 years (65.1 years in patients who died and 

63.6 years in patients who did not die during the period of follow-up). 

The top SNP was rs429358 (p = 1.0 x 10-7) in Chromosome 19, which is the APOE 4 

tagging SNP (Table 6.2). The proportional hazards assumption was met in all cohorts 

for this SNP. 

Another locus in Chromosome 10 approached GWAS significance. The top SNP was 

rs61871952 (10:113136589, genome build GRCh37/hg19) in Chromosome 10 with p-

value = 1.8 x 10-7 (Figure 6.4). This is an intergenic variant, closest to the long non-

coding RNA LOC105378484 (also known as ENSG00000227851 or RP11-381K7.1). 

One of the top SNPs in this locus, rs61873401, is an intronic variant in this gene. The 

proportional hazards assumption was met in all cohorts. 

Figure 6.4. Manhattan plot from the meta-analysis of mortality, including Tracking 

Parkinson’s, Oxford Discovery, QSBB, Calypso, UKB incident PD, and UKB prevalent 

PD.The PPMI cohort was excluded from this analysis. 

 

PPMI = Parkinson’s Progression Markers Initiative; QSBB = Queen Square Brain 
Bank; UKB = UK Biobank. 
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Table 6.2. Top 10 independent SNPs from survival GWAS of mortality. 

 

Table 6.3. Top 10 pathways from MAGMA gene-set analysis for the GWAS of mortality.This includes curated gene sets and GO 

terms from MsigDB. No gene sets/pathways passed Bonferroni correction for the number of tested gene sets (N = 15,496). 

FULL_NAME NGENES BETA BETA_STD SE P_unadjusted 

GO_bp:go_positive_regulation_of_rna_splicing 29 0.52 0.02 0.15 1.61E-04 

Curated_gene_sets:corradetti_mtor_pathway_regulators_dn 5 1.09 0.02 0.31 1.96E-04 

Curated_gene_sets:nikolsky_breast_cancer_5p15_amplicon 21 0.92 0.03 0.27 2.82E-04 

Curated_gene_sets:pedrioli_mir31_targets_up 181 0.20 0.02 0.06 3.08E-04 

Curated_gene_sets:flechner_biopsy_kidney_transplant_ok_vs_donor_up 523 0.12 0.02 0.04 3.13E-04 

GO_mf:go_translation_activator_activity 9 1.00 0.02 0.31 6.85E-04 

GO_bp:go_triglyceride_rich_lipoprotein_particle_clearance 9 0.90 0.02 0.29 8.42E-04 

GO_bp:go_phosphatidylcholine_catabolic_process 8 0.81 0.02 0.26 1.03E-03 

Curated_gene_sets:wong_endometrial_cancer_late 6 0.96 0.02 0.31 1.05E-03 

GO_bp:go_fructose_6_phosphate_metabolic_process 9 1.13 0.03 0.37 1.21E-03 

Chr 
Position 
(GRCh37) 

SNP 
Effect 
allele 
(minor) 

Effect 
allele 
freq 

Ref 
allele 

Nearest 
gene 

Distance to gene 
(kb) 

Beta  SE p  value  

19 45411941 rs429358 C 0.15 T APOE 0 0.30 0.06 1.03E-07 

10 113136589 rs61871952 G 0.02 T ADRA2A 295924 0.69 0.13 1.82E-07 

9 17616880 rs3808753 G 0.03 A SH3GL2 0 0.51 0.10 2.26E-07 

13 38091191 rs9547920 G 0.25 C POSTN 45528 0.22 0.05 2.23E-06 

7 139664899 rs144889025 T 0.02 C TBXAS1 0 0.63 0.13 2.73E-06 

13 77237871 rs78017316 T 0.02 C KCTD12 216433 0.65 0.14 3.80E-06 

7 126312844 rs1074728 A 0.43 G GRM8 0 0.20 0.04 4.21E-06 

7 126299008 rs734524 G 0.36 A GRM8 0 -0.21 0.05 5.51E-06 

6 35415880 rs78333619 A 0.02 G FANCE 4236 0.60 0.13 5.81E-06 

10 84149216 rs12266006 G 0.05 C NRG3 0 0.40 0.09 7.29E-06 
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None of the top SNPs in this region were significant eQTLs in BRAINEAC, GTEx or 

eQTLGEen (either cis- or trans-eQTLs). LOC105378484 is expressed in the brain, 

spleen and testis (https://www.ncbi.nlm.nih.gov/gene/105378484).  

The top loci in Chromosome 10 is < 300 kb away from ADRA2A, Adrenoceptor Alpha 

2A (GRCh37/hg19 position 10:112,836,790-112,840,662; Figure 6.5). 

There were no coding variants in linkage disequilibrium with the lead SNP rs61871952. 

Using LDproxy in European populations excluding Finnish, I searched for the closest 

SNPs with high regulome (< 3) scores which are more likely to have regulatory 

potential. This revealed a rare missense variant rs200592713 in ADRA2A, however 

this was far from the lead SNP and not in linkage disequilibrium (D’ = 0.49, R2 = 0.04). 

There were 2 SNPs in high LD with the lead SNP, rs61870947 (D’ = 0.92, R2 = 0.77) 

and rs9420101 (D’ = 0.91, R2 = 0.59) which had regulome DB scores of 3a. Finally, 

there was a common non-coding SNP rs7091217 which is a weak eQTL for ADRA2A 

in temporal cortex (1.3 x 10-3) in BRAINEAC, but this was not in LD with the lead SNP 

(D’ = 0.52, R2 = 0.03). 

Figure 6.5. Regional association plot of the top loci in Chromosome 10 from the PD 

survival GWAS of mortality.This was generated using the legacy service of 

LocusZoom (using LD population 1000 Genomes Nov 2014 EUR, hg 19 build). 

 

https://www.ncbi.nlm.nih.gov/gene/105378484
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The top SNP was imputed in all cohorts. Within the top chromosome 10 loci 

(10:113118502-113295922 as defined in FUMA) there were no directly genotyped 

SNPs in any of the cohorts, however high imputation quality thresholds had been 

applied (R2 > 0.8). The alleles matched in all cohorts and the minor allele frequencies 

ranged between 0.013 and 0.023 across cohorts (mean frequency 0.018, SE = 

0.0025). 

In the MAGMA gene test, APOC1 and APOE passed genome-wide significance (p < 

2.9 x 10-6, correcting for 17,546 mapped protein-coding genes). There was no 

significant enrichment of any gene-sets in the MAGMA analysis after Bonferroni 

correction but the top 10 gene sets are shown in Table 6.3. 

In the FUMA GENE2FUNC annotation, there was significant enrichment of the 27 

prioritised genes in the GO molecular function phosphatidylcholine-sterol O-

acyltransferase activator activity, with overlapping genes APOE and APOC1. There 

was also enrichment of the MsigDB c2 gene set ‘Roversi glioma copy number up’ 

(Genes in the most frequently gained loci in a panel of glioma cell lines), with 

overlapping genes BCAM, PVRL2, TOMM40, APOE and APOC1. 

