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A bstract

There are three chapters in this work of which the first two contain dif­
ferentiability results for continuous convex functions on Banach spaces. The 
final chapter contains differentiability results for Lipschitz isomorphisms of 
2̂-

The aim of chapter 1 is to improve on a result of I. Ekeland and G. 
Lebourg [EL] who show that a Banach space E  tha t admits a Lipschitz 
Frechet smooth bump function is an Asplund space. It is shown tha t if 
E  admits a continuous lower Frechet smooth bump function then E  is an 
Asplund space.

Chapter 2 contains partial results towards showing tha t there are Gateaux 
differentiability spaces that are not weak Asplund spaces. Suppose tha t K  
is a totally ordered first countable Hausdorff compact space. A topology rw 
is defined on C (K )  called the wedge topology, and it is shown tha t if every 
subdifferential of a continuous convex function /  on C (K ) contains a measure 
of finite support then /  is Gateaux differentiable on a rw residual set.

Chapter 3 contains three examples of Lipschitz isomorphisms of 12 to 
itself for which the derivative fails to be surjective; in the first example the 
Gateaux derivative is not surjective at one point, in the second example the 
weak limit of limt_>o(/(^) — /(0 ))A  *s zero ôr ^ C I 2 , and in the third 
example the Gateaux derivative is not surjective at all points of the cube 
{x  G ^ 2  • |*i| < 2_ lfor allz} which is mapped afhnely into a hyperplane.
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B asic notation

There follows a list of the notation used in the text, which, although basic, 
is not completely standard.

A l the set of left accumulation points
A r  the set of right accumulation points
Ba the set of basic neighbourhoods of 0 in the

oscillation topology 
Bw the set of basic neighbourhoods of 0 in the

wedge topology
B ( x ,r ) the open ball centred at x with radius r
card L  the cardinality of the set L
C (K )  the Banach space of continuous functions

on the compact space K  
d(g , V ) the distance of g from the subspace V
df(<f)) the sub differential of /  at 0
G the closure of the set G
1A the characteristic function of the set A
M .(K )  the set of Radon measures on C (K )
M .[F) the set of Radon measures on C (K )

with support contained in F  C K  
Lip ( / )  the Lipschitz constant of /
R  the real numbers
R + the non-negative real numbers
t q the oscillation topology
rw the wedge topology
U0(0, e, cj) a basic neighbourhood of 0 in the

oscillation topology (definition 2 .3 .1)
Uw(0, e, {<^}ZgL, {ipr}r£R) & basic neighbourhood of 0 in the

wedge topology (definition 2.3.2).
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Introduction

The two notions of derivative used in this work are the Gateaux derivative, 
and the Frechet derivative. If X  and Y  are Banach spaces then the Gateaux 
derivative of a mapping <j) : X  i—> Y  at x E X ,  is defined as a continuous 
linear map : X  \-* Y  such that

n x ) u  = lim * 8 +  tu ) ~  +{x)
} t —*0 t

for every u  E X . For the Frechet derivative we require in addition tha t the 
above limit be uniform for IMI ^  !•

We refer to [DGZ3], [Fa], [Gi], and [Phi] for a comprehensive treatm ent 
of Asplund spaces and related concepts. A Banach space E  is said to be an 
Asplund space if every continuous convex function on E  is Frechet differen­
tiable on a residual set. If every continuous convex function on E  is Gateaux 
differentiable on a residual set then E  is called a weak Asplund space, and if 
every continuous convex function on E  is Gateaux differentiable on a dense 
set then E  is called a Gateaux differentiability space (GDS).

In chapter 1 we show th a t if E  admits a continuous lower Frechet smooth 
bum p function then E  is an Asplund space. This improves on a result of
I. Ekeland and G. Lebourg [EL] tha t provided E  admits a Frechet smooth 
bum p function then E  is an Asplund space. To obtain differentiability points 
of a continuous convex function on a Banach space one m ethod is to apply a 
variational principle of which we note Ekeland’s variational principle [Ek], the 
Borwein-Preiss variational principle [BP], and a general variational principle 
by R. Deville, G. Godefroy, and V. Zizler [DGZ2] from which most results 
obtained previously by Ekeland’s variational principle or the Borwein-Preiss 
variational principle easily follow. Recently M. Fabian, G. Godefroy, and J. 
Vanderwerff [FHV] have obtained a smooth variational principle in the case 
of a Banach space tha t admits a Frechet differentiable bump function. All 
these results imply tha t a Banach space tha t admits a Frechet differentiable 
bum p function is an Asplund space.

6
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For results on Gateaux differentiability, Deville’s version of the Borwein- 
Preiss variational principle implies that, if E  admits a Lipschitz Gateaux 
smooth bump function then E  is a GDS; it is even a weak Asplund space as 
shown by a slight adjustm ent in a result of D. Preiss, R. R. Phelps, and I. 
Namioka in [PPN] (it is shown that a Banach space with Gateaux smooth 
norm is a weak Asplund space) done in M. Fosgerau’s thesis. In the Gateaux 
case we do not know whether relaxing the condition on the bump function to 
continuous Gateaux lower smooth implies tha t E  is a GDS. For the converse 
it is not known whether an Asplund space admits a lower Frechet smooth 
bump function; Richard Haydon [Ha] exhibits an Asplund space tha t admits 
no Gateaux smooth (differentiable at non-zero vectors ) equivalent norm, 
which strongly refutes the converse of the results in [PPN].

We can show, using our method, tha t if E  admits a continuous Gateaux 
lower smooth bump function then E  is an e-GDS in the sense th a t for any 
continuous convex function /  and any y E E  the smooth limit

lim ^ X +  ty  ̂+  ^ X +  ty  ̂ ~  t—o t

is less than e for all points x in a dense subset of E.
In the second chapter we obtain partial results towards showing tha t there 

is a GDS tha t is not weak Asplund. In particular letting K  be an ordered 
first countable Hausdorff space that is compact in the order topology, we 
define a topology rw (the wedge topology) on C (K ), for which all continuous 
convex functions /  on C (K ) such tha t each subdifferential contains a Radon 
measure of finite support, are Gateaux differentiable on a r^-residual subset 
of C (K ). In this connection M. Talagrand [Tal] has shown tha t the set of 
points of Gateaux differentiability of a convex continuous function /  need 
not be Gg. M. M. Coban and P. S. Kenderov [CK] have observed th a t the set 
of points of Gateaux differentiability of the sup-norm on the double arrow 
space D, which may be described as the space of functions on the unit interval 
with a right limit at 0, a left limit at 1, and left and right limits at every 
point), is dense but not residual. M. Talagrand [Ta2] gives a proof th a t there 
does not exist an equivalent Gateaux smooth norm on D. More generally it 
is known from a result of D. Preiss, R. R. Phelps, and I. Namioka in [PPN] 
tha t a Banach space tha t admits a Gateaux smooth norm is a weak Asplund 
space; in view of the Coban-Kenderov statem ent this gives another proof of 
Talagrand’s result.

Chapter three contains three examples of Lipschitz isomorphisms of i 2 for 
which the derivative fails to be surjective: in the first example the Gateaux 
derivative is not surjective at one point, in the second example the weak limit
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of lim t_>o(/(^) _  / ( 0 ))/t is zero for all h E ^2 , and in the th ird  example the 
Gateaux derivative is not surjective at all points of the cube {x  E I 2 • |^i| < 
2_ lfor all 1} which is m apped affinely into a hyperplane.

All these examples have some connection with the linear isomorphism 
problem for Banach spaces which asks whether Lipschitz isomorphic Banach 
spaces are necessarily linearly isomorphic. One method of solution is to look 
for points at which the derivative of a given Lipschitz isomorphism /  : X  —► Y  
exists and is surjective. For Lipschitz maps between finite dimensional Ba­
nach spaces Rademacher’s theorem states tha t on R n any Lipschitz map 
into R m is differentiable everywhere except on a set of Lebesgue measure 
zero. Extensions of Rademacher’s theorem to infinite dimensions have been 
found by N. Aronszajn [Ar] using Aronszajn null sets, and by R. R. Phelps 
[Ph2] using Gaussian null sets; tha t Gaussian null and Aronszajn null sets 
are equivalent has been shown by M. Csornyei [Os]. W ith different (weaker) 
versions of null sets similar results have been proved by P. Mankiewicz ([Mn]) 
and J. P. R. Christensen ([Cr]). If it were known that Lipschitz homeomor- 
phisms carry null sets to null sets we could obtain a differentiability point x 
of /  for which f ~ l is differentiable at f ( x ) .  It would then follow tha t f '{ x )  is 
an isomorphism. That Aronszajn null sets are not preserved under Lipschitz 
isomorphisms was shown by V. I Bogachev [Bo]. There is a recent example 
by E. Matouskova [Mt], of a Lipschitz isomorphism of a separable Banach 
space to itself th a t maps a non Haar null set (see [Cr]) to an Aronszajn null 
set. Our th ird  example is another example which shows tha t Aronszajn null 
sets are not preserved.

N. Aronszajn [Ar] obtains the following extension of Radem acher’s theo­
rem.

Let f  be a Lipschitz map from  a separable Banach space X  into 
a space Y  with the Radon-Nykodim property (RNP). Then f  is 
Gateaux differentiable everywhere except on an Aronszajn null 
set.

We refer to [DU] for the RNP; a Banach space Y  has the RNP if every 
Lipschitz map g : R  —► Y  is differentiable almost everywhere. Examples of 
spaces tha t do not have the RNP include Cq and L i(0 ,l) . Reflexive spaces 
do have the RNP. The set of Aronszajn null sets U is constructed as follows 
(see [Ar]). Let E  be a Banach space and let a E E  be non-zero then we let

.  U(a) = { A  C  E  : For all x E E  the set A  fl (x +  Ra) is of Lebesgue 
measure zero on the line x +  R a},



C O N T E N T S 9

• for every sequence (an)^L1 C E  with a„ /  0 we let ZY((an)^°_i) = { A  C 
E  : A  — UAn, An £ U(an) }, and

% U = OU^an)™ ^) where the intersection is over all complete sequences 
in E. (A complete sequence is one whose closed linear span is E .)

Any hyperplane in i 2 is Aronszajn null since in any complete sequence in l 2 
there is a line R a  such tha t any translate of R a intersects the hyperplane in 
a one-element set, which is of Lebesgue measure zero.



C hapter 1 

B um p Functions

1.1 Introduction
We aim to prove Theorem 1.3.1 which is the following statem ent.

Let E  be a Banach space which admits a continuous lower Frechet 
smooth bump function then E  is an Asplund space.

We recall some definitions. Let E  be a Banach space. A bump function  on 
E  is a function b : E  —> R  tha t has bounded non-empty support and attains 
a positive value. We say tha t a function (j) —► R  is Frechet differentiable 
at x (E E  if there is a continuous linear functional (f>'(x), called the Frechet 
derivative of ^ at cc, such that

lim 4>{x + h ) -  <j>{x) -  h) _  Q

A function <f> : E  —> R  is lower Frechet smooth at x if

lim inf +  h  ̂ +  M x  >  0
h—*0 ~~

A set S  C E  is residual if it is the complement of a first category set in E. 
A Banach space E  is an Asplund spacce if every continuous convex function 
on E  is Frechet differentiable on a residual set.

1.2 Lem m ata
We aim to establish the four Lemmata needed to prove Theorem 1.3.1. 
Lemma 1.2.1 is a version of Ekeland’s variational principle which has found 
many applications in non-linear analysis.

10
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L e m m a  1.2.1 Let (T ,d ) be a complete metric space and let f  : T  —»■ R  be 
continuous and bounded above, then given e > 0 there is a z  £ T  such that

f { x )  < f ( z )  + ed(x,z)

for all x £ T.

PROOF. The point z is the limit of a sequence (xn)^L1, which we construct 
inductively as follows. Let xq be any point in T. Suppose th a t for n  >  0 we 
have constructed the point x n. We define a subset M n by

M n =  { x  £ T  | f ( x )  -  f ( x n) > ed(x, xn) }.

Since x n £ M n, we may let Sn = supxeMn / ( x) and choose a point x n+i £ M n 
such tha t f ( x n) > Sn -  2“n. We claim that

1. the sequence ( f ( x n))™= 1 is increasing,

2. the sequence (ajn)”. !  is a Cauchy sequence which converges to a point

3. If m  > n  then x m £ M n, and

4. f ( x )  < f ( z )  +  ed(x, z) for all x  £ T.

For (1), using the definition of M n and that ccn+i £ Mn, we have

f{Xn+1 ) ^(*^n) ^  ed(xn+i , x n)
> 0.

For (2), since ( /(x „ ) )“=1 is increasing and bounded above, it is convergent 
and therefore a Cauchy sequence. Given k, > 0 we may choose a positive 
integer N  such tha t for all m  > n  >  N  we have /(ccm) — f { x n) <  k,. For all 
m  > n > N } we have

m—1
€d{Xm)'En) ^

t=n 
771 — 1

<  £  [ /(Xi+0 -  f ( Xi) 1
1=71

=  f ( X m ) - f ( x n) (1.1)
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Therefore (a:n)“Li is a Cauchy sequence which must converge to some point 
z.

For (3) we see from (1.1) tha t f ( x m) — f ( x n) > ed(a.:m,:cn). Therefore 
Xm £ M n.

For (4), supposing tha t it is not true that f [ x )  <  f ( z ) +  ed(x,z)  for all
x £ T, we may find z such tha t f ( x )  > / (z )  -f ed(cc, z) +  a  for some a  >  0.
We note tha t

• /  is continuous,

• Mn is closed for all n  >  0,

• limm_ 00 xm = z,  and

• xm £ M n for all m  > n.

Therefore 2: G M n for all n. We obtain

f ( x )  -  f ( x n) > f ( z )  -  f ( x n) +  ed(a;, z)  +  a
> e(d(2 , xn) +  d(x, 2:)) +  a
> ed(x, xn) +  a  (1.2)

implying th a t x G Mn for all n. Since ed(x, xn) > 0  we have from (1.2) tha t 
f ( x )  — f ( x n) > a. But if x  G Mn_i then /(a;) <  Sn- 1 so tha t

2n_1 > 5„_i -  / ( x n) > a.

□

Lemma 1.2.2 is a version of the Hahn-Banach theorem which we state 
without proof.

L em m a  1.2 .2  Let E  be a Banach space and M  a linear subspace o f E  and 
suppose that there is a linear functional x*M G M* such that ||s jf || =  1. Then 
there is a linear functional x* on E  such that ||jc*|| =  1 and

(x*,x) =  (x*M ix)

fo r  all x G M.
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Let e > 0, then we define a norm || • || to be e-rough at z  if

\\z + h\\ +  \ \ z -h \ \  -2 \\z \\  , x
lim sup 11 | L|,— 0------—  > e . (1.3)

h—*0

We note tha t, by the triangle inequality, the value of e cannot exceed 2. A 
norm is said to be e-rough if it is e-rough at all z. Lemma 1.2.3 is a result of 
E. B. Leach and J. H. M. Whitfield [UW].

L e m m a  1.2 .3  A Banach space E  is not an Asplund space i f  and only i f  fo r  
some e > 0 E  admits an equivalent e-rough norm.

In Lemma 1.2.4 we show that if a norm is e-rough at z  then for any 5 >  0 
we can find II All < 28 for which llẑ | ~ llzll >  e/8 and >  e/8.\\h\\ ||/i|]

L e m m a  1.2.4 Let || • || be a norm on a Banach space E  that is e-rough at 
z. Then fo r all 8 for which > 8 >  0 there is a h such that

(i) \\z -f A|| =  ||z -  A||,

(ii) ||A|| < 28, and

d a )  lk+*ll-M > £
("V llf.ll -  8-

PROOF. The point h is obtained from h by subtracting a small z  component. 
Applying the Hahn-Banach theorem we find a functional x* which attains 
its norm in the z  direction and subtracting x* from the norm we obtain a
convex function f  with which we may estimate ll̂ +HHHI.

J 11*11
Suppose tha t h and 8 are such tha t, > 8 > 0, \\h\\ < 8, ll*+hIH jj^hll~2IMI

>  e and tha t ||z +  h\\ > \\z — h\\. To construct h we first define a : R  —> E  
by a (t) =  h —  tz . Defining a : R  —» R  by a(t) =  \\z +  a(£)|| — \\z —  a(t)||, and 
noting tha t

• a(0) >  0, and

• a ( l)  =  \\h\\ — \\2z — h\\ < 0,

we may use the intermediate value theorem to obtain a real number t0 £ (0,1) 
with a(t0) = 0. We let A =  a(to) so that



CH APT E R 1. BUMP FUNCTIONS 14

which is property (i) of h. Substituting h = a(t0) =  h — t0z  in equation (1.4) 
gives ||z — h + t0z\\ =  \\z + h — t0z\\ and applying the triangle inequality we 
obtain (1 + 10)||^|| — \\h\\ <  (1 — MIMI +  \\h\\ which simplifies as

iolNI < IIMI- C1-5)

Therefore

11*11 = ||h -  t 0z\\
< 11*11 + toll
< 2 1*11
< 28.

property (ii) of h.
Applying the Hahn-Banach theorem in the form of Lemma 1.2 .2  with 

M  = span { z } ,  and x*M defined by (x*M, t z ) = t\\z\\ for all tz  E span { z } , 
we find a functional x * with ||cc*|| =  1 and (x*, z) = \\z\\. Defining /  : F7 —> R  
by f ( x )  = ||x|| — (a;*, x) we claim that /  has the following properties:

1. /  is convex and non-negative,

2. Lip ( / )  <  2,

3. /(A z) =  0 for all A > 0,

4. /(A;c) =  Af { x )  for all A >  0,

5. f ( z  +  h) < f ( z  -f h), and

f ( z + h ) + f ( z - h )  >

11*11 -  1
For (1), /  is the sum of || • || and — x* and is therefore convex. Since 

||**|| 5: 1) then /  is non-negative.
For (2),

Lip ( / )  <  Lip (|| • ||) +  Lip (a*)
< 2.

For (3) we have for any A >  0 tha t

f ( \ z )  =  \\\z\\ -  (x*, \ z )

=  A(WI - ( * * ! « »
=  0.
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For (4) we have for any A > 0 tha t

f ( \ x )  =  || Acc || — (x*, Ax)

= *(11*11 ~  (**1®))
= */(*)•

For (5), since h — h = tQz , we have (x*,h — h) = \\h — h\\. Hence

f ( z  + h ) - f ( z  + h) = \\z + h\\ -  \\z + h\\ + (x*,h -  h)
— ||z +  h\\ — ||z h\\ 4* ||h, — h\\

> 0.

For (6) we let (3 =  1/(1 +  to) so that 0 < (3 < 1 and recalling tha t 
h = h +  to^, we obtain

z _ ph = »(1 +  <?)_- A
1 +  to 

=  /3 ( z - h ).

Applying property (4) of /  to f ( z  — fih) with /  non-negative gives

f ( z  — (3h) =  p f ( z - h )
< f ( z - h ) .  (1.6)

Using (1.6), and properties (5) and (2) of / ,  we estim ate

f ( z  +  /i) +  f ( z  - h )  < f ( z  -\-h) + f ( z  -  h )
<  / ( z  +  h) +  / ( z  -  ft) +  { f {z  - h ) -  f ( z  -  /?&))
< f ( z  +  A) +  f ( z  — /i) +  2(1 — /?)||Ji||. (1-7)

From (1.5) we have:

1 — (3 = t0/ ( l  +  to)
< to

<  M / H -  (1-8)

Therefore substituting (1.8) and ||A|| <  2\\h\\ in (1.7) gives
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By hypothesis \\h\\ < 8 < so that

f ( z  +  h) +  f ( z  -  h) _  \\z +  h\\ +  \\z -  h\\ -  2\\z\
\\2h\\ \\2h\\

e>
-  2

From (1.9) we have *) >  J and using ||2 -fA|| =  ||J2f — A|| we deduce
that

\\Z + H  ~  INI >  £
“ 8 *

□

1.3 A n im provem ent on Ekeland-Lebourg^
The following Theorem improves on the result of Ekeland and Lebourg tha t 
a Banach space that admits a Frechet differentiable bum p function is an 
Asplund space.

T heorem  1.3.1 Let E  be a Banach space which admits an upper semicon- 
tinuous lower Frechet smooth bump function, then E  is an Asplund space.

P R O O F .  We argue by contradiction. Suppose tha t E  is not an Asplund space 
so tha t, by Lemma 1.2.3, E  admits an equivalent e-rough norm for some e >
0. Letting S  = { x : 46(cc) +  ||x|| >  3} where we may suppose th a t b is a lower 
Frechet smooth bump function such that 6(0) =  1 and spt (6) C B (0,1), and 
applying Ekeland’s variational principle (Lemma 1.2.1) to T  = SC \B (0,2) we 
obtain an Ekeland maximum point of the norm at which the bump function 
6 is not lower Frechet smooth.

The set T  is non-empty since 0 £ T. We show tha t T  C J9(0,1). Indeed 
if x £ T \  spt (6) then, since b(x) = 0 and x G S, we must have ||z|| >  3. But 
T  C J5(0,2). Therefore T  \  spt (6) =  0. Hence T  C spt (6) C H (0 ,1).

Define a metric on T  by d(x,y)  = ||as — y\\. Since 6 is upper semicontinuous 
S  is closed; so T  is complete and Ekeland’s variational principle ( Lemma 
1.2.1) is applicable in T. For the continuous function || • ||, which is bounded 
above, we obtain a point z such that

W <  W  +  . f c J

for all x G T. Since 6 is lower smooth T  ^  {0} so tha t z ^  0.
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Let 0 < 8 < be such that

b(z + h) + b(z — h) — 2b(z) ^ e
> “ 16

for 0 < ||h|| < 28. Since the norm is e-rough at z  we may apply Lemma 1.2.4 
to obtain a point h £ E  with the following properties:

• ||A|| < 2 6  < 1,

•  M M dM  > e/8> and

•  ||z +  h \ \  =  H-2 — h \ \ .

