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Abstract

There are three chapters in this work of which the first two contain dif-
ferentiability results for continuous convex functions on Banach spaces. The
final chapter contains differentiability results for Lipschitz isomorphisms of
7%

The aim of chapter 1 is to improve on a result of I. Ekeland and G.
Lebourg [EL] who show that a Banach space E that admits a Lipschitz
Fréchet smooth bump function is an Asplund space. It is shown that if
E admits a continuous lower Fréchet smooth bump function then F is an
Asplund space.

Chapter 2 contains partial results towards showing that there are Gateaux
differentiability spaces that are not weak Asplund spaces. Suppose that K
is a totally ordered first countable Hausdorff compact space. A topology 7y
is defined on C(K) called the wedge topology, and it is shown that if every
subdifferential of a continuous convex function f on C(K) contains a measure
of finite support then f is Gateaux differentiable on a 7, residual set.

Chapter 3 contains three examples of Lipschitz isomorphisms of £; to
itself for which the derivative fails to be surjective; in the first example the
Gateaux derivative is not surjective at one point, in the second example the
weak limit of lim,_o( f(th) — f(0))/t is zero for all h € £;, and in the third
example the Gateaux derivative is not surjective at all points of the cube
{z € £, : |z;] < 27*for alli} which is mapped affinely into a hyperplane.
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Basic notation

There follows a list of the notation used in the text, which, although basic,
is not completely standard.

Ap the set of left accumulation points

Axr the set of right accumulation points

B, the set of basic neighbourhoods of 0 in the
oscillation topology

B, the set of basic neighbourhoods of 0 in the
wedge topology

B(z,r) the open ball centred at z with radius r

card L the cardinality of the set L

C(K) the Banach space of continuous functions
on the compact space K

d(g,V) the distance of g from the subspace V

0f(¢) the subdifferential of f at ¢

G the closure of the set G

1, the characteristic function of the set A

M(K) the set of Radon measures on C(K)

M(F) the set of Radon measures on C(K)
with support contained in FF C K

Lip (f) the Lipschitz constant of f

R the real numbers

R* the non-negative real numbers

To the oscillation topology

Tw the wedge topology

Us(0,€,w) a basic neighbourhood of 0 in the

oscillation topology (definition 2.3.1)
Uw(0, €, {d1 }icL, {¥r}rer) a basic neighbourhood of 0 in the
wedge topology (definition 2.3.2).



Introduction

The two notions of derivative used in this work are the Gateaux derivative,
and the Fréchet derivative. If X and Y are Banach spaces then the Gateaux
derivative of a mapping ¢ : X — Y at z € X, is defined as a continuous
linear map ¢'(z) : X — Y such that

(e + tu) — 4(z)
t

#(a)u = lim

for every u € X. For the Fréchet derivative we require in addition that the
above limit be uniform for ||u|| < 1.

We refer to [DGZ3], [Fa], [Gi], and [Phl] for a comprehensive treatment
of Asplund spaces and related concepts. A Banach space FE is said to be an
Asplund space if every continuous convex function on E is Fréchet differen-
tiable on a residual set. If every continuous convex function on E is Gateaux
differentiable on a residual set then E is called a weak Asplund space, and if
every continuous convex function on E is Gateaux differentiable on a dense
set then E is called a Gateaux differentiability space (GDS).

In chapter 1 we show that if £ admits a continuous lower Fréchet smooth
bump function then E is an Asplund space. This improves on a result of
I. Ekeland and G. Lebourg [EL] that provided E admits a Fréchet smooth
bump function then E is an Asplund space. To obtain differentiability points
of a continuous convex function on a Banach space one method is to apply a
variational principle of which we note Ekeland’s variational principle [Ek], the
Borwein-Preiss variational principle [BP], and a general variational principle
by R. Deville, G. Godefroy, and V. Zizler [DGZ2] from which most results
obtained previously by Ekeland’s variational principle or the Borwein-Preiss
variational principle easily follow. Recently M. Fabian, G. Godefroy, and J.
Vanderwerff [FHV] have obtained a smooth variational principle in the case
of a Banach space that admits a Fréchet differentiable bump function. All
these results imply that a Banach space that admits a Fréchet differentiable
bump function is an Asplund space.
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For results on Gateaux differentiability, Deville’s version of the Borwein-
Preiss variational principle implies that, if E admits a Lipschitz Gateaux
smooth bump function then E is a GDS; it is even a weak Asplund space as
shown by a slight adjustment in a result of D. Preiss, R. R. Phelps, and 1.
Namioka in [PPN] (it is shown that a Banach space with Gateaux smooth
norm is a weak Asplund space) done in M. Fosgerau’s thesis. In the Gateaux
case we do not know whether relaxing the condition on the bump function to
continuous Gateaux lower smooth implies that E is a GDS. For the converse
it is not known whether an Asplund space admits a lower Fréchet smooth
bump function; Richard Haydon [Ha] exhibits an Asplund space that admits
no Gateaux smooth (differentiable at non-zero vectors ) equivalent norm,
which strongly refutes the converse of the results in [PPN].

We can show, using our method, that if £ admits a continuous Géteaux
lower smooth bump function then E is an e-GDS in the sense that for any
continuous convex function f and any y € E the smooth limit

lim flz+ty) + f(z +ty) — 2f(z)

t—0 t

is less than € for all points z in a dense subset of E.

In the second chapter we obtain partial results towards showing that there
is a GDS that is not weak Asplund. In particular letting K be an ordered
first countable Hausdorff space that is compact in the order topology, we
define a topology 7, (the wedge topology) on C(K), for which all continuous
convex functions f on C(K) such that each subdifferential contains a Radon
measure of finite support, are Gateaux differentiable on a 7,-residual subset
of C(K). In this connection M. Talagrand [Tal] has shown that the set of
points of Gateaux differentiability of a convex continuous function f need
not be Gs. M. M. Coban and P. S. Kenderov [CK] have observed that the set
of points of Gateaux differentiability of the sup-norm on the double arrow
space D, which may be described as the space of functions on the unit interval
with a right limit at 0, a left limit at 1, and left and right limits at every
point), is dense but not residual. M. Talagrand [Ta2] gives a proof that there
does not exist an equivalent Gateaux smooth norm on D. More generally it
is known from a result of D. Preiss, R. R. Phelps, and I. Namioka in [PPN]
that a Banach space that admits a Gateaux smooth norm is a weak Asplund
space; in view of the Coban-Kenderov statement this gives another proof of
Talagrand’s result.

Chapter three contains three examples of Lipschitz isomorphisms of ¢, for
which the derivative fails to be surjective: in the first example the Gateaux
derivative is not surjective at one point, in the second example the weak limit
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of lim;_,o(f(¢th) — f(0))/t is zero for all h € £,, and in the third example the
Gateaux derivative is not surjective at all points of the cube {z € £, : |z;| <
27 for alli} which is mapped affinely into a hyperplane.

All these examples have some connection with the linear isomorphism
problem for Banach spaces which asks whether Lipschitz isomorphic Banach
spaces are necessarily linearly isomorphic. One method of solution is to look
for points at which the derivative of a given Lipschitz isomorphism f : X —» Y
exists and is surjective. For Lipschitz maps between finite dimensional Ba-
nach spaces Rademacher’s theorem states that on R™ any Lipschitz map
into R™ is differentiable everywhere except on a set of Lebesgue measure
zero. Extensions of Rademacher’s theorem to infinite dimensions have been
found by N. Aronszajn [Ar| using Aronszajn null sets, and by R. R. Phelps
[Ph2] using Gaussian null sets; that Gaussian null and Aronszajn null sets
are equivalent has been shown by M. Csoérnyei [Cs]. With different (weaker)
versions of null sets similar results have been proved by P. Mankiewicz ([Mn])
and J. P. R. Christensen ([Cr]). If it were known that Lipschitz homeomor-
phisms carry null sets to null sets we could obtain a differentiability point z
of f for which f~! is differentiable at f(z). It would then follow that f'(z) is
an isomorphism. That Aronszajn null sets are not preserved under Lipschitz
isomorphisms was shown by V. I Bogachev [Bo]. There is a recent example
by E. Matouskovd [Mt], of a Lipschitz isomorphism of a separable Banach
space to itself that maps a non Haar null set (see [Cr]) to an Aronszajn null
set. Our third example is another example which shows that Aronszajn null
sets are not preserved.

N. Aronszajn [Ar] obtains the following extension of Rademacher’s theo-
rem.

Let f be a Lipschitz map from a separable Banach space X into
a space Y with the Radon-Nykodim property (RNP). Then f is
Géteauz differentiable everywhere ezcept on an Aronszajn null
set.

We refer to [DU] for the RNP; a Banach space Y has the RNP if every
Lipschitz map g : R — Y is differentiable almost everywhere. Examples of
spaces that do not have the RNP include ¢ and L;(0,1). Reflexive spaces
do have the RNP. The set of Aronszajn null sets U is constructed as follows
(see [Ar]). Let E be a Banach space and let a € E be non-zero then we let

o U(a)={A CE : For all z € E the set AN (z+ Ra) is of Lebesgue

measure zero on the line z + Ra},



CONTENTS 9

e for every sequence (a,)22, C E with a, # 0 we let U((an)22,)={AC
E: A=UA, A, €U(a,)}, and

o U =NU((an),) where the intersection is over all complete sequences
in E. (A complete sequence is one whose closed linear span is E.)

Any hyperplane in 4, is Aronszajn null since in any complete sequence in £,
there is a line Ra such that any translate of Ra intersects the hyperplane in
a one-element set, which is of Lebesgue measure zero.



Chapter 1

Bump Functions

1.1 Introduction

We aim to prove Theorem 1.3.1 which is the following statement.

Let E be a Banach space which admits a continuous lower Fréchet
smooth bump function then E is an Asplund space.

We recall some definitions. Let E be a Banach space. A bump function on
E is a function b: E — R that has bounded non-empty support and attains
a positive value. We say that a function ¢ — R is Fréchet differentiable
at z € F if there is a continuous linear functional ¢'(z), called the Fréchet
derivative of ¢ at z, such that

_ _ !
i 2@ +h)—é(e) — (), h) _ o
lIAl|—o0 |2
A function ¢ : E — R is lower Fréchet smooth at z if
i i #(z + h) + ¢(z — h) — 2¢(z)
h—0 1]l

A set § C E is restdual if it is the complement of a first category set in E.
A Banach space F is an Asplund spacce if every continuous convex function
on FE is Fréchet differentiable on a residual set.

> 0.

1.2 Lemmata

We aim to establish the four Lemmata needed to prove Theorem 1.3.1.
Lemma 1.2.1 is a version of Ekeland’s variational principle which has found
many applications in non-linear analysis.

10
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Lemma 1.2.1 Let (T,d) be a complete metric space and let f : T — R be
continuous and bounded above, then given € > 0 there is a z € T such that

f(z) < f(z) + ed(z, 2)
forallz eT.

PROOF. The point 2 is the limit of a sequence (z,)2,, which we construct
inductively as follows. Let z¢ be any point in T. Suppose that for n > 0 we
have constructed the point z,,. We define a subset M,, by

M,={z€T|[f(z) - f(zn) 2 ed(z,2n) }.

Since z, € My, we may let S, = sup,¢y, f(2) and choose a point z,1 € M,
such that f(z,) > S, —2™™. We claim that

1. the sequence (f(zn))S2, is increasing,

2. the sequence (x,)%, is a Cauchy sequence which converges to a point
z’

3. If m > n then z,, € M,, and
4. f(z) < f(2) + ed(z,2) for all z € T.
For (1), using the definition of M, and that z,4; € M,, we have

f(@n41) = f(2a)

€d(ZTnt1,%n)
0.

ALY

For (2), since (f(z.))52, is increasing and bounded above, it is convergent
and therefore a Cauchy sequence. Given k > 0 we may choose a positive
integer N such that for all m > n > N we have f(z.,) — f(zn) < &. For all
m >n > N, we have

m—1

ed(@m,zn) < ) ed(zit1, i)

< ’f‘i[f(m,.ﬂ) — f(z:)]
= f(om) - f(zn) (1.1)

< K.
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Therefore (z,); is a Cauchy sequence which must converge to some point
z.

For (3) we see from (1.1) that f(zn) — f(zn) > €d(2m,zn). Therefore
Tm € M,.

For (4), supposing that it is not true that f(z) < f(2) + ed(z, 2) for all
z € T, we may find z such that f(z) > f(z) + ed(z, 2) + « for some a > 0.
We note that

e f is continuous,

e M, is closed for all n > 0,
o lim, o Tm = 2, and

o z,, € M, for all m > n.

Therefore z € M, for all n. We obtain

f(z) = f(zn) > f(2) = f(2a) + €d(z,2) +
> €(d(z,z,) +d(z,2)) +
> ed(z,z,) +a (1.2)

implying that ¢ € M, for all n. Since ed(z, z,) > 0 we have from (1.2) that
f(z) — f(zn) > a. But if z € M,,_; then f(z) < Sn_1 so that

2" > Sp1 — flza) 2 @

O

Lemma 1.2.2 is a version of the Hahn-Banach theorem which we state
without proof.

Lemma 1.2.2 Let E be a Banach space and M a linear subspace of E and
suppose that there is a linear functional z§; € M* such that ||z%;|| = 1. Then
there is a linear functional z* on E such that ||z*|| = 1 and

(.’I:*, m) = (m,lk\b :1:‘)

forallz € M.
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Let € > 0, then we define a norm || - || to be e-rough at z if

h —h|| -2
o L4 AL 2= Bl = 202]) |
. I

(1.3)

We note that, by the triangle inequality, the value of € cannot exceed 2. A
norm is said to be e-rough if it is e-rough at all 2. Lemma 1.2.3 is a result of

E. B. Leach and J. H. M. Whitfield [LW].

Lemma 1.2.3 A Banach space E is not an Asplund space if and only if for
some € > 0 E admits an equivalent e-rough norm.

In Lemma 1.2.4 we show that if a norm is e-rough at 2 then for any § > 0
we can find ||A|| < 26 for which %ﬂfﬂ > ¢/8 and ”';ﬁy‘ﬁ”iu > €/8.
Lemma 1.2.4 Let || - || be a norm on a Banach space E that is e-rough at
z. Then for all § for which 5”43“ > 6 > 0 there is a h such that

(i) |z + k) = |z — &,
(ii) ||k|| < 26, and

‘e ”z—{-il —|iz €
(i) = 25
ProOOF. The point h is obtained from h by subtracting a small z component.
Applying the Hahn-Banach theorem we find a functional z* which attains

its norm in the z direction and subtracting z* from the norm we obtain a

convex function f with which we may estimate ”z—"'l%liﬁ”fu

Suppose that h and § are such that, ﬂjfu >8>0, | k|| <8, “""h”""h’h_”h“_zuz"
> € and that ||z + A|| > ||z — &||. To construct & we first definea: R — E
by a(t) = h —tz. Defining a : R — R by a(2) = ||z + a(¢)|| — ||z — a(¢)||, and
noting that

e a(0) >0, and
o a(1) = ||All - ]2z — ]| <0,

we may use the intermediate value theorem to obtain a real number ¢, € (0, 1)
with a(to) = 0. We let h = a(to) so that

Iz = h|| = ||z + | (1.4)
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which is property (i) of h. Substituting A = a(to) = h — toz in equation (1.4)
gives ||z — h + toz|| = ||z + h — toz| and applying the triangle inequality we
obtain (1 + to)||z]| — ||h]| < (1 — to)||2]| + ||#|| which simplifies as

tollz| < |A]|. (1.5)
Therefore

IRl = [lh—toz]
1A]] + ol | 2]l
2R

26.

VAN VARV

property (ii) of h.

Applying the Hahn-Banach theorem in the form of Lemma 1.2.2 with
M = span {z}, and z},; defined by (z};,tz) = t||z|| for all tz € span {2},
we find a functional z* with ||z*|| = 1 and (z*, 2) = ||z||. Defining f : E - R
by f(z) = ||z|| — (z*,z) we claim that f has the following properties:

1. f is convex and non-negative,
2. Lip (f) £2,

3. f(Az) =0forall A >0,

4. f(Az) = Af(z) for all A > 0,
5 f(z+h) < f(z+ h), and

6. LEHREIEh) 5 1y

lIA]
For (1), f is the sum of || - || and —z* and is therefore convex. Since
|lz*|| < 1, then f is non-negative.
For (2),
Lip (f) < Lip (||-[) +Lip (=*)
< 2

For (3) we have for any A > 0 that

F(Az) = [Az]| = (2%, A2)

= Izl = (=", 2))
= 0.
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For (4) we have for any A > 0 that

fQz) = [Az]| - (¥, Az)
= Alllzll - (=*,2))
= Af(z).
For (5), since h — h = t,z, we have (z*,h — h) = ||h — h||. Hence
flz+h) = f(z+ k) = |l2+Ahll - ||z + Al + (", h — k)
= |lz+h| = |2+ &l + |A - |
> 0.

For (6) we let 8 = 1/(1 + 1) so that 0 < 8 < 1 and recalling that
h = h + toz, we obtain

. Z(l + to) - h
z—fBh = BRIy I,
= B(z— ib)
Applying property (4) of f to f(z — Bh) with f non-negative gives
f(z—ph) = Bf(z—h)
< f(z—h). (1.6)
Using (1.6), and properties (5) and (2) of f, we estimate
fz+h)+ f(z—h) < flz+h)+f(z—h)
< flz+h)+ f(z — k) + (f(z — h) — f(z ~ Bh))
< f(z+h)+ f(z = ) +2(1 = B)|All. (1.7)
From (1.5) we have:
1-8 = tof/(1+t)
< o
< IAlI/1l=]l- (1.8)

Therefore substituting (1.8) and ||A| < 2||A|| in (1.7) gives

fz+m)+fz=h) | fz+h)+f(z—h)

I1A]] - |12
fGAR =k

mw( (1=4)
FeR)+f—h) Al

2A] w9
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By hypothesis ||A| < § < 5”43[[ so that

fz+h)+f(z=h) _ lz+hl+]z— Al 2|z
[2A]] 2Rl
—>_ €

5.
From (1.9) we have ﬂihl)ﬁf(ﬂ > £ and using ||z + A|| = ||z — k|| we deduce
that o
Iz + Al — Izl €
|1&] 8

1.3 An improvement on Ekeland-Lebourg

The following Theorem improves on the result of Ekeland and Lebourg that
a Banach space that admits a Fréchet differentiable bump function is an
Asplund space.

Theorem 1.3.1 Let E be a Banach space which admits an upper semicon-
tinuous lower Fréchet smooth bump function, then E is an Asplund space.

PROOF. We argue by contradiction. Suppose that E is not an Asplund space
so that, by Lemma 1.2.3, E admits an equivalent e-rough norm for some € >
0. Letting S = {z : 4b(z)+||z|| > 3} where we may suppose that b is a lower
Fréchet smooth bump function such that 5(0) = 1 and spt (b) C B(0,1), and
applying Ekeland’s variational principle (Lemma 1.2.1) to T' = SNB(0,2) we
obtain an Ekeland maximum point of the norm at which the bump function
b is not lower Fréchet smooth.