Table 6.4 shows the number of patients carrying the rs61871952 minor allele G, the 

number of patients that died, and their clinical characteristics. There was only one 

individual who was homozygous for the alternate allele, so all summary statistics in 

the table and plots show individuals carrying 1 and 2 minor allele together (dominant 

model). Figure 6.6 shows the effect size of the SNP in each cohort, suggesting that 

the effect is being driven by the UK Biobank cohorts and is weaker in the clinical 

cohorts. Figure 6.7 shows that rs61871952 minor allele carriers have more rapid 

progression. 
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Table 6.4. Frequency and clinical characteristics of patients carrying the rs61871952 

minor allele, separated into patients who met the outcome (mortality) and those that 

did not.Means are shown in years (SD). The event mortality = 1 indicates the patients 

have died. 

rs61871952 
allele count 

Event 
mortality N 

Time to event 
(years) 

Median time to 
event 

Mean age at 
onset 

0 0 3470 8.7 (4.8) 7.67 63.6 (9.5) 

0 1 1194 10.2 (7.9) 9.00 65.1 (9.6) 

1 and 2 0 88 9.5 (5.1) 8.54 62.6 (9.7) 

1 and 2 1 62 8.4 (6.8) 7.11 66.0 (9.2) 

 

When I conducted GWAS on the merged individual-level dataset, adjusting for cohort, 

the chromosome 10 signal was diminished. This may be because the Chromosome 

10 SNP effect varied between the cohorts. No loci reached genome-wide significance, 

although the Chromosome 19 and Chromosome 9 signals were nominally significant 

(p < 5 x 10-7).  

 

Figure 6.6. Forest plot showing the Hazard Ratio of the Chromosome 10 top SNP, 

rs61871952, in each cohort.The Oxford Discovery cohort was removed from this plot 

as the confidence intervals were too wide and it was not weighted in the meta-analysis. 

 

QSBB = Queen Square Brain Bank; UKB = UK Biobank 
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Figure 6.7. Kaplan-Meier survival curve of mortality for rs61871952 genotypes.This 

highlights differences in survival between rs61871952 TT carriers (red line) vs. cases 

carrying the rs61871952 GT or GG genotype (blue line).  Time in years from PD onset 

(or PD diagnosis for UKB cases) is shown on the x-axis.  The Kaplan-Meier log-rank 

test p-value is shown in the bottom left. 

 

 

When analysing mortality without adjusting for age at onset and gender, no SNPs 

passed genome-wide significance. rs61871952 in Chromosome 10 had a slightly 

smaller p-value than in the main GWAS (p = 1.7 x 10-7), whereas the APOE locus did 

not pass heterogeneity filters (I2 = 57.2, HetPVal = 0.04). 

When attempting to estimate heritability using LDSC, the chi2 was too low and final 

heritability estimate was -0.0029. This indicates that there was too little polygenic 

signal  (likely because of low power and small sample size for LDSC) and is suggestive 

of low heritability. The negative estimate indicates that the true heritability is close to 

0 and sampling error has led to an estimate below 0.  
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Cause of death sub-analysis 

In a subset of patients with cause of death data, I conducted stratified analysis to 

determine if the main genetic signals were related to PD mortality, or were more 

general.  

Many patients in the QSBB dataset were missing primary cause of death data (as our 

data was extracted from an online database which was set up only recently, coding 

data from paper records). 64 cases had genetic data after QC and cause of death 

coded. 47 of these (82.5%) had a PD-related cause of death and 10 (17.5%) were 

coded as interrupted.  

Out of the 370 incident UK Biobank PD cases who had died (excluding those who 

were only identified as PD from the death records) and had genetic data after QC, 80 

(21.6%) had PD listed as a primary cause of death. Out of the 294 prevalent PD cases 

who had died and had genetic data, 117 (39.8%) had PD listed as the primary cause 

of death. 

In total, after genetic QC, 721 patients out of 1,256 in the total dataset who died (57%) 

had cause of death data available which limited power for a full GWAS, so only the 

top 2 GWAS signals were analysed. 

244 (33.8% of patients with cause of death data) PD patients who died were classified 

with a cause of death that was PD-related. In these non-interrupted death cases, there 

was a nominal effect of the Chromosome 10 SNP rs61871952 on mortality (HR = 1.7, 

p = 0.046) after adjusting for age at onset and gender.  

477 (66.2%) of patients who had cause of death data were classified as ‘interrupted’. 

In these cases, the minor allele of rs61871952 was not associated with increased risk 

of mortality (HR = 1.4, p = 0.09). Figure 6.8 shows the Kaplan-Meier survival curves 

separately for the non-interrupted vs. interrupted cause of death cases. 
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Figure 6.8. Kaplan-Meier curves in the UK Biobank and QSBB cohorts by rs61871952 

genotype, separately for PD cases with A) non-interrupted vs. B) interrupted cause of 

death. 

A) Non-interrupted     B) Interrupted 

 

The APOE SNP rs429358 was associated with increased risk of mortality only in the 

non-interrupted cases (HR = 1.5, p = 0.002) and not in the interrupted death cases 

(HR = 1.01, p = 0.9).  

 

GWAS of HY3+ 

5,193,490 variants were present in all three datasets and 4,940,410 variants remained 

after heterogeneity filtering. 2,941 individuals from Tracking Parkinson’s, Oxford 

Discovery and PPMI were analysed, after excluding related individuals across cohorts 

and population outliers. The lambda from the meta-analysis (after filtering) was 0.99. 

No loci passed genome-wide significance for the meta-analysis of progression to 

Hoehn and Yahr stage 3 or greater (Figure 6.9, Table 6.5). The top variant was 

rs72771919 in Chromosome 1, p = 1.4 x 10-6. No genes approached significance in 

the MAGMA gene analysis.  
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Figure 6.9. Manhattan plot for the meta-analysis GWAS of progression to Hoehn and 

Yahr stage 3 or greater.The cohorts included in this analysis were Tracking 

Parkinson’s, Oxford Discovery, and PPMI. 

 

 

There was no enrichment of any gene-sets in the MAGMA analysis after Bonferroni 

correction, but the top 10 pathways are shown in Table 6.6. In the FUMA 

GENE2FUNC, there was enrichment in the MsigDB c2 gene set ‘Genes within 

amplicon 8q23-q24 identified in a copy number alterations study of 191 breast tumor 

samples (Nikolsky).’ 

The top variant rs72771919 was not in linkage disequilibrium with any of the common 

PD-associated GBA variants, although the D’ was 1.0 for all variants but the R2 was 

very low (Table 6.7). This may indicate the common variant is tagging rarer variants, 

but suggests the common variant itself is not causal. rs72771919 is an intergenic 

variant closest to VN1R5, Vomeronasal 1 Receptor 5. 
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Table 6.5. Top 10 independent SNPs from survival GWAS of Hoehn and Yahr stage 3+. 

 

Table 6.6. Top 10 pathways from MAGMA gene-set analysis for the GWAS of Hoehn and Yahr stage 3+.This includes curated gene 

sets and GO terms from MsigDB. No gene sets/pathways passed Bonferroni correction for the number of tested gene sets (N = 

15,496). 