We claim that z + h £ T,  and z — h £ T.
If z -f h £ T  then Ekeland’s variational principle implies tha t \\z +  h\\ <

\\z\\ +  which contradicts the roughness of the norm, tha t is, \\z\\ +  <
||z +  h\\. Similarly z — h £ T  would imply that

\z\\ + 6- ^ < \ \ z - h \ \ < \ \ z \ \  + e
8 "  11 11    16

Since ||z|| <  1 and as ||6|| <  1 we have z -f h, £ 5 (0 ,2 ) and z  — A £ 5 (0 ,2 ) . 
From the definition of T  we deduce that z + h ^  S  and z — h £  S. From the 
definition of the set S  we obtain 4&(z-f6)+1| z+ h  || < 3 and 4fe(z—h)+ \\z—h\\ < 
3. It follows that

0 <  { b(z + h) + b(z - h )  -  2b(z) +  \\z +  fe|| +  ||z -  h\\ -  2||*|| <  Q

which is a contradiction. Hence E  is an Asplund space. □



C hapter 2

G ateaux D ifferentiability on  
C (K ) Spaces

2.1 Introduction
We are working on (totally) orderexk spaces K  which we always consider in 
their order topology. We will assume that K  is compact and first countable. 
We refer to [Na] for a comprehensive treatm ent of the order topology. For 
arbitrary a, b we write

(a, b) = {x : min{a, b} < x < max{a, b}},

[a, b\ =  {x  : min{a, 6} <  x <  max{a, 6}}.

The open interval (a, b) is an open set. Our assumption th a t K  is compact 
implies that K  is order complete, that is every monotone sequence is con­
vergent; also every nonempty subset of K  has a supremum and inft'mum.
A non-trivial example of an ordered space is given in the text on page 65
where we define the space I s of signed points (cc, 1), (x , —1) on the unit inter­
val [0,1]. C( K)  denotes the set of continuous functions on K  with the usual 
norm on C ( K ) defined by ||g|| =  sup xGx |^(x)|.

In section 2.3 we introduce the oscillation and wedge topologies, r 0 and 
tw on C(K) ,  we show that they are equivalent and we deduce the main prop­
erties of r0. In section 2.4 we obtain a differentiability result for continuous 
convex functions on a Banach space E  for which there is a topology r  finer 
than the norm topology in which the neighbourhoods of 0 satisfy a geomet­
ric condition. This result is used in section 2.7 to show th a t a continuous 
convex function /  on C(IS) (which is essentially the space D  of functions on 
[0,1] with a right limit at 0, a left limit at 1, and left and right limits at all

18
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other points) for which each subdifferential df(ip)  contains only non-atomic 
measures is Gateaux differentiable on a r D residual set. Section 2.5 contains 
results for continuous convex functions /  on C ( K ) for which each subdiffer­
ential df((p)  contains a Dirac measure. In section 2.6 we extend the results 
of section 2.5 to the case of subdifferentials tha t always contain a measure 
with finite support. In the final section we prove our main result, Theorem 
2.6.7, which states tha t a continuous convex function f  on C (K ) fo r  which 
each subdifferential df(ip) contains a measure with finite support is Gateaux 
differentiable on a rQ residual set. Our results are far short showing th a t 
C( I 3) is a Gateaux differentiability space since we have only considered the 
two extreme cases.

Recalling the definitions of some topological concepts, we have tha t a 
compact Hausdorff space K  is first countable if for every x £ K  there is 
a sequence (Un(x))™=1 of neighbourhoods of x such tha t if U is any neigh­
bourhood of x  then there is a neighbourhood Uk in the sequence such tha t 
U k C U .

A topological space E  is called a Baire space if for any set X  C E , tha t 
is a countable union of nowhere dense sets, the complement E  \  X  is dense 
in E. The Banach-Mazur game [Ox] is a two person game with players A  
and B  as follows. Let S  be a subset of a topological space E. A play is a 
decreasing sequence

I h D V t D U i D - -
of non-empty open subsets of E  which have been chosen alternately by A  
and B . Player A  chooses Ui, B  chooses Vi, A  chooses C/2, etc. A strategy for  
B  is a sequence f s  = (/n)nLi of maps f n where each f n is defined on the set

{U u Vu U2, . . . , U n }

of first 2n — 1 elements of a play and

f n (UuVi , U2, . . . , U n) 

is a non-empty open subset of Un. A play is consistent with f s  if

fn(U1,V1,U2, . . . i Un) = Vn 

for all n. We say tha t f s  is a winning strategy for B  if
OO
p t S c S
i~l

for every play consistent with /g . We note the following properties of the 
Banach-Mazur game.
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• A subset S  of a topological space E  is residual i f  and only i f  there is a 
winning strategy for B  [Ox].

• A topological space E  is a Baire space i f  player B  has a strategy f s  
such that

n t iV i  /  0 

for all plays consistent with /#  [Ch].

2 . 2  F u n c t i o n s  o n  o r r k f i c l  s p a c e s

We study the oscillation of a function on K  and include two existence lem­
m ata for C {K ) functions.

D efin itio n  2.2.1 Let f  : K  —> R  be a real valued function defined on K . Let 
[a, b\ C K  be a closed interval with end points a and b with a not necessarily 
less than b. We define the oscillation of f  on [a, 6] as

osc ( / ,  [a, b]) = sup U>v£[atb]\ f(u) -  f ( v )|.

L em m a 2.2.2 Let [a, b] C K  be a closed interval and g ,h  £ C (K ), then

(i) osc ( /  +  g , [a, b]) <  osc ( / ,  [a, 6]) +  osc (g, [a, 6]) and

(ii) osc ( fg,  [a, b]) <  osc ( / ,  [a, b]) sup \g\ +  osc (g, [a, 6]) sup | / |  
where the supremum is taken over [a, b].

PROOF. Apply the triangle inequality for the modulus of the sum of two 
functions. This fact coupled with the fact that the supremum of the sum of 
two functions on a set is less than the sum of their suprema is sufficient to 
prove both statements. □

L em m a 2.2.3 Let (gn)^Li be a sequence of functions in C (K ) that converges 
pointwise to a function g £ C(K) .  Then for any interval [a, b] C K

(i) liminfn-voo osc (gn , [a, 6]) >  osc (g , [a, b]) and

(ii) i f  (gn)™=1 converges uniformly to g then

lim osc (gn, [a, b}) = osc (g , [a, 6]).n—>oo
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PROOF. For (z) suppose tha t (<7n)£Li converges pointwise to g and [a,b] is 
any interval. Since [a, b] is compact there are points u, v £ [a, 6] such tha t

osc (g,[a,b})= \g(u) -  g{y) |.

But for all n  >  1
osc (gn , [a, b]) > \gn{u) -  gn{v)\.

Therefore

lim m f osc (gnj [a, b]) > Jim  |gn(u) -  gn{v)\ =  osc (g , [a, b]).

For (zz) we apply the triangle inequality,

|osc (gn, [a, b}) -  osc (g, [a , b])\ < osc (gn -  g, [a, b\) < 2||gn -  g ||.

□

Lemma 2.2 .4  is a monotonic version of Urysohn’s lemma. This result is 
well known and proved in [Na] (page 30) under much more general conditions.

L em m a  2.2 .4  Let a,b £ K  and a < b then there is a non-decreasing func­
tion g £ C (K ) such that

i v f 0 i f  x  <  a 
5(x) =  |  1 i f x > b .

PROOF. We say tha t an interval [cz, b] has a gap if there are points x and y 
in [a, b] such tha t (x ,y)  = 0.

Suppose tha t the interval [a, b] has a gap (x,y) .  It suffices to let g be the 
function defined by

, v [ 0 if z < x 
5 W  =  \ i  * * > , , .

Suppose tha t there are no gaps in [a, b\. We construct g as follows. Let 
Q fl [0,1] =  (7"i)“ 0 an enumeration of the rationals in the closed unit 
interval such tha t r0 = 0 and r i  =  1.

We find a sequence, (6{)^.0, in K  such tha t

• b{ < bj whenever r{ < r j ,

• bo =  a, and

• bi = b.
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The sequence bi may be constucted inductively as follows. Suppose tha t 
k > 1 and we have constructed (&i)£_0. Let

ri = max{r^ : 0  <  i <  k and r{ < rk+i }

and
rm = min{ri : 0  <  i < k and > rk+1 }.

Since ri < rm and there are no gaps in [a, b] then we may choose a point
x E (&/, bm) and let bk + 1  — x.

We claim that the function g defined by

, . f inf bi>zri i f  z < b
9{z) = {  1 "  i l z >  b.

is continuous, non-decreasing, g(z) = 0 for z < a, and g( z ) =  1  for z > b.
We have g(a) = in fbi>0ri =  r0 =  0 and g(b) = inf bi>bn = r1 = I. If 

2/i < 2/2 , noting that { b{ : yx < bi} D { bi : y2 < h } ,  then g(y1) < g(y2). 
It remains to show that g is continuous. Let Li = { x E K  : x < bi } and 
Ri = { x E K  • iC ^  J • Then diiid. are open sets* Given 3<ny z  G 0̂j  lj 
the function g satisfies the relations

• 0 -1 ([O,*)) =  u ri<zLi and

•  =  U r i > z R i -

Therefore the inverse image of any open set under g is open and therefore g 
is continuous. □

Lemma 2.2.5 asserts that there is a continuous function th a t dominates 
a given bounded function.

L em m a 2.2.5 Let fj : K  —> R  be a bounded function on K  such that

lim 77(5 ) =  0

fo r  some t E K . Then there is a function  77 E C { K ) such that

(i) 77(5 ) > 77(5 ) i f  s ^  t and

(ii) Tj(t) =  0.
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PROOF. We define rj(t) = 0. To define 77(5 ) for s > t we distinguish two 
cases: when t is isolated from the right for which we let

77(5 ) =  1 +  sup |i7 (u)|
u > t

for all s > t\ and when t is not isolated from the right for which we find a 
sequence t\ > t 2 > . . .  > t such that 77(14) < 2-1-1 for each t < u < t{ and 
i > 1. Letting 77(5 ) =  sup \fj\ +  1 if s > t\ and on each interval [ti+i,ti], i >  2 
using Lemma 2.2.4 we obtain a non-decreasing function gi such tha t

if z = ti
9i{z ) =  

On [£2 ,^1 ] similary find g2 such that

»<■>-{ r-5 |sl+1

We let 77(5 ) =  g i ( s )  whenever s G [£t+i,£»]. The definition of 77(5 ) for s < t is 
similar. □

2.3 T he oscillation and wedge top ology
We introduce the oscillation topology and the wedge topology for C (K ). In 
Lemma 2.3 .3  we show that these topologies are equivalent and in Lemma
2.3 .5  we list their main properties.

D efin itio n  2.3.1 Suppose that e > 0 a n d u  G C (K ) is a non-negative func­
tion such that card { x G K  : u(x)  =  0} is finite. Then we denote by B0 
the set o f subsets Ua(0,e,w) C C ( K ) where g G Uo(0,e,uj) i f  and only i f

• ^(cc)! < e for all x G K  and

• fo r  all [a,b\ C K  such that a is an accumulation point o f [a, 6], and 
uj(a) = 0 we have

osc (g, [a,b]) < sup ze[a>b]u (z).

Let A denote the set of accumulation points of K . We let A l  denote the set 
of left accumulation points of K  defined as

A l =  { / G K  : (/, a) ^  0 for all a >  I },

and A r  denote the set of right accumulation points of K  defined as

A r  = { r G K  : (6, r) ^  0 for all b < r }.
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D efin itio n  2.3.2 Suppose that

• e > 0,

• I  C A l and card L is finite,

• R  C A r  and card R  is finite,

• C C(K) ,  is a family of monotonic non-decreasing non-negative 
functions such that f i (y)  =  0 i f  y < I and <f>i(y) > 0  i f  y > I, and

• W r} ter C C (K ) is a family of monotonic non-increasing non-negative 
functions such that 'tpriy) =  0 i f  y > r and Vv(y) > 0 i f  y < r.

Then we denote by Bw the set of subsets Uw(0, e, {(pi}i^Lj {Vv }r6B) C C (tf )  
where g 6 Uw(0, e, {’/’rjrefl) »/ <“ <i only i f

•  M » l  < e, for all x E K ,

• fo r all I E L and all a > I we have \g(a) — g(l)\ < <f>i(a), and

• fo r  all r £ R  and all b < r we have |g(b) — g(r)\ < Vv(&)*

For convenience we will refer to {4>i} i^l as the left wedge functions of Uw and 
Wv} reR as the right wedge functions of Uw.

We may use the sets B0 and Bw to define the oscillation topology and the 
wedge topology respectively. A subset G C C (K ) is defined to be r 0-open if 
for all g £ G there is a Ug E B0 such that

g +  Ug C G.

To simplify this notation, we shall write U0{g,e,Lj) for g +  Uo(0,e,uj).  We 
define rw-open sets similarly. In Lemma 2.3.3 we show tha t ra and rw are 
equivalent.

L em m a  2.3 .3  Every U E B0 contains a V  E Bw and vice versa.

P R O O F .  We first show that every non-empty V  E Bw contains a  non-empty 
U E B0. Suppose that V = Uw(0, e, {(/>i}ieL, {Vv}refl)- We let
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For each x £ L  U R  we use Lemma 2.2.5 with 77 =  0 to find r}x £ C ( K )  such 
tha t rjx(x) = 0 and rjx(y) > 0 for y ^  x. We let 77(5 ) =  minxeLui?T7a:(«s) and 
uj = 1/2 min{u;£,, 0 ^ , 77}. Then w is continuous, since the only discontinuities 
of min{o;L,u;i?} occur at points in x £ L U R  at which limy-^ 77(7/) =  0; since 
0 < u j  < 77 then lim ^ x  w(y) =  uj(x). Moreover, { x £ K  : cj(x) =  0 } =  
is finite.

W ith this definition of lj we find that if g £ Z7o(0, e,uj) then for I £ L  and 
a > I we have

|0 (a) -  0 (f)| <  osc(flf,[f,a])

< Ŝ P ,ep|0]w(z)

< <M°0-

Similarly for r £ R  and b < r we have |#(6 ) — <7(7") | <  -0r (b) and hence g £ V.

Conversely we must show that every non-empty U € 130 contains a non­
empty V’ £ Given t/o(0, e,cu) we require finite families of wedge functions 
{0z}zgl, and such that, for any g £ C'(-ftT) satisfying,

• \g(a) — p(/)| < (f>i(a) for all I £ L and all a > I and

• \ a (b) -g( r ) \  < t/v(6) for all r £ R  and all b < r,

then g must satisfy osc (g , [a, 6]) < sup ze[a>b]Lj(z) for all [a, b\ C K  such tha t 
a is an accumulation point of [a, 6], and a;(a) = 0.

To construct our wedge functions we use monotonic functions of the form 
4>i(x) = supKz<a, uj(z ). Suppose that F = {0 1 , . . .  , is the set of accumu­
lation points of K  at which the function cj is zero, with L  C F  the set of left 
accumulation points and R  C F  the set of right accumulation points. The 
construction is as follows.

(i) In each interval [ai,a{+1 ) we find the point U such tha t

U = max{ t : u(t )  = m axz6[aiiai+l]w(z)}.

Then either t{ £ (a^, ai+1) with > 0 or U = a,i and cu(ti) = 0.

(ii) Find t0 < ai such that uj(t0) =  m axz<aio;(2 ) and we find 
tk > a,k such that a>(tk) = max.z>aituj(z).
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(iii) For ai € L we define

SUPai<*<* ̂ M / 4 if CLi<X<t i
<f>a{{x) = { ^ (^ i)/4 if X > t i

0 if x <  a;.

(iv) For a{ £ R  we define 

'ipaM  =
' SUPai>z>x ^ W / 4 if Oi >  >  U-l

cj(ti-1)/4 if x <
0 if x >

We must verify that each fa and if>T are indeed wedge functions. Since 
(v is continuous, they are continuous. Suppose tha t ai is a right accumula­
tion point of K  and that ai >  x \ >  x^ >  Then [aj,xi] C [ ^ ,^ 2 ] so 
that sup{ w(z) | ai > z > Xi } <  sup{ w(z) \ ai >  z  >  x 2 }. Therefore 
ifjai is monotonic non-increasing on Also ^ ai(x)  is constant on the
remaining two intervals, with maximum value i*;(^_1)/4  when x <  and 
zero when x > ai, so that is a right wedge function. Applying a similar 
argument we may show that if ai is a left accumulation point then </>ai(x) is 
a left wedge function. Therefore Uw{0, ej, {VvJveiO is in

We claim that V  =  C/«,(0, e, {fa}ieL, (Vvlrei?) C C/o(0, e,w). Suppose tha t 
g £ V, then clearly |g(cc)| < e for all x £ K . Let [a, b] C K , u>(a) = 0, and let 
a be an accumulation point of [a, b\. If a < 6 , then a = ai £ L. We choose 
x iV £ [a j k] realising the oscillation of <7 on [a, 6 ] and estim ate tha t

osc($r,[a,6 ]) =  \ g ( x ) - g ( y ) \

< \g{a) -  g{v)\ + \g(a>) -  g(y)\
<  (/>a{x)  +  </>a ( y )

< Haib)
< sup u(z) /2

a < z < b

< sup uj(z ).
a<z<6

A similar estimate applies when a > b. This concludes the proof. □
L. 2.3.1*

Let E  be an abelian group and B  a collection subsets of E : each element 
of B containing 0. Suppose further that
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(i) the intersection of any two elements of B contains an element of
B,

(ii) U =  - U  for U G B,

(iii) given U G B,  there is a V  £ B such that V  +  V  C U, and tha t

(iv) the intersection of all elements of B is {0}.

We say tha t r  is the topology defined by B if G is in r  if and only if for all 
g 6 G th a t there is a Ug £ B such that

g +  Ug c G.

This definition of r  together with (z)- (iv) makes (E , r ) a Hausdorff topo­
logical space and that addition and inverse are continuous (see[Di] page 35); 
hence ( E , r )  is an abelian topological group.

We make use of the following standard result for abelian topological 
groups.

L em m a 2.3 .4  Let r  be the topology defined by a collection o f sets B with 
properties (z)-(zu) above, then

1. every element of B is a neighbourhood of 0,

2. B is a basis of neighbourhoods of 0,

3. ( E- <3t )  is a Hausdorff topological space, and 

4 • C I E  5 t ) is a topological group.

L em m a 2.3 .5  The topology r0 has the following properties:

(i) the intersection of two elements of B0 contains an element o f 
Bo,

(ii) every element of B0 is convex and symmetric,

(iii) given U £ B, there is a V  E B such that V  -f V  C U,

(iv) every element of B0 is a ra neighbourhood o f 0,

(v) B 0 is a basis of neighbourhoods of 0 in r0,

(vi) (C ( K ) , t0) is a Hausdorff topological space,
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(vii) ( C ( K ) , r 0) is a topological group,

(viii) i f  f  E C (K ) then the mapping defined by \  i—» X f from  R  
to C (K )  is continuous i f  and only i f  f  attains only finitely many 
values, in particular (C ( K ) , r 0) is not a topological vector space 
unless K  is finite,

(ix) the topology ra is finer than the norm topology,

(x) i f U E  B0i u  E C(K) ,  and e > 0, then U n(Jo<t<e B (tu , te) ^  0, 
and

(xi) (C ( K ) y T 0 ) is a Baire space.

PROOF. To show (z), tha t the intersection of any two elements of Ba contains 
an element of B0, suppose that Uo(0, e i, u>i) and Uo(0, e2, co2) are given. It 
suffices to let e3 =  min{ei, e2}, and cj3 =  min{a;i, 6l;2}, then co3 is non-negative 
with finitely many zeros and we have

Uo(0,e3,cj3) C Ua(0,ei ,wi)  n  Uo(0, e2,u;2).

For (m), tha t every element of Ba is convex and symmetric, let <7 1 , # 2 E
U0(0, e, u )  E Ba. For each a  such tha t 0 <  a  <  1  we must show tha t agi +
(1 — a)g2 E Uo(0, We have that

\\agx +  (1 -  a)g21| <  a ||^ i|| +  (1 ~  ^ I I ^H  <  e

and for any closed interval [a, b\ C K  such tha t a is an accumulation point 
of [a, b\, and a;(a) =  0, we have (applying Lemma 2.2 .2) tha t

osc (ag1 +  (1 -  a)g2y [a, &]) <  aosc (gu  [a, b]) +  (1 -  a)osc (g2, [a, b])

<  SUP i e [ a,6] ^ ( a;)-

Therefore Uo(0j€,uj) is convex. It is symmetric since if h E C7o(0, e, uj) then 
—h E UQ{0, e,w).

For (m ), given U = UD(0, e, us) we let V  = Uo(0, e/2, a;/2).Then V + V  C U.

For [iv)-{yii) we apply Lemma 2.3 .4  using properties (z )-(m ) of Lemma
2.3.5 and noting tha t the intersection of all UQ(0,e,us) is clearly just {0}.

For (viii), suppose first that the function /  attains only finitely many 
values (ci)”=1. It is sufficient to show continuity of A 1—> \ f  at \  = 0. Given 
any non-empty neighbourhood of the origin Uo(0,e, lj), we must find 6 > 0 
such tha t if |/x| < 8  then we have
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• IHII/II < e and

• for any interval [a, b] such that a is an accumulation point of [a, b\} and 
cj(a) = 0 we have |/x|osc ( / ,  [a, b\) < sup Z£[atb]U>(z).