The set T is non-empty since 0 € T. We show that T C B(0,1). Indeed
if ¢ € T'\ spt (b) then, since b(z) = 0 and = € S, we must have ||z|| > 3. But
T C B(0,2). Therefore T\ spt (b) = 0. Hence T' C spt (b) C B(0,1).

Define a metricon T by d(z,y) = ||z—y||. Since b is upper semicontinuous
S is closed; so T is complete and Ekeland’s variational principle ( Lemma
1.2.1) is applicable in T'. For the continuous function || - ||, which is bounded
above, we obtain a point z such that

e — 2|

< g
2] < 1zl + el

for all z € T'. Since b is lower smooth T' # {0} so that z # 0.
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Let 0 <6< Eﬂfll be such that

b(z + k) + b(z — h) — 2b(2) o _E
il 16

for 0 < ||h| < 26. Since the norm is e-rough at z we may apply Lemma 1.2.4
to obtain a point h € E with the following properties:

o A <26<1,

Uiﬁyjﬂiﬂ > €/8, and

o llz+ Al = |z - A].

Wecla.imi;hatz—i—izéT,andz—iLgET. )
If 24+ h € T then Ekeland’s variational principle implies that ||z + A|| <

Iz + 5[1]%” which contradicts the roughness of the norm, that is, ||z|| + ﬂ%ﬂ <
|z + iz|| Similarly z — h € T would imply that

ellrll o

IIhII

=[] + <z = hl| < Jl2ll + =5~

Since ||z|| < 1 and as ||A|| < 1 we have z + A € B(0,2) and 2 — h € B(0,2).
From the definition of T' we deduce that z+ h ¢ S and z — h ¢ S. From the
definition of the set S we obtain 4b(z+A)+||z+h|| < 3 and 4b(2— B)+||z—h|| <
3. It follows that

(b2 + ) +b(z — h) — 20(2) Lzt Bl + ||z — hi| — 22|

0< -
1A I12]

<0

which is a contradiction. Hence F is an Asplund space. a



Chapter 2

Gateaux Differentiability on
C(K) Spaces

2.1 Introduction

We are working on (%otally) ordered. spaces K which we always consider in
their order topology. We will assume that K is compact and first countable.
We refer to [Na| for a comprehensive treatment of the order topology. For
arbitrary a, b we write

(a,b) = {z : min{a, b} < z < max{a, b}},

[a,b] = {z : min{a, b} < z < max{a, b}}.

The open interval (a, b) is an open set. Our assumption that K is compact
implies that K is order complete, that is every monotone sequence is con-
vergent; also every nonempty subset of K has a supremum and infémum.
A non-trivial example of an ordered space is given in the text on page 65
where we define the space I, of signed points (z,1),(z, —1) on the unit inter-
val [0,1]. C(K) denotes the set of continuous functions on K with the usual
norm on C(K) defined by ||g|| = sup zex|g(z)|.

In section 2.3 we introduce the oscillation and wedge topologies, T, and
Tw on C(K), we show that they are equivalent and we deduce the main prop-
erties of 7,. In section 2.4 we obtain a differentiability result for continuous
convex functions on a Banach space E for which there is a topology 7 finer
than the norm topology in which the neighbourhoods of 0 satisfy a geomet-
ric condition. This result is used in section 2.7 to show that a continuous
convex function f on C(I,) (which is essentially the space D of functions on
[0,1] with a right limit at 0, a left limit at 1, and left and right limits at all

18
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other points) for which each subdifferential 0f(¢) contains only non-atomic
measures 1s Gateaux differentiable on a 7, residual set. Section 2.5 contains
results for continuous convex functions f on C(K) for which each subdiffer-
ential 3f(¢) contains a Dirac measure. In section 2.6 we extend the results
of section 2.5 to the case of subdifferentials that always contain a measure
with finite support. In the final section we prove our main result, Theorem
2.6.7, which states that a continuous convez function f on C(K) for which
each subdifferential 0f(p) contains a measure with finite support is Gdteauz
differentiable on a 7, residual set. Our results are far short showing that
C(1,) is a Gateaux differentiability space since we have only considered the
two extreme cases.

Recalling the definitions of some topological concepts, we have that a
compact Hausdorff space K is first countable if for every z € K there is
a sequence (Upn(z))52, of neighbourhoods of z such that if U is any neigh-
bourhood of z then there is a neighbourhood Uj in the sequence such that
U, CcU.

A topological space E is called a Baire space if for any set X C E, that
is a countable union of nowhere dense sets, the complement E \ X is dense
in E. The Banach-Mazur game [Ox] is a two person game with players A
and B as follows. Let S be a subset of a topological space E. A play is a
decreasing sequence

U 0WVWDU, D

of non-empty open subsets of E which have been chosen alternately by A
and B. Player A chooses U;, B chooses V;, A chooses U, etc. A strategy for
B is a sequence fp = (fn)32, of maps f, where each f, is defined on the set

{U1,W,Us,...,Un}
of first 2n — 1 elements of a play and
fa(U, V1, Us, ..., Up)
is a non-empty open subset of U,. A play is consistent with fp if
fa(U, V1, Us,...,Up) =V,
for all n. We say that fp is a winning strategy for B if
ﬁ icS
=1

for every play consistent with fg. We note the following properties of the
Banach-Mazur game.
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o A subset S of a topological space E is residual if and only if there is a
winning strategy for B [0x].

o A topological space E is a Baire space if player B has a strategy fp
such that
N2,V #0

for all plays consistent with fg [Ch].

2.2 Functi_o'ns on orjckﬂ_md QF O_L_C,QS

We study the oscillation of a function on K and include two existence lem-
mata for C(K) functions.

Definition 2.2.1 Let f : K — R be a real valued function defined on K. Let
[a,b] C K be a closed interval with end points a and b with a not necessarily
less than b. We define the oscillation of f on [a,b] as

osc (f, [a,b]) = sup uuefay|f(u) — F(v)I.
Lemma 2.2.2 Let [a,b] C K be a closed interval and g,k € C(K), then
(i) osc (f +g,1a,b]) < osc (f, [a, b]) + osc (g, [a, 8]) and
(it) osc (fg,[a,b]) < osc (f,[a,b])sup|g| + osc (g,[a,b])sup|f]|

where the supremum is taken over [a, b].

PROOF. Apply the triangle inequality for the modulus of the sum of two
functions. This fact coupled with the fact that the supremum of the sum of
two functions on a set is less than the sum of their suprema is sufficient to
prove both statements. a

Lemma 2.2.3 Let (g.)%2, be a sequence of functions in C(K) that converges
pointwise to a function g € C(K). Then for any interval [a,b] C K

(1) liminf,,,c osc (gn, [a, d]) > osc (g, [a,b]) and
(it) if (9n)3, converges uniformly to g then

lim osc (s, [a, b]) = osc (g, [a, b]).

n—o0
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PROOF. For (z) suppose that (g,)32, converges pointwise to g and [a, b] is

n=1

any interval. Since [a, b] is compact there are points u,v € [a, b] such that

osc (g) [a’: b]) = Ig(u) - g(’U)l
But foralln >1
05¢ (gn, [@,8]) > |gn(u) — gn(v)]-
Therefore
lminfose (g0, [o,8) > Jim [g(s) — ga(0)| = o5¢ (9, s, B).

For (32) we apply the triangle inequality,

losc (gn, [a, 8]) — osc (g, [a, b])| < osc (g —~ g, [a, b]) < 2||gn — g]-

O

Lemma 2.2.4 is a monotonic version of Urysohn’s lemma. This result is
well known and proved in [Na] (page 30) under much more general conditions.

Lemma 2.2.4 Let a,b € K and a < b then there is a non-decreasing func-
tion g € C(K) such that

o2 -{ 5255

PROOF. We say that an interval [a, b] has a gap if there are points  and y
in [a, b] such that (z,y) = 0.
Suppose that the interval [a, b] has a gap (z,y). It suffices to let g be the

function defined by
_J 0 ifz<z
9(2)=11 itz > y.

Suppose that there are no gaps in [a, b]. We construct g as follows. Let
QN J[0,1] = ()R, be an enumeration of the rationals in the closed unit
interval such that ro =0 and »; = 1.

We find a sequence, (b;)2,, in K such that

e b, < b; whenever r; < rj,
® by =a, and

[ ] b1:b
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The sequence b; may be constucted inductively as follows. Suppose that
k > 1 and we have constructed (b;)%_,. Let

rn=max{r; : 0<i<kandr <7g41}

and
rm =min{r; : 0<i<kandr;>re }.

Since r; < 7y, and there are no gaps in [a, b] then we may choose a point
z € (b, by,) and let bpyq = z.
We claim that the function g defined by

_ inf b;>zT4 if z S b
9(z) =1 1 ifz>b.

is continuous, non-decreasing, g(z) = 0 for z < a, and g(z) = 1 for z > b.

We have g(a) = infy,5.7; = 70 = 0 and g(b) = info, oy =7 = 1. If
y1 < Y2, noting that {b; : y3 < b} D {b : y2 < b}, then g(y1) < g(y2).
It remains to show that g is continuous. Let Ly = {z € K : z < b; } and
R,={z€ K : z>b;} Then L; and R; are open sets. Given any z € [0, 1]
the function g satisfies the relations

e ¢71([0,2)) = Up,;¢; Li and
o 9_1((2: 1]) = Up>: Ri.

Therefore the inverse image of any open set under g is open and therefore g
is continuous. a

Lemma 2.2.5 asserts that there is a continuous function that dominates
a given bounded function.

Lemma 2.2.5 Let: K — R be a bounded function on K such that
ligi(s) = 0
for some t € K. Then there is a function n € C(K) such that
(i) n(s) > #(s) if s # ¢ and
(ii) () = 0.
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PROOF. We define 7(t) = 0. To define n(s) for s > t we distinguish two
cases: when ¢ is isolated from the right for which we let

”(s) = 1+ sup fi(uw)

for all s > t; and when ¢ is not isolated from the right for which we find a
sequence t; > t3 > ... > t such that (u) < 27*7! for each t < u < t; and
¢ > 1. Letting n(s) = sup || + 1 if s > t; and on each interval [t;41,%;], 7 > 2
using Lemma 2.2.4 we obtain a non-decreasing function g; such that

(z) _ 2_': ifz=1;
INEIZN 27 if 2 = i
On [ts,t] similary find g, such that

supp|+1 fz=t
92(2)2{ 92-2 |nl 1fz=t:

We let n(s) = gi(s) whenever s € [ti+1,t]. The definition of 5(s) for s < ¢ is
similar. O

2.3 The oscillation and wedge topology

We introduce the oscillation topology and the wedge topology for C(K). In
Lemma 2.3.3 we show that these topologies are equivalent and in Lemma
2.3.5 we list their main properties.

Definition 2.3.1 Suppose that € > 0 and w € C(K) is a non-negative func-
tion such that card { z € K : w(z) = 0} is finite. Then we denote by B,
the set of subsets U,(0,€,w) C C(K) where g € Uy(0, €,w) if and only if

o |g(z)| < € forallz € K and

o for all [a,b] C K such that a is an accumulation point of [a,d], and
w(a) = 0 we have

osc (g, [a,b]) < sup ,e[ayw(2)-

Let A denote the set of accumulation points of K. We let Ay denote the set
of left accumulation points of K defined as

Ar={leK : (l,a)#0foralla >1},
and Agr denote the set of right accumulation points of K defined as

Agp={re K : (br)#0forallb<r}.
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Definition 2.3.2 Suppose that
e >0,
e L C Ay and card L is finite,

e R C AR and card R is finite,

{diher C C(K), is a family of monotonic non-decreasing non-negative
functions such that ¢i(y) =0 ify <! and i(y) > 0 ify > I, and

o {Yr}rer C C(K) is a family of monotonic non-increasing non-negative
functions such that ¥,(y) =0 ify > r and ¢,(y) > 0 if y < .

Then we denote by B,, the set of subsets Uy (0, €, {1 }icrL, {¥r}rer) C C(K)
where g € Uy(0, €, {1 }icr, {¢r}rer) if and only of

o |g(z)| <€ forallz € K,
o for alll € L and all a > | we have |g(a) — g(1)| < ¢i(a), and
o for allr € R and all b < v we have |g(b) — g(r)| < ¥(b).

For convenience we will refer to {¢; }icr as the left wedge functions of U,, and
{%-}-cr as the right wedge functions of U,,.

We may use the sets B, and B,, to define the oscillation topology and the
wedge topology respectively. A subset G C C(K) is defined to be 7,-open if
for all g € G there is a Uy € B, such that

9+U, CG.

To simplify this notation, we shall write Us(g, €,w) for g + Uy(0,€,w). We
define 7,-open sets similarly. In Lemma 2.3.3 we show that 7, and 7, are
equivalent.

Lemma 2.3.3 Every U € B, contains a V € B,, and vice versa.

PROOF. We first show that every non-empty V' € B, contains a non-empty
U € B,. Suppose that V = U,(0, €, {d1 herL, {r}rer). We let

wr(s) = minéi(s)

and
wr(s) = rrnziilz,b,(s).
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For each z € L U R we use Lemma 2.2.5 with 7 = 0 to find 7, € C(K) such
that 75(z) = 0 and 7:(y) > 0 for y # z. We let 9(s) = mingerurn(s) and
w = 1/2min{wr,wr,n}. Then w is continuous, since the only discontinuities
of min{wg,wr} occur at points in ¢ € L U R at which lim,_,, n(y) = 0; since
0 < w < 7y then lim,,; w(y) = w(z). Moreover, {z € K : w(z) =0} = LUR
1s finite.

With this definition of w we find that if g € U,(0, €,w) then for [ € L and
a > | we have

l9(a) —g(1)] < osc(g,[l,a])

< sup zE[l,a]w(z)
<

éi(a).

Similarly for » € R and b < r we have |g(b) — g(r)| < %(b) and hence g € V.

Conversely we must show that every non-empty U € B, contains a non-
empty V € B,,. Given U,(0, ¢,w) we require finite families of wedge functions
{#1her, and {¢;}rer such that, for any g € C(K) satisfying,

e |g(a)— g(I)] < $(a) for all l € L and all @ > ! and
o |g(b) —g(r)| <#,(b)forallr € Randallb< r,

then g must satisfy osc (g, [a, b]) < sup ,e[qpw(2) for all [a,b] C K such that
a is an accumulation point of [a, b], and w(a) = 0.

To construct our wedge functions we use monotonic functions of the form
éi(z) = sup;c,<, w(z). Suppose that F' = {ay,...,ax} is the set of accumu-
lation points of K at which the function w is zero, with L C F the set of left
accumulation points and R C F' the set of right accumulation points. The
construction is as follows.

(i) In each interval [a;,a;+1) we find the point £; such that
t; = max{t : w(t) = max ;¢[q;0;4, )W (2)}-
Then either t; € (a;,a;41) with w(¢;) > 0 or ¢; = a; and w(¢;) = 0.

(ii) Find to < a; such that w(to) = max,<sw(z) and we find
tr > ag such that w(tx) = max ,>4,w(2).



CHAPTER 2. GATEAUX DIFFERENTIABILITY ON C(K) SPACES 26

(ii1) For a; € L we define

SUP,.c,crwW(2)/4 Hfa; <z <ty
dai(z) = ¢ w(t;)/4 ifz >t
0 if z <a;.

(iv) For a; € R we define

SUD,,> 52 w(z)/4 fa;>z >t

Yo, (z) = { w(ti-1)/4 ifz<t,_,

0 ifz > a;.

We must verify that each ¢; and 1, are indeed wedge functions. Since
w 1s continuous, they are continuous. Suppose that a; is a right accumula-
tion point of K and that a; > z; > z3 > t;—;. Then [a;,z1] C [a;, z2] so
that sup{ w(2)| a; > 2z > z; } < sup{ w(z)| ai > 2z > z, }. Therefore
1, 1s monotonic non-increasing on [t;_1, a;]. Also 9,;(z) is constant on the
remaining two intervals, with maximum value w(¢;_,)/4 when z < ¢,_; and
zero when z > a;, so that 9, is a right wedge function. Applying a similar
argument we may show that if a; is a left accumulation point then ¢,,(z) is

a left wedge function. Therefore Uy (0, €1, {¢1}ier, {¥r}rer) is in By,

We claim that V = Uy(0, €, {1 }icr, {¥r}rer) C Uo(0, €,w). Suppose that
g € V, then clearly |g(z)| < € for all z € K. Let [a,b] C K, w(a) =0, and let
a be an accumulation point of [a,d]. If @ < b, then a = a; € L. We choose
z,y € [a, b] realising the oscillation of g on [a,b] and estimate that

osc (g,[a,8]) = lg(z) - g(y)|

< lg(a) — g(z)| + lg(a) — g(v)|

< a(z) + fa(y)

< 24a(d)

< sup w(2)/2
a<z<b

< sup w(z).
a<z<b

A similar estimate applies when a > b. This concludes the proof. |

L.2.3.4

Let E be an abelian group and B a collection subsets of E, each element
of B containing 0. Suppose further that
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(1) the intersection of any two elements of B contains an element of

B,
(i1) U = =U for U € B,
(iii) given U € B, thereis a V € B such that V + V C U, and that
(iv) the intersection of all elements of B is {0}.

We say that 7 is the topology defined by B if G is in 7 if and only if for all
g € G that there is a U, € B such that

g+U, CG.

This definition of 7 together with (z)- (tv) makes (E, ) a Hausdorff topo-
logical space and that addition and inverse are continuous (see[Di] page 35);
hence (£, 7) is an abelian topological group.

We make use of the following standard result for abelian topological
groups.

Lemma 2.3.4 Let 7 be the topology defined by a collection of sets B with
properties (1)—(wv) above, then

1. every element of B is a neighbourhood of 0,
2. B is a basis of neighbourhoods of 0,
3. ( B ,7) is a Hausdorff topological space, and
4. ( E ,7) is a topological group.
Lemma 2.3.5 The topology 7, has the following properties:

(i) the intersection of two elements of B, contains an element of

B.,

(11) every element of B, is conver and symmetric,

(11i) given U € B, there is a V € B such that V +V C U,
() every element of B, is a 7, neighbourhood of 0,

(v) B, is a basis of neighbourhoods of 0 in 7,,
(vi) (C(K),7,) is a Hausdorff topological space,
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(vii) (C(K),T,) is a topological group,

(viii) iof f € C(K) then the mapping defined by A — Af from R
to C(K) is continuous if and only if f attains only finitely many
values, in particular (C(K),7,) is not a topological vector space
unless K s finite,

(1z) the topology 7, is finer than the norm topology,
(z) if U € B, u € C(K), and € > 0, then UNUgcece B(tu, te) # 0,

and
(zi) (C(K),7,) is a Baire space.

PROOF. To show (z), that the intersection of any two elements of B, contains
an element of B,, suppose that U,(0, €;,w;) and Uy(0, €2,w,) are given. It
suffices to let €3 = min{e;, €2}, and w3 = min{wy,w,}, then ws is non-negative
with finitely many zeros and we have

U,(0, €3,w3) C Uy(0, €1, w1) N Uy(0, €2, ws).

