arXiv:2101.05174v1 [astro-ph.GA] 13 Jan 2021

Constraining chemical networks in
Astrochemistry

S. Viti 7 J. Holdship
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden,
The Netherlands

Department of Physics and Astronomy, University College London,
Gower Street, London, WC1E 6BT

Abstract

Databases of gas and surface chemical reactions are a key tool for scientists
working in a wide range of physical sciences. In Astrochemistry, databases
of chemical reactions are used as inputs to chemical models to determine the
abundances of the interstellar medium. Gas chemistry and, in particular, grain
surface chemistry and its treatment in gas-grain chemical models are however
areas of large uncertainty. Many reactions - especially on the dust grains - have
not been systematically experimentally studied. Moreover, experimental mea-
surements are often not easily translated to the rate equation approach most
commonly used in astrochemical modelling. Reducing the degree of uncertainty
intrinsic in these databases is therefore a prime problem, but has so far been
approached mainly by ad hoc procedures of essentially trial and error. In this
chapter we review the problem of the determination of accurate and complete
chemical networks in the wider context of Astrochemistry and explore the pos-
sibility of using statistical methods and machine learning (ML) techniques to
reduce the uncertainty in chemical networks.

1 Introduction

The space between the stars, the interstellar medium (ISM), is far from empty.
The ISM is populated with interstellar clouds and filaments, made of gas (~99%)
and dust (~1%). These clouds and filaments are the birth sites of stars [T, 2].
Modelling the physical and chemical processes leading to the formation of stars
and, hence, planets is a highly non-linear, very time-dependent, problem, in-
volving a multi-layered interconnection between the physics and the chemistry
of the gas and the dust. Despite the many advances driven by state-of-the-art
telescopes, we are still far from solving the ‘star formation problem’: stars form
in molecular filaments or clumps, cold (~ 10 K) and relatively dense (>10%
particles cm~?) regions of the interstellar medium, where most of the gas is
molecular. These regions also contain higher density ones, called cores. The
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first two stages of the formation of solar-like systems involve highly non-linear
physical and chemical processes that are hard to corroborate by astronomical
observations alone. In the first stage, some cores can become gravitationally
unstable and initiate star formation. This collapse is controlled by the pres-
ence of molecules, which cool the gas and allow gravity to overcome hydrostatic
equilibrium. During this pre-stellar core phase, due to the high density and
low temperatures in the cores, species from the gas phase ‘freeze’ onto the dust
grains present, and form an icy mantle. The gas and surface compositions
during these two stages exhibit a complicated time dependent, non-linear chem-
istry that strongly depends on the physical environment[3]. Little experimental
information is available for the interstellar ices: what is the unprocessed ice
composition? What are the efficiencies of the viable surface reactions? And
how do the energetics of the ISM (cosmic rays, UV radiation, shocks) influence
the processed ices?

Examples of key issues involve even the simplest molecules: the CO molecule
sticks efficiently to surfaces at temperatures below ~ 25 K and is abundant in
the ices. Some of this CO can be converted to other species, and the obser-
vation of COy and CH30H in ices[d] suggests that this processing does occur.
H>CO, CH30H and glycolaldehyde are involved in the surface hydrogenation of
CO, and determining their chemistry in star-forming regions is vital for stud-
ies of prebiotic chemistry[5]. Some ices return to the gas phase when the gas
temperature rises above 20 K. At lower temperatures, non-thermal desorption
processes can still return molecules from solid to gas-phase[6]. However, these
non-thermal mechanisms ‘compete’ with the freeze-out. Gas-phase chemistry
is better constrained than surface chemistry; nevertheless, many uncertainties
still remain on the formation and efficiencies of routes for some of the most
complex species (routinely called Complex Organic Molecules, or COMs, by as-
tronomers) observed in space[7, [§]. In summary, the composition of the gas and
icy mantles varies according to a time-dependent process highly dependent on
the conditions of the gas and dust in any particular cloud.

