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Abstract

Neural networks have transformed the fields of Machine Learning and Arti-
ficial Intelligence with the ability to model complex features and behaviours
from raw data. They quickly became instrumental models, achieving numer-
ous state-of-the-art performances across many tasks and domains. Yet the
successes of these models often rely on large amounts of data. When data is
scarce, resourceful ways of using background knowledge often help. However,
though different types of background knowledge can be used to bias the model,
it is not clear how one can use algorithmic knowledge to that extent.

In this thesis, we present differentiable interpreters as an effective framework
for utilising algorithmic background knowledge as architectural inductive bi-
ases of neural networks. By continuously approximating discrete elements of
traditional program interpreters, we create differentiable interpreters that, due
to the continuous nature of their execution, are amenable to optimisation with
gradient descent methods. This enables us to write code mixed with paramet-
ric functions, where the code strongly biases the behaviour of the model while
enabling the training of parameters and/or input representations from data.

We investigate two such differentiable interpreters and their use cases in this
thesis. First, we present a detailed construction of ∂4, a differentiable inter-
preter for the programming language Forth. We demonstrate the ability of
∂4 to strongly bias neural models with incomplete programs of variable com-
plexity while learning missing pieces of the program with parametrised neural
networks. Such models can learn to solve tasks and strongly generalise to out-
of-distribution data from small datasets. Second, we present greedy Neural
Theorem Provers (gNTPs), a significant improvement of a differentiable Data-
log interpreter NTP. gNTPs ameliorate the large computational cost of recur-
sive differentiable interpretation, achieving drastic time and memory speedups
while introducing soft reasoning over logic knowledge and natural language.





Impact Statement

This thesis presents differentiable interpreters as a framework for incorporating
algorithmic background knowledge into neural networks. We demonstrate two
interpreters, ∂4 for incorporating arbitrary algorithmic knowledge, and gNTP,
for incorporating scalable reasoning over knowledge bases and text.

By integrating algorithmic knowledge through programs into neural networks,
from simple constructs, loops, conditionals, to libraries of well-known algo-
rithms, differentiable interpreters bring strong generalisation of these programs
to neural networks. We think the models we present in this thesis are a good
testbed for understanding both how much prior algorithmic knowledge a model
needs—i.e. how much structure is enough for a learning model to successfully
generalise—and the extent of the generalisation programs can bring to neu-
ral models. Moreover, since strong generalisation is a well-sought property
of neural networks with far-reaching consequences in the application of these
models in the real world, our approach could find its use in cases where neu-
ral models are controlling critical long-term processes such as control tasks in
industrial facilities. Besides, this approach or the elements thereof can benefit
tasks involving numerical reasoning and inference such as automatic document
understanding involving numbers in areas such as law and medicine.

By incorporating scalable reasoning into neural models, we can build models
that scale to large, real-world datasets, and by adding the support for natural
language, we open the application of these models on text. This is excit-
ing as we have high hopes that gNTPs or gNTP-inspired, similarly efficient
interpretable models, can be utilised for reasoning on large amounts of tex-
tual knowledge. Scalable reasoning on text could bring us closer to one of
the holy grails of Machine Reading—automatic fact-checking at scale—which
could have a tangible societal impact with a potential to transform the way
we share and consume information in an information-centric world of today.
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Chapter 1

Introduction

Machine Learning (ML) models that enable modelling complex behaviours
from data have practically become the focal point of Artificial Intelligence
(AI) and its pursuit to build machines that can (learn to) carry out tasks
we consider “smart”. The ML approach to task learning, epitomised through
the give machines data and let them learn for themselves guiding principle,
is also at the heart of Neural Network (NN) / Deep Learning (DL), models
which swept the world of ML fairly recently [Krizhevsky et al., 2012]. It is
widely considered that this breakthrough of NNs to the centre stage of ML was
enabled by three major advancements: the availability of large datasets [Deng
et al., 2009], advances in computing power [Raina et al., 2009, Cireşan et al.,
2010] and better learning algorithms [Hinton et al., 2006]. Computing power
is still growing, and is becoming increasingly available; learning algorithms
are being constantly improved, yet NNs are still data-hungry—they mostly
still require large datasets for achieving state-of-the-art results. However, in
practice, training data is often scarce for all but a small set of problems, so
the core question posed is how can we incorporate other information into the
model, and enable the model to still learn well even with scarce training data?

As a contribution to answering that question, this thesis studies neural archi-
tectures which enable incorporating prior knowledge in a programmatic form.
In general, in order to extrapolate beyond the data, a learner requires other
sources of information to make up the difference [Tenenbaum et al., 2011].
Among these sources of information, we focus on prior knowledge regarding
the task, also known as the inductive bias, and its role is to help restrain
the space of models considered by the learner [Lake et al., 2017]. Reasonably
sized NNs can realise but a fraction of all theoretically possible functions [Kol-
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mogorov, 1957, Hornik et al., 1989, Siegelmann and Sontag, 1991], and we use
inductive bias to constrain the subset of functions we can effectively learn.
Since not all functions are equally useful for a task, we need to find ways to
focus on the useful ones—often through the topology of the network.

In general, we can say that NNs have an inductive bias towards minima reach-
able by gradient-based optimisation.1 However, the inductive bias depends
directly on the model topology, activation functions it uses, and the training
regime (including numerous “tricks” employed during training). Here we focus
on the inductive bias brought forward by the topology, and to better under-
stand what this means, we take a brief look back at the evolution of inductive
biases through historical NNs architectures.

The very first computational model of neural activity is the Threshold Logic
Unit by McCulloch and Pitts [1943].2 This simple model sums the equal
contribution of the input and activates the output only if the sum reaches a
certain threshold. The inductive bias of these units is then characterised by
this all-or-none process, where each input votes independently (without inter-
actions) towards the final output. The Perceptron [Rosenblatt, 1958] relaxed
the absolute threshold and the independent contribution of the input of the
Threshold Logic unit through the use of per-unit biases and weights. This bi-
ases the Perceptron towards the ability to use all inputs to a different (learned)
extent. Though the forerunner of today’s deep learning, the Perceptron [Min-
sky and Papert, 1969] could not be learned beyond a single level. However,
with the dawn of backpropagation [Linnainmaa, 1970, Rumelhart et al., 1986],
deeper architectures, such as the Multi-Layer Perceptron (MLP) [Ivakhnenko
and Lapa, 1966] came to light. The use of continuous activation functions bi-
ases MLPs towards smooth interpolations between inputs, while the multiple
layers bias them towards presenting a more compact representation compared
to shallower models [Delalleau and Bengio, 2011, Eldan and Shamir, 2016, Co-
hen et al., 2017]. Besides a more efficient function representation, the depth
also brings significant increases in parameter numbers and training issues.

Convolutional Neural Networks (CNNs) [Fukushima, 1980, LeCun et al., 1989],
based on neurophysiological insights of the neural cortex, attack the increase in

1The existence of minima unreachable by gradient-based optimisation is quite possi-
ble [Gaunt et al., 2016].

