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ABSTRACT 

 

Frontotemporal dementia (FTD) is regarded as the 2nd most-common form of young-

onset dementia after Alzheimer’s disease (AD). 

FTD is a complex neurodegenerative condition characterised by heterogeneous 

clinical, pathological and genetic features. No efficient measures for early-diagnosis 

and therapy are available. 

Familial (Mendelian) forms of disease have been studied over the past 20 years. 

Conversely, the genetics of sporadic forms of FTD (up to 70% of all cases) is 

understudied and still poorly understood. All this taken together suggests that more 

powerful and in-depth studies to tackle missing heritability and define the genetic 

architecture of sporadic FTD, with particular focus on the different subtypes (i.e. 

clinical and pathological diagnoses), are warranted. 

In parallel, it will be critical to translate the genetic findings into functional 

understanding of disease, i.e. moving from the identification of risk-genes to the 

definition of risk-pathways. It will be necessary to implement a paradigm shift – from 

reductionist to holistic approaches – to better interpret genetics and assist functional 

studies aimed at modelling and validating such risk-pathways. 

In this chapter we focus on the heterogeneous features of FTD touching upon its 

complex genetic landscape, and discuss how novel approaches (e.g. 

computationally driven systems biology) promise to revolutionise the translation of 

genetic information into functional understanding of disease pathogenesis.
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INTRODUCTION 

 

Complex disorders are by definition non-linear conditions where environmental and 
genetic factors play an intertwined role in contributing to disease pathogenesis and 
progression. Environmental factors are challenging in that it is difficult to identify and 
measure those that specifically impact disease [1]. Conversely, the dissection of 
genetic factors has benefitted from constant improvements in the technologies for 
generating high resolution data and analytical tools (Wetterstrand KA. 2019. 
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-
cost). 

We have come to appreciate that, on the basis of genetics, there are two broad 
categories of patients: i) a minority of so-called familial cases where pathogenic 
(Mendelian) mutations in single candidate genes (i.e. Mendelian genes) co-
segregate with disease, and; ii) a majority of so-called sporadic cases where, in the 
absence of Mendelian mutations, multiple genetic variants with small effect size 
increase the risk for developing disease. 

Mendelian genes have been classically isolated via linkage analysis and/or whole-
exome/genome sequencing of trios, first-degree relatives, or well-phenotyped 
pedigrees [2]. Sporadic forms of disease are conveniently investigated through 
case/control association studies, e.g. genome-wide association studies (GWAS) [3]. 
The idea that genetic investigation of familial cases is straightforward is only 
apparent. It is, in fact, worth noting that there are uncharacterised familial cases 
where Mendelian mutations have not been isolated [4]. Also, functional investigation 
of Mendelian genotype-phenotype correlation has proven neither time- nor cost-
effective, to date. Moreover, the genetic architecture of risk for sporadic cases is 
challenging to assess and even harder to model, especially considering that multiple 
variants with small effect size are to be taken into account, simultaneously. 

In this chapter we focus on the heterogeneous features of frontotemporal dementia 
(FTD) touching upon its complex genetic landscape, and discuss how novel 
approaches (e.g. in-silico systems biology) promise to revolutionise the translation of 
genetic information into functional understanding of disease. These approaches 
represent a stepping-stone towards functional validation of risk-pathways and, 
possibly, drug targets identification. All this holds relevance as the field is 
accelerating towards effective clinical trials design and the development of measures 
for early diagnosis, disease prevention/monitoring and cure. 

 

  

https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
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FTD AND DISEASE RISK 

 

Environmental factors  

The environmental exposure contributing to FTD pathogenesis is an understudied 
and complicated matter. It is widely accepted that complex neurodegenerative 
conditions, including FTD, are influenced by environmental risk factors acting in 
concert with the genetic risk-architecture within a process referred to as gene-
environment interaction [5]. 

No single environmental factor clearly leading to FTD has ever been indicated. Only 
concepts such as ‘cognitive reserve’ [6, 7] or ‘aging’ [8] have been suggested to 
influence disease risk and modulate age at onset. Additionally, few epidemiological 
studies highlighted possible links between FTD, cardiovascular disease and diabetes 
risk factors [9-11].  