In the second stage, i.e. when the protostar is born, the gravitational en-
ergy is converted into radiation and the envelope around the central object,
the future star, warms up. The molecules frozen on the grain mantles during
the previous phase acquire mobility and likely form new, more complex species.
When the temperature reaches the mantle sublimation temperature of ~100 K,
the molecules in the mantles are injected into the gas, where they react and form
new, more complex, molecules. Simultaneously, a fraction of matter is violently
ejected outward in the form of highly supersonic collimated jets and molecular
outflows. When the outflowing material encounters the quiescent gas of molec-
ular cloud, it creates shocks, where the grain mantles are (partially) sputtered
and the refractory grains are shattered. Once in the gas phase, molecules can
be and are observed via their rotational lines. Again, as during the first stage,
the interaction of gas and dust, and hence the gas composition, varies within
very short timescales (less than one hundred years) and the effects of chemistry
and dynamics are interlocked in a complex non-linear fashion[9].

In both stages, molecules provide an essential tool for the analysis of the
chemical and physical conditions of star and planet forming regions. Each stel-
lar or planetary evolutionary stage is characterized by a chemical composition,
which, if properly interpreted, leads to the determination of the physical pro-
cesses of its phase.



This brief description of the multi-million years star formation cycle high-
lights our challenge: the interconnection and non-linear correlation of the many
parameters with each other or with extra, unknown ones makes determining and
specifying the parameter network within chemical models a highly challenging
task.

Of particular importance is the reliability of the chemical reactions datasets.
Databases of chemical reactions and rate coefficients for both gas and solid phase
reactions are the key input to all chemical models. While there are some gas
phase databases online, in reality each research group creates a personal version
of such databases, especially as there is no accepted standard for databases; in
addition, there is no database containing a complete set of solid phase reactions.
We explore the completeness and reliability of such databases in the next section.

2 Completeness and reliability of chemical reac-
tion databases

Typically, chemical models of the ISM in use today employ databases of mainly
2-body (sometimes 3-body) chemical reactions; these contain long lists of gas
and solid phase chemical reactions. In the gas-phase, for each reaction three
constants are provided that are then used to calculate the rate coefficient. The
first constant (usually a) represents the rate at 300 K and the other two con-
stants (5 and ) give the temperature scaling of that rate. For photo-reactions,
an equivalent set of constants gives the rate in an unshielded interstellar UV
field and the extinction dependence of that rate. These three constants will
have their own associated uncertainty. Depending on the physical conditions,
between 20 and 50% of the reactions may not have been experimentally studied.
In some cases, chemical reaction rates are therefore highly speculative.

For reactions occurring on the dust grains, the pathways, efficiencies and
branching ratios are even more uncertain than for the gas phase reactions, due to
the lack of experimental data. Surface reactions are therefore highly speculative
and consequently are often not included in astrochemical models.

Reducing the degree of uncertainty for all the reactions would require an
unfeasibly large number of laboratory experiments. Yet, chemical models fully
rely on these databases, making their accuracy a prime problem for Astrochem-
istry. In the next two sections we will describe in a bit more detail the two
categories of databases: gas-phase and surface reaction networks.

2.1 Gas-Phase Networks

All the astrochemical models developed through the years calculate the abun-
dances of hundreds of species involved in thousands of chemical reactions. Gas-
phase reactions are the backbone of chemical networks as they are the primary
routes for the formation and destructions of most molecules. Hence a poor un-
derstanding of the rate coefficients can lead to large errors in the abundances
of the main molecules observed in the ISM.

The range of kinetic temperatures and gas densities over which we need ac-
curate rate coefficients will depend on the region of space we need to model but
can be from 10 K to >1000 K and from 100 to 10* cm~2 respectively. Chemical