2This gross oversimplification of the operating principles of a biological neuron is the
basis for the much-contested adjective “Neural”.
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parameter number with a receptive field of convolutional units applied across
the image, effectively enabling drastic parameter reduction via parameter shar-
ing. The inductive bias of these models is that the pooling geometry favours
interleaved partitions of the image and enables locality and translation in-
variance, which, in turn, biases the models towards the statistics of natural
images [Cohen and Shashua, 2017]. CNNs introduced the concept of sharing
weights across function (convolution) applications. This was further brought
forward to sequence processing by the Recurrent Neural Networks (RNNs) [El-
man, 1990, Jordan, 1997]. These sequential models are temporally invari-
ant models biased towards predicting future behaviour based on the recent
past, with model variants such as Long Short-Term Memory (LSTM) further
pushing that towards functions preserving contextual information over long
sequences. Elaborate modern architectures push the inductive biases even
further. Graph Neural Networks incorporate relational inductive biases [Gori
et al., 2005, Battaglia et al., 2018]. Transformers [Vaswani et al., 2017] balance
the bias towards attending both to the future and the past with the choice be-
tween positional variability and invariance, enabling them to avoid the recency
bias of RNNs. More elaborate architectures such as Neural GPUs [Kaiser and
Sutskever, 2016] and Neural Turing Machines [Graves et al., 2014], are biased
towards algorithmic execution.

We notice that, even though there are architectures which enable inductive
biases of algorithms, they are either hand-coded for a particular algorithm or
they are too general—existing architectures do not support incorporating in-
ductive biases of algorithms designed per task, at least not easily. That is to
say, if we know a specific algorithm or the parts of it, we cannot easily influ-
ence the model’s inductive bias with that knowledge. The emphasis on easy
incorporation of knowledge is important here—theoretically, we can influence
the inductive bias of a model by changing its weights, e.g. we could change
the weights of a Neural Turing Machine to bias its execution with a particular
program. However, that is practically impossible because the internal state
transitions of such a model are opaque to interpretation, let alone to mean-
ingful and reliable coding and debugging. This inspired us to investigate the
problem of incorporating program code as inductive bias.

Why do we focus on the inductive bias of program code? There are several ben-
efits of program code as an inductive bias for neural networks. Program code
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Figure 1.1: A depiction of program interpretation. Grey squares denote given
(observed), while the white ones denote computed (inferred) data.

epitomises strong generalisation over input data—correct programs working
on small inputs correctly generalise over larger inputs too. They can embody
strong generalisation since they support useful constructs such as loops, con-
ditionals, recursions, etc. Programs are recomposable (modular) and enable
abstraction and reuse via libraries. Code is the language of computation—it
makes it easy to reason about computation and communicate it between hu-
mans as well, as the code is both computer- and human-interpretable. We can
see it as a useful prior over general computation, but we also need to be aware
that though it is beneficial for certain kinds of computation, it is not fit for
everything, in particular for ML tasks.

We search for a way to incorporate program code as inductive bias into NNs
by turning to standard code execution and interpretation with interpreters.
Simply put, an interpreter is a program that reads source code and directly
executes it—it performs actions that the code specifies. Interpretation is a
strictly one-way deterministic computation process which takes the input and
executes the code to produce the output, as depicted in Figure 1.1. In order
to bias a NN with program code, the NN should be able to execute said code
similarly as an interpreter does. We take this approach of hybridising NNs
with code as it enables us to train the model, following the structure of the
code, end-to-end from algorithm input-output examples.

Differentiable InterpretationThe core insight of this thesis is that the
process of interpretation itself, as well as every single code command to be
executed, can be continuously relaxed. Instead of running discrete program
commands (e.g. variable assignment, memory reading and writing, loops, con-
ditionals, recursion, etc. , we can run their continuously relaxed analogues and
unlock the reverse mode of the interpretation process.

Differentiable Interpreters Standard interpreters execute source code writ-
ten in a particular language by carrying out the actions that each instruction
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(a) Standard execution
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(b) Inductive synthesis
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(c) Backward execution
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(d) Unsupervised synthesis

Figure 1.2: Differentiable interpreter. Forward mode equals to a) standard (for-
ward) execution (deduction). The reverse mode can correspond to
solving different tasks, depending on what is inferred: b) inductive pro-
gram synthesis (induction), c) backward execution (abduction), and d)
unsupervised program synthesis (joint induction and abduction).

describes, according to the semantics of the instructions in that language.
The nature of these instructions is discrete—instructions are carried out as
discrete functions which operate on discrete states of memory. Differentiable
interpreters share the same high-level idea—they execute a source code by
carrying the actions of each instruction. However, the instructions here are
carried out as continuous functions operating on continuous states of memory.
The language of the source code stays the same here, but the semantics of its
instructions change from discrete to continuous functions. The fact that these
continuous functions are continuous relaxations of the original discrete func-
tions makes these differentiable interpreters continuously relaxed interpreters
of original interpreters.

By employing continuous relaxation of an interpreter, we still keep standard
interpretation as a forward mode of a NN as we can still run the continuously
relaxed commands as we did the discrete ones. However, by employing contin-
uous functions, we can calculate gradients of every command with respect to
their inputs and use these gradients to unlock the reverse mode—use gradients
to back-propagate signals from the output to the input. Furthermore, if every
single command of a program is continuously relaxed, by chaining commands,
we can back-propagate error signals from the output of the program to its
inputs. This also enables us to freely combine continuously relaxed commands
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with differentiable parametrised models such as standalone NNs.

Now, besides the standard interpretation via the forward mode of differentiable
interpreters (Figure 1.2a), where we deduce the output from the program and
the input, we can use the reverse mode to solve interesting tasks that regular
interpreters cannot, tasks which require specialised standalone solvers. By
providing the input and the output examples, and treating the program as
parameters of the model, we can use differentiable interpreters to induce the
program (Figure 1.2b)—the inductive program synthesis task [Polozov and
Gulwani, 2015]. If we provide the output and the program and treat the
input as parameters of the model, we can abduce the input (Figure 1.2c)—
the backward execution task [Dinges and Agha, 2014]. In the extreme, we
can also envision providing only the output, and jointly inducing the program
and abducing the input (Figure 1.2d)—the unsupervised program synthesis
task [Ellis et al., 2015, Evans et al., 2019].

1.1 Contributions
Differentiable interpreters are an effective framework for utilising algorithmic
background knowledge as architectural inductive biases of neural networks. To
support this thesis, besides establishing the notion of differentiable interpreta-
tion concurrently with Gaunt et al. [2016], we put forward the following two
core contributions:

Contribution 1: ∂4, A Differentiable Forth InterpreterTo directly en-
able the translation of programs into inductive biases, we present ∂4, a differen-
tiable interpreter for the imperative language Forth. We present a continuous
relaxation of the Forth dual-stack abstract machine/interpreter, covering a
continuously relaxed subset of ANSI Forth commands. This enables us to
translate a Forth program into a NN that faithfully executes the program
in its forward mode. To capitalise on the reverse mode, we introduce ∂4
sketches, incomplete programs consisting of fully-specified Forth code, which
codes up what we know about the computation, and the parametrised NNs
which code up the unknown part of the computation. The differentiability of
the ∂4 interpreter allows us to not just use the known part of the computation
as an inductive bias for a NN but also to train the unknown part and the pro-
gram input representation via gradient-based optimisation (Figure 1.3a). We
then use sketches of two well-known algorithms as a strong inductive bias on
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(b) gNTP

Figure 1.3: Differentiable interpreters studied in this thesis. a) ∂4 can infer miss-
ing code in the sketch, as well as the input representations (thick bor-
der) and b) gNTP can infer the representation of the knowledge base
elements

learning algorithms from data. As the differentiable interpretation is resource-
intensive, we present program code optimisations to speed it up. Finally, since
the ∂4 sketches are fully end-to-end differentiable, we can pair them up with
other NNs. We demonstrate this ability by pairing up a ∂4 sketch with an
LSTM model to obtain state-of-the-art for end-to-end reasoning on word alge-
bra problems.