The environment is believed to influence risk for complex neurodegenerative 
disorders via, at least, two mechanisms. On one hand, the environmental exposure 
(e.g. aging) may modulate methylation profiles in the genome or the activity of non-
coding RNAs (ncRNAs) impacting gene expression and influencing disease onset 
and progression [12, 13]. On the other, the environmental exposure can represent 
the direct mechanistic insult triggering processes that lead to disease. For example, 
lessons learned from other complex neurodegenerations, such as Parkinson’s 
disease (PD), indicate that certain toxins and pesticides can cause a cascade of 
effects resulting in oxidative stress that ultimately influences disease pathogenesis 
[14]. Also, traumatic brain concussions have been implicated in certain forms of 
dementia (including Alzheimer’s disease [AD] and FTD) [15] and it was suggested 
that physical insults were linked to toxic stress resulting in mitochondria alteration, 
oxidative stress [16] or amyloid aggregation [17], globally impacting brain 
homeostasis and, subsequently, disease pathogenesis. 

A better understanding of the environmental risk factors playing a role in complex 
neurodegenerations, such as FTD, would critically complement our dissection of 
disease biology (e.g. it would help highlighting impacted pathways and molecular 
mechanisms). A substantial caveat here is represented by the lack of efficient and 
reliable methods to investigate and measure the environmental exposure(s) that 
influence and/or contribute to the pathogenesis of complex neurodegenerations. 
Nevertheless, a promising approach that might aid in closing this critical gap is 
Mendelian Randomization (MR). MR is a statistical approach where common 
variants such as single nucleotide polymorphisms (SNPs) that are associated with a 
certain environmental exposure (e.g. SNPs that increase individual risk/chance of 
smoking, drinking, developing cardiovascular disease) are used as proxies to assess 
association with SNPs in the disease under investigation [5]. This approach is still to 
be explored in FTD, yet it promises to shed light on those environmental exposures 
that might be relevant to FTD pathogenesis: power issues associated with GWAS 
performed in FTD have hampered the possibility of performing effective MR studies, 
to date.  
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Genetics 

In line with its heterogeneous clinical and pathological characteristics (that can be 
reviewed in [18-20]), FTD’s genetic features mirror its complicated global phenotypic 
picture [21, 22]. A positive familial history is seen in ~10-30% of cases – familial 
(fFTD) or Mendelian [23-25] – whilst a remainder ~70% of cases – individuals with 
disease but no clear familial history and/or genetic aetiology – are categorised as 
sporadic (sFTD) [21, 22]. 

 

Mendelian FTD 

The vast majority (≥25%) of fFTDs strongly associates with pathogenic mutations in 
MAPT [26], GRN [27] and C9orf72 [28, 29], whilst a small minority (<5%) associates 
with (very) rare mutations in CHMP2B [30, 31], VCP [32], TBK1 [33-35], as well as 
IFT74 [36], OPTN [35], SQSTM1 [37], UBQLN2 [38], CHCHD10 [39], and TIA1 [40]. 

Mutations in MAPT, GRN and CHMP2B have almost exclusively been described in 
“pure” FTD cases [21]. In few occasions issues were raised on whether (all) 
Mendelian mutations are fully penetrant (e.g. GRN mutations have shown to be 
associated with variable age at onset or a spectrum of phenotypes within the same 
family [22]). Expansions in C9orf72 have shown to be ubiquitous across 
neurodegenerative disease. Although they are most frequently found in cases 
diagnosed with FTD, amyotrophic lateral sclerosis (ALS), or within the FTD-ALS 
spectrum, they have also been reported in a range of phenotypes, including AD, 
Parkinsonian syndromes, Huntington’s disease (HD), corticobasal 
syndrome/degeneration (CBS/D), as well as non-demented elderly individuals [29, 
41-49]. Mutations in the remainder genes have been isolated in small numbers of (at 
times even single) families displaying substantial syndrome-heterogeneity: a 
complex phenotypic signature characterised by inclusion body myopathy (IBM), 
Paget’s disease of the bone (PDB) and FTD (IBMPFD) for VCP [50]; ALS and/or the 
FTD-ALS spectrum for SQSTM1, UBQLN2, IFT74, OPTN, CHCHD10, TBK1 and 
TIA1 [21, 22]. Of note, TARDBP and FUS mutations have been mainly reported in 
ALS, whilst very rarely in FTD cases [51, 52]. It is thus still debated whether or to 
what extent TARDBP and FUS are to be considered “FTD genes” [52, 53] (despite 
the fact that TDP-43 and FUS are clear pathological hallmarks of FTD [54]). 

