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ABSTRACT

Radiative transfer is a notoriously difficult and computationally demanding problem. Yet, it is an indispensable ingredient in
nearly all astrophysical and cosmological simulations. Choosing an appropriate discretization scheme is a crucial part of the
simulation, since it not only determines the direct memory cost of the model but also largely determines the computational cost
and the achievable accuracy. In this paper, we show how an appropriate choice of directional discretization scheme as well as
spatial model mesh can help alleviate the computational cost, while largely retaining the accuracy. First, we discuss the adaptive
ray-tracing scheme implemented in our 3D radiative transfer library MAGRITTE, that adapts the rays to the spatial mesh and uses a
hierarchical directional discretization based on HEALPIX. Second, we demonstrate how the free and open-source software library
GMSH can be used to generate high-quality meshes that can be easily tailored for MAGRITTE. In particular, we show how the local
element size distribution of the mesh can be used to optimize the sampling of both analytically and numerically defined models.
Furthermore, we show that when using the output of hydrodynamics simulations as input for a radiative transfer simulation,
the number of elements in the input model can often be reduced by an order of magnitude, without significant loss of accuracy
in the radiation field. We demonstrate this for two models based on a hierarchical octree mesh resulting from adaptive mesh

refinement, as well as two models based on smoothed particle hydrodynamics data.

Key words: radiative transfer — methods: numerical —software: development.

1 INTRODUCTION

Radiative transfer plays a critical role in various astrophysical and
cosmological processes. Not only does it determine what we can and
cannot observe, it also actively alters the physical and chemical con-
ditions throughout the Universe through radiative pressure, heating
and cooling, and via various photoionization and photodissociation
reactions. Although it is computationally challenging, it is crucial to
be able to accurately account for all relevant radiative processes in
the wealth of modern astrophysical and cosmological simulations.

The first step in every computer simulation is finding a proper
representation for the simulated objects in the model. Often, this
comes down to finding an appropriate discretization for all physical
quantities. This is an essential step, since the number of elements
in the discretization will not only determine the direct memory
cost of the model but also its computational cost and ultimately
the maximal achievable accuracy of the simulation. Finding an
appropriate discretization scheme is thus a question of optimizing
the trade-off between accuracy and computational cost.

* E-mail: frederik.deceuster@kuleuven.be

Well-established radiation transport solvers such as OPENMC!
(Romano et al. 2015), TRIPOLI-4?> (Brun et al. 2015), and MCNP?
(Werner et al. 2018), which are used for more industrial applications
such as nuclear engineering and medical imaging, use surface-based
or combinatorial representations for their geometrical models. Since
these are constructed using computer-aided design (CAD) software,
they consist of combinations of well-defined shapes (e.g. cuboids,
cylinders, spheres), of certain materials, with well-defined boundary
surfaces. As a result, the radiation transport can be considered
through one material at a time and rays can be traced from one
surface to the next, similar to the rendering techniques used in modern
computer graphics (see e.g. Glassner et al. 1989). The highly accurate
representations of the models allow for the highly accurate solutions
that are required in these types of applications.

In contrast, in astrophysical and cosmological simulations, one is
interested in the radiation field in fluids with continuously varying
radiative properties throughout the model. Therefore, the geometries

ISee also openmec.org/.
2See also www.cea.fr/nucleaire/tripoli-4/.
3See also laws.lanl.gov/vhosts/menp.lanl.gov/index.shtml.
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of these models always have to be discretized before they can be
numerically solved, leading to a first inescapable source of numerical
error. The geometries that are used are often inherited from a previous
simulation step. Typically, these radiative transfer solvers are used
on top of a hydrodynamics solver to compute for instance the
radiative pressure, or they are used to post-process snapshots of
hydrodynamics simulations to produce synthetic observations. In
those cases, the radiative transfer solver uses the same geometric
model mesh as the hydrodynamics solver, although those meshes are
usually only optimized for the latter.

Over the years, the spatial discretization schemes used in hy-
drodynamics solvers have evolved from static structured meshes,
to hierarchical meshes resulting from adaptive mesh refinement
(AMR; Berger & Colella 1989), to unstructured and dynamically
evolving meshes (Springel 2010). Additionally, there are the mesh-
less smoothed particle hydrodynamics (SPH) solvers that do not
rely on a mesh, but rather evolve a set of particles with appropriate
smoothing kernels (Gingold & Monaghan 1977; Lucy 1977). The
spatial discretization schemes used in radiative transfer simulations
evolved accordingly from structured to unstructured meshes (see e.g.
Ritzerveld & Icke 2006), and further to mesh-less schemes (see e.g.
Bisbas et al. 2012; De Ceuster et al. 2019). For an assessment of
the use of unstructured (Voronoi) meshes in (Monte Carlo) radiative
transfer, see e.g. Camps, Baes & Saftly (2013), and for the use of
hierarchical octree and the more general kd-tree meshes, see e.g.
Saftly et al. (2013) and Saftly, Baes & Camps (2014).

