On Differentiable Interpreters

Matko Bosnjak

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
of

University College London.

Department of Computer Science

University College London

February 14, 2021






3

I, Matko Bosnjak, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this

has been indicated in the work.






...Katji, Ines i Miri.

...1 za ono jedno popodne kad smo sjeli i tipkali tati tezu

7m m.. vtnnbvv ¢ vnnn

gch ffgfgghtrrreewwwwwwqqgg2iggqga ¢ xdchh

fhmbb
">>>

tyj

v XYY ixxyyu2

XzZaa X

zz

5.

vvvvvvvdgrtrrfree

A\






Acknowledgements

Wow, what a trip this was! While trying to sum this trip up, remembering
many people and countless things happening on the way, I am well aware I
cannot do right to everyone who in any way shared this trip with me. So, to
you who were a part of my journey, even if we just shared a random night of
chatting at the Large Common room of Goodenough College or a random bar
further away from a conference venue, thank you, as you inevitably helped me

get to this point, in some way or another.

I was fortunate enough to have Sebastian Riedel as my supervisor who was an
indispensable source of knowledge, inspiration, drive and a rather bottomless
source of patience and good vibes. It was fun doing research with you, and I
am indebted to you and your calm and utterly positive attitude, all the spot-
on support and the unrelenting curiosity. I am thankful to John Shawe-Taylor
and his forward-looking insights which helped me guide me in the first stages
of my research, while I found many things still unclear. Ed Grefenstette came
in at the right time to share his experience, knowledge and well-timed advice
and suggestions shaping both the direction of the research and my outlook on
industry-led research. I extend my gratitude to my examiners Charles Blundell
and Charles Sutton for the remarkably enjoyable in-depth discussion and their

keen eyes for details that inevitably improved the quality of this work.

It was inspiring to be a part of the UCL Machine Reading group (now re-
branded as the UCL NLP group), not just because of the numerous fantastic
researchers and collaborators like Andreas, Andres, Dirk, Guillaume, Isabelle,
Jason, Jeff, Pasqale, Pontus, Tim and Thomas, but also much because of the
fantastic PhD colleagues whose friendships made it all the more stimulating
and lively. Thank you Georgios, Ivan, Johannes, Marzieh and Tim, we surely
have had a blast, not just studying and doing research but also having an odd

going-out and even a relaxing trip here or there.



8 Acknowledgements

I was fortunate enough to do not one but three industry internships during my
studies. The first one in Microsoft Redmond with Chris, Hoifung, Kristina and
Scott was an eye-opening experience that helped me shape my future research
directions and enriched my social life through experiences shared with great
many other remarkable PhD students. The second internship at Microsoft
Cambridge with Alex, Dimitrios, Marc and Miltos was a unique and motivating
research experience that helped me hone my skill set and expand my research
interests by providing a fantastic experience to delve further into particular
research direction I could have never been able to venture in-depth alone.
The third internship at DeepMind with Alex, Arka, Chris, Irina, Loic and
Nick was an experience that quickly locked me into the pursuit for AGI by
empowering me to ask bigger and bolder questions and providing me with the
raw intellectual and computational power to pursue them. This internship
turned into a full-time position which actively energises and challenges me on
a daily basis, enabling me to tap into the pool of exceptionally bright and
interesting colleagues, of which I particularly thank Alex and Loic for their
drive and continuous support, as well as Bojan, Ivan and Jovana for being a

constant source of encouragement and respite during the sprint towards AGI.

A big thank you to the Goodenough College, the fantastic and energising
oasis in the middle of London—a home away from home—where I have spent
countless nights in both shallow and in-depth discussions with so many people I
find it dizzying just trying to remember some. There I have met acquaintances,
friends and friends for life, out of which I thank Adam, Alessandra, Ana,
Andres, Ayah, Basia, Boris, Damjan, Duska, Fabio, Ifigeneia, Joao, Kanu,
Kolapo, Laura, Lindsay, Luis, Luisa, Mark, Mary, Matt, Namu, Omar, Pablo,
Pavithra, Rani, Rodrigo, Srdan, Stefan, Tariq, Tom, William and Wilhelm for
all the highs and lows, for all the moments shared and more yet to come. To
this group I add Ilia, Ivan, Ivana, Nikola and “Krkani”, as well as my friends
from Portugal that I keep stumbling upon everywhere I go. Thank you for all
the parties, organisational meetings, random cooking nights and especially for
the time spent outside the College on the curb, discussing both everything and
nothing. Being away from home is easier with a good bunch of people, but
being home with the irreplaceable is incomparable. Thank you Kreso, Martin

and Vice for being irreplaceable.

Finally, my never-ending gratitude belongs to the pillars that raised me to



Acknowledgements 9

where I am today—my family. An eternal thank you to my mother Mira who
uncompromisingly supported me in every single step I made, always pushing
me to do the best, and make the best of everything. A monstrous thank you to
Ines, my partner in life and my rock, who was with me the whole way, both far
and near, both in good and the not so great. I sincerely hope I will be able to
repay all your kindness in this lifetime. And lastly, thank you Katia, my little
source of wonder and amazement, for showing me that there is a completely
new universe there for the three of us where we can enjoy seeing you grow
up and build ourselves and our futures as humbler and better people. Hvala
vam Sto me svakodnevno nadahnjujete i ¢inite boljom osobom; neizmjerno vas

volim i oboZavam!






Abstract

Neural networks have transformed the fields of Machine Learning and Arti-
ficial Intelligence with the ability to model complex features and behaviours
from raw data. They quickly became instrumental models, achieving numer-
ous state-of-the-art performances across many tasks and domains. Yet the
successes of these models often rely on large amounts of data. When data is
scarce, resourceful ways of using background knowledge often help. However,
though different types of background knowledge can be used to bias the model,

it is not clear how one can use algorithmic knowledge to that extent.

In this thesis, we present differentiable interpreters as an effective framework
for utilising algorithmic background knowledge as architectural inductive bi-
ases of neural networks. By continuously approximating discrete elements of
traditional program interpreters, we create differentiable interpreters that, due
to the continuous nature of their execution, are amenable to optimisation with
gradient descent methods. This enables us to write code mixed with paramet-
ric functions, where the code strongly biases the behaviour of the model while

enabling the training of parameters and/or input representations from data.

We investigate two such differentiable interpreters and their use cases in this
thesis. First, we present a detailed construction of 04, a differentiable inter-
preter for the programming language FORTH. We demonstrate the ability of
04 to strongly bias neural models with incomplete programs of variable com-
plexity while learning missing pieces of the program with parametrised neural
networks. Such models can learn to solve tasks and strongly generalise to out-
of-distribution data from small datasets. Second, we present greedy Neural
Theorem Provers (gNTPs), a significant improvement of a differentiable Data-
log interpreter NTP. gNTPs ameliorate the large computational cost of recur-
sive differentiable interpretation, achieving drastic time and memory speedups

while introducing soft reasoning over logic knowledge and natural language.






Impact Statement

This thesis presents differentiable interpreters as a framework for incorporating
algorithmic background knowledge into neural networks. We demonstrate two
interpreters, 04 for incorporating arbitrary algorithmic knowledge, and gNTP,

for incorporating scalable reasoning over knowledge bases and text.

By integrating algorithmic knowledge through programs into neural networks,
from simple constructs, loops, conditionals, to libraries of well-known algo-
rithms, differentiable interpreters bring strong generalisation of these programs
to neural networks. We think the models we present in this thesis are a good
testbed for understanding both how much prior algorithmic knowledge a model
needs—i.e. how much structure is enough for a learning model to successfully
generalise—and the extent of the generalisation programs can bring to neu-
ral models. Moreover, since strong generalisation is a well-sought property
of neural networks with far-reaching consequences in the application of these
models in the real world, our approach could find its use in cases where neu-
ral models are controlling critical long-term processes such as control tasks in
industrial facilities. Besides, this approach or the elements thereof can benefit
tasks involving numerical reasoning and inference such as automatic document

understanding involving numbers in areas such as law and medicine.

By incorporating scalable reasoning into neural models, we can build models
that scale to large, real-world datasets, and by adding the support for natural
language, we open the application of these models on text. This is excit-
ing as we have high hopes that gNTPs or gNTP-inspired, similarly efficient
interpretable models, can be utilised for reasoning on large amounts of tex-
tual knowledge. Scalable reasoning on text could bring us closer to one of
the holy grails of Machine Reading—automatic fact-checking at scale—which
could have a tangible societal impact with a potential to transform the way

we share and consume information in an information-centric world of today.






Contents

1 Introduction

1.1
1.2
1.3

2.1

2.2

2.3

Contributions . . . . . . . . .
Publications . . . . . . . ..
Thesis Outline . . . . . . . . . . . .

Preliminaries / Background

Neural Networks . . . . . .. .. ... ... .. .. ... ...
2.1.1 Concepts and Notation . . . . . .. ... ... ... ...
2.1.2  Machine Learning Basics . . . . . . . ... ... ... ..
2.1.3 The Back-propagation Algorithm . . . . ... ... ...
2.1.4  Architectures and Mechanism . . . . ... ... .. ...
The Language of First Order Logic . . . . .. ... ... ....
2.2.1 Concepts and Notation . . . . . .. ... ... ... ...
2.2.2 Backward Chaining . . . . . . ... ... ... ..
Interpretation . . . . . . . ... ...
2.3.1 Concepts and Notation . . . . . ... ... ... .....
2.3.2 Logic Program Interpretation . . . . ... ... ... ..

3 04: A Differentiable Forth Interpreter

3.1
3.2

3.3

Programs as Inductive Biases . . . . . . . ... ... ... ...
Background: FORTH Abstract Machine . . . . . . .. ... ...
3.2.1 ForrTH Machine State . . . . ... ... .. ... .. ..
3.2.2 FORTH Instruction Set . . . . . . . ... ... ... ...
3.2.3 FORTH Program . . .. ... ... ... ... ......
3.2.4 ForrH Execution Loop and Interpretation . . . . . . ..
The Differentiable FORTH Abstract Machine 904 . . . . . . . ..
3.3.1 04 Machine State Encoding . . . . ... ... .. ...,

3.3.1.1 Differentiable Flat Memory Buffers . . . . . . .

25
30
32
33

35
35
35
37
38
39
44
44
45
49
49
51



16

Contents

3.3.1.2  Differentiable stack(s) . . ... ... ... ... 67

3.3.1.3  Differentiable program counter . . . .. .. .. 68

3.3.2 04 Instruction Set . . . . . . ... 69
3.3.3 04 Sketches . . . . ... 72
3.3.4 04 Execution Loop and the Interpreter . . . . . . . ... 75

3.4 Training . . . . . . .. 76
3.4.1 Interpreter Optimisations . . . . .. .. ... ... ... 7

3.5 Experiments . . . . . . ... 78
3.5.1 Sorting . . . . ... 79
3.5.1.1 Sketches . . . . . ... ... L. 80

3.5.1.2  Experimental Setup . . . ... ... ... ... 81

3.5.1.3 Testing Strong Generalisation . . . . . . .. .. 82

3.5.1.4 The Effect of the Dataset Size . . . . . . .. .. 82

3.5.1.5  The Effect of the Program Code Optimisations 83

3.5.1.6  Qualitative Analysis of Program Counter Traces 84

3.5.2 Addition . . . ..o 85
3.5.2.1 Generalisation . . . . ... ... ... ..... 88

3.5.2.2  Accuracy per number of training examples . . . 90

3.5.3  Word Algebra Problems . . . ... ... .. ....... 90
3.5.3.1 Model Description and the Sketch . . . . . . .. 91

3.5.3.2 Experimental Setup . . .. ... ... ... .. 92

3533 Results . ... ... .00 93

3.6 Related Work . . . . . . ... oo 95
3.6.1 The Computational Power of Neural Networks . . . . . . 95
3.6.2 Program Synthesis . . . .. .. ... ... ... ... .. 97
3.6.3 Probabilistic and Bayesian Programming . . . . . . . . . 98
3.6.4 Memory Augmented Neural Networks . . . . . . . . ... 98

3.7 Conclusion and Future Work . . . . . . .. ... ... ... ... 101
gNTP: Greedy Neural Theorem Provers 103
4.1 Scaling Reasoning as a Strong Inductive Bias . . . . . . . . . .. 104
4.2  Background: Neural Theorem Provers. . . . . . .. .. ... .. 106
4.2.1 Continuous Relaxation of Backward Chaining . . . . . . 107
4.2.2 Training . . . . . ..o o 110

4.3 Greedy Neural Theorem Provers . . . . . . . .. ... ... ... 112
4.3.1 Scalingup NTPs . . . ... ... ... ... ... ..., 112

4.3.1.1 Greedy Unification . . . . .. .. .. ... ... 113



Contents 17

4.3.1.2 Attention . . . .. ... 117
4.3.2 Joint Reasoning on Knowledge Bases and Natural Lan-
GUAGE . . ot e e e e e e e 118
4.4 Experiments . . . . . . ... 120
4.4.1 Datasets, Evaluation and Baselines . . . . . . ... ... 121
44.1.1 Datasets . . . . .. ... 121
4.4.1.2 Evaluation . . ... ... ... .. ... ... . 123
4413 Baselines . ... ... ... ........... 123
4.4.1.4 Experimental Setup . . ... .. ... ... .. 124
4.4.2 Link Prediction on Small Datasets . . . . .. ... ... 124
4.4.2.1 Quantitative Analyses . . . ... .. ... ... 124
4.4.2.2 Qualitative Analyses . . . . . . ... ... ... 126
4.4.3 Quantifying gNTP Scalability . . . . . .. ... ... .. 128
4.44 Link Prediction on Large Datasets . . . . .. .. .. .. 132
4.4.4.1 Quantitative Analyses . . . . ... ... .. .. 132
4.4.4.2 Qualitative Analyses . . . . .. ... ... ... 135
4.4.5 Experiments with Text . . . . . . .. .. ... ... ... 138
4.5 Related Work . . . . . ..o 140
4.5.1 Neural Network Architectures . . . . . . ... ... ... 140
4.5.2 Relational Learning . . . . . . .. . ... ... ... ... 142
4.5.3 ML-powered Scaling . . . . ... .. ... ... ... .. 146
4.6 Conclusion and Future Work . . . . . . . ... ... .. ... .. 147
5 Conclusions and Future Work 149
5.1 Contribution Summary . . . . . . . ... ... L 149
5.2 Discussion and Future Work . . . . .. . ... ... ... ... 150
5.3 The Outlook . . . . . . . .. ... 152
Appendices 154
A Appendix to 04 155
A.1 ForrTH Instruction Set . . . . . . . .. ... 155
B Appendix to gNTP 161

Bibliography 162






List of Figures

1.1
1.2
1.3

2.1
2.2

2.3

3.1
3.2

3.3
3.4

3.5

3.6

3.7

3.8

3.9

A depiction of program interpretation. . . . . .. .. ... ... 28
Differentiable interpreter. . . . . . . ... ..o 29
Differentiable interpreters studied in this thesis. . . . . . . . .. 31
A depiction of a) MLP, b) RNN, ¢) LSTM, and d) BiRNN. . . . 42

A depiction of a) differentiable reading / attention and b) dif-

ferentiable writing. . . . . . .. ..o oo 43

An example of the backward chaining execution on a small

knowledge base. . . . . . ... oo 48

A depiction of the FORTH Abstract Machine. . . . . . . ... .. 57

Graphical depiction of a part of the machine state (D, R, ¢) dur-
ing Bubble sort in Listing 3.1. . . . . . . .. ... ... ... .. 62

A depiction of 04, the differentiable FORTH abstract machine. . 65
Graphical depiction of a part of the machine state during Bubble
sort sketch in Listing 3.3. . . . . .. ... ... 76
Accuracy of models for a varying number of training examples,
trained on input sequence of length 3 for the Bubble sort task. . 83
The effect of the optimisations on the number of (RNN) execu-
tion steps. . . . . . L 85
The results of different optimisation techniques applied to the
Bubble sort program in Listing 3.1. . . . . . ... ... ... .. 86
Program Counter traces for a single example at different stages
of training the Bubble sort PERMUTE sketch in Listing 3.3. . . . 87
Accuracy of models for a varying number of training examples,

trained on input sequence of length 8 for the addition task. . . . 89

3.10 The Word Algebra Problem model . . . . .. ... .. ... .. 91



20

4.1

4.2
4.3
4.4

List of Figures

An example of the execution of Neural Theorem Prover (NTP)

on a small knowledge base. . . . . . . .. ... 0L 111
An example of the execution of gNTP on a small knowledge base.119
The runtime and memory performance of gN'TP, relative to NTP.130

The performance of gNTPs on Countries with mentions datasets.139



List of Tables

3.1

3.2

3.3

3.4
3.5

4.1

4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

4.10

Accuracy, expressed in Hamming distance, of PERMUTE and
COMPARE sketches in comparison to a sequence-to-sequence
(seq2seq) baseline on the sorting problem. . . . ... ... ... 82
The effect of the optimisations on the number of state transi-
tion functions of the FORTH implementation of Bubble sort in
Listing 3.1. . . . . . . . . 84
Accuracy (Hamming distance) of CHOOSE and MANIPULATE

sketches in comparison to a seq2seq baseline on the addition

problem. . . . ... 88
Accuracies of models on the Common Core (CC) dataset. . . . . 93
Performance of 94 and the model from Roy and Roth [2015] on

splits from Roy and Roth [2015] . . . . . ... .. ... ... .. 95

Dataset statistics for both the small (Countries, Nations, Kin-
ship and UMLS) and the large datasets (WN18, WNI18RR,

FB15k-237). . . . . . o 123
Link prediction results for small datasets. . . . . . . . . . .. .. 125
gNTP-induced rules on the Countries dataset. . . . . .. .. .. 126
gNTP-induced rules and proofs on the Nations dataset. . . . . . 127
gNTP-induced rules and proofs on the Kinship dataset. . . . . . 128
gN'TP-induced rules and proofs on the UMLS dataset. . . . . . . 129

Link prediction results on small datasets of gNTP with a varied
number of neighbours. . . . . . ... ... o 0L 131
Link prediction results for the WN18 and WN18RR datasets. . 132
Per-predicate MRR comparison for ComplEx and gNTP on the
WNI18 dataset. . . . . . . . .. ... 133
Per-predicate MRR comparison for ComplEx and gNTP on the
WNI8RR dataset. . . . .. ... .. 133



22

List of Tables
4.11 Link prediction results on the FB122 dataset. . . . . . .. . .. 134
4.12 gNTP-induced rules and proofs on the WN18 dataset. . . . . . . 136
4.13 gNTP-induced rules and proofs on the WN18RR dataset. . . . . 136

B.1 The set of textual mentions replacing the variable number of
training triples in Section 4.4.5 for the locatedIn and the
neighborOf predicates. . . . . . . . . .. ... ... ... 161



List of Listings

2.1
3.1
3.2
3.3
3.4
3.5
3.6
4.1
4.2

A running example of a small Datalog knowledge base. . . . . . A7
A Bubble sort implementation in FORTH. . . . . . .. ... ... 61
The COMPARE sketch for the sorting task. . . . . .. ... ... 80
The PERMUTE sketch for the sorting task. . . . .. .. ... .. 81
The MANIPULATE sketch for the Addition problem. . . . . . . . 87
The CHOOSE sketch for the Addition problem. . . . . . . . . .. 88
The Word Algebra Problem sketch . . . . ... ... ... ... 92

An excerpt of the gNTP-induced rules on the FB122 datset. . . 138
An excerpt of rules extracted by gNTP on the Countries dataset
with text. . . . . ..o 140






Chapter 1

Introduction

Machine Learning (ML) models that enable modelling complex behaviours
from data have practically become the focal point of Artificial Intelligence
(AI) and its pursuit to build machines that can (learn to) carry out tasks
we consider “smart”. The ML approach to task learning, epitomised through
the give machines data and let them learn for themselves guiding principle,
is also at the heart of Neural Network (NN) / Deep Learning (DL), models
which swept the world of ML fairly recently [Krizhevsky et al., 2012]. It is
widely considered that this breakthrough of NNs to the centre stage of ML was
enabled by three major advancements: the availability of large datasets [Deng
et al., 2009], advances in computing power [Raina et al., 2009, Ciregan et al.,
2010] and better learning algorithms [Hinton et al., 2006]. Computing power
is still growing, and is becoming increasingly available; learning algorithms
are being constantly improved, yet NNs are still data-hungry—they mostly
still require large datasets for achieving state-of-the-art results. However, in
practice, training data is often scarce for all but a small set of problems, so
the core question posed is how can we incorporate other information into the

model, and enable the model to still learn well even with scarce training data?

As a contribution to answering that question, this thesis studies neural archi-
tectures which enable incorporating prior knowledge in a programmatic form.
In general, in order to extrapolate beyond the data, a learner requires other
sources of information to make up the difference [Tenenbaum et al., 2011].
Among these sources of information, we focus on prior knowledge regarding
the task, also known as the inductive bias, and its role is to help restrain
the space of models considered by the learner [Lake et al., 2017]. Reasonably

sized NNs can realise but a fraction of all theoretically possible functions [Kol-



26 Chapter 1. Introduction

mogorov, 1957, Hornik et al., 1989, Siegelmann and Sontag, 1991], and we use
inductive bias to constrain the subset of functions we can effectively learn.
Since not all functions are equally useful for a task, we need to find ways to

focus on the useful ones—often through the topology of the network.

In general, we can say that NNs have an inductive bias towards minima reach-

1" However, the inductive bias depends

able by gradient-based optimisation.
directly on the model topology, activation functions it uses, and the training
regime (including numerous “tricks” employed during training). Here we focus
on the inductive bias brought forward by the topology, and to better under-
stand what this means, we take a brief look back at the evolution of inductive

biases through historical NNs architectures.

The very first computational model of neural activity is the Threshold Logic
Unit by McCulloch and Pitts [1943].2 This simple model sums the equal
contribution of the input and activates the output only if the sum reaches a
certain threshold. The inductive bias of these units is then characterised by
this all-or-none process, where each input votes independently (without inter-
actions) towards the final output. The Perceptron [Rosenblatt, 1958] relaxed
the absolute threshold and the independent contribution of the input of the
Threshold Logic unit through the use of per-unit biases and weights. This bi-
ases the Perceptron towards the ability to use all inputs to a different (learned)
extent. Though the forerunner of today’s deep learning, the Perceptron [Min-
sky and Papert, 1969] could not be learned beyond a single level. However,
with the dawn of backpropagation [Linnainmaa, 1970, Rumelhart et al., 1986],
deeper architectures, such as the Multi-Layer Perceptron (MLP) [Ivakhnenko
and Lapa, 1966] came to light. The use of continuous activation functions bi-
ases MLPs towards smooth interpolations between inputs, while the multiple
layers bias them towards presenting a more compact representation compared
to shallower models [Delalleau and Bengio, 2011, Eldan and Shamir, 2016, Co-
hen et al., 2017]. Besides a more efficient function representation, the depth

also brings significant increases in parameter numbers and training issues.

Convolutional Neural Networks (CNNs) [Fukushima, 1980, LeCun et al., 1989],

based on neurophysiological insights of the neural cortex, attack the increase in

IThe existence of minima unreachable by gradient-based optimisation is quite possi-
ble [Gaunt et al., 2016].

2This gross oversimplification of the operating principles of a biological neuron is the
basis for the much-contested adjective “Neural”.



27

parameter number with a receptive field of convolutional units applied across
the image, effectively enabling drastic parameter reduction via parameter shar-
ing. The inductive bias of these models is that the pooling geometry favours
interleaved partitions of the image and enables locality and translation in-
variance, which, in turn, biases the models towards the statistics of natural
images [Cohen and Shashua, 2017]. CNNs introduced the concept of sharing
weights across function (convolution) applications. This was further brought
forward to sequence processing by the Recurrent Neural Networks (RNNs) [El-
man, 1990, Jordan, 1997]. These sequential models are temporally invari-
ant models biased towards predicting future behaviour based on the recent
past, with model variants such as Long Short-Term Memory (LSTM) further
pushing that towards functions preserving contextual information over long
sequences. Elaborate modern architectures push the inductive biases even
further. Graph Neural Networks incorporate relational inductive biases [Gori
et al., 2005, Battaglia et al., 2018]. Transformers [Vaswani et al., 2017] balance
the bias towards attending both to the future and the past with the choice be-
tween positional variability and invariance, enabling them to avoid the recency
bias of RNNs. More elaborate architectures such as Neural GPUs [Kaiser and
Sutskever, 2016] and Neural Turing Machines [Graves et al., 2014], are biased

towards algorithmic execution.

We notice that, even though there are architectures which enable inductive
biases of algorithms, they are either hand-coded for a particular algorithm or
they are too general—existing architectures do not support incorporating in-
ductive biases of algorithms designed per task, at least not easily. That is to
say, if we know a specific algorithm or the parts of it, we cannot easily influ-
ence the model’s inductive bias with that knowledge. The emphasis on easy
incorporation of knowledge is important here—theoretically, we can influence
the inductive bias of a model by changing its weights, e.g. we could change
the weights of a Neural Turing Machine to bias its execution with a particular
program. However, that is practically impossible because the internal state
transitions of such a model are opaque to interpretation, let alone to mean-
ingful and reliable coding and debugging. This inspired us to investigate the

problem of incorporating program code as inductive bias.

Why do we focus on the inductive bias of program code? There are several ben-

efits of program code as an inductive bias for neural networks. Program code



28 Chapter 1. Introduction

Input

[ Interpreter] [ Output ]

Program

Figure 1.1: A depiction of program interpretation. Grey squares denote given
(observed), while the white ones denote computed (inferred) data.

epitomises strong generalisation over input data—correct programs working
on small inputs correctly generalise over larger inputs too. They can embody
strong generalisation since they support useful constructs such as loops, con-
ditionals, recursions, etc. Programs are recomposable (modular) and enable
abstraction and reuse via libraries. Code is the language of computation—it
makes it easy to reason about computation and communicate it between hu-
mans as well, as the code is both computer- and human-interpretable. We can
see it as a useful prior over general computation, but we also need to be aware
that though it is beneficial for certain kinds of computation, it is not fit for

everything, in particular for ML tasks.

We search for a way to incorporate program code as inductive bias into NNs
by turning to standard code execution and interpretation with interpreters.
Simply put, an interpreter is a program that reads source code and directly
executes it—it performs actions that the code specifies. Interpretation is a
strictly one-way deterministic computation process which takes the input and
executes the code to produce the output, as depicted in Figure 1.1. In order
to bias a NN with program code, the NN should be able to execute said code
similarly as an interpreter does. We take this approach of hybridising NNs
with code as it enables us to train the model, following the structure of the

code, end-to-end from algorithm input-output examples.

Differentiable Interpretation The core insight of this thesis is that the
process of interpretation itself, as well as every single code command to be
executed, can be continuously relaxed. Instead of running discrete program
commands (e.g. variable assignment, memory reading and writing, loops, con-
ditionals, recursion, etc. , we can run their continuously relaxed analogues and

unlock the reverse mode of the interpretation process.

Differentiable Interpreters Standard interpreters execute source code writ-

ten in a particular language by carrying out the actions that each instruction



29

Differentiable Output
Interpreter

Input Input

[Differentiable] [ ]
Output
Interpreter

Program Program

(a) Standard execution (b) Inductive synthesis
Differentiable Differentiable
[ Interpreter ] [ OUtPUt ] Interpreter
(c) Backward execution (d) Unsupervised synthesis

Figure 1.2: Differentiable interpreter. Forward mode equals to a) standard (for-
ward) execution (deduction). The reverse mode can correspond to
solving different tasks, depending on what is inferred: b) inductive pro-
gram synthesis (induction), ¢) backward execution (abduction), and d)
unsupervised program synthesis (joint induction and abduction).

describes, according to the semantics of the instructions in that language.
The nature of these instructions is discrete—instructions are carried out as
discrete functions which operate on discrete states of memory. Differentiable
interpreters share the same high-level idea—they execute a source code by
carrying the actions of each instruction. However, the instructions here are
carried out as continuous functions operating on continuous states of memory.
The language of the source code stays the same here, but the semantics of its
instructions change from discrete to continuous functions. The fact that these
continuous functions are continuous relaxations of the original discrete func-
tions makes these differentiable interpreters continuously relaxed interpreters

of original interpreters.

By employing continuous relaxation of an interpreter, we still keep standard
interpretation as a forward mode of a NN as we can still run the continuously
relaxed commands as we did the discrete ones. However, by employing contin-
uous functions, we can calculate gradients of every command with respect to
their inputs and use these gradients to unlock the reverse mode—use gradients
to back-propagate signals from the output to the input. Furthermore, if every
single command of a program is continuously relaxed, by chaining commands,
we can back-propagate error signals from the output of the program to its

inputs. This also enables us to freely combine continuously relaxed commands



30 Chapter 1. Introduction

with differentiable parametrised models such as standalone NNs.

Now, besides the standard interpretation via the forward mode of differentiable
interpreters (Figure 1.2a), where we deduce the output from the program and
the input, we can use the reverse mode to solve interesting tasks that regular
interpreters cannot, tasks which require specialised standalone solvers. By
providing the input and the output examples, and treating the program as
parameters of the model, we can use differentiable interpreters to induce the
program (Figure 1.2b)—the inductive program synthesis task [Polozov and
Gulwani, 2015]. If we provide the output and the program and treat the
input as parameters of the model, we can abduce the input (Figure 1.2¢)—
the backward execution task [Dinges and Agha, 2014]. In the extreme, we
can also envision providing only the output, and jointly inducing the program
and abducing the input (Figure 1.2d)—the unsupervised program synthesis
task [Ellis et al., 2015, Evans et al., 2019].

1.1 Contributions

Differentiable interpreters are an effective framework for utilising algorithmic
background knowledge as architectural inductive biases of neural networks. To
support this thesis, besides establishing the notion of differentiable interpreta-
tion concurrently with Gaunt et al. [2016], we put forward the following two

core contributions:

Contribution 1: 04, A Differentiable Forth Interpreter To directly en-
able the translation of programs into inductive biases, we present 04, a differen-
tiable interpreter for the imperative language FORTH. We present a continuous
relaxation of the FORTH dual-stack abstract machine/interpreter, covering a
continuously relaxed subset of ANSI FORTH commands. This enables us to
translate a FORTH program into a NN that faithfully executes the program
in its forward mode. To capitalise on the reverse mode, we introduce 04
sketches, incomplete programs consisting of fully-specified FORTH code, which
codes up what we know about the computation, and the parametrised NNs
which code up the unknown part of the computation. The differentiability of
the 04 interpreter allows us to not just use the known part of the computation
as an inductive bias for a NN but also to train the unknown part and the pro-
gram input representation via gradient-based optimisation (Figure 1.3a). We

then use sketches of two well-known algorithms as a strong inductive bias on



1.1. Contributions 31

R

Input Query

— =) [

Knowledge
@g@@) 9

o base
-l

(a) 04 (b) gNTP

Figure 1.3: Differentiable interpreters studied in this thesis. a) 94 can infer miss-
ing code in the sketch, as well as the input representations (thick bor-
der) and b) gNTP can infer the representation of the knowledge base
elements

learning algorithms from data. As the differentiable interpretation is resource-
intensive, we present program code optimisations to speed it up. Finally, since
the 04 sketches are fully end-to-end differentiable, we can pair them up with
other NNs. We demonstrate this ability by pairing up a 94 sketch with an
LSTM model to obtain state-of-the-art for end-to-end reasoning on word alge-

bra problems.

Contribution 2: gNTP, Greedy Neural Theorem Provers Differen-
tiable interpreters exhibit scaling issues, which is particularly evident for the
case of the NTP, a differentiable interpreter for the logic language Datalog.
We suggest a strategy to significantly scale up NTP, and enable it to deal with
compositional language input, thus scaling the inductive bias of differentiable
reasoning algorithm and applying it to text-enriched data. We propose gNTP,
a computationally effective model which reduces the time and the space load
of NTP by drastically reducing the number of proof paths the model observes
and lowering the number of parameters for the rule learning process with the
attention mechanism. Following the efficiency enhancements, we supplement
the model with a compositional reading module which embeds logical facts
and natural language texts in the same vector space, enabling learning repre-
sentations of both the logical and the textual input (Figure 1.3b). We show
empirically that the gNTPs significantly outperform NTPs in terms of both
time and memory efficiency while achieving the same or better performance
on small link-prediction tasks. As a model that now scales, we also contrast
gNTPs with related models on large link-prediction tasks showing competi-
tive results. Finally, we qualitatively analyse both the rules induced by the
gNTPs models, as well as the best-ranking proof paths that the model picks,

suggesting cautiousness in model interpretation.



32 Chapter 1. Introduction

1.2 Publications

We have published parts of this thesis. Parts of Chapter 3 appeared in the

following publications:

o Matko Bosnjak, Tim Rocktaschel, Jason Naradowsky, and Sebastian
Riedel. Programming with a Differentiable Forth Interpreter. In Pro-
ceedings of International Conference on Machine Learning (ICML), vol-
ume 70, pages 547-556, 2017

— Also presented at the workshop track of the 5th International Con-
ference on Learning Representations (ICLR), 2017

o Matko Bosnjak, Tim Rocktéschel, Jason Naradowsky, and Sebastian
Riedel. A Neural Forth Abstract Machine. In Neural Abstract Machines
& Program Induction (NAMPI) Workshop @ NIPS, 2016

— Also presented at the Symposium on Recurrent Neural Networks
and Other Machines that Learn Algorithms @ NIPS 2016

Parts of Chapter 4 appeared in the following publications:

o Pasquale Minervini*, Matko Bosnjak®, Tim Rocktaschel, Sebastian
Riedel, and Edward Grefenstette. Differentiable Reasoning on Large
Knowledge Bases and Natural Language. In Proceedings of AAAI Con-
ference on Artificial Intelligence, 2020

— A lightly extended version of the paper has also been published as
an invited book chapter in Ilaria Tiddi, Freddy Lécué, and Pascal
Hitzler. Knowledge Graphs for eXplainable Artificial Intelligence:
Foundations, Applications and Challenges, volume 47 of Studies on
the Semantic Web. 10S Press, 2020. ISBN 978-1-64368-080-4

o Matko Bosnjak*, Pasquale Minervini*, Andres Campero, Tim Rock-
taschel, Edward Grefenstette, and Sebastian Riedel. Neural Theorem
Proving on Natural Language . In The International Conference on

Probabilistic Programming, 2018

o Pasquale Minervini*, Matko Bosnjak*, Tim Rocktéaschel, and Sebastian
Riedel. Towards Neural Theorem Proving at Scale. In Neural Abstract
Machines & Program Induction v2 (NAMPI_v2) @ ICML, 2018

I contributed (1) parts of the ideas and the theoretical framework, (2) parts of



1.3. Thesis Outline 33

the implementation, (3) experimental design and execution of the small-dataset
link prediction experiments, run-time evaluation experiments, and parts of the
large-dataset link prediction experiments and analyses, (4) qualitative analy-

ses, and (5) writing a third to a half of all the rejected and accepted papers.

1.3 Thesis Outline

Following this introductory chapter, in Chapter 2 we present the relevant pre-
liminaries and technical background material necessary to follow the concepts,
notation and the maths of neural networks, first-order logic and program in-
terpretation, necessary for following the coming chapters. In Chapter 3 we
introduce 04, a differentiable FORTH interpreter—a differentiable construc-
tion of the FORTH dual-stack machine—and use it as a means of inducing a
strong inductive bias of program code into a neural network. In Chapter 4 we
introduce gN'TP, a significant time and memory -efficient upgrade of the differ-
entiable Datalog interpreter NTP, which we also expand with a compositional
reading module to allow it to use textual information. Finally, in Chapter 5

we conclude the thesis with an outline of future work.






Chapter 2

Preliminaries / Background

The material in this thesis presupposes understanding of neural networks, in-
terpretation and elements of first-order logic. In this chapter we provide the
necessary background work for the later expounded models. This includes the
concepts and the notation used throughout the thesis, as well as the models

and algorithms.

2.1 Neural Networks

Neural Networks are the core ML models in this thesis. We start by defining
basic concepts and terminology used in the neural network community [Good-

fellow et al., 2016] as well as present the notation we use in the thesis.

2.1.1 Concepts and Notation

Basic Objects We denote scalars, i.e. single numbers, with a lowercase vari-

able name typeset in italic, and type them, for example, x € R, or ¢t € N.

We denote wvectors, i.e. ordered arrays of scalars, with a lowercase variable
typeset in bold, for example x € R™ indicates a real-valued vector of size m.
We refer to a particular element of a vector with indexing, e.g. x; denotes
the i-th element of the vector x. Throughout the thesis, mentions of continu-
ous representations, symbol representations or embeddings refer to real-valued

column-vectors, and we interpret them as points in an n-dimensional space.

We denote matrices, i.e. two-dimensional arrays of scalars, with an uppercase
variable typeset in bold, for example, A € R™*" is a real-valued matrix of m

rows and n columns.



36 Chapter 2. Preliminaries / Background

Tensors, in general, are a generalisation of the objects above; they are d-
dimensional arrays of numbers, denoted with an uppercase variable typeset in
sans serif font, for example, A € R™*"*¢ indicates a 3-dimensional real-valued
tensor. Even though its definition encompasses the definition of scalars (d =0),
vectors (d = 1), and matrices (d = 2), later in the thesis we use the term tensor

to denote tensors of d > 2.

A differentiable function is a mapping from a space of tensors to a space
of tensors, such that there exists a derivative at each point in the function’s
domain, for example, f: R"™*"™ — R™. We often use the function-call notation,

presenting such functions as f(X) =1y, with X € R™*" and y € R™.

Basic operations Throughout our exposition, we rely on standard operations,
operators and frequently used functions on scalars, vectors, matrices and ten-
sors. We denote a vector or a matrix transpose with T, for example, xT. We
use the general tensor contraction to express the summation of products of
scalar components of tensors to pairs of indices bound to particular dimen-
sions of tensors, for example, the vector-matriz product (xTM); = 2{21 x; M;j,
the matriz-matriz product (MN);, = 237:1 M;;Nji, and the bilinear tensor
product (xTTy); = i 23]:1 xiT;;1y;. Moreover, we also use the Hadamard
product?, defined as (X ®Y);; = (X);;(Yij), and the outer product of two

vectors, x Qy =xyT.

By applying a function f to another function g, we produce a resulting function
composition h(z) = f(g(x)), also denoted as f(g(x)) = (fog)(x). By Vxf we
denote the gradient (the multi-variable generalisation of the derivative) of a
scalar-valued function f: R™ — R with respect to x, defined as (Vxf); = g—g{i.
The generalisation of the gradient for a vector-valued function f: R™ — R" is
the Jacobian matrix g—f{ € R™ ™ a matrix of all first-order partial derivatives
of f, defined as (%)Zj = gg;

In addition, we use specialised functions, frequently used in the field, such
as the sigmoid function o(x) = exp(x)/(exp(x)+ 1), the hyperbolic tangent
tanh(x) = (exp(x) — exp(—x))/(exp(x) + exp(—x)) and the softmaz function
softmax(x) = exp(x)/(>;exp(x)). We often use softmax to ensure that a
particular vector sums to one, i.e. Y softmax(x) =1, and 0 < softmax(x); <

1,Vsoftmax(x);.

lalso known as the element-wise multiplication



2.1. Neural Networks 37

2.1.2 Machine Learning Basics

Machine Learning concerns with models and programs able to learn with-
out explicit programming [Samuel, 1959]. In lieu of explicitly defining learn-
ing [Mitchell, 1997], we exemplify it as the process of finding functions that

approximate desired behaviours.

Concretely, in this thesis we study finding parameters 6 of parametrisable
differentiable functions fy: X — Y, such that these functions closely model a
set of input-output points called the training dataset, ® = {(x;,y:)}, where
x; € X and y; € ). Here, by “closely modelling”, we imply a requirement that
fo(xi) = yi, quantifying the deviation of fy(x;) from y; with a loss function,
L(fo(xi),yi)-

In an ideal case, we want to ensure this “close modelling” by optimising the
expectation of the loss over the data-generating distribution pgu, also called
the risk R(6):

R(8> - E(X,y)wpdata [['(fH (X7y>>] . (21)
However, this is intractable as we do not have access to the data-generating

distribution pg,q, but only to its samples—the training dataset ®. This brings

us to the notion of empirical risk, defined over the empirical distribution po:

R(9> E X,¥)~Po [‘C(fG(X7Y))]

> L(fo(xi),yi)-

| (%4,y:)€ED

(
1 (2.2)
1D
The goal of the learning procedure is to find the optimal parameters which
minimise the empirical risk:

0* = argmin R(6)
0

1
=argmin—r > L{fo(xi).¥i), (2.3)
o 1Pl yen

Ly(D)

where Ly(D) is the overloaded loss function defined on the whole training set,
signifying the average of losses per each example from the training set. We

refer to this process of optimisation as model training.