Contribution 2: gNTP, Greedy Neural Theorem ProversDifferen-
tiable interpreters exhibit scaling issues, which is particularly evident for the
case of the NTP, a differentiable interpreter for the logic language Datalog.
We suggest a strategy to significantly scale up NTP, and enable it to deal with
compositional language input, thus scaling the inductive bias of differentiable
reasoning algorithm and applying it to text-enriched data. We propose gNTP,
a computationally effective model which reduces the time and the space load
of NTP by drastically reducing the number of proof paths the model observes
and lowering the number of parameters for the rule learning process with the
attention mechanism. Following the efficiency enhancements, we supplement
the model with a compositional reading module which embeds logical facts
and natural language texts in the same vector space, enabling learning repre-
sentations of both the logical and the textual input (Figure 1.3b). We show
empirically that the gNTPs significantly outperform NTPs in terms of both
time and memory efficiency while achieving the same or better performance
on small link-prediction tasks. As a model that now scales, we also contrast
gNTPs with related models on large link-prediction tasks showing competi-
tive results. Finally, we qualitatively analyse both the rules induced by the
gNTPs models, as well as the best-ranking proof paths that the model picks,
suggesting cautiousness in model interpretation.
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1.2 Publications
We have published parts of this thesis. Parts of Chapter 3 appeared in the
following publications:

• Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian
Riedel. Programming with a Differentiable Forth Interpreter. In Pro-
ceedings of International Conference on Machine Learning (ICML), vol-
ume 70, pages 547–556, 2017

– Also presented at the workshop track of the 5th International Con-
ference on Learning Representations (ICLR), 2017

• Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian
Riedel. A Neural Forth Abstract Machine. In Neural Abstract Machines
& Program Induction (NAMPI) Workshop @ NIPS, 2016

– Also presented at the Symposium on Recurrent Neural Networks
and Other Machines that Learn Algorithms @ NIPS 2016

Parts of Chapter 4 appeared in the following publications:

• Pasquale Minervini*, Matko Bošnjak*, Tim Rocktaschel, Sebastian
Riedel, and Edward Grefenstette. Differentiable Reasoning on Large
Knowledge Bases and Natural Language. In Proceedings of AAAI Con-
ference on Artificial Intelligence, 2020

– A lightly extended version of the paper has also been published as
an invited book chapter in Ilaria Tiddi, Freddy Lécué, and Pascal
Hitzler. Knowledge Graphs for eXplainable Artificial Intelligence:
Foundations, Applications and Challenges, volume 47 of Studies on
the Semantic Web. IOS Press, 2020. ISBN 978-1-64368-080-4

• Matko Bošnjak*, Pasquale Minervini*, Andres Campero, Tim Rock-
taschel, Edward Grefenstette, and Sebastian Riedel. Neural Theorem
Proving on Natural Language . In The International Conference on
Probabilistic Programming, 2018

• Pasquale Minervini*, Matko Bošnjak*, Tim Rocktäschel, and Sebastian
Riedel. Towards Neural Theorem Proving at Scale. In Neural Abstract
Machines & Program Induction v2 (NAMPI_v2) @ ICML, 2018

I contributed (1) parts of the ideas and the theoretical framework, (2) parts of
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the implementation, (3) experimental design and execution of the small-dataset
link prediction experiments, run-time evaluation experiments, and parts of the
large-dataset link prediction experiments and analyses, (4) qualitative analy-
ses, and (5) writing a third to a half of all the rejected and accepted papers.

1.3 Thesis Outline
Following this introductory chapter, in Chapter 2 we present the relevant pre-
liminaries and technical background material necessary to follow the concepts,
notation and the maths of neural networks, first-order logic and program in-
terpretation, necessary for following the coming chapters. In Chapter 3 we
introduce ∂4, a differentiable Forth interpreter—a differentiable construc-
tion of the Forth dual-stack machine—and use it as a means of inducing a
strong inductive bias of program code into a neural network. In Chapter 4 we
introduce gNTP, a significant time and memory -efficient upgrade of the differ-
entiable Datalog interpreter NTP, which we also expand with a compositional
reading module to allow it to use textual information. Finally, in Chapter 5
we conclude the thesis with an outline of future work.





Chapter 2

Preliminaries / Background

The material in this thesis presupposes understanding of neural networks, in-
terpretation and elements of first-order logic. In this chapter we provide the
necessary background work for the later expounded models. This includes the
concepts and the notation used throughout the thesis, as well as the models
and algorithms.

2.1 Neural Networks

Neural Networks are the core ML models in this thesis. We start by defining
basic concepts and terminology used in the neural network community [Good-
fellow et al., 2016] as well as present the notation we use in the thesis.

2.1.1 Concepts and Notation

Basic ObjectsWe denote scalars, i.e. single numbers, with a lowercase vari-
able name typeset in italic, and type them, for example, x ∈ R, or t ∈ N.

We denote vectors, i.e. ordered arrays of scalars, with a lowercase variable
typeset in bold, for example x ∈ Rm indicates a real-valued vector of size m.
We refer to a particular element of a vector with indexing, e.g. xi denotes
the i-th element of the vector x. Throughout the thesis, mentions of continu-
ous representations, symbol representations or embeddings refer to real-valued
column-vectors, and we interpret them as points in an n-dimensional space.

We denote matrices, i.e. two-dimensional arrays of scalars, with an uppercase
variable typeset in bold, for example, A ∈ Rm×n is a real-valued matrix of m
rows and n columns.
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Tensors, in general, are a generalisation of the objects above; they are d-
dimensional arrays of numbers, denoted with an uppercase variable typeset in
sans serif font, for example, A ∈Rm×n×o indicates a 3-dimensional real-valued
tensor. Even though its definition encompasses the definition of scalars (d= 0),
vectors (d= 1), and matrices (d= 2), later in the thesis we use the term tensor
to denote tensors of d > 2.

A differentiable function is a mapping from a space of tensors to a space
of tensors, such that there exists a derivative at each point in the function’s
domain, for example, f : Rm×n→Rm. We often use the function-call notation,
presenting such functions as f(X) = y, with X ∈ Rm×n and y ∈ Rm.

Basic operationsThroughout our exposition, we rely on standard operations,
operators and frequently used functions on scalars, vectors, matrices and ten-
sors. We denote a vector or a matrix transpose with ᵀ, for example, xᵀ. We
use the general tensor contraction to express the summation of products of
scalar components of tensors to pairs of indices bound to particular dimen-
sions of tensors, for example, the vector-matrix product (xᵀM)j =∑I

i=1xiMij ,
the matrix-matrix product (MN)ik = ∑J

j=1MijNjk, and the bilinear tensor
product (xᵀTy)j = ∑I

i=1
∑J
j=1xiTijkyj . Moreover, we also use the Hadamard

product1, defined as (X�Y)ij = (X)ij(Yij), and the outer product of two
vectors, x⊗y = xyᵀ.