FULL_NAME NGENES BETA BETA_STD SE P_unadjusted 

Curated_gene_sets:munshi_multiple_myeloma_dn 7 1.10 0.02 0.30 1.51E-04 

Curated_gene_sets:martens_bound_by_pml_rara_fusion 417 0.14 0.02 0.04 1.73E-04 

GO_bp:go_tetrapyrrole_biosynthetic_process 27 0.57 0.02 0.16 1.86E-04 

Curated_gene_sets:hummel_burkitts_lymphoma_up 38 0.45 0.02 0.14 4.87E-04 

Curated_gene_sets:sana_tnf_signaling_up 78 0.29 0.02 0.09 5.23E-04 

GO_bp:go_regulation_of_systemic_arterial_blood_pressure_by_norepinephrine_epinephrine 8 1.07 0.02 0.33 5.52E-04 

Curated_gene_sets:golub_all_vs_aml_up 23 0.51 0.02 0.16 5.63E-04 

GO_mf:go_norepinephrine_binding 5 1.27 0.02 0.40 7.74E-04 

GO_bp:go_alpha_amino_acid_biosynthetic_process 56 0.33 0.02 0.11 7.84E-04 

Curated_gene_sets:kuuselo_pancreatic_cancer_19q13_amplification 30 0.84 0.03 0.26 7.87E-04 

Chr 
Position 
(GRCh37) 

SNP 
Effect 
allele 
(minor) 

Effect 
allele 
freq 

Ref 
allele 

Nearest 
gene 

Distance to 
gene (kb) 

Beta  SE p  value  

1 247425485 rs72771919 G 0.0206 A VN1R5 5038 0.71 0.15 1.39E-06 

5 73272603 rs73118271 T 0.0113 C ARHGEF28 34785 0.96 0.21 2.66E-06 

16 72107660 rs117689220 A 0.0212 G TXNL4B/HPR 0 0.67 0.15 3.73E-06 

5 146442837 rs112998873 A 0.0226 G PPP2R2B 0 0.65 0.14 3.75E-06 

5 146484645 rs115727994 C 0.0177 T PPP2R2B 23562 0.71 0.15 3.91E-06 

16 72059840 rs117350940 C 0.016 T DHODH 524 0.74 0.16 4.19E-06 

5 73280092 rs58647958 G 0.0158 A ARHGEF28 42274 0.78 0.17 5.45E-06 

4 62120962 rs974538 A 0.4192 T ADGRL3 0 0.24 0.05 5.50E-06 

8 144552033 rs61386175 C 0.1534 T ZC3H3 0 0.30 0.07 6.57E-06 

4 62138110 rs28634991 T 0.3754 A ADGRL3 0 0.24 0.05 6.58E-06 
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Table 6.7. Linkage statistics for common GBA variants with rs72771919. Generated 

using LDpair in European populations excluding Finnish. 

GBA variant rsID D’ R2 

p.E326K rs2230288 1.0 0.0001 

p.N370S rs76763715 1.0 0.0 

p.T369M rs75548401 1.0 0.0001 

p.L444P rs421016 1.0 0.0002 

 

Published summary statistics from the Iwaki survival GWAS [98] to Hoehn and Yahr 

Stage 3 or greater were downloaded from 

https://pdgenetics.shinyapps.io/pdprogmetagwasbrowser/ (accessed November 

2019). These summary statistics only included variants that passed heterogeneity 

filters, with MAF > 0.05 and total number of participants > 1000. In total, data was 

available for 431,602 variants that had rsIDs. No further filtering of these variants was 

applied prior to meta-analysis. 

I meta-analysed the current datasets, excluding PPMI as this was included in the Iwaki 

GWAS. 215,814 variants were present in all 3 datasets and passed heterogeneity 

filters. The lambda was 0.96. No variants passed genome-wide significance. The top 

SNP was rs11174375, an intronic variant in TAFA2 in Chromosome 12 (p = 1.7 x 10-

6, N = 3803). 

  

https://pdgenetics.shinyapps.io/pdprogmetagwasbrowser/
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GWAS of dementia 

One locus in Chromosome 19 was significantly associated with progression to 

dementia (Figure 6.10, Table 6.8). The top SNP was the APOE 4 tagging SNP 

rs429358 (HR = 1.6, beta = 0.45, p = 2.0 x 10-10). 

In the MAGMA gene analysis, APOC1 was the top gene strongly associated with 

progression to dementia. TOMM40 and APOE also passed genome-wide significance 

(p < 2.8 x 10-6, correcting for the number of mapped protein coding genes). There was 

no enrichment of any gene sets in MAGMA after Bonferroni correction, but the top 10 

pathways are shown in Table 6.9. 

Figure 6.10. Manhattan plot for the meta-analysis GWAS of progression to dementia 

(MoCA  21 or withdrawal due to dementia).The cohorts included in this analysis were 

Tracking Parkinson’s, Oxford Discovery, and PPMI. 

 

 

No other loci reached genome-wide significance, however there was a nominally 

significant locus in Chromosome 4. The top SNP in this locus was rs66882945, located 

at (hg19/GRCh37 position 4:137,129,406, beta = -0.50, p = 5.5 x 10-8). It is an intronic 

variant in the long intergenic non-coding RNA RP11-775H9.2 (also known as 

ENSG00000251567). It is not near SNCA (located at 4:90,645,250-90,759,447, 

hg19/GRCh37 build) in which both rare and common variants have been associated 

with PD risk and age at onset [96]. The top variant was not in linkage disequilibrium 
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with any previously reported SNCA variants: rs356182, rs5019538, or rs2870004 

[280]. 

Neither the Chromosome 10 SNP rs61871952 or the Chromosome 9 SNP rs3808753 

were associated with progression to Hoehn and Yahr stage 3 or dementia (all p’s > 

0.1). 
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Table 6.8. Top 10 independent SNPs from survival GWAS of dementia. 

 

Table 6.9. Top 10 pathways from MAGMA gene-set analysis for the GWAS of dementia. This includes curated gene sets and GO 

terms from MsigDB. No gene sets/pathways passed Bonferroni correction for the number of tested gene sets (N = 15,496). 

FULL_NAME NGENES BETA BETA_STD SE P_unadjusted 

GO_mf:go_dolichyl_phosphate_mannose_protein_mannosyltransferase_activity 8 1.14 0.02 0.26 3.87E-06 

GO_bp:go_serotonin_transport 12 0.90 0.02 0.24 1.20E-04 

GO_bp:go_regulation_of_guanylate_cyclase_activity 11 0.78 0.02 0.22 1.83E-04 

GO_bp:go_protein_nitrosylation 12 0.96 0.02 0.28 2.41E-04 

Curated_gene_sets:reactome_nephrin_family_interactions 21 0.64 0.02 0.19 3.13E-04 

GO_mf:go_interleukin_1_receptor_activity 6 1.33 0.02 0.39 3.52E-04 

GO_bp:go_regulation_of_mast_cell_cytokine_production 5 1.10 0.02 0.33 3.69E-04 

Curated_gene_sets:mikkelsen_es_hcp_with_h3_unmethylated 55 0.36 0.02 0.11 3.98E-04 

GO_bp:go_subpallium_development 22 0.65 0.02 0.19 4.27E-04 

GO_bp:go_serotonin_uptake 5 1.16 0.02 0.36 5.51E-04 

Chr 
Position 
(GRCh37) 

SNP 
Effect 
allele 
(minor) 

Effect 
allele 
freq 

Ref 
allele 

Nearest gene 
Distance 
to gene 
(kb) 

Beta  SE p  value  

19 45411941 rs429358 C 0.1427 T APOE 0 0.45 0.07 1.99E-10 

19 45390333 rs283815 G 0.2103 A PVRL2 0 0.39 0.06 2.05E-10 

4 137129406 rs66882945 C 0.0568 G RP11-775H9.2 0 0.51 0.09 5.54E-08 

11 84641700 rs118188129 T 0.0886 C DLG2 0 0.40 0.08 6.30E-07 

13 101813637 rs594524 C 0.4147 T NALCN 0 -0.25 0.05 2.09E-06 

11 28954555 rs77905407 C 0.077 T RP11-115J23.1 0 0.43 0.09 2.16E-06 

4 137123682 rs2053895 G 0.1134 A RP11-775H9.2 0 0.34 0.07 2.92E-06 

12 41319351 rs2405296 G 0.0444 A CNTN1 0 0.49 0.10 3.44E-06 

19 45404857 rs112019714 C 0.0265 T TOMM40 0 0.64 0.14 3.45E-06 

14 52519137 rs72680322 A 0.0224 G NID2 0 0.69 0.15 3.48E-06 
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Targeted assessment of PD risk loci and candidate variants  

72 out of 90 PD risk variants were present in the final mortality meta-analysis dataset, 

after filtering, although 2 were not present in the HY3 meta-analysis and 4 were not 

present in the dementia meta-analysis. No variants passed genome-wide significance 

or analysis-wide significance (0.05/72). Variants that were nominally associated (p < 

0.05) with either progression to mortality, HY3+, or dementia are shown in Figure 6.11. 