When Ly(D) is differentiable with respect to 6, we can use computationally



38 Chapter 2. Preliminaries / Background

cheap gradient-based optimisation methods, such as Gradient Descent [Cauchy,

1847] to optimise the loss by iteratively updating parameters 6:
01T o) — VLo (D), (2.4)

where 7 is the learning rate, a hyper-parameter which determines the up-
date step size, and Vy is the differential operator with respect to 6, making

VoL (D) the gradient of the loss with respect to 6 at § = 61).

Since calculating the gradient of the loss on the whole dataset ® per Equa-
tion (2.4) is often slow and even computationally intractable for large datasets,
we use variants of Gradient Descent, such as Stochastic Gradient Descent [Rob-
bins and Monro, 1951] and Mini-Batch Gradient Descent, which update pa-
rameters on the gradient of the loss on randomly chosen subsets of the dataset
at time t, B® c D:

1

(t+1) ) ., =
0 0 U\B(t)|

Y VeL(fyw (xi),yi)- (2.5)

(xi,y:)€B®)

The need to calculate this gradient many times throughout the training pro-
cedure requires an efficient way of calculation. Enter the back-propagation

algorithm.

2.1.3 The Back-propagation Algorithm

To efficiently calculate the gradient of the loss with respect to its parame-
ters and its inputs, we use the back-propagation algorithm [Linnainmaa, 1970,
Werbos, 1982, Rumelhart et al., 1986].2

In its essence, the back-propagation algorithm is an efficient dynamic program-
ming algorithm [Bellmann, 1957] for recursive application of the chain rule of
differentiation [Leibniz, 1676, de 'Hopital, 1696, Newton and Whiteside, 2008]
on a composite function. The chain rule enables us to compute derivatives of
composite functions. Given a composite function z = f(g(x)), where g(x) =y,

x € R y € R" and z € R the chain rule decomposes the calculation of Vyz

T
Vxz = <8y) Vyz, (2.6)

as:

ox

2Who exactly invented the back-propagation algorithm is a source of surprising con-
tention in the neural network community [Griewank, 2012, Schmidhuber, 2015].



2.1. Neural Networks 39

where Jy/0x is the Jacobian matrix of g, and Vyz is the gradient of z with
respect to y. The efficiency of this algorithm stems from the dynamic pro-

gramming approach, which avoids recalculation of the same expressions.

Today’s modern deep-learning libraries implement reverse-mode automatic dif-
ferentiation [Linnainmaa, 1970, Baydin et al., 2017], as a generalisation of
the back-propagation algorithm, and efficiently calculate the gradients by the
computation graph construction [Abadi et al., 2015, Maclaurin et al., 2015b,
Goodfellow et al., 2016], or by function transformation [Bradbury et al., 2018].

With back-propagation, we can compute gradients of arbitrarily complex func-
tions, from compositions of simple functions to, as we see in this thesis, com-

positions of complex functions representing continuously relaxed programs.

2.1.4 Architectures and Mechanism

By now, we presented the task of learning neural networks as function approx-
imators, the learning algorithm, and the efficient way to calculate gradients for
the learning algorithm. Here we present the architectures, i.e. the structures,

of neural networks used in this thesis.

Multi-Layer Perceptron (MLP) is the archetypal neural network architec-
ture. It is based on so called layers, an affine transformation followed by a

non-linear transformation:
ho(x) = o(Wx +b), (2.7)

where ¢ is an element-wise applied non-linear function, often called activation
function, such as the sigmoid or the hyperbolic tangent, defined earlier, and W
and b are the parameters of the layer 6 = {W b}. An MLP is a fixed-length

chain composition of such layers, applied on input x:

MLPy(x) = (hg, ©...0hg, 0 hg, ) (x)

(2.8)
= hy, (-..(hg,(he,(x)))) =,

where the parameters 0 of the MLP are the set of all parameters of each layer,
ie.0=U,0; ={W;,b;|ie{l,...,n}} and the number of functions composed
is called the depth of the MLP. The activation function of the final layer h,,

is often chosen based on the task the MLP is trained on, and in the case of



40 Chapter 2. Preliminaries / Background

classification, it is often the softmax function.

Since MLPs are a chain composition of layers, they are also called feed-forward

networks, as the (transformed) input is fed forward through the network.

Recurrent Neural Network (RNN) [Elman, 1990] is a neural network
architecture fit for processing sequential inputs, based on the following recur-

rence:

h(®) = f5(h(=), (2.9)

where h®) is the hidden state of the model at time ¢. This is essentially a
no-input dynamical system, which we can rewrite as a chain composition of

the recurrence:

eRNNy(h #) = (fgo...0 fao fo) (b))

2.10
= Fol-(fo(fo(0@)))) = (2.10)

We call this the execution RNN, though it technically is a precursor to the
RNN. Contrasting the MLP and the execution RNN, we see that the execu-
tion RNN is characterised by a variable number of applications of the same
recurrence, as opposed to the application of a fixed number of different layers
in the MLP. The standard RNN, on the other hand, is a modification of the
execution RNN which accepts a variable-length input (X(l),X(Q), .. .X(t)), and
returns a variable-length output (y(l),y(2), . .y(t)):

h® = f(ntD x®)

(2.11)
y" = go(h¥)).
A concrete example of an often used RNN, dubbed the Vanilla RNN is:
h") = tanh (W [h~1;x")] +b)
(2.12)

y(t) =0 (Wouth(t)) 5

where [x;y] =

X

] is the column-vector concatenation.

y

Long Short-Term Memory (LSTM) is an improvement upon RNN. The
hidden state h®) of the RNN functions as a memory element of the model, en-
abling it to process variable-length inputs, but it brings forward the issues of

exploding and vanishing gradients, leading to problems with long-term depen-



2.1. Neural Networks 41

dencies [Bengio et al., 1994, Pascanu et al., 2013]. Hochreiter and Schmidhuber
[1997] formulated the LSTM, a special type of RNN that provides solutions to
these problems, based on the recurrent application of the LSTM cell defined
by:

(2.13)

For more details on LSTMs and their inner workings, see Olah [2015].

Bidirectional RNNs (BiRNNs) / Bidirectional LSTMs (BiLSTMs)
[Schuster and Paliwal, 1997, Graves et al., 2005] are RNNs that fuse outputs of
two independent RNNs from Equation (2.12) running from opposite directions

of the input:

=

) = tanh (W [H ;2 0])

0= (Wou 1)

) — tanh (W2 -1; %)) (2.14)
v = o(mw))

y® = {yﬁg;@} :

VTTT%

The concatenation of outputs from opposite directions of the same input en-
ables the output layer to utilise information from both the forward and the
backward states at the same time which helps to mitigate the long-term depen-
dency issue. Analogously, BiLSTMs follow the same logic, fusing the output
of two independent LSTM cells in opposite direction.

MLP, RNN, LSTM, and BiRNN are depicted in Figure 2.1.

Attention mechanism in neural networks enables models to focus on a partic-
ular subset of the data. To focus on the k-th element of a vector x, we could

index the vector x; with a one-hot weight vector, 1;. However, this type of



42 Chapter 2. Preliminaries / Background

(1) (2) (3) ()
y
3-0-0-0- -0 B0 -0

(a) MLP (b) RNN

PEB E D88

o D000 SO
FO088a  Ho8o oo

@ @
0B O

(c) LSTM (d) BiRNN

input output internal state @ function / layer @ LSTM cell

Figure 2.1: A depiction of a) MLP, b) RNN, ¢) LSTM, and d) BiRNN. BiLSTM
is a BIRNN with LSTM cells.

T

EX
B

=

interaction is not differentiable and is difficult to train [Weston et al., 2015,
Luong et al., 2015]. To make it differentiable, we focus on the whole vector to
different extents, via a convex combination of the elements of the vector, i.e.
weighing x with a vector of weights such that >} w =1, and 0 < w; < 1,Vw;.
This condition is enforced with the softmax function, and is called soft atten-
tion:

yT = softmax(s)Tx, (2.15)

where s is a vector of arbitrary values called scores which can be calculated in
a plethora of ways [Bahdanau et al., 2015, Graves et al., 2014, Luong et al.,
2015]. For more details see Olah and Carter [2016].

Differentiable Memory is a continuous approximation of discrete memory.
The hidden state of RNNs serves as a memory element of the model, enabling
better dealing with long-term dependencies. However, the hidden state is an
internal memory resource of limited capabilities. Graves et al. [2014] coupled
an RNN with a differentiable external memory accessed with an attentional
mechanism, to enable the RNN to learn to read and write representations in

the memory.

Given a memory bank M € R™*" representing m n-dimensional row-vector

2Each element in the column-vector multiplies the appropriate row of the matrix, and
the result is the sum of such weighted rows.



2.1. Neural Networks 43

| [ LI
L Ll [ ]
s ~ 0 HaM
| O O
)

(a) Differentiable Reading / Attention. Note the
transposition of w and r in Equation (2.16),
but we depict it as a column-vector for com-
pactness and easier graphical understanding.?

®
......... . -
] |
[] []
o ( - m)+ |
fg ]
L O

(b) Differentiable Writing

Figure 2.2: A depiction of a) differentiable reading / attention and b) differentiable
writing.

values, attention enables differentiable reading and writing into said memory.
Reading is realised as a convex combination of all the row-vectors of the mem-

ory bank (soft-attention):
r®7  w® MO (2.16)
with the weight vector Y w® =1, and 0 < wz-(t) <1,¥i.

Writing, on the other hand, is a bit more involved:

M MV o101-wge®)+wt) @a® (2.17)
erasure addition

where e, is the erase vector (i.e. the vector to be erased from the memory), a;
is the add vector (i.e. the vector to be added to the memory), and 1 a vector

of ones.



44 Chapter 2. Preliminaries / Background

Given that both the erasure and the addition are differentiable, the whole
writing operation is differentiable. Figure 2.2 depicts the attention/reading

and writing mechanisms presented.

2.2 The Language of First Order Logic

Chapter 4 focuses on a differentiable interpreter for a logic language Data-
log, hence we present an excerpt of Datalog notation and the first-order logic
framework. We start with the concepts and notations and move towards the
backward chaining algorithm, which is at the core of the differentiable inter-
preter NTP.

2.2.1 Concepts and Notation

Throughout the thesis, we assume standard concepts and terminology from the
First-Order Logic (FOL) and logic programming [Russell and Norvig, 2009,
yet our notation differs slightly since we borrow it from DATALOG. We briefly

define the standard concepts and the terminology as well as notation used.

Symbols We denote constant symbols in lowercase letters, like A, B, LONDON; ...,
and wariable symbols in uppercase letters, such as X,Y,Z,... and typeset
both in SMALL CAPS. We denote predicate® symbols in lower camel case
p,q,locatedIn,... and typeset them in a typewriter font. In this work, we
consider only the domain of function-free FOL, hence we do not admit the

concept of a function.

Expressions Given the domain of function-free FOL, we consider a term t
to be only a simple term—consisting of a constant or a variable—and type-
set terms in the default serif font. An atom a is an element of the form
p(t1,t2,...,tn), where p is a predicate, and each t; is a term. The number n in
the previous atom is called the arity of the predicate p, e.g. locatedIn(X,Y)
is a binary predicate. Without loss of generality, we consider only binary pred-
icates in this work. An atom is ground if there are no variables in the atom,

e.g. locatedIn(LONDON, UK).

A definite clause is an expression formed of atoms in the form of a; Aag A

.. Ny — apy1, where all a; are atoms, A is the logical and operator, and —

4We also call predicates rules and use these two terms interchangeably.



2.2. The Language of First Order Logic 45

the logical implication operator. In this work, we consider all variables in all

expressions being universally quantified.

Substitution A substitution ¥ = {X;/t1,X2/ts...} is a mapping from a vari-
able to a term, defined as a set of variable/term pairs. The application
of the substitution @ on an atom a is denoted as wa, and results in a
new atom with variables in the atom substituted by their appropriate terms
in ¢. For example, given a substitution ¢ = {X/LONDON,Y/Z} and an
atom a = locatedIn(X,Y), the result of the substitution application is
Ya = locatedIn(LONDON,Z).

Logic Programming Definite clauses are often written in the reverse form
an41 ¢ ayp ANag A ... Aay, in Logic Programming. In DATALOG the (reversed)
implication symbol is replaced by :— and the A operator is replaced by a
comma, like this a,41 :— ay,as9,...,a,. We call this a DATALOG clause. The
atom an41, left from :—, is called the head, whereas the optional, comma-

separated list of atoms on its right is called the body.

We call a clause without a body, such as ap41:— {} a fact F € F, and omit
the body in writing, e.g. a,+1 and denote a set of facts as F. A clause with a
body, such as a1 :— a1,a9,as, is called a rule R, and we denote a set of rules
with R. Finally, a logic program, also called a Knowledge Base (KB), is a set

of DATALOG clauses—facts and rules—and we denote it as R.

Lists Finally, we define a list as an object consisting of either an empty list |]
or a nested ordered pair of an element, called the head, and a list, called the
tail written as L = [head : tail]. In addition to the head/tail construction, we
also use a modified set-builder notation to define lists, with braces replaced by
square brackets, e.g. L= [l |l €[1,2,3]]. In general, we use lists instead of sets

to denote their importance in practical implementations.

Moreover, we use lists to represent atoms and rules. We write atoms as
lists, e.g. locatedIn(LONDON,Y) as [locatedIn, LONDON, Y], and rules as
lists of lists, e.g. locatedIn(X,Y) :— locatedIn(X,Z),locatedIn(Z,Y) as
[[locatedIn, X, Y], [locatedIn, X,Z], [locatedIn,Z, Y]].

2.2.2 Backward Chaining

Having knowledge represented as a FOL Knowledge Base (KB) opens the path

to deriving new knowledge via inference algorithms. Two such algorithms,



46 Chapter 2. Preliminaries / Background

both based on modus ponens [Suppes, 1999], are used in logic programming:
forward chaining and backward chaining. In its essence, in forward chaining,
rules whose bodies are satisfied repeatedly expand the KB with the head of
the rule, whereas backward chaining works in the opposite direction, finding

knowledge which supports a goal.’

The backward chaining algorithm can be expressed in an imperative style as
in Russell and Norvig [2009]° or in a functional style as in Rocktaschel and
Riedel [2017]. In this work, we adopt the abbreviated functional style from the
latter, presented via piecewise-defined functions. We define the intermediate
state of the interpretation directly with the substitution set v, and omit the
exact proof path trail from the formulation as an engineering detail. With
FAIL we denote a special empty state of unification mismatch; once FAIL is
reached, no further proof derivations are considered. The goal G' we want to
prove is formally a term, but in this work we focus on goals as grounded terms

only.

The backward chaining algorithm uses Depth-First Search (DFS), executed by
mutually recursive or and and functions to explore the space of all possible
proofs while using the unify function to ignore paths with incompatible log-
ical expressions. The algorithm ends either with a unification failure, a valid

substitution, or a partial result if a prespecified search depth has been reached.

OR The or function” operates by fetching all clauses H :— B € & (rules and
facts) that might unify with the goal G. It then unifies the head H of each
clause with the goal GG, and calls the and function on the resulting substitution

and the body B of each of these clauses:

H — BeRr
S’ € andg(B,unify(H,G,S))

/

org(G,S) = : (2.18)

The or function is the starting point for the proving process, starting with
a goal G we aim to prove and the starting state being the empty unification
set, org(G,0). We omit the details of variable standardisation and cycle de-
tection [Russell and Norvig, 2009, Van Gelder, 1987] in the interest of brevity.

5We use the terms goal and query interchangeably.

SFor an easy-to-follow implementation in Python, see https://github.com/aimacode/
aima-python/blob/master/logic.py#L1438

"The query can be proved by any one of the clauses in the KB, hence the name or


https://github.com/aimacode/aima-python/blob/master/logic.py#L1438
https://github.com/aimacode/aima-python/blob/master/logic.py#L1438

2.2. The Language of First Order Logic 47

districtIn(bloomsbury, london).
capitalOf(london, uk).
locatedIn(X, Y) :- districtIn(X, Z), capitalOf(z, Y).

Listing 2.1: A running example of a small Datalog knowledge base. The knowl-
edge base represents relationships between Bloomsbury, London and
the UK.

AND The and function® is invoked on the body of a rule, and in turn, it
must prove each atom of the body, while keeping track of the accumulated
substitutions. It simply returns the substitution state S if the body is empty,
otherwise, it applies the substitution on the subgoal v g, and calls or on the

resulting expression:

FAIL if S = FAIL
g if G =[]

S" € org(¢g,9)
S" € andg(G',5)

andg(G,S) = (2.19)

1/

otherwise G = [g: (]

Note that here the substitution is equal to the substitution state ¢ = .S, but
we separate them here as later we will expand the substitution state to contain
the substitution and its score. These two functions lay grounds for the exhaus-
tive search underlying backward chaining, and they rely on the unification for

ignoring incorrect proofs.

UNIFY The unify function, used earlier in or, calculates the correspondence
of two logical expressions by iterating through pairs of symbols in the two

expressions that we want to unify. It fails if the atoms are of different arity:

FAIL if S = FAIL
S it H=G =]
unify(H,G,S) =1 FAIL if H=[]VG =]
unify(H',G',unify-var(h,g,S)) otherwise Z:{?g]/]’
(2.20)

8The name and stems from the necessity to prove every atom in the body of the clause.



48 Chapter 2. Preliminaries / Background

Knowledge
Base :

[districtln(bloomsbury, london)]

;| capitalof(london, uk)

[ locatedIn(bloomsbury, uk) ]

or(D,:'_‘j_b}) gllocatedln(x, Y)]:»[districtln(x, Z)] [capitalof(z, Y)]

\‘ : H B1 B2 :
unity(@.(H).: ) s

fy;: = {X/bloomsbury, Y/uk}
and((B1). 82). ) fy, = {X/bloomsbury, Y/uk, Z/london}
or(y, B1). %)
unity(y, 81, (], %)
and([[B2)1, ;)

or(w,(82) )

unify(w,(82), (), w50

e

Figure 2.3: An example of the backward chaining execution on a small knowledge
base. The knowledge base, presented in Listing 2.1, is also noted in the
top right corner. Circles signify substitutions and squares signify atoms
(with circles next to squares signifying applying a substitution to an
atom). The colour coding of the KB and unifications follow through
the example. We omitted some calls to and for clarity. Unsuccessful
proof paths are greyed out to emphasise the single correct/final proof
path in this example.

unify uses a helper function unify-var which updates the substitution set in
case one of the two compared symbols is a variable, otherwise returning failure

if two non-variable symbols are not identical:

SuU{h/g} ifheV
SU{g/h} ifgeV,h¢V
S ifg=nh '
FAIL otherwise

unify-var(h,g,S) = (2.21)

Example Throughout the chapter, we use a small KB example and its deriva-
tives, outlining relationships between the United Kingdom (UK), London and
its district Bloomsbury, presented in Listing 2.1.

We depict the full trace of the backward chaining procedure, given the example

KB and the goal locatedIn(BLOOMSBURY,UK) in Figure 2.3. The figure



2.3. Interpretation 49

shows a full proof tree for a goal, with all the calls to unify, or and and
functions, as well as the states of the substitutions . Note many branches

ending in unification failure due to symbol incompatibility.

2.3 Interpretation

Program interpretation / execution is one of the computational processes we
aim to continuously approximate in this thesis. We bypass the fundamen-
tals of source code interpretation and compilation [Aho et al., 1986, Mak and
Copeland, 1996] to focus on the core concepts and present a simple function

notation.

2.3.1 Concepts and Notation

States, instructions, and programs We define a program state S as a
tuple of values or contents of particular computer resources, such as memory,
registers, etc., that uniquely describe the informational makeup of a computer
or a program. We assign it a subscript like S®) to signify a state at a particular

time ¢, and denote the set of all program states with S.

An instruction ¢ is a basic syntactic unit of a programming language. All
instructions of a programming language belong to its instruction set, : € J. In
an imperative language, instructions define the units of computational actions,
whereas in a declarative language they define the logic of computation. For
example, INC reg is an x86 instruction [Ferrari et al., 2006] that denotes an

increment of the value of the register reg it is applied to by 1.

To specify the semantics of an instruction, we use the emphatic bracket no-
tation from denotational semantics [Scott and Strachey, 1971, Tennent, 1976].
For example, the semantics of the instruction INC reg, where reg is an iden-

tifier for a register, is the following:
[INC reg] = reg< [reg]+1. (2.22)

This reads that the meaning of the [[INC reg ]] instruction is a function that
takes the value of the register, [[ reg ]], adds one to it and stores it back into
the register reg. Note here that we implicitly assume the instruction operating
on the state S, where reg is an element of the state, and that we use the

emphatic brackets to both denote the meaning of an instruction [[INC reg ]]



50 Chapter 2. Preliminaries / Background

and the value of an element of the state [[ reg ]] We see that the semantics of

the instruction is a transition function, from one program state to another:
[¢e]:S5—S. (2.23)

Admittedly, we do not adhere to the rigour of denotational semantics, as our
goal in this work is not to fully formalise the meaning of languages used in this
thesis but to present a light and meaningful way to represent the semantics of

instructions.

Next, we define a program P, from the set of all programs P € P, as a sequence
of instructions:
P=(t1,t2,...,tpn), (2.24)

thus P € J*. In an imperative language, a sequence of instructions details
the steps of computation that the program defines, relying on the notion of
compositionality:

[(t1,2)]=Te2lofua]- (2.25)

On the other hand, in a declarative language, a weaker notion of composition-
ality applies because in a declarative language the order of instructions does
not matter, and a program forms a set of instructions that detail the state of

the problem domain, leaving the details of execution to the interpreter.

Interpretation In general, we define an interpreter T per Figure 1.1 as a
function based on the instruction set J that, given an input / € Z and a program
P € 3%, produces an output O € O:

Ty: PxI—0. (2.26)

Treating the input I and the output O as elements of the state, i.e. 1,0 € S,

makes the interpreter:
T5: PxS—S. (2.27)

Note that albeit the terms abstract machine and interpreter technically differ

from one another, in the thesis we use them interchangeably.



2.3. Interpretation 51
2.3.2 Logic Program Interpretation

In Equation (2.26), we defined an interpreter as a function that takes a pro-
gram and an input and produces an output. Similarly, we can formulate a
logic program interpreter 1p,. In a logic program interpreter, the program P
represents the state of the problem domain and is called the knowledge base K,
the goal atom G € A is the input, and the output is a set of states S, consisting

of either valid proof states or the indication of proving failure:
Tp: AxA—=S. (2.28)

One key difference to an imperative language like FORTH is in the control
flow. In FORTH the control flow is explicit and fully specified by the program.
In contrast, in logic program interpretation the control flow is pre-defined
and consists of a specific theorem-proving strategy—in our case, backward
chaining—and the knowledge base K specifies the structure of the domain on
which the theorem-proving strategy operates. In our case, backward chaining
as a theorem-proving strategy is supported by the or, and, unify and the

supporting functions, expressing the interpreter as:
T{p(.ﬁ, G) = OFR(G,Q) . (229)

This reflects the declarative nature of logic programming—the behaviour of

the proving procedure of the logic program is not under the control of the

programmer.”

9Though the control is not under the influence of the programmer, there are still many
optimisations, engineering details and shortcuts which can be made in concrete implemen-
tations of logic program interpreters [Warren, 1983].






Chapter 3

04: A Differentiable Forth

Interpreter

The overarching goal of Al is the development of machines and algorithms able
to effectively master complex behaviours from real-world data. A notable step
in this direction is the recent advancement of continuous neural architectures,
akin to traditional computers [Graves et al., 2014, Kurach et al., 2016], able
to learn algorithms from data. The end-to-end differentiability of these archi-
tectures permits learning by gradient-based methods, enabling them to learn
these complex behaviours from program traces [Reed and De Freitas, 2016,
Mirman et al., 2018] and input-output pairs [Graves et al., 2014, Zaremba and
Sutskever, 2015]. However, these models regularly fail to generalise outside
of the training distribution and still stay data-intensive for often difficult-to-
obtain data [Marcus, 2018, Chollet, 2019].

In Chapter 1 we established that programs can effectively present complex
behaviours in a compact representation and enable arbitrary generalisation by
design. Enabling structured execution, abstraction and compositionality, fully
specified programs could provide strong inductive biases to learning algorithms
able to utilise them. The question arising is how can learning algorithms ex-
ploit programs as a representation of knowledge, and utilise them as a strong
inductive bias for achieving generalisation? We posit the answer lies in differ-

entiable interpreters.



54 Chapter 3. 04: A Differentiable FORTH Interpreter

3.1 Programs as Inductive Biases

To address the question of utilising programs as a strong inductive bias in
learning algorithms, we turn to differentiable interpreters. They, in turn, en-
able us to not just adhere to the strong bias of the full program, but also
to specify an incomplete program—a sketch [Solar-Lezama et al., 2006, Solar-
Lezama and Bodik, 2008]—in a traditional programming language, consisting
of both fully specified (known) and incomplete (unknown) parts. The known
part provides the strong inductive bias for the neural network, whereas the
unknown part, which the programmer does not how to appropriately define,

is learned from the data.

As explained in Chapter 1, the core insight behind differentiable interpretation
relies on the fact that most programming languages can be formulated in
terms of an abstract machine or an interpreter that executes commands of
the language. We can then implement these machines as neural networks
via continuous relaxation of the discrete interpretation. This makes part of
the model follow the sketched behaviour, providing the strong inductive bias
consistent with the program, and the unknown parts are optimised with respect

to the training data.

The host language in this work is FORTH, a simple yet powerful Turing com-
plete stack-based language. We chose FORTH for the following reasons:

1. it is an established, general-purpose high-level language relatively close
to machine code [Brodie and FORTH Inc, 1987]!.

2. it promotes highly modular programs through the use of branching, loops
and function calls, thus bringing out a good balance between assembly

and higher-level languages [Brodie, 2004].

3. its abstract machine is simple enough [Koopman, 1993] for straightfor-

ward creation of its continuous approximation.

4. finally, we wanted to strike a good balance between flexibility and sim-
plicity; Turing machines are simple yet too low-level and too abstract,
whereas higher-level language such as Python provides greater flexibility,

but its interpreter is far too complex for implementation.

LFORTH also enables self-modification, a property of interest in the Al research commu-
nity [Schmidhuber, 2004, 2009].



3.1. Programs as Inductive Biases 55

Underlying FORTH’s semantics is a simple dual-stack abstract machine. We
introduce 04, a continuous relaxation of this machine, differentiable with re-
spect to the transition it executes at each time step, as well as to its distributed
input representations. 04 enables writing sketches—underspecified programs
that partially define machine behaviour. The sketches, albeit conceptually
similar to sketches in program synthesis [Solar-Lezama et al., 2006] and to
probabilistic programs [van de Meent et al., 2018], have the added benefit of
being trained through backpropagation which makes them easy to integrate

with any other neural model.
We pose the following research questions:

o Can we use sketching with 04 to capture arbitrarily complex inductive
biases, including conditionals, loops, functions and recursion, on both

discrete and continuous data?

o Does 04 enable us to achieve strong generalisation from a small number

of input-output data?
e Can 04 sketches be jointly trained with other neural models?
We answer these three questions by showing that:

e given input-output pairs, a 04 sketch can learn to fill in the missing parts
of the sketch and generalise well to problems of unseen size on the sorting
and adding neural programming tasks introduced in Reed and De Freitas
[2016]

e a 04 sketch with basic algorithmic knowledge can be trained jointly with
an upstream LSTM [Hochreiter and Schmidhuber, 1997] for solving word

algebra problems

The latter demonstrates that 94 and the LSTM can “learn to read” natural
language narratives with numerical values and reason with them to answer
mathematical questions, all without the need for explicit intermediate repre-

sentations used in previous work.

The contributions in this chapter are the following: i) we present 94, a differen-
tiable interpreter—a neural implementation of the FORTH dual-stack machine,
ii) we introduce 04 sketches for transferring the inductive bias of programs
into a neural network, iii) we use these sketches as a strong inductive bias on

learning algorithm from data, iv) we introduce program code optimisations to



56 Chapter 3. 04: A Differentiable FORTH Interpreter

speed up neural execution, and v) using 04 sketches, we obtain state-of-the-
art for end-to-end reasoning about quantities expressed in natural language

narratives.

3.2 Background: Forth Abstract Machine

FORTH [Moore and Leach, 1970, ANSI, 1994, Koopman, 1993] is a simple, pro-
cedural, stack-based programming language, with a long history of application
in embedded systems. It is still being actively used today [Furter and Hauser,
2018], although its interesting properties make it also a somewhat esoteric

language for today’s standards.

FORTH is a semantically defined language, which makes it resemble more to a
dictionary of words/commands, where each word is semantically well-defined
as a specific operation than to a standard programming language [Knaggs,
1993]. This makes its interpreter easier to build, as it relies on simple lookup
operations rather than on an explicit grammar as a formal description of its

syntax. 2

Appropriately, FORTH statements are called words,®> and programs written in
FORTH are composed of a sequence® of these words [Brodie and FORTH Inc,
1987]. Albeit simple, FORTH is an extensible language which promotes de-
composition and abstraction by permitting the definition of new words that,

in turn enabling programmers to write elaborate programs.

The semantics of FORTH are defined in terms of the FORTH dual-stack abstract
machine, which we define by its machine state, the instruction set and the ex-
ecution loop [Thomas, 2018], all together forming the FORTH interpreter. For
our purposes, the FORTH machine state S contains all the memory elements
that the language operates on. The FORTH instruction set § contains the op-
eration semantics of all the core words, and it is the basis of the interpreter
which executes the program P on a state S. In an imperative language, this
boils down to executing a single command of the program before moving on

to the next one.

2Since the grammar of FORTH can easily change from one part of a program to another,
as even core-defined commands can be changed at any moment, it would be inappropriate
to model its syntax with a static grammar.

3FoRrTH commands and routines are called words, hence we use all these terms inter-
changeably.

4FORTH is a concatenative language.



3.2. Background: FORTH Abstract Machine 57

Output

Asussie
]

(N1 [N] B e )

ofjw|ls~| T

Asorr
=R

: BUBBLE m

DUP
Program

IF
>R

Program P

Instruction set

Figure 3.1: A depiction of the FORTH Abstract Machine. The input is written
onto the data stack D, the return stack R, and/or the heap H. The
program counter ¢ picks the command from the program P that is to be
executed. The instruction set contains the definitions of all commands,
out of which ¢ picks the current one. The selected command is executed
on the machine state S, and the result is written back onto it. The
program counter ¢ advances to the next command.

A depiction of the FORTH abstract machine, including its machine state, in-
struction set and the execution loop, is given in Figure 3.1. Though the exact
details of FORTH formalisation depend from a source to source [Knaggs, 1993,
Koopman, 1993, Thomas, 2018], we opted for this particular formalism to facil-
itate grounding the later continuous relaxation of the FORTH abstract machine

and its operations.

3.2.1 Forth Machine State

As noted, FORTH abstract machine (the FORTH interpreter 1) contains the
execution loop, based on the fixed core instruction set §, operating on the
machine state S. The machine state is a tuple S = (D, R, H,c) consisting of
two stacks: a data evaluation pushdown stack D (referred to as data stack)
which holds values for data manipulation, and a return address pushdown stack
R (referred to as return stack) which stores return addresses for subroutine
calls. These two stacks are accompanied by a memory heap H (a random
access memory buffer) that holds data and the program P, and a program
counter® ¢ that contains the address (i.e. pointer) of the word being currently

executed [Koopman, 1993].

Each FORTH word in the instruction set § operates on the FORTH machine
state and produces a new state. The semantics of the state change depends

on each of the words in the instruction set §.

®Also known as the Instruction Pointer (IP) or the Execution Pointer (EP)



58 Chapter 3. 04: A Differentiable FORTH Interpreter

3.2.2 Forth Instruction Set

Per Equation (2.23), each FORTH word w; € § is an instruction which is se-

mantically a transition function between two machine states:
[wi]: S—=S. (3.1)

FORTH is a rich language with more than 100 words [ANSI, 1994, Brodie and
FORTH Inc, 1987, Brodie, 2004, Thomas, 2018], and implementing an inter-
preter supporting all of them would take considerable time and effort. We
decide to implement a small (but certainly not minimal) subset of all avail-
able FORTH words that would make our interpreter fully expressive and would
showcase the breadth of applicability of continuous relaxations to discrete com-
mands, while ultimately being useful and enabling users to write short pro-
grams. This led us to implement words primarily operating on the data stack,
but also including a few words directly operating on the return stack as well
as the heap. We put a particular emphasis on complex words for defining and
calling subroutines, influencing control flow, and additionally implemented a

few words for defining variables to simplify the user experience.

For the purpose of this thesis, we roughly divide the implemented FORTH words
into 7 groups: data stack, return stack and heap operations, control, subroutine

control, variable creation and other, and we describe them accordingly.

Note that top-of-the-stack (TOS) denotes the value on the top of the stack,
and next-on-stack (NOS) denotes the value immediately below the TOS value.

Data stack operations These words include operations which directly ma-

nipulate data stack elements.

int pushes integer literal int on the (data) stack. We allow only

non-zero integer literals in this work.

DROP pops a literal off the stack

DUP duplicates the TOS

SWAP swaps the TOS and NOS

OVER pushes a copy of NOS (on the stack)

1+, 1- increment and decrement of the TOS



3.2. Background: FORTH Abstract Machine 59

+, -, %, / arithmetic operations applied to NOS and TOS

>, <, = comparators applied to NOS and TOS; if the result is
TRUE, push 1 on stack, otherwise push @°

Return stack operations These words tend to the transfer of values between
the data stack and the return stack.

>R pop data stack TOS and push it to return stack
R> pop return stack TOS and push it to data stack
@R pushes (a copy of) return stack TOS to data stack

Heap operations These words tend to the transfer of values to and from the

heap.

@ pushes the value from the data stack TOS heap address on
the data stack

! stores data stack NOS value on the TOS address in the heap

Control statements These words tend to the decision of whether, and if so,
how many times will other statements be executed. Please note that each
token of these commands carries its own separate semantics in FORTH but we
explain them together as their combination easily relates to standard control

«

statements in other languages. “..y” denotes a sequence of FORTH words.

IF..THEN pops the data stack TOS and executes . .
if it is equal to 1

IF. . ELSE..,THEN pops the data stack TOS and executes
executes . .7 if it equals to 1, otherwise

executes . .»
BEGIN. . {WHILE. .,LOOP keeps executing .., while . .7 equals to 1

DO. .LOOP executes . ., increments index (TOS) and
repeats the same while the index does not
equal to the limit (NOS)

Subroutine control These words tend to the new word definition and invo-

cation. New words are defined with : sub .. ;, where : marks the start of

6In ANSI ForTH, FALSE is represented with -1.



60 Chapter 3. 04: A Differentiable FORTH Interpreter

the subroutine, sub denotes the subroutine / word identifier, .. denotes the

subroutine commands, and ; marks the end of the subroutine.

sub saves the address of the subroutine for use in sub-

sequent subroutine calls.
sub calls a subroutine sub

; exits a subroutine

Variable creation These words tend to the definition of variables.

VARIABLE var creates a variable var on the heap

CREATE var ALLOT int creates an array var of size int on the
heap

var variable call; pushes the value of var to
data stack

Other These words are not a part of the FORTH specification and were intro-

duced to ease the experience.
NOP does nothing

MACRO: sub .. ; treats the identifier sub as a macro: prior to start-
ing the interpretation, the identifier sub is replaced

with its defining words . .

These are the (core) words that make up our FORTH instruction set §. For

more detail on the exact semantics of these commands, see Appendix A.1.
Lastly, we support code commenting with two types of comments:

\ comment from backslash to end of line

( in-line comment in parentheses )

The in-line comments in parentheses are often used as stack comments to
indicate the stack invariants by indicating the state of the stack before and
after the word execution, separated by --. For example, the stack comment
(al .. an seqg_len -- an .. al) for the word SORT in Listing 3.1 aims to
explain that SORT removes the top value of the stack (seq_len) and shuffles the

elements below (it sorts them, but we could not write that down compactly).



W = O Uk W

= e
N o= O ©

3.2. Background: FORTH Abstract Machine 61

: BUBBLE ( al .. an seq_len-1 -- al .. an seq_len-1)
DUP IF >R
OVER OVER < IF SWAP THEN
R> SWAP >R 1- BUBBLE R>
ELSE
DROP
THEN
: SORT ( al .. an seqg_len -- an .. al )

1- DUP @ DO >R Re@ BUBBLE R> LOOP DROP

2 1 3 3 SORT \ Example call

Listing 3.1: A Bubble sort implementation in FORTH. Note that in ANSI FORTH
specification, the word BUBBLE in line 4 should be replaced by the
word RECURSE.

Next, we present the FORTH program, executed by the FORTH interpreter 1

word by word, thus transitioning from a state to a state.

3.2.3 Forth Program

A FORTH program P is a flat sequence of FORTH words per Equation (2.24):
P = (wy,wa,...,Wy,). (3.2)

Given the compositionality of semantics in Equation (2.25), a program P is se-
mantically a composition of a transition functions, hence a transition function

too:

[P]=1(wp,wa,...,w,)]

3.3
:[[Wn]]o"'o[[WQ]]o[[Wl]]- ( )

Though the FORTH program P, and the state S are usually considered as a

part of the heap H, we consider them separate to ease the exposition.

Example An example of a bubble sort algorithm implemented in FORTH is
shown in Listing 3.1. We explain this program in the interest of easier under-

standing of this code as parts of it are used in the experimental section.

The recursive solution for the bubble sort in Listing 3.1 starts at line 12,
where the input is defined as a sequence of numbers (2 1 3) pushed on the
data stack together with the length of the sequence (3), after which the word
SORT is called.

The SORT word, defined in lines 9-11, executes the outer loop of the sort. This
loop calls the bubbling procedure BUBBLE which moves the biggest element of




62 Chapter 3. 04: A Differentiable FORTH Interpreter

D
=577 =170 =TT
2 T TN E I

1 o2 ! 2 T

3 3 3

2 2

R _____

I é_UB_B_E I
T I 1 1
AsussLe AsussLe AsuseLe AsuseLe AsusLe

2 2 2 2 2
Program P Asorr E> Asorr E> Asort E> Asorr E> Asorr
: BUBBLE <
DUP : BUBBLE
IF
>R
R> <
SWAP : <
>R SWAP <
1- = <
BUBBLE *
R>

Cc

Figure 3.2: Graphical depiction of a part of the machine state (D, R, ¢) during Bub-
ble sort in Listing 3.1. Stack elements changed between steps marked
with a dashed line, left-pointing triangles denote program counters
pointing to the currently executed command of the program (also in-
dicated by command below the triangle). We omit the heap as it is
not used in the program. See text below for more detail.

the sequence to the bottom of the data stack. Concretely, line 10 sets up the
start (1- DUP) and the limit (@) of the DO loop and calls the body of the loop
as many times as the input sequence is long, minus 1. The body of the DO loop
saves the copy of the length of the input sequence on the return stack (>R Re),
calls the BUBBLE word, and returns back the length of the input sequence from
the return stack back to the data stack (R>). The final DROP just removes that

length from the data stack after the sequence has been sorted.

The BUBBLE word, defined in lines 1-8, executes the recursive logic of the
bubbling operation. DUP in line 2 duplicates the top of the data stack containing
the length of the subsequence, which guides the conditional IF. If the length
is 0, there are no more values to 'bubble’ so the length is dropped with DROP
in line 6. This effectively means that the element below the length of the



3.2. Background: FORTH Abstract Machine 63

sequence is in its correct place. Otherwise, if the length is non-zero, the length
of the subsequence is temporarily moved to the return stack (>R). The whole
of line 3 is the comparator that ensures that NOS is bigger or equal than
TOS. Following the comparison, line 4 returns the length of the subsequence
back to the top of the data stack and moves the lesser of the numbers in
the comparison on the return stack (R> SWAP >R). This denotes one bubbling
movement done, and the length of the subsequence is decremented (1-), and
BUBBLE is called recursively again on the subsequence. The machine state of the
ForTH interpreter for the line 4 of the BUBBLE word, is depicted in Figure 3.2.
R> after the recursive call makes sure all the temporarily saved non-maximal
elements of the subsequence which were saved on the return stack are returned

on the data stack for the next bubbling iteration in the DO loop in line 10.

3.2.4 Forth Execution Loop and Interpretation

Execution Loop The execution loop performs the execution cycle of FORTH.
It executes the transition function of each word, and consequently the whole
program, over a sequence of intermediate states, thus making the core loop of
the FORTH interpreter 75. Based on the instruction set §, the loop, given a
program P and an input state, produces the next state, per Equation (2.27).