Let F  be the set of zeros of lj and let L =  F  fl A l  and R  =  F  fl A r .  Since 
F  is finite and /  is continuous, for each a £ L  there is a+ > a such tha t /  is 
constant on [a, a +] and a>(a+) > 0. Similarly for each a £ R  there is a~ such 
th a t /  is constant on [a~,a\ and u(a~)  > 0. Let d = min{o;(o+), 
e =  max i<i^j<n\c% ~  cj I- Let 8 — min{ 1+||;|p } and |/x| < 8 so tha t
\fj, \ ||/ || < e. We must show tha t for any interval [a, b] such tha t a (E F, and 
a is an accumulation point of [a, b] we have |/x|osc ( / ,  [a, 6]) <  sup z£[ati,]U}(z). 
We assume that b > a\ the remaining case b < a is similar. If b < a+, then 
\fi\osc ( / ,  [a, 6]) =  0 < sup ze[a>b]Uj(z). If b > a+ , then

\fi\osc (f,[a,b]) < 8e
< d
< lv(a+)
<  S'1? ze[a,b\u{z).

This proves the sufficiency of /  having finitely many values for continuity of 
scalar multiplication of / .

We must show the necessity of the condition, tha t if A i—> \ f  is con­
tinuous then the function f  has only finitely many values. Suppose to 
the contrary tha t /  does not have finitely many values. Then there are 
{f(U))TLi such tha t f (U)  7  ̂ f { t j )  if i 7  ̂ j • Passing to a subsequence we 
may suppose tha t the sequence is ti is strictly monotonic and lim^oo ti = t. 
Assume that ti is strictly increasing. Because of Lemma 2 .3 .3  it suffices 
to find Uw(0, e, {(f>i}ieL, {Vv}rei0 such that for any 8 >  0 we have 8 f  £ 
Uw(0, e, {<j>i}ieL, {Vv }>€«)• W ith this in view we let L = 0, R  = {£} and we 
construct a function Tpt ’ K  —> R  with a unique zero at t as follows. Let 
ifjt{ti) =  2_tosc ( / ,  [tjU]) for all i >  1. For z < t \  let Tfit(z) — We may
choose, by Lemma 2.2.4, continuous functions gi : [U,ti+1 ] —> R  such tha t

n . ( 9 \  -  !  w(**+0  i { z  =  ^+ i 
'  ' |  w(ti) if z = t{.

T hen  we define V,t(20 =  9 i ( z )  if z £ [̂ *, t*+i]. For z > t  we let ' i p t ( z )  =  0. For
any 8 > 0 there is an interval [£,d] such that £osc ( / ,  [t,d]) >  sup
We need only choose d = U for some i such tha t 2“* < 8. So 8 f  does not
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belong to our neighbourhood. Therefore A i—► A/ is not continuous at A =  0. 
The case when is decreasing is similar.

For (ix), that the topology rQ is finer than the norm topology, we note tha t 
for any u;, non-negative with finitely many zeros, we have UQ(0, 8, co) C B ( 0 , 8) 
for any open ball 5 (0 , £), centre 0 and radius 8 > 0.

For (cc), tha t if U £ Ba, u £ C(K) ,  and e > 0, then U fl Uo<t<e B(tu ,  te) ^
0. We suppose that U = UD(0, k , w) and F0 is the set of zeros of u;. We must 
find t £ R , u' £ C ( K ) such that 0 < t < e and

1. \\v! — tu\\ < te,

2. Ill'll < /c, and

3. if a £ Fq, and a is an accumulation point of [a, b], then we have

osc (u ', [a, 6]) <  sup Z£[aij,]Uj(z).

Let Fo = { x  £ K  : uj(x ) = 0} =  { Xi, • • •, Xk} where x\ < x 2 < ••• < 
Xk. We construct v! as follows. Choose disjoint intervals ([c», <̂ *])*=1 and a 
real number c > 0 as follows. Let x 0 = m in if  and Xk+i = m ax K .  For 
i =  1 ,2 , . . . ,  k if X{ £ A r  we define Ci,di as follows. Choose C{ £ (xi_i,X{) 
and put Ai = [cc{_i,c;]. If X{ ^ A r  let Ci =  Xi, and Ai =  [cci_i,Ci). Also let 
Cfc+1 =  Xk+i so that if Xi £ A l choose di £ (®{,Ci+i) and let Bi = [di,Ci+1 ]. If 
Xi £ A l  let di = Xi, and Bi = (di, Cj+1].

Denote A  = A 1 U ( B 1 f) A 2) U ( (B2 n  A 3) U . . .  U ( 5 fc_x n  A k) U B k. Then 
A is a compact set and A  fl F0 = 0. Hence c =  inflG^ a;(x)/2 >  0.

Choose t such that 0 < t < min{e, '2 ||j|j+2 ? 2 ||J|l+2 >  ̂}• Choosing a
function b £ C (K )  by Tietze’s theorem such that

• ll&H < e and

• b(x) = —u(x) +  u(xi)  for x £ [c;, di] for each i such tha t 1 <  i < k,

we define v! £ C (K )  as u' = tu  +  tb. Having defined u' and t we verify 
relations (1), (2) and (3). For relation (1) we note tha t 11tx' — tii11 =  t||6|| <  te.

For relation (2) using the estimates ||v! II ^  IN I  +  llt6 ll. IHI <  e, and 
0 <  t < £ } , we obtain ||u'|| <  k .

To verify relation (3) it suffices to show that for any Xi, if Xi is an accu­
mulation point of [a;*, b], then osc (u' , [x^ b]) < sup z£[Xi^ v (z ) .  There are two 
cases for b.
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C ase  (i) [a;*-, 6] C [c;,d;]. Noting that u' takes the constant value 
tu(xi)  on [c{, di], we obtain osc (u', [xi, b]) =  0. Since sup z£[Xit^uj(z) >
0, then

osc (u ,  [Xi,b]) < supze[Xit^uj(z).

C ase (ii) [xi,b] \  [ci,di] ^  0. Using that osc (u ' , K ) <  2£||u|| -f 
»ii&n ^  2c, that d̂  ^ j and (xj(di) ^  2c, we obtain

osc (u ', [ x j ,  b] \  u j=1 [c;, di]) < osc (u ', K )
< 2c
< cu(di)
<  supa.e[a.ii6]o;(a;).

This ends the proof of property (x).

For (xi),  tha t (C (K ) , r 0) is a Baire space, we play the Banach-Mazur 
game. We recall that in any play, player A  chooses a sequence of rQ open 
sets (Un)n=i an(l player B  chooses a sequence of r 0 open sets (W)£*Li so tha t 
U\ D Vi D C/ 2  * * * D Un Z) Vn - ■ •. We intend to show tha t there is a strategy 
for player B  such that is non-empty. Suppose tha t player A  chooses
a non-empty open subset U\ C C(K).  Then player B  may choose any basic 
neighbourhood U (g\ ,K \ , \ \ )  C Ui and further chooses V\ =  U(g\ , ) C
U(gi, /ci, Ai) where

1. £l =  5H2fckil and

2. uj\ — \ \ j 2 .

Suppose tha t after n turns player A  has chosen subsets (C/i)”=1 and player B  
has chosen so that U\ D V\ D U2 • • O  Un~ 1 D Vn- \  D Un. Player B,
choosing any basic neighbourhood U(gn+1 , ftn+ i, An+1) C Un, chooses further 
Vn+i = U(gn+1,en+i , u n+1) C U(gn+1, Kn+1, An+1) where

• en+1 =  and

• k-Vi+i — An+i/2 .

We claim that

1. (gi)i^i is a norm Cauchy sequence with limit h £ C (K )  and

2. h e
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Verifying claim (1), we have the estimate ||<7*+i — <7»|| <  < y - Thus
i is a Cauchy sequence with limit h £ C(K).

For claim (2) let Fi be the set of zeros of We show tha t for each i 
we have \\h — gi+i\\ <  e^+i < Ki+i, and for any a £ F{+\ such th a t a is an 
accumulation point of [a, b] that

osc (h gi+1,[a,b\) < sup ze[a)b]u i+1(z) < sup ze[atb]\ i+1(z).

It follows tha t h £ Ui+i C Vi for each i and hence tha t h £ For
the former inequality, using the triangle inequality, we obtain for all positive 
integers j  tha t \\h — || <  \\h — gj\\ +  \\gj — ||- Choosing M  sufficiently
large so tha t for all j  > M  we have \\h — gj\\ < and gj £ K+i, we obtain

| | ^  — < 7 i+ i|| <  i  =  *>i+1-

Similarly for the latter inequality, using relation (i ) of Lemma 2.2.2 we ob­
tain for each positive integer j  that osc (h — <7»+i, [a , &]) <  osc (h — gj j [&, &]) +  
osc (gj — gi+i,[a,b]). By relation (ii) of Lemma 2.2.3, the uniform con­
vergence of gj to h, and that h £ V^+i, we may choose M  sufficiently large 
tha t for all j  > M  we have osc (h — gj, [a, b]) < sup *e[a,b]W*+i(2). Then since
9j C Vi+i,

osc (h -  gi+1, [a, 6]) < sup ze[atb]Ui+1(z) +  sup u i+1(z)
2G[x,y]

=  sup Ai+i(z).
ze[a,b]

□

In section 2.5 we use the following Lemma to construct To-open sets.

L em m a 2.3.6 Let G be an open subset of K, let t  £ G, let a £ R, and let 
X £ C (K )  be such that X(t) = 0. Then the sets

V1 = { 4 > Z C ( K )  : cj>(s)<cl>(t) + X ( s ) i i s e G \ { t } }

and
V2 = { f  e  C (K )  : |^(s)| < a</)(t)ifs £ G }

o f C ( K )  are T o -o p e n .
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PROOF. We prove the simplest case first, V2 , which is in fact open in the 
norm topology. If G = K  then V2 = C(K),  and so, supposing tha t K \ G  ^  0, 
we let 0i £ V2 and, by compactness of K  \  G, we find a point Si ^  G such 
tha t sup s^g|0i(-s)| =  |0 i(s i) |. If we choose 0 < e < ° ^ fH ‘M 3l)l then the 
open ball 5 (0  1 , e) is a subset of V2 since, if s ^ G and ip £ 5 ( 0 1 , e) then we 
estim ate that

I v O O l  =  l ^ i ( s ) l  +  l lv> - ' M l
< l^i(5i)l +  e
< a 0 i(t) — e|a|
< acf>(t).

Hence ip £ Vs-

For Vi, supposing that 0O £ Vi, we require C/(0,eo,a>o) such th a t 0O +  
U(0, €0 ,(^0 ) C Vi. If t is a left and right accumulation point of K  then we 
choose an interval (a , b) 3 t such that (a, b) C G. To find Wo we first define 
6 : (a, b) —> R  by

, . f inf 2e[ai6)A (z) +  0o (t) -  0 O (z)  if s > t  
[ in fzG(aia]A(.z) +  0o(f) -  0 O( »  i f s < * .

We now define u 0 : K  —s► R  by

8(s) if s £ (a, b)
^o(s) =  < 0(b) if 3  > b

8(a) if s < a

and let
eo =  1/2 inf aGG\(a,b)(A(5) +  M i )  ~  M s )) >  °- 

Then a>o is non-negative with exactly one zero at t. Supposing th a t 0 £ 
0o +  5 (0 , e0,a;o) we have

• ||0 -  0o11 < e0 and

• for all 5  ^  t that osc ( 0  — 0 O, [f, 5 ]) <  sup ze[ttS](jj0(z).

We show that 0 £ V\. There are two cases for s, either s £ (a, 6) or s £
G \  (a, b). If s £ G \  (a, b) we have

0(5) -  (j)(t) -  (0O(s) -  0O(f) )  <  OSC (0 -  0o, [* , 5])
<  2||0 0011
< 2e0
< A(s) +  0o(t) -  0o(5).
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Hence <p(s) — <fi(t) < A(s).
For the remaining case, tha t is when s £ (a, 6), using the definition of 

0(s) we estim ate that

(j)(s) -  (j)(t) -  ((/)0(s) -  (j)o(t)) < osc {(j) -  </>0, [t,s])

<  S U p  z £ [t '3]U)0 { z )

— ^ (5) +  $0 (1 ) — M s )-

Hence >̂(5 ) — <f>(t) < A(s).
In both cases we obtain (j)(s) < <f>(t) +  A(s) implying tha t </> £ Vi when t 

is both a right and a left accumulation point.
The remaining cases are:

• t is a right accumulation point but not a left accumulation point;

• t is a left accumulation point but not a right accumulation point;

• t is an isolated point.

If t is a right accumulation point but not a left accumulation point then we 
can use the preceding argument, replacing the interval (a, b) with an interval 
of the form (a, t]. The case when t is a left accumulation point but not a right 
accumulation point is dealt with similarly. If t is an isolated point then we
have inf seGâ t ( K s ) +  ^o(0 — ^o(-s)) =  ac > 0. Defining lj0 : K  —» R  by

t N f 0 if s  = t
= {  « if

and e0 =  /c/2 gives <̂0 +  U{0, eo,^o) C V\. □

2.4 D irectional derivatives
Recalling statem ent (x) of Lemma 2.3.3 we have tha t any non-empty rQ 
open set U £ B0 intersects any cone of arbitrarily small diam eter in at least 
one point. In Lemma 2.4.1 we deduce from this property th a t a continuous 
convex function /  on C ( K ) has directional derivatives in any fixed direction 
on a T0-residual set.

L e m m a  2.4.1 Suppose that a translational invariant topology t of  a Banach 
space E  is finer than the norm topology and is such that

U fl (J B { tu , te) ^  0
0<i<e
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whenever u E E,  e > 0 and U is r  open and contains 0. Then for  every 
continuous convex function f  on E  and every e £ E  the set of points x £ E  
at which the directional derivative f ' ( x , e )  exists is r-residual.

PROOF. We first define the notion of A-differentiability of a continuous con­
vex function /  on E. For all A > 0 and a fixed element e £ E  we say tha t 
a point x  E E  is a A —differentiability point of a continuous convex function
/  : E  —> R  if

lim / Q  +  *e) +  f ( x  -  te) -  2 f ( x )  ^  ^  
o t

We observe that, since the function /  is convex, the function

^  f { x  +  te) +  f ( x  -  te) -  2 /(x )
^  t

for t £ R + is non-negative and non-decreasing. Therefore a point x  E E  is a 
A —differentiability point of /  if and only if there is a t > 0 such tha t

f { x  +  te) +  f ( x  -  te) -  2f ( x )  < ^  ^  ^

We show that, given any A > 0 and any non-empty r —open set U 
there is a non-empty r —open V  C  U such tha t every point of V  is a 
A —differentiability point of / .  Then, by letting A =  1 /n  for any positive in­
teger n, the set of 1 /n —differentiability points of /  is r —open and r —dense. 
Hence, the set of points x  E E  at which the directional derivative f ' ( x ,  e)  
exists is r-residual in E.

In what follows we assume that ||e|| =  1 and th a t A is any positive 
constant. Supposing tha t x  E U and using the convexity of / ,  we have the 
existence of the limit

L  =  lim / ( *  +  « « ) - / ( * ) .
t—>0+ t

Then choosing 6i > 0 so tha t for all t £ (0,3£i), we have

<  f ( x  +  te) — f ( x )  L <  A 
t “ 8

and for all t £ (0, £i) we estim ate that
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f ( x  -f 3 te) +  f ( x  +  te) — 2 f ( x  -j- 2 te) 
t

f ( x  +  3te) — f ( x )  — 3tL  ^  f ( x  +  te) — f ( x )  — tL
t t

AtL +  2 f ( x )  — 2 f { x  +  2ie)
t

^ 3A A
<  —  +  —
-  8 8

A
¥

where we use (—L-±-2 2 ^ x±2te.)) <  q. Since /  is locally Lipschitz there is a 
constant K  > 0 and a £2 >  0 such that if z, y £ B { x , S2) then |/(^ )  — /(y ) | < 

\\z — 2/||. We let e =  min{2£i, ^l2-, 3^ }  and show tha t the set

W  = | J  B(x- \-se,se)
0<a<e

contains only A —differentiability points of / .  Let y £ W, then y £ B{x  +  
se,se) for some 0 < s < e We denote by s =  2t and estim ate tha t

f ( y  +  te) +  f ( y  -  te) -  2f ( y )

<
t

f ( x  +  3 te) +  / ( x +  te) — 2 f ( x  +  2 te) 
t

4:K\\x +  2 te — y II
t

< A /2  +  SKe < A

which, by (2.1), implies tha t y is a A —differentiability point of / .  So W 
contains only A —differentiability points. Letting V  = W  fl U and using the 
hypothesis of the Lemma we conclude that V  is non-empty. Since W  is norm 
open and r  is finer than the norm topology then the set V  is r  open. The set 
V  is a non-empty r  open subset of U that contains only A —differentiability 
points. □

2.5 Dirac m easures
Let JFdj denote the set of continuous convex functions on C (K )  th a t contain 
a Dirac measure in each subdifferential. We obtain in Proposition 2 .5 .3  the 
following statement.
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Suppose that f  £ F d , then given any non-empty r0-open set U 
there is a non-empty r0-open set V  C U and a finite set F  C K  
such that for every <f £ V  the subdifferential df(<J>) contains a 
measure with at most one element support in F.

In section 2.6 we extend this result to the set of continuous convex func­
tions on C(K),  J~f , that contain a measure with finite support in each subd­
ifferential. This result implies tha t for (p £ V  the values of f(<p) depend only 
on the values of cp on F  so tha t in section 2.7, using the Frechet differentia­
bility of convex functions on R n, we derive generic Gateaux differentiability 
of continuous convex functions C ( K ) in F f -

We recall some definitions. The order relation on C ( K )  is defined by 
/  >  0 if and only if for all x £ K  we have f ( x )  >  0. A Radon measure 
on K  is an element of the dual C(K)*.  A Radon measure p £ C(K)*  is 
positive, p > 0, if and only if whenever f  > 0 then p ( f )  >  0. Let p  and v be 
Radon measures, then we define the relation v < p if p — v is positive. The 
relation v < p defines an order relation on C(K)*. For any Radon measure 
p £ C(K)*  there is a least positive Radon measure |^ | £ C ( K )* such tha t

\tif)\ <  I H G / I )
for all /  £ C(K).  The Radon measure \p\ is called the variation of p. We will 
denote the set of Radon measures C(K)*  by M ( K )  and the set of positive 
Radon measures by + For each Radon measure p there is a Radon 
measure p+ such that p+ is the least Radon measure p such tha t p >  p and 
p >  0. Similarly p~ is the least Radon measure p such th a t p >  —p  and 
p > 0. Then we have

p =  p + -  p~,

and
\p\ = p + + p~.

Let l a  denote the characteristic function of G. A  set E  C K  is called p- 
negligible if for all e > 0 there is an open set G D E  such th a t \p\(f)  < e for 
all /  £ C (K)  such that

0 < / < l G.

A Radon measure p £ M ( K ) is concentrated on a set A  if K  \  A  is p- 
negligible.

If x £ K  the measure 8X defined by

£*(/) =  /(* )
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for all /  G C (K )  is called the Dirac measure concentrated at x £ K] it is, of 
course, concentrated at {x}.

We denote by A4n(K),  for n > o, the subset of A 4 ( K ) whose elements 
are concentrated on an at most n  element subset of K. Let F  be a subset 
of K,  then we denote by Ai n{F)  the subspace of A4{K)  whose elements are 
concentrated on an at most n  element subset of F.

Let /  be a continuous convex real valued function on C ( K )  and (f>o G 
C ( K ), then the subdifferential df((f)o) of /  at (j)o is defined to be the set

df(4>o) = { H G C(K)*  : /({ )  >  / ( * , )  +  K t )  -  K M  t  £ C{K)  }.

The subdifferential of /  at 0O is non-empty, convex, and weak* compact for 
all </>o G C{K).  (See [Phi].)

The proof of Proposition 2 .5.3 relies on two Lem m ata for which some 
notation is required. We first define subsets M a of the square [—1, l]2 C R 2, 
that are related to the subdifferentials of / .  Let /  be a continuous convex 
function on C(K),  then for each s G K,  define M a to be the subset of the 
square [—1, l]2 C R 2 given by

M a = { (a, b) G [-1 , l]2 : /({ )  >  a +  &£(s) for all £ G C ( K )  }.

The sets M a have the property that if bSa G then (/(<^) — b6„((/>), b) G
M a. We also require a function 7/ tha t behaves as a distance between M a and 
M t for some given point t. Suppose tha t M t is non-empty. If M a is non-empty 
let

8(s) =  s u p  (a,6)6M a i n f  ( a ' ,b ' )eMt \a  ~  a '\ +  | ^ ~  ^ |*

Define rj(s) : K  —> R  by

1 \  0 if M . =  0.

L em m a 2.5.1 Let f  be a continuous convex function on C(K)7[hen

lim 77(5 ) =  0.

PROOF. The proof is by contradiction.
Suppose it is not true tha t the limit lim,-** ^(s) is zero. Then there is an 

e > 0, points sn of K  such tha t limn_voo sn =  t, and points (an, bn) G M Sn, 
such that
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The square [—1, l ] 2 is compact, so every sequence in [—1, l ] 2 has a convergent 
subsequence and we may suppose that

lim (an, bn) = (a, b).n —► oo / \ /

We claim that (a, 6) G M t. Choose any £ G C (K )  then since (an, bn) G M Sn, 
we have

f{£) > a n + bn£(sn)

and in the limit as n  —» oo

/ ( f )  >  a +

Therefore (a, 6) G M t . Clearly if n is chosen so tha t \an — a\ < |  and \bn — b\ < 
f then4

in f  (a'.bqGMtl^n ^ | T  |&n 8 | ^  |<In Q.| T  |&n 6| <C 6

which contradicts equation (2.2) and completes the proof. □

L em m a 2.5.2 Suppose that f  is a continuous convex function on C ( K ), 
that U is a r0-open set containing C/o('0, e,cu) for  which Fo is the finite set 
of zeros of uj, that </>o G U0(i>, f , ^), and, that there is a non-zero multiple of  
a Dirac measure in df((f)o) with support t ^ Fo. Then there is a non-empty 
r0-open subset V  C U such that, for every <f> G V, every multiple of a Dirac 
measure in df((f>) is non-zero and has support at t.