For (7i), that every element of B, is convex and symmetric, let g1,9; €
U,(0,€,w) € B,. For each a such that 0 < a < 1 we must show that ag, +
(1 —a)gz € Uy(0,€,w). We have that

lagr + (1 — @)l < aflgsll + (1 — a)llgzll <€
and for any closed interval [a,b] C K such that a is an accumulation point
of [a,b], and w(a) = 0, we have (applying Lemma 2.2.2) that

0sc (agl + (1 - a)gz, [a: b]) < aosc (gla [a: b]) + (1 - OL)OSC (92) [a'a b])

< SUP gefa,bw(2)
Therefore U,(0, €,w) is convex. It is symmetric since if A € U,(0, €,w) then

—h € Uy(0,¢,w).
For (#41), given U = U,(0,¢,w) we let V = U,(0,€/2,w/2)Then V+V C U.

For (1v)-(vii) we apply Lemma 2.3.4 using properties (¢)—(#41) of Lemma
2.3.5 and noting that the intersection of all U,(0, €, w) is clearly just {0}.

For (wii), suppose first that the function f attains only finitely many
values (¢;)™,. It is sufficient to show continuity of A — Af at A = 0. Given
any non-empty neighbourhood of the origin U,(0, €,w), we must find § > 0
such that if |u| < § then we have
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e [ulllf]l < eand

e for any interval [a, b] such that a is an accumulation point of [a, b], and
w(a) = 0 we have |g|osc (f, [a, b]) < sup ,efapw(2).

Let F' be the set of zeros of w and let L = FN Ay and R = FN Agr. Since
F is finite and f is continuous, for each a € L there is at > a such that f is
constant on [a,a*] and w(at) > 0. Similarly for each a € R there is a~ such
that f is constant on [a”,a] and w(a™) > 0. Let d = min{w(a™),w(a™)},
e = maXi<igj<n|€i — ¢j|. Let § = min{ ETITH’% } and |p| < & so that
le||l 7]l < €. We must show that for any interval [a, b] such that a € F, and
a is an accumulation point of [a, b] we have |u|osc (f,[a, b]) < sup ,efapw(z).
We assume that b > a; the remaining case b < a is similar. If b < a*, then
|ulosc (f,[a,b]) =0 < sup ,¢ppw(z). If b > a™, then

|ulosc (£,[a,8]) < ée

d
w(a™)

SUP 2¢[a,bw(2).

IANIA A A

This proves the sufficiency of f having finitely many values for continuity of
scalar multiplication of f.

We must show the necessity of the condition, that if A — Af is con-
tinuous then the function f has only finitely many values. Suppose to
the contrary that f does not have finitely many values. Then there are
(f(t:)2, such that f(¢;) # f(¢;) if © # j. Passing to a subsequence we
may suppose that the sequence is ¢; is strictly monotonic and lim; o t; = .
Assume that t; is strictly increasing. Because of Lemma 2.3.3 it suffices
to find Uy(0,¢€,{é1hier, {¥r}rer) such that for any § > 0 we have 6f ¢
Uw(0, €, {d1 }icL, {¥r }rer). With this in view we let L = 0, R = {t} and we
construct a function ¢, : K — R with a unique zero at ¢ as follows. Let
Pe(t;) = 27%0sc (f, [t,t:]) for all 2 > 1. For 2 < ¢; let 9(z) = w(t1). We may
choose, by Lemma 2.2.4, continuous functions g; : [, t;+1] — R such that

] . W(t,'+1) if z= t,’_+1
gt(z) - { w(t,-) if z= t,'.

Then we define ¥,(2) = gi(2) if z € [ti, tiy1]. For z > t we let 94(2) = 0. For
any & > 0 there is an interval [¢, d] such that dosc (f, [t,d]) > sup ,ep,q¥e(2)-
We need only choose d = t; for some 4 such that 2=* < 6. So §f does not
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belong to our neighbourhood. Therefore A +— Af is not continuous at A = 0.
The case when t; is decreasing is similar.

For (iz), that the topology 7, is finer than the norm topology, we note that
for any w, non-negative with finitely many zeros, we have U, (0, §,w) C B(0, §)
for any open ball B(0,4), centre 0 and radius § > 0.

For (z), that if U € B,, u € C(K), and € > 0, then U NUgcsce B(tu, te) #
0. We suppose that U = U,(0, x,w) and Fj is the set of zeros of w. We must
find t € R,u’' € C(K) such that 0 < ¢ < € and

L ||u — tu|| < te,
2. ||[v|| < &, and

3. if a € Fy, and a is an accumulation point of [a, b], then we have
osc (u', [a, b]) < sup ;ef,pw(2).

Let Fo = {z € K : w(z) =0} = {z1,---,2zx} where z; < z3 < -+ <
zr. We construct u’ as follows. Choose disjoint intervals ([c;, d;])%_, and a
real number ¢ > 0 as follows. Let 2o = minK and z34; = maxK. For
1=1,2,...,k if z; € Ar we define ¢, d; as follows. Choose ¢; € (z;_1, ;)
and put A; = [zi_y,c). If z; ¢ Agr let ¢; = z;, and A; = [z;_1, ). Also let
Ck+1 = Tk1 o that if z; € Ay choose d; € (z;,cit1) and let B; = [d;, ;4] If
T; $ Ay let d; = z;, and B; = (di;ci+1]~

Denote A = A;U(B1 N A)U((BaNA3)U...U(Bg-1 N Ax) U By. Then
A is a compact set and AN Fy = 0. Hence ¢ = infyeq w(z)/2 > 0.

Choose t such that 0 < t < min{e, -, Wuﬁllﬁ’m’ »,1}. Choosing a
function b € C(K) by Tietze’s theorem such that

e ||b]| < € and
o b(z) = —u(z) + u(z;) for « € [c;, d;] for each 7 such that 1 <17 <k,

we define v’ € C(K) as u' = tu + tb. Having defined v’ and ¢t we verify
relations (1), (2) and (3). For relation (1) we note that ||u’—tul|| = ¢||b]| < te.
For relation (2) using the estimates ||u'|| < ||tu|| + ||td]], ||5]] < €, and
0 <t < min{5p3, 5}, we obtain Ilv|| < .
To verify relation (3) it suffices to show that for any z;, if z; is an accu-
mulation point of [z;, b], then osc (u, [x;, b]) < sup ,¢[z; 5w(2). There are two
cases for b.
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Case (i) [z;,b] C [c;,d:]. Noting that v’ takes the constant value
tu(z;) on [c;, d;], we obtain osc (v, [x;, b]) = 0. Since sup ,¢[z; yw(z) >
0, then

osc (v, [z, b]) < sup ez pw(2).
Case (ii) [z, 8] \ [ci,di] # 0. Using that osc (v/, K) < 2t|ju| +
2t||b|| < 2c, that d; € [z;, ], and w(d;) > 2¢, we obtain

osc (v, [z;, 5] \ UK, [c, i) osc (u/, K)
2c
w(d;)

SUp ze[z; ,b]w(m)-

ININ AN

This ends the proof of property (x).

For (z1), that (C(K),,) is a Baire space, we play the Banach-Mazur
game. We recall that in any play, player A chooses a sequence of 7, open

sets (Un )2, and player B chooses a sequence of 7, open sets (V,,)2; so that

U DViDUy--- DUy D Vy,---. We intend to show that there is a strategy
for player B such that N2,V is non-empty. Suppose that player A chooses
a non-empty open subset Uy C C(K). Then player B may choose any basic
neighbourhood U(g1, k1, A1) C U; and further chooses Vi = U(gy, €1,w1) C
U(g1, k1, A1) where

1. g = “—Bﬁ;“—’l} and
2. Wy = A1/2

Suppose that after n turns player A has chosen subsets (U;)%, and player B
has chosen (V;)?7} so that U3 D V3 DUy -+ D Up_g D Viuy D Us,. Player B,
choosing any basic neighbourhood U(gnt1, £n+1, Ant1) C Un, chooses further
Vn+1 = U(gn+1, €nt1, wn+1) C U(gn+1, Knt1, An+1) Where

® €ny1 = % and
® Wni1 = Any1/2.
We claim that
1. (g:)2, is a norm Cauchy sequence with limit h € C(K) and

2. hene, Vi
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Verifying claim (1), we have the estimate ||gi11 — gil| < $ < % < ;. Thus
(g:)%2, is a Cauchy sequence with limit h € C(K).

For claim (2) let F; be the set of zeros of w;. We show that for each 2
we have ||h — gi+1|| < €41 < Kit1, and for any a € F;y; such that a is an
accumulation point of [a, b] that

osc (h — git1, [a,B]) < sup sefapwir1(2) < SUP sefapriva(2).

It follows that h € U;y; C V; for each 7 and hence that A € N2, V;. For
the former inequality, using the triangle inequality, we obtain for all positive
integers j that ||h — git1|| < ||h — g;]| + ||g5 — gi+1]|. Choosing M sufficiently

large so that for all § > M we have ||h — g;|| < =f* and g; € V;11, we obtain

Kit1

|h = giyal| < + €41 = Kip1.

Similarly for the latter inequality, using relation (z) of Lemma 2.2.2 we ob-
tain for each positive integer j that osc (h — gi41, [a, b]) < osc (h— g, [a, b]) +
osc (g; — gi+1,[a,b]). By relation (¢7) of Lemma 2.2.3, the uniform con-
vergence of g; to h, and that h € V,;,, we may choose M sufficiently large
that for all j > M we have osc (h — g;, [a, b]) < sup ,¢[apwi+1(2). Then since
g5 € ‘/H-la

osc (b — gis1,[a,8]) < supeppwisi(2) + 51[1P]w£+1(2)
z€|x,y,

= sup Ai1(2).
z€[a,b]

In section 2.5 we use the following Lemma to construct 7o-open sets.

Lemma 2.3.6 Let G be an open subset of K, let t € G, let a € R, and let
A € C(K) be such that A(t) = 0. Then the sets

Vi= {4 €C(K) : §(s) < 9(t) + A(s)ifs € T\ {t} }

and
Vo ={¢ € C(K) : |¢(s)| < ad(t)ifs ¢ G}
of C(K) are 1o-open.
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PROOF. We prove the simplest case first, V3, which is in fact open in the
norm topology. If G = K then V, = C(K), and so, supposing that K\ G # 0,
we let ¢; € V, and, by compactness of K \ G, we find a point s; ¢ G such
that sup ,¢c|¢di(s)] = |¢1(s1)|. If we choose 0 < € < Mﬁlﬁlﬁ%ﬂﬂ then the
open ball B(¢y,¢€) is a subset of V; since, if s ¢ G and ¢ € B(¢1,¢€) then we

estimate that

lp(s)]

[41(s)] + [l — &l
|$1(s1)] + €

ady(t) — €lal
ad(t).

AN N A

Hence ¢ € V5.

For Vi, supposing that ¢q € Vi, we require U(0, €g,wp) such that ¢o +
U(0,€e,wo) C V1. If t is a left and right accumulation point of K then we
choose an interval (a, ) 3 ¢ such that (a,b) C G. To find wy we first define
6:(a,b) — R by

0(3) — 1nf ze[,,b))\(z) + ¢o(t) - ¢0(Z) lf S Z t
inf e (a,A(2) 4+ do(t) — do(2) if s < 2.
We now define wo : K — R by
0(s) if s € (a,bd)
wo(s)= ¢ 6(b) ifs>b
6(a) ifs<a
and let
€ = 1/2 1nf 365\(‘1&)()\(3) -|— ¢0(t) - ¢0(3)) > 0
Then wy is non-negative with exactly one zero at ¢. Supposing that ¢ €

$o + U(0, €0, wo) we have
® |[¢ — ¢o|| < € and

e for all s # ¢ that osc (¢ — o, [t,3]) < sup e[, wo(2).
We show that ¢ € V;. There are two cases for s, either s € (a,b) or s €
G\ (a,b). If s € G\ (a,b) we have

¢(s) — ¢(t) — (do(s) — o(t)) osc (¢ — do, [t,5])
2||¢ — dol|

260

Ms) + ¢o(t) — do(s)-

IN AN CIA A
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Hence ¢(s) — ¢(t) < A(s).
For the remaining case, that is when s € (a,b), using the definition of
6(s) we estimate that

¢(s) — ¢(t) — (bo(s) — ¢o(t)) osc (¢ — ¢o, [t, s])

sup ze[t,a]wo(z)

A(s) + do(t) — do(s)-

IN AN

Hence ¢(s) — ¢(t) < A(s).

In both cases we obtain ¢(s) < ¢(¢) + A(s) implying that ¢ € V; when ¢
is both a right and a left accumulation point.

The remaining cases are:

e tis a right accumulation point but not a left accumulation point;
e tis a left accumulation point but not a right accumulation point;
e t is an isolated point.

If ¢ is a right accumulation point but not a left accumulation point then we
can use the preceding argument, replacing the interval (a, b) with an interval
of the form (a, t]. The case when t is a left accumulation point but not a right
accumulation point is dealt with similarly. If ¢ is an isolated point then we
have inf , z,.,(M(s) + ¢o(t) — ¢o(s)) = & > 0. Defining wo : K — R by

() = 0 fs=t
wols) =\ & ifs #1
and €, = £/2 gives ¢o + U(0, €0, wo) C V4. o

2.4 Directional derivatives

Recalling statement (x) of Lemma 2.3.3 we have that any non-empty 7,
open set U € B, intersects any cone of arbitrarily small diameter in at least
one point. In Lemma 2.4.1 we deduce from this property that a continuous
convex function f on C(K) has directional derivatives in any fixed direction
on a T,-residual set.

Lemma 2.4.1 Suppose that a translational invariant topology T of a Banach
space E 1is finer than the norm topology and is such that

Un |J Bltu,te) # 0

0<te
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whenever u € E, € > 0 and U is 7 open and contains 0. Then for every
continuous convez function f on E and every e € E the set of points ¢ € E
at which the directional derivative f'(z,e) exists is T-residual.

PRrOOF. We first define the notion of A-differentiability of a continuous con-
vex function f on E. For all A > 0 and a fixed element e € F we say that
a point z € E is a A—differentiability point of a continuous convex function
f:E—-Rif

o fatte)+ (e te)~2f(z) _,

t—0 t

We observe that, since the function f is convex, the function

f(z +te) + f(z —te) — 2f(=)
t

t—

for t € R* is non-negative and non-decreasing. Therefore a point z € E is a
A—differentiability point of f if and only if there is a ¢ > 0 such that

f(o + te) + f(z — te) — 2f(a)
t

< A. (2.1)

We show that, given any A > 0 and any non-empty 7—open set U
there is a non-empty 7—open V C U such that every point of V is a
A—differentiability point of f. Then, by letting A = 1/n for any positive in-
teger n, the set of 1/n—differentiability points of f is T—open and 7—dense.
Hence, the set of points z € E at which the directional derivative f'(z,e)
exists is 7-residual in F.

In what follows we assume that ||e|| = 1 and that A is any positive
constant. Supposing that z € U and using the convexity of f, we have the
existence of the limit

L = lim

t—0t

f(z + te) = ()
1

Then choosing &; > 0 so that for all ¢ € (0,38;), we have

OSf(:r:Jrrfe)—f(vc)_LSé
t 8

and for all ¢t € (0,8;) we estimate that
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f(z +3te) + f(z +te) — 2f(z + 2te)

t
fz+3te) — f(z) = 3tL  f(z +te)— f(z) —tL
i + t +
4tL+ 2f(z) — 2f(z + 2te),
t
3A A
< ?-l'g
_ A
-2

where we use (“LH@) 2f(z42te)) < (. Since f is locally Lipschitz there is a
constant K > 0 and a 52 >0 such that if z,y € B(z, §;) then |f(2) — f(y)| <
K|z —y||. We let € = min{26;, 22,1 -8-} and show that the set

W= |J B(z+ se,se)
0<s<e
contains only A-—differentiability points of f. Let y € W, then y € B(z +
se, se) for some 0 < s < € We denote by s = 2¢ and estimate that

fly + te) + f(y — te) — 2f(y)
¢
f(z + 3te) + f(z + te) — 2f(z + 2te)
- ¢
+4K||:c +t2te—y||
< AJ2+8Ke<A

which, by (2.1), implies that y is a A—differentiability point of f. So W
contains only A—differentiability points. Letting V = W N U and using the
hypothesis of the Lemma we conclude that V is non-empty. Since W is norm
open and 7 is finer than the norm topology then the set V is 7 open. The set
V is a non-empty 7 open subset of U that contains only A—differentiability
points. O

2.5 Dirac measures

Let Fp, denote the set of continuous convex functions on C'(K) that contain
a Dirac measure in each subdifferential. We obtain in Proposition 2.5.3 the
following statement.
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Suppose that f € Fp, then given any non-empty T,-open set U
there 1s a non-empty 7.-open set V C U and a finite set F C K
such that for every ¢ € V the subdifferential 0f(¢) contains a
measure with at most one element support in F.

In section 2.6 we extend this result to the set of continuous convex func-
tions on C(K), Fr, that contain a measure with finite support in each subd-
ifferential. This result implies that for ¢ € V' the values of f(¢) depend only
on the values of ¢ on F' so that in section 2.7, using the Fréchet differentia-
bility of convex functions on R", we derive generic Gateaux differentiability
of continuous convex functions C(K) in Fr.

We recall some definitions. The order relation on C(K) is defined by
f > 0 if and only if for all z € K we have f(z) > 0. A Radon measure
on K is an element of the dual C(K)*. A Radon measure p € C(K)* is
positive, g > 0, if and only if whenever f > 0 then p(f) > 0. Let g and v be
Radon measures, then we define the relation v < p if g — v is positive. The
relation ¥ < p defines an order relation on C(K)*. For any Radon measure
p € C(K)* there is a least positive Radon measure |p| € C(K)* such that

() < TRI(1f1)

for all f € C(K). The Radon measure |u/ is called the variation of . We will
denote the set of Radon measures C(K)* by M(K) and the set of positive
Radon measures by M*(K). For each Radon measure p there is a Radon
measure gt such that ut is the least Radon measure p such that p > p and
p > 0. Similarly p~ is the least Radon measure p such that p > —u and
p 2 0. Then we have

p=pt—p,
and

|l = p* +p”
Let 1¢ denote the characteristic function of G. A set E C K is called p-
negligible if for all € > 0 there is an open set G D E such that |p|(f) < € for
all f € C(K) such that

0< f<1g.

A Radon measure p € M(K) is concentrated on a set A if K \ A is p-
negligible.
If z € K the measure 6, defined by

ba(f) = f(=)
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for all f € C(K) is called the Dirac measure concentrated at z € K; it is, of
course, concentrated at {z}.

We denote by M,(K), for n > 0, the subset of M(K) whose elements
are concentrated on an at most n element subset of K. Let F be a subset
of K, then we denote by M,(F') the subspace of M(K) whose elements are
concentrated on an at most n element subset of F.

Let f be a continuous convex real valued function on C(K) and ¢y €

C(K), then the subdifferential 0f(¢o) of f at ¢o is defined to be the set

9f(do) ={n € C(K)" : f(£) 2 f(do) + p(£) — u(4o) for all { € C(K) }.