Procedurally, the FORTH execution loop implements a simple three-stage exe-
cution. First, it reads the current word w; of the program P that the program
counter ¢ points to. Second, it searches for the definition of the word w; among
its core words and the word dictionary, and if found, it executes the word.
Third, if the word does not exist in the dictionary, it tries to convert it to a

literal, e.g. a number or a variable address, and if that fails, it throws an error.

Concretely, given a program P and a state at time ¢, .S (t), the program counter
¢ of the state S® uniquely defines the word wf(t) (where ¢(t) is the program
counter of the state S (t)) to be executed, and executes it on the state S,

leading it to the following state S+1) as follows:

S+ = [[wgt) ]] (S®). (3.4)

Interpretation Based on this equation, which defines execution of a single

word, and the Equation (3.3), the interpreter 1% presents a recurrent execu-



64 Chapter 3. 04: A Differentiable FORTH Interpreter

tion/composition of words of program P, starting at the initial state S 0),

T5(P.8O) = ([ why | o [ whie-ry | o+ [ whtoy ()
= [l | ([l ] - (W0 5O

What is crucial to notice here is that the program counter ¢ decides what is

(3.5)

the current word being parsed, looked up and executed, and that the execution
of that word determines the next word we1). This is directed by FORTH’S
control statements and subroutine control words, which are ultimately reduced
to low-level jumps and conditional jumps (BRANCH and BRANCH®) to a set of
labels tagging code blocks (e.g. invoking a new word is a branch to a label

that tags the first word in the definition of the new word).

By now, we presented all the elements of the FORTH interpreter—the machine
state, the instruction set, and the program, as well as the execution loop.
In the next section, we present the continuous approximation of the FORTH

interpreter.

3.3 The Differentiable Forth Abstract Ma-
chine 04

When writing a FORTH program, programmers define a sequence of FORTH
words, i.e. a sequence of known state transition functions. This caters for the
case then the programmer knows how they want to model the computational
process. To accommodate for cases when the developer’s knowledge is incom-
plete, i.e. when the programmer does not know all the necessary detail how
to appropriately define the computational process, or even cases when defin-
ing the computational process is impossible, we extend FORTH to support the
definition of a program sketch [Solar-Lezama et al., 2006]. As with standard
ForTH programs (Equation (3.3)), sketches too are semantically a compo-
sition of transition functions. However, the important distinction between a
sketch and a program is that the sketch may contain transition functions whose

behaviour can be learned from data.

We achieve this ability to learn the transition functions by continuous re-
laxation of the FORTH abstract machine. Continuous relaxation of the full

FORTH abstract machine affords us the differentiability of the complete ma-



3.3. The Differentiable FORTH Abstract Machine 04 65

Output

Input

: BUBBLE

DUP

Program

Instruction set

Figure 3.3: A depiction of 04, the differentiable FORTH abstract machine. The
input is written onto the differentiable data stack D, return stack R
and/or the heap H. Now, the instruction set 94 contains continuously
relaxed 04 commands. All of them are executed on the machine state
S and the results are weighted by the differentiable program counter c
and written back onto the machine state S. Finally, the differentiable
program counter c is advanced.

chine, which, when combined with gradient optimisation methods, supports
the training logic necessary to learn the transition functions and the represen-
tations of inputs. We can observe this through Equation (3.5)—a differentiable
abstract machine would enable us to choose parametrised transition functions,
such as neural networks, for words, as well as enable learning representations
of the input state S(©.

To this end, we introduce a differentiable FORTH abstract machine 04—a
continuous relaxation of the FORTH abstract machine. This abstract machine
comprises a continuous machine state representation S, a set of continuously
relaxed instructions 04, parametrised program/sketch Py, and a continuous

interpreter 13, performing continuous program execution.

We implemented 04 in TensorFlow [Abadi et al., 2015], and made it freely
available under the MIT license” at https://github.com/uclnlp/d4/.

3.3.1 04 Machine State Encoding

We map the symbolic machine state S = (D, R, H,c) of FORTH, defined in
Section 3.2.1, to a continuous representation S = (D, R,H,c). This represen-
tation consists of two differentiable stacks—the data stack D and the return

stack R—a differentiable heap H and the program counter vector c. Figure 3.3

"https://opensource.org/licenses/MIT


https://github.com/uclnlp/d4/
https://opensource.org/licenses/MIT

66 Chapter 3. 04: A Differentiable FORTH Interpreter
depicts the 04 abstract machine together with its elements.

The data stack D = (D, d) is a tuple consisting of a data buffer D and its top-
of-the-stack pointer d, and the return stack R = (R,r) consists of a return

buffer R and its top-of-the-stack pointer r.

We represent two types of values in 04: integers and general dense vectors.
Integers are represented with a normalised vector of non-zero values that sum
to 1, and we code all addresses and pointers d, r, and c, and literals as integers.
General dense vectors, on the other hand, do not have restrictions on their
values. That makes each memory buffer D, R, and H a matrix of row-vectors,

where each vector is either an integer vector or a general dense vector.

3.3.1.1 Differentiable Flat Memory Buffers

All three memory structures, the data stack D, the return stack R and the
heap H, are based on a generic differentiable flat memory (see Section 2.1.4)
M € RX?_ with | denoting the memory size, i.e. stack length, and v denoting
the value size.® The difference is only in the data stack and the return stack

having their dedicated top-of-the-stack pointers d and r, respectively.

Read The differentiable flat memory buffer M has well-defined differentiable
reading and writing operations, as defined in Equation (2.16) [Graves et al.,

2014, 2016]. Concretely, the reading operation is defined as:
readp(a)T «+—a™M, (3.6)

where a € R! denotes the address vector, and M € {D,R,H}, denote that this
operation is applicable to all three memory structures. The address vector
a is represented as an integer with a normalised vector, with > ;a; =1 and
Vi 0<a; <1. Inthe one-hot vector case, this amounts to returning the exact

row-value from the buffer, indexed by the position of 1 in a.

Write The write operation is defined akin to the write operation in Neural
Turing Machiness (NTMs) [Graves et al., 2014] (Equation (2.17)):

writepr(x,a) : MO « MO —(a®1) oM +x®a, (3.7)

8The equal value size v of all three memory buffers allows a direct transfer of vector
representations of values between them.



3.3. The Differentiable FORTH Abstract Machine 04 67

where a is the address pointer.

As opposed to the NTM write formulation in Equation (2.17), we do not
explicitly use a custom learnt erase vector, but simply use the full address

vector a to delete the appropriate values from the memory buffer M.

3.3.1.2 Differentiable stack(s)

The general differentiable flat memory buffer formulation can use any network-
produced vector as the addressing vector. Differentiable stacks have a dedi-
cated top-of-the-stack (TOS) vector that is taken care of by each read and
write operation. Concretely, in addition to the memory buffers D and R, the
data stack and the return stack contain pointers to the current TOS element,

d,r € R!, respectively.

Push This allows us to implement pushing as writing a value x into M and

incrementing the TOS pointer as a side-effect after writing:
pushp(x) : writepp(x,p),  [side-effect: p + inc(p)] (3.8)

where p € {d,r} denotes either a data stack TOS or a return stack TOS,
and inc(p)T = pTO'* is an increment operation with O'* € R being a left

circular shift matrix, i.e. an increment matrix defined as:

1 i+1=5 (mod]I)

1+
O;" = .
0 otherwise

Pop Popping is realised by multiplying the TOS pointer and the memory

buffer, and decreasing the TOS pointer as a side-effect after reading;:
poppm( ) < readni(p), [side-effect: p < dec(p)] (3.9)

where dec(p)T = pTO!'~, and O!~ is a right circular shift matrix, i.e. a decre-

ment matrix, defined as:

- _ 1 i—1=35 (mod]I)
Y 0 otherwise



68 Chapter 3. 04: A Differentiable FORTH Interpreter

Note that return values of unary operators such as 1+ and 1- can too in general
be calculated as a vector-matrix multiplication as above with appropriately
shaped matrices, O, O~ € Rv*v.

By now, we can read from and write to any memory element, and execute
unary operations. To be able to construct a fully differentiable stack machine,
we need a way to influence the execution with a differentiable program counter

C.

3.3.1.3 Differentiable program counter

In a discrete machine, a program counter ¢ points to the word which should
be executed, i.e. a program state the interpreter should transition to, whereas
in a differentiable interpreter a program counter c represents a probability
distribution over words, i.e. over program states the interpreter can transition
to. Concretely, the program counter ¢ € RP, where p is the length of the sketch
Py and Y, c =1, is a vector (i.e. soft-attention, as in Equation (2.15)) denoting
a probability distribution over words (state transitions) in the sketch Py. In a
case where the program counter c is a one-hot vector, i.e. all the probability
mass is on a single word, the result of the execution would be equivalent
to the execution of the discrete machine, i.e. the resulting transition would
correspond to a single command. However, in a general case, ¢ weighs all the
possible transition states of a sketch Py and as a result leads the differentiable
interpreter to a mixed machine state which is the convex combination of ¢ and

all the states that each word in Py leads to, from a starting state.”

In order to deal with diverting program flow, e.g. conditionals and loops,
which directly operate the program counter ¢, we need to define two branching
operations—the unconditional branch operation, and the conditional branch0

operation.

branch The unconditional branch operator simply sets the ¢ to a requested
address as:
branch(a): c < a, (3.10)

thus diverting the program flow to the a address of the sketch Py. This

operation is used by default with every non-diverting command, to increment

9This makes the program counter c essentially a mean-field approximation of a categor-
ical distribution over all words in a sketch Py.



3.3. The Differentiable FORTH Abstract Machine 04 69

the program counter by 1 as branch(inc(c)), but is also often used elsewhere,

for example for subroutine calls.

branch0 !° The conditional branch operation diverts the program flow, con-
ditioned on the value of the data stack TOS:

= ,false
branchO(a): ’ (bopp () ) ) (3.11)

c < sa+(1—s)inc(c)

where false = 1( denotes a one-hot vector with 1 on the O-th element of the
vector, and 0 elsewhere, representing a false evaluation of the comparison.
This makes the result of the operation expressing the program counter c a
convex combination of addresses a and the following program counter value
incc, hence possibly “splitting” the program counter over two values.!! Note
that the = command is defined as a binary operation tensor in the following

subsection.

3.3.2 04 Instruction Set

Given the continuous reading, writing and branching defined in the previous
section, we can convert FORTH instruction set §, defined as functions on dis-
crete machine states S in Section 3.2.2, to the 04 instruction set 94 operating

on the continuous machine states S.

For example, consider the FORTH word DUP, which duplicates the top of the
data stack. Akin to the discrete version, the differentiable version of DUP does
the same by reading off the data stack TOS with x < readp(d), and pushes
the read value on the data stack pushp(x).

Akin to the unary operators inc and dec, which are defined as a vector-matrix

product, we define a binary operator as a bilinear tensor product:

op(x,y) < xTR?y, (3.12)

10The name branch0 signifies branching if a value (on the TOS) is equal to zero.
11 Albeit the unconditional branch can be presented as a conditional branch (branch(a) =
branch0(a) o pushp (0), we separate these two to lessen the burden on notation.



70 Chapter 3. 04: A Differentiable FORTH Interpreter

where R € RIXIXL g a binary operation tensor defined as:

RO 1 dopj=k (modl)
. k pr— 5
Y 0 otherwise

for all binary operators, including comparators op € {4+, —,x, /,<,>,=}.

This concludes all helper functions sufficient to define all the commands of 04.
However, to simplify further exposition, we additionally define the next-on-
stack (NOS) pointer as:

p T« pTO'~.

The complete formalisation of continuously relaxed FORTH words from Sec-

tion 3.2.2 is given in the following equations:

Data stack operations Since these carry out pushing, popping and data
transformations, their continuous relaxations include compositions of reading,

writing and unary/binary operation composition on the data stack D.

[int] = pushp(Line)'? (3.13)
[DROP] = popp() (3.14)
[DUP] <  pushp(readp(d)) (3.15)
a < popp()
[swap] & b= porpl) (3.16)
pushp (a)
pushp (b)
[ovER] ¥ pushp(readp(d™)) (3.17)
[1+] ¥  writep(inc(readp(d)),d) (3.18)
[1-] ¥  writep(dec(readp(d)),d) (3.19)
a < popp()
[oe] % {0+ popp() (3.20)

pushp (op(a, b))13



3.3. The Differentiable FORTH Abstract Machine 04 71

Heap operations These operations are simply reading and writing operations

executed on the heap H.

[e] = pushp(readu(popp())) (3.21)
X < popp ()
['] = <a+poppl) (3.22)

writepy(x,a)

Return stack operations Given the nature of transferral to and from the
return stack, these operations are based on reading and writing operations
executed between the return stack R and the data stack D.

[>R] = pushg(popp()) (3.23)
[R>] = pushp(popgr()) (3.24)
[eR] ¥ pushp(readg(r)) (3.25)

Control statements These statements particularly rely on the branching
commands branch and branch(O. They are effectively implemented through
the use of label addresses. For example, addr,,q defines an address—a value
of the program counter at a specific location in the code—and invoking it in a
branching command returns the value of the address, effectively branching to

that location. Labelling and branching together enable control statements of

04.

branchO(inc(add
[IF..iTHEN] < ranchO(inc(addrri ) (3.26)

[-]
branchO(addr )
def [--1]

[IF..qELSE..,THEN] = (3.27)
branch(inc(addrrgpn))

I..2]

12int is a literal denoting a non-negative integer, and [ int ] denotes the value of the
integer.
13% S [+7_7*7/7<7>7:]



72 Chapter 3. 04: A Differentiable FORTH Interpreter

[-.1]

branchO(inc(addr
[ BEGIN. . WHILE..,REPEAT] < (incladdrrprar)) (3.28)

[..2]
branch(addr_ ;)

[--1]

[DO..LOOP] & [+ =] (3.29)

branchO(addr )
[ DROP DROP |

Subroutine control These commands boil down to saving calling addresses
in preprocessing and then using those addresses during runtime. In the prepro-
cessing step subroutine definition : sub effectively saves the address addrg,,
as the address immediately after sub which is then used by the subroutine

invocation.

det pushpg (inc(c))
branch(addr g,)'°

[;] = branch(popg()) (3.31)

[sub] (3.30)

Variable creation Variable creation words are implemented with pre-
processing. Variable names used with both VARIABLE and CREATE are sim-
ply replaced with a statically pre-allocated address on the heap and their

invocations simply return the allocated addresses as literals.

Other NOP does nothing but simply stepping to the next word, and MACRO is a

function implemented via inlining before interpretation.'®

3.3.3 04 Sketches

We define a FORTH sketch Py as a sequence of continuous transition functions

Py = (wi,wa,...,w,). Here, [w; ] : S— S either corresponds to a neural FORTH

15sub is a literal denoting a subroutine name.
16Inlining replaces a function call (word) with the body of the invoked function (word
definition).



3.3. The Differentiable FORTH Abstract Machine 04 73

word or a parameterised transition function [wy, [ : S x 6 — S, i.e. an MLP in
our case. We will call these trainable functions slots, as they correspond to
underspecified slots in the program code that need to be filled by learned

behaviour.

We allow users to define a slot w as an MLP by specifying the elements of the
MLP, concretely the input layer, the hidden layers and the output layer.

The input layer [win | : S — R™ consumes a user-specified subset of the ma-
chine state S® and produces a latent representation of the machine state,
fed into the following layer—a hidden or the output layer. The hidden layer
[wy ] : R™ — R™ consumes the representation of the previous layer (represen-
tation dimensions agree between layers) and maps it into a new latent repre-
sentation. The latent representation of the input or the previous hidden layer
is then transformed by the output layer [woyt ] : R — & which maps it into

the next machine state S(+1),

This enables us to chain these transformations like [w] = [Wout [ o [wh, ] ©
.o wp, Jo[wn, Jo[win] like the MLP does, as in Equation (2.8). To use
slots within FORTH program code, we introduce a notation that reflects this

decomposition.

In particular, slots are defined by the following syntax:
{ input (-> hidden)® -> output },

where input specifies the input layer, (-> hidden)* specifies zero or more
hidden layers, and output specifies the output layer, as described in more

detail below.

Input We provide the following two options for the input layer of the MLP:

static produces a static representation, independent of
the actual machine state; essentially a bias-only

input layer.

observe ¢1...¢y, concatenates the elements eq...e,, of the machine
state S. An element can be a stack item Di at

relative index i, a return stack item Ri, etc.



74 Chapter 3. 04: A Differentiable FORTH Interpreter

Hidden The hidden layers are specified by chaining the affine transformation

and the activation function as in Equation (2.7), fully enabling the MLP layer:

linear N

sigmoid, tanh

represents the affine transformation of the hidden
layer—a linear transformation that projects the

representation to N dimensions.

represents the activation function ¢ of the hidden

layer.

Output Users can specify the following ways how the output can influence the

machine state:

choose wy...w,,

manipulate e;...¢p,

permute e1...ep,

chooses from the FORTH words wy...w,,. Takes
the output of the previous layer, transforms it
into a softmaxed vector h of length m to pro-

duce a weighted combination of machine states

Z;n hiwi(S).

directly manipulates the machine state elements
e1...en by taking the output of the previous layer,
transforming it into a softmaxed vector and writing
it directly in the specified machine state elements

with writeps.!”

permutes the machine state elements eg...e,, ; it
takes the output of the previous layer, and trans-
forms it into a softmaxed vector that weights the
m! permutations of state vectors in lexicographic
ordering, i.e. for 2 elements, the output is a convex

combination of ejes and ege.

Note that parameters of these layers are shared between the RNN execution

of the same MLP. We do not yet support parameter sharing between different

MLPs.

For example, consider the slot defined by:

{ observe D@ D-1 -> choose 1+ 1- }.

7Instead of softmaxing the output, one could rely on the optimisation to directly produce
the required output. However, this is substantially more difficult to train.



3.3. The Differentiable FORTH Abstract Machine 04 75

This slot uses the data stack TOS (D@) and NOS (D-1) elements as state
representation to determine whether to execute 1+ or 1-. This corresponds to
a parametrised single-layer neural network whose input is the concatenation
of TOS and NOS vectors, and the output is the state S, equal to the convex

combination of states led to by the 1+ and 1- words.

3.3.4 04 Execution Loop and the Interpreter

We model the 04 execution loop using an execution RNN which produces the
next state S+ conditioned on the previous state S(). A single command
execution (Equation (2.23)) is achieved by passing the current state S®) to
each word/function [ w; | of the sketch Py, and weighing the obtained outputs

with the program counter vector c:
Pyl

p,(SD) =3 el "V [wi ] (847D) =8 (3.32)
i=1

Note that here the counter vector ¢ weighs the state S¢—1 by simply weighing
each element of the state. Following Equation (2.10), the execution func-
tion defines the execution RNN, which defines the 04 interpreter 13, (Equa-
tion (2.27)) ran/unrolled for predetermined, user-specified ¢ steps from a start-

ing state S as:

To4(Py, S 1) = eRNNp, (S 1)

= (LPQ O...OLP9 OLPQ)(S(O))

= up, (... (tp, (tp, (SD))))
=s®

(3.33)

where t denotes the number of time steps to unroll the RNN, Py denotes the
sketch parametrised with 6, S(©) is the initial state, often initialised to the
required input, and allowing a slight abuse of notation where c is the program
counter corresponding to the state st=1), Clearly, this recursion, and its final
state, are differentiable with respect to the parameters 6 of the sketch Py, as
well as the input state S(.

Furthermore, in case of a parameterless sketch consisting of only 94 words (i.e.
no slots are present) and one-hot values, the final state S®) of the 94 program

will correspond exactly to the final state of the equivalent FORTH program.



76 Chapter 3. 04: A Differentiable FORTH Interpreter

Sketch P,

: BUBBLE
DUP

IF

>R

{ slot }
‘I_
BUBBLE
>R

[ T [

[ T
[T o o o

COOOOOOCOm)

c

Figure 3.4: Graphical depiction of a part of the machine state during Bubble sort
sketch in Listing 3.3. Heap omitted for clarity as it is not used in the
sketch.

An example of a 04 machine state, during the Bubble Sort sketch in Listing 3.3
is depicted in Figure 3.4.

3.4 Training

Given a dataset of input-output pairs of machine start and desired end val-
ues, © = {(x;,yi)}, our goal is to infer the parameters 6 of the sketch Py in
a supervised fashion. Although we can determine the complete start and end
state of the machine with the dataset ®, in our experiments we use only the
data stack D—we set the input data x; on the data stack D and expect the
output y; on the same data stack after execution. In our case, the training
input x; uniquely defines a starting data stack DZ(O) = (DZ(-O),dZ(O)) and is di-
rectly encoded into the starting state S(©).18 Similarly, the training output y;
uniquely defines the desired final data stack P = (Dgt),d(t)).

7 )
Since the size of the outputted data stack and the desired one do not necessarily
have to correspond to each other. This is because as we might be interested

in only a subset of the stack, given the popping operation is non-destructive

and values stay on the stack. Therefore we introduce a mask K; that indicates

8The training input x; is directly written on top of the “empty state”. In an empty
state, D and R are set to a matrix of one-hot zero rows, d and r are set to a one-hot value
pointing to the first element of the stack, and c is set to point to the first command of the
sketch Py.



3.4. 'Training 77

which components of both stacks should contribute to the loss. This mask
is uniquely defined by the desired output y; and it effectively denotes which
values of the data stack buffer we care about, and which should be ignored.

We define the loss function of 04 as follows:

L@ =Y HK,; 08" K, 08"
€D
~Y HEK;oDY K oD+ HK; od? K,0d?),
€D

(3.34)

(t)

1

Ta4(P9,S(O),t)> is the final output state, with the circumflex denoting the

1

where H(x,y) = ¥;—x;logy; is the cross-entropy loss'® and S

network output (i.e. the value estimate).

Since both the loss and the whole machine is end-to-end differentiable, we can
use backpropagation and any gradient optimisation method to optimise this
loss function and the parameters 6. Note that although we are optimising
parameters over a possibly long timeline, it would be possible to include trace-
based supervision, i.e. supervision at each intermediate state, as done by the
Neural Programmer-Interpreter (NPI) [Reed and De Freitas, 2016].

3.4.1 Interpreter Optimisations

The above-defined interpreter 13, requires a single RNN time step per tran-
sition. Concretely, a single time step implies the execution of every possible
state transition of the sketch Py, weighing each element of the state S with the
program counter ¢ (Equation (3.33)), after which the program counter is up-
dated by either an increment (next instruction), explicit assignment (function
call, control statement operations) or a pop from the return stack (function
exit). Since every time step is computationally expensive, a full RNN execu-
tion is consequently very costly and decreasing the number of RNN steps, while
retaining the equivalence of the calculation would speed up both the training
and the inference. To that extent, we employ two strategies, the symbolic

execution and the branch interpolation.

Symbolic Execution Whenever we have a sequence of FORTH words that

contains no slots and no branch entry or exit points, we can collapse said

19Note that the cross-entropy is applied element-wise and the result is the summation of
all the elements



78 Chapter 3. 04: A Differentiable FORTH Interpreter

sequence into a single transition instead of naively interpreting words one-by-
one at each time step. We symbolically execute [King, 1976] a sequence of
ForTH words to calculate a new machine state. We then use the difference
between the symbolically calculated machine state and the initial state to
derive the transition function of the sequence. This effectively means we derive
single-step transition function (concretely, which matrix/tensor operations) we
need to execute to produce the same effect as a sequence of multiple transition

functions corresponding to the sequence of words.

For example, starting in a symbolic state D = (dy,da,...,d;) and R =
(r1,r2,...,77), the sequence R> SWAP >R, swaps top elements of the data and
the return stacks, and results in a new symbolic state D = (r1,ds,...,d;) and
R = (dy,r2,...,7). Comparing the initial state and the and the resulting state,
we derive a single transition (i.e. matrix/tensor operations) that only needs to

swap the top elements of D and R.

Branch Interpolation We can apply symbolic execution on any sequence of
words where the transitions are independent of the machine state. However,
that does not hold for code with branching points—the machine state which
results from branching behaviour is contingent on the current machine state

and hence cannot be resolved symbolically.

For example, the code @ = IF SWAP THEN DUP ELSE cannot be resolved
symbolically as the transitions themselves are dependent on the machine state

(concretely, if the data stack TOS is equal to 0, the resulting symbolic state
would be D = (dg,d,...,d;), otherwise it would be D = (dy,dy,ds,...,d;).

However, we can still collapse IF-branches that involve no function calls or
loops, by executing both branches in parallel and weighing their output states
by the value of the condition. Doing this again effectively replaces a sequence
of matrix/tensor operations with a single equivalent operation. In cases where
IF branches contain function calls or loops, we simply fall back to the execution

of all words weighted by the program counter.

3.5 Experiments

We hypothesise that the differentiable interpreter 04, due to its strong archi-

tectural bias, enables:



3.5. Experiments 79
H1 arbitrarily complex inductive bias
H2 support of working both with discrete and continuous data
H3 training from a small number of input-output data
H4 strong generalisation
H5 composition with other neural models, due to its differentiable nature

In this section, we aim to experimentally verify these hypotheses by evaluating
04 on three tasks in total. The first two of these tasks are simple transduction
tasks on discrete inputs (H2), presented as neural programming tasks of sorting
and elementary addition, introduced in Reed and De Freitas [2016]. For each of
these tasks, we present two 04 sketches that capture different degrees of prior
knowledge—both sketches provide a recursive structure of the algorithms (H1),
enabling learning of number comparison for the sorting task, and digit addition
for the addition task. We show that, given only a small number of input-output
pairs (H3), 04 can learn to fill the sketch with the missing behaviour and that
the resulting sketch generalises well to problems several orders of magnitude

bigger than the training ones (H4).

The last task we apply 04 to is the task of solving an instance of Word Al-
gebra Problems—algebra problems expressed in natural language. We show
that 04 can train a basic algorithmic sketch trained jointly with an upstream
LSTM (H5). This shows that 04 can learn to read natural language narra-
tives, composed of both continuous (textual representations) and discrete data
(numbers) (H2), extract important numerical quantities and reason with them,
ultimately answering corresponding mathematical questions without the need

for explicit intermediate representations, as is done in previous work.

In addition to these experiments, we analyse the speed improvements of the

proposed optimisations, and qualitatively analyse the learning procedure.

3.5.1 Sorting

Sorting sequences of digits is a hard task for RNNs since they fail to generalise
to sequences even marginally longer from than the training sequences [Reed
and De Freitas, 2016]. Inspired by this issue, we investigate two sketches of
the Bubble Sort program in Listing 3.1 that enable learning to sort from only

a few hundred training examples, with a suitable bias.



W N U A W N

== e
N = O ©

80 Chapter 3. 04: A Differentiable FORTH Interpreter

: BUBBLE ( al .. an seq_len-1 -- al .. an seq_len-1)
DUP IF >R
{ observe D@ D-1 -> choose NOP SWAP }
R> SWAP >R 1- BUBBLE R>
ELSE
DROP
THEN

. SORT ( al .. an seqg_len -- an .. al )
1- DUP @ DO >R R@ BUBBLE R> LOOP DROP

SORT

Listing 3.2: The CoMPARE sketch for the sorting task. Note that the data is
directly fed onto the data stack externally.

3.5.1.1 Sketches

By defining sufficient procedural structure from Listing 3.1, we make the re-
sulting network invariant to the input sequence length. The procedural part of
the sketch is effectively sorting the input sequence by repeatedly executing a
procedure which ensures that the biggest element of each sorting pass is moved
to the bottom of the sequence, while the learned part is effectively learning
the comparison of digits. Note that this comparison is implicitly learned from
the input-output data, without any prior information, while imposing a strong
inductive bias of the sorting algorithm containing loops, conditionals, function

calls and recursion.

We relax the specification of the Bubble Sort code into two sketches, the Com-
PARE and the PERMUTE sketch.

Compare sketch The COMPARE sketch, listed in Listing 3.2, requires learning
just the comparison of the numbers (NOS and TOS) on the data stack. This
behaviour is learned by the slot—a parametrised neural network in the line 3
of Listing 3.2, which, observing the top two elements on the data stack (D@
and D-1), chooses to either do the swap (SWAP) or not (NOP). The rest of the
sketch is the same as the original Bubble Sort code in Listing 3.1.

Permute sketch The PERMUTE sketch, listed in Listing 3.3, provides less
structure and leaves more behaviour open to be learned. Concretely, in con-
trast to the COMPARE sketch, the PERMUTE sketch requires learning both the
comparison of the two top elements on the data stack and taking care of the
length of the subsequence on the return stack. This is achieved by learning
to permute the NOS and TOS of the data stack and the TOS of the return

stack, conditioned on the values of the top two elements on the data stack that



W = O Uk W

= e
N o= O ©

3.5. Experiments 81

: BUBBLE ( al .. an seq_len-1 -- al .. an seq_len-1)
DUP IF >R
{ observe D@ D-1 -> permute D-1 D@ RO}
1- BUBBLE R>
ELSE
DROP
THEN
: SORT ( al .. an seqg_len -- an .. al )

1- DUP @ DO >R Re@ BUBBLE R> LOOP DROP

SORT

Listing 3.3: The PERMUTE sketch for the sorting task.

need to be compared. The parametrised neural network in the slot in line 3
requires that both the value comparison and the permutation behaviour must

be learned.

3.5.1.2 Experimental Setup

We optimised each 04 sketch with Adam [Kingma and Ba, 2015] for a maximum
of 200 epochs, with early stopping on the development set. We added noise
to gradients [Neelakantan et al., 2015b] and clipped gradients [Pascanu et al.,
2013] larger than 1.0. We tuned the initial learning rate (1.0), batch size
(between 16 and 64), and the parameters of the gradient noise in a random
search on a development set for each task. During testing, we discretise all the

continuous elements of the machine making the test-time execution discrete.

Baseline We compare these sketches to the standard seq2seq [Sutskever et al.,
2014] baseline. The seq2seq baseline models are single-layer networks with
LSTM cells of 50 dimensions. The training procedure for these models consists
of 500 epochs of Adam optimisation, with a batch size of 128, a learning rate
of 0.01, and gradient clipping when the L2 norm of the model parameters
exceeded 5.0.

Data All the models were trained on randomly generated data—we uniformly
chose each digit of the sequence and sorted the obtained sequence to provide
a target. We generated the train, development and test sets containing 256,
32 and 32 instances, respectively. The low number of development and test

instances was chosen to decrease the computational cost of the evaluation.




82 Chapter 3. 04: A Differentiable FORTH Interpreter

Table 3.1: Accuracy, expressed in Hamming distance, of PERMUTE and COMPARE
sketches in comparison to a seq2seq baseline on the sorting problem.
Dagger T denotes values different from values reported in Bosnjak et al.
[2017]. For an explanation why that is, see the footnote.

Test Length 8 Test Length: 64
Train Length: 2 3 4 2 3 4
seq2seq 26.2 29.2 39.1 13.3 13.6 15.9

94 PERMUTE 100.0 100.0 100.07 100.0 100.0 100.07
04 COMPARE 100.0 100.0 100.07 100.0 100.0 100.0T

3.5.1.3 Testing Strong Generalisation

A quantitative comparison of our models on the Bubble sort task is provided
in Table 3.1. For a given test sequence length, we vary the training set lengths
to illustrate the model’s ability to generalise to sequences longer than those
it observed during training. We find that 04 quickly learns the correct sketch
behaviour, and it is able to generalise perfectly to sort sequences of 64 elements
after observing only sequences of length two, three and four during training.
In comparison, the seq2seq baseline falters when attempting similar generalisa-
tions, and performs close to chance when tested on longer sequences. Both 94
sketches perform flawlessly when trained on short sequence lengths. However,
they both under-perform when trained on a sequence of length 5 and beyond
since the execution RNN of 94 Bubble Sort unrolls to a large number of steps
(122), given the quadratic nature of the Bubble Sort algorithm). This, in
turn, causes numerical instabilities and erroneous large gradients which cause

the learning to diverge.

3.5.1.4 The Effect of the Dataset Size

When measuring the performance of the model as the number of training
instances varies, we can observe in Figure 3.5 the benefit of additional prior
knowledge to the optimisation process. We find that when stronger prior
knowledge is provided (COMPARE), the model quickly maximises the training

accuracy. Providing less structure (PERMUTE) results in lower testing accuracy

TNOTE: In our experiments, long unrolls led to to numerical instabilities and erroneous
gradients. In Bosnjak et al. [2017] these values were lower due to these errors. Here we are
using the double precision (float64) to circumvent this issue. However, for train lengths 5
(unrolls to 122 steps) and beyond we still experience numerical instabilities, and none of the
standard fixes we tried worked for us.



3.5. Experiments 83

1.0 compare (test 8) 2
—e— permute (test 8)
Seq2Seq (test 3)
08 —— Seq2Seq (test 8)
30.6 /
o
g /\
Q
[&]
<
0.4
0.2
0.0

4 8 16 32 64 128 256 512 1024
# training examples

Figure 3.5: Accuracy of models for a varying number of training examples, trained
on input sequence of length 3 for the Bubble sort task. COMPARE,
PERMUTE, and seq2seq (test 8) were tested on sequence lengths 8,
and seq2seq (test 3) was tested on sequence length 3.

initially, however, both sketches learn the correct behaviour and generalise
equally well after seeing 256 training instances. Additionally, it is worth noting
that the PERMUTE sketch was not always able to converge into a result of the

correct length, and both sketches are not trivial to train.

In comparison, seq2seq baseline is able to generalise only to the sequence it was
trained on (seq2seq trained and tested on sequence length 3). When training
it on sequence length 3, and testing it on a much longer sequence length of 8,

seq2seq baseline is not able to achieve more than 45% accuracy.

3.5.1.5  The Effect of the Program Code Optimisations

To quantify the usefulness of the interpreter optimisations introduced in Sec-
tion 3.4.1, we run an ablation analysis over the options, analysing the number
of possible state transitions the RNN can take, the number of steps the RNN

takes in practice, and we take a look at the produced results.

Number of transitions The number of possible RNN transitions, produced
by each of the optimisation options is given in Table 3.2. We see that the

symbolic interpretation alone causes the number of transitions to halve. The



84 Chapter 3. 04: A Differentiable FORTH Interpreter

Table 3.2: The effect of the optimisations on the number of state transition func-
tions of the FORTH implementation of Bubble sort in Listing 3.1.

Symbolic Execution Branch Interpolation # transitions

- - 33
- ON 32
ON - 15
ON ON 15

branch interpolation causes only a saving of one transition function when sym-
bolic execution is not on. In this particular case, the branch interpolation does
not seem meaningful, but in cases where there are multiple commands under
each if and else branches, like IF DUP SWAP ELSE SWAP DUP THEN, branch

interpolation would still be useful even if symbolic execution was turned on.

Steps Taken The number of steps taken, for each of the optimisation options
is given in Figure 3.6. Again, the symbolic execution single-handedly causes
a huge savings of a factor of almost 3. However, we see that the branch
interpolation, albeit it does not cause a big win (as a matter of a fact, if paired
with symbolic execution, it even results in a higher number of steps taken),

does make the number of execution steps constant, regardless of the input.

Qualitative AnalysisIn Figure 3.7 we can see the concrete output of each
of the optimisation options. We see the clear success of the symbolic execu-
tion, which merges a lot of commands, and the branch interpolation which is

applicable just on the single case of the IF command.

3.5.1.6 Qualitative Analysis of Program Counter Traces

In Figure 3.8 we visualise the program counter traces. The trace follows a single
example from the start, over the middle to the end of the training process.
At the beginning of training, the program counter starts to deviate from the
one-hot representation in the first 20 steps (not observed in the figure due to
unobservable changes), and after a single iteration of SORT, the sketch already
fails to correctly determine the next word. After a few training epochs 04
learns better permutations which enable the algorithm to take crisp decisions

and halt in the correct state.



3.5. Experiments 85

1400
[0 No Optimisation
Branch Interpolation
1200 [ pmm Symbolic Execution
—&— Both
1000
% 800
]
(2]
©
s 000
400
200
0
2 3 4 5 6 7 8 9 10
Input length

Figure 3.6: The effect of the optimisations on the number of (RNN) execution
steps. Note that “No Optimisation” and “Symbolic Execution” are
denoted by the filled area as the number of steps taken depends on the
input.

3.5.2 Addition

Next, we applied 04 to the problem of learning to add two n-digit numbers.
We rely on the standard elementary school addition algorithm, where the goal
is to iterate over pairs of aligned digits, calculating the sum of each to yield the
resulting sum. The key complication arises when two digits sum to a two-digit
number, requiring that the correct extra digit—a carry—Dbe carried over to the

subsequent column.

We assume aligned pairs of digits as input, with a carry for the least significant
digit (potentially equal to 0), and the length of the respective numbers. The
sketches define the high-level operations through recursion, leaving the core

addition to be learned from data.

The specified high-level behaviour includes the recursive call template and the
halting condition of the recursion (no remaining digits, line 2 in Listing 3.4).
The underspecified addition operation must take three digits from the previous
call—the two digits to sum and a previous carry—and produce a single digit
(the sum) and the resulting carry. The rest of the sketch code reduces the

problem size by one and returns the solution, popping it from the return stack.



86

Symbolic execution ON

Chapter 3. 04: A Differentiable FORTH Interpreter

Branch interpolation ON

: BUBBLE
DUP IF >R
OVER OVER < IF SWAP THEN
R> SWAP >R 1- BUBBLE R>
ELSE
DROP
THEN
: SORT
1- DUP @ DO >R R@ BUBBLE R> LOOP DROP

2 427 4 SORT

: BUBBLE
DUP IF >R
OVER OVER < IF SWAP THEN
R> SWAP >R 1- BUBBLE R>
ELSE
DROP
THEN
: SORT
1- DUP @ DO >R R@ BUBBLE R> LOOP DROP

2 427 4 SORT

: BUBBLE
DUP IF >R
OVER OVER < IF SWAP THEN
R> SWAP >R 1- BUBBLE R>
ELSE
DROP
THEN

: SORT
1- DUP @ DO >R R@ BUBBLE R> LOOP DROP

2 427 4 SORT

: BUBBLE
DUP IF >R
OVER OVER < IF SWAP THEN
R> SWAP >R 1- BUBBLE R>
ELSE
DROP
THEN

: SORT
1- DUP @ DO >R R@ BUBBLE R> LOOP DROP

2 427 4 SORT

Figure 3.7: The results of different optimisation techniques applied to the Bubble
sort program in Listing 3.1. Single commands highlighted in green are
the result of standard execution, purple spans denote the commands
collapsed by branch interpolation, and the blue spans denote the com-
mands collapsed by symbolic execution. Arrows denote a cross-line
span. We can see the drastic effect of the symbolic execution and the
nuanced effect of the branch interpolation in this example.

We introduce two sketches for inducing this behaviour, the MANIPULATE
sketch and the CHOOSE sketches.

Manipulate sketch The MANIPULATE sketch, listed in Listing 3.4, provides
less prior knowledge as it directly manipulates the 94 machine state. It does
so by filling in a carry and the result digits, based on the top three elements of
the data stack—two digits and the carry—with a slot in line 6 of Listing 3.4.
The same slot translates to a 3-layer perceptron consisting of the input layer

with the tanh nonlinearity, a linear layer of 70 units and the output of 2 units.

Choose sketch The CHOOSE sketch, listed in Listing 3.5, provides more prior
knowledge by exactly specifying the results of the computation. Concretely,

the slot in line 6 contains a neural network that outputs the carry, and the slot



0w N O ke W N

e
W N = O ©

3.5. Experiments 87

: BUBBLE
DUP IF

>R
{slot }

1- BUBBLE

R>

ELSE DROP
THEN ;

: SORT

1- DUP 0 DO
>R R@ BUBBLE
R> LOOP
DROP;

SORT

HALT

e

(a) PC trace at the start of training.

: BUBBLE
DUP IF

>R
{ slot }

1- BUBBLE

R>

ELSE DROP
THEN ;

: SORT

1- DUP 0 DO
>R R@ BUBBLE
R> LOOP
DROP;

SORT

HALT

Ralply Ralply

(b) PC trace mid-training.

: BUBBLE
DUP IF

>R

{slot }

1- BUBBLE

R>

ELSE DROP
THEN ;

: SORT

1- DUP 0 DO
>R R@ BUBBLE
R> LOOP

Ralply Ralply Ralply

012345678 91011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 7172 73 74

Figure 3.8:

Steps

(c) PC trace at the end of training.

Program Counter traces for a single example at different stages of
training the Bubble sort PERMUTE sketch in Listing 3.3. Blue—
successive recursion calls of BUBBLE; red—successive returns from the
recursion; purple—calls to SORT; green—the halting state. The rows
are labelled with words they represent after the optimisation step
which groups them together.