In further contrast to the industrial radiative transfer applications,
in astrophysics and cosmology we are almost never interested in
a highly accurate solution of a specific model, but e.g. rather in
understanding the more general driving mechanisms that govern a set
of models. For instance, where in nuclear engineering it is crucial to
be able to accurately describe the effect of adding a single fuel rod in
areactor, it is far less important in cosmology, for instance, to be able
to describe the effect of one additional filament in the cosmic web.
This allows us to optimize our models more aggressively, retaining
only the essential features under investigation.

This is the second paper in a series on MAGRITTE*: a modern
open-source software library for 3D radiative transfer (De Ceuster
et al. 2019). MAGRITTE is a deterministic ray-tracer that uses a
formal solver to compute the radiation field along a fixed set of
rays (i.e. directions) through the model. In this paper, we discuss our
implementation of an improved ray-tracing scheme, that adapts to the
spatial discretization and uses a hierarchical directional discretization
based on HEALPIX® (Gorski et al. 2005). Furthermore, we demonstrate
how the free and open-source software library GMSH® (Geuzaine
& Remacle 2009) can be used to efficiently generate high-quality
meshes that can be used to construct radiative transfer models in
MAGRITTE. Finally, we present and demonstrate a simple algorithm
that can be used to reduce the size (i.e. the number of elements)
of an input model for radiative transfer simulations by an order of
magnitude without a significant loss of accuracy.

The structure of this paper is as follows. In Section 2, we discuss
the implementation of our adaptive ray-tracing scheme and explain
how we use GMSH to efficiently generate meshes for input models.
Further, in Section 3, we demonstrate the mesh generation process
with an analytic Archimedean spiral model and four snapshots of
hydrodynamics simulations, two of which using AMR and two using

4See also github.com/Magritte-code.
3See also healpix.sourceforge.net.
6See also gmsh.info.
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SPH. Finally, in Section 4, we discuss our results and we present our
conclusions in Section 5.

2 METHODS

2.1 Adaptive ray-tracing

Various methods have been devised to compute the radiation field in
a given medium by solving the radiative transfer equation. MAGRITTE
uses a long-characteristic formal solver and thus solves the radiative
transfer equation along a set of predefined rays through the model.
The ray-tracer follows a straight line through the model and gathers
the emissivities and opacities along the ray that are then used to
solve the radiative transfer equation. By stepping from one point to
the next it indirectly determines the optical depth increments, i.e.
the step size, in the discretized transfer equation used by the solver.
The first version of MAGRITTE employed a second-order radiative
transfer solver (Feautrier 1964; De Ceuster et al. 2019), but the
current version also provides the more accurate (Hermitian) fourth-
order scheme by Auer (1976), with second and third-order boundary
conditions, respectively (Auer 1967). In the following sections, we
describe three ways in which the rays are adapted to further improve
the accuracy of the solver.

2.1.1 Adaptive velocity sampling

Since Doppler shifts can cause significant variations in emissivity
and opacity within a frequency bin, it is crucial to carefully sample
the velocities encountered along a ray. This becomes even more
important for line radiative transfer, where significant changes
occur in particularly narrow frequency ranges. In De Ceuster et al.
(2019), it was already discussed how MAGRITTE accounts for this
by interpolating the velocity along a ray between two points if its
change is too large. In our new version of the solver, we extended
this by employing a similar method to the optical depth increments
encountered along a ray.

2.1.2 Adaptive optical depth increments

In MAGRITTE, the radiative transfer equation is solved in its second-
order or Feautrier form (Feautrier 1964),

T dr2

d2
(1 —) u(x, ) = S(x. ), (1

where u(x, 1) is the mean intensity along direction 71, and S(x, 72) and
7(x, it) are, respectively, the effective source function and effective
optical depth, which can be derived from the local emissivities and
opacities (see De Ceuster et al. 2019, for more details). The optical
depth is thus the relevant dependent variable in the differential
equation. Assuming a proper sampling of the emissivity and opacity,
the discretization error will thus be determined mainly by the size
of the optical depth increments. This means that a model mesh can
perfectly sample the relevant optical data, but nevertheless produce a
large discretization error. To resolve this, we adapt the optical depth
increments as they are computed. In particular, we divide the interval
on the ray between the (projected) points n and n + 1 in njye, equal
parts and linearly interpolate the emissivities and opacities on the
sub-intervals. By defining the number of interpolations as

max {Xn, Xnt1} Asy
Ninger = {—“ , )

A Tmax
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where x denotes the opacity and As, the distance increment along
the ray, we can ensure that the optical depth increments along the ray
are always smaller than a predefined value AT .