reactions, under these conditions, can be studied in the laboratory or theo-
retically. However, each experiment, or study, takes at least a few months to
complete. Often then rate coefficients are estimated from other already known
rate coefficients. More importantly, even if every reaction were to be experi-
mentally or theoretically investigated, it would be impossible to do so under
the whole range applicable to the ISM and many extrapolations are therefore
performed. Measures have been taken by the community to compile databases
where some quality assurance is performed. For example, the Kinetic Database
for Astrochemistry (KIDA)[I0] is a public gas-phase network which provides all
the rate coefficients from various sources and evaluates their accuracy where
possible. We refer the reader to [I0] for a detailed explanation of this network.
However, even the best efforts at transparency and completeness such as KIDA
fall short of providing the user with a complete, accurate and reliable gas phase
network that includes all the possible species involved in the complex chem-
istry routinely observed in the ISM. This is especially true for complex organic
molecules, which are species that contain 6 or more atoms, are present in the
ISM mostly with low abundances and yet are key for our understanding of pre-
biotic chemistry in space[7]. Gas-phase networks including the formation and
destruction of COMs are far from complete[IT}, I2] and astrochemical models
have been struggling to explain the observed abundances of COMs. While most
current models tend to favour grain surface over gas-phase chemistry in COMs
formation, several studies have now shown that COMs may indeed form in the
gas phase but that, due to the incompleteness of gas phase networks involving
COMs, the relative contribution of gas-phase versus surface reactions cannot be
quantified.

2.2 Grain-Surface Networks

There is no doubt that dust grain chemistry plays a pivotal role in the formation
of key abundant species observed routinely in the ISM e.g. H,O, CH30H and
NHj3 which are primarily formed through solid state chemistry[I3}[T4]. Although
a debate exists on whether gas phase reactions contribute to the formation of
COMs, it is clear that the latter are at least partly formed on the surface of the
grains.[7, [8 [I5] We know that dust grains act as ‘catalysts’ meaning that - on
their surface - surface reactions and energetic radiation can synthesize molecules
as complex as prebiotic species[16] [I7] starting from very simple molecules (e.g.
CO and Nj) and atoms (H, C, O, N, S etc) deposited from the gas when the
temperature of the medium is close to 10 K. In the last couple of decades many
experiments have been performed to evaluate surface chemical reactions (see
review [I8]). Molecular hydrogen was the first molecule to be studied on dust
surfaces[19]. Many experiments since then have been performed to study the
formation of more complex molecules (e.g. [20, 2] 22]) as well as the ice mor-
phology and ice mantle mechanisms (e.g. [23| 24]). However, all these experi-
ments are performed within a constrained range of laboratory conditions which
differ from those found in the ISM: for example, atomic fluxes, ice temperatures,
ice morphologies, and mixture ratios, energetic processes in the laboratory will
differ from those found in the ISM. Hence formation, desorption and destruc-
tion routes and rates for surface molecules as derived from experiments may not
always be exhaustive to the needs of the chemical modellers. In other words,
experimental data for interstellar ices are limited, since the experimentation



process is neither simple nor fast. As a consequence, most chemical models
either include very simple surface reaction networks or ones where most of the
reactions are essentially guesswork.

3 A Bayesian Approach

In astrochemistry, it is not common to use Bayesian methods as a means of
deriving posterior probability distributions (PPDs) for model parameters from
observations. The first study to do so [9] used Bayesian inference to derive
parameters such as the gas density and cosmic-ray ionization rates within a
dark molecular cloud from observations of species in the gas and ices using
chemical models. This study particularly highlighted the inverse nature of the
astrochemical problem at hand, namely that in typical astrochemical problems
we have to deal with nonlinear ill-posed inverse problems where solutions may
not be unique or may not depend continuously on the observational data. In
one study[9], a Bayesian approach based on the use of the Metropolis-Hastings
(MH) algorithm (an example of a Markov chain Monte Carlo algorithm) was
adopted and they used a simplified version of UCLCHEM (a time-dependent
gas-grain chemical model, now open sourceE[) to explore a nine-dimensional pa-
rameter space for molecular clouds. They ran two identical sets of eight MCMC
chains differing only in the way the prior distribution information was set, with
the first set having a non-informative prior information in the form of accept-
able range of possible values for observed ices, while in the second the prior
include all the observational constraints from observations, including gas phase
abundances. Of particular relevance to this review, it is interesting to see how
the different prior distributions have affected the resulting Posterior Probability
Distributions (PPD) for one of their dimensions: the branching ratios for some
key chemical reactions pathways e.g. those that control how much of the oxygen
that freezes on the grains turns into HoO or OH. With noninformative uniform
prior, the high-density regions of the PPD cover excessively large sections of
the distribution, meaning that the branching ratio could not be constrained
enough. With informative priors, the high-density region in the PPD is reduced
and gives a clear indication that the production of water over OH is favoured.
This example showed for the first time in Astrochemistry that branching ratio
parameters can be successfully estimated through Bayesian MCMC methods.