By applying a function f to another function g, we produce a resulting function
composition h(x) = f(g(x)), also denoted as f(g(x)) = (f ◦ g)(x). By ∇xf we
denote the gradient (the multi-variable generalisation of the derivative) of a
scalar-valued function f : Rm→R with respect to x, defined as (∇xf)i = ∂f

∂xi
.

The generalisation of the gradient for a vector-valued function f : Rm→ Rn is
the Jacobian matrix ∂f

∂x ∈ Rn×m, a matrix of all first-order partial derivatives
of f , defined as ( ∂f

∂x)ij = ∂fi
∂yj

.

In addition, we use specialised functions, frequently used in the field, such
as the sigmoid function σ(x) = exp(x)/(exp(x) + 1), the hyperbolic tangent
tanh(x) = (exp(x)− exp(−x))/(exp(x) + exp(−x)) and the softmax function
softmax(x) = exp(x)/(∑i exp(x)). We often use softmax to ensure that a
particular vector sums to one, i.e. ∑softmax(x) = 1, and 0 ≤ softmax(x)i ≤
1,∀softmax(x)i.

1also known as the element-wise multiplication
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2.1.2 Machine Learning Basics

Machine Learning concerns with models and programs able to learn with-
out explicit programming [Samuel, 1959]. In lieu of explicitly defining learn-
ing [Mitchell, 1997], we exemplify it as the process of finding functions that
approximate desired behaviours.

Concretely, in this thesis we study finding parameters θ of parametrisable
differentiable functions fθ : X → Y , such that these functions closely model a
set of input-output points called the training dataset, D = {(xi,yi)}, where
xi ∈X and yi ∈ Y . Here, by “closely modelling”, we imply a requirement that
fθ(xi) ≈ yi, quantifying the deviation of fθ(xi) from yi with a loss function,
L(fθ(xi),yi).

In an ideal case, we want to ensure this “close modelling” by optimising the
expectation of the loss over the data-generating distribution pdata, also called
the risk R(θ):

R(θ) = E(x,y)∼pdata [L(fθ(x,y))] . (2.1)

However, this is intractable as we do not have access to the data-generating
distribution pdata, but only to its samples—the training dataset D. This brings
us to the notion of empirical risk, defined over the empirical distribution p̂D:

R̂(θ) = E(x,y)∼p̂D [L(fθ(x,y))]

= 1
|D|

∑
(xi,yi)∈D

L(fθ(xi),yi) .
(2.2)

The goal of the learning procedure is to find the optimal parameters which
minimise the empirical risk:

θ∗ = argmin
θ

R̂(θ)

= argmin
θ

1
|D|

∑
(xi,yi)∈D

L(fθ(xi),yi)

︸ ︷︷ ︸
Lθ(D)

, (2.3)

where Lθ(D) is the overloaded loss function defined on the whole training set,
signifying the average of losses per each example from the training set. We
refer to this process of optimisation as model training.

When Lθ(D) is differentiable with respect to θ, we can use computationally
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cheap gradient-based optimisation methods, such as Gradient Descent [Cauchy,
1847] to optimise the loss by iteratively updating parameters θ:

θ(t+1)← θ(t)−η∇θLθ(t)(D) , (2.4)

where η is the learning rate, a hyper-parameter which determines the up-
date step size, and ∇θ is the differential operator with respect to θ, making
∇θLθ(t)(D) the gradient of the loss with respect to θ at θ = θ(t).

Since calculating the gradient of the loss on the whole dataset D per Equa-
tion (2.4) is often slow and even computationally intractable for large datasets,
we use variants of Gradient Descent, such as Stochastic Gradient Descent [Rob-
bins and Monro, 1951] and Mini-Batch Gradient Descent, which update pa-
rameters on the gradient of the loss on randomly chosen subsets of the dataset
at time t, B(t) ⊂D:

θ(t+1)← θ(t)−η 1
|B(t)|

∑
(xi,yi)∈B(t)

∇θL(fθ(t)(xi),yi) . (2.5)

The need to calculate this gradient many times throughout the training pro-
cedure requires an efficient way of calculation. Enter the back-propagation
algorithm.

2.1.3 The Back-propagation Algorithm

To efficiently calculate the gradient of the loss with respect to its parame-
ters and its inputs, we use the back-propagation algorithm [Linnainmaa, 1970,
Werbos, 1982, Rumelhart et al., 1986].2

In its essence, the back-propagation algorithm is an efficient dynamic program-
ming algorithm [Bellmann, 1957] for recursive application of the chain rule of
differentiation [Leibniz, 1676, de l’Hôpital, 1696, Newton and Whiteside, 2008]
on a composite function. The chain rule enables us to compute derivatives of
composite functions. Given a composite function z = f(g(x)), where g(x) = y,
x ∈ Rm, y ∈ Rn, and z ∈ R the chain rule decomposes the calculation of ∇xz

as:
∇xz =

(
∂y
∂x

)ᵀ

∇yz , (2.6)

2Who exactly invented the back-propagation algorithm is a source of surprising con-
tention in the neural network community [Griewank, 2012, Schmidhuber, 2015].
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where ∂y/∂x is the Jacobian matrix of g, and ∇yz is the gradient of z with
respect to y. The efficiency of this algorithm stems from the dynamic pro-
gramming approach, which avoids recalculation of the same expressions.

Today’s modern deep-learning libraries implement reverse-mode automatic dif-
ferentiation [Linnainmaa, 1970, Baydin et al., 2017], as a generalisation of
the back-propagation algorithm, and efficiently calculate the gradients by the
computation graph construction [Abadi et al., 2015, Maclaurin et al., 2015b,
Goodfellow et al., 2016], or by function transformation [Bradbury et al., 2018].

With back-propagation, we can compute gradients of arbitrarily complex func-
tions, from compositions of simple functions to, as we see in this thesis, com-
positions of complex functions representing continuously relaxed programs.

2.1.4 Architectures and Mechanism

By now, we presented the task of learning neural networks as function approx-
imators, the learning algorithm, and the efficient way to calculate gradients for
the learning algorithm. Here we present the architectures, i.e. the structures,
of neural networks used in this thesis.

Multi-Layer Perceptron (MLP) is the archetypal neural network architec-
ture. It is based on so called layers, an affine transformation followed by a
non-linear transformation:

hθ(x) = ϕ(Wx +b) , (2.7)

where ϕ is an element-wise applied non-linear function, often called activation
function, such as the sigmoid or the hyperbolic tangent, defined earlier, and W
and b are the parameters of the layer θ = {W,b}. An MLP is a fixed-length
chain composition of such layers, applied on input x:

MLPθ(x) = (hθn ◦ . . .◦hθ2 ◦hθ1)(x)

= hθn(...(hθ2(hθ1(x)))) = y ,
(2.8)

where the parameters θ of the MLP are the set of all parameters of each layer,
i.e. θ=⋃n

i=1 θi = {Wi,bi | i∈{1, . . . ,n}} and the number of functions composed
is called the depth of the MLP. The activation function of the final layer hn
is often chosen based on the task the MLP is trained on, and in the case of



40 Chapter 2. Preliminaries / Background

classification, it is often the softmax function.

Since MLPs are a chain composition of layers, they are also called feed-forward
networks, as the (transformed) input is fed forward through the network.