It is important to note that the adaptive velocity sampling is still
a separate process that happens before the adaptive optical depth
increments are computed and that the former cannot be included in
or replaced by the latter. For example, a large change in velocity
along a ray which Doppler shifts a line from one wing to the other
will not result in a particularly large optical depth increment, but will
leave the line unaccounted for, increasing the error on the computed
radiation field.

2.1.3 Adaptive directional discretization

Many applications of radiative transfer computations require direc-
tional integrals over the radiation field to compute, for instance, the
radiative heating or cooling, or to compute the radiative pressure.
In those cases also the directions of the rays need to be discretized.
Given a function y(x, i), the directional integral is discretized as

7{ dQy(x, &) = > wi, yir, 3)

reR;

where the i and r indicate the point and ray index, respectively, and
‘R, is the set of rays originating from point i. The main difficulty is to
determine this set of rays (R;) for each point. Once these are known,
the corresponding weights w; , can readily be computed.

Assuming that the points in the mesh properly sample the relevant
distributions in the model, for each point in the mesh, the directions
of the other points with respect to that point will properly sample the
relevant directions for that point. Therefore, ideally, the discretization
of the directions for a point in the mesh would follow the distribution
of the directions of the other points with respect to that point. Further-
more, since this discretization has to be generated for every point in
the mesh, the procedure cannot be too computationally demanding.

Therefore, we opted for a structured adaptively refining scheme
based on HEALPIX (Gorski et al. 2005). Given a level of refinement,
[, HEALPIX provides a discretization of the unit sphere in 12 x 4/
uniformly distributed pixels of equal area. By stitching together parts
of these uniform HEALPIX discretizations with different levels of
refinement, we can obtain a locally refined directional discretization
adapted to the point density in the mesh.

We start with a HEALPIX discretization with a minimal level of
refinement, /y,;,, and refine the pixels according to the distribution
of the directions of the other points, until a certain maximal level of
refinement, /;,y, is reached. Fig. 1 shows a Cartesian projection of
an example of the resulting discretization of the unit sphere and the
end points of the corresponding direction vectors. Since MAGRITTE
considers pairs of antipodal rays, there is an antipodal symmetry in
the directional discretization.

To obtain the distribution of the directions of the other points
with respect to the point under consideration, we draw a uniformly
distributed sample of 10000 points from the mesh and record the
HEALPIX pixels they belong to for each level of refinement from
Imin up to and including /. In practice, we only need to compute
the distribution at the highest level of refinement. The results for
the other levels can be obtained by downgrading the resulting map,
leveraging HEALPIX  nested ordering scheme (Gorski et al. 2005). To
decide which pixels to refine, we order them according to the number
of directions of other points belonging to them, and only refine the
top half. To ensure that the same number of rays is traced for each
point we fix the number of pixels that is refined at each level / to be
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Figure 1. Cartesian projection of an example of the adaptive hierarchical
discretization of directions around a point, in this case using four different
orders (from lin = 1 to Imax = 4) of the HEALPIX scheme. More rays are
traced in the directions with a higher mesh point density. The blue dots
indicate the centres of the direction vectors and the grey lines delimit the
(HEALPIX) pixels.

6 x 2!. This implies that at each level (except Iy, ), half of the pixels
is further refined.

Since HEALPIX partitions the unit sphere in pixels of equal area, the
corresponding weight for a pixel obtained with a level of refinement
I(i, ) is the inverse of the number of pixels at that level

1
12 x 4607
where the level of refinement depends on the originating point 7 and

the direction of the ray r. This adaptive refinement scheme allows to
sample the directions better with fewer rays.