The subdifferential of f at ¢o is non-empty, convex, and weak™ compact for
all ¢o € C(K). (See [Ph1].)

The proof of Proposition 2.5.3 relies on two Lemmata for which some
notation is required. We first define subsets M, of the square [—1,1]2 C R?,
that are related to the subdifferentials of f. Let f be a continuous convex
function on C(K), then for each s € K, define M, to be the subset of the
square [—1,1]? C R? given by

M, ={(a,b) € [-1,1]% : f(¢) > a+ b¢(s)forallé € C(K) }.
The sets M, have the property that if 4§, € 0f(#) then (f(¢) — b6,(¢),d) €

M,. We also require a function 7 that behaves as a distance between M, and
M; for some given point ¢. Suppose that M; is non-empty. If M, is non-empty
let

é(s) = SUP (ap)eM, Inf (o pr)ens]a — a'| + |b—b'].
Define 7j(s) : K — R by

oy [ O(s) ifM, £
’7(3)“{0 if M, = 0.

Lemma 2.5.1 Let f be a continuous convez function on C(K)-Then
lim7(s) = 0.

PROOF. The proof is by contradiction.
Suppose it is not true that the limit lim,_,; 7j(s) is zero. Then there is an
€ > 0, points s, of K such that lim, ,s s, = %, and points (an,b,) € M,,,
such that
inf (o' pryens|an — @[ + |bn — b'| > €. (2.2)
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The square [—1, 1]? is compact, so every sequence in [—1,1]? has a convergent
subsequence and we may suppose that

Jim (an, bn) = (a, b).

We claim that (a,b) € M,;. Choose any ¢ € C(K) then since (an,b,) € M,,,

we have
f(f) > an + bn&(sﬂ)

and in the limit as n — oo

f(€) 2 a+ be(t).

Therefore (a, b) € M,. Clearly if n is chosen so that |a, —a] < £ and |b,—b| <
£ then
1

inf (arpyent|an — @' + [0 — V| < |an —a|+ |0, — b| < €
which contradicts equation (2.2) and completes the proof. 0

Lemma 2.5.2 Suppose that f is a continuous convez function on C(K),
that U is a 7,-open set containing U,(1, €,w) for which Fy is the finite set
of zeros of w, that ¢o € Uo(, 5,%), and that there is a non-zero multiple of
a Dirac measure in 0f(¢o) with support t ¢ Fy. Then there is a non-empty
T.-open subset V C U such that, for every ¢ € V, every multiple of a Dirac
measure 1n 0f($) is non-zero and has support at t.

PROOF. The first step in our proof is to define the set V. In order to define it

we require some estimates on the range of values of f on U. We may assume
that

e f(U)C[-%,1] and that

272
o |lu|| < 3 forall p € df(€) and for all £ € U.

The first assumption follows from f being locally Lipschitz, implying that
for a 7 open set of sufficiently small norm diameter we can assume that the
values of f on U lie within an interval of length 1. We need only translate f
by a suitable constant to attain the range [—%, %] For the second assumption,
since ||| < C where C is the Lipschitz constant of f restricted to U, then
multiplying f by a sufficiently small constant ensures that ||u|| < 1.
Supposing that bod: € (o) where by # 0, we have from our assumptions
on f that |bg| < 1 and (f(Po)— do(t), bo) € M, so that M; # 0. Using Lemma

2.5.1 we obtain that lim,_;7j(s) = 0. Letting o = E(l—ﬁbuf—l"”ﬂ, we choose by

Lemma 2.2.5 a function n € C(K) with the following properties.
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o 7(s) > 7i(s) for s #1¢,
e 7(t) =0, and
) n(s)>wforaﬂs#t€.7{.

Since K is a Hausdorff space and Fj is finite we may choose an open set
H >t and a positive number ¢ such that

L Fﬁ F() = @,
e inf, _zw(z) > c, and
e n(s) < min{"’—;—l, %} forall s € H.

Let £ = min{$, §}.

We find by Lemma 2.2.4 a function g € C(K) with the properties that
g(s) =0if s ¢ H, that g(s) =1 if and only if s = ¢, and that 0 < g < 1. Let
G={s€ K : g(s)(k —an(s)) > |bo|x/2}. Note that ¢t € G, G is open, and
G C H. Finally we define the set V as

V={¢eU:0<sign (b)(d(s) — ¢o(s))if s € G,

sign (bo)(é(s) — do(s)) < sign (bo)(4(2) — ¢o(2)) — an(s)
if s € Gand s # t,

and |#(s) — do(s)| < bo(4(t) — do(t)) if s ¢ G .

Noting that {¢ € C(K) : sign (bo)(¢(s) — ¢o(s)) > 0if s € G} is norm
open and applying Lemma 2.3.6 we conclude that the set V' is 7,-open. We
show that ¢ € C(K) defined by ¢(s) = do(s)+ sign (bo)g(s)(x — an(s)) is an
element of V. To verify this claim we must show that

(i) llg -+l <e

(i1) if a € Fy, and a is an accumulation point of [a, b], then osc (¢—
¥, [a,b]) < sup z¢fapw(2),

(iii) 0 < sign (bo)(#(s) — ¢o(s)) if s € G,

(iv) sign (bo)(8(s) — ¢o(s)) < sign (bo)(4(t) — do(t)) — an(s) if
s €Gands#t, and

(v) 1¢(s) — ¢o(s)] < bo(¢(t) — fo(t)) if s ¢ G.
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For (i) we have

16—l [[do — ¥l + sup .ex|g(s)(x — am(s))|

€
—+ Kk <e€

<
<
-4

For (ii), in the case [a,b]NG = 0, and noting that ¢o € U(%, 5, %), we obtain
the estimate

osc (¢ — ¢, [a,b8]) = osc(¢o —,]a,b])

w
< sup - < sup w(z).
z€[a,b] z€[a,b]

For the case [a,b] N G # 0 we obtain

osc (¢ - 'ﬂba [a'7 b])

IN

osc (¢o — 9, [a, b]) + osc (sign (bo)g(x — an), [a, b])
SUP,¢[a,5) W(2)
4

SUD, ¢l b w(z) c
4 T 2
supze[a,b]w(z) +inf w(z)
4 z€EH

< sup w(z).
2€[a,b]

IN

+ 2x

IN

For (iii), we have from the definition of G and ¢ that

sign (bo)(8(s) — ¢o(s)) 2 |bo|x/2 > 0

forall s €G. B
For (iv), when s € G and s # t noting that ¢(t) = ¢o(t) + sign (bo)x, we
obtain

sign (bo)(¢(s) — do(s))

i

sign (bo)g(s)(x — an(s))
< k—an(s)

sign (bo)(4(t) — ¢o(t)) — am(s)-

For (v), when s ¢ G we have from the definition of G that

[6(5) — do(s)] < |bo|x/2 < |bo|w = bo(B(t) — ¢o(t))-
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To complete the proof we show that for all s # t, for all (a,b) € M,, and
for all $ € V we have a + bd(s) < f(¢). We deduce that for all s # ¢, for all
b such that |b| < 1, and for all ¢ € V, that

Otherwise b8, € 0f(¢) for some b with |b| < 1 and some ¢ € V and
therefore (f(¢) — b6,(4), b) € M,, so that with a = f(¢) — b6,(¢) we obtain a
pair (a,b) € M, such that a + b¢(s) < f(¢4) which is a contradiction. Using
the hypothesis that each subdifferential of f contains a multiple of a Dirac
measure we conclude that for all ¢ € V there is a b such that b6, € 0f(¢).
Further we must have b # 0 since if 06, € O0f($) for some ¢ € V then
06, € 0f(¢) for all s # t and this contradicts (2.3). For the proof of our
statement there are six cases.

Case (I). s ¢ G.
We estimate a + b@(s) with |b] < 1, |(d(s) — do(s))| < bo(@(2) —
$o(t)), and bod: € 8f (o), to obtain
a + bg(s) a + bgo(s) + b(P(s) — do(s))
f(40) + b(#(s) — do(s))
(o) + bo(¢(t) — ¢o(2))
f(9).

Case (II). s € G, s#t,and b> by, > 0.
We may find (a’,b') € M; such that |a —a’|+|b—b'| < 7(s). Then

we make the following list of estimates to substitute in

a+bg(s) = (a —a') + (b — b')g(s) + b'(¢(s) — 4(2)) + o’ + H'¢(2).
We have a — a’ < n(s), ||8|| < ||¢o]l + ¢, (since ¢ € U) and (b —
b)$(s) < n(s)||4|l. Using &' > %, (since |b—&'| < 7(s) < % and
b > by > 0) we have b'(¢(s) — (1)) < b'(do(s) — ¢o(t) — an(s)) <
—b’%ﬂ < —boﬂ’éﬂ, and a' + b'¢(t) < f(¢) (since (a',b') € M,).
The result is

IN A CIN

a+bp(s) < (14 ol +€)m(s) — Mﬁj{—?@ + f(¢)
= 301+ ol + () + 5(9)

< f(4)
where we use that o = 10(1+][doll+e)

[bo]
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Case (IIT). s€ G, s #t,and b < —by < 0.
Using bg(s) < bgo(s) (since by > 0 gives 0 < ¢(s) — ¢o(s)) and
bo(d(t) — ¢o(t)) > 0 we estimate that,
a+bp(s) < a+bpo(s)
f(¢o)
f(¢a) + bo($(t) — do(t))
f(¢).

Case (IV). s € G, s #t,and b > —by > 0.
Using bd(s) < bgo(s) (since by < 0 gives ¢(s) — ¢o(s) < 0) and
bo(p(t) — ¢o(t)) > 0 we estimate that
a+bd(s) < a-+ boo(s)
f(¢o)
F(d0) + bo($(t) — o(t))
f(4)-

Case (V). s€G,s#t,and b< by < 0.
This case is similar to case (III). There are, however, some dif-
ferences due to changes of sign. We find (a’,b’') € M; such that

la — a'| + |6 — | < n(s) and we substitute the following list of
estimates in

a+bp(s) = (a —a') + (b — b')g(s) + b'(4(s) — ¢(¢)) + a' + b'(2).
We have a—a’ < 7(s), ||| < ||do||+¢€ (since ¢ € U), (b—b")¢(s) <
n(s)||4ll, ¥'($(s) — ¢(t)) < b’%ﬂ < bog—%(i)‘ < 0 (noting that for
all € V we have, (¢(s) — ¢o(s)) > (o(t) — ¢o(t)) + an(s) giving
$(s) — (t) — =% > go(s) — do(t) + 2L > 0, that &' < & < 0
since [b—b'| < n(s) < —% and b < by < 0, and that 7 is chosen
so that n(s) > M), and finally a’ + b'¢(t) < f(¢) (since
(a/,b') € M;). We estimate that

IN A IA

IN A A

a+bd(s) < (14| ol + €)n(s)— MZ’I(_-’) + f(¢)

= 201+ [ldoll + n(s) + £(4)

< f(¢)
where o = 12 +lléoll+e)

[bo]
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Case (VI). s € G, and |b] < |bo|.
For all ¢ € V we have

0 < sign (bo)(¢(s) — ¢o(s)) < sign (bo)(¢(t) — bo(t)) — an(s)
so that b(¢(s) — do(s)) < bo(¢(t) — $o(t)). Hence

a+bd(s) = a+bpo(s)+ b(¢(s)— ¢ols))
< f(¢o) + bo(#(2) — do(2))
< f(4)

a

Proposition 2.5.3 Suppose that f € Fp, then given any non-empty 7,-open
set U there is a non-empty T,-open set V . C U and a finite set F C K such

that
Of()NMy(F)#0
for every ¢ € V.

PROOF. Suppose that U = U(9,€,w) and that Fy = {z € K : w(z) =
0}. In the case that 0f(¢) N My(Fo) # O for every ¢ € U(, 5,%) we let
V =U(%,%,%) and F = Fy. Otherwise we find ¢o € U(9, §, §) such that
0f(do) N M1(Fy) = 0. Then since f € Fp we must have byé; € 0f(¢o) for
some by € R and some t ¢ Fy. Further we can assume that by # 0 since
this is handled by the first case with 0 € M;(Fp). Applying Lemma 2.5.2
we obtain a 7,-open subset V' C U such that for all ¢ € V thereis a b # 0
such that b6; € 8f(4). Letting F = {t} gives us 0f(¢) N M1(F) # 0 for all
peV. a

In Lemma 2.5.4 we give a well known example of a function in the set

Fp (see [DGZ3)).

Lemma 2.5.4 For all ¢ € C(K) the subdifferential at ¢ of the supremum
norm on C(K), 0||¢||, contains a measure with at most one element support.

PRrROOF. We have that 8., € 9||¢|| if ¢(zo) = ||| and that —é5, € O||¢|| if
p(zo) = —llell- D
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2.6 Measures with finite support

We first reformulate the definition of the wedge topology in somewhat simpler
notation. Whenever F C K is finite, {7, : ¢ € F} are non-negative
functions such that 7,(z) = 0 if and only if z = z, and € > 0. We denote by
Uu(0,€,{n: : = € F}) the set of those ¢ € C(K) such that |¢(y)| < € for
all y € K and |¢(y) — ¢(z)| < ne(y) for all y # . It is easy to see that these
neighbourhoods of the origin define our original wedge topology. Indeed, if
e, L, R, {1} {¢-} are as in Definition 2.3.2, we let F' = L U R, use for each
z € F, Lemma 2.2.5 with 77 = 0 to find 7, such that 7,(z) = 0 and 7(y) > 0
for y # z, and define

o 7.(2) = max{¢dz(2),¥.(2)} f ¢ € LN R,
o 7.(2) = ¢o(2) for 2 > z, 9z(2) = 7iz(2) for z< zifz € L\ R, and
o 7:(2) =z(2) for z <z, n,(2) =7(2) for z >z ifx € R\ L.

Then U,(0,6,{n: : = € F}) C Uw(0,¢ {éi}hicL, {¥r}rcr). Conversely, if
€>0and {9, : z € F} are given, we find 0 < € < € such that

n:(2) > €eif z<z € Fandz ¢ Ag, and

ne(2) > €if z>z€ Fandz ¢ Ay,
Letting L = FN Ay and R = F N Ag, and defining

o ¢(s) = inf,<, 7:(2) and

¢ 1.(s) = inf,>, 7.(2),
we get that

Uw(0, €1, {$1her, {¥r }rer) C Uu(0,€6,{nz : z € F}).

We also note that the sets Uy,(0,e,{7n; : ¢ € F}) are open in the wedge
tOPOIOgy: if ¢ € Uw(0767{nw P TE F})7 let € =€e— ”¢”7 'f\]:,_.(y) = ’7::('!/) -
|#(y) — ¢(z)|, and observe that ¢ € Uy(0,6, {7 : € € F}) C Uy(0,¢, {7z :
z € F}). Again, we will use the notation Uy,(¢,e,{n. : =z € F}) for
¢+ Uy(0,6,{n: : ¢ € F}). We show that norm relatively open subsets
of Uy(p,€,{n: : ¢ € F}) are second category in themselves; this statement
is needed in the proof of Lemma 2.6.3.

Lemma 2.6.1 The sets Uy(p,€,{n: : £ € F}) have the following proper-
ties.
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(1) Un(p,e,{n: : © € F'}) ts of type G5 in the norm topology.

(1) Norm relatively open subsets of Uy(p,€,{n: : ¢ € F}) are
second category in themselves.

PROOF. For (i) we note that a wedge neighbourhood is an intersection of a
norm ball (which is Gs) and of a finite number of sets of the form

U={g:l9(y) — g(z)| <n(y) for all y # z}

where z € K, n: K — [0,00) is continuous and such that 5(z) = 0 iff z = z.
So it is enough to show that U is Gs. For this observe that

Un ={g:19(y) — 9(z)| < n(y) for all ysuch that n(y) > 1/n)}

is norm open (if g € Uy, the function y — 7(y) — |g(y) — g(z)| attains its
minimum, say m, on {y : n(y) > 1/n}, so m > 0 and the norm ball around
g with radius m/2 lies in U,,). Since

U= ) Un

n=1

U 1s G&.

Assertion (1) is a corollary of the first statement. Each norm relatively
open subset V of a basic wedge open set Uy(0,¢,{n: : = € F})is a G
subset of C(K). So V is completely metrisable (see [Ch]) and, as such, is
second category in itself. 0O

The remainder of this section is devoted to generalising the results of the
previous section to the case of continuous convex functions for which there is
a measure with finite support in each subdifferential. We state Proposition
2.6.6 which is the main result of this section. Let M(F) be the set of
measures that have support contained in a given set F.

Suppose that Uy is non-empty and T open, that f is conver and

norm Lipschitz on Uy, - * Then there is a non-empty T
open subset U C Uy, and a finite set F' C K, such that for every
pel,

af(p)N M(F) # 0.
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The proof of Proposition 2.6.6 relies on Lemmata 2.6.2 to 2.6.5. First we
fix a positive integer n and a norm relatively open subset W of Uy for which
each subdifferential contains a measure with at most n element support.
Finally in Lemma 2.6.5, we find a wedge open subset U of W for which all
the measures of n element support have support contained in F.

The following notation is used throughout this section.

U is the wedge open set Uy = Uy (Bo, €0, {7z : = € Fo }).

The function f is convex, norm Lipschitz on Uy, and such that for every
¢ € Uy the set 0f(p) contains a measure with finite support.

For any non-negative integer k, M is the set of measures of at most
k element support.

For any integer £ > 0 and any finite set F C K, Nk_p i1s the set of
measures ¥ whose support contains at most k points outside F.

For each integer 0 < j < k, My ; is the set of measures v whose support
contains exactly k points out of which exactly j points lie outside Fp,
My jF is the set of measures v whose support is contained in F' and
has exactly k points out of which exactly j points lie outside Fp, and
M. F is the set of measures v whose support is contained in F' and has
exactly k points.

If W C U, then My ;(W) is the set of measures that belong to My ; N
0f (i) for some ¢ € W.

M, ;(W) is the closure of My j(W) in the weak™ topology.

The purpose of Lemma 2.6.2 is to fix an integer n and a subset W C
C(K) such that measures of finite support in the subdifferentials of f on W
have n elements in their support outside of a given finite set F.

Lemma 2.6.2 Suppose that

F C K 15 a finite set,
M C M(K) is weak® closed,

V C Uy 1s non-empty and second category in itself in the norm topology,
and

for each p € V, M NUZ_ N rNOf(p) # 0.
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Then there is a non-negative integer n and a non-empty norm relatively open

subset W of V' such that
MNON,pNOf(p)#£ 0

for every o € W and
U MnN Nn,F N 6f(<p) C Nn,F \ N, —1,F.

peW

ProoF. We claim that for each non-negative integer m the set
={p eV : MNIf(p) " Nnr #0}

is norm relatively closed in V. We first show that M N 8f(p) N N r is
weak™ closed. To show that each Nm,p is weak” closed let u be a weak* limit
point of a sequence y; in Ny r. If u ¢ N r then there are m + 1 points in
the support of u outside F, so that for all sufficiently large j, spt (g;) has
m + 1 points outside F' which contradicts g; in Ny . Therefore p € N p.
From M and 0f(¢) being weak™ closed we get that M N df(¢) N Nppr is
weak™ closed. Suppose that ¢, € A,, converges in norm to ¢ € C(K). The
subdifferential map ¢ — 0f(¢) is norm to weak™ upper semicontinuous on
C(K) and therefore each weak® open set V* D 0f(¢) also contains 0f(pn)
for all sufficiently large n. Suppose that M N 3f(¢) N Npnr = 0. Then the
weak” open set C(K)*\ (M N N ) contains 0f(p) and therefore contains
0f(n) for all sufficiently large n which contradicts that ¢, € A,,. Therefore
@ € A,, and hence A,, is norm relatively closed in V. This proves the claim.