Regardless of complexity and heterogeneity, a key point is that Mendelian (i.e., for 
the most, coding) mutations, provided their large effect size, appear to be sufficient 
to trigger disease. Therefore, although quite rare and exclusive to a (rather small) 
number of families or private cases, they are indeed informative candidate-
genes/targets to model disease. 

 

Sporadic FTD 

Sporadic FTD cases (sFTDs) are generally screened for known candidate genes: 
pathogenic variants have been reported in MAPT, GRN, C9orf72 or TBK1 in ≤10% of 
cases [21, 22, 55, 56]. These might be due to de-novo mutations that can (very 
rarely) occur in the population, or (likely) to the fact that they might be cryptic 
Mendelian cases. 

Genetics of sFTD is still poorly understood. Sporadic cases are investigated through 
GWAS where millions of SNPs are compared across thousands of cases and 
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controls [3]. A GWAS assesses allele frequencies of ‘common’ genetic markers 
(SNPs) (i.e. they are present in the general population) in the two sample sets. 
Those markers that associate with increased risk for disease display a significantly 
increased frequency in cases when compared to controls. Genetic risk markers 
identified through GWAS are generally non-coding variants, and they are 
characterised by small effect sizes, thus one single SNP is neither necessary nor 
sufficient to lead to disease [57]. Rather, multiple SNPs cumulatively contribute to 
disease pathogenesis and represent the so-called genetic architecture of disease 
(i.e. the genome-wide asset of genetic risk) [58]. 

To date, a handful of GWAS have been performed in sFTD [4]. GWAS require large 
cohorts of cases and controls (n=thousands) and this may sometimes represent a 
drawback (especially when a disease is rare or heterogeneous). In order to cope 
with samples collection and power issues for genetic studies of sFTD, multicentre 
initiatives such as the International Frontotemporal dementia Genomics Consortium 
(IFGC; https://ifgcsite.wordpress.com/) and the International FTLD-TDP whole-
genome sequencing consortium [56] have been established. Networks of this kind 
allow to share expertise and collate large numbers of samples across research 
centres to increase the statistical power of sFTD genetic studies. 

The first FTLD-GWAS was published in 2010 by Van Deerlin et al using a cohort of 
604 cases with either pathologically confirmed frontotemporal lobar degeneration 
with TDP-43 pathology (FTLD-TDP) and/or cases carrying a GRN mutation (515 
discovery-phase; 89 replication-phase). This study highlighted risk variants at a locus 
on chromosome 7p21 [59]. Subsequently, a larger GWAS was published in 2014 by 
Ferrari et al using a cohort of 3,526 clinically diagnosed sFTD cases (2,154 
discovery-phase; 1,372 replication-phase) leading to the identification of a risk-locus 
on chromosomes 6p21.3 (for the entire cohort) and a suggestive risk-locus on 
chromosomes 11q14 (for behavioural variant FTD [bvFTD]) [60]. A smaller GWAS 
was then performed by Ferrari et al in a population-specific cohort of 530 Italian 
sFTDs: two suggestive signals were indicated by this study in loci mapping to 
chromosomes 2p16.3 and 17q25.3 [61]. 

Genome-wide approaches can clearly be applied in the context of multiple and 
different experimental designs. In FTD this was the case of a couple of studies that 
analysed common variants in cohorts characterised by a genetic signature carried in 
two FTD genes – GRN and C9orf72 – to specifically look for disease modifiers (i.e. 
genetic factors that influence measurable variables such as age at onset or disease 
progression). Both studies were published in 2018: i) one by Pottier et al assessing a 
cohort of 592 patient (382 discovery-phase; 210 replication-phase) carrying 
Mendelian mutations in GRN (and some being pathologically defined as FTLD-TDPs 
without GRN mutations) that led to the replication of the above described locus on 
chromosome 7p21 and the identification of a new locus on chromosome 8p21.3  
[62], and; ii) one by Zhang et al assessing a cohort of 331 (144 discovery-phase; 187 
replication-phase) C9orf72 expansion carriers that suggested a locus on 
chromosome 6 acting as a modifier for age at onset [63]. Of note, a previous study 
by Barbier et al conducted on a cohort of 504 patients belonging to 133 families with 
pathogenic mutations in both GRN and C9orf72 indicated potential chromosome X-
linked modifiers of age at onset (for C9orf72 expansions carriers, but not for GRN 
mutation carriers) [64]. More recently, a GWAS on 636 FTLD-TDP pathologically 
confirmed cases (517 discovery-phase; 119 replication-phase) – and not carrying 
mutations in any of the known FTD genes – by Pottier et al, suggested 3 risk loci on 