“

Wi, r

2.2 Mesh constructing and reduction

Over the years, many different algorithms have been devised to
partition a given volume for use in a computer, see for instance the
classic treatment by Thompson, Soni & Weatherill (1998), the more
recent account by George & Frey (2008), and the references therein.
Many of these algorithms have furthermore been implemented in
various software libraries. For all models in this paper we have used
the free and open-source meshing library called GMSH by Geuzaine
& Remacle (2009). GMSH provides various methods to generate
a tetrahedral Delaunay mesh for a domain given a desired local
element size distribution. Since the local element size is directly
related to the local edge lengths of the tetrahedra, it allows us
to control the step sizes along a ray traced through the domain.
Although MAGRITTE does not require a complete and consistent mesh
(it only requires a point cloud and nearest neighbour information),
the Delaunay meshes, or their topologically dual Voronoi meshes,
provide an excellent means to capture the complex morphologies
typically encountered in radiative transfer simulations. Fig. 2 shows
aray traced through a domain of Voronoi cells and the corresponding
Delaunay tetrahedralization. To use these meshes in MAGRITTE, the
Delaunay vertices (or Voronoi centres) can be used as the points and
the nearest neighbours can be extracted from the edge list of the
mesh, since every pair of nearest neighbours will share an edge.

2.2.1 Meshing analytic models

Although many astrophysical objects are characterized by irregular
structures that are difficult to describe with analytic models, it is
nevertheless useful to study analytic models, since they often make
it easier to disentangle the effects of the various processes taking
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Figure 2. Ray traced through the Voronoi mesh (top) and its topologically
dual Delaunay mesh (bottom). Note that every distance increment along the
ray is the projection of the edge of the Delaunay triangle connecting the
traversed Voronoi cell centres. Hence, the edge lengths are a local upper limit
for the step size along the ray.

place. When discretizing such a model, the key objective is to
properly sample the functions that describe the model parameters.
For simplicity we will restrict ourselves to one function, say f(x),
for which we want to optimize the mesh. We will call this the tracer
function. In radiative transfer computations, the density distribution
is often used for this purpose. Properly sampling a function for use
in a differential equation solver means properly tracking its changes
through the domain. A mesh that properly samples the tracer function
will have small elements whenever the change in the tracer is large
and vice versa. Therefore, in order to quantify the desired local
element size distribution, we need to quantify the maximal local
relative change in the tracer function. This is given by the norm of
the gradient of its logarithm, which we will denote as,

Gf(x) =max {ii-Vf(x)/f(x)} = [|Vlog f(x). )

This can be used in a map to obtain the desired element size
distribution £(x) of the model mesh. We thus look for a continuous
mapping that (at least roughly) maps max {Gf(x)} to min {{(x)} and
min {Gf(x)} to max {£(x)}.

Given the form of the radiative transfer equation one could argue
that in constructing the mesh, one should strive to keep the optical
depth increments as small as possible. However, this is not strictly
required here, since MAGRITTE will automatically limit the size of
the optical depth increments by interpolating the optical properties
where necessary. Furthermore, it was already shown, in the context
of subdivision stopping criteria for adaptively refined meshes by
Saftly et al. (2014), that it is far more important that a mesh allows to
accurately sample the model functions than to limit the encountered
optical depth increments. Therefore, we use a linear mapping from
[max {Gf(x)}, min {Gf(x)}] to [min {£(x)}, max {£(x)}]. Any other
mapping would have a larger local gradient in the desired local
element size function and would therefore make it harder to mesh.

5197

Table 1. Empirically determined parameters for the reduction algorithm.

Model type fsmall flarge Gthres
AMR 0.90 2.10 0.10
SPH 1.00 2.15 0.21

Although GMSH has the option to construct meshes from an
analytically defined element size distribution, it is often much simpler
to provide the element size distribution evaluated on a background
mesh. Therefore, we consider a regular Cartesian mesh that will
be used as a background mesh. The resolution of the background
mesh is determined by the smallest scales of the tracer function
that we want to resolve, say £, . This is also the lower bound for
the desired element size distribution. Similarly, we define an upper
bound for the desired element size distribution, £,,,x , which can often
be conveniently defined as a fraction of the size of the domain.

Once an appropriate background mesh is created with the desired
element size distribution evaluated on it, GMSH can accordingly
generate a mesh for a given domain.

2.2.2 Re-meshing existing models

Since radiative transfer simulations are often only a component in a
bigger simulation pipeline, the spatial discretizations that are used are
often inherited from previous simulation steps. The corresponding
meshes are usually not tailored to the radiative transfer solvers and as
a result contain an exceedingly large amount of elements. Here, we
present a simple algorithm to reduce the number elements in a given
mesh, while preserving a proper sampling of a given tracer function.