I found that only a small number of risk variants were associated with progression with 

p-values < 0.05. rs35749011 was associated with both progression to mortality (beta 

= 0.40, p = 0.003) and dementia (beta = 0.41, p = 0.008), but not HY3+ (beta = 0.15, 

p = 0.37). This variant is in linkage disequilibrium with the GBA p.E326K variant, 

D’=0.90, R2=0.78. rs57891859, an intronic variant in TMEM163, was nominally 

associated with progression to H&Y Stage 3 (beta = -0.20, p = 0.001). 

I also examined candidate variants that have previously been associated with 

progression, including the LRRK2 SNP rs2242367 associated with PSP mortality [269] 

(Table 6.10). The LRRK2 variant rs34637584, as well as other rare GBA variants, 

were not covered in the analysis. 

The ATP8B2 gene identified from the motor progression PCA GWAS (Chapter 5) was 

not significantly associated with progression to any of the clinical milestones in these 

studies (all p’s > 0.1). 
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Figure 6.11. Heatmap of PD risk variants that were associated with progression to 

mortality, Hoehn and Yahr stage 3 or greater, or dementia.  

 

HY3 = Hoehn and Yahr stage 3 or greater 
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Table 6.10. Results for candidate variants that have previously been reported for 

progression.Results were extracted from the meta-analysis results for mortality, 

Hoehn and Yahr stage 3 or greater, and dementia. Bonferroni correction was applied 

for the number of variants tested in each outcome (0.05/6 = 0.0083). Variants that 

passed this threshold are highlighted in bold. 

Gene rsID Effect Ref Association Mortality HY3+ Dementia 

     beta pval beta pval beta pval 

LRRK2 rs2242367 A G PSP survival 0.14 0.004 0.03 0.64 0.01 0.80 

LRRK2 rs76904798 T C 
PD risk 
HY3 

-0.10 0.08 -0.03 0.65 -0.05 0.48 

GBA  
E326K 
rs2230288 

T C 
PD risk 
PD 
progression 

0.39 0.005 0.15 0.36 0.43 0.005 

SLC44A1 rs382940 A T HY3 0.10 0.20 -0.06 0.55 0.06 0.50 

MAPT 
H1/H2 
rs8070723 

G A Dementia 0.004 0.94 0.06 0.34 -0.01 0.86 

APOE rs7412 T C 
Dementia 
(protective) 

-0.11 0.17 0.10 0.27 0.01 0.91 

HY3+ = Hoehn and Yahr stage 3 or greater 

 

 

PD Genetic Risk Score 

There was no association between the PD GRS and mortality in a meta-analysis 

across all cohorts, excluding PPMI (HR = 1.001, p = 0.96). In the analysis of Hoehn 

and Yahr 3 and dementia in Tracking Parkinson’s, Oxford Discovery, and PPMI, there 

was also no association between the GRS and progression (p’s > 0.1). However, I 

was able to replicate the effect of GRS on age at onset [96,259], with higher GRS 

associated with decreased age at onset (beta = -0.7, p = 0.0007). 

AD Polygenic Risk Scores 

To determine whether the association results were specific to APOE or more general 

AD risk, I analysed AD PRSs (excluding the APOE region) in relation to PD mortality 

and dementia. Table 6.11 shows the number of SNPs including in the PRSs at each 

p-value threshold for each cohort. The number of SNPs in the PRS differs between 

cohort as this is dependent on the overlapping SNPs between the AD GWAS summary 

statistics and each target genotype dataset. There was no association between the 
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AD PRS and mortality at any p-value threshold (Table 6.12). However, when the 

APOE region was included, the AD PRS was associated with mortality at p-value 

threshold 0.0001 (p = 0.003) and 0.001 (p = 3.4 x 10-5). 

Table 6.11. Number of SNPs including in each AD PRS (excluding the APOE region) 

in each cohort. 

Selection 
threshold 
of SNPs in 
AD GWAS 

Calypso 
N SNPs 

Oxford 
N SNPs 

Tracking 
Parkinson’s 
N SNPs 

QSBB 
N SNPs 

UKB 
N SNPs 

PPMI  
N SNPs 

p < 0.0001 368 277 299 340 382 420 

p < 0.001 1879 1308 1363 1647 2053 2238 

p < 0.01 12468 7769 8095 10568 13857 15150 

p < 0.05 45714 25330 26437 37699 51486 54856 

p < 0.1 78167 40617 42555 63754 88502 92694 

p < 0.2 129818 62252 65611 104883 147231 150608 

p < 0.3 171301 77731 82252 137527 194389 196779 

p < 0.4 205940 89737 95288 164163 233720 234354 

p < 0.5 235172 99349 105600 186805 266550 265855 

 

Table 6.12. Results of random-effects meta-analysis for AD PRS (excluding the APOE 

region) in relation to PD mortality across cohorts, excluding PPMI. 

Selection threshold of 
SNPs in AD GWAS 

HR random effects p-value 

p < 0.0001 1.01 0.62 

p < 0.001 1.06 0.03 

p < 0.01 1.04 0.14 

p < 0.05 1.02 0.51 

p < 0.1 1.03 0.28 

p < 0.2 1.03 0.30 

p < 0.3 1.05 0.18 

p < 0.4 1.05 0.21 

p < 0.5 1.05 0.22 

 

There was also no association between the AD PRS excluding APOE and dementia 

at any p-value threshold (Table 6.13). When the APOE region was included, the AD 

PRS was still not associated with dementia. There was only a nominal association 

between the AD PRS including APOE at p-value threshold 0.0001 (p = 0.08) and 0.001 

(p = 0.07). 
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Table 6.13. Results of random-effects meta-analysis for AD PRS (excluding the APOE 

region) in relation to PD dementia in Tracking Parkinson’s, Oxford, and PPMI. 

Selection threshold of 
SNPs in AD GWAS 

HR random effects p-value 

p < 0.0001 1.04 0.63 

p < 0.001 1.05 0.34 

p < 0.01 1.00 0.98 

p < 0.05 1.01 0.82 

p < 0.1 1.01 0.74 

p < 0.2 1.00 0.97 

p < 0.3 1.00 0.77 

p < 0.4 1.00 0.69 

p < 0.5 1.00 0.98 

 

Power 

The power to detect a signal in GWAS depends on a number of factors, including 

effect size, allele frequency of the effect allele, and the proportion of individuals 

meeting the outcomes. Using the survSNP package, I estimated that this study had 

59.4% power to detect a significant effect (p < 5 x 10-8) for the APOE SNP rs429358, 

in the mortality GWAS, based on an allele frequency of 15%, Hazard Ratio of 1.35, 

and event rate of 25%. Figure 6.12 illustrates how power changes with different effect 

sizes, effect allele frequencies, and event rates. It is likely that longer follow-up of 

cohorts is needed to detect significant effects in mortality due to the low event rate in 

the current GWAS. 
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Figure 6.12. Power to detect a significant GWAS effect (alpha = 5 x 10-8) at different 

effect sizes, allele frequencies, and event rates (in the grey headers, plots are faceted 

by event rate). 
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Discussion 

I conducted GWASs of progression to clinical milestones, including the first large-scale 

GWAS of mortality in PD, as well as Hoehn and Yahr stage 3 or greater, and dementia. 