https://ifgcsite.wordpress.com/
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chromosomes 7q36, 19p13.11 and 6p21.32 [56]. Of note, provided there being 
different pathological subtypes within the FTLD-TDP spectrum (i.e. subtypes ‘A’, ‘B’, 
‘C’, and ‘D’; c.f. [65]), this study suggested that: i) although the 7q36 locus had been 
previously associated with idiopathic ALS, here the signal represented an  
independent association; ii) the association with the 19p13.11 locus appeared to be 
the same as previously indicated in ALS studies, and it was specific to the FTLD-
TDP subtype ‘B’, and; iii) the rare T-allele of rs5848, located within GRN’s 3’-UTR, 
appeared to specifically (and exclusively) increase risk for cases belonging to the 
FTLD-TDP subtype ‘A’ [56]. 

GWAS results described in this section are summarised in Table 1. 

Although one might gather from these sections that the FTD genetics arena is 
globally quite heterogeneous, there are reasons to suspect that homogeneous 
subpopulations of patients exist and can be better defined and predicted through 
tailored genetic (and bioinformatics) studies [21, 22]. 

 

Missing heritability 

Despite heterogeneity, it might be argued that FTD is a disorder with a robust 
hereditary component. However, our genetic understanding of FTD is still 
considerably incomplete in sporadic as well as in familial FTD (e.g. there are families 
where Mendelian mutations have not been isolated) [4]. It follows that missing 
heritability is a critical unresolved issue in FTD [66]. 

Recently, a number of sequencing projects in FTLD-TDP, clinical FTD and FTD-ALS 
cases further characterised mutations in either already established Mendelian or 
what could be considered as “novel” FTD genes. For example, an excess of loss-of-
function variants in FTLD-TDP cases was evident in a number of genes (i.e. DHX58, 
IRF3, IRF7, IRF8, NOD2 and TRIM21) suggested to be in strong functional link with 
TBK1 within inflammatory response pathways [56]. Further, mutations were 
described in: SORT1, in a Belgian FTD cohort and subsequently confirmed in 
Mediterranean FTD cases [67]; CCNF in FTD and ALS cases [68]; TREM2, CSF1R 
and AARS2 in Asian FTD cases [69, 70], and; TYROBP in Italian FTD-ALS 
pedigrees [71]. Besides many of these mutations needing additional replication, the 
above studies further support the notion of population and syndrome heterogeneity 
characterising genetics of FTD.  

Considering sFTD, the scenario is possibly even more complicated. A first issue is 
that GWAS in FTD have still been quite underpowered to date. This can, e.g., be 
appreciated by comparing numbers of cases studied across different 
neurodegenerative diseases such AD (n~90,000 [72]) and PD (n~40,000 [73]) vs. 
the largest FTD-GWAS so far (n~3,500 [60]). A second issue is represented by the 
fact that underpowered GWAS in FTD have hampered appreciating the global 
contribution of the multiple risk-markers with small effect size through, e.g. polygenic 
risk scoring (PRS). PRS would indeed serve the purpose of measuring how well the 
global genetic architecture of risk discriminates sFTD cases from controls (and/or 
other closely related neurodegenerations). PRS aggregates whole-genome genetic 
risk into a single score using a test sample to weight SNPs contribution to a trait and 
assesses such weights in an independent target sample [74]. Since PRS has never 
been done in FTD the actual genetic architecture that confers globally increased risk 
for developing sFTD remains elusive, even more so when considering the different 
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FTD subtypes: i) the clinical syndromes belonging to the core FTD-spectrum, i.e. the 
behavioural and language variants [18, 20], and; ii) the pathologically defined 
subtypes characterised by Tau and TDP-43 (FTLD-tau, FTLD-TDP) or p62 (FTLD-
UPS [ubiquitin proteasome]) or FUS, EWS and TAF15 (collectively referred to as 
FTLD-FET) protein aggregates [54, 65]. 