P R O O F . The first step in our proof is to define the set V. In order to define it 
we require some estimates on the range of values of /  on U. We may assume 
that

• f (U )  C [—§, f] and tha t

• IHI ^  2 ôr A4 ^ ^ / ( f )  and f°r all £ £ U.

The first assumption follows from /  being locally Lipschitz, implying tha t 
for a r  open set of sufficiently small norm diam eter we can assume th a t the 
values of /  on U lie within an interval of length 1. We need only translate /  
by a suitable constant to a tta in  the range [— | ,  |] . For the second assumption, 
since ||//|| <  C where C is the Lipschitz constant of /  restricted to U, then 
multiplying /  by a sufficiently small constant ensures tha t ||/z|| <  | .

Supposing tha t b08t G df(ipo) where b0 ^  0, we have from our assumptions 
on /  that |60| <  1 and (f(<i>o) — <f>o(t), b0) G M t , so tha t M t ^  0. Using Lemma 
2.5.1 we obtain that lim3_>t 77(5 ) =  0. Letting a. —  lo (1+lj0|>ll+ e) , we choose by 
Lemma 2.2.5 a function 77 G C (K )  with the following properties.
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• 77(5 ) > 77(5 ) for s /  ij

• Tj( t )  = 0, and

.  >  2|*.(«)-*o(t)l for all i  ^  f e  K.

Since K  is a Hausdorff space and Fo is finite we may choose an open set 
H  3 t and a positive number c such that

• H  fl Fo =  0,

• infze^ o ;( 2 :) > c, and

• 77(5 ) < m in {^ l, nun^4’4^} for all s E H.

Let k, = m in{ |, |} .
We find by Lemma 2 .2 .4  a function g E C (K )  with the properties tha t 

g(s) = 0 if s ^ H, that <7 (5 ) =  1 if and only if s = t, and tha t 0 <  g <  1. Let 
G =  { 5  E K  : g(s)(ic — 0 :77(5 )) > 160j/c/2  }. Note tha t t E G, G is open, and 
G C H. Finally we define the set V  as

V  ~  {(j) e u  : 0 < sign (b0)((f)(s) -  </>o(s)) if s E <2,
sign (b0)((f)(s) -  (j)0(5 )) < sign (b0)(<f>(t) -  <̂o(0 ) “  
if 5  E G and s ^  t,
and \<f>(s) -  <f)0(s)\ <  b0((f)(t) -  <f>o(t)) if s £ G } .

Noting that { <j> E C ( K ) : sign (b0)(<f>(s) — (j) o (-s))  > 0 if s E ( j}  is norm 
open and applying Lemma 2.3 .6  we conclude tha t the set V  is r0-open. We 
show that (j) E C (K )  dehned by <f)(s) = <f>o(s) +  sign (b0)g(s)(K — 0 :77(5 )) is an 
element of V. To verify this claim we must show that

(i) | | ^ -  1̂1 <  e,

(ii) if a E Fo, and a is an accumulation point of [a, 6], then osc ((f) — 
V>,[a,&]) < sup ze[a>b]Lu(z),

(iii) 0 < sign (b0)((f)(s) — <f>0(s)) if 5  E G,

(iv) sign (b0)((f)(s) -  <£0 (5 )) < sign (bo)((f)(t) -  <f)0(t)) -  ocq(s) if 
s e  G and s t, and

(v) |0(5) -  <^o(5)| <  b0((f)(t) -  (f>0(t)) if s £ G .
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For (i) we have

II (f> -  0 || <  1 1 0 0  -  0 1 1  +  sup aG*|s(5)(* -  OLTl(s)) I 

<  7 +  k  <  e.
4

For (ii), in the case [a, b] f)G = 0, and noting tha t <j)0 E £7(0, f , 7 ), we obtain 
the estimate

osc ((j) — 0 , [a, b]) = osc (<̂»o — 0 , [a, 6 ])
a;

< sup — < sup U>(<z)-
zG[a,6] 4 zG[a,b]

For the case [a, b] fl G 0  0 we obtain

osc (</> — 0 , [a, 6]) < osc (<^>0 — 0 j [^, 6]) +  osc (sign (bo)g(K — ar}), [a, 6])
■up,6 M a>(»)

4
<  SUP*6[a,fc] <»(*) £

4  2

< 8uP. e M ^ ( z) + Jnf £<£)
4  z e tf  2

< sup 0 7 (2:).
zG[a,6]

For (iii), we have from the definition of G and cf> tha t

sign (b0)(<f>(s) — <£o(s)) >  \b0\K,/2 > 0

for all 5  E G.
For (iv), when s E G and 5  /  t noting that = </>o(t) +  sign (60)/c, we

obtain

sign (b0)(<l)(s) -  0o(s)) =  sign (60)flf(s)(« -  olt)(s ))
< K — CL7)(s)
= sign (b0)((f)(t) -  0O(*)) ~  ar)(s).

For (v), when s ^ G we have from the definition of G tha t 

|</>(s) -  0o(a)| <  |60|ac/2 < \Bq\k = b0((f)(t) -  0o(t)).



CH APTER 2. G A T E A U X  D IF F E R E N TIA B IL ITY  ON C(K) SPACES  42

To complete the proof we show that for all s ^  t, for all (a, b) £ M a, and 
for all (j) £ V  we have a +  bf(s)  < f ( f ) .  We deduce tha t for all s ^  t, for all 
b such that |6 | < 1 , and for all f  £ Vt that

bSs £ d f  (</>). (2.3)

Otherwise b8s £ d f ( f )  for some b with |6 | <  1  and some f  £ V  and 
therefore ( f ( f )  — b6s((f)), b) £ M s, so that with a = f ( f )  — b6a( f )  we obtain a 
pair (a, b) £ Ma such tha t a +  b f ( s ) <  f ( f )  which is a contradiction. Using 
the hypothesis that each sub differential of /  contains a multiple of a Dirac 
measure we conclude tha t for all <j> £ V  there is a b such tha t b6t £ d f  (</)). 
Further we must have 6 ^ 0  since if 08t £ df(<f>) for some f  £ V then 
0£a E df(<f>) f°r all s ^  £ and this contradicts (2.3). For the proof of our 
statem ent there are six cases.

C ase (I), s ^ G.

We estimate a +  bf(s)  with |6 | <  1, |(^(s) — <̂ o(«s))| < b0( f ( t )  — 
fo (t)), and b08t £ d f ( f 0 ), to obtain

a- \ -b f ( s ) =  a + bfo(s) + b(f(s)  -  <f>o(s))

<  f ( f 0) +  bW s ) -  M s ))
< f { f  0 ) +  bo(f{t) — <f>o(t))

< / ( « •

C ase ( i i ) .  a £ G, s ^  and 6  >  6 0  > 0 -
We may find (a', &') £ M t such tha t |a — a'\ +  | 6  — 6 '| <  r)(s). Then 
we make the following list of estimates to substitute in

a +  bf(s) = (a — a1) +  (6 — b')f(s)  +  &;(^(s) — <j>(t)) +  a1 +  b'f{t).

We have a — a' <  ^(-s), IÎ H <  ll^oll +  e, (since f  £  Z7) and (6 — 
b' ) f { s ) <  77(5)ll</>ll- Using b' >  (since |6 — &'| <  77(5) <  ^  and 
b >  b0 >  0) we have b'((f>(s) — f ( t ) )  <  &'(^o(«s) — f o ( t )  — ctr}(s)) <

< - b 0^ l ,  and o' +  (since (o', V) € M t).
The result is

a + b ^ s )  < (1 + Hftll + e ) r , ( s ) - lbol° ^ {s)

= +  ll^oll +  eM s ) + / W

< m

where we use that a  = 10(1+ll(HI+e)>
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C ase  ( I I I ) .  5  £ G, s ^  £, and b <  — 6 0  <  0.

Using 6 ^ ( 5 ) < bcf)o(s) (since b0 > 0 gives 0 < <̂ (5 ) — 4>o(s)) and 
bo((j)(t) — 0o(O) > 0 we estimate that,

a b<j)(s) < a +  6 >̂o(<s)

< /(*>)
<  f{4>0)  +  * o W 0 -  M 4 ) )
< /W).

C ase (IV ). s £ G, s /  i, and 6 > — b0 > 0.

Using b<f)(s) < b(/)0(s) (since b0 <  0 gives <f)(s) — <^o(s) <  0) and 
b0((f)(t) — 4 > o ( t ) )  > 0 we estim ate that

a +  6 ^ ( 5 ) <  a +  6<̂ o(«s)

<  K M
<  K M  +  b 0 ( ( f ) ( t )  -  </>o( t ) )

< K M

C ase (V ). s £ G, s ^  t, and b < b0 < 0.

This case is similar to case (III). There are, however, some dif­
ferences due to changes of sign. We find (o', b') £ M t such tha t 

< 77(5 ) and we substitute the following list of
estimates in

a -f b(f){s) =  (a — a ') -f (b — b')(f>(s) +  ^ (^ (s ) — +  fl/ +  b'^{t).

We have a —a' < 77(5 ), ||^|| <  ||^0|| +  e (since (j) £ U), (6— b')<f)(s) < 
77(s)||^||, &'(^(5) -  M ) )  < b ' ^ ^ -  < b o ^ ^ -  < 0 (noting tha t for 
all </) £ V  we have, ((/>(s) -  </>o(s )) > i M )  ~  M * ) )  +  arl(s ) giving 
<f>(s) -  -  ^  >  ^o(a) -  M i )  +  ^  > 0 , th a t 6' <  ^  <  0
since \b — b'\ < 77(5 ) <  — ̂  and b < bo < 0 , and tha t 77 is chosen 
so that 77(5 ) > 2 l °̂(3)~^(f)l), and finally a ' -f &VM <  /(<̂ >) (since 
(a1, b') £ M t). We estim ate that

a + b<j>(s) < ( 1  +  HfrH +  6 )77(5 ) -  +

= - - ( 1  + Ĥoll + t)'n(s) + f(<j>) 

< m

where a  — .
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C ase (V I). s £ G, and |6| < |&0|.

For all f  G V  we have

0 < sign (&o)(<£(s) -  <M5)) < siSn (M W M  ~  <M*)) “  ar)(s ) 

so tha t b((j)(s) — <j>o(s)) < bo((/)(t) — (j>o(t)). Hence

a-\-b(/)(s) = a +  b(/)0(s) +  b(cj)(s) -  <f0(s))
<  / ( ^ o )  +  b0{(/>{t) -  </>0(t))

< m -

□

P ro p o s itio n  2.5.3 Suppose that f  E F d , then given any non-empty r0-open 
set U there is a non-empty r0-open set V  C U and a finite set F  C K  such 
that

d m  n  M ^ F )  ±  0

for every f  E V.

P R O O F . Suppose tha t U = U(ip,e,uj) and th a t Fo = { z  E K  : cu(z) = 
0}. In the case that df((f>) fl M\(Fq)  ^  0 for every </» E U(ip, J, f )  we let 
V  = j )  and F  = F0. Otherwise we find (f>0 E U fy ,  J, j )  such tha t

o) H M i ( F 0) = 0. Then since /  E IFd we must have b06t G ^/(<^o) for 
some &o G R  and some t ^ F0. Further we can assume th a t 60 ^  0 since 
this is handled by the first case with 0 G M\(Fo).  Applying Lemma 2.5.2 
we obtain a r0-open subset V  C Uq such tha t for all <f G V  there is a b ^  0 
such tha t b8t G df((j)). Letting F  = { t } gives us df(<f) f l  M \ ( F )  /  0 for all 
f> G V. □

In Lemma 2.5.4 we give a well known example of a function in the set 
T d (see [DGZ3]).

L em m a 2.5.4 For all $ G C (K )  the subdifferential at <j> of the supremum 
norm on C ( K ), 5 ||^ ||, contains a measure with at most one element support.

P R O O F . W e h a v e  t h a t  6Xo G $ ||v? || i f  ^ (^ o )  =  IM I a n d  t h a t  —SXQ G ^Hv^ll i f
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2.6 M easures w ith  fin ite support
We first reformulate the definition of the wedge topology in somewhat simpler 
notation. Whenever F  C K  is finite, {rjx : x £ F }  are non-negative 
functions such that rjx(z) =  0 if and only if z = x, and e >  0. We denote by 
Uw(0, e, { rjx : x G F  }) the set of those f  G C (K )  such tha t \ f(y)\  < e for 
all y G K  and \ f (y) — f ( x )| <  r}x(y) for all y ^  x. It is easy to see th a t these 
neighbourhoods of the origin define our original wedge topology. Indeed, if 
e, L, R, { f i }  {Vv} are as in Definition 2.3.2, we let F  = L U R,  use for each 
x G Fj Lemma 2.2.5 with rj = 0 to find fjx such that rjx(x) = 0 and rjx(y) > 0 
for y ^  x, and define

• rjx(z) = m a ^ { f x(z), tp^z )}  if x £ L H R,

• rjx(z) = f x(z) for z > x, rjx(z) = ijx(z) for z < x  if x  G L \  R,  and

• Vx(z) =  ipxiz) for z < x, r)x(z) = rjx(z) for z > x  if x G R  \  L.

Then Uw(0, e, { gx : x £ F } )  C Uw(0,e,{(f)i}i(=L, { ' f r}reR). Conversely, if 
e > 0 and { rjx : x G F  } are given, we find 0 < ei < e such tha t

Vx(z) > e1 ii z  < x £ F  and x ^ A r , and

Vx(z) > ei ii z > x £ F  and x £ A l -

Letting L =  F  fl A l  and R  =  F  fl A r ,  and defining

• f x ( s )  = infz<* t j x ( z )  and

• ' fx(s) = mfz>3 rjx{z),

we get that

Uw[0} €\, {fl}l£L> { ^ t}tE.r ) C Ĉ iu(0, C, { Tjx ■ ® G F

We also note tha t the sets Uw(07€7{ t]x : x G F } )  are open in the wedge 
topology: if f  £ Uw(0,e,{r)x : x £ F  }), let e =  e — ||^ ||, rjx(y) = rjx(y) -
| f ( y )  — f(x)\ ,  and observe tha t f  £ Uw(0,e,{Tjx : x £ F  }) C Uw(0, e, { 77  ̂ :
x £ F } ) .  Again, we will use the notation Uw( f , c , { r j x : x £ F }) for 
f  +  Uw(0,e, {rjx : x £ F } ) .  We show that norm relatively open subsets 
of Uw(ip, e,{rjx : x £ F  }) are second category in themselves; this statem ent 
is needed in the proof of Lemma 2.6.3.

Lem m a 2.6.1 The sets Uw(ip7e,{r)x : x £ F } )  have the following proper­
ties.
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(i) Uw(<p,e,{rjx : x £ F  }) is of type G$ in the norm topology.

(ii) Norm relatively open subsets of Uw(ip, e, { rjx : x £ F  }) are 
second category in themselves.

P R O O F . For (z) w e  n o te  t h a t  a  w e d g e  n e ig h b o u r h o o d  is  a n  in t e r s e c t io n  o f  a  

n o r m  b a ll (w h ic h  is  f t ) a n d  o f  a  f in i t e  n u m b e r  o f  s e t s  o f  t h e  fo r m

u  = {g : |g(y) -  g(x)\ < r}(y) for all y ±  x}

where x £ K ,  r) : K  —> [0, oo) is continuous and such tha t rj(z) = 0 iff z  =  x. 
So it is enough to show that U is f t . For this observe tha t

Un = {g : |g(y) -  g(x)\ < rj(y) for all y such tha t r}(y) > 1/n)}

is norm open (if g £ Un , the function y —> r)(y) — \g(y) — g(x)\ attains its 
minimum, say m, on {y : rj(y) > 1/n}, so m  > 0 and the norm ball around 
g with radius m /2  lies in Un). Since

OO
U = f ] U „ ,

71=  1

U is f t .
Assertion (ii) is a corollary of the first statem ent. Each norm relatively 

open subset V  of a basic wedge open set Uw(0, e, { rjx : x 6  F } )  is a f t  
subset of C(K).  So V  is completely metrisable (see [Ch]) and, as such, is 
second category in itself. □

The remainder of this section is devoted to generalising the results of the 
previous section to the case of continuous convex functions for which there is 
a measure with finite support in each sub differential. We state Proposition 
2.6.6 which is the main result of this section. Let A i ( F )  be the set of 
measures that have support contained in a given set F.

Suppose that Uo is non-empty and r  open, that f  is convex and 
norm Lipschitz on Uo¥ ■ Then there is a non-empty r
open subset U C Z7o, and a finite set F  C K, such that for  every
y e u ,

d f (v) n M( F)  /  0.
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The proof of Proposition 2.6 .6  relies on Lemmata 2 .6.2 to 2 .6 .5 . First we 
fix a positive integer n  and a norm relatively open subset W  of Uo for which 
each subdifferential contains a measure with at most n  element support. 
Finally in Lemma 2.6.5, we find a wedge open subset U of W  for which all 
the measures of n  element support have support contained in F.

The following notation is used throughout this section.

• U0 is the wedge open set U0 = Uw(ip0, e0,{rfx : x £ F0 }).

• The function /  is convex, norm Lipschitz on Uo, and such tha t for every 
ip £ Uo the set df( ip ) contains a measure with finite support.

• For any non-negative integer k, M.k is the set of measures of at most 
k element support.

• For any integer k > 0 and any finite set F  C K, Afk,F is the set of 
measures u whose support contains at most k points outside F.

• For each integer 0 < j <  k, Aik,j is the set of measures v whose support 
contains exactly k points out of which exactly j  points lie outside Fo, 
Aik,j,F is the set of measures u whose support is contained in F  and 
has exactly k points out of which exactly j  points lie outside Fo, and 
Mk,F is the set of measures u whose support is contained in F  and has 
exactly k points.

• If W  C Uo then A4fc,j(W) is the set of measures tha t belong to M.k,j H 
df((p) for some ip E W.

• ■Mfc.i(W) is the closure of M k,j{W )  in the weak* topology.

The purpose of Lemma 2.6.2 is to fix an integer n  and a subset W  C 
C (K )  such that measures of finite support in the sub differentials of /  on W  
have n  elements in their support outside of a given finite set F.

L em m a 2.6.2 Suppose that

• F  C K  is a finite set,

• M. C M .(K)  is weak* closed,

• V  C Uo is non-empty and second category in itself in the norm topology, 
and

• for each ip e V ,  M H  U%=0Afm,F H df(ip) ±  0.
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Then there is a non-negative integer n and a non-empty norm relatively open 
subset W  of V  such that

M n M n,F n d f { v )^H>

for every ip G W  and

U  M  fl Afn,F n df(<p) C Afn,F \  Nn-\,F-
<p6W

P R O O F . W e claim that for each non-negative integer m  the set

A m = { < p e v  : m  nd/HnA/^^0}
is norm relatively closed in V. We first show that A i  fl df(cp) fl Afm,F is 
weak* closed. To show that each Afm>F is weak* closed let p  be a weak* limit 
point of a sequence pj  in Afk,F- If P> Afk,F then there are m  +  1 points in 
the support of p outside F , so that for all sufficiently large j ,  spt (p j ) has 
m  +  1 points outside F  which contradicts pj in Afk,F• Therefore p  G Afk,F- 
From A i  and df(ip) being weak* closed we get tha t A4 fl df(cp) fl Afm,F is 
weak* closed. Suppose tha t cpn G A m converges in norm to ip G C (K ) .  The 
subdifferential map ip > df(ip)  is norm to weak* upper semicontinuous on 
C ( K ) and therefore each weak* open set V* D df(ip)  also contains df{ipn) 
for all sufficiently large n. Suppose that A i  fl df(ip)  fl Afm>F =  0- Then the 
weak* open set C(K)* \  (A i  fl Mm,F) contains df(tp)  and therefore contains 
df(ipn) for all sufficiently large n  which contradicts th a t ipn G A m. Therefore 
ip G A m and hence Am is norm relatively closed in V. This proves the claim.

We deduce that there is a non-negative integer k and a non-empty norm 
relatively open subset V  C V  such that V  C Ak . If not then, since V  = 
u  *aAi,  we deduce tha t V  is first category in itself; but this contradicts the 
hypothesis that V  is not first category in itself.

Let k be the least integer such that there is a non-empty norm relatively 
open subset V  C V  with V  C Ak. We claim that there is a non-empty norm 
relatively open subset W  of V  such that

(J  A4 fl df(ip) n Afk,F C Afk,F \  Afk—i,F'
ipew

Since Afk,F is weak* closed, for all norm relatively open subsets W  of V  we 
have [Jvew M  H df(ip)  fl Afk,F C Afk,F- We must find a norm relatively open 
subset W of V  such tha t

U  M  n d f ( i p )  n A f k , F  n A f k ~ i , F  = 0-
<pew
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Assuming that no such set W  exists, we choose for each norm relatively open 
subset H  of V ,  a measure p n  £ U A i  fl df(ip)  fl A f k , F  H A f k - i , F ,  and we 
let A denote the weak* closure of the set of such measures.

Since Afk-i,F is weak* closed we deduce tha t A C Afk- i ,F • We show that 
^ /(v 3) H A ^  0 for all ip G V  concluding tha t M  fl df(ip)  fl Afk-i ,F  /  0 for 
all ip G V , which contradicts k being minimal with this property. We seek a 
contradiction by assuming tha t df(ip)  fl A =  0 for some ip G V.  Choosing a 
weak* open neighbourhood 0  of df(ip)  whose weak* closure does not meet 
A, and noting that the subdifferential map ip i—► df(ip)  is norm to weak* 
upper semicontinuous on C (K ) ,  we may find a norm open neighbourhood 
H 0 of ip such that d f ( H 0) C 0 .  Therefore the weak* closure of U^eifo5 /('0 )  
does not meet A. By assumption there is a measure pnQ £ (U^eijod/(V 0) fl A 
giving a contradiction and proving the claim. □

In Lemma 2.6.3 we find integers k and j  for which the sub differentials of 
/  on a non-empty norm relatively open subset W  of Uo contain measures of 
k element support out of which j  are not in F0.