We deduce that there is a non-negative integer k and a non-empty norm
relatively open subset V C V such that V C Ag. If not then, since V =
U2, A;, we deduce that V is first category in itself; but this contrad1cts the
hypothesis that V is not first category in itself.

Let k be the least integer such that there is a non-empty norm relatively
open subset V CV with V C Ag. We claim that there is a non-empty norm
relatively open subset W of V such that

U MnN 6f((p) N Nk,F C Nk,F \Nk—l,F~

pEW

Since N, r is weak” closed, for all norm relatively open subsets W of V we
have Uyew M N 0f () N Ni,p C Ni,r. We must find a norm relatively open
subset W of V such that

U MnN af((p) N Nk,F ﬂNk_1,F =0.

pEW
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Assuming that no such set W exists, we choose for each norm relatively open
subset H of V, a measure py € Uper M NOf(¢) N Nep N Ni—1,F, and we
let A denote the weak™ closure of the set of such measures.

Since NMg_1 r is weak”™ closed we deduce that A C Ny_; r. We show that
df(e)N A # 0 for all ¢ € V concluding that M N 8f(p) N Ne—1,r # 0 for
all p € V, which contradicts k£ being minimal with this property. We seek a
contradiction by assuming that 8f(¢) N A = 0 for some ¢ € V. Choosing a
weak” open neighbourhood O of 0f(yp) whose weak™ closure does not meet
A, and noting that the subdifferential map ¢ — 0f(y) is norm to weak*
upper semicontinuous on C(K), we may find a norm open neighbourhood
Hy of ¢ such that 0f(Ho) C O. Therefore the weak™ closure of Uyem,0f(%)
does not meet A. By assumption there is a measure pg, € (Uypen,0f(¥))NA
giving a contradiction and proving the claim. a

In Lemma 2.6.3 we find integers k and j for which the subdifferentials of
f on a non-empty norm relatively open subset W of Uy contain measures of
k element support out of which j are not in Fp.

Lemma 2.6.3 There are integers 0 < 7 < k and a non-empty norm rela-
tively open subset W of Uy such that

My;NOf(p) # 0

for all ¢ € W, and furthermore
My ;(W) C My,

In particular there are numbers 0 < ¢ < C < oo such that each measure v €

My ;(W) has support consisting of ezactly k elements out of which ezactly j
are outside Fo, and ¢ < |v(z)| < C for each element z in spt (v).

PROOF. Applying Lemma 2.6.2 with F = 0 so that NMyr = My, with
M = M(K), and with V = Uy, we find a non-empty norm relatively open
subset Wy of Uy and a non-negative integer k such that

Of(p) N My # 0

for all ¢ € Wy and

U M Naf(e) C My \ Mg_1.

peEWH
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Applying Lemma 2.6.2 a second time with F' = Fp, with M = M, and
with V' = W, we find a non-empty norm relatively open subset W of W, and
a non-negative integer 7 such that

M N Of(p) N Nir, # 0

for all ¢ € W, and

U Mendf(e) NNk C Njr \ N1,

peEW

This proves the first part of the statement since (M \ Mi_1) N (N;r \
Ni1p) = M.

That each measure v € M ;(W) has support consisting of exactly k
elements out of which exactly j are outside Fp, is a reformulation of the

inclusion My ;(W) C My,;.

The existence of C such that |v(z)| < C for all v € 8f(¢) for all ¢ € Uy
and all z € spt (v) follows from the assumption that f is Lipschitz on Up.
Suppose that there is no positive ¢ such that for all v € My ;(W) we have
¢ < |v(z)| for each element z € spt (v). Then for each positive integer p
we may find a measure v, € My j(W) such that |y,(z,)| < 1/p for some
T, € spt (1p). Since the v, have exactly k element support and K is compact
we obtain a contradiction with a weak* accumulation point of the sequence
vp that belongs to My j(W) and has less than k element support. O

For Proposition 2.6.6 we need to find a wedge neighbourhood U =
Uu(po,€,{nz : © € F}) such that, if ¢ € U then every measure in 8f(p)
of finite support necessarily has support in F. We choose some po € W and
some measure gy € My ; N 0f(po), and let F' = spt (po). The functions 7,
are defined on decreasing sequence of open sets G, whose intersection is F.
The sequence G, is given in the following Lemma.

Lemma 2.6.4 Suppose that W is the wedge open set of Lemma 2.6.3, that
o € W, and that

® 2, -,y are distinct points of K, such that for some integer j > 1 we
have z; ¢ Fy for 1 <1< 7, and z; € Fy for1 > j,

o G35z, --z; is an open set such that GN Fy =0, and

o d, is an arbitrary fized sequence of positive real numbers,
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Then there are open sets Gip C K (1 =1,---,k, p=1,---) with the following
properties:

(1) i € Gipa C Gip1 C Gip,

(i) Gip C G if1 < g,

(ii) GipNFo={z:} if i > 7,

(i) Gi,pNGiy,p =0 for iy # 1,

(v) lpo(x) — @o(z;)| < dyp for every z € G;p,

(vi) the intersection of the sets G, = UX_G;, is {1, -+, 21 },

(vii) if v € My (W) is concentrated in G, then spt (v) =
{1, Yk}, where y; € Gip for all i and y; = z; if 1 > 3,
and

(viii) if o € W and v € My, ;N Of(p) is concentrated in Gy, then
there is p € My ;(W)NM({z1, -, 2k }) such that F | |u(Gip)—
V(Gip)| < dp and v(p — o) > p(p — wo) — dp.

PROOF. Since K is first countable for each : = 1,--.,k we may choose a
basis G;, of open neighbourhoods of z; such that properties (¢) — (vz) hold.

For (viz) suppose that v € My ;. We claim that there is an integer po
such that for p > po the support of every measure concentrated on G, has
non-empty intersection with every G;,. Indeed, if this were not the case
there would be arbitrarily large p for which we could find v, € My ;(W)
concentrated on G, such that [v,|(G;, ) = 0 for suitable z,. We can pass to
a subsequence on which 4, is constant, say 1,; =¢. Using (%), (vi), and that
spt (vp) C Gp we infer that there is a weak™ accumulation point v of v, with
spt (v) C {z1, -,z } \ {z:}. We have a contradiction since v € My ;(W)
and it has exactly k element support.

Replacing G;p by Gip4p, if necessary, we may assume that po = 1. By
the previous claim we have that every measure v € My ;(W) concentrated
on Gp has spt (v) = {y1,---,yx } wherey; € Gipfori =1, ---, k. By Lemma
2.6.3 exactly 5 of {y1, -, yx } are outside Fy, but y1,---,y; ¢ Fo because of
(12). We infer that y; € Fg for ¢ > j. By (442) we must have that y; = z; for
t > j, which concludes the proof of (viz).

For (viii) let A, C R*¥*? be defined by

Ap = {(¥(G1p), -, ¥(Grp)s f(9) — v(e), ¥(0) :
w € W,v e df(p)N Mg,,spt (v) C Gp}.
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Then A, is a decreasing sequence of bounded non-empty subsets of R*™* and
therefore the set

g —
A=4,
p=1
is non-empty and compact. Moreover, the sequence
k+2
Yp = sup inf{)_|a; — b;| : b€ A}
a€lp j=1

tends to zero. We may assume that v, < d,/3, since, if necessary, we may
replace each G;, with G;g,, for some g, so large that y,, < d,/3. The validity
of (i) — (vii) would be unaffected after such a replacement.

Suppose that ¢ € W and that v € M ; N 0f(p) is concentrated in Gy,
then since v, < dp/3, there is b= (by,. .., bk+2) € A such that

1£() = v(#) = brsa| + [¥(p0) = bisal + D [¥(Gip) — b5l < dp/3.

7=1
Since 4 = 2, A, for each ¢ = 1,2,... we may find ¢, € W and p, €
Mi,;N8f(pg) such that spt (ug) C Gq and |f(pq) — v(Pg) = brt1]+ [Hg(0) —
brsa| + Lty [1g(Gig) — bj| is so small that
|(f() = v(#)) — (f(#q) = 1a(®a))l + |¥(0) — pg(00)]
k

+ Z [¥(Gip) — 1a(Gig)l < %
=1

We infer from (z), (vi), and (viz) that all weak” accumulation points p of the
sequence ,, (which exist by compactness of K) belong to M ;(W)NM({ x4,
.-+, zk }), and satisfy

[v(p0) — plpo)| < dp/3

and .
d
Z |V(Gj,p) - I‘(Gj,q)| < _32 < dp'
7=1

Using also that f(pg) — pq(pq) > f(9) — v(p) — dp/3 and that pu, € (),

we infer that

F(@0) > f(pq) — ta(pa) + 1e(p) = f() — v(p) — dp/3 + pa(ip)-

So letting ¢ — oo we obtain v(p) > u(p) — dp/3. Recalling that |v(po) —
p(po)| < dp/3 we conclude that

v(p — o) > plp — po) — 2dp/3 > p(ep — wo) — dp.
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In the following Lemma, we obtain the wedge open set U on which each
subdifferentials of f contains a measure with fixed finite element support.

Lemma 2.6.5 There are integers 0 < 7 < k, a non-empty T open subset
U C Uy, and a finite set F C K such that

Of(p) N My,;r # 0

for every ¢ € U.

PROOF. The proof has two parts. In the first part we construct the functions
{nz}zer that we require to define U. In the last part we verify that the
measures of finite support in the subdifferentials of f on U do indeed have
support contained in the finite set F.

We may apply Lemma 2.6.3 to obtain a non-empty norm relatively open
subset W of Uy and integers 0 < j < k such that

Of(p) N My,; # 0

for all p € W. If 5 = 0 then all of the k element support of v € 0f(p) N My ;
are in Fy and therefore we can set U = W and F = F,.

For j > 1 we use the second part of Lemma 2.6.3 to obtain M ;(W) C
My, ; and constants 0 < ¢ < C' < oo such that each measure v € My ;(W)
has support consisting of exactly k elements out of which exactly 7 are outside
Fy, and ¢ < |y(z)| < C for each element z in spt (v).

Since for all measures u € My ;(W) we have that |u(z)| < C for each
element  in spt (p) then letting s = SUP e X5 3 (W) |#|(K\ Fo), we have s < oo
and, since K \ Fo is open, s = sup,c uq, .w) [#|(K \ Fo). So there are ¢o € W
and po € My ; N 0f(po) such that |p.0|(K \ Fo) > s —c/4.

We may suppose that

o spt (po) = {1, -,z } where xy,- -,z are distinct points such that
z; is not in Fy for 1 <7< j and z; is in Fp for 7 > 7,

G 3 z;,---z; is an open set such that GN Fy = 0,

functions 7. are chosen so that 7.(y) = 3(7(¥) — |(¢o(¥) — wo(z)) —
(#o(y) — $o(=))]), for = € Fo,

x = zmin{ 6, e — ||wo — Gol|,inf{n(y) : = € Fo,y € G}} is positive

where 6 > 0 is chosen so that {9 € Up : ||[¢p — ol < 6} C W,

__ o—p-1__kc
dp =2 Taomrs and
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¢ G, CK(i=1,---,k,p=1,---) and G, are the open sets of Lemma
2.6.4.

Then applying Lemma 2.2.4 we may find for each integer 1 < 7 < k and
each integer p > 1 a function g;, € C(K) such that,

o gip(z) =0for z € K\ Gip,
o g:p(z) = sign (po(z;)) for z € G;p41, and
° 0< |gip| <1
We make the following claims.
Claim (i) Let g = k352,277 Y 1 gip then
o g(z;) = ksign (po(z;)) for 1 <2 <3,

o x(1 — 277 < |g(z)] < K(1 —27P) for z € UL;Gip \
Ui=1Gip+1, and

e g = 0 outside Uf=1G;,1, in particular g(z;) = 0 for ¢ > j.

Claim (ii) For1 <14 < j let 75,(y) = sup,s; 2777 k(1 —|gip|(¥)),
then B

o 7., € C(K),
o 7.,(z;) =0 and 94, (y) > 0 if y # x;, and
o . (y) <277k ify € G,
Claim (iii) Choosing 0 < € < 1/4 such that
(1 —€)(s—c/4) > (1+¢€)s —c/2 + 2keC, (2.4)

and F = FoU{z1,---,z; }, welet U = U(po+g,¢x,{n: |z € F}).
Then U C W and if oo+ h € U then,

e |h(y)| < k(1 +¢) for all y,

o |h(y)l <5(1/2+¢€) fory ¢ G,

e |h(z)| < ke for z € Fy, and

e if 1 <4< j then sign h(y) = sign (po(z:)) for all y € G;,.
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For claim (i), noting that g;,(z;) = sign (po(z:)) for all 7 and p, and that
gmp(zi) = 0 if m # ¢, we obtain

o(m:) = &3 2 Psign (uo(zs))

p=1

~ rsign (po(z:).

Let z € Ule Gi,p\UleG;,pH, then g, ,(z) =0 for ¢ > p+ 1 and since there is
exactly one ¢, such that 1 <1, < j and that z € G;_, \ G, p+1 we have that
i ,o(2) = sign (po(z;,)) for ¢ < p— 1 and gmgq(z) = 0 if m # 1. Therefore

p—1

o(z) = x Y2 %sign (po(2s.)) + K2 g, o)

g=1

= &(1 — 27" )sign (no(i,)) + K277 giu ().
Since g;, »(z) takes values between 0 and sign (po(z;,)) we have that
k(1 —27Pt1) < |g(z)| < w(1 —277).

Ifz ¢ U2, G, then g;,(z) = 0 for all i and p. Therefore g = 0 outside
UL, G; 1, in particular g(z;) = 0 for 7 > j.

For claim (ii), if y € Gip, then |gig(y)| = 1 for ¢ < p. So n5,(y) =
SUPg>, 2P k(1 — |gigl(y)) < 277 'k, which is the last statement of (ii). It
also shows that 7,,(z;) = 0 and that 7., is continuous at z;. If y ¢ G, then
9ia(y)| =0, so nz,(y) > 27P k. Hence

Ne:(y) = sup 2777 k(1 — |giql(¥))
1<g<

[ ]

and so 7, is positive and continuous at y. Finally, we recall that N2, G;, =
{z:} to infer that 5., is positive and continuous at every point of K \ {z;}.
For claim (iii), we first show that U C W. If ¢ € U then using

e |l —(vo+ 9)|| < ex,
e |lg|l <k, and
o k< %min{ 8,0 — |00 — G0l },

we estimate that
le — ol < e+ k <2k <8
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It remains to show that ¢ € Uy = U(go, €0, {7z : ¢ € Fo}). For the norm of
@ — @Yo we have

I = Goll < [l — wol| + llpo — Goll < 26 + |lpo — Fol| < €.

For the oscillation of ¢ — ¢y we need only consider z € Fy. Recall that

1:(y) = 3(7=(y) — [(po(y) — wo(z)) — (bo(y) — Go(z))|). In the case when
y ¢ Gy then g(y) = g(z) = 0, and we estimate that,

[(e(y) — ¢(2)) — (bo(y) — bo(z))] < naz(y) +19(y) — g(z)| +
(@o(y) — @o(z)) — (bo(y) — Po(=))]
< WAZ(?/)

In the case that y € Gy, using g(z) = 0 so that |g(y) — g(z)| < &, and using
k < inf{n.(y) : = € Fo,y € G}, we estimate that

[(e(y) — () = (Ho(y) — Fo(@))| < n=(y)+
|(eo(y) — wo(z)) — (bo(y) — bo(z))| + &
< 2n4(y) + [(wo(y) — wo(z)) — (Go(y) — Go(z))|
= 7.(y).

Therefore ¢ € W. Hence U C B(o,6) N Uy C W.

Finally, suppose that wo+h € U. Since U = U(po+g,€k,{n: : z € F}),
we have that |h(y)| < |g(y)| + ex < (1 +€) for all y. If y ¢ G,, then
l9(y)| < k/2 so that |A(y)| < x(1/2 + €). If = € F, then g(z) = 0 so that
|h(z)| < ke. Suppose that y € G;, and 1 < < j. Noting that ||h — g|| < xe,
that € < 1/4, and that |g(y)| > £/2, we deduce that |A(y) — g(y)| < x/4 and
hence that sign (h(y)) = sign (g(y)) = sign (po(z:)).

We finish the proof of the Lemma by showing that, whenever ¢ € U
and v € My ; N Of(p) then v is concentrated on the set Fo U {z1,---,z;}.
Assuming, in order to find a contradiction, that this is not the case, we use
that K \ (FoU {21, --,z;}) = U2, (K \ Gg41) to find the least g such that
[v|(K \ Gg41) > 0.

Let ¢ = @o + h. Since v € 0f(p) and wo € 0f(po), we have f(p) >
f(po) + po(h) > f(p) — v(h) + po(h), so that v(k) > po(h) (this property is

known as monotonicity of the subdifferential). Since |h(x;) — g(=:)| < ek,

pro(@i)h(z:) > po(w:)g(z:) — exlpo(z:)| = £lpo(z:)|(1 —€)
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forl < <j and |h(z;)| < ke for 1 > 7, we estimate that

v(h)

>

v

v

po(h)
;#o(we)h(wi)
i k
> k(1= Oluo(z)l + 3° —relpo(z:)|
i=1 i=j+1
k(1 — €)|pol (K \ Fo) — xe|po|(Fo)
k(1 —€)(s — c/4) — kkeC. (2.5)

We distinguish two cases; the case when v is non zero on the set where |A|
has small values, that is when ¢ = 1, and the remaining case when ¢ > 2.

Case (1) If ¢ = 1, then we use Lemma 2.6.3 and that spt (v) N
(K \ G;) has at least one element, to infer that [v|(K \ G2) > c.
Using claim (iii), that |h(z)| < (1 + €) for all z, that |hA(z)| <
k(1/2+¢) for z ¢ G,, and that |h(z)| < kefor z € Fy, we estimate

that,
v(h) <

<

£(1+ €)|v|(G2) + £(1/2 + €)|v|(K \ (G2 U Fo))
+ke|v|(Fo)
k(1 + €)|v|(G2) + (1 + €)|v|(K \ (G2 U Fp))

_KlYI(K\ (G2 U Fo))

. + elv(Fo)

w1+ €)|v|(K \ Fo) —

wv|(K \ (G2 U Fo))

: + relw|(Fo)

k(1+e€)s— % + kxeC.

From (2.5) we deduce that
(1—€)(s—c/4) < (1+¢€)s —c/2 + 2keC,
which contradicts (2.4).