Although a large GWAS meta-analysis for sFTD is currently (at the time this chapter 
is being written) ongoing within the IFGC program – including over 5,000 cases – it is 
clear that the genetic architecture underpinning sFTD (and its various subtypes) is 
still poorly defined and understood, thus more work in this area is warranted.  
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FROM GENETICS TO DISEASE BIOLOGY 

 

Despite our poor understanding of environmental risk factor in FTD, and the work 
ahead in further characterising the genetic architecture of risk, there is an important 
issue we can start addressing now: translation of our current knowledge of FTD’s 
genetics into functional understanding of disease. This is indeed among the major 
topics gaining momentum in the biomedical field focusing on complex 
neurodegenerative disorders (including FTD) [75].  

 

Translating GWAS genetics into biological meaning 

One of the biggest challenges in population genetics is the interpretation of the risk 
signals derived from GWAS. While GWAS are instrumental in discriminating genetic 
risk markers and loci that associate with a trait of interest, such signals are not 
directly informative on the impacted gene(s) or disease mechanism(s) [76]. SNPs 
highlighted by GWAS are for the very vast majority non-coding (intronic or intergenic) 
meaning that additional investigations are required to identify the actual gene(s) and 
pathway(s) targeted by the risk-variants within the risk locus [3, 77]. This is not a 
trivial issue since the understanding of impacted genes and pathways is of primary 
importance to untangle the functional role of the risk-variants and generate more 
accurate disease models. 

Besides increasing the resolution in prioritising genes at GWAS loci, e.g. through ad-
hoc gene-burden analyses [78], other strategies involving integration of genetic and 
other types of data – e.g. gene-expression, protein-protein interaction and pathways 
analyses – are being fine-tuned [76]. Indeed, a first point to clarify is whether any 
SNP highlighted by a GWAS exerts an effect on gene-expression: this is done by 
assessing expression Quantitative Trait Loci (eQTL) [79], a bioinformatics technique 
that evaluates expression levels (mRNA) of genes in cis with the risk-allele(s) of the 
associated SNPs within the locus of interest. When the risk-allele significantly 
associates with a change of expression of a cis-gene, the latter might be bona fide 
considered the biological target of the genetic variant. There are other types of QTL 
analyses, e.g. methylation (mQTL), splicing (sQTL) and protein (pQTL) [80], that 
focus on the identification of alterations in methylation profile, splicing or protein 
levels. Such quantitative traits might be used as proxies to prioritise genes and 
support the definition of molecular mechanisms modulated by GWAS SNPs. And, 
clearly, these will need to be further validated in functional assays to confirm they are 
truly associated with a possible disease mechanism.  

The FTLD-TDP GWAS, showing association with SNPs at the locus on chromosome 
7p21 [59], revealed the risk alleles to affect expression levels (increased) of the cis-
gene TMEM106B [59]. Further analyses showed elevated basal levels of 
TMEM106B in FTLD brains affected by TDP-43 pathology [81]. Also, multiple follow-
up studies confirmed TMEM106B to be functionally relevant for FTD hinting at an 
interplay with two known fFTD (Mendelian) genes, i.e. GRN and CHMP2B. Studies 
on TMEM106B protein suggested its involvement in the endolysosomal system 
together with CHMP2B [82]. Furthermore, over-expression of TMEM106B was 
shown to be associated with impairment of the endolysosomal system and an 
increase in the levels of GRN [81], whilst ablation/reduction of TMEM106B was able 
to rescue the endolysosomal phenotype observed in Grn deficient mice [83] or in 
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CHMP2B mutants [84]. The GWAS on GRN mutation carriers [62] supported the 
notion that TMEM106B is a modifier in GRN mutation carriers (in line with the 
original study [59]) and, additionally, suggested the risk-allele of the top SNP at the 
chromosome 8p21.3 locus being a cis-eQTL of the GDNF family receptor alpha 2 
(GFRA2) gene. The GFRA2 protein was shown to co-precipitate with the GRN 
protein possibly inferring to a potential involvement of the GDNF signalling pathway 
(a pathway promoting survival of neurons) in GRN mutation carriers. The clinical 
FTD-GWAS [60] indicated that both a mQTL for HLA-DRA (6p21.3 locus) and an 
eQTL for RAB38 (11q14 locus) appeared to explain how the biological effect at those 
loci was possibly mediated. mQTLs at the HLA locus were also suggested in Zhang 
et al where regulation of expression in brain cortex of pro-inflammatory elements 
seemed to influence age at onset in FTD patients [63]. Further support for the 
involvement of the immune system in FTLD-TDP pathogenesis was more recently 
provided by Pottier et al who showed: i) eQTLs driven by the risk-allele of the top 
SNP at the chromosome 6p21.32 locus leading to increased expression of HLA-
DQA2 and -DQB2 in brain, and; ii) excess of genetic burden in a number of genes 
acting in epistasis with TBK1 within innate immune signalling pathways [56]. 