There are a number of ways of measuring and analysing progression in PD, and there 

is no clear gold standard for assessing clinical progression. The MDS-UPDRS is 

commonly used in clinical trials, but this is subject to rater subjectivity and low within-

subject reliability over longitudinal assessments [240]. Here, I used clinical milestones 

as measure of progression, which is a common method and has been used in previous 

candidate gene studies in PD [17,71,82,263,264], and progression GWAS studies in 

other diseases [281] and PD [98,259]. 

This study identified three main findings. Firstly, I found evidence that APOE ε4 is 

associated with progression to mortality and dementia in PD. Analysis of AD PRSs 

suggest that these results were specific to APOE, and not due to more general AD 

polygenic risk. Previous studies show that APOE is associated with AD risk [282], PD 

age at onset [96], and PD dementia [85,87,88,92], but not PD risk [75]. In the GWAS 

of PD age at onset, the effect of APOE on age/age at onset was similar in cases and 

controls, unlike other variants (SNCA, TMEM175/GAK) where the effect was only seen 

in PD cases [96]. This suggests that the effect of APOE is more generally related to 

aging, and not specific to PD. Indeed, GWASs of longevity have identified APOE as 

an important factor, with the ε4 allele found less frequently in long-living individuals 

[283,284]. APOE also increases risk of ischaemic heart disease/coronary artery 

disease, and cholesterol levels. It is likely that all these factors are interrelated – health 

conditions such as heart disease, high cholesterol, and AD increase risk for mortality, 

and dementia is a strong predictor of mortality in PD [216,285,286], and the general 

population [287–289]. 

My results are in line with these previous studies, as I show that APOE ε4 is associated 

with increased risk of mortality in PD. Considering the existing literature on APOE, it 

is likely that this effect is not PD-specific but more general. I found that the mean time 

from PD onset to death was 10.1 years, and mean follow-up time from PD onset to 

censoring for cases that did not die was 8.7 years. This shorter follow-up time may 

explain why I did not identify a genome-wide significant signal for the APOE locus, and 



 169 

longer follow-up is needed to confirm this result. The mean time from PD onset to 

death is longer than estimates from UK-based community samples (6.7 years to 8.3 

years) [229,290]. This may be due to bias in clinical studies, including the UK Biobank 

cohort, which tend to attract generally healthier participants [291] and potentially 

slower progressing PD patients who are able to attend repeated assessments. 

The mean time from PD onset to death in this study was also slightly shorter than that 

reported in a community-based study in Sweden (12.8 years) [292]. This may be 

because of longer life expectancy in Sweden compared to the UK, or the shorter 

follow-up time in this study, Another factor to consider is that the time of PD onset in 

the UK Biobank patients has been taken as the first record of PD in Hospital Episode 

Statistics, and this likely does not reflect the actual onset of symptoms. 

Secondly, I identified a novel locus in Chromosome 10 in the long non-coding RNA 

LOC105378484 which was nominally associated with progression to mortality. This 

locus is near to the protein-coding gene ADRA2A, Adrenoceptor Alpha 2A, although 

further work is needed to determine if our locus is involved in the regulation or 

expression of ADRA2A. I did not find evidence linking this locus to ADRA2A when 

looking at eQTL databases. 

Another locus near this gene has previously been reported to be associated with 

insomnia at baseline in PD [98]. In that study, the lead SNP rs61863020 was a 

significant eQTL for ADRA2A. 

None of the top variants in the Chromosome 10 locus in my GWAS of mortality were 

covered in the Iwaki meta-analysis of insomnia (either baseline or longitudinal survival 

analysis). They were also not in linkage disequilibrium with the SNP rs61863020 

associated with baseline insomnia in the Iwaki GWAS (D’ = 0.06, R2 = 0.0001 for 

rs113423519 and rs61863020). 

ADRA2A encodes for α2A adrenoceptors (or adrenergic receptors), which are 

involved in regulating the release of neurotransmitters from sympathetic nerves and 

from adrenergic neurons in the central nervous system. A study has shown that β2 

adrenergic receptor activation reduced α-synuclein in neuronal cells [293]. In a series 

of experiments in human neuronal cells, rat neurons, and mice, Mittal et al. showed 

that β2-adrenoreceptor activation modulated endogenous SNCA expression and α-
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synuclein protein levels. β2-adrenoreceptor agonists, meta-proterenol, salbutamol, 

and clenbuterol, reduced endogenous SNCA mRNA. Antagonism of β2-

adrenoreceptors using propranolol (a β-blocker) increased SNCA mRNA and α-

synuclein protein levels. Furthermore, in a longitudinal population study in Norway, 

they found that salbutamol reduced the risk of developing PD, and this was not 

explained by smoking and treatment of asthma with salbutamol, while propranolol use 

increased the risk of developing PD [293]. 

At present there is limited evidence linking our Chromosome 10 locus to the ADRA2A 

gene so it is not known whether the rs61871952 variant or LOC105378484 gene may 

be involved in ADRA2A regulation. No previous studies have been published on this. 

There was no data available for either LOC105378484 or rs61871952 in GWAS 

catalogues including the NHGRI-EBI GWAS Catalog [294] 

(https://www.ebi.ac.uk/gwas/home), the HUNT fast-track GWAS catalog 

(https://www.ntnu.no/huntgenes/fasttrack), and the Global Biobank Engine. Further 

work and replication GWAS studies are needed to determine if this locus is important 

for PD progression and what role it may play. 

It is possible that the variants I have identified for mortality are not PD-specific, but 

more general to neurodegeneration, aging, or even COVID-19. There appeared to be 

heterogeneity in the effect of the Chromosome 10 SNP, which had a stronger effect in 

the UK Biobank cohorts for which death data was downloaded very recently in 2020. 

No GWAS signals have been identified for COVID risk in Chromosome 10 or 19 [295]. 

There has been one locus identified in Chromosome 9 for COVID, top variant 

rs657152, but this was not near the Chromosome 9 locus associated with PD mortality 

(top variant rs3808753, D’ = 0.05, R2 = 0). I also examined publicly available summary 

statistics for a COVID GWAS in European samples in UK Biobank 

(https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx). Interestingly, the APOE 

variant rs429358 was almost genome-wide significant (p = 9.0 x 10-7, beta = 0.27, N 

= 8486) in the UK Biobank COVID GWAS. The other two top signals in the PD mortality 

GWAS were not significant (p > 0.1). This suggests that APOE plays a role in both PD 

mortality and COVID risk, but this could be due to the role of APOE in aging or related 

diseases, e.g. if patients with AD or other dementias are overrepresented in COVID 

testing in care homes and hospitals. 

https://www.ebi.ac.uk/gwas/home
https://www.ntnu.no/huntgenes/fasttrack
https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx
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The fact that only APOE was associated with COVID and not the other GWAS signals 

indicates that mortality in our PD cases is not due to COVID. If it was, I would expect 

more overlap between the genetic signals for COVID and mortality. 