: ADD-DIGITS ( al bl a2 b2 ... an bn carry n -- r1 r2 ... r_{n+1} )
DUP @ = IF
DROP
ELSE

>R\ put n on R
{ observe D0 D-1 D-2 -> tanh -> linear 70 -> manipulate D-1 D-2 }

DROP

R> 1- SWAP >R\ new_carry n-1
ADD-DIGITS \ call add-digits on n-1 subseq.
R> \ put remembered results back on the stack

THEN

ADD-DIGITS

Listing 3.4:

The MANIPULATE sketch for the Addition problem. Input data is
used to fill data stack externally.




W N U A W N

R e
B W N = O ©

88 Chapter 3. 04: A Differentiable FORTH Interpreter

: ADD-DIGITS ( al bl a2 b2 ... an bn carry n -- r1 r2 ... r_{n+1} )
DUP @ = IF
DROP
ELSE

>R\ put n on R
{ observe D@ D-1 D-2 -> tanh -> linear 10 -> choose 0 1 }
{ observe D-1 D-2 D-3 -> tanh -> linear 50 -> choose @ 1 2 3 456 7 8 9 }
>R SWAP DROP SWAP DROP SWAP DROP R>
R> 1- SWAP >R\ new_carry n-1
ADD-DIGITS \ call add-digits on n-1 subseq.
R> \ put remembered results back on the stack
THEN

ADD-DIGITS

Listing 3.5: The CHOOSE sketch for the Addition problem. Input data is used to
fill data stack externally.

Table 3.3: Accuracy (Hamming distance) of CHOOSE and MANIPULATE sketches
in comparison to a seq2seq baseline on the addition problem. Note that
lengths corresponds to the length of the input sequence (two times the
number of digits of both numbers).

Test Length 8 Test Length 64
Train Length: 2 4 8 2 4 8
seq2seq 37.9 57.8 99.8 15.0 13.5 13.3
04 CHOOSE 100.0 100.0 100.0 100.0 100.0 100.0

04 MANIPULATE 98.58 100.0 100.0 99.49 100.0 100.0

in line 7 specifies a neural network that needs to learn to output the resulting

digit, both being conditioned on the two digits and the carry on the data stack.

Baseline As in the sorting experiment, we use seq2seq model as a baseline.
The hyperparameter sweep is identical to the sweep done in the sorting exper-

iments Section 3.5.1.2.

Training details We trained the addition CHOOSE and MANIPULATEX
sketches presented in Table 3.1 on a randomly generated train, development
and test sets of sizes 512, 256, and 1024 respectively. We uniformly sampled
each digit of each n-digit numbers and added them to construct the target.

The batch size was set to 16, and we used an initial learning rate of 0.05

3.5.2.1 Generalisation

In a set of experiments analogous to those in our evaluation on Bubble sort,
we demonstrate the performance of 94 on the addition task by examining

test set sequence lengths of 8 and 64 while varying the lengths of the train-




3.5. Experiments 89

1.0 choose (test 16)
—e— manipulate (test 16)
Seq2Seq (test 8)

08 —— Seq2Seq (test 16)

o
o

Accuracy

°
~

0.2 ./._____,._./I—H—-——‘"’—./.\'—'/.

0.0

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
# training examples

Figure 3.9: Accuracy of models for a varying number of training examples, trained
on input sequence of length 8 for the addition task. MANIPULATE,
CHOOSE, and seq2seq (test 16) were tested on sequence lengths 16,
and seq2seq (test 8) was tested on sequence length 8.

ing set instances (Table 3.3). The seq2seq model again fails to generalise to
longer sequences than those observed during training. In comparison, both
the CHOOSE sketch and the less structured MANIPULATE sketch learn the
correct sketch behaviour and generalise to all test sequence lengths (with an
exception of MANIPULATE which required more data to train perfectly). In
additional experiments, we were able to successfully train both the CHOOSE
and the MANIPULATE sketches from sequences of input length 24, and we
tested them up to the sequence length of 128, confirming their perfect training

and generalisation capabilities.

Note that our experiments with MANIPULATE include softmaxing values writ-
ten on the stack, as described in Section 3.3.3. If we remove the softmax, the
sketch is able to learn only from the minimal sequence length of 2, and none
other. We conjecture that this is due to difficulty of the direct state manipula-
tion where the neural network in the slot needs to directly write the unbounded
value on the data stack, and thus learn by itself the required output, as opposed
to CHOOSE sketch where the user defines the output directly.

The role of softmaxing can be thought of as a neural version of typing—it



90 Chapter 3. 04: A Differentiable FORTH Interpreter

types the output to a number from 0 to [, as opposed to the more specific

(categorical) type in the choose sketch.

3.5.2.2  Accuracy per number of training examples

We tested the models to train on datasets of increasing size on the addition
task. The results, depicted in Figure 3.9 show that both the CHOOSE and
the MANIPULATE sketch are able to perfectly generalise from 256 examples,
trained on sequence lengths of 8, tested on 16. In comparison, the seq2seq
baseline achieves 98% when trained on 16384 examples, but only when tested
on the input of the same length, 8. If we test seq2seq as we tested the sketches,

it is unable to achieve more than 19.7% accuracy.

3.5.3 Word Algebra Problems

Word algebra problems are often used to assess the numerical reasoning abili-
ties of schoolchildren. Questions are short narratives which focus on numerical

quantities, culminating with a question. For example:

A florist had 50 roses. If she sold 15 of them and then later picked

21 more, how many roses would she have?

Answering such questions requires both the understanding of language and of
algebra—one must know which numeric operations correspond to which phrase

and how to execute these operations.

Previous work cast word algebra problems as a transduction task by mapping a
question to a template of a mathematical formula, thus requiring manually la-
belled formulas. For instance, one formula that can be used to correctly answer
the question in the example above is (50 - 15) + 21 = 56. In previous work,
local classifiers [Roy and Roth, 2015, Roy et al., 2015], hand-crafted gram-
mars [Koncel-Kedziorski et al., 2015], and recurrent neural models [Bouchard
et al., 2016] have been used to perform this task. Predicted formula templates
may be marginalised during training [Kushman et al., 2014], or evaluated di-

rectly to produce an answer.

In contrast to these approaches, 04 is able to learn both, a soft mapping from
text to algebraic operations and their exzecution, without the need for manually
labelled equations and no explicit symbolic representation of a formula, by

jointly training a 04 sketch with a neural sequence model.



3.5. Experiments 91

OCmo -

Output

Input

Figure 3.10: The Word Algebra Problem model: a Neural FORTH Abstract Ma-
chine (on the left) executing the Word Algebra Problem sketch, con-
nected to the BiLSTM which reads word problems (on the right).
Output vectors corresponding to a representation of the entire prob-
lem, as well as context representations of numbers and the numbers
themselves are fed into H to solve tasks. The entire system is end-
to-end differentiable.

3.5.3.1 Model Description and the Sketch

Our model is fully end-to-end differentiable, consisting of a 04 interpreter with

an appropriate sketch, and a BiLSTM reader.

The BiLSTM reader reads the text of the problem and produces a vector
representation (word vectors) for each word, concatenated from the forward
and the backward pass of the BiLSTM network. We use the resulting word
vectors corresponding only to numbers in the text, numerical values of those
numbers (encoded as one-hot vectors), and a vector representation of the whole
problem (concatenation of the last and the first vector of the opposite passes)
to initialise the 94 heap H. This is done in an end-to-end fashion, enabling
gradient propagation through the BiLSTM to the vector representations. The
process is depicted in Figure 3.10.

The sketch, depicted in Listing 3.6 dictates the differentiable computation.
First, it copies values from the heap H — word vectors to the return stack R,
and numbers (as one-hot vectors) on the data stack D. Second, it contains
four slots that define the space of all possible operations of four operators on
three operands, all conditioned on the vector representations on the return
stack. These slots are i) permutation of the elements on the data stack, ii)
choosing the first operator, iii) possibly swapping the intermediate result and
the last operand, and iv) the choice of the second operator. These four slots
fully define the space of all possible formulas over three operands and four

operators (e.g. X+Y-Z, (X-Y)/Z, etc.), however, the model needs to learn which



10

12
13
14
15
16

18
19
20
21
22

24
25
26
27
28
29

31
32
33
34
35

37

92 Chapter 3. 04: A Differentiable FORTH Interpreter

VARIABLE QUESTION

CREATE REPR_BUFFER 4 ALLOT
CREATE NUM_BUFFER 4 ALLOT

VARIABLE REPR
VARIABLE NUM

REPR_BUFFER REPR !
NUM_BUFFER NUM !

\

address of the question on H

allotting H for representations

and numbers

addresses of
and number

the first representation

\ macro functions for:
MACRO: STEP_NUM NUM @ 1+ NUM ! ; \ incrementing the pointer to numbers in H
MACRO: STEP_REPR REPR @ 1+ REPR ! ; \ incrementing the pointer to reps. in H
MACRO: CURRENT_NUM NUM @ e ; \ fetching current numbers
MACRO: CURRENT_REPR REPR @ @ ; \ fetching current representations
CURRENT_NUM \ copy numbers to D
STEP_NUM
CURRENT_NUM
STEP_NUM

CURRENT_NUM

QUESTION @ >R \ copy question vector

CURRENT_REPR >R \ and representations of numbers to R
STEP_REPR

CURRENT_REPR >R

STEP_REPR

CURRENT_REPR >R

observe RO R-1
observe RO R-1
observe RO R-1

Lo W e W e W o WP
o U
NN
w w w

R_
R-
R-

R> DROP R> DROP R> DROP R> DROP

based on the question and number representations.
observe R0 R-1 R-2 R-3 -> permute DO D-1 D-2 } \
-> choose + - * / } \
-> choose SWAP NOP 3} \
-> choose + - x / } \

\

permute stack elements

choose the first operation
swap prev. result and 3rd num
choose the second operation

empty out R

Listing 3.6: The Word Algebra Problem sketch

equation to induce in order to calculate the correct result. The final set of

commands simply empties out the return stack R.

3.5.3.2 Experimental Setup

We evaluate the model on the CC dataset, introduced by Roy and Roth [2015].
CC is notable for having the most diverse set of equation patterns, consisting

of four operators (+, -, X, =), with up to three operands.

The CC dataset is partitioned into a train, development, and test set containing
300, 100, and 200 questions, respectively. The batch size was set to 50, and we
used an initial learning rate of 0.02. The BiLSTM word vectors were initialised
randomly to vectors of length 75. The stack width was set to 150 and the stack

size to 5.



3.5. Experiments 93

Table 3.4: Accuracies of models on the CC dataset. The asterisk denotes results
obtained from Bouchard et al. [2016]. Note that i) GeNeRe makes use
of additional data, ii) the difference between our seq2seq baseline and
the one in Bouchard et al. [2016] stems from the Bouchard et al. [2016]
baseline being trained on train+dev sets following hyperparameter se-
lection on the dev set.

Model Accuracy (%)
Template Mapping

Roy and Roth [2015] 55.5

seq2seq (our implementation) 85.0

seq2seq* Bouchard et al. [2016] 95.0

GeNeRe* Bouchard et al. [2016] 98.5
Fully End-to-End

seq2seq 0.0

04 96.0

3.5.3.3 Results

We compare against three baseline systems: (1) a local classifier with hand-
crafted features [Roy and Roth, 2015], (2) a seq2seq baseline, and (3) the same
model with a data generation component (GeNeRe) Bouchard et al. [2016]. All
baselines are trained to predict the best equation, which is executed outside
of the model to obtain the answer. In contrast, 04 is trained end-to-end from
input-output pairs and predicts the answer directly without the need for an

intermediate symbolic representation of a formula.

Neural Models The comparison between 04 and neural baselines is shown
in Table 3.4. Our method slightly outperforms the seq2seq baseline from
Bouchard et al. [2016]. However, upon reimplementation of the seq2seq base-
line and a close inspection of the code by Bouchard et al. [2016], we noticed
that their model was trained on the train+dev set after they selected the best
hyperparameters on the dev set. As expected, we confirmed that the effect of
their train set expansion has a positive effect on the final results. However,
we still decided to train 94 on train set only and use the dev set for early
stopping, as is the standard practice. The reason why we decided to stick with
the standard practice is that when training on train4+dev, we cannot use the
dev set for early stopping. This implies we have to train the model for a pre-
determined number of epochs, hoping that the training stops when the model

generalises since at this point the dev set performance is what is being opti-



94 Chapter 3. 04: A Differentiable FORTH Interpreter

mised and cannot be used as a reliable estimate of the model’s performance.
In that sense, we cannot directly compare to the accuracies of the seq2seq
baseline and GeNeRe from Bouchard et al. [2016].

However, our goal here is not to achieve the state-of-the-art results over
GeNeRe (though it is quite possible that their performance is lower when
trained on train set only) but to establish a close-to enough model that is,
crucially, trained end-to-end without additional formulas. It is worthwhile to
emphasise once again that, as opposed to GeNeRe and seq2seq from Bouchard
et al. [2016], which are template mapping models, 94 is trained completely
end-to-end, from the text of the problem to the final numeric result. Addition-
ally, we ran the seq2seq baseline in the same end-to-end fashion, to quantify
the difficulty of the task when solved end-to-end. The results confirm that the
task is difficult—the seq2seq baseline is unable to train at all as it lacks data

to even start learning arithmetic expressions and execution.

Comparison to Roy and Roth [2015] After publishing Bosnjak et al.
[2017], where we compared the neural models with the model of Roy and
Roth [2015], we noticed that there are significant differences in the datasets

used in the experiments between Roy and Roth [2015] and Bouchard et al.
[2016].

Concretely, the dataset splits in Bouchard et al. [2016] were done randomly,
whereas the splits in Roy and Roth [2015] were done in a structured way which
makes the task much more difficult, justifying the large difference between the
performances of these two models. The issue stems from the fact that that Roy
and Roth [2015] split the dataset into 6 folds, where each fold contains prob-
lems from a single equation category (e.g. addition followed by subtraction,
subtraction and multiplication, etc.), making the dataset more challenging.
Since they have split the dataset into train and dev only, Bouchard et al.
[2016] wanted to split the dataset into train, dev and test, but they split the
dataset randomly, mixing the equation categories across datasets, making the

problem significantly easier to solve.

For a fair comparison, we ran our model on the original split. We split the
train set into train and dev by making the dev set a random subset of the
train set. The results of this experiment can be found in Table 3.5. We can
observe that 04 performs poorly on this split as the model struggles to catch

the relationships applicable over different equation templates. Interestingly,



3.6. Related Work 95

Table 3.5: Performance of 94 and the model from Roy and Roth [2015] on splits
from Roy and Roth [2015]

Model Accuracy (%)
Template Mapping

Roy and Roth [2015] 45.2
Fully End-to-End

04 5.0

when comparing the performance of Roy and Roth [2015] on the random split
and the harder split, their model yields only 10% improvement, showing that
the model struggles even though it has access to all the equation templates at
training time. In contrast to that, 04 is able to clearly capitalise on the access
to all equation templates, which boosts its score drastically. It is again worth
emphasising that 04 is trained fully end-to-end, without using the formula
template, thus solving a harder problem, as opposed to the Roy and Roth
[2015] model.

3.6 Related Work

We present differentiable interpreters in the light of connections they draw from
several related areas of research: computability of neural networks, program
induction and synthesis, probabilistic programming and recent computational

architectures in neural networks.

3.6.1 The Computational Power of Neural Networks

A body of prior groundwork established the theoretical background behind
the mathematical notion of program expressivity and execution through the
computational power and subsequent use of that power for language interpre-

tation.

From Turing Completeness... The computational power of neural networks
has been studied since the early days of neural networks. McCulloch and Pitts
[1943] showed the correspondence between feed-forward neural networks with
hard-thresholds and propositional logic, positing that the RNNs are even more
expressive, and drawing conclusions that a NN with a tape is Turing Complete.
The subsequent work of Kleene [1951] built on top of their work to relate the

representational powers of hard-threshold neural networks and finite automata.



96 Chapter 3. 04: A Differentiable FORTH Interpreter

Later, Pollack [1987] showed that a particular architecture of RNNs with high-
order connections is Turing complete, while Franklin and Garzon [1990] showed
Turing completeness of a neural network with an unbounded number of neu-
rons. This work lead to the seminal work of Siegelmann and Sontag [1991]
and Siegelmann and Sontag [1995] who finally proved Turing completeness of
finite RNNs without high-order connections.?’ This work gave a theoretical
background to the representational power of recurrent architectures. Recent
work by Pérez et al. [2019] corroborated these findings on modern NN archi-
tectures, which do not just interpret an algorithm but learn it as well. Though
these proofs require infinite precision and computation time which computers
cannot achieve, [Weiss et al., 2018] further shows that different architectures

exhibit different computational powers in practice.

...to Language Interpretation and Compilation The Turing completeness
of NNs entails their ability to simulate Universal Turing Machines, effectively
making them interpreters for other Turing Machines. Some of the prior work
focused on using these abilities of neural networks to build neural interpreters
and compilers; translations of programs in a high-level language into a neu-
ral network which executes said program. Siegelmann [1994] were the first
who proposed compiling a program, in their case written in the NEural Lan-
guage (NETL), to a NN which computes the original program. Intended as a
bridge between the symbolic and neural computation, their system compiled
a FOL or any general algorithm to a RNN that simply executes it, without
learning. Later, Gruau et al. [1995] presented a compiler that translates a
PASCAL [Wirth, 1971] program into a neural network that executes it. Inter-
estingly, although their neural compiler defines a function that calls a learned
NN in the code, they do not support its training. Similarly, Siegelmann [1996]
compile a program written in Neural Information Processing Programming
Language (NIL) to a NN and enable training it with neural evolution. A series
of work [Neto et al., 1998, 2003, Neto, 2006] showed that programs written in
a high-level language called NETDEF can be translated to a modular RNNs,
with Neto et al. [2000] adding to it the theoretical support to learn. Lastly, not
all efforts were focusing on high-level programming languages, though; Neto

et al. [2004] translated high-level Turing Machine programs in a form of partial

200n an interesting side-note, Siegelmann [1995] and Siegelmann [2012] show that neural
networks with real numbers can achieve computational power beyond the Turing limit, but
that work is out of the scope of this thesis.



3.6. Related Work 97

recursive function descriptions to NNs. However, subsequent work did mostly

use higher-level programming languages to facilitate use.

On a related note, the programming language community worked on the no-
tion of smooth software and smooth interpretation. DeMillo and Lipton [1991]
proved the existence of continuous functions which can capture the execu-
tion of discrete state transition functions, i.e. that software can be cast via
continuous functions. Though their work did not recognise any practical ap-
plications of it, later work by Chaudhuri and Solar-Lezama [2010, 2011] used
this to introduce the concept of “smooth interpretation” defined via relaxing
discrete programs’ states with Gaussian mixture distributions. Interestingly,
they utilise it to synthesise parameters of, essentially, program sketches, but
via Nelder-Mead [Nelder and Mead, 1965], a gradient-free optimisation tech-
nique. In more recent work, Inala et al. [2018] additionally relax this Gaussian
smoothing akin to our approach and find parameters with a combination of
SAT solving [Eén and Sorensson, 2003] and sequential quadratic program-
ming [Gill et al., 2005]. to synthesise both the discrete and floating-point

parameters of the sketch.

3.6.2 Program Synthesis

The idea of program synthesis [Gulwani et al., 2017] is as old as Al [Church,
1957], and has a long history in computer science [Manna and Waldinger, 1971].
Whereas a large body of work has focused on using genetic programming [Koza
and Koza, 1992] to induce programs from the given input-output specifica-
tion [Nordin, 1997], there are also various Inductive Programming approaches
[Kitzelmann, 2009] aimed at inducing programs from incomplete specifications
of the code to be implemented [Albarghouthi et al., 2013, Solar-Lezama et al.,
2006]. Further work even tackled the problem of learning sketches from cor-
pora of code [Murali et al., 2018]. We tackle the same problem of sketching,
but in our case, we fill the sketches with neural networks able to learn the
slot behaviour. It is worth noting that the very recent work on neural models
pushed the state of the program synthesis research by either employing elab-
orate deep learning models [Parisotto et al., 2017], or by aiding a specialised
synthesiser [Parisotto et al., 2017].



98 Chapter 3. 04: A Differentiable FORTH Interpreter

3.6.3 Probabilistic and Bayesian Programming

Our work is closely related to probabilistic programming languages such as
Church [Goodman et al., 2012]. They allow users to inject random choice prim-
itives into programs as a way to define generative distributions over possible
execution traces. In a sense, the random choice primitives in such languages
correspond to the slots in our sketches. A core difference lies in the way we
train the behaviour of slots: instead of calculating their posteriors using proba-
bilistic inference, we estimate their parameters using backpropagation and gra-
dient descent. This is similar in-kind to TerpreT’s FMGD algorithm [Gaunt
et al., 2016], which is employed for code induction via backpropagation. In
comparison, our model which optimises slots of neural networks surrounded
by continuous approximations of code enables the combination of procedural
behaviour and neural networks. In addition, the underlying programming and
probabilistic paradigm in these programming languages is often functional and
declarative, whereas our approach focuses on a procedural and discriminative
view. By using an end-to-end differentiable architecture, it is easy to seam-
lessly connect our sketches to further neural input and output modules, such
as an LSTM that feeds into the machine heap.

3.6.4 Memory Augmented Neural Networks

Recently, there has been a surge of research in differentiable execution and
program synthesis in deep learning, with increasingly elaborate deep mod-
els. Many of these models were based on differentiable versions of abstract
data structures. Most well-known out of the continuous data structures are
the continuous stack [Giles et al., 1990, Sun, 1991, Das et al., 1992, 1993,
Sun et al., 1993, Joulin and Mikolov, 2015, Grefenstette et al., 2015], contin-
uous queue [Grefenstette et al., 2015] and the general continuous memory, i.e.
heap [Graves et al., 2014, Weston et al., 2015, Sukhbaatar et al., 2015].

Following them are the continuous abstract machines, such as the
NTM [Graves et al., 2014] and their successors Differentiable Neural Com-
puters [Graves et al., 2016], the Neural RAM [Kurach et al., 2016], and
the Neural GPUs [Kaiser and Sutskever, 2016]. These continuous abstract
machines are primarily used as algorithm learners that induce algorithmic
behaviour from data, which already sets them apart from 04 which focuses

on incorporating algorithmic knowledge into models. Taking a closer look at



3.6. Related Work 99

these models, we see some similarities as well as differences between them,

based on the data and the algorithm representation they are using.

The NTM and the Neural RAM, similarly to 04, represent its data with a
soft one-hot alike representation throughout the model. In principle, the same
should be possible with fully dense data too, like the word embeddings used
in our word algebra problem experiments. Neural GPUs, on the other hand,
are using one-hot input data, but their hidden representations are completely

opaque and cannot be interpreter nor easily influenced in any way.

All these models are based on different continuous abstract machines, which
translates to different properties of their algorithm representation. The NTM,
even though working with soft one-hot alike data, still contain an opaque model
(MLP or LSTM) that represents its hard-to-interpret transition function that
essentially codes up the program. Even if we were able to reliably extract an
interpretable transition function, working with it is still quite hard because
it requires a lot of effort to understand and program it. Neural GPUs are
even worse in that regard as they are essentially a neural cellular automata
which are impossible to interpret and to program. Neural RAM is better
in that sense, as it generates a circuitry of commands that are interpretable
and programmable. However, the language this machine implements, though
easier to work with than with a Turing Machine, is less powerful than an
assembly language and would require more careful planning when dealing with
loops in their circuit-based execution. Admittedly, all these models can induce
somewhat complex behaviour purely from data, which we do not do in this
work, but we enable significantly easier incorporation of concrete programmatic

constructs into models, which these models cannot.

Related to our efforts is also the Autograd [Maclaurin et al., 2015b,a], which
enables automatic gradient computation in pure Python code, but does not

define nor use differentiable access to its underlying abstract machine.

The work in neural approximations to abstract structures and machines natu-
rally leads to more elaborate machinery able to induce and call code or code-
like behaviour. Neelakantan et al. [2016] learned simple SQL-like behaviour—
querying tables from the natural language with simple arithmetic operations.
Although sharing similarities on a high level, the primary goal of our model is
not induction of (fully expressive) code but its injection. Andreas et al. [2016Db]

compose parse tree -guided neural modules to produce the desired behaviour



100 Chapter 3. 04: A Differentiable FORTH Interpreter

for a visual QA task. Neural Programmer-Interpreters [Reed and De Freitas,
2016] learn to represent and execute programs, operating on different modes
of an environment and are able to incorporate decisions better captured in a
neural network than in many lines of code (e.g. using an image as an input).
Users inject prior procedural knowledge by training on program traces and
hence require full procedural knowledge. In contrast, we enable users to use

their partial knowledge in sketches.

Neural approaches to language compilation have also been researched, from
compiling a language into neural networks [Siegelmann, 1994, Neto et al., 1998,
2003], over building neural compilers [Gruau et al., 1995] to adaptive compila-
tion [Bunel et al., 2016]. However, that line of research did not perceive neural
interpreters and compilers as a means of injecting procedural knowledge as we
did. To the best of our knowledge, 04 is the first working neural implemen-
tation of an abstract machine for an actual programming language, and this

enables us to inject such priors in a straightforward manner.

Most recent work Quickly after we published a preprint of our work, more
work on differentiable interpreters kept popping up, showing that similar ideas
were developed concurrently. Notably, TERPRET’s [Gaunt et al., 2016] (pub-
lished as a preprint 3 months after our paper) neural network backend is an
instance of a differentiable interpreter, employed for inductive program syn-
thesis via backpropagation. Soon after, Feser et al. [2017] improved program
induction via a set of structural changes modelled on functional program-
ming constructs. Most similar to our work is the work by Gaunt et al. [2017]
which successfully used differentiable interpreters for program synthesis with
parametrised neural networks. Their differentiable interpreter is able to jointly
induce code and train a neural network invoked in the same code. Albeit it
seems that their model can fully induce code thus obviate a need for strong
priors, our contribution still stands as it includes more complex programmatic
structures such as unbounded loops and recursion, can be used to write longer
code, and was published as a pre-print 6 months before their work. Their work
opened interesting further development in the form of HOUDINI [Valkov et al.,
2018], a neuro-symbolic hybrid that combines the symbolic program synthesis
and differentiable function interpretation able to reuse neural networks from a

library of components.

Lastly, we want to acknowledge DeepProbLog [Manhaeve et al., 2018], end-



3.7. Conclusion and Future Work 101

to-end trainable integration of a probabilistic logic programming language
ProbLog [De Raedt et al., 2007] with neural networks. This model successfully
combines symbolic and sub-symbolic reasoning of a logic-based declarative lan-
guage which is faster to execute has a smaller code footprint and produces
comparable, and in some cases even better results than 94—it can be trained
from longer input sequences on the sorting task. Even though it can provide
better results in some cases, we note that with a lighter and optimised imple-
mentation, 04 should be able to perform much better than it does now, but

we leave this for future work.

7 caught on and produced many other differen-

The wave of “differentiability
tiable models, which due to differentiability, can now be treated like mod-
ules ready to be connected into a bigger model. Notable examples include
differentiable physics engines [de Avila Belbute-Peres et al., 2018], used as
parts of ML-based robotics models [Degrave et al., 2019], differentiable ren-
dering [Loper and Black, 2014, Li et al., 2018, Liu et al., 2019], differentiable
optimisation [Djolonga and Krause, 2017, Amos and Kolter, 2017], differen-
tiable dynamic programming [Mensch and Blondel, 2018], differentiable arith-
metic units [Trask et al., 2018], differentiable satisfiability solvers [Wang et al.,

2019], and others [Ferber et al., 2019].

3.7 Conclusion and Future Work

In this chapter we presented 04, a differentiable interpreter for the FORTH
programming language. By designing 04 through a series of continuous ap-
proximations of the discrete interpreter execution, and using backpropagation,
we are able to utilise it as a way to provide strong and complex procedural
inductive biases. 04 complements programmers’ prior knowledge by allowing
them to code a strong and complex procedural inductive bias while enabling
learning of unspecified behaviours. We showed experimentally that 94 learns
to sort, add and solve word algebra problems, by using program sketches and

a small number of input-output pairs, while achieving strong generalisation.

Future Work There are several directions we plan to explore for the future
work of 04. More user-friendly language paradigms, like functional,
logic, or in general declarative programming, as well as other host languages
can ease the programmers’ efforts, increase productivity, and open new venues,

for example, differentiable database querying. Scaling up learning and ex-



102 Chapter 3. 04: A Differentiable FORTH Interpreter

ecution would open up the possibilities of using even larger and more complex
programs, as well as induce or synthesise larger parts of the learned behaviour.
Sketch synthesis, based on, for example, a hybrid of search and continuous
relaxation, would enable us to synthesise larger portions of the unknown code,
leaving less of coding to the user and more to the model. Integrating sketch-
ing with non-differentiable transitions, such as those arising in interaction
with a real environment can open up quick mastery of otherwise difficult-to-
learn tasks, such as computation, reasoning and optimisation, in the reinforce-
ment learning setting. Notably, we see differentiable sketch programming as a
promising approach in Hierarchical Reinforcement Learning as sketching can
enable learning parts of machines in Hierarchies of Abstract Machines [Parr
and Russell, 1998]. Finally, we see Natural Language Processing (NLP)
as an application domain which can particularly benefit from sketching as
tasks in machine reading, numerical reasoning and knowledge base inference

are particularly amenable to the sketching approach.



Chapter 4

gNTP: Greedy Neural Theorem

Provers

Automated reasoning over real-world data, such as KBs and natural language
is an essential challenge for Al and NLP [Craven et al., 1998, Etzioni et al.,
2006, Banko et al., 2007]. Standard symbolic reasoning approaches provide a
sound way to reason with knowledge, though at a computational cost and the
need to formalise knowledge symbolically [Green and Raphael, 1968, Wino-
grad, 1972]. Learning approaches such as NNs; on the other hand, provide a
way to efficiently learn from raw data, though at the expense of transparency
and difficulties with systematic generalisation [Marcus, 2018, Chollet, 2019,
Marcus, 2020]. Neuro-symbolic integration promises principled integration of
these two approaches that enable robust learning and structured reasoning
with what is learned [Garcez et al., 2019]. One such model, a differentiable
Datalog interpreter NTP [Rocktaschel and Riedel, 2017], blends the strong in-
ductive bias of symbolic reasoning with representation learning. However, the
NTP relies on a computationally demanding continuous relaxation of declara-
tive (logic) interpretation. This relaxation renders NTPs infeasible to use for

but small KBs and further disheartens their application to natural language.

In order to scale NTPs to larger KBs, we analyse the computational bottlenecks
of their proof generation and present a pruning strategy to cut down their time
and memory complexity drastically. This gain in efficiency, in turn, drives us to
consider further expanding NTPs to utilise compositional aspects of language
to reason over KBs and natural language texts jointly. The resulting model,

dubbed gNTP, can scale to large KBs to perform deductive-like reasoning on



104 Chapter 4. gNTP: Greedy Neural Theorem Provers

learned dense representations of both KBs facts and natural language texts.

4.1 Scaling Reasoning as a Strong Inductive
Bias

The benefit of neuro-symbolic systems is their ability to capitalise on the com-
plementary strengths and weaknesses of both neural and symbolic models,
inheriting the best of both worlds [Garcez et al., 2012]. Symbolic models
are easily interpretable and can strongly generalise from a small number of
examples, but are brittle and prone to failure in noisy and ambiguous envi-
ronments, such as natural language and real-world KBs [McDermott, 1987].
Neural models, on the other hand, are robust to noise and ambiguity, but are
rarely interpretable and do not generalise well outside of the training distribu-
tion. Recent neuro-symbolic systems [Garcez et al., 2019] enable learning dense
representations of symbols, allowing for ambiguous and non-discrete compari-
son of symbols, maintaining interpretability and strong generalisation [Marcus,

2018]. A notable model in this class of systems is the Neural Theorem Prover.

NTPs [Rocktaschel and Riedel, 2017] are an end-to-end differentiable reasoning
model, effectively a differentiable interpreter for a DATALOG-alike [Roussel,
1975, Ceri et al., 1989] logical language, based on a continuous relaxation
of the backward chaining algorithm [Russell and Norvig, 2009]. Following the
structure of the interpreter, defined in Section 2.3.2, NTPs follow the backward
chaining algorithm (Section 2.2.2) and soft unification to build a full proof-
tree for proving a goal GG in a given KB. The backward chaining proof path
construction enables NTPs their strong inductive bias of symbolic reasoning,
while the continuously relaxed unification operator enables end-to-end learning
of dense representations for symbols. This structure enables NTPs to learn
interpretable rules from data and makes them explainable as both proof paths

and induced rules are interpretable.

However, though the continuous relaxation of the underlying logic (declarative)
interpreter is what enables all these desirable properties, it is also at the crux of
their inability to scale to large datasets. During both training and inference,
NTPs need to compute all possible proof paths needed for proving a goal,
relying on the continuous unification of the goal with all the rules and facts in

the KB, as opposed to the standard unification which unifies goals only with



4.1. Scaling Reasoning as a Strong Inductive Bias 105

compatible rules and facts. This often becomes infeasible for even medium-
sized datasets, as the number of proof paths grows exponentially. This issue
can be even more dramatic when considering applying NTPs on facts expressed
in natural language, as one can easily collect many more facts expressed in
natural language than in regular KBs. Adding facts and rules expressed in
natural language can thus drastically increase the size of the KBs, making
scaling somewhat of a prerequisite for applying NTPs to reasoning over natural
language. Finally, NTPs are interpretable as they produce readable induced
rules. However, proof paths produced are interpretable too and they are highly
indicative of how the model utilises the induced rules. This utilisation of rules
by proof paths is another element of models’ interpretability that has not yet

been analysed.
We pose the following research questions:

o (Can we overcome the scalability issue of NTPs and scale them up to

large datasets without sacrificing their evaluation performance?
e How can we make NTPs reason with KBs and natural language texts?

« Is the interpretability of NTPs as useful as presented by Rocktaschel and
Riedel [2017]7

We answer these questions by showing that:

o NTPs scores prefer closest representations of unified atoms to goals, so we
can radically reduce the computational complexity of both inference and
learning by only unifying goals with the k-nearest neighbouring atoms,
preferring the most promising proof paths instead of enumerating them
all.

e an attention mechanism further lowers down the representational com-
plexity of rule-learning and helps to achieve better evaluation perfor-

mance.

o employing these two techniques improves both the memory and the run-
time performance of NTPs while performing as well or better than NTPs

on small link prediction tasks.!

 integrating a compositional language reader which represents natural lan-

I Also known as Knowledge Base Completion tasks; tasks of automatic inference of miss-
ing facts in KBs.



106 Chapter 4. gNTP: Greedy Neural Theorem Provers

guage as predicates by composing word representations enables NTPs to
incorporate textual knowledge in KBs and jointly learn the represen-
tations of text in the same embedding space as the representations of

symbols.

e a qualitative analysis of proofs and induced rules reveals that decoding
induced rules with a 1-nearest neighbour can result in erroneous inter-

pretations.

The contributions in this chapter are the following: i) we present gNTP, an
efficient NTP model which significantly reduces the time and space complex-
ity requirements by greedily reducing the number of candidate proof paths
and lowering the number of parameters for rule learning with the attention
mechanism, ii) we extend gNTP with a compositional reading module which
jointly embeds predicates and natural language texts in the same embedding
space, iii) we experimentally show that gNTP perform on par with, or better
than NTP at a fraction of the cost, and can achieve competitive link predic-
tion results on large-scale datasets while being able to provide interpretable
explanations for each prediction and iv) that decoding induced rules with the
method presented in Rocktaschel and Riedel [2017] can even be misleading,
and that best-ranking proof paths too should be used when interpreting the

induced rules.

4.2 Background: Neural Theorem Provers

Logic program interpreters can give answers to queries when the answers can be
logically deduced from the KB, relying on unification for inspecting equality
between symbols compared during the deduction. For cases where symbols
are not the same but might support the concept of similarity, standard logic
programming fails. Rocktaschel and Riedel [2017] introduced NTPs as a way
to expand logic programming with the ability to deduce over symbols based on
their similarity, importantly, by learning representations of KB symbols from
data.

NTPs are a class of neural network models for end-to-end differentiable de-
ductive reasoning. They mimic the backward chaining proving strategy
(Section 2.2.2) by recursively building a neural network which enumerates

all possible proof paths for proving a goal over the KB, up to a specific



4.2. Background: Neural Theorem Provers 107

proof depth, making the enumeration effectively a depth-limited Breadth-First
Search (BFS). To support learning representations in a KB K, NTPs expand
a given KB with a set of parameters, 8/ = (&,6), where # stands for a learned
d-dimensional vector representation for each constant and predicate symbol in
KB, indexed by the symbol, e.g. #1ocatedin € R,

4.2.1 Continuous Relaxation of Backward Chaining

The recursive enumeration of all proof paths by N'TPs relies on three modules
for building this neural network, derived from same-named modules in Sec-
tion 2.2.2; the unification module unify, which compares sub-symbolic rep-
resentations of symbols, and mutually recursive or and and modules, which
jointly enumerate all the possible proof paths, before the final aggregation

selects the single, highest-scoring state.?

We briefly overview these modules and the training procedure in the following.
We follow the notation presented in the previous section while simplifying the
notation with a partial function definition, treating failure as the omission of

the function definition.

Unification module In backward chaining, unification [Herbrand, 1930,
Robinson, 1965] is the process of finding substitutions that make two logical
expressions look identical [Russell and Norvig, 2009] as a means of check-
ing whether they can represent the same structure. Symbolic unification
checks for equality between the corresponding elements of two atoms, e.g.
atoms districtIn(X,Z) and districtIn(BLOOMSBURY,LONDON) unify as
their predicates are equal, and the variables can be bound to symbols via the
substitution {X/BLOOMSBURY, Y /LONDON}. This is a strict process that does
not support the notion of possible similarity between atoms, e.g. locatedIn,
could be similar to situatedIn or UNITED KINGDOM could be similar to

GREAT__BRITAIN.

In lieu of the symbolic unification in Equation (2.20), NTPs employ contin-
uous unification, which enables comparing different symbols with similar se-
mantics, by comparing their vector representations with a similarity function,

e.g. sim(locatedIn,situatedIn) = f(f1ocatedIn,Psituatedin). This continuous

2Though NTPs would, as would the backward chaining, return all proof paths, the
model assumes that only the highest-scoring proof path is the valid one, hence the final
proof aggregation.



108 Chapter 4. gNTP: Greedy Neural Theorem Provers

unification makes comparing ground atoms and applying rules possible even

in cases where discrete symbols differ:

_ S it H=G=]]
unifyg,(H,G,S) = . o
unifyg,(H',G',8") if |[H|=|G|,H=[h:H',G=g:G

where
S=(¥,p)
S'= ' p)

Y = unify-var(h,g,v)
p' = min(p,sim(h, g, Rg)).
(4.1)

Note that now, the proof state S = (¢, p) consists of two elements: the sub-
stitution v, as in backward chaining, and the proof score p which quantifies
the agreement of two substitutions. This reflects on the unify-var function
which does not lead to unification failures as in Equation (2.21), but allows

comparison of all expressions:

(h/g) ifheV
unify-var(h,g,9) =v U< {g/h} ifh¢gV,geV . (4.2)

0 otherwise

The continuous unification operator now calculates a proof score p for each
proof path by relying on a similarity function sim defined with a Radial Basis
Function (RBF) kernel [Broomhead and Lowe, 1988]:

2

ox <— 10, — 0]
) p 5
sim(h, g, 89) = 20

1 otherwise

) it h,g¢V | (43)

where 0, and 0}, are representations from £y corresponding to symbols i and
g. We can see that, by design, the unification of a variable and a constant does
not influence the proof score (Equation (4.2)), while the unification between
two different symbols influences the score if the symbol similarity is lesser than

the current proof score (Equation (4.1)).

For example, given atoms locatedIn(LONDON,UK) and situatedIn(X,Y),



4.2. Background: Neural Theorem Provers 109

and a proof state S = (¢, p), the unify module calculates the similarity of
embedding representations O1ocatedin and Osituateqzn With a RBF kernel, up-
dates the substitution set ¢/ = ¢ U{X/LONDON,Y /UK}, and calculates the

/ . .
new proof score as p’ = mln(p, Slm(elocatedlnaesituatedln))-

OR module The or module aims to prove the goal by unifying it with every
fact and rule in the KB Ry.