When re-meshing a given model, we need to know where the reso-
lution of the original mesh is essential for the accurate representation
of the model and where it could be coarsened. This can be quantified
by the maximum relative change of the tracer function at a point with
respect to its neighbours. This can be expressed as an operator acting
on the tracer function

fi_fn
fi+ fa

By definition, Gf; € [0, 1], so we can define a simple threshold
value, Gyes, above which the original local element size is deemed
essential. We can now assign a desired local element size £(x) as a
fraction of the original local element sizes L(x), where the fraction
is determined by the local change in the tracer function

Gf; Emax{

, for each neighbour 7 of pointi } . (6)

_ fsmall if Gf(x) > Gthres
E(x) N L(x) {flarge otherwise ’ (7)
where the local element sizes of the original mesh are given by
L; = mean{||x; — x,||, for each neighbour n of pointi}. (8)

The algorithm thus depends on three parameters (fymaii> fiarge> and
Ginres), for which the values used for the applications in this paper
can be found in Table 1.

Several variations are possible on the mapping to obtain the
desired local element size distribution. However, due to the stochastic
nature of the mesh construction process, the differences quickly blur
resulting in similar meshes. The particular map presented here (7)
was chosen because it is the direct mathematical representation of our
objective to coarsen the mesh where possible and retain the original
mesh size where it is deemed essential for a proper representation of
the model.

MNRAS 499, 5194-5204 (2020)
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Figure 3. Model mesh for the analytic stellar wind model described by an
Archimedean spiral. The top row shows slices through the centre along the
xy-plane and the bottom row shows slices along the xz-plane.

3 APPLICATIONS

In this section, we apply the mesh construction and reduction
methods described above to a set of models inspired by analytic
and numeric models of spiral-shaped stellar outflows. These types
of models are currently being developed to investigate the effect
of companions on the shapes of the dust-driven winds of cool
evolved stars, which have been found to deviate substantially from
the originally assumed spherically symmetric wind model Decin
et al. (2020). Understanding the origin of these features could help
explain the morphological evolution towards the highly aspherical
planetary nebula phase.

3.1 Meshing analytic models

As an example of an analytically defined model, we consider a stellar
wind described by an Archimedean spiral with generic parameters,
following Homan et al. (2015). The full details of the model together
with a notebook implementation can be found online.” Fig. 3 shows
two slices through the model, showing the density distribution
as well as the underlying mesh generated with GMSH using the
method described in Section 2.2.1. In this example, the density was
used as a tracer function to determine the desired local element
size distribution, with a minimum desired element size of £, =
15au and a maximum desired element size of £,.,x = 50au. The
regular Cartesian background mesh is defined in a cubic box of size
(1200 au)® and a resolution of 100° elements. The resulting mesh
consists of 49 347 points, a modest number considering the relatively
complex morphology. One can easily obtain even sparser meshes,
either by increasing the minimum or maximum desired element
sizes, or by applying the method presented in Section 2.2.2. The
latter technique will be demonstrated in the next section.

7See github.com/Magritte-code/Examples.
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3.2 Re-meshing existing models

In the following, we will consider four specific examples of how
hydrodynamics models can be reduced or coarsened before they are
used as input for a radiative transfer solver. We consider two models
based on an hierarchical octree mesh resulting from AMR, and two
models based on SPH simulation data.

3.2.1 AMR models

The idea of an octree discretization of a 3D space is to locally
subdivide an initial cubic cell into eight sub-cells until the desired
local mesh size is achieved. Hydrodynamics solvers using AMR often
use an octree as underlying geometric data structure. We consider
late snapshots of two hydrodynamics models of the intricate stellar
outflow produced by a mass-losing asymptotic giant branch (AGB)
star as it is perturbed by a companion, modelled using MPI-AMRVAC®
(Xiaetal. 2018). We used the code with a Cartesian mesh and allowed
for 8 levels of adaptive refinement.

The first example, shown in Fig. 4, contains a relatively regular
spiral outflow. Reducing the model using GMSH and the algorithm
described in Section 2.2.2, the resulting reduced mesh contains about
10.2 times fewer points than the original one. This results in a speedup
of 18.3 for the computation of the radiation field. In the second
example, shown in Fig. 5, we consider a more erratic spiral outflow.
This leads to a reduced mesh containing 8.4 times fewer points than
the original one, which results in a 12.6x speedup. The parameters
of the reduction algorithm can be found in Table 1 and properties of
the original and reduced meshes are summarized in Table 2.

Inboth examples, one can see in the reduced meshes some artefacts
of the levels of refinement in the original meshes. This is due to the
fact that the desired element sizes in the algorithm are determined
by the original element sizes.

To quantify the quality of the reduced meshes we compute the
radiation field for both the original and reduced models using
MAGRITTE and calculate the absolute relative difference between
the results. The solution on the reduced mesh can be mapped to
the original by barycentric interpolation on the reduced mesh to
each point in the original mesh. This can readily be done using the
LinearNDInteprolator in SCIPY (Virtanen et al. 2020). The
absolute relative difference between the results can then be computed
by point-wise dividing the absolute difference by the result on the
original mesh. In order to gauge the overall distribution of the errors,
Fig. 6 presents the cumulative density distribution of the relative
errors. The more than 10 per cent of points with an error below 1073
in the AMR erratic model are due to the fact that the reduced mesh
at small resolutions still closely resembles the original one.