Recurrent Neural Network (RNN) [Elman, 1990] is a neural network
architecture fit for processing sequential inputs, based on the following recur-
rence:

h(t) = fθ(h(t−1)) , (2.9)

where h(t) is the hidden state of the model at time t. This is essentially a
no-input dynamical system, which we can rewrite as a chain composition of
the recurrence:

eRNNθ(h(0), t) = (fθ ◦ . . .◦fθ ◦fθ)(h(0))

= fθ(...(fθ(fθ(h(0))))) = h(t) .
(2.10)

We call this the execution RNN, though it technically is a precursor to the
RNN. Contrasting the MLP and the execution RNN, we see that the execu-
tion RNN is characterised by a variable number of applications of the same
recurrence, as opposed to the application of a fixed number of different layers
in the MLP. The standard RNN, on the other hand, is a modification of the
execution RNN which accepts a variable-length input (x(1),x(2), . . .x(t)), and
returns a variable-length output (y(1),y(2), . . .y(t)):

h(t) = fθ(h(t−1),x(t))

y(t) = gθ(h(t)) .
(2.11)

A concrete example of an often used RNN, dubbed the Vanilla RNN is:

h(t) = tanh
(
W
[
h(t−1);x(t)

]
+b

)
y(t) = σ

(
Wouth(t)

)
,

(2.12)

where [x;y] =
x
y

 is the column-vector concatenation.

Long Short-Term Memory (LSTM) is an improvement upon RNN. The
hidden state h(t) of the RNN functions as a memory element of the model, en-
abling it to process variable-length inputs, but it brings forward the issues of
exploding and vanishing gradients, leading to problems with long-term depen-
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dencies [Bengio et al., 1994, Pascanu et al., 2013]. Hochreiter and Schmidhuber
[1997] formulated the LSTM, a special type of RNN that provides solutions to
these problems, based on the recurrent application of the LSTM cell defined
by:

i(t) = σ(Wi

[
h(t−1);x(t)

]
+bi)

f (t) = σ(Wf [h(t−1);x(t)]+bf )

o(t) = σ(Wo[h(t−1);x(t)]+bo)

g(t) = tanh(Wg[h(t−1);x(t)]+bg)

c(t) = f (t)�c(t−1) + i(t)�g(t)

h(t) = o(t)� tanh(c(t)) .

(2.13)

For more details on LSTMs and their inner workings, see Olah [2015].

Bidirectional RNNs (BiRNNs) / Bidirectional LSTMs (BiLSTMs)
[Schuster and Paliwal, 1997, Graves et al., 2005] are RNNs that fuse outputs of
two independent RNNs from Equation (2.12) running from opposite directions
of the input:

−→
h (t) = tanh

(−→W[−→
h (t−1);−→x (t)

])
−→
y(t) = σ

(−−−→Wout
−→
h (t)

)
←−
h (t) = tanh

(←−W[←−
h (t−1);←−x (t)

])
←−
y(t) = σ

(←−−−Wout
←−
h (t)

)
y(t) =

[−→
y(t);
←−
y(t)

]
.

(2.14)

The concatenation of outputs from opposite directions of the same input en-
ables the output layer to utilise information from both the forward and the
backward states at the same time which helps to mitigate the long-term depen-
dency issue. Analogously, BiLSTMs follow the same logic, fusing the output
of two independent LSTM cells in opposite direction.

MLP, RNN, LSTM, and BiRNN are depicted in Figure 2.1.

Attentionmechanism in neural networks enables models to focus on a partic-
ular subset of the data. To focus on the k-th element of a vector x, we could
index the vector xk with a one-hot weight vector, 1k. However, this type of
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(d) BiRNN
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Figure 2.1: A depiction of a) MLP, b) RNN, c) LSTM, and d) BiRNN. BiLSTM
is a BiRNN with LSTM cells.

interaction is not differentiable and is difficult to train [Weston et al., 2015,
Luong et al., 2015]. To make it differentiable, we focus on the whole vector to
different extents, via a convex combination of the elements of the vector, i.e.
weighing x with a vector of weights such that ∑w = 1, and 0 ≤ wi ≤ 1,∀wi.
This condition is enforced with the softmax function, and is called soft atten-
tion:

yᵀ = softmax(s)ᵀx , (2.15)

where s is a vector of arbitrary values called scores which can be calculated in
a plethora of ways [Bahdanau et al., 2015, Graves et al., 2014, Luong et al.,
2015]. For more details see Olah and Carter [2016].

Differentiable Memory is a continuous approximation of discrete memory.
The hidden state of RNNs serves as a memory element of the model, enabling
better dealing with long-term dependencies. However, the hidden state is an
internal memory resource of limited capabilities. Graves et al. [2014] coupled
an RNN with a differentiable external memory accessed with an attentional
mechanism, to enable the RNN to learn to read and write representations in
the memory.

Given a memory bank M ∈ Rm×n representing m n-dimensional row-vector
2Each element in the column-vector multiplies the appropriate row of the matrix, and

the result is the sum of such weighted rows.
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(a) Differentiable Reading / Attention. Note the
transposition of w and r in Equation (2.16),
but we depict it as a column-vector for com-
pactness and easier graphical understanding.3
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(b) Differentiable Writing

Figure 2.2: A depiction of a) differentiable reading / attention and b) differentiable
writing.

values, attention enables differentiable reading and writing into said memory.
Reading is realised as a convex combination of all the row-vectors of the mem-
ory bank (soft-attention):

r(t)ᵀ←w(t)ᵀM(t) , (2.16)

with the weight vector ∑w(t) = 1, and 0≤ w(t)
i ≤ 1,∀i.

Writing, on the other hand, is a bit more involved:

M(t)←M(t−1)� (1⊗1−w(t)⊗e(t))︸ ︷︷ ︸
erasure

+w(t)⊗a(t)︸ ︷︷ ︸
addition

, (2.17)

where et is the erase vector (i.e. the vector to be erased from the memory), at
is the add vector (i.e. the vector to be added to the memory), and 1 a vector
of ones.
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Given that both the erasure and the addition are differentiable, the whole
writing operation is differentiable. Figure 2.2 depicts the attention/reading
and writing mechanisms presented.

2.2 The Language of First Order Logic

Chapter 4 focuses on a differentiable interpreter for a logic language Data-
log, hence we present an excerpt of Datalog notation and the first-order logic
framework. We start with the concepts and notations and move towards the
backward chaining algorithm, which is at the core of the differentiable inter-
preter NTP.

2.2.1 Concepts and Notation

Throughout the thesis, we assume standard concepts and terminology from the
First-Order Logic (FOL) and logic programming [Russell and Norvig, 2009],
yet our notation differs slightly since we borrow it from Datalog. We briefly
define the standard concepts and the terminology as well as notation used.

SymbolsWe denote constant symbols in lowercase letters, like a,b,london, ...,
and variable symbols in uppercase letters, such as X,Y,Z, ... and typeset
both in small caps. We denote predicate4 symbols in lower camel case
p,q,locatedIn, ... and typeset them in a typewriter font. In this work, we
consider only the domain of function-free FOL, hence we do not admit the
concept of a function.

ExpressionsGiven the domain of function-free FOL, we consider a term t

to be only a simple term—consisting of a constant or a variable—and type-
set terms in the default serif font. An atom a is an element of the form
p(t1, t2, ..., tn), where p is a predicate, and each ti is a term. The number n in
the previous atom is called the arity of the predicate p, e.g. locatedIn(X,Y)

is a binary predicate. Without loss of generality, we consider only binary pred-
icates in this work. An atom is ground if there are no variables in the atom,
e.g. locatedIn(london,uk).