I did not replicate the finding for SLC44A1 from the previous progression GWAS of 

survival to Hoehn and Yahr stage 3 or greater [98]. When I meta-analysed the current 

data together with summary statistics from the previous GWAS, there were no 

genome-wide significant signals. This may be due to the inclusion of different 

covariates in the survival models. Iwaki et al. used a data-driven approach and 

included quadratic age at diagnosis, quadratic years from diagnosis, education, H&Y 

2 or more at baseline, and medication status as covariates, based on a backwards 

stepwise regression model in each cohort. This may explain the differences in our 

results. I did not include baseline scores as covariates in the survival models, as 

baseline performance may be a marker for progression rather than a confounder. 

Therefore, adjusting for baseline performance may mask true genetic associations 

with progression. 

Replication is key for GWAS studies. It is clear from the GWAS studies in this thesis, 

and our lack of replication of previous findings, that the phenotypic measure of PD 

progression is a lot noisier and more variable than that in PD case-control studies. 

This difficulty means that more large, well-powered studies are needed to robustly 

replicate results, both the current findings and those from the previous PD progression 

GWAS. 

I also identified a nominal signal in Chromome 9 at rs3808753 for progression to 

mortality. This is a non-coding transcript variant in SH3GL2 (SH3 Domain Containing 

GRB2 Like 2, Endophilin A1). Another locus in this gene is associated with PD risk 

from case-control GWAS (top SNP rs10756907) [75], however the variants were not 

in linkage disequilibrium (D’ = 0.14, R2 = 0.0002). SH3GL2 is involved in regulation of 

synaptic vesicle endocytosis, and together with other PD-associated genes, SYNJ1 

and DNAJC6, highlights the endocytic membrane-trafficking pathway as important for 

the pathogenesis of PD [296,297]. The association of this gene with PD progression 

is interesting and needs to be replicated. 
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There was minimal overlap between the genetic variants associated with PD risk and 

PD progression. I showed that  only a small number of PD risk loci were nominally 

associated with either progression to mortality, Hoehn and Yahr stage 3, or dementia. 

These results are similar to those from the previous PD progression GWAS, which 

showed minimal overlap between PD risk variants and progression apart from GBA 

variants [98,259]. The GRS was also not associated with any of the outcomes, though 

I replicated the association between GRS and PD age at onset. This could be due to 

two reasons: either the effect of the GRS on PD progression is much smaller than on 

age at onset and larger sample sizes are needed to detect this association, or that 

there is no association between the PD GRS and progression. 

In the targeted candidate variant analysis, I found an association between the LRRK2 

variant rs2242367 and mortality. This variant was associated with PSP progression to 

mortality and is an eQTL for LRRK2 [269]. This finding could potential contamination 

of PSP cases in the current study. Alternatively, it may suggest that the effect of this 

locus is not specific to PSP but influences progression and survival in other 

neurodegenerative conditions through the effect of LRRK2 on mechanisms such as 

inflammatory response or tau pathology, which is present in some PD cases at 

postmortem [24]. 

Limitations 

This study has several limitations which need to be recognised. Firstly, phenotyping 

of PD cases in the UK Biobank is different to other clinical cohorts. Incident PD cases 

were identified from HES. This data could be from unrelated hospital visits, but could 

also be linked to PD (e.g. falls) or PD progression (e.g. other comorbidities which 

contribute to rapid progression). This means the incident PD cohort from UK Biobank 

may be more rapidly progressing than the general PD population, and this is supported 

by the very short time to death in patients who died.  

Secondly, this was not a population-based study and included several cohorts in which 

patients may not be representative of the general PD population (e.g. QSBB, UK 

Biobank). These cohorts may be more rapidly progressing or atypical than other PD 

patients. 
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A third limitation is incomplete death data from the clinical cohorts, Tracking 

Parkinson’s and Oxford Discovery. Death was only recorded when provided by the 

site or the patient’s relatives, not from health records, and there were many cases 

which were lost to follow-up from the study but with no known reason so I may be 

missing some cases who have died. Efforts to link these clinical cohorts to NHS death 

records are currently underway. 

Fourthly, it is important to recognise that even mortality in PD is not a gold standard of 

progression. There are some patients who may live for a long time but with substantial 

impairment, and other PD patients who die from other causes. Mortality in more rapidly 

progressing diseases, such as PSP [269], are usually clearer as death can be 

attributed to disease, whereas in PD this phenotype can relate to multiple factors. 

To try to clarify this issue, I performed analysis stratified by cause of death in the 

cohorts that had data available. These results suggest that the Chromosome 10 SNP 

and the APOE SNP were more important for PD deaths, and not interrupted deaths. 

However, this method of classifying deaths is fairly crude and based on small numbers 

of patients, and it is difficult to disentangle PD-related or unrelated causes of death. 

One mortality study found that PD patients had an increased risk of death from 

ischaemic heart disease, cerebrovascular disease, and other respiratory disease, 

compared to controls [229], although other studies have not found significant 

differences between cases and controls [290,292]. If PD patients are more at risk of 

death from causes which may seem unrelated (e.g. heart attacks), either due to drug 

treatments, shared causal factors, or immune response, then this stratification of 

cause of death may not be valid. 

Finally, the study is limited by relatively small sample sizes. As shown in the power 

calculations, the power to detect significant effects is limited by low allele frequencies, 

small effect sizes, and low event rates (the proportion of individuals meeting the 

outcome). Particularly for GWASs of mortality, longer follow-up of cohorts is needed 

to increase power to detect effects. This may explain why I did not identify any 

significant loci in the mortality GWAS. In addition, it is likely that the heritability of PD 

progression is low, due to the subjective nature of measuring progression and noise 

in the phenotypes. This may also explain, in part, why I did not identify more GWAS 

significant loci. The PD age at onset GWAS only identified 3 genome-wide significant 
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signals with a sample size of 28,586 patients [96]. Despite the limited power, it is still 

important to conduct these GWASs so that early data can be shared and over time 

and through collaborations, studies can be meta-analysed to increase sample 

numbers. 

Conclusion 

This study is the first GWAS of mortality in PD, and one of the largest GWASs of 

progression to other clinical milestones. I found that APOE is an important determinant 

of survival/mortality and dementia, and have identified other candidate loci which may 

be associated with mortality. 

  



 175 

Chapter 7 : Conclusions and future directions 

This research is crucial to understand the biology of disease progression in PD, which 

will facilitate the development of new disease modifying treatments. The majority of 

therapies in the pipeline for PD are for symptomatic treatments, and there is a lack of 

disease modifying therapies in clinical trials, particularly in Phase 3 studies [298]. 

Many drugs fail at Phase 3 trials [299,300]. This points to our incomplete 

understanding of the precise pathological mechanisms that drive disease progression 

and cell death [300]. 

The first aim of this PhD was to establish the frequency and clinical characteristics at 

baseline of PD Mendelian mutation carriers in the Tracking Parkinson’s cohort. By 

using a variety of genetic screening methods, I showed that patients carrying 

pathogenic mutations are rare (<1%) and most are clinically indistinguishable from 

idiopathic PD. However, patients carrying Parkin or PINK1 mutations appeared to 

have earlier onset, longer disease duration at study entry, and better cognition than 

other early-onset non-carriers, suggestive of slower progression. Further work to 

analyse the longitudinal progression of these mutation carriers is needed, though was 

not the focus of this PhD. 

The second aim was to understand the clinical predictors of progression (Chapter 4). 

I showed that age at onset, baseline severity, and disease duration at study entry were 

associated with progression to clinical milestones, with more moderate evidence for 

gender. However, some of these may be on the causal pathway between genotype 

and the progression outcome, so arguably should not be included as covariates in 

GWAS models. It is likely that baseline severity and disease duration are both 

surrogate measures of rate of progression and this work implies that “malignant” PD 

is apparent at presentation, and that these patients should be targeted for disease 

modifying trials and for intensive multi-disciplinary support.  The relationship between 

age and onset and progression is complex with both disease biology and co-

morbidities (e.g. vascular risk factors) playing a role in disease progression, and 

increasing the risk of “incidental” mortality. 