Since MAGRITTE’s internal geometric data structure consists of
a point cloud with nearest neighbour information, the hierarchical
octree mesh produced by MPI-AMRVAC cannot be used directly as
input for MAGRITTE. However, a natural way to map the octree mesh
to a point cloud is to associate all cell data with the cell centre, use the
cell centres as points and extract the nearest neighbour information
from the hierarchical octree.

Figs 7 and 8 show a comparison between a dense regular
directional discretization containing 12 x 2% = 3072 rays and our
adaptive scheme containing 552 rays for a point half way along
the z-axis looking down on the xy-plane of the AMR models. The
adaptive scheme allows for three levels of refinement from /i, =

8See also amrvac.org.

1Z0Z Ateniga4 || uo Jasn uopuo 868|109 AlsieAiun Aq 09ESZES/Y6 L S/Y/661/2101e/seIuw/woo dno olwapede//:sdiy Woll papeojumo(]


file:amrvac.org

MAGRITTE — 1. Adaptive ray-tracing and meshing 5199

Density Original Mesh

y (AU)

—30 0 30 ~30 0 30
x (AU) x (AU)

Reduced Mesh Relative Error

10°

._.
=)
i
Relative Error

11072

-30 0 30 -30 0 30
x (AU) x (AU)

Figure 4. Comparison between the original and reduced model mesh for the octree version of the regular spiral model. The properties of the meshes can be
found in Table 2. The top row shows slices through the centre along the xy-plane and the bottom row shows slices along the xz-plane. The relative error in the
rightmost column is computed as the average over all directions and frequency bins of the absolute relative difference between the radiation field computed on
the original mesh and the radiation field computed on the reduced mesh when interpolated to the original.
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v (AU)
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Figure 5. Comparison between the original and reduced model mesh for the octree version of the erratic spiral model. The properties of the meshes can be
found in Table 2. The top row shows slices through the centre along the xy-plane and the bottom row shows slices along the xz-plane. The relative error in the
rightmost column is computed as the average over all directions and frequency bins of the absolute relative difference between the radiation field computed on
the original mesh and the radiation field computed on the reduced mesh when interpolated to the original.

1 up until /x = 4. Although the result on the coarser adaptive
discretization clearly shows some differences with the finer regular
one, the overall relative errors are limited, as can be seen from
the cumulative distribution of the relative errors between the dense

regular and adaptive models shown in Fig. 9. More than 60 per cent
of all the rays originating from all the points show a relative error
below 10 per cent, and more than 80 per cent show a relative error
below 20 per cent. Note that about 20 per cent of the points have a
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Table 2. Properties of the original and reduced meshes and the resulting
speedup that is achieved in computing the radiation field.

Model Noriginal Nreduced Reduction Speedup
AMR regular 642 048 62 984 10.2 18.3
AMR erratic 627712 75137 8.4 12.6
SPH regular 916 601 82 554 11.1 35.0
SPH erratic 820471 76 660 10.7 34.1

Relative error CDF of reduced meshes

101 —— AMR regular

—— AMR erratic
—— SPH regular
SPH erratic

0.8

0.6 1

0.4

0.2

Cumulative Distribution Function

0.0 1

1073 1072 107! 100 10t

Relative Error

Figure 6. Cumulative distribution function of the relative errors with respect
to the original meshes for the different models, computed for 1000 bins. The
properties of the different meshes can be found in Table 2.

relative error below 1073, This is due to the fact that the maximally
refined directions in the adaptive scheme have the same order and
hence exactly the same rays as in the dense regular scheme, yielding
exactly the same results and a negligible error.

3.2.2 SPH models

In SPH simulations, rather than defining the physical quantities on a
mesh, the model is described by a number of particles with definite
properties and smoothing kernels describing their proliferation. We
again consider late snapshots of two hydrodynamics models of the
intricate stellar outflow produced by a mass-losing AGB star as it is
perturbed by a companion, this time modelled using the SPHs code
PHANTOM? (Price et al. 2018).