A definite clause is an expression formed of atoms in the form of a1 ∧ a2 ∧
...∧an→ an+1, where all ai are atoms, ∧ is the logical and operator, and →

4We also call predicates rules and use these two terms interchangeably.
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the logical implication operator. In this work, we consider all variables in all
expressions being universally quantified.

SubstitutionA substitution ψ = {X1/t1,X2/t2...} is a mapping from a vari-
able to a term, defined as a set of variable/term pairs. The application
of the substitution ψ on an atom a is denoted as ψa, and results in a
new atom with variables in the atom substituted by their appropriate terms
in ψ. For example, given a substitution ψ = {X/london,Y/Z} and an
atom a = locatedIn(X,Y), the result of the substitution application is
ψa= locatedIn(london,Z).

Logic ProgrammingDefinite clauses are often written in the reverse form
an+1← a1 ∧ a2 ∧ ...∧ an in Logic Programming. In Datalog the (reversed)
implication symbol is replaced by :− and the ∧ operator is replaced by a
comma, like this an+1 :− a1,a2, ...,an. We call this a Datalog clause. The
atom an+1, left from :−, is called the head, whereas the optional, comma-
separated list of atoms on its right is called the body.

We call a clause without a body, such as an+1 :− {} a fact F ∈ F , and omit
the body in writing, e.g. an+1 and denote a set of facts as F . A clause with a
body, such as an+1 :− a1,a2,a3, is called a rule R, and we denote a set of rules
with R. Finally, a logic program, also called a Knowledge Base (KB), is a set
of Datalog clauses—facts and rules—and we denote it as K.

Lists Finally, we define a list as an object consisting of either an empty list [ ]
or a nested ordered pair of an element, called the head, and a list, called the
tail written as L = [head : tail]. In addition to the head/tail construction, we
also use a modified set-builder notation to define lists, with braces replaced by
square brackets, e.g. L= [l | l ∈ [1,2,3]]. In general, we use lists instead of sets
to denote their importance in practical implementations.

Moreover, we use lists to represent atoms and rules. We write atoms as
lists, e.g. locatedIn(london,Y) as [locatedIn,London,Y], and rules as
lists of lists, e.g. locatedIn(X,Y) :− locatedIn(X,Z),locatedIn(Z,Y) as
[[locatedIn,X,Y], [locatedIn,X,Z], [locatedIn,Z,Y]].

2.2.2 Backward Chaining

Having knowledge represented as a FOL Knowledge Base (KB) opens the path
to deriving new knowledge via inference algorithms. Two such algorithms,
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both based on modus ponens [Suppes, 1999], are used in logic programming:
forward chaining and backward chaining. In its essence, in forward chaining,
rules whose bodies are satisfied repeatedly expand the KB with the head of
the rule, whereas backward chaining works in the opposite direction, finding
knowledge which supports a goal.5

The backward chaining algorithm can be expressed in an imperative style as
in Russell and Norvig [2009]6 or in a functional style as in Rocktaschel and
Riedel [2017]. In this work, we adopt the abbreviated functional style from the
latter, presented via piecewise-defined functions. We define the intermediate
state of the interpretation directly with the substitution set ψ, and omit the
exact proof path trail from the formulation as an engineering detail. With
FAIL we denote a special empty state of unification mismatch; once FAIL is
reached, no further proof derivations are considered. The goal G we want to
prove is formally a term, but in this work we focus on goals as grounded terms
only.

The backward chaining algorithm uses Depth-First Search (DFS), executed by
mutually recursive or and and functions to explore the space of all possible
proofs while using the unify function to ignore paths with incompatible log-
ical expressions. The algorithm ends either with a unification failure, a valid
substitution, or a partial result if a prespecified search depth has been reached.

ORThe or function7 operates by fetching all clauses H :− B ∈ K (rules and
facts) that might unify with the goal G. It then unifies the head H of each
clause with the goal G, and calls the and function on the resulting substitution
and the body B of each of these clauses:

orK(G,S) =
S′

∣∣∣∣∣∣ H :− B ∈ K

S′ ∈ andK(B,unify(H,G,S))

 . (2.18)

The or function is the starting point for the proving process, starting with
a goal G we aim to prove and the starting state being the empty unification
set, orK(G,∅). We omit the details of variable standardisation and cycle de-
tection [Russell and Norvig, 2009, Van Gelder, 1987] in the interest of brevity.

5We use the terms goal and query interchangeably.
6For an easy-to-follow implementation in Python, see https://github.com/aimacode/

aima-python/blob/master/logic.py#L1438
7The query can be proved by any one of the clauses in the KB, hence the name or

https://github.com/aimacode/aima-python/blob/master/logic.py#L1438
https://github.com/aimacode/aima-python/blob/master/logic.py#L1438
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1 districtIn(bloomsbury, london).
2 capitalOf(london, uk).
3 locatedIn(X, Y) :- districtIn(X, Z), capitalOf(Z, Y).

Listing 2.1: A running example of a small Datalog knowledge base. The knowl-
edge base represents relationships between Bloomsbury, London and
the UK.

ANDThe and function8 is invoked on the body of a rule, and in turn, it
must prove each atom of the body, while keeping track of the accumulated
substitutions. It simply returns the substitution state S if the body is empty,
otherwise, it applies the substitution on the subgoal ψg, and calls or on the
resulting expression:

andK(G,S) =



FAIL if S = FAIL

S if G= []S′′
∣∣∣∣∣∣ S
′ ∈ orK(ψg,S)

S′′ ∈ andK(G′,S′)

 otherwise G= [g :G′]

. (2.19)

Note that here the substitution is equal to the substitution state ψ = S, but
we separate them here as later we will expand the substitution state to contain
the substitution and its score. These two functions lay grounds for the exhaus-
tive search underlying backward chaining, and they rely on the unification for
ignoring incorrect proofs.

UNIFYThe unify function, used earlier in or, calculates the correspondence
of two logical expressions by iterating through pairs of symbols in the two
expressions that we want to unify. It fails if the atoms are of different arity:

unify(H,G,S) =



FAIL if S = FAIL

S if H =G= []

FAIL if H = []∨G= []

unify(H ′,G′,unify-var(h,g,S)) otherwise
H = [h :H ′],
G= [g :G′]

(2.20)

8The name and stems from the necessity to prove every atom in the body of the clause.
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Figure 2.3: An example of the backward chaining execution on a small knowledge
base. The knowledge base, presented in Listing 2.1, is also noted in the
top right corner. Circles signify substitutions and squares signify atoms
(with circles next to squares signifying applying a substitution to an
atom). The colour coding of the KB and unifications follow through
the example. We omitted some calls to and for clarity. Unsuccessful
proof paths are greyed out to emphasise the single correct/final proof
path in this example.

unify uses a helper function unify-var which updates the substitution set in
case one of the two compared symbols is a variable, otherwise returning failure
if two non-variable symbols are not identical:

unify-var(h,g,S) =



S∪{h/g} if h ∈ V

S∪{g/h} if g ∈ V,h /∈ V

S if g = h

FAIL otherwise

. (2.21)

ExampleThroughout the chapter, we use a small KB example and its deriva-
tives, outlining relationships between the United Kingdom (UK), London and
its district Bloomsbury, presented in Listing 2.1.