The third aim was to conduct GWASs on scores of motor, cognitive, and composite 

progression (Chapter 5). By combining multiple clinical scales to improve the 
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phenotypic measure of progression, I showed that the APOE e4 allele was strongly 

associated with cognitive progression. This confirms the results of many previous 

candidate gene studies, but for the first time on a genome-wide scale. I also identified 

variation across ATP8B2 as potentially important for motor progression, although this 

was not genome-wide significant and further studies are needed. 

My fourth aim was to use survival to clinical milestones in PD as markers of 

progression in GWASs. This included the first large, well-powered GWAS of 

progression to mortality in PD. I showed that APOE was strongly associated with 

progression to dementia and potentially mortality. I also found sub-genome-wide 

significant loci in LOC105378484 and SH3GL2 which were associated with mortality. 

Further studies are needed to replicate these results.  

Comparison of different GWAS approaches 

In this PhD, I have used a range of different measures of PD progression and statistical 

approaches to analyse them. This speaks to the fact that there is no gold standard of 

measuring or analysing clinical progression in PD. 

The fact that more novel approaches, such as the PCA GWAS, have identified similar 

findings to previous candidate gene studies, suggests that this approach is valid and 

can be used to improve the phenotypic measure of progression. This approach could 

be broadened further to test other scales for motor and cognitive progression. If the 

results are similar, then this could be a way of combining clinical data across studies 

which use different assessments. 

Overall, I found similar results across the different approaches, e.g. the strong signal 

for APOE in all approaches. It is likely that the different measures of progression (PCA-

derived composite scores, clinical milestones, rating scale change) are related and 

correlated. However each approach may measure slightly different aspects of clinical 

progression, e.g. the PCA-derived scores include variation in motor features such as 

tremor which are not included in the clinical milestone measures. Some measures, 

such as the PCA-derived scores, may be predictive of other markers such as mortality. 

In other measures, there is direct overlap between the scales that were used, e.g. the 

PCA-derived motor score and progression to Hoehn and Yahr stage 3. 
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Each measure likely has its own strengths and weaknesses. Survival analysis of 

clinical milestones may capture variation in patients who are more rapidly progressing 

and unable to fully complete detailed scales at follow-up visits. The PCA-derived 

composite scores may capture more variation in a range of different symptoms. 

It would be interesting to look at the genetic correlations using LDSC between the 

different GWASs, once these progression GWASs access larger sample sizes and 

identify more genome-wide significant hits. This may give an indication of how much 

overlap there is between the genetic associations using different measures of 

progression. 

Mechanisms of progression 

The mechanisms by which genotypes influence progression remain unknown. It is well 

known that APOE is a strong risk factor for AD, and the likely mechanism is through 

modulation of amyloid-β accumulation [301].  Comorbid AD pathology is common in 

PD patients with dementia at postmortem [24]. Thus, APOE may influence PD 

progression solely through AD pathology. However, there may also be interactions 

between pathological substrates or alternative pathways through which APOE drives 

cognitive impairment. 

Key studies in transgenic mice have shown that there are direct interactions between 

amyloid-β and α-synuclein, and they may have distinct as well as converging 

pathogenic effects [272]. Masliah et al. showed that mice expressing human α-

synuclein in combination with human β-amyloid precursor protein (APP) had both 

motor and memory deficits, and these deficits seemed to be accelerated/worsened 

compared to mice expressing just α-synuclein or just amyloid-β [272]. They found that 

amyloid-β promotes accumulation of α-synuclein, but α-synuclein expression did not 

affect deposition of amyloid-β or neuritic plaques. Overall, they hypothesised that α-

synuclein affected motor function more than cognitive function, whereas the reverse 

was true for amyloid-β. However other studies, albeit using different models, suggest 

this may not be the case as mice overexpressing α-synuclein without amyloid-β 

pathology still have learning and memory deficits [254]. 

Gallardo et al. found that overexpression of α-synuclein in transgenic mice induced 

neurodegeneration and motor symptoms, and altered the ubiquitin-proteasome 
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system [302]. This was associated with increased levels of ApoE, insoluble amyloid-β 

peptides, and increased inflammatory response. Deletion of ApoE alleviated but did 

not completely abolish α-synuclein neurodegeneration [302]. They suggest that α-

synuclein overexpression activates a pathogenic extracellular signalling loop that 

involves ApoE and amyloid-β and promotes neurodegeneration. 

Most recently, Zhao et al. showed that in a mouse model overexpressing α-synuclein 

without amyloid pathology, human APOE4, but not APOE2 or APOE3, exacerbated α-

synuclein pathology in cerebral cortex, hippocampus, amygdala, thalamus, but not the 

substantia nigra. APOE4 also enhanced motor and cognitive behavioural deficits, 

neuronal and synaptic loss, and astrogliosis [254]. Though this model does not 

account for how α-synuclein may interact with amyloid pathology, it suggests that 

APOE may have a direct effect on α-synuclein, independent of amyloid-β. 

It is clear that further work needs to be done to investigate the mechanisms which 

drive clinical progression. Studying the correlation between pathology, progression, 

and genetic factors will be helpful. Animal studies have used different methods to 

model α-synuclein overexpression, and this makes it somewhat difficult to compare 

results. However, the evidence so far suggests that α-synuclein and amyloid-β can 

interact, but may also have independent effects on neurodegeneration, and that APOE 

may influence α-synuclein through other mechanisms. 

Whether and how α-synuclein is important for clinical progression in PD also needs to 

be determined. There is substantial evidence showing that α-synuclein is important for 

the pathogenesis of PD [303]. Overproduction of synuclein through whole gene 

duplications and triplications, as well as specific mutations, is associated with the 

development of PD and sometimes a more rapidly progressing phenotype, though 

there is mixed evidence for patients carrying SNCA duplications. However, whether α-

synuclein is important for clinical progression in PD needs to be determined, and if so 

which aspects of α-synuclein – whether overall burden, the spread to different brain 

regions, or downstream effects (e.g. inflammation, lysosomal dysfunction, dysfunction 

of other degredation pathways, mitochondrial dysfunction [303]). It is likely that clinical 

progression relates to a number of these factors rather than a single factor. In addition, 

different domains of progression may be more affected by particular pathways. 
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Cognitive impairment and dementia in PD is associated with the cholinergic system 

[304], in addition to α-synuclein, tau, and amyloid pathologies [24,29,305]. 

In my GWASs, I did not find SNCA variants were associated with PD progression. 

However, this may be due to a lack of power, especially if common variants are 

associated with smaller increases in expression. In addition, other genes may 

modulate α-synuclein through regulatory networks to  affect core genes, in an 

omnigenic model [306]. Furthermore, it may suggest that other factors are important 

for clinical progression, such as the spread of α-synuclein pathology to other regions 

of the brain, rather than expression or overall burden. 

Recent studies suggest that CSF α-synuclein may track with clinical progression and 

could be used as a potential biomarker – one study reported a correlation between the 

ratio of total and oligomeric α-synuclein and UPDRS motor change [307]. Although 

this research field is fairly new and some studies have reported conflicting results 

[308], it could suggest that α-synuclein pathology is dynamic during the course of 

disease and could be important for predicting and tracking clinical progression. In 

addition, other pathological substrates including tau have been associated with motor 

progression in small studies [308]. 