The first example, shown in Fig. 10, describes a very regular
spiral outflow. Reducing the model using GMSH and the algorithm
described in Section 2.2.2, the resulting reduced mesh contains
11.1 times fewer points than the original. This results in a speedup
of 35.0 for the computation of the radiation field. In the second
example, shown in Fig. 11, we consider a much more erratic spiral
outflow. Despite the complex morphology, the reduced mesh still
contains 10.7 times fewer points than the original, resulting in a
34.1x speedup. The parameters of the reduction algorithm can be
found in Table 1 and the properties of the original and reduced
meshes are summarized in Table 2.

The quality of the meshes can again be quantified by comparing the
results of a radiative transfer computation using MAGRITTE between
the original and reduced meshes. The results of the reduced mesh
can be mapped to the original one in the same way as with the AMR

9See also phantomsph.bitbucket.io.
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models. Fig. 6 shows the cumulative distribution of the relative errors
between the original and reduced meshes. The SPH erratic model
shows a relative error below 10 per cent for about 90 per cent of its
points. This can be attributed the fact that the original SPH model
already had a higher sampling that follows the morphology more
closely. Since the desired element sizes are based on this sampling,
this will result in higher quality meshes.

The point cloud structure of an SPH data set maps naturally to
MAGRITTE’s internal geometric data structure. However, it should be
noted that in this way we do not account for the smoothing kernels.

Figs 12 and 13 show a comparison between a dense regular
directional discretization containing 12 x 2% = 3072 rays and our
adaptive scheme containing 552 rays for a point half way along
the z-axis looking down on the xy-plane of the SPH models. The
adaptive scheme allows for three levels of refinement from [, = 1
up until /.« = 4. In accordance with the results for the AMR models,
the result for the SPH models on the coarser adaptive discretization
clearly shows some differences with the finer regular one, while
the overall relative errors are again limited, as can be seen from
the cumulative distribution of the relative errors between the dense
regular and adaptive models shown in Fig. 9. More than 60 per cent
of all the rays originating from all the points show a relative error
below 10 per cent, and more than 80 per cent show a relative error
below 20 per cent. Note also here that about 20 per cent of the points
have a relative error below 103, which can be attributed to the fact
that the maximally refined directions in the adaptive scheme have the
same order and hence exactly the same rays as in the dense regular
scheme, yielding exactly the same results and a negligible error.

4 DISCUSSION

4.1 Adaptive ray-tracing

We should point out that our approach is quite different from
Abel & Wandelt (2002), who originally coined the term ‘adaptive
ray-tracing’ in the context of radiative transfer in cosmological
simulations. Their idea, to split rays as they reach further away
from their origin to obtain a more constant volume coverage, is
ideal for direct solvers or short-characteristics methods but would be
difficult to implement in our second-order solver. Our approach is
more related to AMR methods, but applied on-the-fly along the ray
and in the directional discretization.

4.2 Interpolating between meshes

The choice of interpolation method between coarser and finer meshes
is crucial in the determination of the error caused by the mesh re-
duction. In this paper, we used a barycentric scheme implemented in
SCIPY’s LinearNDInteprolator tointerpolate between coarser
and finer meshes (Virtanen et al. 2020). However, using for instance
a more primitive mapping to nearest neighbours yielded significantly
worse results, increasing the relative errors by about a factor 4. Higher
order schemes might provide better results but would infer a higher
computational cost. Since the barycentric scheme is already quite ex-
pensive (it requires roughly about 10 per cent of the time to generate
amesh reduction) it appears to be the most suitable approach for now.

4.3 Model symmetries, 1D and 2D ray-tracers

When a model possesses a symmetry, it is most advantageous to use
a solver that can leverage that symmetry. For instance, a spherically
symmetric model can be solved most efficiently using a solver
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Figure 7. Comparison between a regular and an adaptive discretization of the directions for a point located at (x, y, z) = (0, 0, 42) au in the regular spiral AMR
model. The point and rotation are chosen such that the viewing angle resembles the slice in the top row of Fig. 4. Since the mean intensity along a ray (u) is

symmetric, each plot shows only half of a Cartesian projection.
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Figure 8. Comparison between a regular and an adaptive discretization of the directions for a point located at (x, y, z) = (0, 0, 6) au in the erratic spiral AMR
model. The point and rotation are chosen such that the viewing angle resembles the slice in the top row of Fig. 5. Since the mean intensity along a ray (u) is

symmetric, each plot shows only half of a Cartesian projection.
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Figure 9. Cumulative distribution function of the relative errors of the
adaptively ray-traced models with respect to regular ones, computed for 1000
bins. The reduced meshes (see Table 2) were used as spatial discretization.

that is effectively 1D. Similarly, models that posses a cylindrical
symmetry, such as discs and bi-polar outflows, can be solved most
efficiently using a solver that is effectively 2D. Nevertheless, we
tried to generate 3D meshes for models possessing a symmetry

(spherical or cylindrical), to see if we could use our methods to
generate relatively sparse 3D meshes for these effectively lower
dimensional models. However, since MAGRITTE internally uses a
Cartesian coordinate system, it turned out that each of these models
required an objectionable amount of points to properly represent
these models in 3D. To accommodate that, we equipped MAGRITTE
with a dedicated 1D (spherical symmetric) and 2D (cylindrical
symmetric) ray-tracer. The methods outlined in this paper can readily
be applied to generate lower dimensional (1D or 2D) models that can
now also be processed with MAGRITTE.