We depict the full trace of the backward chaining procedure, given the example
KB and the goal locatedIn(bloomsbury,uk) in Figure 2.3. The figure
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shows a full proof tree for a goal, with all the calls to unify, or and and

functions, as well as the states of the substitutions ψ. Note many branches
ending in unification failure due to symbol incompatibility.

2.3 Interpretation
Program interpretation / execution is one of the computational processes we
aim to continuously approximate in this thesis. We bypass the fundamen-
tals of source code interpretation and compilation [Aho et al., 1986, Mak and
Copeland, 1996] to focus on the core concepts and present a simple function
notation.

2.3.1 Concepts and Notation

States, instructions, and programs We define a program state S as a
tuple of values or contents of particular computer resources, such as memory,
registers, etc., that uniquely describe the informational makeup of a computer
or a program. We assign it a subscript like S(t) to signify a state at a particular
time t, and denote the set of all program states with S.

An instruction ι is a basic syntactic unit of a programming language. All
instructions of a programming language belong to its instruction set, ι ∈ I. In
an imperative language, instructions define the units of computational actions,
whereas in a declarative language they define the logic of computation. For
example, INC reg is an x86 instruction [Ferrari et al., 2006] that denotes an
increment of the value of the register reg it is applied to by 1.

To specify the semantics of an instruction, we use the emphatic bracket no-
tation from denotational semantics [Scott and Strachey, 1971, Tennent, 1976].
For example, the semantics of the instruction INC reg, where reg is an iden-
tifier for a register, is the following:

q
INC reg

y def= reg←
q
reg

y
+1 . (2.22)

This reads that the meaning of the
q
INC reg

y
instruction is a function that

takes the value of the register,
q
reg

y
, adds one to it and stores it back into

the register reg. Note here that we implicitly assume the instruction operating
on the state S, where reg is an element of the state, and that we use the
emphatic brackets to both denote the meaning of an instruction

q
INC reg

y
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and the value of an element of the state
q
reg

y
. We see that the semantics of

the instruction is a transition function, from one program state to another:

J ι K : S→ S . (2.23)

Admittedly, we do not adhere to the rigour of denotational semantics, as our
goal in this work is not to fully formalise the meaning of languages used in this
thesis but to present a light and meaningful way to represent the semantics of
instructions.

Next, we define a program P , from the set of all programs P ∈P , as a sequence
of instructions:

P = (ι1, ι2, . . . , ιn) , (2.24)

thus P ∈ I∗. In an imperative language, a sequence of instructions details
the steps of computation that the program defines, relying on the notion of
compositionality:

J (ι1, ι2) K = J ι2 K◦ J ι1 K . (2.25)

On the other hand, in a declarative language, a weaker notion of composition-
ality applies because in a declarative language the order of instructions does
not matter, and a program forms a set of instructions that detail the state of
the problem domain, leaving the details of execution to the interpreter.

Interpretation In general, we define an interpreter Υ per Figure 1.1 as a
function based on the instruction set I that, given an input I ∈ I and a program
P ∈ I∗, produces an output O ∈O:

ΥI : P×I→O . (2.26)

Treating the input I and the output O as elements of the state, i.e. I,O ∈ S,
makes the interpreter:

ΥI : P ×S→ S . (2.27)

Note that albeit the terms abstract machine and interpreter technically differ
from one another, in the thesis we use them interchangeably.
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2.3.2 Logic Program Interpretation

In Equation (2.26), we defined an interpreter as a function that takes a pro-
gram and an input and produces an output. Similarly, we can formulate a
logic program interpreter Υlp. In a logic program interpreter, the program P

represents the state of the problem domain and is called the knowledge base K,
the goal atom G∈A is the input, and the output is a set of states S, consisting
of either valid proof states or the indication of proving failure:

Υlp : K×A→ S . (2.28)

One key difference to an imperative language like Forth is in the control
flow. In Forth the control flow is explicit and fully specified by the program.
In contrast, in logic program interpretation the control flow is pre-defined
and consists of a specific theorem-proving strategy—in our case, backward
chaining—and the knowledge base K specifies the structure of the domain on
which the theorem-proving strategy operates. In our case, backward chaining
as a theorem-proving strategy is supported by the or, and, unify and the
supporting functions, expressing the interpreter as:

Υlp(K,G) = orK(G,∅) . (2.29)

This reflects the declarative nature of logic programming—the behaviour of
the proving procedure of the logic program is not under the control of the
programmer.9

9Though the control is not under the influence of the programmer, there are still many
optimisations, engineering details and shortcuts which can be made in concrete implemen-
tations of logic program interpreters [Warren, 1983].





Chapter 3

∂4: A Differentiable Forth
Interpreter

The overarching goal of AI is the development of machines and algorithms able
to effectively master complex behaviours from real-world data. A notable step
in this direction is the recent advancement of continuous neural architectures,
akin to traditional computers [Graves et al., 2014, Kurach et al., 2016], able
to learn algorithms from data. The end-to-end differentiability of these archi-
tectures permits learning by gradient-based methods, enabling them to learn
these complex behaviours from program traces [Reed and De Freitas, 2016,
Mirman et al., 2018] and input-output pairs [Graves et al., 2014, Zaremba and
Sutskever, 2015]. However, these models regularly fail to generalise outside
of the training distribution and still stay data-intensive for often difficult-to-
obtain data [Marcus, 2018, Chollet, 2019].

In Chapter 1 we established that programs can effectively present complex
behaviours in a compact representation and enable arbitrary generalisation by
design. Enabling structured execution, abstraction and compositionality, fully
specified programs could provide strong inductive biases to learning algorithms
able to utilise them. The question arising is how can learning algorithms ex-
ploit programs as a representation of knowledge, and utilise them as a strong
inductive bias for achieving generalisation? We posit the answer lies in differ-
entiable interpreters.
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3.1 Programs as Inductive Biases

To address the question of utilising programs as a strong inductive bias in
learning algorithms, we turn to differentiable interpreters. They, in turn, en-
able us to not just adhere to the strong bias of the full program, but also
to specify an incomplete program—a sketch [Solar-Lezama et al., 2006, Solar-
Lezama and Bodik, 2008]—in a traditional programming language, consisting
of both fully specified (known) and incomplete (unknown) parts. The known
part provides the strong inductive bias for the neural network, whereas the
unknown part, which the programmer does not how to appropriately define,
is learned from the data.

As explained in Chapter 1, the core insight behind differentiable interpretation
relies on the fact that most programming languages can be formulated in
terms of an abstract machine or an interpreter that executes commands of
the language. We can then implement these machines as neural networks
via continuous relaxation of the discrete interpretation. This makes part of
the model follow the sketched behaviour, providing the strong inductive bias
consistent with the program, and the unknown parts are optimised with respect
to the training data.

The host language in this work is Forth, a simple yet powerful Turing com-
plete stack-based language. We chose Forth for the following reasons:

1. it is an established, general-purpose high-level language relatively close
to machine code [Brodie and FORTH Inc, 1987]1.

2. it promotes highly modular programs through the use of branching, loops
and function calls, thus bringing out a good balance between assembly
and higher-level languages [Brodie, 2004].

3. its abstract machine is simple enough [Koopman, 1993] for straightfor-
ward creation of its continuous approximation.