L em m a 2.6.3 There are integers 0 <  j  <  k and a non-empty norm rela­
tively open subset W  of Uo such that

Mk,j  D df(ip)  ^  0 

for all ip G W, and furthermore

M k j ( W )  c  M k J .

In particular there are numbers 0 < c <  C < oo such that each measure v G 
Affc.j(W) has support consisting of exactly k elements out of  which exactly j  
are outside Fo, and c <  |i (̂cc)| <  C for each element x in spt (u).

P R O O F . Applying Lemma 2.6.2 with F  = 0 so tha t Afk,F =  A i k , with 
A i  = A i (K ) ,  and with V  = Uo, we find a non-empty norm relatively open 
subset Wo of Uo and a non-negative integer k such tha t

df(ip)  n A i k ±  0

for all ip G W q and

U M k n d f { y )  c M k \  M k- 1.
<pew0
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Applying Lemma 2.6.2 a second time with F  =  F0, with M  = Aik ,  and 
with V  = W0 we find a non-empty norm relatively open subset W  of W0 and 
a non-negative integer j  such that

M k  n  df(<p) n  Afj,F0 0

for all ip £ W, and

U  M k  n  df{ip) n  Afj'Fo C AfjtF0 \  A f j- l.Fo-
<p£W

This proves the first part of the statem ent since [Adk \  A i k  i) f'l
Nj-l,Fo) =  M k,j. ________

That each measure u £ M k, j (W )  has support consisting of exactly k 
elements out of which exactly j  are outside F0, is a reformulation of the 
inclusion M k, j (W )  C M  k,j-

The existence of C such tha t \u(x)\ <  C  for all u £ df(ip)  for all ip £ Uq 
and all x £ spt (u) follows from the assumption tha t /  is Lipschitz on Z70- 
Suppose that there is no positive c such tha t for all v £ M k , j ( W ) we have 
c <  | ) | for each element x £ spt (i/). Then for each positive integer p 
we may find a measure up £ M k , j ( W ) such tha t \vP(xp)\ < 1/p for some
xp £ spt (up). Since the vp have exactly k element support and K  is compact
we obtain a contradiction with a weak* accumulation point of the sequence 
up that belongs to M k , j { W ) and has less than k element support. □

For Proposition 2 .6.6 we need to find a wedge neighbourhood U = 
Uw(ipo, e, { rjx : x £ F  }) such that, if <p £ U then every measure in df(ip)  
of finite support necessarily has support in F. We choose some ip0 £ W  and 
some measure /x0 £ Mk,j  H df(ipo), and let F = spt (po). The functions r)x 
are defined on decreasing sequence of open sets Gp whose intersection is F. 
The sequence Gp is given in the following Lemma.

L em m a 2.6.4 Suppose that W  is the wedge open set of Lemma  2 .6 .3 , that 
<Po £ W, and that

• X \ , X k  are distinct points of K, such that for some integer j  > 1 we 
have X{ £ Fo for  1 < i < j ,  and X{ £ Fo for i > j ,

• G 3 cci, • • • Xj is an open set such that G Pi Fo =  0, and

• dp is an arbitrary fixed sequence of positive real numbers,
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Then there are open sets GitP C  K  (i =  1 ,*••,&, p  =  1, • • •) with the following 
properties:

(l) X{ G G{tp+1 C  CZ Gi)P,

(ii) Gi)P C G if  i <  j,

(Hi) GiyP if  i > j,

(i>v) G{liP n Gi2jP — 0 for %\ ^  %2 -,

(v) |<p0(®) -  <Po{xi)\ < dp for every x G Gi>p,

(vi) the intersection of the sets Gp = G^p is { Xi, • • •, Xk },

(vii) i f  v G is concentrated in Gp, then s p t  (v ) =
{ y i r - ' i V k } ,  where y{ G Gi)P for all i and y{ = Xi i f  i > j ,
and

(viii) i f  ip G W  and v G Aik,j  H df(ip) is concentrated in Gp, then 
there is p G M k , j ( W ) n M ( {  ®i, • • •, ®jfc }) such that Y,i=i Î (G i# )— 
u{Gi,p)\ < and v{<p ~  <Po) > K v  ~  <fio) -  dp.

P R O O F . S in c e  K  is  f ir s t  c o u n ta b le  fo r  e a c h  i  =  1 , • • • ,  k w e  m a y  c h o o s e  a  

b a s is  Gi# o f  o p e n  n e ig h b o u r h o o d s  o f  Xi su c h  t h a t  p r o p e r t ie s  (z ) — ( v i ) h o ld .

For (vii) suppose that v G M.k, j• We claim that there is an integer p0 
such that for p > po the support of every measure concentrated on Gp has 
non-empty intersection with every G{iP. Indeed, if this were not the case 
there would be arbitrarily large p for which we could find vp G M .k , j ( W )  
concentrated on Gp such that \vp\(Gip%p) =  0 for suitable ip . We can pass to 
a subsequence on which ip is constant, say iPj =  i. Using (z), (z>z), and that 
spt (vp) C Gp we infer that there is a weak* accumulation point v of vp with  
spt (u) C { Xi,  • • •, Xk } \  { Xi }. We have a contradiction since v G M .k , j ( W )  
and it has exactly k element support.

Replacing G^p by GiiP+Po if necessary, we may assume tha t p0 = 1. By 
the previous claim we have that every measure v G M k , j (W )  concentrated 
on Gp has spt (u) =  { y i , • • •, yk } where yi G GitP for i = 1, • • •, k. By Lemma 
2.6.3 exactly j  of { pi, • • •, yk } are outside Fo, but z/i, • • •, yj ^  F0 because of
(ii). We infer that yi G F0 for i > j.  By (Hi) we must have tha t yi = Xi for 
i > j , which concludes the proof of (vii).

F or (viii) le t  Ap C  R fc+2 b e  d e f in e d  b y

Ap = { (v(GltP), • • •, v(Gk,P), f(tp) -  v(tp), v(ip0) 
y  G W, */ G df(cp) fl M k,j, spt (v) C Gp }.
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Then Ap is a decreasing sequence of bounded non-empty subsets of R f c + 2  and 
therefore the set OO

A = f ] A p
p - 1

is non-empty and compact. Moreover, the sequence
k+2

7 p =  sup inf{ Y . \ aj - b j \  • b € A }
a£Ap j—i

tends to zero. We may assume that 7 p < dpf 3, since, if necessary, we may 
replace each GitP with Gi<qp} for some qp so large that ')Pq < dp/ 3. The validity 
of (z) — (vii) would be unaffected after such a replacement.

Suppose that ip E W  and tha t v E M klj fl df((p) is concentrated in Gp, 
then since 7 p < dp/ 3, there is b = (&i,. . . ,  bk+2) E A  such tha t

k
\f(<p) ~  KvO -  bk+ii +  K ^ o ) -  bk+2| +  Y I  H Gj,p) ~  bj\ < dp/ 3 .

j=i

Since A = fl£Li f°r each q = 1 ,2 , . . .  we may find (pq E W and pq E 
H <9/(<pg) such that spt (/zq) C Gq and |/(<pq) -  v ( y q) -  bk+11 +  |pq(ip0) -  

bk+2 1 +  1 “  &j| is so small that

\ { f M  ~  KvO) ~  i f M  ~  Mb(p«))I +  W<P0 ) -  Mg(^o)|

+  S  K ^ j.p )  _  N(Gj,q)\ < — ■
3= 1  15

We infer from (z), (uz), and (vii) tha t all weak* accumulation points p  of the 
sequence pq, (which exist by compactness of K )  belong to M.k,j(W)OM.({ Xi, 
' '  ’ , x k }), and satisfy

\v((po) -  p(ifo)\ < dp/3
and

E  K G , , )  -  /t(Gj,,)| <  ^  <  d,.
3=1 6

Using also that /(<pq) — Pq(<Pq) > f(<p) -  v{<p) — dp/3  and th a t pq E df(ipq), 
we infer tha t

/ ( ^ )  >  f M  -  +  N M  > f W )  ~  " (v ) -  dpi3 +  #*,(¥>)•
So letting q —> 0 0  we obtain z/(<p) >  p(<p) — dp/3. Recalling tha t |^(<po) — 
p(ip0)\ < dp/3 we conclude that

v(<p -  <po) > p((p -  (fo) ~  2dp/3 > p(cp -  (fo) -  dp.

□
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In the following Lemma, we obtain the wedge open set U on which each 
subdifferentials of /  contains a measure with fixed finite element support.

L em m a 2.6.5 There are integers 0 <  j  <  k, a non-empty r  open subset 
U C C/o, and a finite set F  C K  such that

df(tp)  fl Mk,j,F 7  ̂ 0

for every p  E U.

PROOF. The proof has two parts. In the first part we construct the functions 
{Vx}xeF that we require to define U. In the last part we verify th a t the 
measures of finite support in the subdifferentials of /  on U do indeed have 
support contained in the finite set F.

We may apply Lemma 2 .6 .3  to obtain a non-empty norm relatively open 
subset W  of Uo and integers 0 < i <  k such tha t

Bf{v ) n Mk j  ±  0
for all ip E W. If j  = 0 then all of the k element support of v E d f ( p )  fl A4k,j 
are in Fo and therefore we can set U =  W  and F  =  Fo.

For j  > 1 we use the second part of Lemma 2.6 .3  to obtain A4k,j(W)  C 
A4k,j and constants 0 < c < C < oo such th a t each measure v E Xik , j (W)  
has support consisting of exactly k elements out of which exactly j  are outside 
Fo, and c <  \v(x)\ < C  for each element x  in spt (u).

Since for all measures p  E A 4 k , j ( W ) we have tha t |/x(cc) | <  C  for each 
element x in spt (p ) then letting 5 =  sup^6JUfc |/ / |(F \F o ) , we have s < oo 
and, since K \ F 0 is open, s =  sup/lG>Mk w  ̂ \ p \ ( K  \  F0). So there are cp0 E W  
and p 0 E M k , j  H d f ( i p 0) such tha t \ p o \ ( K  \  F0) > s — c / 4.

We may suppose that

• spt (p0) =  { Xi, • • •, x k } where asi, • • •, Xk are distinct points such tha t 
Xi is not in Fo for 1 < i <  j  and Xi is in Fo for i > j ,

• G 3 Xi, • • • Xj is an open set such tha t G fl Fq =  0,

functions r)x are chosen so tha t rjx(y) = \(fjx(y) ~  |(^o(y) — ^o(®)) — 
(^o(3/) -  $ )(* ))I), for x E F0,

• k =  |  min{ 8, e0 — ||y>0 — ip0\\}mi{r)x(y) : x e  F0,y  e  G } }  is positive 
where 5 > 0 is chosen so tha t E C/o : \\zp — <po|| <  6 } c W ,

• d„ = 2 -p- 1r ^ ) and
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•  GitP C K  (i =  1, • • •, k, p  =  1, • • •) and Gp are the open sets of Lemma 
2.6.4.

Then applying Lemma 2.2 .4  we may find for each integer 1 <  i  <  k  and 
each integer p > l a  function giiP £ C ( K )  such tha t,

• gitP(x)  = 0 for x £ K  \  GijP,

•  9i,P{x ) =  s ig n (Mo(®»)) for x  e  G i,P+i> an d

•  0 <  \gitP\ < 1.

We make the following claims.

C laim  (i) Let  g = k E%Li 2_p E i= i 9i,P then

•  g(xi)  =  /csign ( p 0(z;)) for  1 <  i < j ,

• /c(l — 2 “p+1) <  \g(x)\ < /c(l — 2 _p) for x  £  UJi=1GiiP \
\JJiz=1GiiP+1, and

•  g =  0  outside U3i=1Giti , in part icular  g (x i )  =  0  for  i > j .

C laim  (ii) For 1 <  i  < j  let  rjXi( y ) =  s u p ^  2 _p_1 /c(l -  \gi,p \(y)),  
then

• e C(K),

• =  0  and rjXi{y) > 0 i f y ^  x iy and

•  r)xi{y) < 2 "p_1ac if  y £  Gp.

C laim  (iii) Choosing  0 <  e < 1 /4 such tha t

(1 — e)(s — c/4) > (1 +  e)s — c /2  +  2keC,  (2-4)

and F  =  jFoU{ x lt • • •, Xj }, we let  U = U(ip0-\-g, etc, {rjx \ x  £  F  }).
Then  U  C W  and i f  ip0 +  h £  U then,

• \h(y)\  <  « ( 1  +  e) for all y,

• \h(y)\ <  /c(l/ 2  +  e) for y £ G 2,

• \h(x)\  < K,e for x  £  F0, and

•  i f  1 <  i < j  then  sign h(y)  =  sign (^o(^0 ) ôr V ^ Git2.
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For claim (i), noting tha t gi,p(xi) =  sign (p0(xi)) for all i and p , and th a t 
= 0  if m  ^  i, we obtain

OO
g(xi) = / c ^ 2 “psign (/x0 (x»)) 

p=i
= /csign (p0{xi)).

Let x E U;=1 G;iP\U ;=1 Gi)p+i, then gi,q(x) = 0 for q > p +  1 and since there is 
exactly one ix such that 1 <  ix <  j  and that x E GiXjP \  GiX)P+1 we have tha t 
9ix,q{x ) =  sign (^o(xix)) for q < p -  1 and gm,q(x) = 0 if m  ±  ix. Therefore

p - i

g(x) = k Y ,  2-9sign (p0{xix)) +  K2~pgixtP(x)
q=1

=  k( 1 -  2 _p+1)sign (m o(^J) +  K2~pgim̂ (x).

Since gix,p(x) takes values between 0 and sign (/z0 we have tha t

/ c ( l - 2 - p+1 ) < | 5f ( z ) | < / c ( l - 2 - p).

If z ^ then gi)P(x) = 0 for all i and p. Therefore g = 0 outside
Uj-jCr,-,!, in particular g(x{) = 0  for i > j .

For claim (ii), if y  E G ijP, then \gi,q(y)\  =  1 for q < p.  So g Xi{y)  =  
supq>p 2-p_1 k(1 — |<7i,g|(y)) <  2_p_1 k, which is the last statem ent of (ii). It 
also shows that 77Xi(xj) = 0 and that gXi is continuous at X{. If y  G i iP, then 
\9i,q(y)\  =  0, so 7}Xi(y )  >  2_p_1 /c. Hence

rjxAy) =  sup 2 _p_1«(l -  \gi,q\{y))
1 <q<p

and so r)Xi is positive and continuous at y. Finally, we recall th a t =
{zi} to infer that rjXi is positive and continuous at every point of K  \  {z*}. 

For claim (iii), we first show that U C W. If cp E U then using

• Wv -  (<Po +  g)\\ <  C«,

• ll l̂l <  k , and

• k  < \  min{ 8, e0 — ||y?0  -  </S0|| }, 

we estimate that
Wv — (po\\ <  6K +  K <  2 k  <  8.
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It remains to show that (p £ U0 = U(<po, e0, {rjx : x £ F0 }). For the norm of 
ip — (fo we have

\\<P ~  All <  \W -  ¥>o|| +  ||^o -  V̂o|| < 2 /c +  ||<p0 -  A | |  <  e0.

For the oscillation of ip — A  we need only consider x £ Fo. Recall tha t
Vx{y) = l i i x i y )  -  \(<Po{y) -  M x )) ~  ( A (2/) -  A (z )) |) . In the case when
y f  Gi then g(y) = g{x) = 0 , and we estimate that,

10(2/) -  A * ))  -  i M v )  ~  A 0 ) ) l  < M y )  +  Ig{y) -  g(x)\  +
l(v>o(y) -  v>o(®)) -  ( A {y) -  A (* )) l  

< My ) -

In the case that y £ G\, using g{x) = 0 so that \g(y) — g{x)\ <  k , and using 
k <  |  inf{77*(?/) : x £ Fo,y £ G }, we estimate that

\(<p{y) -  A®)) -  ( M y )  -  A (*))l < Vx(y)+ 
\ ( My )  -  M x)) ~ ( M y )  -  A (*))l  +  « 

< 277x(y) +  |(<po(y) -  M x)) -  ( M y )  -  A (*)) l 
= My ) -

Therefore cp £ W. Hence U C B(<po, £) fl U0 C W.

Finally, suppose that ip0 +  h £ U. Since U = U(ipo +  <7, e/c, { 77* : x  £  F  }), 
we have that \h(y)\ < \g(y) \  +  e« <  «(1 +  e) for all ?/. If y  G 2, then 
IAjOI £  « / 2  so that |/t(y)| <  « ( l / 2  +  e). If z E Fo then g (z ) =  0  so that 
|F(z)| <  /ce. Suppose that y  £  Git2 and 1 <  i  < j .  Noting that \\h — g\\ <  zee, 
that e <  1/4, and that \g(y)\  >  ft/2, we deduce that \h(y)  — g(y ) \  <  k /4  and 
hence that sign (h(y) )  =  sign ( g ( y ) )  =  sign ( p0(z;)).

We finish the proof of the Lemma by showing tha t, whenever <p £ U 
and 1/  £ M.k,j H df((p) then 1/ is concentrated on the set Fq U { x\ ,  • • •, Xj }. 
Assuming, in order to find a contradiction, that this is not the case, we use 
tha t K  \  (Fo U { Zi, • • •, Xj }) =  U^11(FC \  Gq+1 ) to find the least q such tha t
M ( « - \ G s+1) > 0 .

Let tp = ipo +  h. Since v £ df((p) and go £ df(ip 0 ), we have f(<p) >  
f(ipo) +  (J'o(h) > f(ip) — v(h)  -f Po(h), so that u(h) > po(h) (this property is 
known as monotonicity of the sub differential). Since | h(xi) — g(xi)\ < ek,

fi0(xi)h(xi) >  fio(xi)g(xi) -  EK, \p0 ( x i ) \  =  K,\p0(xi)\( l -  e)
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fori <  i < j  and \h(x{)\ <  Ke f°r i > j> we estim ate tha t 

v(h) > fJLo(h)
k

= ^ 2  fJt0(xi)h(xi)
i= 1
j k

^  E « ( l - e ) W i j ) | +  2  - ' “ l/'ofcOI
1=1 »=J + 1

= #c(l -  e)\fi0\(K  \  Fo) -  K€\imo\(Fo)
> #c(l — e)(s — c/4) — kneC. (2-5)

We distinguish two cases; the case when v is non zero on the set where \h\ 
has small values, that is when q — 1, and the remaining case when q > 2.

Case (1) If q = 1, then we use Lemma 2 .6 .3  and tha t spt (u) fl 
( K  \  G2 ) has at least one element, to infer tha t M (F  \  G2 ) >  c.
Using claim (iii), th a t |/i(cc)| < ag(1 +  e) for all x , th a t | ) <
/c( 1/2-fe) for x ^ G2 , and tha t |/&(z)| <  /cefor x  £ Fo, we estim ate 
that,

v{K) <  «(1 +  e)\v\(G2 ) +  /t( l/2  +  e)\v\(K  \  (G 2 U Fo)) 
+/ce|i/|(F0)

=  /c(l +  e)|z/|((j2 ) +  ^(1 +  e)M (-^  \  ( ^ 2  U Fo))
* M (A -\  (G2 U Fo))

2 
^(1 +  e)\v\(K \  F0) — 
k \v \ ( K \ ( G 2 U F 0))

+  ne\v\(F0)

2 +/ce|i/|(F0)
v /cc , ^

< /c(l +  e)s — — +  kneC.

From (2.5) we deduce tha t

(1 — e)(5 — c/4) <  (1 -f e)s — c/2 +  2keC, 

which contradicts (2.4).

Case (2) If q > 2, noting tha t \u\(K \  Gq) = 0 and since \v\(K  \  
Gq+l) > 0 we infer tha t \  Gq+i) > c. In particular v is
concentrated in Gq and, by (viii) of Lemma 2 .6 .4 , we have tha t 
spt ( 1/) =  { 2 /1 , • • • ,7 /A :}, where yj £ Gi<q for all i and yi = Xi if 
i > h  and there is fi £ M k, j (W )  fl M ( { asi, • • •, Xk }) such th a t 
E l i  |fi(Gi,q) -  v(Giiq)\ < dq and v(h) > fi(h) -  dq.
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The measure // may be close to fi0 or it may be far from it. Since the 
treatm ent of these two situations is different, we distinguish two subcases 
and consider the far away case first.

Sub-case (a) Suppose tha t there is an integer m, 1 < m  <  j ,  such 
th a t and fi0(ccm) have opposite signs. We have \v(ym) —
H(xm) | < dq < c <  \u(ym)\. Therefore sign (y(ym)) =  sign ( / i ( xm )).
By claim (iii) h(ym) has the sam<e sign as fio(xm) and we conclude 
th a t v(ym) and h(ym) have opposite signs. Hence JGm<ihd v  = 
v(ym)h(ym)  <  0, and we obtain the following estim ate for v{K) :

i/(k) = /  h d v h d v
J G q\Gm,q JGm.q

< f  hdv
J G q\Gm,q

— [  hdv  +  j
J G A ( G m a UFn) J ( i

h dv
G<j\(G Tnl(jU.Fo) J

< k(1 +  e)\v\{Gq \  (Gmtq U Fo)) +  Ke\v\((Gq \  Gm)q) fl F0)
<  /c(l +  e)[\v\(K \  Fo) -  \v\(Gmtq)] +  Ke\v\(F0)
<  k(1 +  e)(5 — c) +  khieC.

From (2.5) we deduce that

(1 — e)(s — c/4) <  (1 +  e)(s — c) +  2keC

^  (1 T c)^ — — T 2keC 
£

which contradicts (2.4).

The following final sub-case, although the proof is as short as the 
previous ones, is the one for which most of the above work has 
been done. It is only here that the use of the wedge topology is 
essential, and also where we use more than just the monotonicity 
of the sub differential.