Case (2) If ¢ > 2, noting that |v|(K \ G,) = 0 and since |v|(K \
Gg+1) > 0 we infer that |v|(Gq \ Gg41) 2> c. In particular v is
concentrated in G, and, by (viii) of Lemma 2.6.4, we have that

spt (v) = {y1,--

.Yk }, where y; € G;, for all 2 and y; = z; if

i > j, and there is p € My ;(W)N M({z1, --,zr}) such that
$h 2 [4(Gig) — A(Gig)| < dy and u(h) > u(h) — dy.
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The measure y may be close to po or it may be far from it. Since the
treatment of these two situations is different, we distinguish two subcases
and consider the far away case first.

Sub-case (a) Suppose that there is an integer m, 1 < m < 7, such
that u(zm) and po(zm) have opposite signs. We have |v(ym) —
pw(zm)| < dg < ¢ < |v(ym)|. Therefore sign (v(ym)) = sign (u(zm)).
By claim (iii) A(ym) has the same sign as po(zm) and we conclude
that »(ym) and A(ym) have opposite signs. Hence [ hdv =
v(Ym)h(ym) < 0, and we obtain the following estimate for v(h) :

w(h) = f hav+ [ hdv
Gq \ Gmn q Gmu q

/ hdv

Ca\Gmig

/ h@+/ hdy

Go\(Gm,qUF) (Gq\Gm,q)NFo

K1+ D¥1(G \ (G U o)) + relv|(Gy \ Gomg) 1 F)
&(1 + €)[|[v|(K \ Fo) — |[¥|(Gm,q)] + &e|v|(Fo)

k(1 +€)(s —c) + kreC.

IN

IA A IA

From (2.5) we deduce that
(1 —¢€)(s—c/4) (14 €)(s—c)+ 2keC

(14 ¢€)s— % + 2keC

IN A

which contradicts (2.4).

The following final sub-case, although the proof is as short as the
previous ones, is the one for which most of the above work has
been done. It is only here that the use of the wedge topology is
essential, and also where we use more than just the monotonicity
of the subdifferential.

Sub-case (b) Suppose that for all1 <4 < j that p(z;) and po(z;)
have the same sign. If spt (v) = {y1,---,yk }, where y; € Gig4
for all 7 and y; = z; if © > 7, then using the minimality of g we
have ym € Gmg \ Gmyg+1 for some 1 < m < 5. We note that
h+po € U="U(¢o +g,€x,{n: : € € F}) implies that

(A(y:) — h(=:)) — (9(y:) — 9(=:))l < mai(yi)-
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If1 <i<jandy; €Gii\Gii then ! > g and by claim (i) and
claim (ii) we have |g(z;) — g(¥:)| > 27" and 7,,(y:) < w2771,
Therefore h(z;) — h(y;) has the same sign as g(z;) — g(y;), namely,
sign (po(;)). In the only other possible case we have y; = z;, so

that h(y;) = h(z,).

Furthermore for ym € Gmgq \ Gm,q+1 We have

|h(zm) — B(ym))l > [9(zm) — 9(ym)| = Nopm(ym)
2 (k= &(1—277)) = 7z, (ym)
> K277 = N (Yrm)
> k277 — 27971 = 27971,
We recapitulate that foreachi=1,...,7 we have

o u(z;), po(x:), and h(z;) — h(y;) all have the same sign, or
h(y:) = h(:),

o |v(yi) — ule:)| < dy,

oy, =z;if1 > 7,

o |A(z;)| < (14 €)x < 2k, and

o for Ypm € Gmyg \ Gmgs1 we have [h(zp) — A(ym)| > £27771.

We estimate that

k

v(h) = D v(yi)h(y:)

=1

< S ule)h(ys) + 2knd,

=1

J k
= > p(@)h(y:) + Y p(@i)h(y:) + 2krd,

i=1 i=j+1

= 3% uehes) + 3w (W) — he) +
Z p(xs)h(z;) + 2kkd,
t=3+1

= Y weh(a) — 3 e 1h(ws) — A(as)| + 2knd

=1 =1

IA

u(h) — k279 te + 2kkd,.
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From (viii) of Lemma 2.6.4, we have v(h) > p(h) — dy, and
therefore —d, < —x2797'c+2kxd, so that d; > 27971 % which

. ) 14+2kk
contradicts our choice of d, = 27971 £
q 142kx

a

Proposition 2.6.6 Suppose that Uy C C(K) is non-empty and T open, that
f 1is convez and norm Lipschitz on Uy and that for each ¢ € C(K) there is a
p € Of(p) that has finite support. Then there is a non-empty T open subset
U C U, and a finite set F C K, such that for every ¢ € U,

0f(0) 0 M(F) # 0.

PROOF. We may apply Lemma 2.6.5 to find integers 0 < 7 < k, a non-empty
7 open subset U C Uy, and a finite set F C K such that

0f() N Muir 7 0
for every ¢ € U. Since My ;(F) C Mi(F) then

Of(p) N Mi(F)#0
for every ¢ € U. This ends the proof. O

We complete this section with an example of a function f such that each
subdifferential has a measure of finite support. In particular, if V is an n
dimensional subspace of C(K) then the function d(+, V), which is defined
as the distance of ¢ from the subspace V, has a measure with at most n + 1
element support in each subdifferential.

Suppose that V = span {¢1,...,pn} is an n dimensional subspace of

C(K), then we define
d($,V) = inf yerl|d — D X
i=1

for all ¢ € C(K).

Lemma 2.6.7 The continuous convez function d(+, V) has a measure with
at most n + 1 element support in each subdifferential.

PROOF. For ease of notation let f(¢) = d(p, V) where V is the span of n
linearly independent functions ¢y,...,¢n. If ¢ ¢ V, find ¥ € V such that
f(¢) = |l¢ — ||, and note that 0f(yp) consists of those Radon measures p
that satisfy
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1. plp;)=0fori=1,...,n,

2l <1,

3. p* is concentrated on the set A = {z : p(z) — ¥(z) = f(¢)}, and
4. p~ is concentrated on the set B = {z : o(z) — ¢(z) = —f(¢)}.

To see this suppose first that (1)-(4) hold. Whenever € V and h € C(K),
then [l +h—n|| > p(e+h—n) = p(e+h) = p(e)+u(h), since ||u|| <1 and
p(n) = 0 by (1). By (3), by (4), and using also that u(n) = 0, we have that
#(e) = f(¢)- So |le+h—n|l > f(¢)+p(¢), and taking infemum over € V
gives that f(¢+h) > f(¢)+p(p), hence p € f(p). Conversely, assume that
p € 0f(p). For every t € R, f(p + tpi) = f(p), 50 0 = fp +tpi) — f(p) 2
tu(p;), which shows that p(p;) = 0. Since the Lipschitz constant of f is
one, ||p|| < 1. To prove (3) and (4), assume first that |p|(K \ AU B) > 0.
Since A and B are compact, there is g € C(K) such that g = 0 on some
open set containing A U B and p(g) # 0. Then for |t| sufficiently small
e = ¥l = (¢ +tg) — ||, so that f(v) = f(p +tg) > f(¢) + tu(g), which
is impossible. Assume next that u~(A) > 0. Find an open set G such that
o(z)—y(z) > 0for z € G and p~(ANG) > 0, the latter fact may be used to
find g € C(K), g 20, spt (9) C G, and pu(g) < 0. For sufficiently small ¢ > 0
wethen set [otg— ]| < |-l 50 F(p) > Flo—t9) > f(0)—tls) > £().
A similar contradiction is obtained in the case when p*(B) > 0.

Let 4 € 0f(p) be extreme. If yu is not a combination of n + 1 Dirac
measures, then there are disjoint Borel sets Sy,...,5 C A, Sk+1,---,ns2 C
B covering AU B such that p(S;) #0forallz=1,...,n + 2. Consider the

system of n linear equations

n+2

Za,-/ pijdp=0 (7=1,...,n)
=1 Si

together with the equation

n+2

> aip(Si) =0.
=1
This is a system of n + 1 linear equations for n + 2 unknowns, so it has a

non-trivial solution oy, ..., anya. If [t| > 0 is sufficiently small, we infer that

the measures
nt+2

n(E) = Z(l +ta;)u(E N S;)

=1
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verify (1)-(4), so they belong to 0f(p). Since they are different from u (if
a; # 0, then 1,(S;) # u(S:)), and p = (v + v-¢)/2, we conclude that u is
not an extreme point of f(y), which is a contradiction since df(¢) is weak™
compact, it has extreme points. Hence 0f(¢) contains a measure with at
most n + 1 element support. O

2.7 Gateaux differentiability

We use the results of section (2.6) to obtain the following differentiability
result for continuous convex functions on C(K).

Theorem 2.7.1 Let f be a continuous conver function on C(K) such that
each subdifferential 3f(p) contains a measure with finite support. Then f is
Gateauz differentiable on a To-residual set.

PROOF. Our method of proof is to use the notion of e-Gateaux differentia-
bility (as defined below the directional derivatives form, within €, a linear
mapping) and we show that, for all € > 0, the function f is e-Gateaux differ-
entiable on a 7,—dense open set V.. Consequently f is Gateaux differentiable
on the 7,—residual set N5 V4. We use Lemma 2.6.6 for each non-empty
T,—open set U to find a non-empty 7,—open set V' C U such that for all
@ € V, f depends only on a finite set of values ¢(z1), -, ¢(zk). From this,
and using generic Fréchet differentiability of convex functions on R* we de-
duce e-Gateaux differentiability of f on a non-empty 7,—open subset of V.
This will finish the proof, since it follows that the 7,—interior of the set of
points of e-Gateaux differentiability is dense in C(K). (Otherwise the above
applied to the complement of its closure would give a contradiction.)

We say that a function g is e-Gdteauz differentiable on 1Y) ~ if there
is ¢’ € C(K)* such that for all ¢ € U and all ¢ we have

9(¢ + 1Y) — 9(4)
t

— (g, ) < el

|lim

t—0

Let U be 7,—open. Applying Lemma 2.6.6, there are a non-empty 7,-

open subset V C U, a finite set F C K, and a non-negative integer n such
that

0f(@) N M(F)#0 (2.6)

for every ¢ € V. We may suppose that V = Uy(¢1,k,{n: : = € F}) where
each 7, is non-negative, with exactly one zero at z, and F' = {zq, - -,z }. We
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claim that for all ¢ € V, f(y) depends only on ¢(z1),- -, p(zk). Supposing
that the claim is not true, there are functions ¢; € V and ¢, € V such that

(p1(z1), -+, p1(zk)) = (p2(z1), - -, p2(zk)) and

f(p1) # f(ep2). (2.7)
From (2.6) there are by, - -, bt € R such that

f(&) > flp1) + bi(€(z1) — (1)) + -+ - + b(€(zx) — pa(zn)) (2.8)

for all €. Similarly there are b}, - - -, b, € R such that

F(&) 2 fp2) + Bi(€(21) — pr(m1)) + -+ + bi(§(me) — pa(zk))  (2.9)

for all {. Substituting ¢ = ¢, in (2.8) we have f(¢1) < f(p2). Substituting

¢ = 1 in (2.9) we have f(p1) > f(p2) and we deduce that f(¢1) = f(¢2)
which contradicts (2.7).

Next we find an e-Gateaux derivative for f on a T open subset "]E \‘1-, \“31¢ def\’ne a
subset 4 of R* and a function g on A as follows:

A={(y1, -, yx) € R*: thereis¢ € V suchthat
(y1,- - y6) = (p(21), -+, o(zk)) }-

Defining h : V. — A by h(p) = (¢(z1), -, ¢(zk)), and noting that f(¢)
depends on ¢(z;),...,¢(zk), we define g on A by g(y1,---,¥x) = f(p) for
any ¢ € h™'(y1, - -,yx). We show that A contains an open ball By. We
denote the standard basis in R* by {ei}1<i<k- Let y € A and g(y) = f(qAS)
We claim that for each 1 there is a positive constant ¢; and ; € C(K) such
that $+ B; € V and h(¢ + B3:) =y + cie; € A. Noting that V is convex and
h is linear, we deduce from this claim that A contains the convex hull of the
the k + 1 affinely independent vectors y,y + c;e;, hence A contains an open
ball.

To prove the claim, using Lemma 2.2.4, let v; € C(K) be such that
0 <9 <1, 7(z;) =0for j #1, and ;,(z) = 1 for all z belonging to an open
neighbourhood G; of z;. Then B; = ¢;y; has the required property provided
that ¢; > 0, that

e ¢; < K since this gives ||(<IAS + Bi) — dA>|| < K, and

o ¢; <inf,ex\q; 7724(5)
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since this gives |($-+6i— $)(s)— (3-+Bi— )@ = 18:()—Bi(a)] < ¢ < nus(s)
for s ¢ G; and since this inequality is obvious if s € G;.

We also note that g is convex on A. Indeed, if y = h(yp), and z = h(%)),
and ,¢ € V, then for all 0 < ¢t < 1 we have tp + (1 — t)yp € V and
h(te + (1 —t)y) = ty + (1 — t)z. So g(ty + (1 — t)2) = f(te + (1 —t)) <
() + (1 — 07() = to(y) + (1 — )g(2).

Since a convex function is differentiable a.e in R we obtain a Fréchet
derivative g., of g at some point a = (aq,---,ax) € By. Given € > 0 there is
a 6 > 0 such that )

‘g(y) — g(X) - ga(y - x)
ly — x|l
for all y,x € B = B(a,6) C By. Therefore

[f(¥) — f(#) = ga(A(¥) — R(#))] < €l[A(¥) — A(o)ll

for all ¥, € h71(B).

Let ¥ € C(K) be constant on a neighbourhood of each z € F. Since
h~1(B) is a norm relatively open subset of V, for any ¢ € A~'(B) there is a
§ > 0 such that ¢ + ¢ty € h™1(B) whenever [t| < §; for such ¢ we get, using
linearity of A, that

(e + tb) = f(0) — tga(R(¥))] < eltl[[R(D)]] < elt]]|]]-

| < e

Hence

Hot BI=JO) _ g1hwy)i < el

for all such 4. Since the set of all such 9 is norm dense in C(K) and since f
is locally Lipschitz, this inequality extends to all ¥ € C(K). Thus g/, o h €
C(K)* is an e—Géteaux derivative of f at ¢ € h™*(B). (it does not depend on
@). Therefore f is e—Géteaux differentiable on h~'(B) which is non-empty
and 7,—open. This ends the proof. O

lim |

t—0

Our final result of this section concerns the double arrow space D (see
[Ta2] and [Fa]). The double arrow space is defined as follows. We equip the
unit interval of signed points,

I, ={(0,1) : z=0ando =1,
or0<z<lando € {-1,1},

orz=1and o = -1},
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with an order topology by defining a basis of neighbourhoods B*(z, o) where

BMz,1)={(y,0) : z<y<z+\oe{-1,1},

ory=zand oc =1},
and

BXz,-1)={(y,0) : z>y>z—\oe{-11},

ory=zand o = —1}.

We can identify C(I,) with the Banach space D of functions on [0, 1] that
are right continuous at every 0 < z < 1, left continuous at z = 1, and have
left limits at at every 0 < z < 1, equipped with the supremum norm as
follows.

If f e C(l,), welet g(z) = f(x,1)if0 <z < 1and g(1) = f(1,-1). It is
easy to see that the function g on [0,1] has the required properties.

Conversely, if g € D, then we let

f(z,1) = g(z*)for0<z <1, and
flz,~1) = g(z7)for0<z<1.

Let w : I, — I = [0,1] be defined by n(z,0) = z. If f € C(I,) and
g is defined as above, then the set {(z,0) € I, : f(z,0) # g(v(z,0))} is
countable. Moreover, g is bounded and continuous except at a countable set;
so 1t 1s of the first class, and so there is a bounded sequence g,, of continuous
functions such that gn(z) — g(z) for every = € I (see [Ku]). Consequently,
gnom(z,0) — f(z,0) for all (z,0) € I, except possibly a countable set.

We conclude that there is a countable set S C C(I,) such that for every
f € C(1,) there is a bounded sequence f, € S such that f, — f except at
a countable set; indeed, it sufficed to take S = {h o 7} as A runs through a
countable norm dense subset of C(I). We observe that non-atomic measures
on I, are determined by their values on S : if y, v are non-atomic and u(h) =
v(h) for h € S then for every f € C(I,) the sequence f, € S described

above converges to f almost everywhere with respect to u as well as v, so

p(f) = limn oo p(fn) = limnoo v(fn) = v(f).

Theorem 2.7.2 Suppose f : C(I,) —» R is a continuous convez function
such that the subdifferential of f contains only non-atomic measures at every
¢Ihen f 1s Gateauz differentiable on a 7o-residual set.
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ProOF. Let § C C(I,) be the countable set defined before the Theorem.
By Lemma 2.3.6 the set R of those ¢ € C(I,) at which f'(¢,) exists for all
¥ € S is To-residual. Thereforeif ¢ € R and p € 0f(¢) then (i, ¢) = f'(¢,7)
for all ¥ € S. But the non-atomic measure g is uniquely determined by
its values on S and therefore the subdifferential 8f(¢) contains only one
measure. Hence f'(4) exists. O



Chapter 3

Lipschitz Isomorphisms

3.1 Introduction

In this chapter we construct three Lipschitz isomorphisms of £; to itself for
which the derivative is not an isomorphism. We recall that, if X and Y are
Banach spaces, then the Lipschitz constant Lip (f) of amap f: X — Y is
defined as Lip (f) = sup, ,cx ”ﬁl"g:—ﬁm; amap f: X — Y is a Lipschitz
isomorphism provided that it is a bijection and that f and f~! have bounded
Lipschitz constants.

All of these constructions have some relevance to the Lipschitz classifica-
tion of Banach spaces (see[BL]), in particular the linear isomorphism problem
for Banach spaces which asks the question:

Given Lipschitz isomorphic Banach spaces X and Y, are they
linearly isomorphic?

We may seek a solution to this problem by looking for points z € X at which
the derivative f'(z) exists and is an isomorphism. The authors N. Aronszajn

[Ar], P. Mankiewicz [Mn], and J. P. R. Christensen [Cr| have each obtained
a Radamacher type theorem (using different notions of null sets):

If f is a Lipschitz map from a separable Banach space X into a
space Y with RNP then f is Gateauz differentiable almost every-
where.

The Radon Nikodym Property (RNP) may be defined by saying that a Ba-
nach space Y has the RNP if every Lipschitz map f : R — Y is differen-
tiable everywhere except on a set of Lebesgue measure zero. For an extensive
treatment of the Radon Nikodym Property (RNP) we refer to [DU], for the

67
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various notions of null sets we refer to the forthcoming book [BL], and for
the equivalence of Gaussian null sets and Aronszajn null sets we refer to [Cs].

Unfortunately none of the presently known notions of null sets that satisfy
a Radamacher type theorem are preserved by Lipschitz isomophisms. For an
example of a Lipschitz isomorphism that does not preserve Aronszajn null
sets we refer to [Bo] and for an example of a Lipschitz isomorphism that
maps a non Haar null set to an Aronszajn null set we refer to [Mt]. If it
were possible to find null sets that satisfied a Radamacher type theorem and
were preserved by Lipschitz isomorphisms then there would exist a Gateaux
differentiable point z such that f~! is Gateaux differentiable at f(z), and
hence that f'(z) would be a linear isomorphism.