The loci characterisation described in the above paragraph are summarised in 
Figure 1. 

Clearly, several of the above studies strongly suggest that perturbation of multiple 
genes and pathways of the immune system might specifically underpin 
subpopulations of patients and contribute to FTD pathogenesis. This view appears to 
be further supported by a handful of earlier studies hinting at altered cytokines 
profiling in the cerebrospinal fluid (CSF) and/or serum of FTD patients [85, 86] and 
the identification of changes in the expression of FTD-immune pleiotropic genes 
(within the HLA region) in post-mortem brain tissue of FTD patients with an enriched 
microglia/macrophages signature [87]. 

 

Are Mendelian and sporadic FTD the same disorder? 

A relevant point in FTD research is that Mendelian genes are instrumental for 
disease modelling, i.e. they can be studied in in vitro/in vivo model systems (e.g. 
transgenic cellular and animal models or patient-derived iPS cells) to gather insights 
into the molecular mechanisms of disease. This is fundamental to understand the 
cellular functions that are compromised during disease onset and progression and to 
identify potential targets for therapeutic intervention.  

This approach is hardly applicable to sporadic disease. Sporadic cases are 
associated with multiple risk factors that are very difficult to model because they: i) 
feature small effect size; ii) act as a whole, thus the experimental system would need 
to model multiple risk factors at the same time, and; iii) are non-coding, thus it is for 
the most unclear which gene/protein they impact. On top, the contribution of 
environmental exposures is, to date, impossible to model [77]. 

Familial models of disease do not fully capture or reflect disease complexity. In fact, 
by almost exclusively focusing on fFTD, FTD models are currently limited (despite a 
number of studies on TMEM106B [22, 88]) to models focused on Mendelian genes 
(MAPT, GRN, C9orf72) or models of tau pathology, a feature that is seen in FTLD-
tau and beyond (e.g. AD, but also progressive supranuclear palsy [PSP] or CBD). As 
a consequence, using the familial models as proxies for the entire disease spectrum 
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(only because models for the sporadic forms of disease are not available) might not 
be entirely successful. Such modus operandi, indirectly relies on the assumption 
that, since familial and sporadic FTD are clinically classified under the “same label”, 
the molecular mechanisms and pathways altered in familial cases might be the same 
or similar to those in the sporadic ones. This is, however, still an open and 
unexplored question. One possible example of shared mechanisms comes from the 
MAPT locus. In FTLD-tau, MAPT mutations – i.e. coding variants in exons 1, 9–13 
[89, 90] – or heterogeneous genetic variability – e.g. intronic variants affecting 
expression and/or splicing of exon 10 [91, 92], or structural variants [93, 94] – cause 
disease and lead to tau pathology. At the same time, when considering the ∼900 kb 
H1/H2 haplotype inversion at the MAPT locus [95], a yet to be identified combination 
of markers on this stretch may increase disease risk in a subgroup of patients with 
parkinsonism or broad FTD-like dementia phenotypes [96]. Further studying the 
genetics at the basis of tau pathology might help shedding light on communal 
disease mechanisms across fFTDs and sFTDs, as well as FTD and other 
tauopathies.  

Moreover, one must not forget about a number of critical issues associated with the 
study of familial and/or pathologically defined cohorts: i) they represent a minority of 
all FTD cases, ii) they might be underpowered; iii) they might provide little or 
inadequate information on disease mechanism(s) underpinning the various clinical 
syndromes, and; drugs and intervention measures, currently under pre-clinical and 
clinical investigation (trials), appear tailored to fFTD or FTLD-tau only [97]. 

There is therefore an urgent need to expand the focus to sporadic FTD, and assess 
disease-pathways that might be communal across fFTDs and sFTDs, knowledge 
that will be critical and instrumental to pave the way for developing clinical trials and 
means for therapeutic intervention addressing all FTD cases.  

 

Risk-pathways in-silico modelling 

Multiple genes and genetic risk variants associate with FTD. However, as in the case 
of other complex neurodegenerations such as PD and AD, it is difficult to portrait why 
and how so many different genetic elements lead to the “same disease”. 