Sub-case (b) Suppose tha t for all 1 < i < j  th a t and
have the same sign. If spt (v) =  { yi,  • • •, yk }, where yi £ Giiq 
for all i and yi = Xi if i > j, then using the minimality of q we 
have ym £ Gmiq \  Gm>?+i for some 1 <  m  < j.  We note tha t 
h +  tp0 £ U = U((/)o +  g, cac, { qx : x £ F  }) implies tha t

! (% ;)  -  h ( x i ) )  -  (g{yi )  -  flf(aji))| <  rjXi{yi).



C H A P TE R  2. G A T E A U X  D IF F E R E N T IA B IL IT Y  ON C(K) SPACES  59

If 1 <  i  <  j  and y i  E G i j  \  G ^+i then I >  q and by claim  (i) and 
claim  (ii) we have \g(x{)  — g ( y i ) \  >  /e2- *-1 and r}Xi( y i ) <  k,2~1~ 1 . 
Therefore h { x i )  — h ( y i ) has the sam e sign as g ( x i )  — g ( y i ) ,  nam ely, 
sign (/io(zi))- In the only other possible case we have y i  =  X i , so
that h ( y i )  =  h { x i ) .

Furthermore for y m E Gm,g \  G m ,q+i we have

|h ( x m )  -  % m))| > \ g { x m )  -  g ( y m ) \  -  V x m i y ™ )

>  ( k, — /c(l — 2 ~ q))  — r)XTn( y m )

— K>2 9 — T ] x m { y m )
> k2~9 -  K2"9- 1 =  K,2-q- \

We recapitulate that for each i  =  1 , . . .  , j  we have

•  f i ( x i ) ,  y,o{xi) ,  and h ( x i ) — h ( y i )  all have the sam e sign, or

K V i )  =  K x i)>

•  W(Vi) -  /*(®0I <  d V

•  y i  =  X i \ i i >  j ,

( l  e)/c 2/c, and

•  for i/m e  Gm,9 \  G m,q+1 we have |/i(xTO) -  ^(yra)| >  /c2_g_1.

We estim ate that

=  X  v { v i ) K y i )
i—1 
k

< X  K x i)h(yi) +  2fc/cdq
Z = 1

j  k
=  X  K x i ) h (y i )  +  X  K x i ) K y i )  +  2&/cdg

i = l  i = j '+ l

J 3

= x  p(x i)h(x i) +  XI -  M * 0 ) +
i = i  i = i

k
X  y ' i x i ) h ' ( x i )  +  2kK,dq 

i=j+1 
k j

=  X  K x i ) h ( x i )  -  X  !/*(*»)I W s/0 -  ^(*01 +  2&/cdg
i = i  i = i

< — /C2-9~1C +  2 kK,dq.
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From (viii) of Lemma 2.6.4, we have v(h) >  fi(h) — dq, and 
therefore —dq < -K,2 ~q~1 c-\-2 kK,dq so that dq >  2~g~1 1_^kK which 
contradicts our choice of dq — 2~g~1 1f^ kK-

□

Proposition 2.6.6 Suppose that Uo C  C(K)  is non-empty and r  open, that 
f  is convex and norm Lipschitz on Uq and that fo r each (p E C (K ) there is a 
fi E df(tp) that has finite support. Then there is a non-empty r  open subset 
U C  Uo, and a finite set F  C  K, such that for every <p E U,

df{<p) n M ( F )  ^  0.

P R O O F . We may apply Lemma 2.6.5 to find integers 0 <  j  < k, a non-empty 
r  open subset U C  Uo, and a finite set F  C  K  such tha t

d f ( p )  n M k , j , F  ±  0

for every ip E U. Since M-kj(F)  C  M k { F)  then

d f ( p )  n M k(F) ±  0

for every ip E U. This ends the proof. □

We complete this section with an example of a function /  such th a t each 
subdifferential has a measure of finite support. In particular, if V  is an n  
dimensional subspace of C( K)  then the function d(i/>,V), which is defined 
as the distance of ip from the subspace V , has a measure with at most n  +  1 
element support in each sub differential.

Suppose that V  =  span {</?i,. . . ,  </?n} is an n  dimensional subspace of 
C(K) ,  then we define

d(ip} V ) =  inf a^ rII^  “  X  ^*11
i=i

for all iP E C{K).

L em m a 2.6.7 The continuous convex function d(ip,V) has a measure with 
at most n  +  1 element support in each subdifferential.

P R O O F . For ease of notation let f(<p) = d((p:Y )  w h e r e  V  is the span of n  
linearly independent functions <pi,. . .  ,<pn- If <P £ V , find ip E V  such tha t 
f(ip) = ||ip — -0H, and note that df((p) consists of those Radon measures p 
tha t satisfy
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1. n(tpi) =  0 for i =  1 , . . . ,  n,

2- IMI < 1,

3. fi+ is concentrated on the set A  = {x  : y>(x) — ip(x) — / f a )} ,  anc^

4. fi~ is concentrated on the set B  = {x  : ip{x) — “0 (x ) =  — /fa )} .

To see this suppose first that (l)-(4) hold. Whenever 77 £ V  and h £ C ( K ), 
then \\ip + h — 771| >  — 77) =  +  /1) =  //(y?) +  /x(/i), since ||/x|| <  1  and
fj,(r)) = 0 by (1). By (3), by (4), and using also tha t = 0, we have tha t 
fi(ip) = / f a ) .  So \\<p-{-h — 771| >  / f a )  + and taking infemum over 77 £ V  
gives th a t / f a  +  /i) > /(vO +  ̂ fa ) , hence fi £ 5 / f a ) .  Conversely, assume that 
M € d /fa ) -  For every t £ / f a  +  fat) = / f a ) ,  so 0 =  f((p +  ttpi) -  f((p) > 

which shows that /xfa;) = 0. Since the Lipschitz constant of /  is
one, ||/z|| <  1. To prove (3) and (4), assume first tha t \fi\(K \  A  U B )  > 0.
Since A  and B  are compact, there is g £ C (K)  such tha t g = 0 on some 
open set containing A  U B  and fi(g) ^  0. Then for \t\ sufficiently small 
\W -  V>|| =  HO? +  tg) -  ip||, so that f{tp) > f(ip +  tg) > f(tp) +  tfi(g), which 
is impossible. Assume next that p~(A) > 0. Find an open set G such tha t 
(f(x) — 'tp(x) > 0 for x £ G and //“ (AnC?) > 0, the la tter fact may be used to 
find g £ C(K) ,  g >  0, spt (g ) C G, and fi(g) < 0. For sufficiently small t > 0 
we then set \\p -tg -ip \\ < \\ip-ip\\,so f ( p )  > / f a - t y )  > f ( (p)- t f i (g)  > f(tp). 
A similar contradiction is obtained in the case when p +(B)  > 0.

Let fi £ d / f a )  be extreme. If fi is not a combination of n  +  1 Dirac 
measures, then there are disjoint Borel sets S i , . . . ,  5* C A, Sk+1 , • • • , S n+2 C 
B  covering A  U B  such that fi(Si) ^  0 for alH  =  1 , . . .  , 7 1  +  2. Consider the 
system of n  linear equations

n+2 .
Y ^ a i <P jd t* =  0 U  =
t=i JSi

together with the equation

n+2

X  a i K Si) = °- 
2 =  1

This is a system of n  +  1 linear equations for n  +  2 unknowns, so it has a 
non-trivial solution cti, . . . ,  a n+2. If |t| > 0 is sufficiently small, we infer tha t 
the measures

n+2
ut(E) =  +  ta.i)ii(E  n Si)

*=i
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verify (l)-(4 ), so they belong to df(ip).  Since they are different from p (if
a.i ^  0, then ut (S i)  ^  f i(S{)) ,  and p  =  [vt +  z/_4)/2,  we conclude tha t p  is 
not an extreme point of df((p),  which is a contradiction since df(<p) is weak* 
compact, it has extreme points. Hence df((p) contains a measure with at 
most n  -f- 1 element support. □

2.7 G ateaux differentiability
We use the results of section (2.6) to obtain the following differentiability 
result for continuous convex functions on C(K) .

T h e o re m  2.7.1 Let f  be a continuous convex function on C ( K)  such that 
each subdifferential df(ip) contains a measure with finite support. Then f  is 
Gateaux differentiable on a r0-residual set.

PROOF. Our method of proof is to use the notion of e-Gateaux differentia­
bility (as defined below the directional derivatives form, within e, a linear 
mapping) and we show that, for all e > 0, the function /  is e-Gateaux differ­
entiable on a r0—dense open set Ve. Consequently /  is Gateaux differentiable 
on the r0—residual set r\^=lVi/n. We use Lemma 2 .6 .6  for each non-empty 
r0—open set U to find a non-empty rQ—open set V  C U such th a t for all 
(p £ V, f  depends only on a finite set of values <p(xi), • • •, <p(xk)- From this, 
and using generic Frechet differentiability of convex functions on R fc we de­
duce e-Gateaux differentiability of /  on a non-empty rQ—open subset of V. 
This will finish the proof, since it follows that the rQ—interior of the set of 
points of e-Gateaux differentiability is dense in C(K) .  (Otherwise the above 
applied to the complement of its closure would give a contradiction.)

We say that a function g is e-Gateaux differentiable o n  1 / if there 
is g' £ C (K )* such that for all (p £ U and all ip we have

| ! i s » «  +  ¥ ) - » W _ (),| i t ) | s , |w |

Let U be r0—open. Applying Lemma 2.6.6, there are a non-empty r 0- 
open subset V  C U, a finite set F  C K, and a non-negative integer n  such 
tha t

df{tp)  (1 M ( F )  ±  0 (2.6)

for every tp £ V. We may suppose that V  = Uw(<pi, k , { t)x : x £ F1}) where 
each rjx is non-negative, with exactly one zero at x, and F  = { x  i, • • •, Xk}. We
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ciaim that for all £ V, / f a )  depends only on ip(xi), • • •, cp(xk)• Supposing 
that the claim is not true, there are functions (pi £ V  and </?2 £ V  such tha t 
fa ifa i) ,  • • •, <Pi(sc*)) =  fa^fai), • • •, <P2 fa*)) and

/ f a i )  ±  f M -  (2-7)

From (2 .6 ) there are bi, - - • ,bk £ R  such that

/ ( f )  >  / f a i )  +  &i(ffai) -  Vifai ))  + ----- 1- &fc(ffafc) -  ¥>ifafc)) (2.8)

for all f . Similarly there are • • •, b'k £ R  such that

/ ( f )  >  / f a 2 ) +  &i(ffai) -  ¥>ifai)) +  h 6 i(ffajfe) -  <?2 fafc)) (2.9)

for all f. Substituting f  =  ip2 in (2 .8 ) we have / f a i )  <  /(v 3 2 )- Substituting 
f  =  tpi in (2.9) we have / f a i )  > / f a 2 ) and we deduce tha t / f a i )  — / f a 2) 
which contradicts (2.7).

Next we find an e-Gateaux derivative for /  on a f #  op^A. $ u b « t \l. \J jl cAefi -̂e a
subset A of R fc and a function g on A as follows:

A  — {(2/1 ?' * * j Vk) E R k : there is (p £ V  such tha t

( y i , " - ,V k )  = f a f a O i- ’ -i^fafc))}.

Defining h : V  —> A by /ifa) =  fa fa i) , • - •, ip(xk)), and noting th a t / f a )  
depends on <£>fai),. . . ,  ip{xk), we define g on A by ^fai, • • • , yk) =  / f a )  for 
any <p> £ ^ ”1fa1, • • • ,yk)- We show that A  contains an open ball B 0. We 
denote the standard basis in R fc by {ei}i<i<fc. Let y £ A and g(y) = / f a ) .
We claim that for each i there is a positive constant c» and (3{ £ C (K ) such 
that cp -f f t  £ V and h(<j> +  f t)  =  y +  £ A. Noting tha t V  is convex and
h is linear, we deduce from this claim tha t A contains the convex hull of the 
the k +  1 affinely independent vectors y ,y  -f c^i, hence A contains an open 
ball.

To prove the claim, using Lemma 2.2.4, let 7 ; £ C ( K )  be such tha t 
0  <  7i <  1 , 7 i(xj) = 0  for j  ^  i , and 7 i ( x )  =  1  for all x belonging to an open 
neighbourhood Gi of X{. Then f t  =  ^ 7 ; has the required property provided 
tha t Ci > 0, that

• Ci < k, since this gives ||fa  -f f t)  — / | |  <  /c, and

•  Ci <  m i S£K \ Gi 7}Xi( s )
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since this gives \(<j>+f)i — tj>)(s) — (4>+f3i — $)(xi)\ =  |/?;(.s)-/3;(x;)| <  c < r)Xi(s) 
for s ^ Gi and since this inequality is obvious if s £ G{.

We also note that g is convex on A.  Indeed, if y =  h{ip), and z =  h{xp), 
and ip,ip £ V, then for all 0 <  t <  1 we have tip +  (1 — t)xp £ V  and 
h(tip +  (1 -  t)ip) -  ty +  (1 -  t)z.  So g(ty +  (1 — t)z)  = f{tip +  (1 -  t)ip) < 
fa fa )  +  (x “  0 / f a )  =  tg(y)  +  (1 -  t)g(z).

Since a convex function is differentiable a.e in R k we obtain a Frechet 
derivative g'a of g at some point a  =  f a i ,  • • •, ak) £ B 0. Given e > 0 there is 
a 8  >  0 such that

,f l (y ) -g (x )-g ' (y -x ) | < £ 
| |y-x||

for all y, x  £ B  = B {a, 6) C B0. Therefore

l / f a )  -  / f a )  -  s i f a fa )  -  % 0 ) |  ^  ellhW  ~  h(<p)\\

for all ip,ip E h~l (B).
Let xp £ C ( K ) be constant on a neighbourhood of each x £ F. Since 

h~1 (B)  is a norm relatively open subset of V, for any ip £ h_1 {B)  there is a 
8  > 0 such that ip + tip £ h_1 {B)  whenever \t\ <  8 \ for such t we get, using 
linearity of h, that

I / f a  +  f a )  ~  / f a )  “  f a i f a f a ) ) I  <  e l f a W V O I I  <  e l f a f a | | -
Hence

for all such ip. Since the set of all such xp is norm dense in C ( K )  and since /  
is locally Lipschitz, this inequality extends to all xp £ C(K) .  Thus g'a o h £ 
C ( K )* is an e—Gateaux derivative of /  at ip £ h~1 (B).  (it does not depend on 
ip). Therefore /  is e—Gateaux differentiable on h_1 (B)  which is non-empty 
and r0 —open. This ends the proof. □

Our final result of this section concerns the double arrow space D  (see 
[Ta2] and [Fa]). The double arrow space is defined as follows. We equip the 
unit interval of signed points,

I s — {((jj 1) : x =  0 and <7 =  1,
or 0 < x < 1 and cr £ {—1,1}, 
or x = 1 and <j  = — 1},



CH APTER 2. G A T EA U X D IF F E R E N T IA B IL IT Y  ON C(K) SPACES  65

with an order topology by defining a basis of neighbourhoods B x(x, a)  where

B x( x , l )  = { ( y , a )  : x < y < x +  A,a £ { -1 ,1 } ,
o ry — x and a  =  1},

and

B x{ x , - l )  = { ( y , a )  : x > y > x - X , a e  { -1 ,1 } ,
or y = x and a = —1}.

We can identify C(I3) with the Banach space D  of functions on [0,1] tha t 
are right continuous at every 0 < x < 1, left continuous at x — 1, and have 
left limits at at every 0 < x <  1, equipped with the supremum norm as 
follows.

If f  £ C( I a), we let g(x) = f ( x , 1) if 0 < x < 1 and #(1) =  / ( l ,  —1). It is 
easy to see that the function g on [0,1] has the required properties.

Conversely, if g £ D,  then we let

f ( x ,  1) =  g(x+) for 0 < x <  1, and
f ( x , ~  1) =  9 (x ~) for 0 < x <  1.

Let 7r : I a —> I  — [0,1] be defined by 7r( x , o)  = x. If /  £ C ( I a) and
g is defined as above, then the set {(x,cr) £ I a : f (x , cr ) ^  g fa fa , cr)) } is
countable. Moreover, g is bounded and continuous except at a countable set; 
so it is of the first class, and so there is a bounded sequence gn of continuous 
functions such that gn{x) —> g(x)  for every x £ I  (see [Ku]). Consequently, 
gn o 7r(cc, (j) —» f { x ,  cr) for all (x,cr) £ I a except possibly a countable set.

We conclude that there is a countable set S  C C( Ia) such th a t for every 
/  £ C( I a) there is a bounded sequence f n E S  such tha t f n —■► /  except at 
a countable set; indeed, it sufficed to take S  =  {h o 7r} as h runs through a 
countable norm dense subset of C(I) .  We observe tha t non-atomic measures 
on I a are determined by their values on S  : if fi, v are non-atomic and fi{h) = 
v(h)  for h £ S  then for every /  £ C( Ia) the sequence f n £ S  described 
above converges to f  almost everywhere with respect to fi as well as u, so 
f i ( f )  = lim ^oo / i ( / n ) =  limri_(.00 u( fn) = i/(f).

T h e o re m  2.7.2 Suppose f  : C ( Ia) —> R  is a continuous convex function  
such that the subdifferential of f  contains only non-atomic measures at every 
(p.lhen f  is Gateaux differentiable on a To-residual set.
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PROOF. Let S  C C (IS) be the countable set defined before the Theorem. 
By Lemma 2.3.6 the set R  of those <p £ C (IS) at which f\<p,xp) exists for all 
xp £ S  is r 0-residual. Therefore if (p £ R  and fi £ df(<p) then (fi,xp) =  f'{<p,xp) 
for all xp £ S. But the non-atomic measure fi is uniquely determined by 
its values on S  and therefore the subdifferential df((p) contains only one 
measure. Hence / ;fa) exists. □



C hapter 3 

Lipschitz Isom orphism s

3.1 Introduction
In this chapter we construct three Lipschitz isomorphisms of I 2 to itself for 
which the derivative is not an isomorphism. We recall tha t, if X  and Y  are 
Banach spaces, then the Lipschitz constant Lip ( / )  of a map /  : X  —> Y  is 
defined as Lip ( / )  =  supx yeX a m aP /  • X  —> Y  is a Lipschitz
isomorphism  provided tha t it is a bijection and th a t /  and / -1 have bounded 
Lipschitz constants.

All of these constructions have some relevance to the Lipschitz classifica­
tion of Banach spaces (see[BL]), in particular the linear isomorphism problem 
for Banach spaces which asks the question:

Given Lipschitz isomorphic Banach spaces X  and Y, are they 
linearly isomorphic?

We may seek a solution to this problem by looking for points x  6 X  at which 
the derivative f ' ( x )  exists and is an isomorphism. The authors N. Aronszajn 
[Ar], P. Mankiewicz [Mn], and J. P. R. Christensen [Cr] have each obtained 
a Radamacher type theorem (using different notions of null sets):

I f  f  is a Lipschitz map from  a separable Banach space X  into a 
space Y  with R N P  then f  is Gateaux differentiable almost every­
where.

The Radon Nikodym Property (RNP) may be defined by saying th a t a Ba­
nach space Y  has the RNP if every Lipschitz map /  : R  —> Y  is differen­
tiable everywhere except on a set of Lebesgue measure zero. For an extensive 
treatm ent of the Radon Nikodym Property (RNP) we refer to [DU], for the

67
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various notions of null sets we refer to the forthcoming book [BL], and for 
the equivalence of Gaussian null sets and Aronszajn null sets we refer to [Cs], 

Unfortunately none of the presently known notions of null sets tha t satisfy 
a Radamacher type theorem are preserved by Lipschitz isomophisms. For an 
example of a Lipschitz isomorphism tha t does not preserve Aronszajn null 
sets we refer to [Bo] and for an example of a Lipschitz isomorphism tha t 
maps a non Haar null set to an Aronszajn null set we refer to [Mt]. If it 
were possible to find null sets tha t satisfied a Radamacher type theorem  and 
were preserved by Lipschitz isomorphisms then there would exist a Gateaux 
differentiable point x such that / -1 is Gateaux differentiable at f ( x ) ,  and 
hence tha t f ' { x ) would be a linear isomorphism.

Our examples show that the derivative of a Lipschitz isomorphism /  on 
l 2 to itself may not be surjective at all points where it exists. Example 
1 is everywhere Gateaux differentiable and the Gateaux derivative of /  at 
zero maps t 2 into a hyperplane. Example 2 is such tha t the weak limit, 
limf_,.o is zero for all x E l 2- Example 3 maps a non-Aronszajn null set 
into an Aronszajn null set; in particular f  maps a cube into a hyperplane. 
This cube, which has empty interior, is not Aronszajn null.

Section 2 contains preliminary work in which we show th a t the Gateaux 
derivative of a Lipschitz isomorphism is a linear isomorphism onto a neces­
sarily closed subspace of Y. Sections 3,4 and 5 contain the examples.

3.2 A prelim inary result
In Theorem 3.2.1 we derive some properties of Lipschitz isomorphisms be­
tween Banach spaces X  and Y, from which we may conclude th a t the Gateaux 
derivative of a Lipschitz isomorphism /  is Lipschitz and is a linear isomor­
phism onto its range f ( X ) .

T h e o re m  3.2.1 Let X  and Y  be Banach spaces, let f  : X  —> Y  be a Lips­
chitz isomorphism, and let g : Y  —> X  be the Lipschitz inverse o f f . Suppose 
that f ' ( x )  : X  —> Y  exists at a point x € X  then

(i) ||/ '(x ) || <  Lip ( /) ,

(H) ll/#(®)z ll — INI/Lip (9 )» consequently, f ' ( x )  is a linear iso­
morphism onto its range and, in particular Ker ( f f(x)) = {0},

(Hi) f ' ( x )  has an inverse h : Im {f '{x)) —> X , such that h =  
g' ( f (x)) ,  where g is the restriction of g to I m /^ X ) ,
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M  \ \ g ' ( f { x ) ) \ \  <  Lip ( g ) ,  a n d

(v) Im ( f ' {x))  is a closed subspace ofY.