Our examples show that the derivative of a Lipschitz isomorphism f on
£, to itself may not be surjective at all points where it exists. Example
1 is everywhere Gateaux differentiable and the Gateaux derivative of f at
zero maps £, into a hyperplane. Example 2 is such that the weak limit,
limy_o £ :"” , is zero for all z € £;. Example 3 maps a non-Aronszajn null set
into an Aronszajn null set; in particular f maps a cube into a hyperplane.
This cube, which has empty interior, is not Aronszajn null.

Section 2 contains preliminary work in which we show that the Gateaux
derivative of a Lipschitz isomorphism is a linear isomorphism onto a neces-
sarily closed subspace of Y. Sections 3,4 and 5 contain the examples.

3.2 A preliminary result

In Theorem 3.2.1 we derive some properties of Lipschitz isomorphisms be-
tween Banach spaces X and Y, from which we may conclude that the Gateaux
derivative of a Lipschitz isomorphism f is Lipschitz and is a linear isomor-
phism onto its range f(X).

Theorem 3.2.1 Let X and Y be Banach spaces, let f : X — Y be a Lips-
chitz isomorphism, and let g : Y — X be the Lipschitz inverse of f. Suppose
that f'(z): X — Y exists at a point z € X then

() |If'(2)|l < Lip (f),

(1r) ||f'(z)z]] > ||2||/Lip (g), consequently, f'(z) is a linear iso-
morphism onto its range and, in particular Ker (f'(z)) = {0},

(iii) f'(z) has an inverse h : Im (f'(z)) — X, such that h =
§'(f(z)), where § is the restriction of g to Im f'(X),
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(w) |§'(f(z))ll < Lip (g), and
(v) Im (f'(z)) is a closed subspace of Y.

PROOF. For (2), estimating the dual norm of f'(z), we obtain

1f'(2)z — eyl

1z —yll = el 17 (=)ol
. limf(vc+tw)—f(av)
llwi=1 [|#—° t
< Lip (f).

Hence || f'|| < Lip (f).
For (ii), since f™' = g: Y — X is Lipschitz, we have

“g(f(:B +t2)) — g(f(z))
¢
f(z +1tz) ~ f(=)
t

Izl =

IN

Lip (o)

Taking the limit as ¢ — 0, we get that ||2|| < Lip (¢)||f'(z)z||.

For (iii), from (ii) we have f'(z) is injective and so f'(z) has an inverse
h:Im (f'(z)) —» X. We must show that A = §'(f(z)).

For each y € Im f'(z), we may choose u € X such that y = f'(z)u. Given
any € > 0, since f'(z) exists, there is a § > 0 such that for all ¢ € (-4, §) there
is a point a(t) € Y such that ||a(t)|| < eand f(z+tu) = f(z)+tf'(z)utta(t).
Therefore

z)+1ty)— z
9(f(=z) yt) 9(f(z)) — h(y)
o(f() + £F(ahw) ~ oS + 1) + o(F(z + ) ~ o(S(=)

i

9(f(z +tu) —ta(t)) — g(f(m + tu)) + (2 + tu) —z u”
t

— hf'(z)u

< Lip (g)la(?)]l
< Lip (g)e.

For (iv) we may apply (i) to g.
Property (v) of f is an immediate consequence of the fact that f'(z) is
an isomorphism onto its range. ]
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3.3 The first example

Example 1 is an everywhere Gateauz differentiable Lipschitz isomorphism
f of £ to itself such that f'(0) is not surjective. The isomorphism f =
lim, 0 Ir, © ... 0 T} is obtained by composing a sequence of Lipschitz iso-
morphisms T, where each T, has the property that, if ||z| < 3"*! then T,
has the same action on the coordinates of = as the cycle p, = (1,2n,2n +1).
The result of composing N such cycles is the cycle (1,2, --,2N + 1) and we
obtain

th _ O 2N oo
i L =0 _ gy Y hiei +hovper+ ) hie
=0 t N—oo X i=2N+2

for all h. Hence f'(0)h = 32, h;e;+1 maps £, onto the hyperplane z; = 0.
Throughout this chapter we make use of Lemma 3.3.1 to estimate the
Lipschitz constants of our mappings.

Lemma 3.3.1 If C is a convez set in a normed linear space X, Y is a
metric space, h : C — Y 1is continuous and C can be covered by countably
many sets on each of which the Lipschitz constant of h does not exceed L,

then Lip(h) < L.

PROOF. It suffices to consider the case when C = [a,b] C R (since to es-
timate d (hG), k(j))' we consider the line tz + (1 —t)y for 0 < ¢t < 1
contained in C) and to show that dist (h(b),h(a)) < L(b— a). Suppose
that dist(h(a), k(b)) > L(b — a). Let [a,b] = U2, M;, where M; are sets on
which the Lipschitz constant of h does not exceed L. Let S = {sup(M;) :
1 = 1,2,...}. The function g(t) = dist (h(a),h(t)) — L(t — a) is continu-
ous on [a,b] and g(a) = 0 < g(b). Using that g(S) is countable, we choose
c € [g(a), g(b)] \ 9(S) and use the intermediate value theorem to find the last
t € [a,b] such that g(t) = c. Whenever t < s < b, then g(s) > g(t), which
gives dist (h(s), h(t)) > dist (h(a), h(s)) — dist (h(a), h(¢)) > g(s) — g(t) +
L(s—t) > L(s—t). Finding M; containing ¢, we infer that ¢ is the maximum
of M;, sot € S, which contradicts g(t) = ¢ ¢ g(5). O

All of our constructions make use of the rotation map Ry : £2 — £2 which
is defined by Rg(z1,z2) = (1 cos § — z5sin 6, z, sin § + z; cos §). We note that
as an operator on £2, || Rez|| = ||z| for all z, RgR, = Re1y, and R;' = R_,.

Lemma 3.3.2 The rotation map Rg has the properties
1. ||Re — I|| < |8 for all 8 and
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2. ||Rs — Ry|| < |6 — ¢| for all 6 and ¢.

PROOF. We identify £2 with the complex numbers C by setting (z1,z;) =
1 + 1z, Let = (21, 2) = (cos @, sin @) = €. Then Ryz = €*+%). Now for
all 6,

e —1] = [|e"/?]|245in(6/2)]
< 206/2/ = o]
Hence
|Rez — z| = |ei“(ei9—l)|
= "1
< 9]

which proves (1), and (2) follows directly from (1) using |R¢|| = 1, ReR, =
R0+(p) and Rg_l = R_,. |

We use Ry as follows. Let P and @ be the projections of £, defined by
Pz = z1e1 + 2265 and Qz = Y 2, z;e;. Suppose that

e 6:4, — R is Lipschitz, Lip () < K and 6(u) = 0 ifjfu| > R, and that

o ¢:4, —» R is Lipschitz, Lip (¢) < K and ¢(u) =01if || u| > R.

We identify zi1e; + zze, with (z1,2,) and define maps T : £, — £, and
S 4y — £ by
T(z) = Ryq)(Pz) + Qz.
and
S(.’I:) = Re,(z)(Pm) + Qz.
Lemma 3.3.3 Lip (T),Lip (S) < KR + 2.

PROOF. To estimate Lip (§) choose z,y with ||z|| < ||y||. Write 8( z ) =
01, 0( 'y; ) = 92. Then

|01 - 92| o < K”y - 511” \;J as&&mpk‘\aﬂ
so that

|| Re,(Py) — Ra, (Pz)]| || Re,(Py — Pz) + (Re, — Rg, )(P2)

ly — =l + 161 — G2} || P=||
(K||Pz|| + 1)lly — =] (3.1)

IA A I
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Ififz|| < R then ||Rg,(Py) — Rg, (Pz)|| < (KR +1)|jy — z|| so that |5 (z) —
S (3] < | Rey(Py) B, ()| + Q2 — Q1| < (KR+2)[ly — ]l HIPe]| > B
then S(z) = z and S(y) = y. We note that C =14, =
B(0, R)U(£,\ B(0, R)), the restriction of S to B(0, R) has Lipschitz constant
at most K R+2, and the restriction of Sto £\ B(0, R) has Lipschitz constant
1< KR+2toget that Lip(§) < KR+ 2.

To estimate Lip (M) we _use’ baat” Huwlil 2N Pull. )

‘ I}i | all < R, we have ||Ry,(Py) — Ry, (Pz)| <
(K[| 1)y —=] < (BR+ 1)y o o that [T(z) =T} < | on (Py)—
R (Pl + |00 - Gyl (KR4 Dl ol T | ol > B honT () oo

¥) =9. "W2a nofe thut sinee C=£ ={z:||Pz| < R}U(L\{z:
||[Pz|| < R}), the restriction of T to {z : ||Pz|| < R} has Lipschitz constant
at most K R+2, and the restriction of T to £\ {z : || Pz|| < R} has Lipschitz
constant 1 < KR + 2, we get Lip (T) < KR+ 2. ]

In this section and in section 3.4 we apply Lemma 3.3.3 with §: £, - R
defined as follows. Let 0 < R; < Ry and ) : R* — R be a Lipschitz function

such that /
/2 ifu< R
Au) = { if u > Ry,

with Lip (A) < K < 2/(Ry; — Ry). Let 6(z) = A(||z||) so that 8(z) = 6(y)
whenever ||z]| = ||ly|| and Lip () < K. Then it is easy to see that T has the
following properties:

G) 172l = 1ol for all =,
(i1) T(z) = z for all = such that ||z| > R,,
(iil) T(z) = —z2€1 + 2163 + Qz for all z such that ||z]| < Ry,

(iv) T(z) is obtained from z by a rotation about {y € £, : y; =y, =

0},
(v) T7'(y) = R-o(s)(Py) + Qy, and
(vi) Lip (T),Lip (T~!) < KR, + 2.

For (v), using (¢) and that 6 is norm invariant, we get that 6(T(T'(y))) =
8(T~'(y)) and that (T'(z)) = 6(z). We may then easily verify that T(T"(y)) =
y and T7Y(T(z)) = z. Finally we get (vi) applying Lemma 3.3.3 to 7!
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Lemma 3.3.4 There is a constant K; > 1 such that for all 8-cycles p on
the natural numbers and all > 0 we can find a Lipschitz isomorphism T, ,
on ly such that

(1) Tor(z) =z for |[z]| 2,

(%) Tpr(z) = 322 Tiep(s) for all x such that ||z|| < /2,
(5) I Tyn(@)] = 2] for all 2,

(w) If z; = z; = 2z, = 0 and p = (3,7, k) then Tp,(z) = z,
(v) Lip (Tp,), Lip (T,) = K1 < 144, and

(vi) Ty, is Fréchet differentiable at all non zero points.

PrROOF. We first handle the case when r = 2. We recall the Lipschitz iso-
morphism T of Lemma 3.3.3. Let A : R* — R be defined by

{ﬂ'/2 fu<l

Mu) ={ 7/2sin’(nu/2) fl<u<?2

0 ifu>2

Define 6 : £, — R by 8(z) = A(||z||); then € is differentiable at z # 0 and
that @ is Lipschitz with Lip (8) < K = n?/2 < 5. Replacing (z1,z2) with
(zi,z;) we obtain for each 7 # 7, (with R, = 2 and Ry = 1) S;; : &3 — £,
given by

5:i(z) = Re(z)(Pijz) + Qi 2,

where P,z = wz;e; + zjej, and @z = ZZ‘;,-J zreg. It 1s clear from the
properties of T' that

1. ||Sii(z)|| = ||=| for all z,

2. S;j(z) = z for all z such that ||z|| > 2,

3. Sij(z) = —zje; + wie; + Qi z for all « such that ||z]| <1,
4. 55'(y) = R_gw)(Py) + Qy, and

5. Lip (Si;) < 2K +2 < 12 (and the same for S;;').
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We note also that S;; is Fréchet differentiable at z # 0, in particular

13022 = X (lal) S0 Ragyeja(Pise) + RogeyPigh + Quh.

Let Tp 2 = Ski0S;;. For general r > 0 it suffices to let Ty, = a 0T, 200, where
ar(z) = 2z/r and o' = rz/2. Then Lip (o) = 2/r and Lip (o) = r/2
so that Lip (Tp,) = (2K +2)* = K; = 144 Similarly for T}, which proves
(v). Properties (z)-(iv) follow directly from those of T'. Property (vz) follows
since S;; and o, are Fréchet differentiable at non-zero points. O

Example 1 is a map f defined by composing the sequence T; = Ty, », of the
Lipschitz isomorphisms of Lemma 3.3.4 where r; = 37* and p; = (1, 23, 2i+1).
We observe that for each N > 1, Tiyo---0Tj is a Lipschitz isomorphism with
Lipschitz constant K; < 144 and has the same action on the coordinates of
z as the cycle (1,2,3,---,2N + 1) whenever ||z|| < 3°¥-1. The map f is
defined by f(z) = limy e Iy 0 - - - 0 Ty with the result that f/(0) is the shift

operator.

Example 1 There is an everywhere Gateauz differentiable Lipschitz isomor-
phism f of £ such that f'(0) is not surjective.

PROOF. For each integer : > 1 let r; = 3% so that we have rj;; = r; /3 for
all 7, and let p; be the 3-cycle (1,24,2:+1). Using the Lipschitz isomorphisms
Tpr of Lemma 3.3.4 with r = r; and p = p;, we define the map f: £, — £,
by

flz) = 1\}1_{%0 Ty oTn. oo Ty(z)

where T; = T, ..
We claim that f is well defined and

1. f(0) =0,
f(2) =Ty o oTy(a) if =] >3-V,
feh=limpe T 0 - 0 Ty (a),

f is a Lipschitz isomorphism such that Lip (f) < K; and Lip (f)™! <
K, where K, is the constant in Lemma 3.3.4,

W N

5 f(z)= m,e,.,.l for all z such that ||z|| < 27'3Y and
T € span {el, -,€eaN}
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6. f is everywhere Gateaux differentiable, and
7. f'(0) is not surjective.

That f is well defined will follow directly from (1) and (2).

For (1) since Tpyrp(0) = 0 for all N > 1 then f(0) = 0.

For (2) using (iii) of Lemma 3.3.4 we get that [|[Tyo...0Ty(z)| = ||z|| >
3-N. By (i) of that Lemma we have that if ||z|| > r,, then Ty, .. .(z) = z so
that with ||z|| > 3™ we get for alln > N +1 that T,0...0Tyo...0Ty(z) =
Tno...oTi(z). Hence f(z) =Ty o...o0 Ti(z).

For (3) if z # 0 using (2) we see that if ry = 3™N < ||z|| then f~!(z)
T{'o--- o Ty'(z). The same argument used in (2) gives f(z) = Ty
-0 T7Yz) for all n > N + 1. We deduce that for all z # 0 that f~!(z)
limgoo I3 10+ 0T }(z). If z = 0 then f72(0) = limgoyoo Ty *0- - -0 T 1(0) =
0. Hence

o |l

(@) = Jim T o0 Ty ().

for all z.

For (4), using (2), we choose an integer N so that, if not both z and y
are zero, 37V is less than the least non zero of ||z||, ||y||. Otherwise we let
N =1, so that there is some integer N such that

1f(z) = f@I <l[Two---oTi(z) =Ty oo Ta(y)|| (3.2)

To estimate the Lipschitz constant of T o - -- 0 T7 we need only note that by
Lemma 3.3.4 Lip (Tk) = K; for each k and T} has its own region Ry = {z :
271.37% < ||z|| < 37*} on which it is non-isometric and is isometric on each of
{z :37*% <||z||} and {z : ||z|| < 27*.37F}. We apply Lemma 3.3.1 with h =
Tyo---oTyand C =45 = B(0,3_N"1)U{a: el = 371 IUUN, RyrU(Sk\ Rk)
where Sy = {z : 37! < ||z|| < 3%} for 1 < k < N. It is clear (from the
properties of Ty and Lip (k) = [IY, Lip (T})) that

e the restriction of h to Ry has Lipschitz constant at most K; for each
1< k<N,

e the restriction of h to Sy \ Ry has Lipschitz constant at most 1 for each
1<k<N,

o the restriction of A to B(0,3 ') has Lipschitz constant at most 1,
and

e the restriction of A to {z : ||z|| > 37} has Lipschitz constant at most
1.
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We conclude that Lip (Tw o --- 0 T1) < Kj. so that, by (3.2), Lip (f) < K.
Similarly Lip (f~') < K;. Hence f is a Lipschitz isomorphism.

For (5) applying (ii) of Lemma 3.3.4 (that if ||z| < r/2 then T,.(z) =
Y2, Tiep(s)) we obtain for all z such that ||z|| < ra/2 = 27'37" that TN 0

0 Th(z) = Tanpr€1 + ooy Tieir1 + Loi2an4o Tigi- If also @ € span {e;}2,

then Ty o --- o Ty(z) = 2 z;e;41. Applying (iv) of Lemma 3.3.4, that for
all k > 1, 1f T1 = Top = Topy1 = 0 then Ti(z) = = we see that if £ > N +1
and z € span {&;}?;"! then Ti(z) = z. Therefore

Tio--0TypoTyo---oTi(z) = Tyo---oTi(z).

Ny +1 . Hence

2N
:I:) = E.’B,’B,‘+1

whenever z € span {e;}2"! and ||z < 3-V.

For (6), when = # 0 we apply (2) so that if ||z]| > 37V then f(z) =
Tyo---oTi(z). BEach T; is Fréchet differentiable at z so that f is Fréchet and
hence Gateaux differentiable at z. We may calculate the Gateaux derivative
of f at zero. If h € span {e;}2Y then

o = tim LR =F0)

t—0 t
2N
= Zh,’&,’.{.l (33)

Since (3.3) is true for all N, that U3_, span {e;}2Y] is norm dense in 3, and
f is Lipschitz, given € > 0 and h € £, we let AN = (hq, ks, ..., hn,0,...) and
choose N so that ||h — h®)|| < € to get that

”L.OM (0, ha, b, .. )|
| 1img L) = SR + FERTT) - £(0)

t—0 t

whenever = € span {e;};-

— (0, b1, hay )|
f(tr™) — £(0)
t

< (K +1)llh— K 4 lim
S (K1+1)€
Therefore

— (0, k1, ha,..., AN, 0,..)

[0 0]
= Z hiei+1

=1
for all h. Hence f'(0) exists, it is the shift operator which is not surjective.
This completes (6) and (7) and ends the proof. a
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3.4 The second example

Our second example is constructed in a similar way to the first example; the
major difference is the choice of coordinates used in the rotation map. At the
n’th stage we choose k and m such that n =2™ 4+ k,m >0,and 0 < k < 2™
and perform the rotation on the coordinates zg;; and zamypys.

Example 2 There is a Lipschitz isomorphism f of €3 such that
wlim f(te) =0

t—0 t

for all .