It is well known that, functional research is still not well equipped to model multiple 
genetic players at the same time. The classical approach relies on studying single 
genes (and risk factors) in isolation, collating reductionist pieces of information to 
recreate a global picture of disease. However, while this approach has been 
successful – e.g. the Amyloid cascade hypothesis in AD based on functional work 
assessing mutations in APP and PSENs [98] – it appears promising – e.g. ongoing 
studies focusing on tau pathology [99] and the biology of GRN, C9orf72 and 
TMEM106B [21, 22] – only in a limited number of cases due to intense and costly 
mechanistic studies that impact the timely dissection of disease mechanisms [100].  

Conversely, more recent bioinformatics and systems biology methods – 
incorporating notions from graph theory, network analysis and machine learning – 
have seen the light to model the genetic landscape associated with a complex trait 
and predict risk-pathways to assist hypothesis-driven functional validation in the wet-
lab. This represents a holistic paradigm-shift where risk-pathway(s) are 
hypothesised, in-silico, a priory, in a time- and cost-effective fashion, and can be 
subsequently tested. Systems biology approaches based on network analysis have 
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started being applied to FTD to evaluate possible functional commonalities across 
FTD genes. 

Weighted gene co-expression network analysis (WGCNA) – a bioinformatics method 
that applies mathematics, statistics and graph theory to expression (and possibly 
tissue-specific) level data [101] – was applied to evaluate impacted biological 
processes/pathways and connectivity of genes of interest within co-expression 
networks in knowingly impacted brain regions [102]. Specifically, FTD-relevant genes 
(called ‘seeds’ in this context) were mapped to modules representative of expression 
profiles in brain and mathematically assessed for their relevance within each module, 
prior functionally annotating each module. Such a pipeline allows to swiftly 
investigate the set of functions in which each single FTD genes might be expected to 
be involved. At the same time, it allows to evaluate possible functional overlap(s) 
across several different genes in a brain-regional specific manner. The FTD-WGCNA 
work [102] did reduce the impacted biological processes/pathways (for both familial 
and sporadic forms of disease) down to: i) gene expression, DNA protection (e.g. 
DNA damage repair) and protein metabolism (e.g. waste disposal) processes for a 
majority of FTD-Mendelian genes, and; ii) immune response and endolysosomal 
metabolism for sFTD risk factors. The intrinsic novelties of this approach can be 
summarised as follows: i) the annotated modules are critical in mapping specific 
impacted biological processes to specific brain regions relevant to disease, and; ii) 
the list of genes found to be co-expressed with the FTD-relevant genes might 
provide informative suggestions on novel potential genetic and/or functional 
candidates. For example, TBK1 mapped to a co-expression module together with 
C9orf72, VCP, UBQLN2 and OPTN [102]. The fact that mutations in TBK1 were 
isolated in the FTD and FTD-ALS spectrum, reinforces the notion that members of 
modules including FTD-relevant genes might be (retrospectively) considered for 
prioritising sequencing and burden analyses aimed at the discovery of novel genes 
associated with disease. 

Weighted protein-protein interaction network analysis (WPPINA) – another 
bioinformatics approach, this time taking into account protein-protein interactions 
(PPI) – was applied to extract physical interactors of the protein products of FTD-
relevant genes [103]. This method first determined (two-layered) protein 
interactomes around each FTD-relevant gene (or ‘seed’) and then investigated 
communal nodes (interactors) across as many seeds as possible. Such 
interconnectome (made of so-called inter-interactome hubs [IIH]) was then used to 
perform functional annotation analysis (similarly to the case of the WGCNA 
modules). The FTD-WPPINA work [103] confirmed three major biological 
processes/pathways shared across FTD-relevant genes (previously also suggested 
by the FTD-WGCNA) such as: gene expression, DNA damage response and waste 
disposal. Similarly (although slightly differently) to the WGCNA approach described 
above, WPPINA was instrumental in indicating, in addition to the above highlighted 
impacted pathways, a list of potential genetic and/or functional candidates either 
directly or indirectly interacting with the protein products of FTD-relevant genes. This 
is all the more important in that it provides protein targets within impacted pathways 
to be taken forward for: i) designing ad-hoc functional assays to model disease, and; 
ii) lead to the identification of potential drug targets. Moreover, WPPINA proved 
promising in other contexts such as those of prioritising genes within GWAS loci and 
comparing/discriminating impacted biological processes across neurodegenerative 
diseases. Specifically, WPPINA was helpful in narrowing down potential functional 
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candidates at PD-GWAS loci and proved useful in computationally discriminating 
specific sub-cellular pathways while comparing FTD and PD [104]. WPPINA 
suggested that, for same (or similar) impacted biological processes (e.g. biology of 
“stress” and “waste disposal”), it was ‘endoplasmic reticulum (ER) stressors’ that 
correlated with FTD vs. ‘mitochondria stressors’ in PD, or, elements of the ‘unfolded 
protein response’ and ‘ubiquitin proteasome’ in FTD vs. ‘autophagy’ and ‘lysosomal’ 
biology in PD [104]. 