PROOF. For ( i) , estim ating the dual norm of f r(x),  we obtain

iz -  y I w  =1

=  sup 
IHI=i 

<  Lip ( /) .

lim
t-fO

/ ( x  +  tw)  -  f ( x )

Hence \\f\\ < Lip ( /) .
For (ii), since / -1 = g : Y  —> X  is Lipschitz, we have

\z\\ =
g( f ( x  + t z ) ) - g ( f ( x ) )

f ( x  +  tz) -  f ( x )
< Lip (g)

Taking the limit as t —► 0, we get that Ikll <  l >p (ff)ll/'(*>ll-
For (iii), from (ii) we have f ' ( x ) is injective and so f ' ( x )  has an inverse 

h : Im (f ' { x )) —> X.  We must show that h =  g \ f { x ) ) .
For each y £ Im we may choose u  6 X  such tha t y = f ' ( x ) u . Given

any e > 0, since f ' (x )  exists, there is a 8  > 0 such tha t for all t E (—<§, 6 ) there 
is a point a(t) E T  such tha t ||u(t)|| < e and f { x  + tu)  =  f {x)+t f ' (x)u- \ - ta{t ) .  
Therefore

flf(/(s) +  ty) -  g( f (x) )
- K v )

g{}{x)  +  -  g ( f ( x  +  tu)) +  g( f ( x  +  tu)) -  g( f {x) )
-  h f \ x ) u

g ( f ( x  +  tu) — ta(t)) — g ( f ( x  +  tu)) +  [x +  tu) — x
— u

<  Lip (ff)||a(i)||
< Lip (g)e.

For (iv) we may apply (i) to g.
Property (v) of /  is an immediate consequence of the fact tha t f ' ( x )  is 

an isomorphism onto its range. □
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3.3 The first exam ple
Example 1 is an everywhere Gateaux differentiable Lipschitz isomorphism  
f  o f l 2 to itself such that / '(0 )  is not surjective. The isomorphism /  =  
lim ^oo Tn o . . .  o T \  is obtained by composing a sequence of Lipschitz iso­
morphisms Tn where each Tn has the property tha t, if ||x|| <  3n+1 then Tn 
has the same action on the coordinates of x as the cycle pn = (1 ,2 n, 2 n  +  1). 
The result of composing N  such cycles is the cycle (1,2, • • •, 2N  +  1) and we 
obtain

f ( t h ) - f ( 0 ) i- v L  . i | v '  thm  -------- = lim > + ft2jv+iei +  > .  Keit—>0 t N—►oo —" . ~ ~ , „
i = l  1 - 2 N + 2

for all h. Hence / #(0)h =  h{ei+i maps l 2 onto the hyperplane x \ =  0.
Throughout this chapter we make use of Lemma 3.3.1 to estim ate the 

Lipschitz constants of our mappings.

L em m a  3.3.1 I f  C is a convex set in a normed linear space X ,  Y  is a 
metric space, h : C —> Y  is continuous and C can be covered by countably 
many sets on each of which the Lipschitz constant o f h does not exceed L, 
then Lip(h) <  L.

P R O O F . It suffices to consider the case when C =  [a, b] C  R  (since to es­
tim ate c K k (n )jK ^ ) we consider the line tx  -f  (1 — t)y  for 0 <  t < 1 
contained in C ) and to show that dist (h(b),h(a)) <  L{b — a). Suppose 
tha t dist(h(a), h(b)) > L{b — a). Let [a, b] = U ^ i Mi,  where are sets on 
which the Lipschitz constant of h does not exceed L.  Let S  = {sup(M ,) : 
i =  1 , 2 , . . . } .  The function g(t ) =  dist (h(a) ,h( t )) — L{t  — a) is continu­
ous on [a, b] and g(a) = 0 < g(b). Using that g(S)  is countable, we choose 
c E [g(a),g(b)] \ g ( S )  and use the intermediate value theorem to find the last 
t £ [a, b] such that g{t) = c. Whenever t < s < b, then g(s ) > g( t ), which 
gives dist (h(s),h(t))  > dist (h(a), h(s)) — dist (h(a) ,h( t )) >  #(s) — g(t)  +  
L(s — t ) >  L(s — t ). Finding Mi  containing t , we infer tha t t is the maximum 
of Mi,  so t £ S,  which contradicts g{t) =  c ^ g{S).  □

All of our constructions make use of the rotation map Rg : l \  ► l \  which 
is defined by Rg( x i , x2) =  (cci cos 6  — x 2 sin 9, x\  sinfl +  a^cos#). We note tha t 
as an operator on H?2, H-Rê H =  ||z|| for all x, RgRv = Re+tp, and R q 1 =  R-g.

L em m a 3.3.2 The rotation map Rg has the properties

1. ||.R0 — 7|| < \6 \ for all 9 and
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2. ||Re — Rip|| <  19 — <p\ for all 9 and (p.

P R O O F .  We identify l \  with the complex numbers C by setting ( x i , x 2) = 
x\  + i x 2. Let x =  ( x \ , x 2) =  (cos a , sin a ) =  e t a . Then R q x  = e^a+e\  Now for 
all 6 ,

| e " - l |  =  | e ^ / 2 ||2z s i n ( ^ / 2 ) |

< 2|0/ 2 | =  |0|.

Hence

\Rex - x \  =  |e* “ ( e * fl — 1 ) |

=  le" “ l|
<  1*1

which proves (1), and (2) follows directly from (1) using ||i2fl|| =  1, ReR<p = 
Re+tp, and Rq1 =  R -e • D

We use Re as follows. Let P  and Q be the projections of i 2 defined by
P x  =  x ie i +  x 2 e2 and Qx = x»ei. Suppose tha t

• 9 : l 2 —> R  is Lipschitz, Lip (0) <  K  and 9{u) = 0 if)|fti|| >  R , and tha t

• (f> : l 2 —> R  is Lipschitz, Lip ((/>) <  K  and (j>{u) =  0 if || u|| >  R.

We identify x\e\ +  x 2 e2 with ( x i , x 2) and define maps T  : l 2 —> i 2 and 
S  : i 2 —► ^ 2  by

T(x)  = R ^ x)(Px)  +  Qx.

and
S(x)  = Re(x)(Px)  +  Qx.

L e m m a  3.3.3 Lip (T), Lip (S) <  K R  +  2.

P R O O F .  T o  e s t i m a t e  L ip  (£>) c h o o s e  x , y  w i t h  | | z | |  <  | |y | | .  W r i t e  0 (  x ) =  
0 i ,  0 ( ’ y\ ) =  02- T h e n

|0i — 021 5: -̂ "112/ — 33II

so th a t

||R 6 2(Py) -  R*{P x)\\ = ||Re2(Py -  Px )  +  (R &2 -  R e ^ P x )||
<  ||y -  x|| +  |0! -  02|||P x ||
<  (K\\Px\\ + l ) \ \ y - x \ \  (3.1)
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If llP*|| <  R  then ||Re2 (Py)  — R q1 ( P x )\\ < (K R  +  1)||y — a|| so tha t ||$ (x) — 
S(y)|| < \\R82 ( P y ) - R e 1 (Px)\\ + \ \ Q x - Q y \ \ < ( K R  + 2 ) \ \ y - x \ \ . I i f x \ \ > R  
then S (x) = x and $ (y) = y. We not*. \A\aX C = l 2 =
B ( 0, R)  U (i 2 \  B ( 0, i?)), the restriction of 5  to 5 (0 , R)  has Lipschitz constant 
at most K R + 2, and the restriction of $ to  ^2\5 ( 0 ,  R)  has Lipschitz constant 
1 <  K R  -f 2 to get that Lip f a )  < K R  + 2.

To estimate Lip (T) we !i u. |1 7/  ll P  u.l|
' . T |  || x\\ < R , we have W R ^ P y )  -  R ^ P x )|| <

( i< : ||P z ||4 - l) ||i /-z || <  ( K R  + l ) \ \ y - x \ \  so tha t ||T (z)-T G /)ll ^  IIR <t>Ap y ) ~  
R (f>1 (P x )|| +  ||Qx — Q y || <  (K R  + 2)\\y — x\\. If ||Pic|| >  R  th e n T (x ) =  x  and 

~T{y) = y- - 'Wk  ncfe  W\u\- s i  hoc. C = i 2 = {x  : \\Px\\ < R } U ( £ 2 \ { x  :
|| P a  || <  i?}), the restriction o f T  to { x : ||Psc|| <  R }  has Lipschitz constant 
at most K R  + 2, and the restriction of~Tto l 2\ { x  : ||Pcc|| <  R}  has Lipschitz 
constant 1 <  K R  +  2, we get Lip (T) < K R  + 2. □

In this section and in section 3.4 we apply Lemma 3 .3 .3  with 6  : l 2 ► R  
defined as follows. Let 0 < Ri  < R 2 and A : R + —> R  be a Lipschitz function 
such that

. ,  v f 7t/2 if u < Ri  
Â = ( o  if u > R 2,

with Lip (A) <  K  < 2/{R2 — P i) . Let 6 (x) = A(||a?||) so tha t 9(x) = 9(y) 
whenever IMI =  II2/II and Lip (9) <  K.  Then it is easy to see tha t T  has the 
following properties:

(i) ||T’(cc)|| =  ||z|| for all x,

(ii) T(x)  =  x for all x such that ||z|| >  R 2,

(iii) T(x)  = —x 2ei +  Xie2 +  Qx  for all x such tha t ||x|| <  Ri,

(iv) T(x)  is obtained from a; by a rotation about {y £ l 2 : yi — y2 =
0},

(v) T ~ 1 (y) = R-g{y)(Py)  + Qy,  and

(vi) Lip (T), Lip (T -1) <  K R 2 + 2.

For (u), using (i) and that 9 is norm invariant, we get tha t 8 ( T (T ~ 1 (y))) =  
0{T~x(y)) and that 6 {T{x)) =  6 (x). We may then easily verify th a t T (T -1(y)) =  
y and T ~ 1 (T(x))  =  x. Finally we get (in) applying Lemma 3 .3 .3  to T -1 .
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L em m a  3 .3 .4  There is a constant K i >  1 such that fo r  all 3-cycles p on 
the natural numbers and all r > 0 we can find a Lipschitz isomorphism TPjT 
on I2 such that

(i) Tp>r(x) = x for  ||x|| >  r,

(ii) TP)r( x ) =  Xiep(i) for all x such that ||z|| <  r /2 ,

(Hi) ||TP)T.(cc)|| =  ||z|| fo r  all x,

(iv) I f  Xi = Xj = Xk = 0 and p = (i , j ,  k ) then T P iT( x )  = x ,

(v) Lip (TP)7.),L ip (T~f)  = K x < 144, and

(vi) Tp>t is Frechet differentiable at all non zero points.

PROOF. We first handle the case when r = 2. We recall the Lipschitz iso­
morphism T  of Lemma 3 .3 .3 . Let A : R + —» R  be defined by

f 7t/ 2 if u <  1
A(u) =  < 7r/2 sin2(7ru/2) if 1 <  u  <  2

[ 0  if u > 2.

Define 9 \ I 2 —> R  by 9(x) = A(||as||); then 9 is differentiable at x  ^  0 and 
tha t 9 is Lipschitz with Lip (9) < K  =  7r2/2  <  5. Replacing ( x i )x 2) with
(xi ,Xj)  we obtain for each i ^  j ,  (with R 2 = 2 and R \ = 1) Sij : l 2 —» l 2,
given by

Si,j(x ) — R 8(x)(Pi,jx ) +  Qi,jXj

where P ijx  = X{ei +  Xjej , and QitjX = Yfk£i,j x k£k- It is clear from the 
properties of T  tha t

1. ||-SV,-(cc)|| =  ||3?|| for all x,

2. Si j (x ) =  x for all x  such that ||cc|| >  2,

3. S{j(x) =  — Xj6 { +  Xiej +  QijX for all x such tha t ||z || <  1,

4- s i j \ y )  = R -e(y)(Py) +  Qy,  and

5. Lip (Sij) <  2K  -f 2 <  12 (and the same for S ^ 1).
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We note also tha t S ij  is Frechet differentiable at x ^  0, in particular

s'iAx)k =  *'(11*11) +  R°<*)p̂ h + Q»h-IICC11

Let TP t 2 =  SkioSij. For general r > 0 it suffices to let TPjT = a “ 1oTPi2 0 0 'r where 
a r( x ) =  2x / r  and a ”1 =  rx/2.  Then Lip (a r ) =  2 /r  and Lip (o:"1) =  r /2  
so th a t Lip (TP)7.) =  (2K  +  2)2 =  K\  = 144 Similarly for which proves
(v). Properties (z)-(u;) follow directly from those of T. Property (vi) follows 
since Si j  and a r are Frechet differentiable at non-zero points. □

Example 1 is a map /  defined by composing the sequence =  TPitVi of the 
Lipschitz isomorphisms of Lemma 3 .3 .4  where =  3“*andpi =  (1 ,2i, 2z+l). 
We observe tha t for each N  >  1, Tjv o • • ■ o Ti is a Lipschitz isomorphism with 
Lipschitz constant K \ <  144 and has the same action on the coordinates of 
x as the cycle (1 ,2 ,3 , • • •, 27V +  1) whenever ||z || <  Z~N~1. The map /  is 
defined by f ( x )  = limjv-+oo Tn  o • • • o T\ with the result tha t f ' ( 0 ) is the shift 
operator.

E x a m p le  1 There is an everywhere Gateaux differentiable Lipschitz isomor­
phism f  o f £2  such that f ' ( 0) is not surjective.

P R O O F .  For each integer i >  1 let r* =  3~* so tha t we have r*+i =  n / 3  for 
all i , and let pi be the 3-cycle (1,2z, 2i + 1). Using the Lipschitz isomorphisms 
TPiT of Lemma 3 .3 .4  with r  =  r  ̂ and p = Pi, we define the map /  : i 2 1—► £2

by
f ( x )  = ^lim^ Tn  o Tn^ o • • • o Ti(x)

where Ti =  TPiiTi.
We claim that f  is well delined and

1. f (0) =  0,

2 . f ( x )  =  Tn  o • • • o T\(x)  i f  ||z|| >  3“^ ,

3- f r i )  = lim/fc-voo T i 1 o . . .  o

4. f  is a Lipschitz isomorphism such that Lip ( / )  <  K \ and Lip ( / ) -1 <  
K \ where K \ is the constant in Lemma  3 .3 .4 ,

5. f ( x )  = Yii=i x iei+i f°r x such that ||z|| <  2_13~N and 
x £ span {ei, • • •, e2;v}
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6 . f  is everywhere Gateaux differentiable, and

7. / ;(0) is not surjective.

That /  is well defined will follow directly from (1) and (2).
For (1) since TPNfTN{0) =  0 for all N  >  1 then /(0 )  =  0.
For (2) using (iii) of Lemma 3.3.4 we get tha t ||Tjv =  11*11 >

3 N . By (i) of that Lemma we have that if ||z|| >  rn then TPntTn(x) = x  so 
tha t with ||x|| >  3~N we get for all n  >  N  + 1  tha t Tn o . . .  o T'n o . . .  o T\{x) = 
Tn  o . . .  o Ti(x).  Hence f ( x )  =  Tn o . . .  o T\{x).

For (3) if x 0 using (2) we see that if =  3~N <  ||z|| then f _1 (x) =
The same argument used in (2) gives /  1(cc) = T1 1 o

• • • o T^iyr,) for all n >  N  +  1. We deduce that for all x ^  0 tha t / -1 (x) =  
limjfc^oo T-fi1 o- • ' o T ^ 1 (x). If x = 0 then / _1(0) =  lim ^oo T f 1 o- • •oTfc-1 (0) =
0. Hence

r \ x ) =
k —>oo

for all x.
For (4), using (2), we choose an integer N  so tha t, if not both x and y 

are zero, 3~N is less than the least non zero of ||cc||, ||y||. Otherwise we let 
N  = 1, so that there is some integer N  such that

II/ (* )  -  f ( y )II <  II7V O • • • o T , ( x )  -  T n  0  ■ • • o 7\(3/)||. (3.2)

To estimate the Lipschitz constant of Tn  o • • • o T\ we need only note th a t by 
Lemma 3.3.4 Lip (Tk) =  K \ for each k and Tk has its own region Rk = {x  : 
2-1 .3~k < ||x|| <  3~k} on which it is non-isometric and is isometric on each of 
{ x : 3-fc <  ||a;||} and {x : ||x|| < 2_1.3~*:}. We apply Lemma 3.3 .1  with h = 
Tn o. • -oTi and C =  4  =  B { : ||x|| >  S - ^ U U ^ i  R K U{Sk \Rk)
where Sk = {x : 3_fc_1 <  ||x|| <  3~h} for 1 < k <  N. It is clear (from the
properties of Tk and Lip (h) = n £ i  Lip (T*)) that

•  the restriction of h to Rk has Lipschitz constant at most K \ for each 
1 < k < N ,

•  the restriction of h to Sk \  Rk lias Lipschitz constant at most 1 for each 
1 < k < N ,

• the restriction of h to 5 (0 ,3 _N_1) has Lipschitz constant at most 1, 
and

• the restriction of h to {x  : \\x\\ > 3-1} has Lipschitz constant at most 
1.
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We conclude that Lip (TV o • • • o Ti ) < K \. so tha t, by (3.2), Lip ( / )  <  K \. 
Similarly Lip ( / -1 ) <  K \. Hence /  is a Lipschitz isomorphism.

For (5) applying (ii) of Lemma 3.3.4 (that if ||z|| <  r /2  then Tp>r(x) = 
E £ i  x iep{i)) we obtain for all x such that ||z|| <  rjv/2 =  2_13~N tha t TV o 
• • • o Ti(x)  = x 2n +iei +  Ei=i ®*e»+i +  E “ 2at+ 2  ®ie;. If also z € span { e» } ^  
then Tn  o • • • o Ti(z) =  \ x iei+1 - Applying (iv) of Lemma 3 .3 .4 , tha t for
all k > 1, if xi =  =  x 2k+i = 0 then Tjfc(z) = x  we see tha t if k > N  +  1
and z E span {ej}J^+1 then Tfc(z) =  z. Therefore

Tk o • • • o ° TV o • • • o T\(z) =  TV o • • • o T\(z).

whenever z E span Hence
2N

f ( x ) = 1
i=i

whenever z E span {ej}J^+1 and ||z|| < 3_N.
For (6), when z ^  0, we apply (2) so that if ||z|| > 3~N then f ( x )  = 

Tn  o • • • o T\(z). Each Ti is Frechet differentiable at z so tha t /  is Frechet and 
hence Gateaux differentiable at z. We may calculate the Gateaux derivative 
of /  at zero. If h E span {e*}^  then

f m  =  I im/ w ~ / ( ° )
w  t-»o i

2N

= 1 (3-3) 
»=i

Since (3.3) is true for all TV, that Ujv=i span { e^} ^  is norm dense in i 2, and 
/  is Lipschitz, given e > 0 and h E ^2, we let ^  =  (^i> ^ 2 j • • • j ĵv? 0 , . . . )  and 
choose N  so that \\h — / i ^ | |  <  e to get that

lliiS / W .r M - ( 0, fel, fe2, . , , ) | |

=  h g g  .on

< ( i fx + l ) | | f c - h W || +  || lim m i N ) ) t ~  /(0 )  -  (0, A,, . . . ,  hN , 0 , . .  ,)||

<  (if i +  l)e.

Therefore oo
f ( 0 )h = ^ 2  kei+i 

1=1
for all h. Hence / '(0 )  exists, it is the shift operator which is not surjective. 
This completes (6) and (7) and ends the proof. □
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3.4 T he second exam ple
Our second example is constructed in a similar way to the first example; the 
m ajor difference is the choice of coordinates used in the rotation map. At the 
n ’th  stage we choose k and m  such that n  =  2m +  k ,m  >  0, and 0 <  k <  2m 
and perform the rotation on the coordinates Xk+i and cc2 ™+fc+i-

E x a m p le  2 There is a Lipschitz isomorphism f  of i 2 such that

f ( t x )

for  all x.

P R O O F .  For each integer n  >  1 choose integers k and m  such tha t n  = 
2m +  k , m  > 0, and 0 <  k < 2m. Define 0 as follows. Let A : R + —> R  be a 
Lipschitz function such tha t

w , f tt/2  if 0 <  x < 2_n_1 
A(X) =  \ 0  i f *  > 2 -

and Lip (A) <  2 /2 _n_1 =  2n+2. Let 0(x) = A(||cc||) so tha t Lip (0) <  2n+2 =  
K 2 and 0(x) = 0 if ||x || >  2-n =  R 2 . We apply Lemma 3 .3 .3  replacing 
coordinates x\  and X2 with Xk+i and a^+jt+ i respectively, to obtain for each 
n,  Lipschitz isomorphisms f n{%) = Re(x)(Px) +  Qx  of l 2 to itself such tha t

(i) /»(0) =  0,

(ii) f n{x) = x for all x such tha t ||x|| >  2-n ,

( i i i )  f n { x ) =  — X 2 m + k + l ^ k + l  +  X k + i e 2m + k + l  +  Y ^ i ^ k + l t2m + k + l  x i e i f ° r
all x such th a t ||x|| <  2_n_1,

(iv) f n{x) is obtained from x by a rotation about {y E: i 2 ' Vk+i = 
y 2m+k+i — 0},

(v) ||/n (*)|| — 11*11 f°r x i and

(vi) Lip (/„ ) <  R 2 K 2 +  2 <  2_n2n+2 +  2 <  6 (and the same for

/ n 1)-

Define /  : I 2 —> I 2 by

f ( x )  =  lim f N o /jv_! o • • • o f i (x) .
N —*oo

We claim that f  is well delined and that
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1 . /(O) =  0,

2- f ( x )  = f N o • • • o /x (s) if ||z|| >  2_JV,

3. f - 1 = limjfc^oo / f 1 o • • • o / fc_1(z),

4. /  is a Lipschitz isomorphism such that Lip ( / )  <  6 and Lip ( / ) -1 <  6,

5. i f  u G span {e;}i<;<2p-i then f { tu)  G span {ei}i>2P whenever \t\ <
2- 2P+1_2^|ju ||  ̂ ail(J

6. limt_*0 -  0 for all x G f 2 •

To verify (l)-(6) of /  we proceed as in the first example. That /(as) is 
well defined will follow from (1) and (2).