PROOF. For each integer n > 1 choose integers k and m such that n =
2™ + k,m > 0, and 0 < k < 2™. Define 6 as follows. Let A : Rt — R be a
Lipschitz function such that

[ w2 f0<e <2
A(“”)”{0 ifz >2"

and Lip () < 2/271 = 27*2 Let 6(z) = A(||z||) so that Lip (9) < 2"*? =
K, and 6(z) = 0 if ||z|| > 27" = R,. We apply Lemma 3.3.3 replacing
coordinates z; and z, with x4 and zam g4 respectively, to obtain for each
n, Lipschitz isomorphisms fa(z) = Re(z)(Pz) + Qz of £; to itself such that

(1) fn(o) = 0,
(ii) fa(z) = z for all z such that ||| > 27",

(iil) fn(z) = —Tomikt1€k41 + Thir€2mibtr + Xishir,om ki1 Titi for
all z such that ||z|| <2771,

(iv) fa(z) is obtained from z by a rotation about {y € £3 : yx41 =
Yamiks1 = O},

(v) || fa(2)|l = ||| for all z, and

(vi) Lip (fn) < RyK2 +2 < 277272 4 2 < 6 (and the same for
21
Define f : £ — £, by
f@)= lim fvo fy-10---o fiz).

We claim that f is well defined and that
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1. f(0) =0,
2. f(z)=fyo--o fiz) if |z|| = 27V,
3. f_l = limk—boo fl_l 60:-+0 fk_l(m)’

4. f is a Lipschitz isomorphism such that Lip (f) < 6 and Lip (f)™" <6,

5. if u € span {ei}1<icer—1 then f(tu) € span {e;}i>2» whenever [t] <
2272, and

6. wlim:_,o ﬂ:—xl =0 for all z € {,.

To verify (1)-(6) of f we proceed as in the first example. That f(z) is
well defined will follow from (1) and (2).

For (1) since fn(0) =0 for all n > 1 then f(0) = 0.

For (2) using (v) of f, and that ||z|| > 3~ we get that || fxo...0fi(z)|| =
||z||- By (ii) for alln > N +1 we have fp0...0fyo...0fi(z) = fno...o fi(z).
Hence f(z) = fnvo...o0 fi(z).

For (3) if z # 0, using (2), we see that if 27V~ < ||z|| then f~!(z) =
filo---o fy'(z). By (i), f7'(z) = © forn > N + 1, so that f~! =
limg_oo fi 2 0 -+ 0 fi'(z). If z = 0 then as f;1(0) = 0 for all n we have
F7H0) = limgyeo f; P00 f71(0) = 0.

For (4), using (2), we choose an integer N so that, if not both z and y
are zero, 3™V is less than the least non-zero of ||z|| or ||y||, otherwise we let
N =1, so that

[f(=) = fW < |lfwo---ofilz)— fwo---ofily)ll

For Lip (fy o --- o f1) we note that, for each 1 < n < N, f, is isometric
in each of the sets {z € £, : ||z]| < 27" '} and {z € & : 27" < ||z||}. The
Lipschitz constant of f, restricted to U, = {z € £, : 27! < ||z|| < 27"} is
at most 6. Letting Fiy = fy o--- o f1, we get that,

e the restriction of Fyy to U, has Lipschitz constant at most Lip (f,) < 6
foreach 1 <n < N,

o the restriction of Fiy to B(0,27¥~!) has Lipschitz constant at most 1,
and

o the restriction of Fiy to {z € £, : 27! < ||z||} has Lipschitz constant at
most 1.
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We apply Lemma 3.3.1 with C = £, = B(O,Q_N_l) Uz e g : 271 <
llz||} UY_, U, from which we deduce that Lip (fy 0--- o fi) < 6. Hence
Lip (f) < 6. A similar estimate applies to Lip (f~!) and we conclude that f
is a Lipschitz isomorphism.

For (5) suppose that u € span {e;}1<i<2r—1. Since the mappings f,, for
n < 2P can change only first 22 — 1 coordinates, all coordinates beyond the
first 22 — 1 of fap_3 0...0 fi(tu) are still zero. We may suppose that

2P—-1

for—10...0 fi(tu) = Z zie;

for some x; not necessarily zero. We claim that if |¢|||u|| < 272" =2 then
fart1_1 0 ... 0 fi(tu) has zero as the first 2P — 1 coordinates as well as all
coordinates from 2°*! onwards. By (iii) fo» interchanges coordinates at ezsy;
and e; and since the esry; coordinate of fye—y 0...0 fi(tu) is zero, we get
that

2P—1

faro...0 fl(tu) = Z1€2p41 + Z T;ie;.

1=2

Repeating this argument another 2? — 2 times, we see that

2P-1

farti_q0...0 fi(tu) = Z T;€op 45
=1

which proves our claim. Using (iv), we then see by induction that if m > p+1
then famo...o fi(tu) can have non-zero coordinates only for indices 27 < 5 <
2™, which shows that the first 22 — 1 coordinates of f(tu) are zero. The case
m = p+ 1 is as claimed above. If fymo...o0 fi(tu) has non-zero coordinates
only for indices 27 < j < 2M then the coordinates at e, and eym_, are zero
and by (iv) fymyi0...0 fi(tu) is obtained from fymo.. .0 fi(tu) by a rotation
about {y € & : yo = yomy, = 0}, so that fomyy o...0 fi(tu) has non-zero
coordinates only for indices 27 < j < 2M 4 1. We may repeat this argument
2M _ 1 times so that fym+1 o...0 fi(tu) has non-zero coordinates only for
indices 22 < j < 2M*1 This completes the induction. Hence the first 27 — 1
coordinates of f(tu) are zero.

For (6) we have from (5), that for each integer ¢ > 1, that (ﬁ:—”), e;) =0

whenever |t|||z]| < 272" -2 for any integer p such that 2° > 4. Hence

for all z. This ends the proof. O
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3.5 The third example

It is shown that there is a Lipschitz isomorphism f of £y onto itself such that
f(z) = (0,zy,x,,...) whenever = € £y satisfies |z;| < 277 for each j.

The construction is a further application of the method used in Example
1 of section 3.3. The map f is defined by composing a sequence of Lipschitz
isomorphisms (gx)5>,. Each gk is again constructed using a rotation in the
plane to achieve the interchange of two coordinates. The major difference
here is that,instead of. spherical annuli, the non-isometric regions of the iso-
morphisms g; consist of a region between sets Uy and £, \ Ur_; where each
Uy is a cylinder of a set that is the product of a disc and a cube.

Lemma 3.5.1 For each integer k > 2, let
Ur={z €4y : a2 +al,, <27 and |z;| <277 +27F for 2 < j <k},

and Wy, = span {e;}iz1,k. Then for each k > 2 there is a Lipschitz isomor-
phism g, : £y — £y such that

1. ge(u) = u whenever dist (u,Ux) > 27%, in particular whenever u =
zey + yepyr +w with w € Wy, and % 4 y? > 272k+6

2. gr(zer +yers1 +w) = yer — zep1 +w whenever 2,y € R and w € W,
are such that ze; + yerr1 +w € Uy,

gk(u) is obtained from u by a rotation about Wi,
the set Uy 1s gy invariant, that is gx(Ux) = Uk,
gk has an inverse,

the restriction of gi to Uy is an isometry,

Uk D Uk,

gr+1(z) = z for every z € £, \ Uk,

© ® XN S &

limyg—,00 SUP,¢y, dist (2,42 \ Ux) = 0, and
10. Lip(gx), Lip(g') = L < 15.
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PrOOF. That g, is a Lipschitz isomorphism will follow from (5) and (10).
For k > 2 we define g in the following way. Define 6 : £, — R by

f(u) = max{0, 1 — dist (u, U3)2*}.

Note that Lip (dist (u,Ux)) < 1 so that 8 is Lipschitz with Lip () =
max{0,1,2¥} = 2%, and if u = ze; +yer1+w with w € Wy and (22 +y2)Y/2 >
2-k+3 — R,, then dist (u,Us) > 2753 — 27%+2 > 9-k which implies that
8(u) = 0. Let span {e1, ex11} = Vi = £5 so that £, = Vi, @ Wy. We recall the
rotation map Ry of Lemma 3.3.2 and define gi : £ — 43 by

gr(u) = R_rpuy2z +wifu=2+w,z € i, w € W;.

We verify (1)-(10) for gg.

To see (1), it suffices to note that whenever u € £, satisfies dist (u, Ug) >
2% then f(u) = 0 so that gr(u) = u. As noted above, if u = ze; + yery1 + w
with w € Wy and z? + y? > 27%%+6_ then dist (u, Uy) > 27*.

For (2), we observe that 6(u) = 1 for u € Ui, so that, ifu = ze;+yer 1 +w
where ze; + yert1 € Vi and w € Wy, then gi(u) = yeq — zepy + w.

For (3), in the definition of gk, Ry is a rotation in the plane orthogonal
to Wk.

To prove (4), it suffices to note that gi(u) is obtained from u by a rotation
about W and to use the the rotational invariance of Uy.

For (5), note that the function v — dist (u, Uy) is invariant under rota-
tions about Wj. Since gx(u) is obtained from u by a rotation about Wy, it
follows that dist (u, Ux) = dist (gx(w), Uk), which, according to the definition
of 8, implies O(u) = 0(gr(u)). Letting he(u) = Rrgu)z2 +twifu=2z+w,2 €
Vi, w € Wi we get that

hie 0 gi(u) = Res(au(w))/2 © Bonb(u22 +w =2 +w.

Similarly for g o h; hence gi* = hg.

For (6), if u; = 2; + w1, and uy = 23 + w; are in Uy where 24,22 € Vi and
wy,wy € Wy then using property (2), the orthogonality of Vi and W, and
that R_,/ is an isometry, we have lgk(w1) — gr(u2)||? = || R=x/221— R—r/222+
w1 —Wa||? = [[Rorya(21 — 22) + w1 —wa||* = || Rorya(z1 — 22) | + [lw1 — wa||® =
[Jur — uzl|?.

For (7) and (8), we show that, if z € £; \ Uk, then dist (z, Ug41) > 27571,
This inequality shows that Uy D Ug41 and, by (1), that get1(z) = z for all
z € £y \ Up. If © € £, \ Uy, then 22 + 22, > 272+ or |z;]| > 2771 4+ 27F for
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some 2 < j < k. Let y € Ugyq then yf +y2,, <27%+2 and [y;| <279+1 4 2*
for each 2 < 7 < k + 1. We estimate that

Yl +yp,, < 27T 4 oERHL  9m2k-2 g2 9-2k2
so that if 22 + z,, > 272%+4 then
lz — gl > 2752 — (52.27%72)/% = 3.27k1 > 97+,
If |z;| > 277t + 27% then
llz —y|| > |z;| — |y;| > 27F —27%1 = 27F-1

so that in both cases ||z — y|| > 2757, and we infer that dist (z, Ug41) >
27k-1,

For (9) if ¢ € Uy then z? + 27, < 272%* 50 that we may choose any
y € &\ Ux with y2 +y2,, > 272+ to infer that inf s \p, ||z — y|| < 27F+2.
Therefore sup,¢y, infyes,\v, |z — y|| < 27%+2. Hence

lim sup dist (z,€, \ Ux) = 0.

k—o0 z€ly

Finally for (10) we apply Lemma 3.3.3 with ¢ = —78/2 and z1, z\ replac-
ing 1, z2, so that, as noted above for 6, we get ¢(z) = 0 whenever | Pz| =

(z? + 22,,)"/? > 27%+3 = R;, and Lip (¢) = (n/2)Lip () < n2*¥~ = K;. We
get for S = g, that

Lip (gx) < KaRs +2 < 72¥7127% 1 2 <15,
We estimate Lip (g ') similarly. O

Lemma 3.5.2 Suppose that hy,...,h, are Lipschitz mappings of a Banach
space X onto itself and that for each k there is a set Ay C X such that

1. the restriction of hy to Ax has Lipschitz constant at most one,
2. he(X \ Ax) C X \ Akt1 whenever k < n, and

3. the restriction of hey1 to hi(X \ Ax) has Lipschitz constant at most one
whenever k < n.

Then
Lip(hy o ... 0h;) < max(Lip(hy), ..., Lip(hp)).
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PROOF. Let go be the identity. For 1 <j <n+1 let 9i = l'\')o. : oln) B)=X‘A)

-1 n ) Il )
M= g (40 0 N gi( \ 4 = N gl (AN g ()

(s 95 (8)) € 97 (Bin) S =

with MP=; 951 (Ak) = X and Mionyr git1( X\ Ax) =X . The sets M;, 1 <

j <n+1, cover X. To see this, let z € X. Suppose that thereisa j <n+ 1

for which g;_1(z) € X \ U; and let j be least with this property. We have by

the second assumption that hg(X \ Ax) C X\ Agy1 for all k& < n. Therefore

for any k > j we get that gx_1(z) = hg_1 0 .95-03-.5_1(:5) € X\ Ag. As j is

least, whenever £ < j — 1, we have gx_1(z) € Ax and therefore z € M;. If
j>n+1then g;_1(z)€ A;foralll1 <j<n+1and z€ M.

The restriction of g, to each such M; is a composition of the restriction
of hy to Ay, ..., hj_1 to Aj_;1, which all have Lipschitz constant at most one
according to the first assumption, followed by h; whose Lipschitz constant
we estimate by Lip(h;), and followed by the restriction of hji1 to k(X \ 4;),
vy hp to hp_1(X \ An-1), which all have Lipschitz constant at most one
according to the last assumption. Hence the restriction of g, to each M; has

Lipschitz constant at most max(Lip(hy), ..., Lip(h;)). Since g, is continuous
(it is even Lipschitz), by Lemma 3.3.1 it has Lipschitz constant at most
max(Lip(hy), ..., Lip(hy)). 0

Example 3 There is a Lipschitz isomorphism f of £y onto itself such that
f(z) = (0,241, x2,...) whenever x € £, satisfies |z;| < 277 for each j.

PROOF. Let g; be the identity of £; and U; = {z € £; : :z:%-{-:z-% <4} D U,.
Using the Lipschitz isomorphisms g : £ — {3 of Lemma 3.5.1 we define f
by

f(2) = lim gk o...0g:(z)

for all ¢ € £,. We show that the limit exists for each z, that f is a Lipschitz
isomorphism of £, onto itself, and that f(z) = (0, z1, 2, ...) whenever |z;| <
277 for each j.

First let f, = gno...0g:,. We apply Lemma 3.5.2 with A = gz and
Ay, = Ug to infer that Lip (f,), = L < 15; the assumptions of the Lemma are
satisfied since from Lemma 3.5.1 with g, the identity and U; = {z € £, :
o+ x3,, <4}, weget that foralln+1>k2>1,

e (by (6)) the restriction of gi to Ui has Lipschitz constant at most 1,

e (by (8)) the restriction of gr+1 to gk(€2 \ Ux) has Lipschitz constant at
most 1 whenever k < n,
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e (by (10)) Lip (gx) < L,
e (4) and (7) imply that gx(€2\ Ux) = €2\ U C €2\ Ur41 whenever k < n,
and

® gi is surjective.

We apply Lemma 3.5.2 again with Ay = 9;1k+17 A = £\ Uy for
k < n, h, the identity, and A, = £, \ U; to infer that the Lipschitz constant
of f71 = g7 o...0g;" also does not exceed L < 15; to apply that Lemma
we recall from Lemma 3.5.1 that foralln+1>k > 1,

e (8) implies that the restriction of hy = g;2;,, to Ax = £, \ Un_y is the
identity, so it has Lipschitz constant at most 1,

o (8) implies that the restriction of g;%;.; to £ \ Un_ is an isometry so
that U,_i is Q;Ek-n invariant, and with (7) we get that hg(f \ Ax) =
g;ﬁkH(Un_k) = Up-t C Up-k-1 = £\ Ar41 whenever £k < n (for
k=mn—1 we get that hn_1(£2\ An1) = g3 (U1) = Uy = £, \ 4,),

e (6) implies that the restriction of hxy1 = g%, to hr(€2\A4x) = g;_lk.l_l(Un_k) =
U,_i is an isometry, so it has Lipschitz constant at most 1, whenever
k<n,

e by (10), Lip (hx) = Lip (g;;x_1) < L, and
o hp = g;_1k+1 is surjective.

From property (9) of Lemma 3.5.1, given € > 0, we find n such that for
any = € £, there is z € £, \ U, such that ||z — z|| < €. From (7) and (8) of
Lemma 3.5.1 we infer that

gm 0 Gm-10 ... gnt1(2) = 2

for m > n. Applying f.!, we get that
fal(2) = fal(2)

and so we estimate that

Ifal @) = @) < N2 (@) = fal (@ + 121 (2) = £ (@)l
= |fa (@) = f21 N + 1121 (2) = £ (=)

2L||z — z||

2Le,
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and we see that the sequence f;! is uniformly convergent. Similarly, letting
y = f7}(2), we have that f,(y) = fm(y) for m > n, and we estimate

[fm(z) = fa(@)l] < [[fm(z) = Fm (@)l + | fm(y) — fu(2)]|
[fm(2) = fm ()]l + 1 fa(y) — fu(@)]
< 2L[ly — =

< 2L%,

which gives that the sequence f, is uniformly convergent. Let g = lim,, 00 fn
and h = lim, e f;;*.
We claim that kA = g~!. Since

1 £a(£2 () — g(R(2)l < Ll £ (2) — k(=] + [ fn(h(2)) — g(A(2))I| = O,

then g(h(z)) = z. Similarly h(g(z)) = =. Noting that a pointwise limit of
a sequence of functions with uniform bound on their Lipschitz constants is
Lipschitz we have that g, and g~' are Lipschitz.

Let Cy = {z € £y : |z;] < 277 for all j} and, for k > 2 let

Cr = {z€ly:|z]| <27F |z;] <277 for 2< j <k,
and |z;] < 277 for j > k}.

Then Cy C Uy, so the expression for gi on Uy gives that gx(Ck) = Cry1. We
infer that for every z € Cy,

gk 0 ...0g1(2) = (Thy1, —T1, —T2, - - ., — Tk, Tht2, Th+3, - - -),

which in the limit as kK — oo shows that f(z) = —g(z) = (0,z1,%2,...). O

We deduce that f'(z) is the shift operator whenever |z;| < 277 for all j.
For each integer n > 1 and any y € span {e;},; we have f(z+ty) = (0,2, +
ty1, T2 + tY2, - - - Tn + tYny Tnta, - . .) for all sufficiently small |¢|. Therefore

Lo f(@+ ) = f(2)

t—0 t

=(0,%1,---,¥n,0,...).

Since f is Lipschitz and U2, span {e;}, is norm dense in £; we deduce that
f'(z)y = (0,y1,9Y2,-..) for all y € £,. To see this, given y € £, and € > 0, for
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each integer N > 1 let ¥™) = (y1,...,¥n,0,...) and recall that Lip (f) < L.
We may choose N sufficiently latge that ||y — y¥)|| < € and estimate that

z — f(z () z M) — f(z
_ ||%1_I)r01f( +ty) f( + iy t)+f( + iy ) f( )—(0,y1,yz,---)||
< (L4 Dlly =y ™)+
2+ ™) — f(z
||%516f( +ty t) f( )_(0>y1:y27"'ayN>0)"')”
< (L+1)e
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