It is relevant to note that, in parallel to the WGCNA and WPPINA studies and in the 
context of bridging the biology of fFTDs and sFTDs, additional bioinformatics work 
showed association of risk variants in sporadic FTD-GWAS with the biology of 
immune-related disorders [87] or RNA metabolism and cell death pathways to be 
associated with FTD’s language variant syndrome [105], and cell cycle and immune 
signalling to be associated with tissue-specific expression changes in bvFTD [106]. 

It must be acknowledged that these are in-silico approaches and no practical steps 
have yet been undertaken to functionally prove the above highlighted risk-pathways. 
Nevertheless, discussions between field professionals (e.g. geneticists, 
bioinformaticians and functional biologists) on these topics have started and are 
ongoing, with a focus on FTD models as well. Functional studies will be the next 
critical step in comparing and understanding disease processes affected in fFTD and 
sFTD, and may subsequently support the development of interventional measures.  
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FUTURE DIRECTIONS  

 

The study of FTD – from genetic dissection to disease modelling – will require a 
significant number of efforts in the years to come. Importantly, the research carried 
out this far provides us with a solid basis to optimistically look into the future with a 
clear understanding of the (still) open challenges that will need to be addressed. 

FTD genetics will require more powerful and in-depth studies – based on GWAS, 
fine-mapping and sequencing techniques – to: i) dissect common (i.e. prioritise 
genes impacted by the genetic risk-markers isolated through GWAS), oligogenic and 
rare genetic factors underpinning disease; ii) tackle missing heritability; iii) define the 
genetic architecture of sFTD with particular focus on the different FTD subtypes 
(based on both clinical and pathological diagnoses), and; iv) foster meta- and 
pleiotropy-analyses with other closely related neurodegenerative conditions. 

In parallel, it will be critical to translate the genetic findings into model systems and 
molecular mechanisms of disease. More specifically, it will be necessary to 
implement a paradigm shift from reductionist to holistic approaches to interpret 
genetics (Figure 2), and subsequently assist and drive functional studies. This 
means that precise experimental models (including cell-specificity studies) 
investigating and validating risk-pathways and biological processes that are 
impacted by genetic variability will (have to) become reality [107, 108]. 

All this taken together will be instrumental in improving our understanding of the 
aetiopathogenesis of disease, help stratifying patients for syndrome-specific clinical 
trials, highlight efficient endpoints for disease monitoring and therapeutic 
intervention, and deciphering whether and to what extent molecular mechanisms at 
the basis of fFTD and sFTD are overlapping, convergent or divergent.  

Normalising these strategies will be extremely valuable in setting the ground for the 
development of effective disease management measures in FTD within the frame of 
precision medicine. 
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FIGURE LEGENDS 

Figure 1. Translating (sporadic) genetics into functional meaning 

The pipeline for translating GWAS genetic signals into biological functions is 
illustrated. A GWAS is conducted to isolate ‘DNA level information’ on risk-variants 
associated with FTD (level 1). The risk-variants at the risk-locus are assessed for 
effect(s) on gene transcription levels and/or methylation patterns (level 2). Validation 
at the protein level is pursued through functional models to characterise the 
impacted pathway(s) and the associated molecular mechanisms of disease (level 3). 

The original FTLD-TDP GWAS signals are depicted in orange; the International 
FTLD-TDP GWAS signals are depicted in red; the GRN-GWAS signals are depicted 
in yellow; the methylation GWAS on C9orf72 expansion carriers signals are depicted 
in green, and; the clinical FTD-GWAS signals are depicted in blue. 

 

Figure 2. Reductionist and holistic approaches scheme 

The ‘reductionist’ approach studies one gene/risk-marker at the time. The ‘holistic’ 
approach aims at defining communal functional features across the multiple 
gene(s)/risk-marker(s). Both approaches are important. They are not mutually 
exclusive, rather incremental and complementary. 
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