A more recent work[25] used the above methodologies as a proof of concept
in an attempt to infer rates of reactions for a limited surface network, and
in doing so provided the means to derive reduced networks in the context of
observational constraints. In this work, a simple chemical model was developed
that considers only the solid state chemistry in the ice mantles of dust grains
in a dark molecular cloud. The simplified model is a time-dependent single-
point model that generates a time series of solid phase molecular abundances
as a function of the physical conditions of the molecular cloud and the chemical
parameters of the defined chemical network. This network only included surface
reactions and mainly hydrogenation of common gas phase species. We report
these reactions in Table [

As one can see from this Table only reactions among four types of atoms are
considered: O, C, S and H. Obviously the reactions included are not exhaustive
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No. Reactions

1. O + H = OH
2. OH + H — H>O
3. CO + OH - COq
4. S + H — HS
5. HS + H — H>S
6. H>S + S — H5S>
7. CS + H — HCS
8. HCS + H — H,CS
9. CO + S — 0CS
0. OCS + H — HOCS
11. H.S + CO — OCS
12. HsS + HoeS — Hs .S,
13. HeS2 + CO — (CS2+0
14. H,S + (0] — SO5
15. cs; + O — 0OCS+S
16. CO + HS — OCS
17. S + 0 - SO
18. SO + O - SO,
19. SO + H - HSO
200 HSO + H — SO
21. CO + H = HCO
22. HCO + H — H,CO
23. H,CO + H — H5CO

Table 1: he reactions included in the study by [25]. All the reactions are occur-
ring on the grain surfaces.

of all the possible combinations: the criteria used to choose which reactions to
include were based on (i) simple hydrogenation until saturation e.g. reactions 4
and 5 and (ii) reactions that have been found to be efficient, or even dominant,
routes to forming a species e.g. reactions 21-24 to form methanol. For this toy
model, gas phase reactions were ignored but the depletion of the gas phase on
the surface was parameterized.

The result of this inference was the probability distribution of the reaction
rates, shown as marginalized posteriors in Fig [I] They find that when obser-
vational constraints directly constrain the abundance of a species involved in
a reaction, the range of likely values for the rate of that reaction can be suffi-
ciently narrowed for use in chemical models. Therefore, this method represents
a method by which reliable reaction rates can be obtained for use in modelling
until laboratory measurements or theoretical work supersede them.

Whilst this approach has many strengths, it requires a large amount of
computational power. In both of the above examples, the chemical model used
for the inference was greatly simplified in comparison to a typical model used to
interpret observations. Where the model itself is not the subject of the inference
(as it is in the work of [25]), we might use machine learning to map from model
inputs to outputs in order to do more efficient parameter inference on the input
parameters.
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Figure 1: The probability distribution of selected reaction rates, shown as
marginalized posteriors.



4 Machine Learning Techniques for complex net-
works

Ultimately chemical modellers need to be able to rely on complete as well as
accurate chemical reaction networks. Reducing the degree of uncertainty for
such networks requires cutting edge Artificial Intelligence techniques combining
Artificial Neural Networks, Bayesian Inference methods and advanced Monte
Carlo sampling algorithms. While we are still quite a way from achieving these,
ML techniques have now started being used in Astrochemistry. For example, one
work [26] used a neural network to emulate a full chemical model. By creating a
training set from the outputs of a full model (UCLCHEM E[) for a wide range of
input physical parameters, they were able to train a neural network to predict
these outputs. This allows for the computation of chemical abundances required
to interpret observations in milliseconds rather than the minutes of CPU time
required to run a full chemical model. Consequently, computationally intensive
parameter inference can be performed using a close approximation of a full
chemical model without taking an infeasible amount of CPU time.

Such neural networks would have uses beyond direct interpretation of ob-
servations. Many radiative hydrodynamical simulations use highly approximate
radiative-chemical treatments to provide the cooling rates for the simulated gas.
This is a necessity when a full chemical model would add to the computational
burden of an already intensive model. However, evaluating a neural network is
generally a small task and as such, more accurate chemistry could be inserted
into physical models in the form of pre-trained neural network emulators.