Formally, as in Equation (2.18), or unifies the goal G with the head H of each
rule H :— B € K, and calls the and module with the resulting substitution to

prove atoms in the body B of each rule:

H — Befy

S/
S’ € andg,(B,d,unifyg,(H,G,S))

org,(G,d,S) = ) (4.4)

For example, given a goal G = situatedIn(LONDON,UK), and the rule
locatedIn(X,Y) :— districtIn(X,Z),capital0f(Z,Y), the model would
unify the goal with the head locatedIn(X,Y) of the rule, and instantiate and
modules, to prove sub-goals in the body districtIn(X,Z),capital0f(Z,Y)

of the rule .

AND module The and module, in turn, aims to recursively prove a list of
sub-goals such as body atoms in a rule. Concretely, given a list of sub-goals,
G =g : G'], the and module will apply the substitution ¢ to the sub-goal g, and
call the or module to further unify it with the rules in the KB. The resulting
state of the unification is the starting state to further recursively prove the rest

of the list, the tail G’ by invoking the and module on it, as in Equation (2.19):

S if G =]

S’ e Orﬁ0(¢ g,d— 175)
S" € andg,(G',d,S")

andg, (G,d,S) = .,

d>0,G=[g:G"

(4.5)
For example, when invoked on the rule body B from the example before,
the and module will first substitute variables with constants for the sub-goal
districtIn(X,Z) and invoke the or module on it. Starting with the resulting
state, and is invoked on capitalOf(Z,Y).

We depict the interplay of all these modules in the NTP model in an example
of a run on the KB in Listing 2.1 on the goal situatedIn(BLOOMSBURY, UK)



110 Chapter 4. gNTP: Greedy Neural Theorem Provers

in Figure 4.1. Note that now, in contrast with the backward chaining example
in Figure 2.3, the mutual recursion of the and and or in NTP produces a
significantly larger proof space, where the only failure encountered (depicted

for comparison) is the result of the loop avoidance [Van Gelder, 1987].

NTP as Differentiable Logic Interpreter Following the exposition in Sec-
tion 2.3.2, per Equation (2.28), NTP is a differentiable logic interpreter:

Toip(Ry, G, d) = max{p| (¢, p) € org,(G.d,(0,1)}, (4.6)

with the initial proof state set to (), 1), an empty substitution set and a starting
proof score of 1. The execution of the or function results in the enumeration of
all the proof paths of the goal G on a KB Ry, to a pre-specified depth d. NTPs
assume that only the highest-scoring proof path is the correct one, hence the

maximisation over the scores p.

4.2.2 Training

We can learn the parameters 6 of the predicate and constant representations by
optimising the binary cross-entropy loss on the final proof score. By iteratively
masking facts in the KB and trying to prove them using all the other available
facts and rules [Rocktaschel and Riedel, 2017] we get:

Eﬁe (9) = Z —ylog(ngp(ﬁg,G,d)) - (1 _y) log(l _Tntp(*Q@vG’d))
(Gy)eD

= Z H(yaTﬂtp(ﬁeaGad))+H(1_y71_Tntp(ﬁ97G7d))a
(G,y)e®

(4.7)

where © = {(G,y)} is the dataset containing pairs of goals G and labels v,
where y = 1 for the goals present in the KB K. The negative examples, in this
case, are sampled from the positive ones by corrupting the entities and setting

y=0.

The original NTP model is computationally demanding, so Rocktaschel and
Riedel [2017] implement two optimisations to speed up training—batch pro-
cessing of several proofs in parallel, and limiting the number of possible unifi-
cations of free variables in rules with a differentiable K-max heuristic [Rock-
taschel and Riedel, 2017].

Note that, strictly speaking, though NTPs are continuous, they are not dif-



4.2. Background: Neural Theorem Provers

[ situatedIn(bloomsbury, uk) ]

o). ¢ ()

unify((), (), ¢ 5 () unify(C). D ¢ 5O

111

Knowledge
Base :

[districtIn(bloomsbury, london)]

capitalOf(london, uk)

g[locatedln(x, Y)): -(districtIn(X, 2)) (capitalof(z, V)]
: H B1 B2 :

unify(D,, ({f_t},@) )

“y;; = {X/bloomsbury, Y/uk}

and([[B1).B2)1. (v, &)))

;= {X/bloomsbury, Y/uk, Z/london}

\ps = {X/bloomsbury, Y/uk, Z/uk}

or(iw, B, (w5, &)

unify(, @1, (. Guyr @) unity(iw, 8., Gyt @)

and([[B2)], (w; . @)))
(4,82, (. &)
unify(3,82. (], (. @) unity(,82. (), (2. @)

(5. @) (7. 6)

and([([B2)1, (45 &)))
o3B3, (W5 &)
unify( @382, (). (3. @) unity(82). (. (. &)

(7. 6) (5. 6)

J max
] p

(@)

Figure 4.1: An example of the execution of NTP on a small knowledge base. The
knowledge base, presented in Listing 2.1, is also noted in the top right
corner. Circles signify substitutions, squares atoms (with circles next
to squares signifying applying a substitution to an atom) and pen-
tagons signify the output scores. The colour codings of the KB and
the unifications follow through the example. We omit some calls to and
for clarity. The calls resulting in failure are transparent to accentuate
that the algorithm ignores them, but we present them for comparison
to Figure 2.3. As opposed to the linearly recursive call structure in 94,
we can note the fully recursive structure of calls in NTP. Note the sig-
nificantly larger number of proof paths that the algorithm maximises
over, compared to Figure 2.3—this is what we aim to improve.



112 Chapter 4. gN'TP: Greedy Neural Theorem Provers

ferentiable since the min and max functions used are not differentiable every-
where. However, they do have subgradients that we can use to propagate the

gradient information through the extrema of these functions.?

Logic Program Induction The ability to learn continuous representations
of predicates opens the possibility of learning interpretable rules from data.
Rocktaschel and Riedel [2017] show that manually specifying rule templates
such as #p(X,Y) :— #q(X,7Z),#r(Z,Y), where #p,#q,#r denote learned
predicates with Oyp, 044,04 as free parameters, it is possible to learn rules
from data. They show that the parameters can be learned from data and
simply decoded for inspection by searching the closest representation of each

parameter in the space of all predicate parameters.

4.3 Greedy Neural Theorem Provers

The NTPs, as presented in Section 4.2, are end-to-end differentiable models
capable of deductive reasoning, learning representations, program synthesis
and they provide explainable predictions. In theory, this makes them an excel-
lent candidate for models for theorem proving over text. In practice, however,
the representation learning capacity of these models comes at a huge cost—

computational intractability for all but the small KBs.

In this section, we present gNTPs, models which i) attack the issue of compu-
tational intractability by employing a heuristic to filter out proof paths deemed
unnecessary, thus making the model scale to larger datasets ii) incorporate a
compositional language reader making them readily applicable to text-enriched

datasets, as a step towards natural language reasoning.

4.3.1 Scaling up NTPs

In general, the inability of NTPs to scale to bigger datasets stems from three
interconnected causes. First, NTPs inherit the complexity of the backward
chaining algorithm, usually implemented with the DFS search strategy. Sec-
ond, the inherited complexity is additionally exacerbated by the continuous
unification which, instead of checking for equality, needs to calculate the com-

patibility of all symbols. Finally, this is yet worsened with the need to utilise

3The gradient is passed through the path of the minimum/maximum element, respec-
tively.



4.3. Greedy Neural Theorem Provers 113

the (depth-limited) BFS strategy to enumerate all the proof paths, as a prereq-
uisite to simplified Graphics Processing Unit (GPU) computation and efficient
batching. The combination of these three issues creates a significant com-
putational bottleneck in the model. Here, we focus on solving the issue of

continuous unification as a core computational issue introduced by the model.

As opposed to a discrete theorem prover, where the unification stops non-
comparable symbols to be unified and further explored, the continuous uni-
fication allows comparison of all symbols, implying that a simple equal-
ity check now expands to a similarity calculation to all elements in the
KB. Concretely, for each (sub-)goal, the process of enumeration and scor-
ing all bounded-depth proof paths requires unifying the (sub-)goal with all
the representations of all rule heads and facts in the KB. Furthermore,
the expansion of rules with more than one atom in the body causes an
increase of the sub-goals to prove (paired with the unification increase),
both because all atoms in the body need to be proven, and because rules
(e.g. locatedIn(X,Y) :— districtIn(X,Z),capital0f(Z,Y)) may con-
tain newly introduced free variables which are not present in the head of the
rule, and these variables additionally complicate the calculation as instead of
binding them to the same value, their binding needs to be calculated by the
unification. Even though Rocktaschel and Riedel [2017] addressed this issue
with the differentiable k-max, the differentiable k-max still requires an on-the-

spot calculation of all the scores before choosing only the top-ranking ones.

We propose implementing a heuristic approach that tackles the complexity
of continuous unification, thus mitigating the computational costs of NTPs
unification, making them readily applicable to large datasets, and opening up
the possibility of applying them to text-enriched data. We dub these models
gNTPs, given the greedy nature of the heuristic.

We implemented gN'TPs in Tensorflow Eager [Agrawal et al., 2019] and made it
freely available under the MIT license at https://github.com/uclnlp/gntp.

4.3.1.1 Greedy Unification

We analyse the issues of continuous unification on two fronts, the unification
of goals with facts, and the unification of goals with atoms in rules (i.e. rule

selection).


https://github.com/uclnlp/gntp

114 Chapter 4. gN'TP: Greedy Neural Theorem Provers

Greedy Fact Unification The number of facts in real-world KBs can be
large [Paulheim, 2017], for example, Freebase [Bollacker et al., 2008] contained*
637 million facts [Dong et al., 2014], while the Google Knowledge Graph con-
tains 18 billion facts [Nickel et al., 2015] . This is why NTP-style unification of
sub-goals with each one of the facts is simply intractable on such huge datasets.
Concretely, let us assume a simple parametrised KB Ry composed of n facts
and no rules. Given a query G over a rule-free Ry, and following Equation (4.5)
and Equation (4.4), NTP reduces Equation (4.6) to the following problem:

Tup(R9,G,1) =max{p| (¢,p) € unifyg, (F.G,(0,1)),F € Ry},  (4.8)

that is to say, to find the maximum scoring path, NTP needs to find a single
fact ' € Ry, that, when unified with the goal G yields the maximum unification
score. This implies that NTPs will compute the unification score between the
sub-goal GG and every fact F' € Ry in order to find the one which corresponds to
the maximum score. Given that this scales linearly with the number of facts in
the KB for all the leaves of the proof tree, this is computationally prohibitive

for large datasets.

Moreover, NTPs will only return a single highest proof score. This means that
during training, NTPs update parameters only along the path of the highest

proof score. During inference, NTPs provide only the highest proof score.

The insights that finding the maximum scoring path reduces to finding the fact
F closest to the goal G, the notion that we need to obtain only a single proof
score and the fact that the similarity used in the unification is calculated via a
RBF kernel, suggests we can cast this problem as a Nearest Neighbour Search
(NNS) problem [Fix, 1951, Bentley, 1975, Yianilos, 1993]. Utilising NNS is
feasible since the RBF kernel, used by the NTPs is monotonically decreasing
with the increasing FEuclidean distance between the goal G and the fact F.
Identifying the closest fact F' to the goal G would permit the reduction of the
number of path computations from O(|8y|) to O(1), not factoring in the cost
of the NNS search, thus casting the problem in Equation (4.8) to:

Yoip(Ry, G, 1) =max{p | (¥,p) € unifyg, (F,G,(0,1)),F ENSQ(G)}, (4.9)

that is, given the goal G we restrict the search for the closest fact F' to a

4Freebase was supplanted by Wikidata from May 2016.



4.3. Greedy Neural Theorem Provers 115

Euclidean local k-neighbourhood N; ,f (@) defined as:

N3(@) = k-argmin||0F — 0|, . (4.10)
FeRy

This problem in Equation (4.8) is equivalent to the problem in Equation (4.9),
but we still need to be able to calculate the k-nearest neighbours N, ,f “(G)
efficiently to benefit from this. Here, we propose to efficiently compute the
nearest neighbours between a sub-goal G and facts F' € Ky with fast NNS
algorithms. However, finding nearest neighbours is a difficult task—due to
the curse of dimensionality [Bellman, 2015], finding the exact neighbourhood
of a point in a Euclidean space is very costly [Indyk and Motwani, 1998].
Experiments showed that methods for identifying the exact neighbourhood can
rarely outperform brute-force linear scan methods when the dimensionality is
high [Weber et al., 1998], and that the high dimensionality exacerbates possible
issues of the quality of the NNS results [Beyer et al., 1999, Hinneburg et al.,
2000]

One practical solution is to utilise Approximate Nearest Neighbour Search
(ANNS) algorithms, which focus on finding an approximate solution to the
k-NNS problem. Several families of ANNS algorithms exist, such as Locality-
Sensitive Hashing [Andoni et al., 2015, Product Quantisation [Jegou et al.,
2011, Johnson et al., 2017] and Proximity Graphs [Malkov et al., 2014].
One of the most promising approaches is the Hierarchical Navigable Small
World [Malkov and Yashunin, 2018], a graph-based incremental ANNS struc-
ture which offers significantly better logarithmic complexity scaling during
neighbourhood search than other approaches [Li et al., 2019]. In our first
series of experiments, we experimented with this technique as a part of the

nmslib® library.

Another practical solution is to utilise a fast, exact NNS algorithm, executed
on a GPU, such as Facebook AI Similarity Search (FAISS) [Johnson et al.,
2017).% Since optimised for GPU computation, this library provides exact
results in less time than the approximate methods, for large enough datasets
(up to 1 million facts). However, for more than 1 million facts, it would be
advisable to use ANNS algorithms, some of which are also implemented on a
GPU, such as the GPU implementation of the Product Quantisation in FAISS

Shttps://github.com/nmslib/nmslib
Shttps://github.com/facebookresearch/faiss


https://github.com/nmslib/nmslib
https://github.com/facebookresearch/faiss

116 Chapter 4. gNTP: Greedy Neural Theorem Provers

In this work, we opt for the exact NNS with GPU support with FAISS for
efficient NNS. We chose the exact one simply because the GPU-supported NNS
is significantly faster than the CPU-based ANNS for the sizes of problems we
deal with here. For even larger datasets, however, the exact NNS stops being

a viable option.

Notice one important remark here: both the ANNS and NNS models build an
indexing structure for the particular instance of the KB, and the cost of that
index building is often higher than the cost of querying it. To offset this cost,
we chose to re-build the index every i-th batch. This choice to act upon stale
information from a stale index invalidates the equivalence of Equation (4.8)
and Equation (4.9). However, we assume that small updates by stochastic
gradient descent would not necessarily invalidate previous search indexes and

thus support the choice of a heuristic on stale information.

Greedy Rule Selection Analogous to facts, we can extend the same pro-
cedure to select which rules to activate for proving a given goal as well.
For example, given a goal situatedIn(LONDON,UK) and a rule head H
locatedIn(X,Y), it is sensible to expand said rule if there is high similar-
ity between the embedding €1ocatedin and Osituatedin. Strictly speaking, this
local decision of choosing a rule with a closer predicate (or predicate and one
atom, in the case of sub-goals with one variable assigned), is a greedy deci-
sion which does not guarantee the highest scoring path in the end. However,
although the rule chosen due to the high similarity to the goal may lead to a
sub-optimal proof path, we empirically observed that unifying the goal with
the closest rule heads is likely to generate high-scoring proof paths.

Specifically, in our implementation, we generate a set of NNS indexes cor-
responding to a partitioning Part(Ry) of the KB where each element of the
partition groups all facts and rules in £y sharing the same signature. For exam-
ple, all facts such as locatedIn(LONDON, UK) and situatedIn(LONDON, UK)

share the same index, as well as all atoms of the form p(X,A) and q(Y,B).”

Having both the fact and rule unification cast as a NNS problem, and having

indexes for NNS both the fact and rule selection defined through a partitioning

"In total, the number of these partitions equals at most 2Y, where v is the number of
variables in an atom.



4.3. Greedy Neural Theorem Provers 117

Part(Ry) of the KB, allows us to redefine the or module as:

H - B eN}f’art(ﬁg)(G)
S € andg, (B,d,unifyg, (H,G,S))

org,(G,d,S)= |5 : (4.11)

where instead of unifying a goal G with all facts and rule heads in the KB, we
constrain the unification with ANNS to only facts and rule heads in the local
neighbourhood of the goal A ,f art(ﬁe)(ﬁg).

4.3.1.2 Attention

We can use NTPs to learn interpretable rules [Rocktaschel and Riedel, 2017].
However, since the number of parameters associated with predicates is the
same as the number of parameters associated with constants, rule learning
can be quite inefficient in cases where the number of predicates is smaller
than the number of dimensions. For example, considering a rule example
#p(X,Y) — #q(X,Z),#r(Z,Y), we observe that the number of parameters
in it is three times the size of the embeddings d, and learning them directly
can take time, given that the model needs to find a good set of parameters in

the full d-dimensional space.

Given that the rules would ideally employ embeddings of existing predicates,
we propose to constrain the number of parameters in predicate embeddings
by using an attention mechanism [Bahdanau et al., 2015] over already known
predicates in the KB.

Concretely, given P, a set of known predicates in the KB, £, the subset of
the KB corresponding to P, and P, a matrix of embeddings of P, we re-define
the predicate parameters fp per Equation (2.15) as:

07, = softmax(6p)TP, (4.12)

where Op are the (new) attention parameters associated with predicates P (one

value per predicate).

The attention has a twofold effect here. First, it can improve the parameter
efficiency of the model by lowering the number of parameters for training
rules in cases where the number of known predicates is lower than than the
embedding size d, by introducing ¢|P| parameters for each rule rather than cd,

where ¢ is the number of trainable predicate embeddings in the rule. Second,



118 Chapter 4. gNTP: Greedy Neural Theorem Provers

it has a constraining effect on the trainable embeddings as it drives the newly

learned embedding to a convex hull of known predicates in the KB.

4.3.2 Joint Reasoning on Knowledge Bases and Natural

Language

Natural language is characterised by compositionality, a property crucial to
production and understanding of a large (seemingly infinite) number of sen-
tences with a limited number of words [Katz and Fodor, 1963, Davidson, 1967,
Grandy, 1990]. In short, the principle of compositionality dictates that mean-
ing of a unit of text is a function of the meaning of its constituent words and the
rules that combine them [Cresswell, 1973, Partee, 1995]. In the representation
learning setting, this is often modelled by representing sentences as functions

of representations of its elements.

NTPs do not use compositional representations; they entirely rely on mono-
lithic representations of symbols, hence any representation of relations or enti-
ties from a piece of text would rely on representing the full text as a single sym-
bol. Given the compositional character of language, this seems like a wasted
opportunity. For example, sentences like “London is located in the UK” and
“London is in the UK” obviously both testify to a relationship between entities
LONDON and the UK in the KB, and share much informational content, which

would not be captured by a monolithic representation.

This inspired us to expand gN'TPs to support reasoning with textual knowledge

using compositional language representation.

We focus on representing knowledge in the form of textual facts, treat-
ing the text between the entities in the KB as a relation mention [Mintz
et al., 2009, assuming that sentences mentioning two entities express a
relation between them [Hoffmann et al., 2011]. For example, we rep-
resent “Bloomsbury is a quarter of London” with a relation mention
"[#1] is a quarter of [#2]" and entities BLOOMSBURY and UK in a textual
fact "[#1] is a quarter of [#2]"(BLOOMSBURY,LONDON).® Other than
using the text between these two entities, we can also use other information
representations such as whole sentences [Riedel et al., 2010], or derivative

information such as parts of the dependency parse [Riedel et al., 2013].

8[#1] and [#2] denote placeholders for the first and the second entity/argument of the
textual fact.



4.3. Greedy Neural Theorem Provers 119

[situatedln(bloomsbury, uk)] ;[“is 2 Gt dn(leEaN, london)] Knowl::zzz
|
or((J. ¢ 5 () g[locatedln(x, v)): -[districtin(x, 2)) [capitalof(z, Y)]%
N : H B1 B2 :
unify(().(), ¢ 5 () unify((J.(A), ¢ () Seg
\\ \ ;: = (X/bloomsbury, Y/uk}
(_@) and([,], ({'%':’@)) ‘Pz = {X/bloomsbury, Y/uk, Z/london}
or(iy, B1). (v, @)
unity(y, 81, (], Cuy. @)
and([B2]. (w;. &)
or(,182. (. )
unity(,82, (], (1. @)
(. 6)
1 J max
Y P

(ug )

Figure 4.2: An example of the execution of gNTP on a small knowledge base,
presented in the top right corner. Circles signify substitutions, squares
atoms (with circles next to squares signifying applying a substitution to
an atom) and pentagons signify the output scores. The colour codings
of the KB and the unifications follow through the example. We omit
some calls to and for clarity. The calls resulting in FAIL are transparent
to accentuate that the algorithm ignores them, but we present them
for comparison to Figure 4.1. Note that the model maximises over only
two proof paths in this case. The difference is even more pronounced
on larger KBs.

To that end, we expand the KBs with textual facts, by expanding standard
predicates with relation mentions. The standard predicates are encoded by
a look-up into the parameters 6, whereas relation mentions are encoded with
a compositional reading module reader which maps a sequence of token rep-
resentations into the same d-dimensional space of the original predicate. By
composing token representations into a representation of the mention, we ef-

fectively model the compositional aspect of language [Mikolov et al., 2013].

Formally, given a relation mention m, and the knowledge base Ky with pa-

rameters expanded with a set of token embeddings, the reader encodes the



120 Chapter 4. gNTP: Greedy Neural Theorem Provers

surface pattern m as a mean of embeddings of tokens ¢t € m:

1
readerg,(m) = ] > 6. (4.13)

tem

Although reader can be implemented by any parametrised differentiable ar-
chitecture, such as CNNs [Kalchbrenner et al., 2014], RNNs [Mikolov et al.,
2010] or a transformers [Vaswani et al., 2017|, we opted for a simple parameter-
free averaging model for the sake of simplicity and efficiency. It is worthwhile
noting that, albeit simple, the averaging model has been shown to perform
on par or even better than other, more elaborate models, thanks to a lower
tendency to overfit to training data [White et al., 2015, Arora et al., 2017,
Mitchell et al., 2018]. We leave more elaborate parametrised models for future

work.

An example of a gNTP run on a text-enriched KB can be seen in Figure 4.2.
Note the drastic reduction in complexity, when compared to NTP in Figure 4.1,

resulting in a smaller proof tree.

4.4 Experiments

Given that the goal of modelling gNTPs is to deal with computational in-
tractability of NTPs and make them applicable to textual data, we hypothesise
that gNTPs:

H1 perform similarly to NTPs on smaller datasets, where they can be di-

rectly compared
H2 are more time and memory performant than NTP

H3 scale to large datasets, as a direct consequence of H2, and if they do, we

aim to investigate how they compare to state-of-the-art models

H4 can utilise the newly-added ability to deal with textual data, and we aim
to see whether they successfully use the added benefit of the aforemen-

tioned data
H5 can provide interpretable rules and proofs, useful for qualitative analysis

We test these hypotheses via an extensive evaluation of gNTPs models on

multiple tasks, splitting them by the dataset size to small and large datasets.



4.4. Experiments 121

We start with four small datasets of varying sizes and complexities, on which
we quantify the performance of gNTPs compared to the performance of NTPs
(H1). Concurrently, we compare gNTPs with other state-of-the-art link predic-
tion models as well as with related, continuous-logic and path-based models.
Afterwards, we compare the time and memory use of gNTPs and NTPs on
the same small datasets, given that these datasets present the limit of usage
for NTPs (H2). Next, we test the scaling capabilities of gNTPs by running
them on three large datasets and comparing them to multiple state-of-the-art
models and baselines (H3). We interleave small and large datasets experiments
with qualitative analyses, to analyse the use of interpretable rules and proofs
(H5). Finally, we conclude the experimental section with the analysis of gNTP
on the text-enriched Countries datasets (H4).

4.4.1 Datasets, Evaluation and Baselines

4.4.1.1 Datasets

To compare gNTP with NTP and state-of-the-art link prediction models, we
use the same datasets as Rocktaschel and Riedel [2017], namely the Countries
S1, S2, S3, Nations, Kinship and UMLS datasets. Due to their humble size,
we refer to these datasets as small datasets. Countries is the Nickel et al.
[2016Db] version of the Bouchard et al. [2015] dataset, intended as a benchmark
dataset for testing long-range reasoning capabilities of link prediction models.
It is a dataset of 1158 facts about 244 countries, denoting relationships of
neighbourhood and affiliation (2 relations) to a hierarchy of 23 subregions and
5 regions (countries, subregions and regions being the entities) of the world.
The dataset is split based on countries so that each country in the development
(20 countries) and the test (20 countries) set has at least a neighbour in the
train (204 countries) set. This is the basis for three progressively harder ver-
sions of this dataset. Countries S1 is missing the region affiliation of test set
countries, making it solvable by utilising the subregion information with the
trainsitivity rule locatedIn(X,Y) :— locatedIn(X,Z),locatedIn(Z,Y).
Countries S2, in addition to S1, is missing the subregion affiliation of test set
countries, making it solvable by inferring location from neighbour information:
locatedIn(X,Y) :— neighbor0f(X,Z),locatedIn(Z,Y).?” Countries S3,

9Neighbouring countries might not be in the same region hence this rule does not always
hold



122 Chapter 4. gN'TP: Greedy Neural Theorem Provers

in addition to S2 is missing the region affiliation of all neighbours of all
countries in the dev and test sets, making it solvable via the three-hop rule
locatedIn(X,Y) :— neighborOf (X, Z),neighbor0f(Z,w),locatedIn(w,Y).

To test the usefulness of textual capabilities of gNTP, we generated variants
of the Countries datasets named Countries with mentions by randomly
replacing a varying percentage of training set triples with a randomly chosen
mention out of a set of human-generated mentions. The mentions we used are

enumerated in Table B.1.

Following Countries as the benchmarking datasets, we use three datasets used
in previous work [Kemp et al., 2006, Kok and Domingos, 2007] for relational
learning, namely the Nations, Kinship and UMLS datasets. Nations [Rum-
mel, 1976] is a political dataset, containing interactions (relations) between
nations (entities).'® Kinship [Denham, 1973] is a dataset containing complex
kinship structures exhibited in the Australian Alyawarra tribe, containing kin-
ship relationships (relations) between individuals (entities) of the tribe [Den-
ham, 1973]. UMLS [McCray, 2003] is a biomedical ontology, presenting rela-

tionships (relations) between high-level concepts (entities).

Since gNTPs allow us to experiment on significantly larger datasets than
NTPs, we use the standard large datasets, WN18, WNI18RR, and FB122.
WN18 [Bordes et al., 2013] is a subset of WordNet [Miller, 1995], a lexical
KB for the English language, exhibiting lexical relationships (relations) be-
tween word senses (entities). WIN18RR [Dettmers et al., 2018] is a harder
derivative of WN18, with fixed test leakage issues. FB122 [Guo et al., 2016] is
a dataset of 122 Freebase relations extracted from FB15k, coming with 47 ex-
ternally induced rules, which can further be used, if the model supports using
them. The rules are significant as they are the basis for the test set, which is
split into two. Test-1 contains triples that cannot be directly inferred by pure
logical inference with the provided rules, whereas Test-II contains triples that

cal.

The statistics of all the datasets, both the small and the large ones are given
in Table 4.1.

10And features of nations encoded as unary relations which have been filtered out of the
dataset



4.4. Experiments 123

Table 4.1: Dataset statistics for both the small (Countries, Nations, Kinship and
UMLS) and the large datasets (WN18, WN18RR, FB15k-237).

Dataset # relations # entities # triples

train dev test total
=@ S1 2 272 1111 24 24 1159
% Countries [Bouchard et al., 2015] S2 2 272 1063 24 24 1111
E S3 2 272 979 24 24 1027
— Nations [Rummel, 1976] 56 14 1,592 199 201 1,992
g Kinship [Denham, 1973] 26 104 8,544 1,068 1,074 10,686
# UMLS [McCray, 2003 49 135 5,216 652 661 6,529
£ WNI18 [Bordes et al., 2013 18 40,943 141,442 5,000 5,000 151,442
§ WN18RR [Dettmers et al., 2018] 11 40,943 86,835 3,034 3,134 93,003
= Test-1 5,057 106,290
g FB122 [Guo et al., 2016] Test-11 122 9,738 91,638 9,595 6,186 107,419
5 Test-ALL 11243 112,476

4.4.1.2 FEvaluation

We follow the standard evaluation protocols as Rocktaschel and Riedel [2017].
For Countries, this means reporting the performance in terms of the Area
Under the Precision-Recall Curve (AUC-PR) [Davis and Goadrich, 2006].

For all the other datasets, we generate all possible corruptions of test fact
arguments, filtering out corrupted facts that occur in the KB. We then predict
the ranking of the test fact and its corruptions, and report the Mean Reciprocal
Rank (MRR) [Voorhees, 2001] and the fraction of correct entities found in the
top n ranked ones (HITS@n) [Bordes et al., 2013].

4.4.1.3 Baselines

NTPs We compare the performance of gNTP primarily with the performance
of their predecessor, NTP. Note that the results reported in Rocktaschel and
Riedel [2017] were calculated with an incorrect evaluation function—if sev-
eral facts have the same score, the ranking function assigns them the same
(best) rank, which artificially inflates the result. We corrected the issue and

recalculated the results of their publicly available models.!!

Neural Link Predictors Next, we compare the performance of gNTP with
state-of-the-art Neural Link Predictors, DistMult [Yang et al., 2014], Com-
plEx [Trouillon et al., 2016] and ConvE [Dettmers et al., 2018]. These models
jointly learn each entity and relation embedding with a d-dimensional vec-
tor and optimise a differentiable scoring function based on these embeddings,

minimising the KB reconstruction error [Nickel et al., 2016a].

Hhttps://github.com/uclmr/ntp


https://github.com/uclmr/ntp

124 Chapter 4. gN'TP: Greedy Neural Theorem Provers

Neuro-symbolic models Finally, we report the results of two other neuro-
symbolic reasoning systems, MINERVA [Das et al., 2017a], a reinforcement
learning -based KB graph traversal model, and NeuralLP [Yang et al., 2017,
a model which similarly learns first-order logical rules through a series of dif-

ferentiable operations.

4.4.1.4 Experimental Setup

We followed the experimental setup of Rocktaschel and Riedel [2017] where
necessary. Concretely, we provided the same rule templates, and learned
their relation embeddings, but have not provided any rules in a form of tem-
plates with pre-trained embeddings. We selected the best hyperparameters
through a hyperparameter sweep for each gNTP model. We use the Adam
optimiser [Kingma and Ba, 2015] with the default settings for 100 epochs, on
embeddings of size 100, running the models for the depth of 1. For small
datasets, we swept the values of batch size in [128,256,512,1024], and we fixed
the batch size to 1000 for the large datasets. Next, we swept the values of
the learning rate in [0.05,0.01,0.005], and values of k in [1,2,5]. On FB112 we
ran the first 95 epochs passing gradients only through rule embeddings, thus
pre-training rules, and then training entity embeddings and rules for the last

5 epochs. This forces gNTPs to learn good rules first.

4.4.2 Link Prediction on Small Datasets

4.4.2.1 Quantitative Analyses

We contrast the performance of gNTP with its predecessor, NTP and baselines
from the category of Neural Link Predictors (DistMult, ComplEx, and ConvE),
as well as the neuro-symbolic baselines MINERVA and NeuralLP, of which
the latter one is a differentiable first-order rule learner. The results of the

comparison are presented in Table 4.2.

There are a handful of conclusions to take from these results. First and fore-
most, gNTPs either have comparable performance to NTPs or outright out-
perform them consistently through the benchmark datasets. Other than the
issue of the erroneous evaluation of NTP in the original paper, which directly
hurt the performance of NTP, we hypothesise that the dominance of gNTP
stems largely from it supporting a thorough hyperparameter sweep, which

NTP simply cannot do due to its scaling issues.



4.4. Experiments 125

Table 4.2: Link prediction results for small datasets. Results from Das et al.
[2017a)?, Dettmers et al. [2018]°, Yang et al. [2017]¢. Globally best
results in bold, best result among the graph and neural logic models
underlined. Note that the NTP results form Rocktaschel and Riedel
[2017] were recalculated to fix the evaluation issue described in the text.

Countries Nations Kinship UMLS
S1 S2 S3
AUC-PR MRr TS g HITS MRR HITS
@1 @3 @10 @] @3 @10 @ @3 @10
Neural Link Prediction Models
DistMult® 0.98+£0.00 0.69+0.02 0.164+0.01 - - - - 0.88 0.80 0.94 098 0.94 0.92 0.97 0.99
ConvEP 1.00£0.00 099+0.01 0.86+£0.05 0.82 0.72 0.88 1.00 083 074 092 0.98 0.94 0.92 096 0.99
ComplEx? 0.994+£0.00 0.88+0.02 0.48£0.06 0.8 075 091 0.98 0.89 0.82 09 1.00
Graph-Based Models
MINERVA? 1.00+0.00 0.924+0.02 0.95+0.01 - - - - 0.72 061 081 092 0.83 0.73 090 0.97
Neural Logic Models
NeuralLP* 1.004+0.00° 0.75+£0.00¢ 0.92+0.00¢ - - - - 0.62 048 0.71 091 0.78 0.64 0.87 0.96
NTP 0.91+0.15 0.87+£0.12 0.57+0.18 0.61 045 0.73 0.87 035 024 037 057 080 0.70 088 0.95
gNTP 1.00£0.00 0.88+0.03 086+£0.04 073 060 081 099 074 062 084 095 0.8 0.76 095 0.99
gNTP (attention) 1.00£0.00 0.91+0.03 085+0.06 0.78 0.68 0.86 1.00 0.76 0.64 0.85 0.96 086 0.76 0.95 0.99

Second, as noted in Rocktaschel and Riedel [2017] for NTPs, gNTPs too still
lag behind specialised link prediction models, even more so since in the mean-
time there has been a number of models steadily pushing the performance on
these datasets upward. gN'TPs still have issues in learning subsymbolic repre-
sentations, in particular since the unification score relies on applying the min
operation on the representation elementwise, as opposed to neural link pre-
dictors which have a higher capacity for learning specialised representations,
given that they directly optimise the score of the triple. A possible avenue
for future work would be to investigate different ways to integrate score-based
link predictors into the unification score, from regularisation, over forming a
mixture of experts, to redesigning the unification score to directly utilise state-
of-the-art triple scoring. In our experiments, we decided not to push learning
auxiliary losses in the model as Rocktaschel and Riedel [2017] did as our goal

here was not to break state-of-the-art but advance the original NTP model.

Third, gNTP outperforms or performs as well as MINERVA and NeurallLP
on all but the Countries S2 and S3 datasets showing that gNTP still has an

advantage when compared to other interpretable models.

Finally, gN'TPs still keep the interpretability of NTPs as its major advantage
over uninterpretable systems such as neural link predictors—one can both
inspect inducted rules as a means of interpreting what the model learned, as

well as reconstruct the proof path the system chooses as the highest-scoring



126 Chapter 4. gNTP: Greedy Neural Theorem Provers

Table 4.3: gNTP-induced rules on the Countries dataset. The upper half of the
rules are the valid ones, whereas the lower half are the invalid ones.
Rules in bold are rules necessary to solve the dataset.

Rule Score

Countries S1

neighborOf (X, Y) :- neighborOf(Y, X) 0.98
locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y) 0.81
locatedIn(X, Y) :- neighborOf(X, Z), neighborOf(Z, Y) 0.67
locatedIn(X, Y) :- locatedIn(Y, X) 0.48

Countries S2

neighborOf (X, Y) :- neighborof(Y, X) 0.98
locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y) 0.95
locatedIn(X, Y) :- neighborOf(X, Z), locatedIn(Z, Y) 0.68
locatedIn(X, Y) :- neighborOf(X, Z), neighborOf(Z, Y) 0.72
Countries S3
neighborOf (X, Y) :- neighborOf(Y, X) 1.00
locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y) 0.93
locatedIn(X, Y) :- neighborOf(X, Z), locatedIn(Z, Y) 0.95

locatedIn(X, Y) :

locatedIn(X, Y) :
locatedIn(X, Y)

neighborOf(X, Z), neighbor0f(Z, W), locatedIn(W, Y) 0.95

locatedIn(X, Z), neighborOf(Z, W), neighborOf(W, Y) 0.70
locatedIn(X, Z), neighborOf(Z, W), locatedIn(W, Y) 0.73

one. We take a look at some of the induced rule per dataset, and a few

interesting proof paths for the Nations, Kinship and UMLS datasets

4.4.2.2 Qualitative Analyses

Countries As we can see in Table 4.3, gNTP induces the necessary rules to
solve each of the Countries datasets. The model also induces some incorrect
rules, as well as multiple instances of the correct rules (not presented in the
table), albeit with varying scores. Note here that the rule and proof scores are
calculated by calculating the proof score as in Equation (4.1), by comparing the
similarity between the learned representations of the rule predicates and their
1-NN decoded predicates, as in Rocktaschel and Riedel [2017]. Though this
does happen often in our experiments, by analysing the highest-scoring proof
paths, we notice that only the highest-scoring rule is used in these proof paths,
whereas the others are not. This finding tells us that we should take care when
decoding the rules and that we should also take a look at the highest-scoring
proof paths to analyse which of the rules are being used by the model.



4.4. Experiments 127

Table 4.4: gNTP-induced rules and proofs on the Nations dataset.

Rules
Rule Score
commonbloc2(X, Y) :- commonbloc2(Y, X) 0.88
unweightedunvote(X, Y) :- unweightedunvote(Y, X) 0.83
exports3(X, Y) :- relexports(X, Y) 0.73
tourism(X, Y) :- relstudents(Y, X) 0.58
unoffialacts(X, Y) :- unoffialacts(X, Z), unoffialacts(Z, Y) 0.53
embassy (X, Y) :- officialvisits(Y, X) 0.31
Proofs
Proof Score

G commonbloc2(burma, egypt)
-.- commonbloc2(X, Y) :- commonbloc2(Y, X) 0.88
Lcommonbloc:Z(egypt, burma)

G unweightedunvote(netherlands, poland)
. unweightedunvote(X, Y) :- unweightedunvote(Y, X) 0.83
Lunweightedunvote(poland, netherlands)

G negativecomm(cuba, usa)

:.» commonbloc2(cuba, usa) 0.69

Nations Next, we present some of the both high and low -scoring rules induced
on the Nations dataset, as well as proofs for some goals in Table 4.4. Though
Rocktaschel and Riedel [2017] did not include proof paths in their research, we
find it interesting to see them as a way to understand gNTPs better. In the
case of the Nations dataset, gNTPs induce and often use fairly straightforward
symmetric relations, but do not necessarily use them for every proof as is the
case when a proof contains similar facts, with one of the entities being differ-
ent. Other induced rules often indicate a relationship between two relations
which were derived from the same or similar/related data, for example, the
exports3(X, Y) :- relexports(X, Y) rule is indicative of the strong con-
nection between the relative value of exports and normalised principal exports

between nations.

Kinship Rules and proofs for the Kinship dataset are presented in Table 4.5.
Given that the dataset is anonymised, it is difficult to understand whether
the rules and the proofs are correct. However, it is interesting to observe that
the model induces more or less just the standard symmetric relations, but it
often uses just facts for proving goals. Using just fact unification to prove
a goal implies similarity between people in facts being compared, i.e. symbol

embeddings for related people end up being similar.



128 Chapter 4. gNTP: Greedy Neural Theorem Provers

Table 4.5: gNTP-induced rules and proofs on the Kinship dataset.

Rules
Rule Score
term@(X, Y) :- term@(Y, X) 0.98
term4 (X, Y) :- term4(Y, X) 0.88
term15(X, Y) :- term5(Y, X) 0.78
term9(X, Y) :- term15(X, Z), term5(Z, Y) 0.16
term1@(X, Y) :- term5(X, Z), terml15(Z, Y) 0.07
term24(X, Y) :- term15(X, Y) 0.04
term24(X, Y) :- term24(X, Z), termo(Z, Y) 0.03
Proofs
Proof Score

G term@(person93, person3)
term@(X, Y) - termo(Y, X) 0.98
LtermO(person3, person93)

G term17(person74, personi5)

.- term17(person74, person8) 0.95

G term11(person1, person84)

. term11(personl, person66) 0.94

G term4(personl2, person49)
termd (X, Y) - term4(Y, X) 0.88
Lter‘m4(person49, person12)

UMLS We present the rules and proofs for the UMLS dataset in Table 4.6.
UMLS is interesting as the rules induced include not just the symmetric re-
lations but the transitive relations too. Interestingly, most of the transitive
relations have similarly low scores and are decoded as the isa transitive rela-

tion.

4.4.3 Quantifying gNTP Scalability

To quantify the scalability of gNTP with respect to NTP, we empirically anal-
yse their runtime and memory use during training as performance metrics. We
focus on training only as similar performances are expected during inference.
Given that the number of neighbours is an important parameter performance-

wise, we quantify the performance of gNTP for different values of it.