4.4 Future work

Now we have a set of methods at our disposal that allow us to
easily generate meshes tailored to radiative transfer calculations, we
can leverage these techniques, for instance, to develop multiphysics
multigrid methods for the iterative solvers in MAGRITTE that aim to
find self-consistent solutions for the different physical processes in
the model. A first step in this direction will be the implementation of
a multigrid radiative transfer solver in MAGRITTE.

Currently, mesh generation is a separate pre-processing step to the
radiative transfer simulation. However, in order to effectively lever-
age the methods presented here, for instance in coupled radiation-
hydrodynamics simulations, mesh generation should happen on-the-
fly and preferably in a way that is aware of the evolution of the mesh.

MNRAS 499, 5194-5204 (2020)
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Figure 10. Comparison between the original and reduced model mesh for the SPH version of the regular spiral model. The properties of the meshes can be
found in Table 2. The top row shows slices through the centre along the xy-plane and the bottom row shows slices along the xz-plane. The relative error in the
rightmost column is computed as the average over all directions and frequency bins of the absolute relative difference between the radiation field computed on
the original mesh and the radiation field computed on the reduced mesh when interpolated to the original.
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Figure 11. Comparison between the original and reduced model mesh for the SPH version of the erratic spiral model. The properties of the meshes can be
found in Table 2. The top row shows slices through the centre along the xy-plane and the bottom row shows slices along the xz-plane. The relative error in the
rightmost column is computed as the average over all directions and frequency bins of the absolute relative difference between the radiation field computed on
the original mesh and the radiation field computed on the reduced mesh when interpolated to the original.
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Figure 12. Comparison between a regular and an adaptive discretization of the directions for a point located at (x, y, z) = (0, 0, 81) au in the regular spiral SPH
model. The point and rotation are chosen such that the viewing angle resembles the slice in the top row of Fig. 10. Since the mean intensity along a ray (u) is

symmetric, each plot shows only half of a Cartesian projection.
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Figure 13. Comparison between a regular and an adaptive discretization of the directions for a point located at (x, y, z) = (0, 0, 18) au in the erratic spiral SPH
model. The point and rotation are chosen such that the viewing angle resembles the slice in the top row of Fig. 11. Since the mean intensity along a ray (u) is

symmetric, each plot shows only half of a Cartesian projection.

5 CONCLUSION

Radiative transfer models are a crucial but very computationally
demanding component of almost all astrophysical and cosmological
simulations. In this paper, we demonstrate how the choice of both
the directional and spatial discretization scheme can help alleviate
the computational cost. First, we presented the improved adaptive
ray-tracing scheme implemented in the 3D radiative transfer library
MAGRITTE, that uses an adaptive hierarchical scheme to discretize
directions based on HEALPIX (Gorski et al. 2005). Secondly, we
demonstrated how the free and open-source software library GMSH
(Geuzaine & Remacle 2009) can be used to generate sparse meshes,
even for morphologically complex models, that are ideally suited for
radiative transfer simulations. Furthermore, we proposed two simple
algorithms, one for analytically and one for numerically defined mod-
els, which can extract a desired mesh element size distribution from
a model that will result in a sparse mesh, while preserving a proper
sampling of key model features. Since typically the output of hydro-
dynamics models is used as input for radiative transfer simulations,
we applied these algorithms to snapshots of several hydrodynamic
models and showed that the number of elements can be reduced
by an order of magnitude, without a significant loss of accuracy
in the computation of the radiation field. As a result, the radiation
field on the reduced meshes can be computed more than an order of
magnitude faster. This reduced computational and memory cost can

either be used to speedup the computation or it can be invested to
increase the accuracy by refining the mesh in critical locations. The
examples included both models based on an hierarchical octree mesh
resulting from AMRs, as well as SPHs data. We conclude that care-
fully constructing an appropriate directional and spatial discretiza-
tion scheme, using the methods described above, can significantly
decrease the computational cost of radiative transfer simulations and
make feasible simulations that would otherwise be intractable.
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