For (1) since / n(0) =  0 for all n  >  1 then /(0 )  =  0.
For (2) using (v) of f n and tha t ||z|| >  3~N we get tha t | | /w ° . . .°/i(® )|| =  

||x||. By (ii) for all n  >  N -\-1 we have / no . . . o f n o . . . o f ^ x )  = f ^ o . . . o f ^ x ) .  
Hence / ( s )  =  / jv o . . .  o /i(z ) .

For (3) if x 7  ̂ 0, using (2), we see tha t if 2~N~l < ||x|| then / _1 (a;) =  
/ f 1 o ••• o f ^ ( x ) .  By (ii), / ^ ( s )  =  x for n > N  +  1, so tha t f ~ l =  
lim/e^oo /i_ 1  o • • • 0  f j^1{x). If x =  0 then as 1 (0) =  0 for all n  we have 
/ _1(0) =  limjfê oo f t 1 0  • • * 0  0) =  0.

For (4), using (2), we choose an integer N  so tha t, if not both x and y 
are zero, 3~N is less than the least non-zero of ||x|| or ||t/||, otherwise we let 
N  = 1, so that

II/(* )  -  f ( y )II < WJn  o • • • o / i ( x) -  f N o • • • o /i(y ) ||.

For Lip (/jy ° • • • ° / 1 ) we note that, for each 1 < n < N,  f n is isometric 
in each of the sets {x G I 2 • ||®|| <  2-n -1 } and {a; G ^ 2  • 2-n <  ||aj||}. The 
Lipschitz constant of f n restricted to Un = {a; G I 2 : 2-n_1 <  ||cc|| <  2_n} is 
at most 6. Letting Fn  =  /at 0  • • • ° / 1 , we get that,

• the restriction of FV to £/n has Lipschitz constant at most Lip ( / n) <  6 
for each 1 < n < N,

• the restriction of Fn  to jB(0,2-JV-1) has Lipschitz constant at most 1, 
and

• the restriction of Fn  to {x  G I 2 : 2-1 <  ||aj||} has Lipschitz constant at 
most 1.
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We apply Lemma 3.3.1 with C — I 2 — 5 (0 ,2  N 1) U {x  E I 2 • 2 1 <  
||* ||} U^=1 Un from which we deduce that Lip ( /#  o • • • o f i )  < 6. Hence 
Lip ( / )  <  6. A similar estimate applies to Lip ( /  1) and we conclude tha t /  
is a Lipschitz isomorphism.

For (5) suppose that u  £ span {e;}i<;<2p_i. Since the mappings f n for 
n < 2 P can change only first 2P — 1 coordinates, all coordinates beyond the 
first 2P — 1 of / 2p-i o . . .  0  f i ( t u ) are still zero. We may suppose tha t

2P—1
f 2P- 1 o . . .  o /i( tu )  =  ^

i=i

for some X{ not necessarily zero. We claim that i f  |£|||u|| <  2 ~ 2P+1~ 2 then 
f 2p+ i - i  o . . .  0  f i ( tu)  has zero as the £rst 2P — 1 coordinates as well as all 
coordinates from  2P+1 onwards. By (iii) f 2P interchanges coordinates at e2p+i 
and ei and since the e2P+i coordinate of / 2P_i o . . .  o f\{ tu )  is zero, we get 
tha t

2p~ 1
f 2P 0  . . .  o f ^ t u )  = * ie2P+i +  Xiei.

1=2

Repeating this argument another 2P — 2 times, we see tha t
2p —1

f 2p+i_i o . . .  0  f i ( tu)  = ^  X{e2p+i
i=1

which proves our claim. Using (iv), we then see by induction tha t if m  >  p+ 1  
then / 2m o . . .  o f \ ( tu ) can have non-zero coordinates only for indices 2P <  j  < 
2m, which shows that the first 2P — 1 coordinates of f ( t u )  are zero. The case 
m  = p -f 1 is as claimed above. If / 2m o . . .  0  f i ( tu)  has non-zero coordinates 
only for indices 2P < j  < 2 m then the coordinates at e2 and e2M+2 are zero 
and by (iv) / 2m+1 0 . . .  0  f i ( tu)  is obtained from / 2m o . . .  o f i ( tu)  by a rotation 
about {y E l 2 y 2 = V2M +2 — 0}? so that f 2M+i o . . .  o f \ ( tu)  has non-zero 
coordinates only for indices 2P <  j  < 2M +  1. We may repeat this argument 
2 M — 1 times so that f 2M+ 1 o . . .  o f i ( tu)  has non-zero coordinates only for 
indices 2P <  j  < 2M+1. This completes the induction. Hence the first 2P — 1 
coordinates of f ( t u )  are zero.

For (6) we have from (5), tha t for each integer i > 1, th a t e;) =  0
whenever |£|||z|| <  2 -2P+1- 2 for any integer p such th a t 2P >  i. Hence

r  nw lim —— 1 =  0t— 0  t
for all x. This ends the proof. □



C H APTER 3. LIPSCHITZ ISOMORPHISMS 80

3.5 T he th ird  exam ple
It is shown that there is a Lipschitz isomorphism f  o f l 2 onto itself such that 
f { x )  = (0, Xi, X2 j . . .) whenever x E I 2 satisfies \xj\ <  2~ 3 fo r  each j.

The construction is a further application of the m ethod used in Example 
1 of section 3.3. The map /  is defined by composing a sequence of Lipschitz 
isomorphisms {gk)kLi- Each gk is again constructed using a rotation in the 
plane to achieve the interchange of two coordinates. The m ajor difference 
here is tha t, instead of- spherical annuli, the non-isometric regions of the iso­
morphisms gk consist of a region between sets Uk and ^ 2  \  Uk- 1 where each 
Uk is a cylinder of a set that is the product of a disc and a cube.

L e m m a  3.5.1 For each integer k >  2, let

Uk = {x  E l 2 : x \ +  x1+1 < 2~2k+i and \xj\ <  2-J+1 +  2~k for 2 < j  < k},

and Wk =  span Then for each k > 2  there is a Lipschitz isomor­
phism gk'- 1 2 —> ^ 2  such that

1 . gk(u) = u whenever dist (u, Uk) >  2 ~k, in particular whenever u =
xei +  yek+i +  w with w E Wk and x 2 -\-y2 > 2-2fc+6)

2. gk{xe 1 +  yek+i +  w) = ye 1 — xek+i +  w whenever x, y E R  and w E Wk
are such that xe\ +  y^k+ 1 +  w £ Uk,

3- gk{u) is obtained from u by a rotation about W k,

4 . the set Uk is gk invariant, that is gk{Uk) = Uk,

5. gk has an inverse,

6. the restriction of gk to Uk is an isometry,

7 .  Uk D  Uk+i,

8. gk+i{x) = x for every x E i 2 \  Uk,

9. limfc^oo supxe/2 dist ( x , l 2 \  Uk) =  0, and

1 0 . Lip(gk),L ip(gk1) =  L <  15.
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P R O O F .  That gk is a Lipschitz isomorphism will follow from (5) and (10). 
For k > 2 we define gk in the following way. Define 6 : l 2 —» R  by

9{u) =  m ax{0,1 — dist (u, Uk)2k}.

Note th a t Lip (dist (u,U k)) <  1 so that 6 is Lipschitz with Lip (0) = 
m ax{0 ,1 ,2k} =  2fc, and if u = xei + yek+i-\-w with w  E Wk and (x 2-\-y2y ! 2 >  
2~fc+3 _  ^ 3j then ^ist (u,Uk) >  2_fc+3 — 2_fc+2 >  2_fc which implies tha t 
0(ii) =  0. Let span {ei, ek+i} =  Vk = II so that l 2 — 14 © W k- We recall the 
rotation map Re of Lemma 3.3.2 and define gk : -^2 —> £2  by

gk{u) = R_v9(u)/2 Z +  w if u = z +  w, z E Vk, w E W k-

We verify (1)-(10) for gk.
To see (1), it suffices to note tha t whenever u  E ^ 2  satisfies dist (u, Uk) >  

2_fc then 0(u) =  0 so that /^(li) =  u. As noted above, if u = xei +  yek+i +  w 
w ith w  E W k and x 2 +  y 2 > 2~2fc+6, then dist (u, Uk) >  2-fc.

For (2), we observe that 6(u) = 1 for u E Uk , so th a t, if u =  xei+i/efc+1+u; 
where se i +  2/efc+i E 14 and w E 144, then ĵfc(u) =  yex — xek+i +  w.

For (3), in the definition of gk , R e  is a rotation in the plane orthogonal 
to H4.

To prove (4), it suffices to note that gk(u) is obtained from u  by a rotation 
about W k and to use the the rotational invariance of Uk-

For (5), note that the function u  —> dist (u , Uk) is invariant under ro ta­
tions about Wk- Since gk(u) is obtained from u by a rotation about W k , it 
follows th a t dist (u, Uk) = dist (gk(u), Uk) , which, according to the definition 
of 6 , implies 0(u) =  0(<7fc(iO)* Letting /ifc(^) =  R*8{u)/2 Z + w i i u  = z - \ - w , z €  
14, w  E 144 we get that

hfc O 9 k { ^ )  =  H ire(git (u))/2 ® H —ir6(u)/2z  w  2: -f- 1/7.

Similarly for gk ° hk] hence <7 4 1 =
For (6), if iti =  Zi +  u/i, and u2 =  z2 +  it/2 are in C4 where zi, z2 E 14 and 

^ i , w 2 G W4 then using property (2), the orthogonality of 14 and 144, and 
th a t R - w/ 2 is an isometry, we have \\gk{ui)-gk{u2)\\2 = \ \ R - v /2z i - R - K / 2 Z 2  +  
u > i-itf2||2 =  \\R-ivl2 {z i - z2 ) JrW1- w 2\\2 =  \ \R ^ /2{zi - z 2)\\2 -\-\\w1- w 2\\2 =  
||ui -  ^ 2 1|2-

For (7) and (8), we show that, if x E l 2 \  Uk, then dist (as, Uk+1 ) >  2~k~1. 
This inequality shows that Uk D Uk + 1 and, by (1), tha t gk+i(x) =  x for all 
x  E £ 2  \  Uk- If * G ^ 2  \  Uk, then x\ +  xk+1 > 2~2h+i or \xj\ > 2-J+1 +  2~k for
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some 2 < j  < k. Let y £ Uk+i then y\ -\-yl+2 <  2 2 k + 2  and \yj\ <  2 J + 1  + 2  
for each 2 <  j  < k 1 . We estimate tha t

2/i +  3/fc+i <  2 ~ 2k+2 +  2 _2fe+1 +  2 ~ 2k~ 2 =  b2 .2~ 2k~ 2

so th a t if x \  +  cc| + 1  > 2 - 2 * + 4  then

||a; _  y\\ > 2- f c + 2  -  (52 .2_ 2 f c _ 2 ) 1 / 2  =  3.2- * - 1  > 2“fc_1.

If |ajj| >  2~ J + 1  +  2-fc then

||s  -  y || >  |x,-| -  b il >  T k -  2 -* -1 =  2_t_1

so th a t in both cases ||x — y || >  2 ~fc~1, and we infer tha t dist (z,£/fc+i) >
2 _fc_1.

For (9) if a; £ Uk then cc2 +  x l +1 <  2~ 2 f c + 4  so th a t we may choose any
y € £ 2  \ U k with y \  +  2 / £ + 1  > 2 ~2k+A to infer tha t m iyet2\Uk \\x -  y\\ < 2 ~k+2.
Therefore s u p ^ ^  infyei7 \uk ||zc — y\\ <  2_fc+2. Hence

lim sup dist (a;, i 2 \  Uk) = 0 .
k-> 0 0  xei2

Finally for (10) we apply Lemma 3.3 .3  with <f> = —tt8 / 2  and X\, Xk replac­
ing Xi,cc2 } so that, as noted above for 8 , we get <f>{x) =  0  whenever ||Pcc|| =  
(cc2 +  x k+iY ^ 2 >  2~ k + 3  =  P 3 , and Lip (<p) = (7r / 2 )Lip (8 ) <  7r2 f c _ 1  =  K 3 . We 
get for S  = gk that

Lip (gk) < K 3 R 3 +  2 <  ir2k~12~ k + 3  +  2 <  15.

We estim ate Lip (g^ 1) similarly. □

L e m m a  3.5 .2  Suppose that h i , . . .  ,h n are Lipschitz mappings o f a Banach 
space X  onto itself and that fo r each k there is a set Ak C X  such that

1. the restriction of hk to Ak has Lipschitz constant at most one,

2. hk (X \  Ak) C X \ A k - 1-1 whenever k < n, and

3. the restriction of hk+i to h k ( X \ A k )  has Lipschitz constant at most one 
whenever k < n.

Then
Lip(hn o . . .  o h i) < max(Lip(hn) , . . . ,  Lip(hi)).
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PROOF. Let g0 be the identity. For 1 <  j  < n  +  1 let <jj 5 k^o . ok,^ - X^Aj

M i = n  9k-i{Ak)  n  n  3 - (  \  ^4*) = n i y ,  (Ak) ft (B 

3j-V <&J) c  t i ' ( Bj-i)
with n L i  f fk-i(Ak) = X  and flL n+i 9 k - i ( X  \  A k) = X  . The sets M ,, 1 <  
j  < n  + 1, cover X . To see this, let as £ X . Suppose tha t there is a j  < n  -f 1 
for which g j - i ( x )  £ X \  Uj and let j  be least with this property. We have by 
the second assumption tha t /ifc(X \  Ak) C X \  Ak+1 for all k <  n. Therefore 
for any k > j  we get that =  ^fc-i 0 ^  X \  Ak.  As j  is
least, whenever k < j  — 1, we have 5 rfc_i(as) £ Ak and therefore x £ Mj.  If 
j  > n  +  1 then #j_i(as) £ Aj  for all 1 <  j  < n  +  1 and x £ M n+1 .

The restriction of gn to each such Mj  is a composition of the restriction 
of hi  to Aij  . . . ,  hj - i  to A j - 1 , which all have Lipschitz constant at most one 
according to  the first assumption, followed by hj whose Lipschitz constant 
we estim ate by Lip(hj), and followed by the restriction of hj+1 to h j ( X  \  Aj) ,
. . . ,  hn to hn- i ( X  \  A n- 1 ), which all have Lipschitz constant at most one 
according to the last assumption. Hence the restriction of gn to each M j has 
Lipschitz constant at most max(Lip(hn) , . . . ,  Lip(hi)). Since gn is continuous 
(it is even Lipschitz), by Lemma 3.3 .1  it has Lipschitz constant at most 
max(Lip(hn) , . . .  ,L ip(hi)). □

E x a m p le  3 There is a Lipschitz isomorphism f  o f l 2 onto itself such that 
f ( x )  = (0, Xi, x 2, . . . )  whenever x £ i 2 satisfies \xj\ < 2~3 fo r each j .

PROOF. Let g\ be the identity of i 2 and U\ — {cc £ l 2 : x \  +  cr| <  4} D U2. 
Using the Lipschitz isomorphisms gk : ^ 2  —> £2  of Lemma 3.5 .1  we define /
by

f ( x )  = -  lim gk 0  . . .  o gi (x)
K—+OO

for all x £ l 2. We show that the limit exists for each x,  tha t /  is a Lipschitz 
isomorphism of l 2 onto itself, and tha t f ( x )  = (0, X\, x 2, . . . )  whenever \xj\ <
2~3 for each j .

First let f n = gn o . . .  ° gx. We apply Lemma 3.5 .2  with hk = gk and 
Ak = Uk to infer th a t Lip ( /n), =  L  <  15; the assumptions of the Lemma are 
satisfied since from Lemma 3.5.1 with g\ the identity and U\ = {x  £ i 2 : 
x \ +  x l + 1 ^  4} 1 we Set tha t for all n  +  1 >  k > 1,

• (by (6)) the restriction of gk to Uk has Lipschitz constant at most 1,

•  (by (8)) the restriction of gk+i to gk{ £ 2 \  Uk) has Lipschitz constant at 
most 1 whenever k < n,



C H A P T E R  3. LIPSCHITZ ISOMORPHISMS 84

• (bY (10)) LiP (9k) < L,

• (4) and (7) imply tha t gk{l* \  Uk) — 4  \  C4 C £ 2  \  Uk+i whenever k < n, 
and

• gk is surjective.

We apply Lemma 3.5 .2  again with hk =  9n-k+n Ak = £2  \  Un-k  for 
k <  n , hn the identity, and A n = I 2 \  U\ to infer th a t the Lipschitz constant 
of Z"1 =  g ^1 o . . .  o g~x also does not exceed L  <  15; to apply th a t Lemma 
we recall from Lemma 3.5.1 tha t for all n  +  1 >  k > 1,

•  (8) implies tha t the restriction of hk = 9n~k+ 1 f°  A k — £ 2 \  Un-k  is the 
identity, so it has Lipschitz constant at most 1,

• (8) implies tha t the restriction of g~lk+i £2  \  Un-k  is an isometry so 
th a t Un—k is gn-k+i invariant, and with (7) we get th a t hk( £ 2 \  Ak) = 
9n-k+i(Un-k) = Un-k  C Un-k-1 = £2 \  A k+i whenever k < n  (for 
k = n  -  1 we get tha t hn- r(£2 \  An- i )  =  g ^ i U i )  = Ui = £2 \  A n),

(6) implies tha t the restriction of hk+i = g~_k to hk(£2 \ A k) = g~_k+i(Un-k) = 
Un-k  is an isometry, so it has Lipschitz constant at most 1, whenever 
k < n,

• by (10), Lip (hk) = Lip (gnl k- i )  <  L > and
- i• hk = 9n- k+i 1S surjective.

From property (9) of Lemma 3.5 .1 , given e > 0, we find n  such th a t for 
any x £ £2 there is z € £ 2  \  Un such tha t \\z — cc|| <  e. From (7) and (8) of 
Lemma 3.5 .1  we infer that

9m 0 9m- 1 0 • • • <7n+l(z) =  Z 

for m  > n. Applying / “*, we get that

/ » 1w  =  / ; 1w -

and so we estim ate that

l l / m ' M  -  f n  l (*)ll <  II/m1M - / m 1(2)ll +  ll/m1M - / „ ' 1(z)ll

=  -  / ^ ( * ) I I  +  l l / n 1^ )  -  £ \ * ) \ \
< 2L\\z — x\\
< 2 Le,
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and we see tha t the sequence / n x is uniformly convergent. Similarly, letting 
y =  we have tha t f n{y) =  fm{y ) for m  > n, and we estim ate

||/m (z) -  /n (*) II <  ||/m(*) -  fm(y)\\ +  \\fm{y) ~  fn(x)  ||
=  ll /m (* )-/m (y ) || +  ||/n (y ) - /n (® ) ||
<  2L\\y — x\\
< 2 L 2e,

which gives tha t the sequence /„  is uniformly convergent. Let g = lim ^oo  f n 
and h = lim^c*, Z”1.

We claim tha t h = g -1 . Since

l (x)) -  g{h(x))\\ <  LWf- ' i x )  -  h(x)\\ +  ||f n{h(x)) -  g(h(x))\\ -+ 0,

then g(h(x))  =  x. Similarly h(g(x)) = x. Noting tha t a pointwise lim it of 
a sequence of functions with uniform bound on their Lipschitz constants is 
Lipschitz we have that g, and g~Y are Lipschitz.

Let C\ =  {x  E ^ 2  : \%j\ < 2~J for all j }  and, for k > 2 let

(7fc =  {x  E • |*i| < 2_fc, |ccj| <  2~J+1 for 2 < j  < k, 
and \xj\ <  2~J for j  > A;}.

Then Ck C so the expression for gk on Uk gives tha t gk{Ck) =  Ck+1 - We 
infer th a t for every as £ Ci,

9k O . . . O <7l(*) =  ( As+l, *1> *2j • • • j *fcj *fc+2} *fc+3j • • ■)?

which in the limit as k —> oo shows that /(as) =  — g(x) — (0, asi, as2, . . . ) .  □

We deduce th a t f ' {x)  is the shift operator whenever |asj| <  2~3 for all j .  
For each integer n > 1 and any y E span {et}”=1 we have /(as +  t y ) =  (0, asi +  
t?/i, as2 +  ty 2 j . . . ,  asn +  tyn, asn+i , . . . )  for all sufficiently small |£|. Therefore

r  f { x  + t y ) - f ( x )
lim -----------------------=  (0 , y i , . . .  ,3/n, 0, . .  .)•

Since /  is Lipschitz and U^Li span {ei}”=1 is norm dense in I 2 we deduce tha t 
f ' ( x )y  =  (0,2/i,2/2 , • •.) for all y E 1%. To see this, given y E ^ 2  and e >  0, for
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each integer N  > 1 let y ^  — ( y i , . . .  ,yw,  0 , . . . )  and recall tha t Lip ( / )  <  L. 
We may choose N  sufficiently latge tha t \\y — 3 /^ | |  <  e and estim ate tha t

| | r  f ( x  + t y ) ~  f ( x )
h m    (0,2/i , 2/2, - - -)il
t —* o t

| n . / ( *  + t y ) - f ( x  + t y W )  + f ( x  + t y W )  -  f ( x )
=  11™}------------------------------- ~t------------------------------------ (0,2/i,2/2,---)II

<  (£  +  l) | |y _ yW | |  +

|| lim ^

< (L -fi l)c

r  f ( x  +  t y W )  -  f { x )
J im------------------------------ (0 , 3/ i , 3/2 , . . . , 3tor,0 , . . . ,
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