Runtime To quantify the runtime of each model, we compare them by mea-
suring their average number of examples processed during 10 batches of train-
ing, per model. We want to quantify the maximal runtime performance that

each model can achieve, and to that extent, we approximately determine the



4.4. Experiments 129

Table 4.6: gN'TP-induced rules and proofs on the UMLS dataset. Note that the
double occurrence of the isa(X, Y) :- isa(X, Z), isa(Z, Y) ruleis a
result of the rule 1-nearest neighbour interpretation. The embeddings
of these rules are different, but the interpretation is the same.

Rules
Rule Score
interacts_with(X, Y) :- interacts_with(X, Z), interacts_with(Z, Y) 0.92
isa(X, Y) :- isa(X, Z), isa(Z, Y) 0.65
isa(X, Y) :- isa(X, Y) 0.64
isa(X, Y) :- isa(X, 2), isa(Z, Y) 0.59
degree_of (X, Y) :- degree_of(X, Z), degree_of(Z, Y) 0.41
conceptually_related_to(X, Y) :- isa(X, Z), conceptually_related_to(Z, Y) 0.29
Proofs
G performs(professional_or_occupational_group, health_care_activity) 0.99
. performs(group, health_care_activity)
G produces(genetic_function, hormone)
. . 0.98
"> produces(genetic_function, enzyme)
G interacts_with(invertebrate, fish)
f—interacts_with(amphibian, fish) 0.92
. interacts_with(X, Y) :- interacts_with(X, Z), interacts_with(Z, Y)
Linteracts_with(invertebrate, amphibian)
G isa(steroid, substance)
isa(chemical, substance)
0.64

cisa(X, Y) - isa(X, Z), isa(Z, Y)
Lisa(steroid, chemical)

maximum batch size each model can use to fit the memory of an NVIDIA
GeForce GTX 1080 Ti GPU. Note that by doing this, we are quantifying the
approximately maximum potential speedup gained by gNTP. This cannot be
considered as the exact upper bound on the speedup of gNTP due to two rea-
sons: i) the architecture of GPUs can often cause a bigger average number
of processed examples achieved with lower batch size, and ii) the process of

finding the maximum batch size was approximate.

Memory To evaluate the memory use for each model, we compare the maxi-
mum GPU memory utilisation of both models, again over 10 training batches,
but importantly, comparing the models of the same batch size. This enables
us to quantify the difference between the memory use of gNTP and NTP on
equal grounds. Note here that the NTP often cannot utilise higher batch sizes
as it rapidly reaches top memory capacity. We compared the GPU memory
utilisation because both models make use of the GPU memory (the computa-
tion of all proof paths is done on the GPU and the embeddings used in them
need to fit in the GPU memory), and gNTP saves the NNS index on it. In our

previous experiments, we did this on CPU to ensure that we include the size



130 Chapter 4. gNTP: Greedy Neural Theorem Provers

gNTP speedup, relative to NTP gNTP memory efficiency, relative to NTP

Dataset
—— Countries S1
—— Countries S2
—— Countries S3
—— Kinship
—— Nations
— UMLS

1000 7 larger datasets

worse better

1 \ \
1 2 5 10 20 50 100 1 2 5 10 20 50 100
k (k-NN) k (k-NN)

Relative performance improvement (times)

Figure 4.3: The runtime and memory performance of gNTP, relative to NTP. The
performance is expressed as the models’ ratio of the average number
of examples processed (runtime), and the maximum GPU memory
used (memory) in 10 training batches. Lightly green area signifies
better performance of gNTP and the light red area signifies better
performance of NTP, also denoted with the green (better) and the red
(worse) arrows.

of the ANNS saved in RAM, and as a fail-safe, in case NTP did not fit into
the GPU memory, as it often did not.

The results of both of the performance measures are presented in Figure 4.3.
We immediately observe that gN'TPs are substantially more time and memory

performant.

Concretely, gNTPs yield significant speedups of an order of magnitude for the
Countries S1 and S2 datasets, two orders of magnitude for Countries S3 and
Nations, and even three orders of magnitude for Kinship and UMLS, when
using only the top-nearest neighbour. With a higher number of neighbours,
the gains fall due to the cost of NNS querying, as well due to additional engi-
neering details around the utilisation of the NNS. This is particularly evident
in the case of the Countries datasets where for k larger than 20, NTPs per-
form better due to the overhead of NNS. We also observe the trend of gNTPs
consistently outperforming NTP with the increased size of the dataset—the
larger the dataset, more the gain gN'TPs exhibit. This indicates that, should
it be possible to run NTP on large datasets, we would expect the same trend
to continue, thus the time performance gain of gNTP would be in increasing

orders of magnitude.

gNTPs are also more memory efficient, with clear possible savings above an

order of magnitude for reasonable sizes of k. Similar findings from the runtime



4.4. Experiments 131

Table 4.7: Link prediction results on small datasets of gNTP with a varied number
of neighbours. Globally best results in bold, best results for each gNTP
and gNTP (attention) underlined.

Countries Nations Kinship UMLS
S1 S2 S3
AUC-PR MRR HITS MRR HITS MRR HITS
@l @3 @10 @l @3 @10 @l @3 @10

gNTP

k=1 1.004+0.00 088+0.03 086+004 0.74 0.62 0.83 1.00 0.64 050 073 093 070 057 0.78 0.92
k=2 1.00+0.00 0.69+0.19 083+£0.07 0.73 0.60 0.81 099 0.74 0.62 0.84 095 0.86 0.76 0.95 0.99
k=5 099+£0.03 0.90£0.00 0.884+0.04 0.74 062 0.84 099 0.71 057 082 0.95 0.84 0.73 0.95 0.98

gNTP (attention)

k=1 1.004+0.00 091+0.03 0854006 0.75 0.63 0.84 099 059 045 068 086 071 059 0.80 0.90
k=2 1.00+0.00 092+0.04 0.85+0.06 0.78 0.68 0.86 1.00 0.72 058 0.83 095 085 074 094 0.99
k=5 1.00£0.00 0914+0.01 0.78+£0.15 0.73 061 081 099 0.76 0.64 0.85 0.96 0.86 0.76 0.95 0.99

experiments apply; for larger values of k performance gains of gNTPs drop,
for Countries, gNTPs perform worse than N'TPs for k > 20, and the trend of

gNTPs ourperforming NTPs on datasets of increasing sizes still holds.

In addition, we analysed the performance of gN'TPs with and without attention
as a function of the number of neighbours k. The results in Table 4.7 do not
suggest a strong relationship between k and model performance as the best
performances are achieved across all the tested values of k € {1,2,5}. However,
we do observe that for the smallest of datasets (Countries) lower values of k €
{1,2} achieve the best performances, and for others a larger value of k € {2,5}
performs the best, even though lower values of k yield only marginally worse
performance than the best ones. This additionally affirms the importance of
sweeping k as a hyperparameter. Note that there is discrepancy between the
best values in Table 4.7 and Table 4.2 because we chose the best performing
model per each k based on models’ development set performances. This implies
that the best performing models from Table 4.2 appear in Table 4.7, but there
are even better-performing ones even though they have a globally lower dev set
performance. This finding tells us that the best development set performance

does not necessarily correspond to the best test set performance.

We can clearly state that the proof path pruning in gNTPs drastically in-
creases the efficiency of learning (and the inference process as they both rely
on the same model mechanisms). These findings indicate that gNTPs should

be readily applicable to large datasets, which we do next.



132 Chapter 4. gNTP: Greedy Neural Theorem Provers

Table 4.8: Link prediction results for the WN18 and WN18RR datasets. Results
from [Das et al., 2017a]?, [Yang et al., 2017]®, [Dettmers et al., 2018]°,
[Kadlec et al., 2017]4, [Trouillon et al., 2016]°. Globally best results in
bold, best results among the graph and neural logic models underlined.
Note that NTPs cannot run on these datasets.

WN18 WN18RR
MRR HITS MRR HITS
Q1 @3 @10 Q1 @3 @10

Neural Link Prediction Models

DistMult  0.7974 - - 095 0433* 0.410 0.441 0475
ConvE 0.943° 0.935 0.946 0.956 0.438* 0403 0452 0.519
ComplEx  0.941° 0936 0945 0947 0.415* 0.382 0.433 0.480

Graph-Based Models

MINERVA - - - - 0.448* 0.413 0.456 0.513
Neural Logic Models
NeuralLP  0.940P - - 0.945> 0.463* 0.376 0.468 0.657
NTP - - - - - - - -

gNTP 0.940 0.938 0.943 0944 0434 0410 0442 0.484

4.4.4 Link Prediction on Large Datasets

Previously, we showed the potential of gNTP to scale to large datasets. Here we
evaluate their performance on large link prediction datasets, WN18, WN18RR
and FB122.

4.4.4.1 Quantitative Analyses

WN18 and WIN18RR We evaluate the performance of gNTPs and the base-
line models on the WN18 and WN18RR datasets in Table 4.8. In terms of
ranking accuracies, we observe gN'TPs comparing well to ComplEx and Neu-
ralLP, though still lagging behind ConvE on the WN18 dataset. However, on
the WN18RR, gNTPs, though outperforming complex, still lag behind Neu-
ralLP and MINERVA, as well as ConvE.

Next, we wanted to contrast one representative of neural link predictors and
gN'TP to see whether there are any differences in the treatment of the dataset—
where does the link prediction perform better and gN'TP fails and vice-versa.
To that extent, we compared gNTP and ComplEx per-predicate in terms of
MRR on the test set of both datasets.

The results, presented in Table 4.9 and Table 4.10 show that gNTP and

ComplEx have complementary strengths and weaknesses. We observe that



4.4. Experiments 133

Table 4.9: Per-predicate MRR, comparison for ComplEx and gNTP on the WN18

dataset.
Predicate ComplEx gNTP
_hyponym 0.890 0.937
_member_holonym 0.809 0.912
_hypernym 0.891 0.934
_part_of 0.826 0.921
_derivationally_related_form 0.917 0.035
_member_of_domain_topic 0.745 0.722
_instance_hyponym 0.776 0.490
_synset_domain_topic_of 0.746 0.771
_synset_domain_region_of 0.689 0.362
_member_of_domain_region 0.667 0.417
_has_part 0.839 0.680
_also_see 0.511 0.554
_instance_hypernym 0.774 0.645
_member_meronym 0.815 0.614
_verb_group 0.677 0.951
_synset_domain_usage_of 0.776 0.775
_member_of_domain_usage 0.722 0.769
_similar_to 1.000 1.000

Table 4.10: Per-predicate MRR comparison for ComplEx and gNTP on the
WN18RR dataset.

Predicate ComplEx gNTP
_hypernym 0.092 0.022
_derivationally_related_form 0.941 0.934
_member_meronym 0.133 0.055
_has_part 0.123 0.046
_also_see 0.522 0.593
_member_of_domain_region 0.040 0.011
_verb_group 0.825 0.893
_synset_domain_topic_of 0.184 0.042
_instance_hypernym 0.241 0.093
_member_of_domain_usage 0.201 0.030
_similar_to 1.000 0.764

gNTPs benefit from a clear logical structure on the WN18 dataset, which
is characterised by a more logical relational structure. For instance, in-
ducing almost crisp rules such as part_of(X,Y) :— has_part(Y,X),
hyponym(X,Y) :— hypernym(Y,X), and hypernym(X,Y) :— hyponym(Y, X),
aids gN'TP in accurately predicting the underlying structure in WN18 by using
these rules to yield more accurate results on the part_of, _hyponym and the

_hypernim relations, as presented in Table 4.9.

On the other hand, we can also observe that, in some cases, logic rules

and continuous unification do not suffice for some relations. For exam-



134 Chapter 4. gNTP: Greedy Neural Theorem Provers

Table 4.11: Link prediction results on the FB122 dataset. Results from Minervini
et al. [2017]*, Guo et al. [2016]°, Garcia-Duran and Niepert [2017]¢.
Globally best results in bold, best results among the models which do
not use rules underlined. KALE, ASR methods, and KBLR use the
set of rules provided by Guo et al. [2016] while neural link predictors
and gN'TPs do not.

Test-1 Test-11 Test-ALL
HITS . HITS , HITS
MRR @3 @5 @10 MRR @3 @5 @10 MRR @3 @5 @10
KALE-PreP 0.291 0.358 0.419 0498 0.713 0.829 0.861 0.899 0.523 0.617 0.662 0.718

KALE-Joint" 0.325 0.384 0.447 0.522 0.684 0.797 0.841 0.896 0.523 0.612 0.664 0.728

w0
% % ASR-DistMult*  0.330  0.363 0.403 0.449 0948 0.980 0.990 0992 0.675 0.707 0.731 0.752
K~ ASR-ComplEx* 0.338 0.373 0410 0459 0984 0.992 0.993 0.994 0.698 0.717 0.736 0.757
KBLR® - - - - - - - - 0.702 0.740 0.770 0.797
o ransE? 0.296 0.360 0.415 0481 0.630 0.775 0.828 0.884 0.480 0.589 0.642 0.702
o 2 DistMult® 0.313 0.360 0.403 0453 0.874 0923 0938 0.947 0.628 0.674 0.702 0.729
z é ComplEx* 0.329 0370 0413 0462 0887 0.914 0919 0924 0.641 0.673 0.695 0.719
gNTPs 0.314 0.338 0.373 0415 0.987 0.990 0.991 0.992 0.684 0.697 0.713 0.733

ple, gNTP is not able to learn a set of rules for accurately predicting the
_derivationally_related_form predicate, where ComplEx simply thrives.
However, ComplEx predictions are not easy to explain, since the score is a
function of the embedding of the predicate and the entities involved in the

prediction.

On the WNI8RR dataset, ComplEx shines on relations that reflect
the cluster structure of the underlying graph, such as _also_see and
_derivationally_related_form as it does not need to rely on an under-
lying logical structure as gN'TP does, it can more accurately handle the cases
where such a structure is missing. Yet, ComplEx yields less accurate results
on relations which can be accurately predicted by leveraging an underlying

logical structure, which gNTP can learn and then leverage at test time.

Given that ComplEx and gNTP have complementary strengths and weak-
nesses, we believe the gap between them can be narrowed down by using
ComplEx or any other link prediction algorithm as a regulariser (akin to the
NTP-lambda in the original NTP paper), by proposing a mixture of experts,
and possibly by adding a mixture of correctly induced rules from multiple runs
of gNTP.

All in all; gNTP can learn symmetry rules, while also softly unifying related
predicates and by leveraging such rules can perform better or on par with
ComplEx on relations exhibiting a clear logical structure (symmetric relations),

while still benefiting from the continuous unification.



4.4. Experiments 135

FB122 The link prediction results for FB122 are presented in Table 4.11. It
presents the results of the baselines we use throughout the chapter (TransE,
DistMult and ComplEx) with a series of three additional models which can
utilise rules in the dataset. These models are KALE [Guo et al., 2016], Dist-
Mult and ComplEx using Adversarial Sets [Minervini et al., 2017] (a method
for incorporating rules in neural link predictors with adversarial training), and
KBLR [Garcia-Duran and Niepert, 2017]. Note that these methods have access
to the 47 rules coming with the dataset, while gNTP does not, and it needs to

induce them to make accurate predictions.

Results, presented in Table 4.11 show that gNTP, though not having access to
rules, can perform on-par with methods that have access to them. Concretely,
gNTP lags behind specialised rule-using baselines when there is no clear logical
structure in the dataset, as in the Test-1 split. However, where the dataset
exhibits a clear logical structure, as in the Test-II split, gNTP can induce
the rules to fit the structure to its advantage, and not just use the manually

provided rules, as the rule-using baselines do.

4.4.4.2 Qualitative Analyses

WN18 and WN18RR Table 4.12 displays gNTP-induced rules and proofs
for the WN18 dataset, and Table 4.13 presents the same for the WN18RR
dataset, giving us a glimpse of what gNTP learned. We see that gNTP
mostly learned symmetrical and anti-symmetrical relations, which it strongly
uses throughout the dataset. However, what is more interesting is that
gNTP can find alternative, non-trivial explanations, based on the similar-
ity between entity representations. For example, on WN18 gNTP can ex-
plain that CONGO.N.03 is a part of AFRICA.N.01 by leveraging the similarity
between AFRICA.N.0O1 and the AFRICAN COUNTRY.N.O1, and the fact that
the AFRICAN COUNTRY.N.O1 is a hyponym of CONCO.N.03. Similarly, on
WNI18RR, it explains that CHAPLIN.N.O1 is a FILM_MAKER.N.O1 by lever-
aging the fact that CHAPLIN.N.O1 is a COMEDIAN.N.O1 and the similarity
between the FILM  MAKER.N.01 and COMEDIAN.N.O1.

Further inspection of rules induced by gNTP on these two datasets yields
interesting findings. For instance, we see that on WN18 gNTP induces crisp
_similar_to(X,Y) :— _similar_to(Y,X), whereas on WNI18RR it does

too albeit with a very low score. A deeper look into when the rule is used, we



136 Chapter 4. gNTP: Greedy Neural Theorem Provers

Table 4.12: gNTP-induced rules and proofs on the WN18 dataset.

Rules
Rule Score
_part_of (X, Y) :- _has_part(Y, X) 1.00
_hypernym(X, Y) :- _hyponym(Y, X) 0.99
_hyponym(X, Y) :- _hypernym(Y, X) 0.99
_similar_to(X, Y) :- _similar_to(Y, X) 0.97
_has_part(X, Y) :- _member_meronym(Y, X) 0.97
_derivationally_related_form(X, Y) :- _hypernym(Y, X) 0.91
_hyponym(X, Y) :- _hyponym(Y, X) 0.77
Proofs
Proof Score

G _part_of(congo.n.@3, africa.n.o1)
o_part_of (X, Y) :- _has_part(Y, X)
L_has_part(africa.n.m, congo.n.@3)

o _part_of (X, Y) :- _has_part(Y, X) 0.79
_instance_hyponym(african_country.n.@1, congo.n.@3)

G _hyponym(extinguish.v.04, decouple.v.03)

_hyponym(X, Y) :- _hypernym(Y, X) 0.99
L_hypernym(decouple.v.03, extinguish.v.04) :
_hyponym(X, Y) := _hypernym(Y, X) 0.92
L_hypernym(snuff_out.v.m, extinguish.v.04)
G _derivationally_related_form(rewrite.v.01, rewriting.n.01)
_derivationally_related_form(X, Y) :- _hypernym(Y, X) 0.81
_hypernym(revise.v.01, rewrite.v.01) :
_derivationally_related_form(X, Y) :- _hypernym(Y, X) 0.21
L_hypernym(trench.v.@S, excavate.v.04)
G _derivationally_related_form(chorus.n.@5, chorus.v.01)
_derivationally_related_form(X, Y) :- _hypernym(Y, X) 0.40
L_hypernym(hippopotamus.n.01, even-toed_ungulate.n.@1) :
_derivationally_related_form(X, Y) :- _hypernym(Y, X) 0.03

T _hypernym(sympathy.n.02, feeling.n.01)

Table 4.13: gNTP-induced rules and proofs on the WN18RR dataset.

Rules
Rule Score
_verb_group(X, Y) :- _also_see(Y, X) 0.96
_derivationally_related_form(X, Y) :- _derivationally_related_form(Y, X) 0.95
_member_meronym(X, Y) :- _hypernym(Y, X) 0.94
_synset_domain_topic_of (X, Y) :- _hypernym(Y, X) 0.90
_member_of_domain_usage(X, Y) :- _hypernym(Y, X) 0.85
_has_part(X, Y) :- _hypernym(Y, X) 0.83
_similar_to(X, Y) :- _similar_to(Y, X) 0.05
_also_see(X, Y) :- _similar_to(Y, X) 0.02
Proofs
Proof Score

G _verb_group(respire.v.02, breathe.v.01)
- _verb_group(X, Y) :- _also_see(Y, X) 0.96

L_verb_group(breathe.v.®1 , respire.v.02)
G _verb_group(respire.v.02, breathe.v.01)

.- _hypernym(hyperventilate.v.02, breathe.v.01) 0.8

G: _instance_hypernym(chaplin.n.@1, film_maker.n.o1) 081
_instance_hypernym(chaplin.n.@1, comedian.n.@1) :

_instance_hypernym(scipio.n.@1, general.n.o1) 0.63

G: _hypernym(krypton.n.@1, noble_gas.n.o1) 0.91
o _hypernym(krypton.n.@1, chemical_element.n.@1) ”

_hypernym(tellurium.n.@1, chemical_element.n.01) 0.60

G: _has_part(tennessee.n.@1, knoxville.n.01) 0.54

_has_part(india.n.@1, jabalpur.n.o1)
_has_part(alaska.n.@1, anchorage.n.@3) 0.53




4.4. Experiments 137

see that in WN18 it is often utilised, whereas on WN18RR it is never used for
prediction. This is a direct consequence of the way WN18RR was created, as

these particular examples are filtered out of the dev and test sets.

We observe an intriguing rule _verb_group(X,Y) :— _also_see(Y,X) on
WN18RR. This rule is interesting, as it is often used to express multiple sym-
metrical relationships with predicates such as _also_see (indicating an alter-
nate or equivalent version of a word sense), _verb_group (indicating equivalent
verb sense denoting a higher abstraction level) and _similar_to (expressing
closely related meaning) [Fialho et al., 2011]. We take a look at the final proof
paths for a few examples and see that the same rule is used to prove facts with

different predicates:

G _also_see(coherent.a.01, logical.a.01)
. _verb_group(X, Y) :- _also_see(Y, X)
L and _also_see(logical.a.@1, coherent.a.01)

G _verb_group(allow.v.03, permit.v.01)
.- _verb_group(X, Y) :- _also_see(Y, X)
L and _verb_group(permit.v.01, allow.v.03)

G _similar_to(dynamic.a.@1, hold-down.n.@1)
.- _verb_group(X, Y) :- _also_see(Y, X)
L and _similar_to(hold-down.n.@1, dynamic.a.@1)

This essentially tells us that the rule in question is used for representing sym-
metry between multiple relations and that the originally proposed decoding of
the rule with a one-nearest-neighbour in Rocktaschel and Riedel [2017], though
informative, should be taken with caution, as though the interpretation of the
rule is crisp/discrete, the rule itself does not necessarily behave like one. This
rule is likely a product of the winner-takes-all strategy employed by both the
score function calculation and the fact and rule selection. A possible way to
alleviate this issue is to follow the findings of de Jong and Sha [2019], who
suggest propagating gradients not just through the top ranking proof paths
but top-k paths.

However, one important take is that though gNTPs do not produce a concrete
representation of a rule as we might wish, we can still decide whether that rule
is meaningful or not, and use such insights for refining the model, improving
our understanding of the domain, or providing explanations for any given

prediction. Hence we suggest looking at the final proof paths when assessing



T W N

138 Chapter 4. gNTP: Greedy Neural Theorem Provers

timeZone (X, Y) :- containedBy(X, Z), timeZone(Z, Y)
nearbyAirports(X, Y) :- containedBy(X, Z), contains(Z, Y)
nationality (X, Y) :- placeOfBirth(Y, X)

children(X, Y) :- parents(Y, X)

spouse (X, Y) :- spouse(Y, X)

Listing 4.1: An excerpt of the gNTP-induced rules on the FB122 datset.

these rules as they are highly informative of the use of each of these rules.

FB112 We briefly take a look at the rules gNTPs induce on the FB112 dataset.
From the excerpt of the rules induced, presented in Listing 4.1, we can see they

indeed are meaningful.

It is worth noting that FB122 was derived from the problematic [Dettmers
et al., 2018] FB15k dataset, with Test-I and Test-II splits exemplifying the
datasets issues. Test-I triples cannot be predicted with the help of rules and
were designed with a similar intention to the FB15k-237 dataset, whereas the

Test-1I triples can since they are a direct subset of FB15k.

The finding that gNTP performs well when there is a clear logical structure in
the dataset is similar to the finding on the WN18(RR) datasets, corroborating
the complementary strengths of the link prediction models (better representa-
tion fit) and gNTP (better use of the logical structure).

4.4.5 Experiments with Text

To evaluate the effect of the compositional reader for integrating textual in-
formation, we created a modified version of the Countries datasets. We re-
placed an increasing percent of training set triples from each of the Coun-
tries S1, S2 and S3 datasets, with human-generated textual mentions. Each
relation in the replaced triple was randomly sampled from a set of 30 tex-
tual mentions, per each relation, catalogued in Table B.1. For example, the
fact neighbourOf (UK,IRELAND) can be replaced by the mention "[#1] is
positioned closest to [#2]"(UK,IRELAND).

Then, we evaluate two ways of integrating textual mentions, by either i) treat-
ing them as a monolithic predicate, or by ii) parsing the mentions through an
encoder, as described earlier. It is important to note that both of these cases