The use of machine learning techniques on chemical networks could be of
particular importance for the reduction and accuracy of networks of complex
organic molecules, in particular those that are as yet undetected in the ISM.
For example, the ‘holy grail’ for astrochemists is to find amino acids in space.
Amino acids are important organic compounds that play a key role in the for-
mation of proteins. In the protein production process, amino acids join together
to form polymer chains, which represent the structural units of proteins. It is
believed that the formation of amino acids may indeed have occurred in the
ISM, since they have been firmly detected in meteorites[27]. This is supported
by laboratory experiments where amino acids are found to form on the surface
of model dust grains by UV-photon and ion irradiation of suitable precursor
molecules under astrophysically relevant conditions [28| [29]. Despite great ef-
forts towards their detection, a firm detection of amino acids in the ISM is
still - unfortunately - eluding us. One possible solution to this is to use ML
tools to identify weak signals from the amino acids in spectroscopic telescope
data. When detecting molecules, strong peaks in the spectra from an observed
object are identified by matching their frequency to known emitting frequen-
cies of molecules. If the emission is weak it may not be detected by a human,
or the statistical significance of many weak lines may be missed. A classifica-
tion model trained to categorize spectra as containing a particular molecule or
not, based on the spectral noise and the emission profile at various frequencies,
could give confident detections in cases that a human would miss. In the case
of previously undetected molecules, such as amino acids, a training set can be
produced by creating many synthetic spectra. Further, such an analysis could

2https://uclchem.github.io


https://uclchem.github.io

be performed on thousands of targets with little effort which has made it an in-
teresting prospect for the exo-planetary community aiming to identify molecules
in planetary atmospheres[30].

Another solution is to focus our search by determining the optimal conditions
for observing amino acids. It is likely that, if present, such amino acids must
form on the mantle of dust grains. It is therefore essential we determine the
optimal conditions under which simple amino acids, such as glycine and alanine,
can form on the dust icy mantles and can subsequently be released into the gas
phase.

Key prerequisites for understanding how and where glycine and alanine form
are the determination of the surface reactions that lead to their formation as
a function of (i) kinetic temperature; (ii) gas density, (iii) structure of the gas,
(iv) presence and abundance of other molecular species on the ices, (v) UV
and cosmic ray ionization rates, among other factors. To date, no large-scale
predictions of the formation routes of glycine and alanine have been made, as a
function of the parameters above.

A possible method to achieve this may be based on advanced and cutting
edge techniques developed in the information sciences, ML and statistical disci-
plines. It should be possible to devise and apply a combination of statistical and
ML techniques to perform large scale chemical models, involving large datasets
of gas- and surface-phase chemical reactions to derive the physical and chemical
conditions under which every surface chemical reaction is viable. A technique
worth investigating is probabilistic graphical modelling, a branch of ML that
studies how to use probability distributions to describe a particular problem
whose ‘model’ has many uncertainties.

Ultimately - for any well defined species set (COMs, amino acids, ice species
etc.) we need to be able to simultaneously investigate the paths and efficiencies
of their formation and destruction over a large physical (densities, temperatures,
radiation fields, and cosmic ray ionization rates) and chemical (rate coefficients)
parameter space, and discover if, where and under what conditions these species
are abundant in space.

5 Conclusion

Machine Learning and probabilistic methods for solving typical astrochemical
problems is a fast-growing field. As larger chemical reaction networks and more
complex models are being employed in astrochemistry, the need for intelligent
data mining algorithms will increase. It is clear that there are large uncertain-
ties, as well as lack of information on formation and destruction routes, in gas
and especially surface reactions and rate coefficients. To date, these uncertain-
ties have only been tackled by laboratory experiments and quantum mechanical
calculations. However, the complexity of the reaction networks, the lack of much
prior information in the form of observed ices, and the length of each labora-
tory experiment, make a parameter exploration (in terms of gas densities, gas
temperatures, UV and cosmic ray fluxes for example) unfeasible. Initial ‘exper-
imentation’ with ML algorithms is proving to be an efficient avenue to tackle
this challenge.
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