General limitations and considerations 

There are a number of limitations to be aware of in these studies. Firstly, GWASs can 

only detect variation in common SNPs, and there may be rare variants or larger 

structural variants which also contribute to variation in PD progression – possibly with 

larger effect sizes. GWASs can identify common variation that tags causal rare 

variants. Future studies integrating rare variant data from methods such as whole 

genome sequencing would help to address this issue. 

Identifying the causal variant from GWAS loci is another challenge. Only a small 

number of SNPs are genotyped and imputed, and further fine mapping is needed to 

cover other variants  [120]. In addition, it is helpful to assess evidence to identify causal 

variants from GWAS loci, including functional, expression, and rare variant burden 

evidence. These efforts are currently underway for PD through the International PD 

Genomics Consortium (IPDGC) and online tools such as the GWAS Locus Browser 

(https://pdgenetics.shinyapps.io/GWASBrowser/).  

https://pdgenetics.shinyapps.io/GWASBrowser/
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Another key consideration for these studies is power and sample size. These are some 

of the largest GWASs for PD progression – the only other well-powered PD 

progression GWASs have been conducted by Iwaki et al. in 4,093 PD patients [98], 

although in that study not all patients had data available for all clinical outcomes. The 

sample sizes in both studies are relatively small for GWASs and are therefore limited 

to detect variants that have smaller effects or are less common. It has been a 

challenge to collect and put together cohorts with longitudinal, detailed clinical data in 

PD but new initiatives such as the Global Parkinson’s Genetics Program (GP2) and 

sharing of publicly available data (AMP-PD, UK Biobank) will make this easier in the 

future. With these initiatives, it will be possible to conduct larger progression GWASs 

in PD. I believe there are more loci and genes to discover for PD progression, although 

likely not to the scale as PD risk, due to the lower heritability and more complex 

phenotypes. The GWAS of PD age at onset only identified 3 significant signals with 

over 28,500 PD cases and this is because of the lower heritability of the phenotype 

[96]. 

Another consideration is the possibility of collider bias when studying a selected group 

of individuals, i.e. case-only studies. This has been flagged as an issue in Mendelian 

Randomisation studies of progression [309]. If there are multiple independent factors 

that influence disease risk, this can introduce spurious associations when only cases 

with disease have been selected for progression GWASs. This is also termed as index 

event bias by Dudbridge et al. [310]. There are methods to adjust for index event bias, 

and this could be tested in future PD progression studies. However, these methods 

also assume that genotype effects on prognosis are independent of disease risk [310], 

and this may not be in the case in PD, for instance with GBA variants. 

Misdiagnosis of patients is another factor to consider, and may contribute to weaker 

signals in my GWASs. As discussed earlier, it is likely that with the length of follow-up 

in the cohort studies, the majority of non-PD patients have been excluded and I 

performed sensitivity analyses to exclude participants who may have different 

conditions (Chapter 5). However, this also depends on the frequency of follow-up and 

whether there is a clear system of notifying study coordinators of change in diagnosis, 

particularly for patients who are unable to attend study visits. Future cohort studies 

could include light-touch assessments over the phone or online to collect key data 
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points (including change in diagnosis, clinical milestones, and death) for patients who 

cannot attend in-person assessments. In addition, it would be useful to link clinical 

cohorts to death data and encourage registration with brain banks, so that post-

mortem confirmation and death cause data can be collected systematically. 

A further limitation is that all these studies are done in European and Caucasian 

populations. Therefore, these results cannot be extrapolated to other populations. 

There may be different allele frequencies, LD structures, causal variants, and effect 

sizes in other populations, and this has been shown in PD case-control GWASs in 

different populations [311]. Studies of PD progression are needed in other populations, 

and I hope this will be facilitated by the GP2 initiative where a key focus is on 

underrepresented populations. 

Future work 

A crucial aspect of future studies is to look at the genetic associations with pathology 

in addition to clinical progression. As discussed throughout this thesis, a major 

limitation of this research is the lack of a gold standard/marker for measuring and 

analysing PD progression. It is possible that biomarkers of pathology are more 

accurate markers of disease progression. I know that studies are already underway to 

look at the associations between pathological burden, clinical progression, and 

genotype in post-mortem brain bank data and this will reveal important insights. 

Building and analysing longitudinal cohorts with detailed genotyping and sequencing, 

biomarkers, and post-mortem data (such as PPMI) will be essential to study the 

relationships between genotype, biomarkers, pathology, and clinical progression.  

With the advances in wearable technology, more accurate measures of clinical 

progression could also be analysed, by incorporating more fine-grained data at more 

frequent timepoints (i.e. not just at clinic visits which are typically assessed in the ‘on’ 

medication state). This could also help to include more rapidly progressing patients 

who are likely to drop out or not join intensive research studies with frequent in-person 

assessments. 

Some of my results suggest that the genetic factors that influence progression may 

not be PD specific, and could be due to more general neurodegeneration or aging, 

e.g. APOE. Further studies should conduct GWASs with progression across a range 



 182 

of neurodegenerative diseases as well as healthy controls, to determine if the effects 

of genotype are different across disease groups or if they have the same effect. I would 

expect that genotype effects on progression are stronger in PD and other 

neurodegenerative diseases compared to healthy aging, possibly because of 

interactions between pathologies and comorbidities.  

With larger sample sizes in progression GWASs, it would be interesting to look further 

into sex differences. There are clear differences in clinical progression between men 

and women, as I showed in Chapter 4. In this PhD, I have conducted preliminary sex-

stratified analyses and not identified GWAS significant hits. This is likely to be due to 

lack of power, and it is too early to conclude that there are no sex differences in the 

genetics of PD progression. The PD age at onset GWAS also did not identify any 

significant differences in sex-stratified analysis, but highlighted the COMT variant 

rs4680 which has a different direction of effect in men and women [96]. Early studies 

in other diseases, such as AD [312], suggest that there may be sex differences in the 

genetics of progression. 

The next steps following large-scale, well-powered PD progression GWASs is to 

conduct functional studies in cell and animal models to understand the mechanisms 

of candidate genes and pathways that are important for PD progression. In addition, 

the results from genetic studies could be used for prediction of progression and better 

stratification of clinical trials. For instance, individual variants or a cumulative PD 

progression risk score, similar to the PD GRS, could be used in combination with 

clinical and demographic variables to predict individual patient trajectories and better 

detect the effect of therapies on predicted progression [313]. Although the effects of 

individual genetic variants are small, simulations have shown that even if patients are 

randomly assigned to trial arms, there can be large differences in the GRS, particularly 

with small sample sizes (< 1000) [314]. Genetically-mismatched arms in clinical trials 

can have a large effect, leading to 34% of false negatives in a simulated drug effect 

[314]. Identification of genetic variants that influence PD progression can be used to 

balance clinical trial arms and predicted progression.  

In addition, if there are variants and genes with large effects on progression, these 

could be used to design targeted clinical trials. Recent examples of this are the trial of 

Ambroxol which was targeted towards lysosomal function and GBA carriers [315]. The 
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trial of EPI-589 is another example. PD patients carrying Parkin and PINK1 mutations, 

as well as other genetic and sporadic forms of PD, are known to have mitochondrial 

dysfunction [316]. This compound has been repurposed from childhood mitochondrial 

diseases in an attempt to target mitochondrial dysfunction and oxidative stress in PD. 

There is clearly a lot of further research that needs to be done in this field. In this PhD, 

I have conducted some of the earliest large-scale GWASs of PD progression and I 

hope this work can be used as the starting point for further research, and eventually 

clinical trials of disease modifying therapies. 
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