are trained on the same (decreasing) amount of training data, with mentions




4.4. Experiments 139

Predicate representation = Standard Predicate representation = Attention

1.0

0.9

0.8

Dataset

—— Countries S1
Countries S2

—— Countries S3
Reader

—— Compositional

~~~~~~~ Non-compositional

0.7

0.6

AUC-PR

0.5

0.4

0.3

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
% held out % held out

Figure 4.4: The performance of gNTPs on Countries with mentions dataset. We
replaced a varying number of training triples with human-generated
mentions and integrated them as facts in the KBs in two ways i) by
encoding the mentions as standalone predicates, and ii) by encoding
them with a compositional reader. We conducted the experiments
using the standard NTP representation (left) and the attentional rep-
resentation of gNTPs (right). Each experiment was run on 10 different
random seeds.

not being a part of the training set—the model uses them as supporting facts
in the proof process but does not directly optimise them as goals. This effec-
tively decreases the amount of information the model uses with the increasing
percent of data held out (converted to text), but still enables the model to

optimise their representations.

The results, presented in Figure 4.4, present two findings. First, the proposed
compositional encoding reader yields consistent improvements of the ranking
accuracy, especially if attention is used. In case of using the attention for
predicate representation, the compositional reader performs better from 40%
of held-out data. When standard predicate representation is used, the compo-
sitional reader performs better on Countries S1 and S2 from 70% of held-out
data, but performs roughly the same as the non-compositional reader for Coun-
tries S3. Second, we see that the attentional predicate representation performs
significantly better than the standard representation, as is expected given that
the standard representation needs to learn a much higher-dimensional repre-

sentation of the predicates.

Since during training the KB is expanded with the textual mentions, rules

learned by gN'TPs can include both logic atoms and textual mentions. We see



N O U e W N =

140 Chapter 4. gNTP: Greedy Neural Theorem Provers

neighborOf (X, Y) :- neighborof (Y, X)

neighborOf (X, Y) :- "[#1] was a neighbor of [#2]1"(Y, X)

neighborOf (X, Y) :- "[#1] is a neighboring state to [#2]"(Y, X)

locatedIn(X, Y) :- "[#1] was a neighboring state to [#2]1"(X, Z),
"[#1] was located in [#2]1"(Z, Y)

locatedIn(X, Y) :- "[#1] can be found in [#2]"(X, Z),

"[#1] is located in [#21"(Z, Y)

Listing 4.2: An excerpt of rules extracted by gNTP on the Countries dataset with
text.

exactly this happening when we take a look at the learned rules, as listed in
Listing 4.2—gNTPs induce meaningful rules which include textual information

too.

4.5 Related Work

We contrast gNTPs to related models across three central areas: neural net-

work architectures, relational learning and Machine Learning -powered scaling.

4.5.1 Neural Network Architectures

Memory Augmented Neural Networks Recent advances in memory-
enabled neural architectures aim to deal with the issues of generalisa-
tion [Graves et al., 2014, Joulin and Mikolov, 2015, Grefenstette et al.,
2015, Kaiser and Sutskever, 2016], reasoning abilities [Weston et al., 2015,
Sukhbaatar et al., 2015] and one-shot learning [Santoro et al., 2016] that neu-
ral networks often exhibit. Memory Augmented Neural Networks take the
approach of enriching neural networks with a differentiable external memory,
enabling these models to learn to represent and manipulate dense represen-
tations on long time scales via reading and writing to the external memory.
However, even though there is a pressure to disentangle algorithm learning
from learning the input representations, there is no guarantee that algorithm
learning and learning input representations still do not conflate. In contrast to
that, gNTPs do not learn the algorithm but fix it in the form of (differentiable)
backward chaining, and then learn input representations given the fixed algo-
rithm. Another way of improving the generalisation and extrapolation abilities
of neural networks consists of designing architectures capable of learning gen-
eral, reusable programs—atomic primitives that can be reused across a variety

of environments and tasks [Reed and De Freitas, 2016, Neelakantan et al.,




4.5. Related Work 141

2016, Parisotto et al., 2017]. We argue that gNTPs are such an architecture
where one can easily reuse the induced set of rules by incorporating it into
other KBs.

Differentiable Interpreters Differentiable interpreters enable the transla-
tion of declarative or procedural knowledge into a neural network architecture
exhibiting strong inductive biases of said knowledge. In Chapter 3 we propose
04, a differentiable abstract machine for the Forth programming language, en-
abling the construction of neural networks with a strong inductive bias of a
procedurally written program. Rocktaschel and Riedel [2017] propose a dif-
ferentiable implementation of the backward chaining algorithm, while Evans
and Grefenstette [2018] propose a differentiable forward chaining algorithm,
both effectively differentiable Datalog interpreters. Providing a way to en-
code strong inductive biases into models by partially defining the program
structure used to construct the network comes with a significant drawback—
their computational complexity makes them unusable except for small learning
problems, and training them with Stochastic Gradient Descent (SGD) has also
been shown to be a challenge [Gaunt et al., 2016]. Our work shows that there

is a feasible way to push forward that limit and scale to larger problems.

Neural Module Networks Andreas et al. [2016b] introduced Neural Module
Networks, an end-to-end differentiable composition of jointly trained neural
modules. The allure of Neural Model Networks comes from the ability to define
and train differentiable composable models and interpret and execute their
compositions as simple programs. This modularity is particularly useful when
dealing with reasoning tasks from visual and natural language inputs, such as
question answering [Andreas et al., 2016a], visual question answering [Andreas

et al., 2016b] and reasoning over text with arithmetic modules [Gupta et al.,
2019].

We recognise NTPs as a recursive differentiable composition of or and and
modules, following the backward-chaining reasoning algorithm, jointly trained
on downstream reasoning tasks. Interestingly, though in previous work the
structure of the composition is statically drawn from the data, and in our
work, it is statically drawn from the data and the model parameters, other
approaches are trying to learn the module composition [Hu et al., 2017, Jiang
and Bansal, 2019]



142 Chapter 4. gN'TP: Greedy Neural Theorem Provers

4.5.2 Relational Learning

Inductive Logic Programming The paradigm of Inductive Logic Program-
ming (ILP) uses (usually first-order) logic as a description language for a KB
and addresses induction of rules from facts and background knowledge to an-
swer queries [Muggleton, 1991, Muggleton and De Raedt, 1994]. Systems such
as MARVIN [Sammut and Banerji, 1986], FOIL [Quinlan, 1990], Progol [Mug-
gleton, 1995], ALEPH [Srinivasan, 2001] and Metagol [Muggleton et al., 2015,
Cropper and Muggleton, 2015, 2016] are symbolic systems that search over
discrete space of rules/logic programs, and can even invent new predicates and
induce recursive rules [Cropper and Muggleton, 2016]. Though both ILP and
gNTP can induce rules from data, ILP systems do not learn relation and atom
representations. Besides, similarly to gNTPs, the ILP community is actively
searching for heuristics to speed up the induction process [Muggleton and Feng,
1990, Giordana et al., 1994, Srinivasan, 2000, Zelezny et al., 2002, DiMaio and
Shavlik, 2004], consequently enabling mining rules from large KBs [Galarraga
et al., 2013, Chen et al., 2016]. Heuristics too push the ability of these systems
to extract rules from textual data; SHERLOCK [Schoenmackers et al., 2010] is
another ILP system in-kind related to gNTPs, given its ability to extract rules
from web texts, though gNTPs are aiming towards reasoning over KBs while
using textual data, as opposed to extracting rules. Finally, it is worthwhile
mentioning the probabilistic formulation of ILP [De Raedt and Kersting, 2008]
as related work, and even though our work does not include a probabilistic ap-

proach, it would be an exciting possibility for future work.

Knowledge Graph Embedding By embedding KB facts into a continuous
vector space, we can simplify manipulation of facts, while preserving the struc-
ture of the KBs [Wang et al., 2017b] and use scoring functions established on
triples or paths in the KBs to predict relationships (reason) between entities.
Out of this fairly busy field, we present two main categories, the score-based
and the path-based models.

Score-based models use either a distance or semantic similarity -based score to
increase the score of facts in a KB. Distance-based score models [Bordes et al.,
2013, Wang et al., 2014, Lin et al., 2015] push entities and relations in the
same space, with a distance metric ensuring translational functional depen-
dency between the entities in a fact. On the other hand, semantic similarity

-based models encode a similarity function, ranging from more straightforward



4.5. Related Work 143

functions [Nickel et al., 2011, Yang et al., 2014, Nickel et al., 2016b] to more
elaborate ones based on convolutions [Dettmers et al., 2018] or even different
number systems [Trouillon et al., 2016, Zhang et al., 2019].

Path-based models come in a few flavours. Random walk models [Lao and
Cohen, 2010, Lao et al., 2011, Gardner et al., 2013, 2014, Gardner and Mitchell,
2015, Wang et al., 2016] aggregate paths from random walks to predict a target
relation. Path-encoding models [Neelakantan et al., 2015a, Das et al., 2017b]
often use RNNs to encode multi-hop paths between entities in the KB and
use their aggregation for relation prediction. Similarly, some models utilise
Reinforcement Learning (RL) to learn to walk over KBs [Xiong et al., 2017,
Das et al., 2017a, Shen et al., 2018| and find predictive paths. All the models

above cannot produce useful rules, as gN'TPs can.

Joint Text and KB representation By embedding the KBs and text cor-
pora, entities, relations and natural language can be represented in the same
vector space, enabling meaningful and useful comparisons between them. This
idea of jointly embedding KBs and texts has been explored by both the knowl-
edge graph and the NLP communities.

The knowledge graph community’s interest in this joint embedding stems from
using the capabilities of KBs to reason, by using textual information to both ex-
pand KBs and reason with new relational facts [Wang et al., 2017b]. This first
started with initialising entity representations with textual descriptions [Socher
et al., 2013], but later moved towards models with entity [Wang et al., 2014,
Zhong et al., 2015, Xu et al., 2016] and relation [Toutanova et al., 2015] rep-

resentations enriched with textual information.

In NLP, this joint embedding has been explored by relation extraction
systems—systems for extraction of relational facts from natural language
texts [Mooney, 1999]. Notable approaches in relation extraction leveraged
KBs as a form of distant supervision—utilising KB facts as supervision to the
relation extraction process, assuming that sentences mentioning two entities
signify their relationship [Bunescu and Mooney, 2007, Mintz et al., 2009, Riedel
et al., 2010]. This form of assumption naturally led to many models mod-
elling texts and KBs in the shared embedding space: scoring-function based
models [Weston et al., 2013], matrix factorization [Riedel et al., 2013], ten-
sor decomposition [Chang et al., 2014], as well as exploring elaborate mention
encoders [Verga et al., 2016], and path-encoding models [Das et al., 2017b].



144 Chapter 4. gN'TP: Greedy Neural Theorem Provers

Neuro-symbolic Models Aiming to bring together the best of the neural
world and the symbolic world, neuro-symbolic approaches [Smolensky, 1988,
Garcez et al., 2015] combine neural networks learning symbolic reasoning. In-
terestingly, the history of neuro-symbolic systems coincides with the beginnings
of connectionism, given the aims of first artificial neurons to express logical cal-
culus [McCulloch and Pitts, 1943]. The idea of constructing neural networks
able to emulate boolean algebra and symbolic reasoning weakly took on [Mar-
tin and Talavage, 1963, Chan et al., 1989] until the 1990s. Recently, research
into neuro-symbolic systems took on resulted in logic-inspired neural archi-
tecture construction, learning and induction of rules in several types of logic,
from boolean formulas of propositional logic [Towell et al., 1990, Towell and
Shavlik, 1994, Shavlik and Towell, 1991, Garcez and Zaverucha, 1999, Stein-
bach and Kohut, 2002], over first-order logic [Shastri, 1992, Holldobler et al.,
1999, Franga et al., 2014] to other non-classical logics [Garcez et al., 2007,
2008, 2014]. Interestingly, the idea of implementing neural networks simulat-
ing deduction [Komendantskaya, 2007], unification [Komendantskaya, 2011]
and even a neural inference engine for Prolog have been explored before [Chan
et al., 1993, Ding, 1995, Ding et al., 1996]. However, these directions did not

train any of the models in any way but used them for simulation.

Recently, there has been a surge of interest in neuro-symbolic models, usually
based on continuous approximations of the semantics of logic [Grefenstette,

2013, Serafini and Garcez, 2016] applied to reasoning and rule induction.

DeepProbLog [Manhaeve et al., 2018] uses continuous relaxation to imbue
ProbLog with neural predicates which can be applied on raw inputs, enabling
reasoning on raw inputs. Logic Tensor Networks [Serafini and Garcez, 2016,
Donadello et al., 2017] ground FOL terms, atoms and clauses in continuous
functions, allowing reasoning with knowledge-based constraints and Relational

Neural Machines [Marra et al., 2020] further generalise their approach.

Deep Relational Machine [Lodhi, 2013], on the other hand, induce rules and
use Restricted Boltzmann Machines to capture relational information in them,
but do not scale. Neural Logic Inductive Learning [Yang and Song, 2020]
differentiably end-to-end learns FOL rules hierarchically with a transformer,
to explain patterns in visual data. Similarly, DRUM [Sadeghian et al., 2019]
learns probabilistic logical rules for inductive and interpretable link prediction,

without requiring representations of entities in the KB.



4.5. Related Work 145

Other models enable both continuous reasoning and rule induction, as gNTPs
do. NeuralLP [Yang et al., 2017] uses a neural controller to learn to compose
TensorLog [Cohen, 2016] differentiable operators and learn rules over these
compositions. This method scales well and can integrate natural language
texts, as opposed to the original NTPs [Rocktaschel and Riedel, 2017]. When
compared to gNTPs, NeuralLP underperforms on all datasets we tested on ex-
cept WN18RR. Difflog [Raghothaman et al., 2019] extends Datalog to the con-
tinuous domain, assigning numeric weights to rules and optimising rule (pro-
gram) synthesis. It does, however, leave constants entirely symbolic, and does
not perform as well on Countries S1 and S3 as gNTPs do. Neural Logic Ma-
chines [Dong et al., 2019] use tensors to represent logic predicates and perform
sequential logic deductions on them. It does rely on symbolic inputs, though,
are challenging to train, and do not scale to large datasets. JILP [Evans and
Grefenstette, 2018] is a differentiable ILP solver that constructs a network by
following the forward-chaining algorithm, similarly to the model of Campero
et al. [2018], who use forward-chaining to induce theories/rules and core facts
which can then infer the rest of the data. As forward-chaining algorithms,
though enabling predicate invention and induction of recursive rules, both of

these approaches cannot scale to non-toy datasets.

Some of these models can softly reason over texts, with NeuralLP being an
already mentioned one. Next, there is NLProlog [Weber et al., 2019] which
uses an external Prolog prover that relies on a similarity function and a pre-
trained sentence encoder to reason over texts. It is a RL model capable of
learning rules over natural language and enabling reasoning over texts, akin
to our fully differentiable gNTPs. Compared to gNTPs, NLProlog uses Prolog
for proof path search and evolution strategies to estimate gradients through
the non-differentiable search executed by Prolog. NLProlog also heavily relies
on thresholding the similarity function used, which is crucial to the scaling
capability they claim. However, their model has been applied on comparatively
small datasets compared to ours, so it is not clear at all whether their model
would even be able to scale to moderately sized datasets, let alone the large
datasets on which we evaluated. Finally, [Clark et al., 2020] show that a
transformer can learn to softly reason over natural language texts without the
need to represent knowledge formally, but just by relying on the text as an

expression of rules.



146 Chapter 4. gNTP: Greedy Neural Theorem Provers

4.5.3 ML-powered Scaling

The application of ML models has recently resulted in significant advances in
many hard domains [Silver et al., 2016] where hand-coded heuristics were once
heavily dominating [Silver et al., 2018]. These hard domains include combina-
torial optimisation problems [Bengio et al., 2018] such as Traveling Salesman
Problem [Bello et al., 2016, Khalil et al., 2017], (Mixed) Integer Program-
ming [Tang et al., 2019, Gasse et al., 2019], Boolean Satisfiability [Selsam and
Bjorner, 2019] and computational graph optimisation [Paliwal et al., 2019],
among others, program synthesis [Balog et al., 2017, Kalyan et al., 2018, Lee

et al., 2018] and, of course, theorem proving.

Albeit gNTP is not a direct competitor to symbolic theorem provers such
as ENIGMA [Jakubiv and Urban, 2017], Vampire [Kovacs and Voronkov,
2013] or E [Schulz, 2013], it is still noteworthy to emphasise that ML models
have pushed the limits of theorem proving too. Notable examples include
parametrised learning models for proof guidance learning [Loos et al., 2017,
Kaliszyk et al., 2018] and premise selection [Kaliszyk and Urban, 2015, Irving
et al., 2016, Wang et al., 2017a], and interestingly, even non-parametric models
such as NNS found their use, in fact, selection [Blanchette et al., 2016].

(Approximate) Nearest Neighbour Search Efficient NNSs and ANNSs
methods have successfully improved, scaled and speed up various machine
learning tasks, including classification [Zaklouta et al., 2011], regression [Shen
et al., 2006], clustering [Moore, 1999, Liu et al., 2007], retrieval [Xia et al.,
2014], zero-shot learning [Palatucci et al., 2009], planning [Atramentov and
LaValle, 2002], and reinforcement learning [Dulac-Arnold et al., 2015].

Most similar to our work is the recent work of Rae et al. [2016] who use ANNS
to sparsify read and write operations in a memory-augmented network, as
a means of achieving magnitudes of time and memory savings. They apply
ANNSSs to query an external memory, which is akin to our KB for the k closest
words. As opposed to them, gNTP build sequences of proof paths using a
chain of NNSs decisions. Similarly, Kaiser et al. [2017] use ANNS for scaling
memory-augmented model to large memory sizes, using it not just for hard
retrieval but incorporating it in the loss and ensuring that the ANNS result

affects the key formation.



4.6. Conclusion and Future Work 147

Maximum Inner Product Search Related to ANNS—a metric space -based
search—is the Maximum Inner Product Search (MIPS)—an inner product
space -based search. As opposed to finding the nearest vector in a metric
space, MIPS aims at finding a vector that results in the highest inner product
with a query vector. MIPS too has been used to scale and speed up ML mod-
els. Chandar et al. [2016] present a hierarchical memory network that exploits
the k-MIPS for the attention-based reader, making the model scale to large
memories, at a small cost to the accuracy. Spring and Shrivastava [2017] use
hashing-based MIPS during learning to reduce the computation load to every

layer of the model.

4.6 Conclusion and Future Work

The strong inductive bias of the backward chaining algorithm in NTPs en-
ables them to combine the strengths of theorem proving and neural networks
and deliver trainable reasoning over KBs. However, until now, they were not
applicable to large KBs nor KBs enriched with natural language due to their

prohibitive computational cost.

In this chapter, we propose gNTPs, a model that overcomes these limitations
by greedily considering only a subset of all the proof paths NTPs would oth-
erwise consider. We achieve this by limiting the proof paths to facts and rules
containing k-nearest atoms in the embedding space. This pruning results in
drastic speedups and memory efficiency, while, somewhat surprising, retaining
the same performance or outperforming NTPs. In turn, the ability of gNTPs
to scale opens up their application to the combination of structured and un-
structured data. By embedding logical atoms and textual mentions in the
same embedding space, gNTPs can successfully operate on natural language
-enriched KBs, unlocking the possibilities of further research in this area that

was not possible before.

Albeit the results are in general lower than those yielded by state-of-the-art
Neural Link Predictors on both the small and large datasets, they are still very
competitive and with the added benefits that gNTPs retain the induction of in-
terpretable rules and can provide human-readable proof paths as explanations

of its reasoning, at scale.



148 Chapter 4. gNTP: Greedy Neural Theorem Provers

Future Work Even though gNTPs drastically prune the proof path enumer-
ation, they still prune it equally at each depth, meaning they retain the expo-
nential growth of the full enumeration. We can imagine further improving
the scaling capabilities of these models in several ways. First, we can en-
vision a dynamic beam search-alike enumeration strategy which enumerates
only a pre-specified number of proof paths, bringing the memory complexity
of the model further down into the linear region. Second, an MCTS-style ap-
proach to enumeration can bring the computational complexity of the model
down, while enabling better exploration of the proof state space. Third, and
somewhat orthogonal to the previous two, instead of the k-nearest neighbours,
we can employ a learned model which locally decides when to greedily expand
which rule at which depth. Such a model would enable us to side-step the
requirements on the embeddings and enable the model to work with different

scoring functions (e.g. ComplEx).

Logic-based reasoning suffers from the inability to represent model uncertainty,
which can be of crucial importance in reasoning tasks. We want to extend
gNTPs to a probabilistic generative framework that would enable us to
deal with uncertainty and utilise bidirectional /non-logical inferences through
the Bayes rule, enabling us to make predictions about unobserved relations

and facts.

Finally, we showed how gNTPs could deal with natural language texts by
jointly embedding text excerpts with KB triples into the shared embedding
space. In future work, we want to push this further and be able to meaning-
fully and interpretably extract and embed facts and rules from full sentences,
through a combination of model-guided parsing and joint embedding. Such an
approach would enable us to use gNTPs as provable and interpretable fact-

checking models applicable to text.



Chapter 5

Conclusions and Future Work

This thesis introduces differentiable interpreters—continuously relaxed ana-
logues of traditional program interpreters—as an effective way to exploit pro-
grams as background knowledge and utilise them as strong inductive biases
of neural networks. Differentiable interpreters are a single framework that en-
ables continuous execution of programs on inputs, but crucially, enabling the
use of gradient-based optimisation for inducing missing elements of the pro-
gram or learning input representation, given data. In this thesis we present
two differentiable interpreters, 94 and gNTPs.

5.1 Contribution Summary

04: A Differentiable Forth Interpreter We introduce 04, a fully dif-
ferentiable interpreter for an imperative programming language FORTH in
Chapter 3. We introduce the notion of incomplete programs for 04, differ-
entiable sketches, as a means of providing program-driven strong inductive
bias. Sketching provides a strong bias of known parts of the FORTH program,
enabling the application of gradient-based optimisation for learning the un-
known parts. We apply sketching on learning parts of algorithms from data,
applying them on learning to sort and learning to add tasks, as well for solving
world algebra problems. The sketching approach enables training these models
on a small number of input-output pairs yet achieving strong generalisation
on these tasks. 04 requires the execution of all commands of the program at
each time step, in addition to following the full control flow of the program,
making it computationally intensive. We present optimisations to reduce the

load of the control flow, as its computational burden plagues longer programs.



150 Chapter 5. Conclusions and Future Work

gNTP: Greedy Neural Theorem Provers The need to run all commands
at every time step, on the other hand, is a principal issue of the differentiable
Datalog interpreter NTP. In order to learn representations of semantically
similar symbols, NTPs compare all facts to all sub-goals during the backward-
chaining proof path construction, making it impossible to scale to bigger KBs.
To curb this issue, we present gNTP in Chapter 4, a model which greedily
considers only paths involving representations of symbols closest to the cur-
rent sub-goal symbols, drastically improving model efficiency and scaling as
a result. Moreover, we widen the applicability of gNTP to textually-enriched
KBs by giving it a compositional reading module, enabling it to jointly embed
predicates and natural language texts in the same representation space. We
experimentally quantify that gNTP perform as well as NTP at a fraction of
the time and memory cost. The empirical demonstration of scaling enabled us
to apply gNTP to large datasets, yielding performance comparable to related
neuro-symbolic models, yet still lacking behind specialised link predictors. Fi-
nally, we demonstrated via qualitative analyses that the rules induced by the
model should not be judged by the nearest-neighbour decoding process of
Rocktaschel and Riedel [2017], but should be interpreted in conjunction with
best-ranking proof paths.

5.2 Discussion and Future Work

Continuous relaxation of discrete machinery showed itself as a fruitful approach
in many algorithm-learning tasks. Our contribution to this area showed that
we can capitalise upon explicit algorithmic knowledge and directly “bake it
in” the architecture of the model, making the model follow the program. We
showed that we can do this for complex programs, as well as making this
scale to large logic programs. However, the framework presented still exhibits

several limits, notably issues with learning efficiency and scaling.

Training 04 was not particularly straightforward and in most of our experi-
ments standard vanilla optimisation was not enough, so we had to resort to
optimisation tricks such as gradient noise and clipping. The model design had
to incorporate particular design choices, for example, we found it impossible
to train 04 models which would directly predict an element of the model state
without constraining it with a softmax. When learning the word algebra prob-

lems, we found that we had to sweep over a number of seeds in order to get



5.2. Discussion and Future Work 151

the best performing model. In addition, even though we did not focus on the
inductive program synthesis task as a related differentiable interpreter TER-
PRET, we ran 04 on a very small program synthesis problem and experienced
the same problems as TERPRET. Concretely, we observed that it is quite diffi-
cult to synthesise even small programs due to the model getting easily trapped
into local optima. We did not pursue this line of work further due to the
conclusions made by TERPRET, showing that gradient optimisation as a local
optimiser simply cannot cope with the synthesis task as exhausting solvers can.
Similarly, we noticed that gNTP exhibits similar issues with learning; in some
experiments, we noticed it was necessary to pre-train rules in order to achieve
better performance. This showed us that there is still room for optimisation

improvement which could be a basis for future work.

On the other hand, 94 simply does not scale for long executions as it shares
standard RNN issues with diminishing gradients over long timescales. Simi-
larly, gN'TP still does not scale for larger proof depths, due to its exponential
growth. Though some of these issues could be alleviated with more elaborate

models and mechanisms, these would still have a limited range of success.

Still, we think there are a few useful takeaways from our research.

Language Choice We see language choice is crucial in modelling differentiable
interpreters. Not only does the language dictate the details of the continuous
approximation, but it also dictates the size of programs the interpreter can
handle and the magnitude of the control flow that it executes. We strongly

recommend that the choice of the host language should be task-oriented.

We initially intended to use 904 to construct a knowledge base theorem prover
by injecting the recursive structure of theorem proving, leaving either (or both)
the unification or the input representations to be learned. However, we quickly
realised that the code, and even more importantly the control flow, would ex-
plode in size for anything other than a trivial unit test. In this case, a dif-
ferentiable interpreter for a language fit for the logical reasoning task seemed
like a better fit, bringing our attention to NTP. Though still computationally
intensive, a differentiable interpreter for Datalog is still a far better perform-
ing alternative to an equivalent 04 sketch, not just because a logic language
offers a succinct representation for KBs, but importantly the execution of such
programs is inherently parallel—04 is sequentially recurrent whereas NTP is

fully recursive. This is a great fit for differentiable interpretation on a GPU,



152 Chapter 5. Conclusions and Future Work

up to a point, which we successfully extended with gNTPs.

Likewise, Manhaeve et al. [2018] showed that the programs we presented in
Chapter 3 are in general smaller when expressed as a logic program, and also

produce a shorter control flow resulting in shorter execution time.

Similarly, should the task require (efficient) graph traversals, such as multi-hop
question answering over KBs, a differentiable interpreter for a graph traversal
Domain Specific Language (DSL) should be an excellent choice [Cohen et al.,
2019, 2020].

Fitness for a Task Task-wise, we see that 94 holds ground on strongly biasing
the model with an algorithm, as well as gNTP works reasonably well for the
KB completion tasks, yet work done by Gaunt et al. [2016] and Feser et al.
[2017] shows that differentiable interpreters are simply not up to the task of

inductive program synthesis.

We still think, however, that there are promising tasks and promising new
languages on the horizon. Cohen et al. [2019] present Neural Query Language,
essentially a differentiable graph traversal interpreter, showing exciting results
on traversing huge graphs and learning relationships between nodes in the
graph. We think a similar approach can be expanded with representation

learning to enable large-scale associative memory recall.

On the other hand, even though the conclusions of Gaunt et al. [2016] indis-
pose differentiable interpreters for program synthesis, Gaunt et al. [2017] show
that there is still use for differentiable interpreters when synthesising (small)
programs involving continuous inputs. We hypothesise that this, or similar
approach integrating non-differentiable actions, can be used to synthesise pro-

grams, i.e. structure of quantum neural networks [Ostaszewski et al., 2019].

5.3 The Outlook

Having in mind both the benefits and the difficulties brought by differentiable
interpreters, we are still optimistic that the elements of this approach, con-
cretely the continuous relaxation of computational primitives, will still find
use in modern architectures, and we are hoping that further research down the

line will shine a light on how to effectively use them.

We hope 04 and the paradigm it helped establish will find its use cases in



5.3. The Outlook 153

domains where tasks dictate dense representations, with high-level processing
difficult to learn, but possibly easier to, even if partially, specify libraries of
sketches. These libraries could enable faster learning of components for quick
master and learning of difficult-to-learn tasks such as computation, reason-
ing, optimisation and making differentiable counterparts of non-differentiable

losses.

As for gNTP, we hope to see it as a step towards scalable and interpretable

theorem proving applicable on natural language.






Appendix A

Appendix to 04

A.1 Forth Instruction Set

In this section, we describe in detail the FORTH instruction set briefly presented
in Section 3.2.2.

Description Format In order to explain the operational effect of each word,
in lieu of mathematical notation or the language of operational semantics [Lu-
cas, 1978], we use a a more pragmatic technical approach FORTH literature uses
to describe words. This format focuses on explaining the effect of the word on
the data stack or the return stack, while describing other behaviour internal
to the interpreter in a free-form text. The effect of each word is described with

the following template:

WORD D: ( x ——y)
R: (x -—y)

This is the free-form description of the WORD word. ( x -- 'y

) denotes the before (x) and after (y) state of a top of the data
stack (D:) or the return stack (R:) that is necessary to understand

the command, obviating the need for presenting the full state of
stacks. For example, ( x -- x*2 ) denotes that the top of the
data stack doubled in value, ( x -- ) denotes the removal of the

top of the stack, and ( -- x ) denotes insertion of a new value

on the stack.



156

Appendix A. Appendix to 04

Data stack operations

X

DROP

DUP

SWAP

OVER

1+

D: ( -- x)
Pushes the integer literal x to the data stack.

D: ( x == )
Pops the data stack TOS (non-destructive).!

D: ( x == x x)
Duplicates the data stack TOS.

D: ( xy -—yx)
Swaps the TOS and NOS on the data stack.

D: ( Xy -—XyXx)
Pushes a copy of NOS as the new TOS.

D: ( x == x+1)
Increments the data stack TOS.

D: ( x =-=- x-1)
Decrements the data stack TOS.

D: ( xy -- xty )
Addition operation—drops the data stack NOS and TOS and
pushes NOS+TOS to the data stack.

D: ( xy == x-y)
Subtraction operation—drops the data stack NOS and TOS and
pushes NOS-TOS to the data stack.

D: ( xy —-— x*xy )
Multiplication operation—drops the data stack NOS and TOS
and pushes NOS*TOS to the data stack.

D: ( xy —-— x/y)
Division operation—drops the data stack NOS and TOS and
pushes NOS/TOS to the data stack.

IThe TOS value is still in memory, but the stack pointer is pointing to a value below it.



A.1. FortH Instruction Set 157

> D: (xy -—-c)
Greater than comparator—drops the data stack NOS and TOS
and pushes literal ¢ to TOS. c is set to 1 if 2 >y and 0 otherwise.?

< D: (xy -—-c¢c)
Less than comparator—drops the data stack NOS and TOS and
pushes literal ¢ to TOS. c is set to 1 if x <y and 0 otherwise.

= D: ( xy --c¢c)
Equality comparator—drops the data stack NOS and TOS and
pushes literal c to TOS. c is set to 1 if x =y and 0 otherwise.

Return stack operations
>R D: ( x == )
R: ( -—- x)
Pops the data stack TOS and pushes it to the return stack.

R> D: ( -- x)
R: ( x -=-)
Pops the return stack TOS and pushes it to the data stack.

@R D: ( -- x)
R: ( x —— x)
Pushes a copy of the return stack TOS to the data stack.

Heap operations
C] D: ( addr -- x )
Takes the data stack TOS value as the heap address from which

it fetches the value x which it then pushes on the stack.

! D: ( x addr --)
Takes the data stack NOS value as the value, and TOS as the

address. It then stores the value onto the heap under that address.

Control statements
Please note that each token (keyword) of these commands carries its own
separate semantics but we explain them together as their combination

easily relates to usual control statements in other languages . .y denotes

2In general, FORTH interprets any non-zero value as TRUE and zero as FALSE.



158 Appendix A. Appendix to 04

a sequence of words, and ? denotes effect contingent on the condition at

hand and the executed sequence of words.

IF ..; THEN D: ( flag —- 2 )
Pops the flag value off the data stack. If its value is TRUE

(non-zero value), it executes . .1.

IF .., ELSE .., THEN D: ( flag —- ? )
Same as above, but if flag is FALSE (zero) it executes . . ;.

BEGIN ..; WHILE .., REPEAT D: ( - 7)
Executes ..q. If the (resulting) data stack TOS is TRUE, it
executes ..,, upon which it goes back to ..;. However, if the
TOS value is FALSE, it does not execute .., at all and resumes

with following words.

DO ..; LOOP D: ( limit index -- ? )
Pops the data stack NOS and TOS as the limit and index, and
executes ..7. Upon completion, increments the index and checks
whether the index equals to the limit. If it does, continues with
following words, otherwise it pushes the limit and the incremented
index back to the data stack, and redirects control back to the

beginning of the loop (after DO).

Subroutine control
SUB R

Defines a new word named SUB, as the sequence of words ..;.
It effectively creates an entry in the interpreter dictionary which
points to the word following it. : denotes the start of the sub-
routine/word SUB as a sequence of words . .7, and ; signifies the

end of the subroutine.

SUB
R: ( -- pc-addr )
Subroutine/word invocation—the word SUB is invoked by pushing
the program counter ¢ on the return stack, and assigning the
address of the word following the definition of SUB to ¢ as the new

program counter.



A.1. FortH Instruction Set 159

Variable creation
VARIABLE VAR

Creates a variable named VAR by reserving a single address on the
heap. It then binds the value of that address to the word VAR.

CREATE VAR ALLOT NUM
Creates an array variable named VAR by reserving NUM sequential
addresses on the heap. It then binds the value of the first of the
addresses to the word VAR. This effectively reserves an uninter-

rupted portion of the heap for the variable.

VAR D: ( -- var-addr )
Invoking a variable VAR by its name just returns the address of

the variable.

Other
NOP D: ( --)
No-operation. Nothing is executed.
MACRO: SUB .. ;

Treats the word SUB as a macro—akin to a preprocessing direc-
tive, it replaces the SUB token with .. in the source code, before

interpretation.






Appendix B

Appendix to gNTP

Table B.1: The set of textual mentions replacing the variable number of training
triples in Section 4.4.5 for the locatedIn and the neighborOf predi-

cates.
locatedIn(X, Y)
[#1] can be found in [#2] [#1] is based in [#2] [#1] is contained in [#2]
[#1] is currently in [#2] [#1] is found in [#2] [#1] is in [#2]
[#1] is localized in [#2] [#1] is located in [#2] [#1] is placed in [#2]
[#1] is positioned in [#2] [#1] is present in [#2] [#1] is set in [#2]
[#1] is sited in [#2] [#1] is situated in [#2] [#1] is still in [#2]
[#1] used to be found in [#2] [#1] was based in [#2] [#1] was contained in [#2]
[#1] was currently in [#2] [#1] was found in [#2] [#1] was in [#2]
[#1] was localized in [#2] [#1]1 was located in [#2] [#11 was placed in [#2]
[#1] was positioned in [#2] [#1]1 was present in [#2] [#1] was set in [#2]
[#1] was sited in [#2] [#1] was situated in [#2] [#1] was still in [#2]
neighborof (X, Y)
[#1] borders with [#2] [#1] borders [#2] [#1] is a neighbor of [#2]
[#1] is a neighboring country of [#2] [#1] is a neighboring state to [#2] [#1] is adjacent to [#2]
[#1] is bordering [#2] [#1] is butted against [#2] [#1] is closest to [#2]
[#1] is nearest country to [#2] [#1] is nearest to [#2] [#1] is next to [#2]
[#1] is positioned closest to [#2] [#1] is positioned next to [#2] [#1] is right next to [#2]
[#1] neighbours with [#2] [#1] neighbours [#2] [#1] was a neighbor of [#2]
[#1] was a neighboring country of [#2] [#1] was a neighboring state to [#2] [#1] was adjacent to [#2]
[#1] was bordering [#2] [#1] was butted against [#2] [#1] was closest to [#2]
[#1] was nearest country to [#2] [#1] was nearest to [#2] [#1] was next to [#2]

[#1] was positioned closest to [#2] [#1] was positioned next to [#2] [#1] was right next to [#2]







Bibliography

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems, 2015. URL https://www. tensorflow.org/. Software avail-

able from tensorflow.org.

Akshay Agrawal, Akshay Naresh Modi, Alexandre Passos, Allen Lavoie, Ashish
Agarwal, Asim Shankar, Igor Ganichev, Josh Levenberg, Mingsheng Hong,
Rajat Monga, and Shanqing Cai. TensorFlow Eager: A Multi-Stage,
Python-Embedded DSL for Machine Learning. In Proceedings of Systems
for Machine Learning (SysML), 2019.

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles, Tech-
niques. Addison Wesley, 7(8):9, 1986.

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive Program
Synthesis. In Proceedings of International Conference on Computer Aided
Verification, pages 934-950. Springer, 2013.

Brandon Amos and J Zico Kolter. OptNet: Differentiable Optimization as a
Layer in Neural Networks. In Proceedings of International Conference on
Machine Learning (ICML), pages 136-145. JMLR.org, 2017.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Lud-
wig Schmidt. Practical and Optimal LSH for Angular Distance. In Proceed-
ings of Advances in Neural Information Processing Systems (NIPS), pages
1225-1233, 2015.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning
to Compose Neural Networks for Question Answering. In Proceedings of the
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 15451554, 2016a.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural


https://www.tensorflow.org/

164 BIBLIOGRAPHY

Module Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 39-48, 2016b.

ANSI. ANSI X3.215-1994: Programming Languages—Forth. Standard, Amer-
ican National Standards Institute, Inc., 1994.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A Simple but Tough-to-Beat
Baseline for Sentence Embeddings. In Proceedings of International Confer-

ence on Learning Representations (ICLR), 2017.

Anna Atramentov and Steven M LaValle. Efficient nearest neighbor searching
for motion planning. In Proceedings of IEEE International Conference on
Robotics and Automation, volume 1, pages 632—-637, 2002.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate. In Proceedings of
International Conference on Learning Representations (ICLR), 2015.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. DeepCoder: Learning to Write Programs. In Proceedings of

International Conference on Learning Representations (ICLR), 2017,

Michele Banko, Michael J Cafarella, Stephen Soderland, Matthew Broadhead,
and Oren Etzioni. Open information extraction from the web. In Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI), 2007.

Peter W. Battaglia et al. Relational inductive biases, deep learning, and graph
networks. arXiv preprint arXiv:1806.01261, 2018.

Atilim Giines Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. Automatic Differentiation in Machine Learning: a
Survey. Journal of Machine Learning Research, 18(1):5595-5637, 2017.

Richard E Bellman. Adaptive Control Processes: A Guided Tour, volume 2045.

Princeton university press, 2015.
Richard Bellmann. Dynamic Programming. Princeton, NJ, 1957.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Ben-
gio. Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning Long-Term De-



BIBLIOGRAPHY 165

pendencies with Gradient Descent is Difficult. IEEFE transactions on neural
networks, 5(2):157-166, 1994.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine Learning for
Combinatorial Optimization: a Methodological Tour d’Horizon. arXiv
preprint arXiw:1811.06128, 2018.

Jon Louis Bentley. A survey of techniques for fixed radius near neighbor

searching. Technical report, Stanford University, 1975.

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When
Is aAlJNearest NeighborAAl Meaningful? In International conference on

database theory, pages 217-235. Springer, 1999.

Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel
Kiihlwein, and Josef Urban. A learning-based fact selector for Isabelle/HOL.
Journal of Automated Reasoning, 57(3):219-244, 2016.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the ACM SIGMOD international conference
on Management of data, pages 1247-1250, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating Embeddings for Modeling Multi-relational
Data. In Proceedings of Advances in Neural Information Processing Systems
(NIPS), pages 2787-2795, 2013.

Matko Bosnjak, Tim Rocktéaschel, Jason Naradowsky, and Sebastian Riedel.
A Neural Forth Abstract Machine. In Neural Abstract Machines € Program
Induction (NAMPI) Workshop @ NIPS, 2016.

Matko Bosnjak, Tim Rocktéschel, Jason Naradowsky, and Sebastian Riedel.
Programming with a Differentiable Forth Interpreter. In Proceedings of In-
ternational Conference on Machine Learning (ICML), volume 70, pages 547—
556, 2017.

Matko Bognjak*, Pasquale Minervini*, Andres Campero, Tim Rocktaschel,
Edward Grefenstette, and Sebastian Riedel. Neural Theorem Proving on
Natural Language . In The International Conference on Probabilistic Pro-

gramming, 2018.



166 BIBLIOGRAPHY

Guillaume Bouchard, Sameer Singh, and Theo Trouillon. On Approximate
Reasoning Capabilities of Low-Rank Vector Spaces. In Proceedings of AAAI
Conference on Artificial Intelligence, 2015.

Guillaume Bouchard, Pontus Stenetorp, and Sebastian Riedel. Learning to
Generate Textual Data. In Proceedings of Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1608-1616, 2016.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, and Skye Wanderman-Milne. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.

com/google/jax.
Leo Brodie. Thinking Forth. Punchy Publishing, 2004. ISBN 0976458705.

Leo Brodie and CORPORATE FORTH Inc. Starting FORTH, 2nd Ed.
Prentice-Hall, Inc., 1987.

David S Broomhead and David Lowe. Radial basis functions, multi-variable
functional interpolation and adaptive networks. Technical report, Royal
Signals and Radar Establishment Malvern (United Kingdom), 1988.

Rudy R Bunel, Alban Desmaison, Pawan K Mudigonda, Pushmeet Kohli, and
Philip Torr. Adaptive Neural Compilation. In Proceedings of Advances in
Neural Information Processing Systems (NIPS), pages 1444-1452, 2016.

Razvan Bunescu and Raymond Mooney. Learning to Extract Relations from
the Web using Minimal Supervision. In Proceedings of Annual Meeting of
the Association for Computational Linguistics (ACL), pages 576-583, 2007.

Andres Campero, Aldo Pareja, Tim Klinger, Josh Tenenbaum, and Sebastian
Riedel. Logical Rule Induction and Theory Learning Using Neural Theorem
Proving. arXiv preprint arXiv:1809.02193, 2018.

Augustin Cauchy.  Méthode générale pour la résolution des systemes
d’équations simultanées. Comp. Rend. Sci. Paris, 25(1847):536-538, 1847.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. What You Always Wanted
to Know About Datalog (And Never Dared to Ask). IEEFE transactions on
knowledge and data engineering, 1(1):146-166, 1989.

SC Chan, LS Hsu, S Brody, and HH Teh. Neural three-valued-logic networks.


http://github.com/google/jax
http://github.com/google/jax

BIBLIOGRAPHY 167

In International 1989 Joint Conference on Neural Networks, pages 594—vol.
IEEE, 1989.

SC Chan, LS Hsu, KF Loe, and HH Teh. Neural Logic Networks. Progress in
Neural Networks, 2, 1993.

Sarath Chandar, Sungjin Ahn, Hugo Larochelle, Pascal Vincent, Gerald
Tesauro, and Yoshua Bengio. Hierarchical Memory Networks. arXiv preprint
arXiv:1605.07427, 2016.

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christopher Meek. Typed
Tensor Decomposition of Knowledge Bases for Relation Extraction. In Pro-

ceedings of Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1568-1579, 2014.

Swarat Chaudhuri and Armando Solar-Lezama. Smooth Interpretation. In
Proceedings of the 2010 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 279-291, 2010.

Swarat Chaudhuri and Armando Solar-Lezama. Smoothing a Program Soundly
and Robustly. In Proceedings of Computer Aided Verification (CAV), pages
277-292, 2011.

Yang Chen, Sean Goldberg, Daisy Zhe Wang, and Soumitra Siddharth Johri.
Ontological Pathfinding. In Proceedings of the 2016 International Confer-
ence on Management of Data, pages 835846, 2016.

Francois Chollet. The Measure of Intelligence. arXiw preprint
arXiw:1911.01547, 2019.

Alonzo Church. Application of Recursive Arithmetic to the Problem of Circuit
Synthesis. Institute for Symbolic Logic, Cornell University, 1957.

Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jirgen
Schmidhuber. Deep Big Simple Neural Nets Excel on Handwritten Digit
Recognition. Neural computation, 22(12):3207-3220, 2010.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as Soft
Reasoners over Language. arXiv preprint arXiv:2002.05867, 2020.

Nadav Cohen and Amnon Shashua. Inductive Bias of Deep Convolutional
Networks through Pooling Geometry. In Proceedings of International Con-
ference on Learning Representations (ICLR), 2017.



168 BIBLIOGRAPHY

Nadav Cohen, Or Sharir, Yoav Levine, Ronen Tamari, David Yakira, and
Amnon Shashua. Analysis and Design of Convolutional Networks via Hier-
archical Tensor Decompositions. Intel Collaborative Research Institute for
Computational Intelligence (ICRI-CI) Special Issue on Deep Learning The-
ory, 2017.

William W Cohen. TensorLog: A Differentiable Deductive Database. arXiv
preprint arXiv:1605.06523, 2016.

William W Cohen, Matthew Siegler, and Alex Hofer. Neural Query Lan-
guage: A Knowledge Base Query Language for Tensorflow. arXiv preprint
arXiv:1905.06209, 2019.

William W Cohen, Haitian Sun, R Alex Hofer, and Matthew Siegler. Scalable
Neural Methods for Reasoning With a Symbolic Knowledge Base. Proceed-
ings of International Conference on Learning Representations (ICLR), 2020.

Mark Craven, Andrew McCallum, Dan PiPasquo, Tom Mitchell, and Dayne
Freitag. Learning to Extract Symbolic Knowledge from the World Wide
Web. Technical report, Carnegie Mellon University, 1998.

Maxwell John Cresswell. Logics and Languages. Routledge, 1973.

Andrew Cropper and Stephen H Muggleton. Logical minimisation of meta-
rules within Meta-Interpretive Learning. In Inductive Logic Programming,

pages 62-75. Springer, 2015.

Andrew Cropper and Stephen H Muggleton. Learning Higher-Order Logic Pro-
grams through Abstraction and Invention. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI), pages 1418-1424, 2016.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Du-
rugkar, Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. Go
for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowl-

edge Bases using Reinforcement Learning. arXiv preprint arXiv:1711.05851,
2017a.

Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum.
Chains of Reasoning over Entities, Relations, and Text using Recurrent Neu-
ral Networks. Proceedings of the 15th Conference of the Furopean Chapter
of the Association for Computational Linguistics: Volume 1, Long Papers,
pages 132-141, 2017b.



BIBLIOGRAPHY 169

Sreerupa Das, C Lee Giles, and Guo-Zheng Sun. Learning Context-free Gram-
mars: Capabilities and Limitations of a Recurrent Neural Network with an
External Stack Memory. In Proceedings of The Fourteenth Annual Confer-
ence of Cognitive Science Society. Indiana University, page 14, 1992.

Sreerupa Das, C Lee Giles, and Guo-Zheng Sun. Using Prior Knowledge in a
NNPDA to Learn Context-Free Languages . In Proceedings of Advances in
Neural Information Processing Systems (NIPS), pages 65-72, 1993.

Donald Davidson. Truth and Meaning. In Philosophy, Language, and Artificial
Intelligence, pages 93-111. Springer, 1967.

Jesse Davis and Mark Goadrich. The relationship between Precision-Recall

and ROC curves. In Proceedings of International Conference on Machine
Learning (ICML), pages 233-240. ACM, 2006.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum,
and J Zico Kolter. End-to-End Differentiable Physics for Learning and Con-

trol. In Proceedings of Advances in Neural Information Processing Systems
(NIPS), pages 7178-7189, 2018.

Michiel de Jong and Fei Sha. Neural Theorem Provers Do Not Learn Rules
Without Exploration. arXiv preprint arXiv:1906.06805, 2019.

Guillaume Francois Antoine Marquis de I’'Hopital. Analyse des infiniment
petits pour lintelligence des lignes courbes. Francois Montalant, Quay des
Augustins, 1696.

Luc De Raedt and Kristian Kersting. Probabilistic Inductive Logic Program-
ming. In Probabilistic Inductive Logic Programming, pages 1-27. Springer,
2008.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A Prob-
abilistic Prolog and Its Application in Link Discovery. In Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI), volume 7,
pages 2462-2467. Hyderabad, 2007.

Jonas Degrave, Michiel Hermans, and Joni Dambre. A Differentiable Physics

Engine for Deep Learning in Robotics. Frontiers in neurorobotics, 13, 2019.

Olivier Delalleau and Yoshua Bengio. Shallow vs. Deep Sum-Product Net-



170 BIBLIOGRAPHY

works. In Proceedings of Advances in Neural Information Processing Systems
(NIPS), pages 666-674, 2011.

Richard A. DeMillo and Richard J. Lipton. Defining Software by Continuous,
Smooth Functions. IEEE transactions on software engineering, 17(4):383—
384, 1991.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A Large-Scale Hierarchical Image Database. In 2009 IEEE confer-

ence on computer vision and pattern recognition, pages 248-255. Ieee, 2009.

Woodrow W Denham. The Detection of Patterns in Alyawarra Nonverbal
Behavior . PhD thesis, University of Washington, Seattle., 1973.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel.
Convolutional 2D Knowledge Graph Embeddings. In Proceedings of AAAI
Conference on Artificial Intelligence, 2018.

Frank DiMaio and Jude Shavlik. Learning an Approximation to Inductive
Logic Programming Clause Evaluation. In International Conference on In-

ductive Logic Programming, pages 80-97. Springer, 2004.

Liya Ding. Neural prolog-the concepts, construction and mechanism. In Sys-
tems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century.,
IEEFE International Conference on, volume 4, pages 3603-3608. IEEE, 1995.

Liya Ding, Hoon Heng Teh, Peizhuang Wang, and Ho Chung Lui. A Prolog-
like inference system based on neural logic AAT An attempt towards fuzzy

neural logic programming. Fuzzy Sets and Systems, 82(2):235-251, 1996.

Peter Dinges and Gul Agha. Targeted Test Input Generation using Symbolic-
Concrete Backward Execution. In Proceedings of the ACM/IEEFE interna-

tional conference on Automated software engineering, pages 31-36, 2014.

Josip Djolonga and Andreas Krause. Differentiable Learning of Submodular
Models. In Proceedings of Advances in Neural Information Processing Sys-
tems (NIPS), pages 1013-1023, 2017.

Ivan Donadello, Luciano Serafini, and Artur D’Avila Garcez. Logic Tensor Net-
works for Semantic Image Interpretation. arXiv preprint arXiv:1705.08968,
2017.



BIBLIOGRAPHY 171

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny
Zhou. Neural Logic Machines. arXiv preprint arXiv:1904.11694, 2019.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin
Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge
vault: A web-scale approach to probabilistic knowledge fusion. In Pro-
ceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 601-610. ACM, 2014.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Tim-
othy Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas
Degris, and Ben Coppin. Deep Reinforcement Learning in Large Discrete
Action Spaces. arXiv preprint arXiv:1512.07679, 2015.

Niklas Eén and Niklas Sorensson. An Extensible SAT-solver. In International
conference on theory and applications of satisfiability testing, pages 502-518.
Springer, 2003.

Ronen Eldan and Ohad Shamir. The Power of Depth for Feedforward Neural
Networks. In Conference on learning theory, pages 907-940, 2016.

Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Unsupervised
Learning by Program Synthesis. In Proceedings of Advances in Neural In-
formation Processing Systems (NIPS), pages 973-981, 2015.

Jeffrey L Elman. Finding Structure in Time. Cognitive science, 14(2):179-211,
1990.

Oren Etzioni, Michele Banko, and Michael J Cafarella. Machine Reading. In
Proceedings of AAAI Conference on Artificial Intelligence, volume 6, pages
1517-1519, 2006.

Richard Evans and Edward Grefenstette. Learning Explanatory Rules from
Noisy Data. Journal of Artificial Intelligence Research, 61:1-64, 2018.

Richard Evans, Jose Hernandez-Orallo, Johannes Welbl, Pushmeet Kohli,
and Marek Sergot. Making sense of sensory input. arXiv preprint
arXiw:1910.02227, 2019.

Aaron Ferber, Bryan Wilder, Bistra Dilina, and Milind Tambe. MIPaaL.: Mixed
Integer Program as a Layer. arXiv preprint arXiw:1907.05912, 2019.

A Ferrari, A Batson, M Lack, A Jones, D Evans, and () Carbonneaux. x86



172 BIBLIOGRAPHY

Assembly Guide. Yale University, [En linea]. Available: hitp://flint. cs. yale.
edu/cs421/papers/t86-asm/asm. html, 2006.

John K Feser, Marc Brockschmidt, Alexander L Gaunt, and Daniel Tarlow.
Neural Functional Programming. In Proceedings of International Conference
on Learning Representations (ICLR) (Workshop track), 2017.

Pedro Fialho, Sérgio Curto, Ana Cristina Mendes, and Luisa Coheur. Wordnet
framework improvements for nlp: Defining abstraction and scalability layers.
Technical report, Technical report, Technical Report 8113, Spoken Language
Systems Lab a4Ae, 2011.

Evelyn Fix. Discriminatory analysis: nonparametric discrimination, consis-

tency properties. USAF school of Aviation Medicine, 1951.

Manoel VM Franca, Gerson Zaverucha, and Artur S daAZAvila Garcez. Fast
relational learning using bottom clause propositionalization with artificial
neural networks. Machine Learning, 94(1):81-104, 2014.

Stan Franklin and Max Garzon. Neural Computability. Progress in neural
networks, 1(128,144), 1990.

Kunihiko Fukushima. Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition Unaffected by Shift in Position.
Biological cybernetics, 36(4):193-202, 1980.

Jasmine S. Furter and Peter C. Hauser. Interactive control of purpose built
analytical instruments with Forth on microcontrollers - A tutorial. Analytica
Chimica Acta, 2018.

Luis Antonio Galdrraga, Christina Teflioudi, Katja Hose, and Fabian
Suchanek. AMIE: Association Rule Mining under Incomplete Evidence in
Ontological Knowledge Bases. In Proceedings of the 22nd international con-
ference on World Wide Web, pages 413-422, 2013.

Artur d’Avila Garcez, Tarek R Besold, Luc De Raedt, Peter Foldiak, Pascal
Hitzler, Thomas Icard, Kai-Uwe Kiihnberger, Luis C Lamb, Risto Miikku-
lainen, and Daniel L Silver. Neural-Symbolic Learning and Reasoning: Con-
tributions and Challenges. In Proceedings of AAAI Conference on Artificial
Intelligence, 2015.

Artur d’Avila Garcez, Marco Gori, Luis C Lamb, Luciano Serafini, Michael



BIBLIOGRAPHY 173

Spranger, and Son N Tran. Neural-Symbolic Computing: An Effective
Methodology for Principled Integration of Machine Learning and Reasoning.
arXi preprint arXi:1905.06088, 2019.

Artur S Avila Garcez and Gerson Zaverucha. The Connectionist Inductive
Learning and Logic Programming System. Applied Intelligence, 11(1):59—
77, 1999.

Artur S d’Avila Garcez, Krysia B Broda, and Dov M Gabbay. Neural-Symbolic
Learning Systems: Foundations and Applications. Springer Science & Busi-
ness Media, 2012.

Artur S d’Avila Garcez, Dov M Gabbay, and Luis C Lamb. A neural cogni-
tive model of argumentation with application to legal inference and decision
making. Journal of Applied Logic, 12(2):109-127, 2014.

Artur S daAZAvila Garcez, Dov M Gabbay, Oliver Ray, and John Woods.
Abductive Reasoning in Neural-Symbolic Systems. Topoi, 26(1):37-49, 2007.

Artur SD’Avila Garcez, Luis C Lamb, and Dov M Gabbay. Neural-Symbolic
Cognitive Reasoning. Springer Science & Business Media, 2008.

Alberto Garcia-Duran and Mathias Niepert. KBLRN : End-to-End Learning
of Knowledge Base Representations with Latent, Relational, and Numerical
Features. arXiv preprint arXiv:1709.04676, 2017.

Matt Gardner and Tom Mitchell. Efficient and Expressive Knowledge Base
Completion Using Subgraph Feature Extraction. In Proceedings of Con-
ference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1488-1498, 2015.

Matt Gardner, Partha Talukdar, Bryan Kisiel, and Tom Mitchell. Improving
Learning and Inference in a Large Knowledge-base using Latent Syntactic
Cues. In Proceedings of Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 833-838, 2013.

Matt Gardner, Partha Talukdar, Jayant Krishnamurthy, and Tom Mitchell. In-
corporating Vector Space Similarity in Random Walk Inference over Knowl-

edge Bases. In Proceedings of Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 397-406, 2014.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea



174 BIBLIOGRAPHY

Lodi. Exact Combinatorial Optimization with Graph Convolutional Neural
Networks. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), pages 15554-15566, 2019.

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman,
Pushmeet Kohli, Jonathan Taylor, and Daniel Tarlow. TerpreT: A Prob-
abilistic Programming Language for Program Induction. arXiv preprint
arXiv:1608.04428, 2016.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow.
Differentiable Programs with Neural Libraries. In Proceedings of Interna-
tional Conference on Machine Learning (ICML), pages 1213-1222, 2017.

C. Lee Giles, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee, and Dong
Chen. Higher Order Recurrent Networks and Grammatical Inference. In

Proceedings of Advances in Neural Information Processing Systems (NIPS),
pages 380-387, 1990.

Philip E Gill, Walter Murray, and Michael A Saunders. SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization. SIAM review, 47(1):
99-131, 2005.

Attilio Giordana, Lorenza Saitta, and Floriano Zini. Learning Disjunctive
Concepts by Means of Genetic Algorithms. In Machine Learning Proceedings
199/, pages 96—104. Elsevier, 1994.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
press, 2016.

Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and
Joshua B Tenenbaum. Church: a language for generative models. arXiv
preprint arXiv:1206.3255, 2012.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for
learning in graph domains. In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., volume 2, pages 729-734. IEEE,
2005.

Richard E Grandy. Understanding and the Principle of Compositionality.
Philosophical Perspectives, 4:557-572, 1990.

Alex Graves, Santiago Fernandez, and Jiirgen Schmidhuber. Bidirectional



BIBLIOGRAPHY 175

LSTM Networks for Improved Phoneme Classification and Recognition.
In International Conference on Artificial Neural Networks, pages 799-804.
Springer, 2005.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. arXiv
preprint arXiw:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Dani-
helka, Agnieszka Grabska-Barwinska, Sergio Gomez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, Adria Puigdomeénech Badia,
Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen
King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and
Demis Hassabis. Hybrid computing using a neural network with dynamic
external memory. Nature, 538(7626):471, 2016.

C Cordell Green and Bertram Raphael. The use of theorem-proving tech-
niques in question-answering systems. In Proceedings of the 1968 23rd ACM
national conference, pages 169-181. ACM, 1968.

Edward Grefenstette. Towards a Formal Distributional Semantics: Simulating
Logical Calculi with Tensors. arXiv preprint arXiv:1304.5823, 2013.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil
Blunsom. Learning to Transduce with Unbounded Memory. In Proceed-
ings of Advances in Neural Information Processing Systems (NIPS), pages
18281836, 2015.

Andreas Griewank. Who Invented the Reverse Mode of Differentiation. Doc-
umenta Mathematica, Extra Volume ISMP, pages 389400, 2012.

Frédéric Gruau, Jean-Yves Ratajszczak, and Gilles Wiber. A Neural Compiler.
Theoretical Computer Science, 141(1):1 — 52, 1995.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program Synthesis.
Foundations and Trends® in Programming Languages, 4(1-2):1-119, 2017.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly Embed-
ding Knowledge Graphs and Logical Rules. In Proceedings of Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 192—
202, 2016.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and Matt Gardner. Neural



176 BIBLIOGRAPHY

Module Networks for Reasoning over Text. arXiv preprint arXiv:1912.04971,
2019.

Jacques Herbrand. Recherches sur la théorie de la démonstration. PhD thesis,
Université de Paris, 1930.

Alexander Hinneburg, Charu C Aggarwal, and Daniel A Keim. What is the
nearest neighbor in high dimensional spaces? In 26th Internat. Conference
on Very Large Databases, pages 506-515, 2000.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning
Algorithm for Deep Belief Nets. Neural Computation, 18(7):1527-1554, 2006.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S
Weld. Knowledge-Based Weak Supervision for Information Extraction of
Overlapping Relations. In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics: Human Language Technologies, pages
541-550, 2011.

Steffen Holldobler, Yvonne Kalinke, and Hans-Peter Storr. Approximating the
Semantics of Logic Programs by Recurrent Neural. Applied Intelligence, 11
(1):45-58, 1999.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer Feedfor-
ward Networks are Universal Approximators. Neural networks, 2(5):359-366,
1989.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate
Saenko. Learning to Reason: End-To-End Module Networks for Visual
Question Answering. In Proceedings of the IEEE International Conference
on Computer Vision, pages 804-813, 2017.

Jeevana Priya Inala, Sicun Gao, Soonho Kong, and Armando Solar-Lezama.
REAS: Combining Numerical Optimization with SAT Solving. arXiv
preprint arXiv:1802.04408, 2018.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 604-613. ACM, 1998.



BIBLIOGRAPHY 177

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén, Francois
Chollet, and Josef Urban. DeepMath - Deep Sequence Models for Premise
Selection. In Proceedings of Advances in Neural Information Processing Sys-
tems (NIPS), pages 2235-2243, 2016.

Aleksei GrigorEzevich Ivakhnenko and Valentin Grigorévich Lapa. Cybernetic
Predicting Devices. Technical report, PURDUE UNIV LAFAYETTE IND
SCHOOL OF ELECTRICAL ENGINEERING, 1966.

Jan Jakubiiv and Josef Urban. ENIGMA: Efficient Learning-Based Infer-
ence Guiding Machine. In International Conference on Intelligent Computer
Mathematics, pages 292-302. Springer, 2017.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product Quantization
for Nearest Neighbor Search. IEFEE transactions on pattern analysis and
machine intelligence, 33(1):117-128, 2011.

Yichen Jiang and Mohit Bansal. Self-Assembling Modular Networks for Inter-
pretable Multi-Hop Reasoning. arXiv preprint arXiv:1909.05803, 2019.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search
with GPUs. arXiv preprint arXiv:1702.08734, 2017.

Michael I Jordan. Serial Order: A Parallel Distributed Processing Approach.
In Advances in psychology, volume 121, pages 471-495. Elsevier, 1997.

Armand Joulin and Tomas Mikolov. Inferring Algorithmic Patterns with Stack-
Augmented Recurrent Nets. In Proceedings of Advances in Neural Informa-
tion Processing Systems (NIPS), pages 190-198, 2015.

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. Knowledge Base Com-
pletion: Baselines Strike Back. arXiv preprint arXiv:1705.10744, 2017.

Yukasz Kaiser and Ilya Sutskever. Neural GPUs Learn Algorithms. In Pro-
ceedings of International Conference on Learning Representations (ICLR),
2016.

Fukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. Learning to Re-
member Rare Events. In Proceedings of International Conference on Learn-
ing Representations (ICLR), 2017.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A Convolutional



178 BIBLIOGRAPHY

Neural Network for Modelling Sentences. arXiv preprint arXiv:1404.2188,
2014.

Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with

millions of lemmas. Journal of symbolic computation, 69:109-128, 2015.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olsék. Re-
inforcement Learning of Theorem Proving. In Proceedings of Advances in
Neural Information Processing Systems (NIPS), pages 8822-8833, 2018.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek
Jain, and Sumit Gulwani. Neural-Guided Deductive Search for Real-Time

Program Synthesis from Examples. arXiv preprint arXiv:1804.01186, 2018.

Jerrold J Katz and Jerry A Fodor. The Structure of a Semantic Theory.
language, 39(2):170-210, 1963.

Charles Kemp, Joshua B Tenenbaum, Thomas L Griffiths, Takeshi Yamada,
and Naonori Ueda. Learning Systems of Concepts with an Infinite Rela-
tional Model. In Proceedings of AAAI Conference on Artificial Intelligence,
volume 3, page 5, 2006.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learn-
ing Combinatorial Optimization Algorithms over Graphs. In Proceedings of
Advances in Neural Information Processing Systems (NIPS), 2017.

James C King. Symbolic Execution and Program Testing. Communications
of the ACM, 19(7):385-394, 1976.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. In Proceedings of International Conference on Learning Represen-

tations (ICLR), 2015.

Emanuel Kitzelmann. Inductive Programming: A Survey of Program Synthesis
Techniques. In International workshop on approaches and applications of

inductive programming, pages 50-73. Springer, 2009.

Stephen Cole Kleene. Representation of events in nerve nets and finite au-
tomata. Technical report, RAND PROJECT AIR FORCE SANTA MON-
ICA CA, 1951.

Peter J Knaggs. Practical and Theoretical Aspects of Forth Software Develop-
ment. PhD thesis, University of Teesside, 1993.



BIBLIOGRAPHY 179

Stanley Kok and Pedro Domingos. Statistical predicate invention. In Pro-
ceedings of International Conference on Machine Learning (ICML), pages
433-440. ACM, 2007.

Andrei Nikolaevich Kolmogorov. On the representation of continuous functions
of many variables by superposition of continuous functions of one variable
and addition. In Doklady Akademii Nauk, volume 114, pages 953-956. Rus-

sian Academy of Sciences, 1957.

Ekaterina Komendantskaya. First-order Deduction in Neural Networks. In
LATA, pages 307-318, 2007.

Ekaterina Komendantskaya. Unification neural networks: unification by error-
correction learning. Logic Journal of the IGPL, 19(6):821-847, 2011.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni,
and Siena Dumas Ang. Parsing Algebraic Word Problems into Equations.

Transactions of the Association for Computational Linguistics (TACL), 3:
585-597, 2015.

Philip J. Koopman, Jr. A Brief Introduction to Forth. In The Second ACM
SIGPLAN Conference on History of Programming Languages, HOPL-II,
pages 357-358. ACM, 1993.

Laura Kovacs and Andrei Voronkov. First-Order Theorem Proving and Vam-
pire. In International Conference on Computer Aided Verification, pages
1-35. Springer, 2013.

John R Koza and John R Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection, volume 1. MIT press, 1992.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. In Proceedings of Advances
in Neural Information Processing Systems (NIPS), pages 1097-1105, 2012.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural Random

Access Machines. In Proceedings of International Conference on Learning
Representations (ICLR), 2016.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning

to Automatically Solve Algebra Word Problems. In Proceedings of Annual



180 BIBLIOGRAPHY

Meeting of the Association for Computational Linguistics (ACL), pages 271—
281, 2014.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Ger-
shman. Building Machines That Learn and Think Like People. Behavioral

and brain sciences, 40, 2017.

Ni Lao and William W Cohen. Relational retrieval using a combination of
path-constrained random walks. Machine Learning, 81(1):53-67, 2010.

Ni Lao, Tom Mitchell, and William W Cohen. Random Walk Inference and
Learning in A Large Scale Knowledge Base. In Proceedings of Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 529—
539, 2011.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation Applied
to Handwritten Zip Code Recognition. Neural computation, 1(4):541-551,
1989.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-
based program synthesis using learned probabilistic models. ACM SIGPLAN
Notices, 53(4):436-449, 2018.

Gottfried Wilhelm Leibniz. Memoir using the chain rule. Cited in TMME, 7:
321-332, 1676.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable
Monte Carlo ray tracing through edge sampling. In SIGGRAPH Asia 2018
Technical Papers, page 222. ACM, 2018.

Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. Approximate Nearest Neighbor Search on High Dimensional
Data AAT Experiments, Analyses, and Improvement. IEEE Transactions

on Knowledge and Data Engineering, 2019.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learn-
ing Entity and Relation Embeddings for Knowledge Graph Completion. In
Proceedings of AAAI Conference on Artificial Intelligence, 2015.

Seppo Linnainmaa. The representation of the cumulative rounding error of



BIBLIOGRAPHY 181

an algorithm as a taylor expansion of the local rounding errors. Master’s
Thesis (in Finnish), Univ. Helsinki, pages 6-7, 1970.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft Rasterizer: A Dif-
ferentiable Renderer for Image-based 3D Reasoning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), October
2019.

Ting Liu, Charles Rosenberg, and Henry A Rowley. Clustering Billions of
Images with Large Scale Nearest Neighbor Search. In 2007 IEEE Workshop
on Applications of Computer Vision (WACV’07), pages 28-28. IEEE, 2007.

Huma Lodhi. Deep Relational Machines. In International Conference on Neu-

ral Information Processing, pages 212-219. Springer, 2013.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep
Network Guided Proof Search. arXiv preprint arXiv:1701.06972, 2017.

Matthew M Loper and Michael J Black. OpenDR: An Approximate Differen-
tiable Renderer. In Furopean Conference on Computer Vision, pages 154—
169. Springer, 2014.

Peter Lucas. On the formalization of programming languages: Early history
and main approaches. In The Vienna Development Method: The Meta-
Language, pages 1-23. Springer, 1978.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective
Approaches to Attention-based Neural Machine Translation.  Proceed-

ings of Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 14121421, 2015.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based Hy-
perparameter Optimization through Reversible Learning. In Proceedings of
International Conference on Machine Learning (ICML), pages 2113-2122,
2015a.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless
Gradients in Numpy. In ICML 2015 AutoML Workshop, volume 238, 2015b.

Ronald Mak and Tom Copeland. Writing compilers and interpreters. Wiley
New York, 1996.

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir



182 BIBLIOGRAPHY

Krylov. Approximate nearest neighbor algorithm based on navigable small
world graphs. Information Systems, 45:61-68, 2014.

Yury A Malkov and Dmitry A Yashunin. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.

IEFEFE transactions on pattern analysis and machine intelligence, 2018.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas De-
meester, and Luc De Raedt. DeepProbLog: Neural Probabilistic Logic Pro-
gramming. In Proceedings of Advances in Neural Information Processing
Systems (NIPS), pages 3749-3759, 2018.

Zohar Manna and Richard J Waldinger. Toward automatic program synthesis.
Communications of the ACM, 14(3):151-165, 1971.

Gary Marcus. Deep Learning: A Critical Appraisal. arXiv preprint
arXiv:1801.00631, 2018.

Gary Marcus. The Next Decade in Al: Four Steps Towards Robust Artificial
Intelligence, 2020.

Giuseppe Marra, Michelangelo Diligenti, Francesco Giannini, Marco Gori,
and Marco Maggini.  Relational Neural Machines.  arXiv preprint
arXiw:2002.02195, 2020.

TB Martin and JJ Talavage. Application of Neural Logic to Speech Analysis
and Recognition. IEEE Transactions on Military Electronics, MIL-7(2 & 3):
189-196, 1963.

Alexa T McCray. An upper-level ontology for the biomedical domain. Inter-
national Journal of Genomics, 4(1):80-84, 2003.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115-133,
1943.

Drew McDermott. A critique of pure reason. Computational intelligence, 3(1):
151-160, 1987.

Arthur Mensch and Mathieu Blondel. Differentiable Dynamic Programming
for Structured Prediction and Attention. arXiv preprint arXiv:1802.03676,
2018.



BIBLIOGRAPHY 183

Tom&s Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev
Khudanpur. Recurrent neural network based language model. In FEleventh
annual conference of the international speech communication association,
2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed Representations of Words and Phrases and their Composition-

ality. In Proceedings of Advances in Neural Information Processing Systems
(NIPS), pages 3111-3119, 2013.

George A Miller. WordNet: a lexical database for English. Communications
of the ACM, 38(11):39-41, 1995.

Pasquale Minervini, Thomas Demeester, Tim Rocktéaschel, and Sebastian
Riedel. Adversarial Sets for Regularising Neural Link Predictors. arXiv
preprint arXiv:1707.07596, 2017.

Pasquale Minervini*, Matko Bosnjak®, Tim Rocktéaschel, and Sebastian Riedel.
Towards Neural Theorem Proving at Scale. In Neural Abstract Machines &
Program Induction v2 (NAMPI v2) @ ICML, 2018.

Pasquale Minervini*, Matko Bosnjak™®, Tim Rocktaschel, Sebastian Riedel, and
Edward Grefenstette. Differentiable Reasoning on Large Knowledge Bases
and Natural Language. In Proceedings of AAAI Conference on Artificial
Intelligence, 2020.

Marvin Minsky and Seymour A Papert. Perceptrons: An Introduction to Com-

putational Geometry. MIT press, 1969.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision
for relation extraction without labeled data. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the jth Interna-
tional Joint Conference on Natural Language Processing of the AFNLP,
pages 1003-1011, 2009.

Matthew Mirman, Dimitar Dimitrov, Pavle Djordjevic, Timon Gehr, and Mar-
tin Vechev. Training Neural Machines with Trace-Based Supervision. In Pro-
ceedings of International Conference on Machine Learning (ICML), pages
3566-3574, 2018.

Jeff Mitchell, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel.
Extrapolation in NLP. arXiv preprint arXiv:1805.06648, 2018.



184 BIBLIOGRAPHY
Tom M Mitchell. Machine Learning, 1997.

R Mooney. Relational Learning of Pattern-Match Rules for Information Ex-
traction. In Proceedings of AAAI Conference on Artificial Intelligence, vol-
ume 334, 1999.

Andrew W Moore. Very Fast EM-based Mixture Model Clustering using Mul-
tiresolution kd-trees. In Proceedings of Advances in Neural Information Pro-
cessing Systems (NIPS), pages 543-549, 1999.

Charles H Moore and Geoffrey C Leach. FORTH - A Language for Interactive
Computing. Amsterdam: Mohasco Industries Inc, 1970.

Stephen Muggleton. Inductive Logic Programming. New generation comput-
ing, 8(4):295-318, 1991.

Stephen Muggleton. Inverse entailment and Progol. New generation computing,
13(3-4):245-286, 1995.

Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory
and methods. The Journal of Logic Programming, 19:629-679, 1994.

Stephen Muggleton and Cao Feng. Efficient induction of logic programs. Cite-
seer, 1990.

Stephen H Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-
interpretive learning of higher-order dyadic datalog: Predicate invention
revisited. Machine Learning, 100(1):49-73, 2015.

Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine.
Neural Sketch Learning for Conditional Program Generation. arXiv preprint
arXiv:1703.05698, 2018.

Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Composi-
tional Vector Space Models for Knowledge Base Completion. arXiv preprint
arXiw:1504.06662, 2015a.

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser,
Karol Kurach, and James Martens. Adding Gradient Noise Improves Learn-
ing for Very Deep Networks. arXiv preprint arXiv:1511.06807, 2015b.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural Programmer:



BIBLIOGRAPHY 185

Inducing Latent Programs with Gradient Descent. In Proceedings of Inter-

national Conference on Learning Representations (ICLR), 2016.

John A Nelder and Roger Mead. A Simplex Method for Function Minimization.
The computer journal, 7(4):308-313, 1965.

J Pedro Neto, H Siegelmann, and J Félix Costa. On the Implementation of
Programming Languages with Neural Nets. In First International Confer-
ence on Computing Anticipatory Systems, volume 1, pages 201-208. CHAOS,
1998.

Joao Pedro Neto. A Virtual Machine for Neural Computers. In Artificial
Neural Networks — ICANN, pages 525-534, 2006.

Joao Pedro Neto, J.Félix Costa, Ademar Ferreira, and Luciano Gualberto.
Merging Sub-symbolic and Symbolic Computation. In Proceedings of the
International ICSC Symposium on Neural Computation (NC); 2000.

Joao Pedro Neto, Hava T Siegelmann, and J Félix Costa. Symbolic processing
in neural networks. Journal of the Brazilian Computer Society, 8(3):58-70,
2003.

Joao Pedro Neto, José Félix Costa, Paulo Carreira, and Miguel Rosa. A Com-
piler and Simulator for Partial Recursive Functions over Neural Networks.

In Applications and Science in Soft Computing, pages 39-46. Springer, 2004.

Isaac Newton and Derek Thomas Whiteside. The Mathematical Papers of
Isaac Newton, volume 1 of The Mathematical Papers of Sir Isaac Newton,
2008.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A Review of Relational
Machine Learning for Knowledge Graphs. Proceedings of the IEEE, 104(1):
11-33, Jan 2016a. ISSN 0018-9219. doi: 10.1109/JPROC.2015.2483592.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A Three-Way Model
for Collective Learning on Multi-Relational Data. In Proceedings of Interna-
tional Conference on Machine Learning (ICML), volume 11, pages 809-816,
2011.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A
Review of Relational Machine Learning for Knowledge Graphs. Proceedings
of the IEEE, 104(1):11-33, 2015.



186 BIBLIOGRAPHY

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic Em-
beddings of Knowledge Graphs. In Proceedings of AAAI Conference on
Artificial Intelligence, 2016b.

Peter Nordin. Evolutionary program induction of binary machine code and its
applications. Krehl, 1997.

Chris Olah and Shan Carter. Attention and Augmented Recurrent Neural
Networks. Distill, 2016. URL http://distill.pub/2016/augmented-rnns.

Christopher Olah. Understanding LSTM Networks, 2015.

Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti. Quantum cir-

cuit structure learning. arXiv preprint arXiv:1905.09692, 2019.

Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton, and Tom M Mitchell.
Zero-shot Learning with Semantic Output Codes. In Proceedings of Advances
in Neural Information Processing Systems (NIPS), pages 1410-1418, 2009.

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet
Kohli, and Oriol Vinyals. Regal: Transfer learning for fast optimization of

computation graphs. arXiv preprint arXiv:1905.02494, 2019.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengy-
ong Zhou, and Pushmeet Kohli. Neuro-Symbolic Program Synthesis. arXiv
preprint arXiv:1611.01855, 2017.

Ronald Parr and Stuart J Russell. Reinforcement learning with hierarchies

of machines. In Advances in neural information processing systems, pages
1043-1049, 1998.

Barbara Partee. Lexical Semantics and Compositionality. An invitation to

cognitive science: Language, 1:311-360, 1995.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In Proceedings of International Confer-
ence on Machine Learning (ICML), pages 1310-1318, 2013.

Heiko Paulheim. Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic web, 8(3):489-508, 2017.

Jorge Pérez, Javier Marinkovi¢, and Pablo Barcel6.  On the Turing


http://distill.pub/2016/augmented-rnns

BIBLIOGRAPHY 187

Completeness of Modern Neural Network Architectures. arXiv preprint
arXiw:1901.03429, 2019.

Jordan Bruce Pollack. On Connectionist Models of Natural Language Process-
ing. PhD dissertation. University of Illinois, 1987.

Oleksandr Polozov and Sumit Gulwani. FlashMeta: A Framework for Induc-
tive Program Synthesis. In Proceedings of the ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, pages 107-126, 2015.

J. Ross Quinlan. Learning Logical Definitions from Relations. Machine Learn-
ing, 5(3):239-266, 1990.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Se-
nior, Gregory Wayne, Alex Graves, and Timothy Lillicrap. Scaling Memory-
Augmented Neural Networks with Sparse Reads and Writes. In Proceedings
of Advances in Neural Information Processing Systems (NIPS), pages 3621—
3629, 2016.

Mukund Raghothaman, Xujie Si, Kihong Heo, and Mayur Naik. Difflog:
Learning Datalog Programs by Continuous Optimization. arXiv, 2019.

Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale Deep Unsuper-
vised Learning using Graphics Processors. In Proceedings of International
Conference on Machine Learning (ICML), pages 873-830, 2009.

Scott Reed and Nando De Freitas. Neural Programmer-Interpreters. In Pro-

ceedings of International Conference on Learning Representations (ICLR),
2016.

Sebastian Riedel, Limin Yao, and Andrew McCallum. Modeling Relations and
Their Mentions without Labeled Text. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 148-163.
Springer, 2010.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin.
Relation Extraction with Matrix Factorization and Universal Schemas. In
Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
pages 74-84, 2013.



188 BIBLIOGRAPHY

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method.
The annals of mathematical statistics, pages 400-407, 1951.

John Alan Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM, 12(1):23-41, 1965.

Tim Rocktaschel and Sebastian Riedel. End-to-End Differentiable Proving. In
Proceedings of Advances in Neural Information Processing Systems (NIPS),
pages 3788-3800, 2017.

Frank Rosenblatt. The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological review, 65(6):386, 1958.

Philippe Roussel. Prolog Manual de Reference et d’Utilisation. Groupe
d’Intelligence Artificielle der Marseille Lumimy, 1975.

Subhro Roy and Dan Roth. Solving General Arithmetic Word Problems. In
Proceedings of Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1743-1752, 2015.

Subhro Roy, Tim Vieira, and Dan Roth. Reasoning about Quantities in Natu-
ral Language. Transactions of the Association for Computational Linguistics
(TACL), 3:1-13, 2015.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning rep-
resentations by back-propagating errors. Nature, 323(6088):533-536, 1986.

Rudolph J Rummel. The dimensionality of nations project: attributes of na-
tions and behavior of nations dyads, 1950-1965. Inter-university Consortium

for Political Research, 1976. doi: 10.3886/ICPSR05409.v1.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Press, 3rd edition, 2009.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe
Wang. DRUM: End-To-End Differentiable Rule Mining On Knowledge
Graphs. In Proceedings of Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 15321-15331, 2019.

Claude Sammut and Ranan B Banerji. Learning concepts by asking questions.

Machine learning: An artificial intelligence approach, 2:167-192, 1986.



BIBLIOGRAPHY 189

Arthur L Samuel. Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of research and development, 3(3):210-229, 1959.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and
Timothy Lillicrap. Meta-Learning with Memory-Augmented Neural Net-
works. In Proceedings of International Conference on Machine Learning
(ICML), pages 1842-1850, 2016.

Jirgen Schmidhuber. Optimal Ordered Problem Solver. Machine Learning,
54(3):211-254, 2004.

Jirgen Schmidhuber. Ultimate Cognition a la Godel. Cognitive Computation,
1(2):177-193, 20009.

Jirgen Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural
networks, 61:85-117, 2015.

Stefan Schoenmackers, Oren Etzioni, Daniel S Weld, and Jesse Davis. Learning
First-Order Horn Clauses from Web Text. In Proceedings of Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1088—
1098, 2010.

Stephan Schulz. System description: E 1.8. In International Conference on
Logic for Programming Artificial Intelligence and Reasoning, pages 735-743.
Springer, 2013.

Mike Schuster and Kuldip K Paliwal. Bidirectional Recurrent Neural Networks.
IEEE transactions on Signal Processing, 45(11):2673-2681, 1997.

Dana Scott and Christopher Strachey. Toward a mathematical semantics for
computer languages, volume 1. Oxford University Computing Laboratory,

Programming Research Group Oxford, 1971.

Daniel Selsam and Nikolaj Bjgrner. Guiding High-Performance SAT Solvers
with Unsat-Core Predictions. In International Conference on Theory and
Applications of Satisfiability Testing, pages 336-353. Springer, 2019.

Luciano Serafini and Artur d’Avila Garcez. Logic Tensor Networks: Deep
Learning and Logical Reasoning from Data and Knowledge. arXiv preprint
arXiw:1606.04422, 2016.

Lokendra Shastri. Neurally motivated constraints on the working memory

capacity of a production system for parallel processing: Implications of a



190 BIBLIOGRAPHY

connectionist model based on temporal synchrony. In Proceedings of the
Fourteenth Annual Conference of the Cognitive Science Society: July, vol-
ume 29, page 159, 1992.

Jude W Shavlik and Geoffrey G Towell. An approach to combining
explanation-based and neural learning algorithms. In Applications Of Learn-
ing And Planning Methods, pages 71-98. World Scientific, 1991.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao.
M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search. In
Proceedings of Advances in Neural Information Processing Systems (NIPS),
pages 67866797, 2018.

Yirong Shen, Matthias Seeger, and Andrew Y Ng. Fast Gaussian Process Re-
gression using KD-Trees. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), pages 1225-1232, 2006.

Hava T. Siegelmann. Neural Programming Language. In Proceedings of AAAI
Conference on Artificial Intelligence, pages 877-882, 1994.

Hava T. Siegelmann. Computation Beyond the Turing Limit. Science, 268
(5210):545-548, 1995.

Hava T Siegelmann. On nil: The software constructor of neural networks.
Parallel Processing Letters, 6(04):575-582, 1996.

Hava T. Siegelmann. Neural Networks and Analog Computation: Beyond the
Turing Limit. Springer Science & Business Media, 2012.

Hava T. Siegelmann and Eduardo D. Sontag. Turing computability with neural
nets. Applied Mathematics Letters, 4(6):77 — 80, 1991.

Hava T. Siegelmann and Eduardo D. Sontag. On the Computational Power
of Neural Nets. Journal of Computer and System Sciences, 50(1):132 — 150,
1995.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering



BIBLIOGRAPHY 191

the game of Go with deep neural networks and tree search. mnature, 529
(7587):484, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140-1144, 2018.

Paul Smolensky. On the proper treatment of connectionism. Behavioral and
brain sciences, 11(1):1-23, 1988.

Richard Socher, Danqgi Chen, Christopher D Manning, and Andrew Ng. Rea-
soning With Neural Tensor Networks for Knowledge Base Completion. In
Proceedings of Advances in Neural Information Processing Systems (NIPS),
pages 926-934, 2013.

Armando Solar-Lezama and Rastislav Bodik. Program Synthesis by Sketching.
PhD thesis, U.C. Berkeley, 2008.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and
Vijay Saraswat. Combinatorial sketching for finite programs. ACM Sigplan
Notices, 41(11):404-415, 2006.

Ryan Spring and Anshumali Shrivastava. Scalable and Sustainable Deep
Learning via Randomized Hashing. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 445-454. ACM, 2017.

Ashwin Srinivasan. A study of two probabilistic methods for searching large
spaces with ilp. Technical Report PRG-TR-~16-00, Oxford University Com-
puting Laboratory (2000), 2000.

Ashwin Srinivasan. The Aleph Manual, 2001.

Bernd Steinbach and Roman Kohut. Neural Networks 4AS A Model of Boolean
Functions. In Boolean Problems, Proceedings of the 5th International Work-
shop on Boolean Problems, pages 223-240, 2002.

Sainbayar Sukhbaatar, Jason Weston, and Rob Fergus. End-to-End Memory
Networks. In Proceedings of Advances in Neural Information Processing
Systems (NIPS), pages 24402448, 2015.



192 BIBLIOGRAPHY

Guo-Zheng Sun, C. Lee Giles, Hsing-Hen Chen, and Yee-Chun Lee. The Neural
Network Pushdown Automaton: Model, Stack and Learning Simulations.
ArXiv, abs/1711.05738, 1993.

GZ Sun. Neural networks with external memeory stack that learn context-free
grammars from examples. In Proceedings of the Conference on Information
Science and Systems, 1991, pages 649-653. Princeton University, 1991.

Patrick Suppes. Introduction to logic. Courier Corporation, 1999.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning
with Neural Networks. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), pages 3104-3112, 2014.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement Learning for
Integer Programming: Learning to Cut. arXiv preprint arXiv:1906.04859,
2019.

Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Good-
man. How to Grow a Mind: Statistics, Structure, and Abstraction. science,
331(6022):1279-1285, 2011.

Robert D. Tennent. The denotational semantics of programming languages.
Communications of the ACM, 19(8):437-453, 1976.

Reuben Thomas. The Beetle Forth Virtual Machine, 2018. URL https://
github.com/rrthomas/beetle/blob/master/doc/beetle.pdf.

llaria Tiddi, Freddy Lécué, and Pascal Hitzler. Knowledge Graphs for eX-
plainable Artificial Intelligence: Foundations, Applications and Challenges,
volume 47 of Studies on the Semantic Web. 10S Press, 2020. ISBN 978-1-
64368-080-4.

Kristina Toutanova, Danqgi Chen, Patrick Pantel, Hoifung Poon, Pallavi
Choudhury, and Michael Gamon. Representing Text for Joint Embedding
of Text and Knowledge Bases. In Proceedings of Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1499-1509, 2015.

Geoffrey G Towell and Jude W Shavlik. Knowledge-Based Artificial Neural
Networks. Artificial intelligence, 70(1-2):119-165, 1994.

Geoffrey G Towell, Jude W Shavlik, and Michiel O Noordewier. Refinement


https://github.com/rrthomas/beetle/blob/master/doc/beetle.pdf
https://github.com/rrthomas/beetle/blob/master/doc/beetle.pdf

BIBLIOGRAPHY 193

of Approximate Domain Theories by Knowledge-Based Neural Networks. In
Proceedings of AAAI Conference on Artificial Intelligence, 1990.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blun-
som. Neural Arithmetic Logic Units. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), pages 8035-8044, 2018.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guil-
laume Bouchard. Complex Embeddings for Simple Link Prediction. In Pro-
ceedings of International Conference on Machine Learning (ICML), pages
20712080, 2016.

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat
Chaudhuri. HOUDINI: Lifelong Learning as Program Synthesis. In Proceed-
ings of Advances in Neural Information Processing Systems (NIPS), pages
8687-8698, 2018.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank
Wood. An Introduction to Probabilistic Programming. arXiv preprint
arXiv:1809.10756, 2018.

Allen Van Gelder. Efficient loop detection in Prolog using the tortoise-and-hare
technique. The Journal of Logic Programming, 4(1):23-31, 1987.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you
Need. In Proceedings of Advances in Neural Information Processing Systems
(NIPS), pages 5998-6008, 2017.

Patrick Verga, Arvind Neelakantan, and Andrew McCallum. Generalizing to
Unseen Entities and Entity Pairs with Row-less Universal Schema. arXiv
preprint arXiv:1606.05804, 2016.

Ellen M Voorhees. Overview of the TREC 2001 question answering track. In
Proceedings of the 10th Text REtrieval Conference (TREC), pages 42-51,
2001.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise Selection for
Theorem Proving by Deep Graph Embedding. In Proceedings of Advances
in Neural Information Processing Systems (NIPS), pages 2786-2796, 2017a.

Po-Wei Wang, Priya L Donti, Bryan Wilder, and Zico Kolter. SATNet: Bridg-



194 BIBLIOGRAPHY

ing deep learning and logical reasoning using a differentiable satisfiability
solver. arXiv preprint arXiv:1905.12149, 2019.

Quan Wang, Jing Liu, Yuanfei Luo, Bin Wang, and Chin-Yew Lin. Knowl-
edge Base Completion via Coupled Path Ranking. In Proceedings of An-
nual Meeting of the Association for Computational Linguistics (ACL), pages
1308-1318, 2016.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge Graph Em-
bedding: A Survey of Approaches and Applications. IEEE Transactions on
Knowledge and Data Engineering, 29(12):2724-2743, 2017b.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge Graph
and Text Jointly Embedding. In Proceedings of Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1591-1601, 2014.

David HD Warren. An abstract Prolog instruction set. Technical note 309,
1983.

Leon Weber, Pasquale Minervini, Jannes Miinchmeyer, Ulf Leser, and Tim
Rocktéschel. NLProlog: Reasoning with Weak Unification for Question
Answering in Natural Language. In Proceedings of Annual Meeting of the
Association for Computational Linguistics (ACL), pages 6151-6161, 2019.

Roger Weber, Hans-Jorg Schek, and Stephen Blott. A quantitative analysis
and performance study for similarity-search methods in high-dimensional
spaces. In VLDB, volume 98, pages 194-205, 1998.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the Practical Computational
Power of Finite Precision RNNs for Language Recognition. arXiv preprint
arXiv:1805.04908, 2018.

Paul J Werbos. Applications of advances in nonlinear sensitivity analysis. In

System modeling and optimization, pages 762-770. Springer, 1982.

Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas Usunier. Con-
necting Language and Knowledge Bases with Embedding Models for Rela-
tion Extraction. arXiv preprint arXiv:1507.7973, 2013.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory Networks. arXiv
preprint arXiv:1410.3916, 2015.

Lyndon White, Roberto Togneri, Wei Liu, and Mohammed Bennamoun. How



BIBLIOGRAPHY 195

Well Sentence Embeddings Capture Meaning. In Proceedings of the 20th
Australasian Document Computing Symposium, page 9. ACM, 2015.

Terry Winograd. Understanding natural language. Cognitive psychology, 3(1):
1-191, 1972.

Niklaus Wirth. The programming language Pascal. Acta informatica, 1(1):
35-63, 1971.

Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. Super-
vised Hashing for Image Retrieval via Image Representation Learning. In
Proceedings of AAAI Conference on Artificial Intelligence, 2014.

Wenhan Xiong, Thien Hoang, and William Yang Wang. DeepPath: A Rein-
forcement Learning Method for Knowledge Graph Reasoning. arXiv preprint
arXiw:1707.06690, 2017.

Jiacheng Xu, Kan Chen, Xipeng Qiu, and Xuanjing Huang. Knowledge
Graph Representation with Jointly Structural and Textual Encoding. arXiv
preprint arXiv:1611.08661, 2016.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embed-
ding Entities and Relations for Learning and Inference in Knowledge Bases.
arXiv preprint arXiw:1412.6575, 2014.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable Learning of
Logical Rules for Knowledge Base Reasoning. In Proceedings of Advances in
Neural Information Processing Systems (NIPS), pages 2319-2328, 2017.

Yuan Yang and Le Song. Learn to Explain Efficiently via Neural Logic In-
ductive Learning. In Proceedings of International Conference on Learning
Representations (ICLR), 2020.

Peter N Yianilos. Data Structures and Algorithms for Nearest Neighbor Search
in General Metric Spaces. In Soda, pages 311-21, 1993.

Fatin Zaklouta, Bogdan Stanciulescu, and Omar Hamdoun. Traffic sign clas-
sification using K-d trees and Random Forests. In The 2011 International
Joint Conference on Neural Networks, pages 2151-2155. IEEE, 2011.

Wojciech Zaremba and Ilya Sutskever. Reinforcement Learning Neural Turing
Machines - Revised. arXiv preprint arXiv:1505.00521, 2015.



196 BIBLIOGRAPHY

Filip Zelezny, Ashwin Srinivasan, and David Page. Lattice-Search Runtime
Distributions May Be Heavy-Tailed. In International Conference on Induc-

tive Logic Programming, pages 333-345. Springer, 2002.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion Knowledge Graph
Embeddings. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), pages 2731-2741, 2019.

Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen.
Aligning Knowledge and Text Embeddings by Entity Descriptions. In Pro-
ceedings of Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 267-272, 2015.



	Introduction
	Contributions
	Publications
	Thesis Outline

	Preliminaries / Background
	Neural Networks
	Concepts and Notation
	Machine Learning Basics
	The Back-propagation Algorithm
	Architectures and Mechanism

	The Language of First Order Logic
	Concepts and Notation
	Backward Chaining

	Interpretation
	Concepts and Notation
	Logic Program Interpretation


	d4: A Differentiable Forth Interpreter
	Programs as Inductive Biases
	Background: Forth Abstract Machine
	Forth Machine State
	Forth Instruction Set
	Forth Program
	Forth Execution Loop and Interpretation

	The Differentiable Forth Abstract Machine d4
	d4 Machine State Encoding
	Differentiable Flat Memory Buffers
	Differentiable stack(s)
	Differentiable program counter

	d4 Instruction Set
	d4 Sketches
	d4 Execution Loop and the Interpreter

	Training
	Interpreter Optimisations

	Experiments
	Sorting
	Sketches
	Experimental Setup
	Testing Strong Generalisation
	The Effect of the Dataset Size
	The Effect of the Program Code Optimisations
	Qualitative Analysis of Program Counter Traces

	Addition
	Generalisation
	Accuracy per number of training examples

	Word Algebra Problems
	Model Description and the Sketch
	Experimental Setup
	Results


	Related Work
	The Computational Power of Neural Networks
	Program Synthesis
	Probabilistic and Bayesian Programming
	Memory Augmented Neural Networks

	Conclusion and Future Work

	gNTP: Greedy Neural Theorem Provers
	Scaling Reasoning as a Strong Inductive Bias
	Background: Neural Theorem Provers
	Continuous Relaxation of Backward Chaining
	Training

	Greedy Neural Theorem Provers
	Scaling up NTPs
	Greedy Unification
	Attention

	Joint Reasoning on Knowledge Bases and Natural Language

	Experiments
	Datasets, Evaluation and Baselines
	Datasets
	Evaluation
	Baselines
	Experimental Setup

	Link Prediction on Small Datasets
	Quantitative Analyses
	Qualitative Analyses

	Quantifying gNTP Scalability
	Link Prediction on Large Datasets
	Quantitative Analyses
	Qualitative Analyses

	Experiments with Text

	Related Work
	Neural Network Architectures
	Relational Learning
	ML-powered Scaling

	Conclusion and Future Work

	Conclusions and Future Work
	Contribution Summary
	Discussion and Future Work
	The Outlook

	Appendices
	Appendix to d4
	Forth Instruction Set

	Appendix to gNTP
	Bibliography