4. finally, we wanted to strike a good balance between flexibility and sim-
plicity; Turing machines are simple yet too low-level and too abstract,
whereas higher-level language such as Python provides greater flexibility,
but its interpreter is far too complex for implementation.

1Forth also enables self-modification, a property of interest in the AI research commu-
nity [Schmidhuber, 2004, 2009].
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Underlying Forth’s semantics is a simple dual-stack abstract machine. We
introduce ∂4, a continuous relaxation of this machine, differentiable with re-
spect to the transition it executes at each time step, as well as to its distributed
input representations. ∂4 enables writing sketches—underspecified programs
that partially define machine behaviour. The sketches, albeit conceptually
similar to sketches in program synthesis [Solar-Lezama et al., 2006] and to
probabilistic programs [van de Meent et al., 2018], have the added benefit of
being trained through backpropagation which makes them easy to integrate
with any other neural model.

We pose the following research questions:

• Can we use sketching with ∂4 to capture arbitrarily complex inductive
biases, including conditionals, loops, functions and recursion, on both
discrete and continuous data?

• Does ∂4 enable us to achieve strong generalisation from a small number
of input-output data?

• Can ∂4 sketches be jointly trained with other neural models?

We answer these three questions by showing that:

• given input-output pairs, a ∂4 sketch can learn to fill in the missing parts
of the sketch and generalise well to problems of unseen size on the sorting
and adding neural programming tasks introduced in Reed and De Freitas
[2016]

• a ∂4 sketch with basic algorithmic knowledge can be trained jointly with
an upstream LSTM [Hochreiter and Schmidhuber, 1997] for solving word
algebra problems

The latter demonstrates that ∂4 and the LSTM can “learn to read” natural
language narratives with numerical values and reason with them to answer
mathematical questions, all without the need for explicit intermediate repre-
sentations used in previous work.

The contributions in this chapter are the following: i) we present ∂4, a differen-
tiable interpreter—a neural implementation of the Forth dual-stack machine,
ii) we introduce ∂4 sketches for transferring the inductive bias of programs
into a neural network, iii) we use these sketches as a strong inductive bias on
learning algorithm from data, iv) we introduce program code optimisations to
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speed up neural execution, and v) using ∂4 sketches, we obtain state-of-the-
art for end-to-end reasoning about quantities expressed in natural language
narratives.

3.2 Background: Forth Abstract Machine

Forth [Moore and Leach, 1970, ANSI, 1994, Koopman, 1993] is a simple, pro-
cedural, stack-based programming language, with a long history of application
in embedded systems. It is still being actively used today [Furter and Hauser,
2018], although its interesting properties make it also a somewhat esoteric
language for today’s standards.

Forth is a semantically defined language, which makes it resemble more to a
dictionary of words/commands, where each word is semantically well-defined
as a specific operation than to a standard programming language [Knaggs,
1993]. This makes its interpreter easier to build, as it relies on simple lookup
operations rather than on an explicit grammar as a formal description of its
syntax.2

Appropriately, Forth statements are called words,3 and programs written in
Forth are composed of a sequence4 of these words [Brodie and FORTH Inc,
1987]. Albeit simple, Forth is an extensible language which promotes de-
composition and abstraction by permitting the definition of new words that,
in turn enabling programmers to write elaborate programs.

The semantics of Forth are defined in terms of the Forth dual-stack abstract
machine, which we define by its machine state, the instruction set and the ex-
ecution loop [Thomas, 2018], all together forming the Forth interpreter. For
our purposes, the Forth machine state S contains all the memory elements
that the language operates on. The Forth instruction set F contains the op-
eration semantics of all the core words, and it is the basis of the interpreter
which executes the program P on a state S. In an imperative language, this
boils down to executing a single command of the program before moving on
to the next one.

2Since the grammar of Forth can easily change from one part of a program to another,
as even core-defined commands can be changed at any moment, it would be inappropriate
to model its syntax with a static grammar.

3Forth commands and routines are called words, hence we use all these terms inter-
changeably.

4Forth is a concatenative language.
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Figure 3.1: A depiction of the Forth Abstract Machine. The input is written
onto the data stack D, the return stack R, and/or the heap H. The
program counter c picks the command from the program P that is to be
executed. The instruction set contains the definitions of all commands,
out of which c picks the current one. The selected command is executed
on the machine state S, and the result is written back onto it. The
program counter c advances to the next command.

A depiction of the Forth abstract machine, including its machine state, in-
struction set and the execution loop, is given in Figure 3.1. Though the exact
details of Forth formalisation depend from a source to source [Knaggs, 1993,
Koopman, 1993, Thomas, 2018], we opted for this particular formalism to facil-
itate grounding the later continuous relaxation of the Forth abstract machine
and its operations.

3.2.1 Forth Machine State

As noted, Forth abstract machine (the Forth interpreter ΥF) contains the
execution loop, based on the fixed core instruction set F, operating on the
machine state S. The machine state is a tuple S = (D,R,H,c) consisting of
two stacks: a data evaluation pushdown stack D (referred to as data stack)
which holds values for data manipulation, and a return address pushdown stack
R (referred to as return stack) which stores return addresses for subroutine
calls. These two stacks are accompanied by a memory heap H (a random
access memory buffer) that holds data and the program P , and a program
counter5 c that contains the address (i.e. pointer) of the word being currently
executed [Koopman, 1993].

Each Forth word in the instruction set F operates on the Forth machine
state and produces a new state. The semantics of the state change depends
on each of the words in the instruction set F.

5Also known as the Instruction Pointer (IP) or the Execution Pointer (EP)
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3.2.2 Forth Instruction Set

Per Equation (2.23), each Forth word wi ∈ F is an instruction which is se-
mantically a transition function between two machine states:

J wi K : S→ S . (3.1)

Forth is a rich language with more than 100 words [ANSI, 1994, Brodie and
FORTH Inc, 1987, Brodie, 2004, Thomas, 2018], and implementing an inter-
preter supporting all of them would take considerable time and effort. We
decide to implement a small (but certainly not minimal) subset of all avail-
able Forth words that would make our interpreter fully expressive and would
showcase the breadth of applicability of continuous relaxations to discrete com-
mands, while ultimately being useful and enabling users to write short pro-
grams. This led us to implement words primarily operating on the data stack,
but also including a few words directly operating on the return stack as well
as the heap. We put a particular emphasis on complex words for defining and
calling subroutines, influencing control flow, and additionally implemented a
few words for defining variables to simplify the user experience.

For the purpose of this thesis, we roughly divide the implemented Forth words
into 7 groups: data stack, return stack and heap operations, control, subroutine
control, variable creation and other, and we describe them accordingly.

Note that top-of-the-stack (TOS) denotes the value on the top of the stack,
and next-on-stack (NOS) denotes the value immediately below the TOS value.

Data stack operationsThese words include operations which directly ma-
nipulate data stack elements.

int pushes integer literal int on the (data) stack. We allow only
non-zero integer literals in this work.

DROP pops a literal off the stack

DUP duplicates the TOS

SWAP swaps the TOS and NOS

OVER pushes a copy of NOS (on the stack)

1+, 1- increment and decrement of the TOS
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+, -, *, / arithmetic operations applied to NOS and TOS

>, <, = comparators applied to NOS and TOS; if the result is
TRUE, push 1 on stack, otherwise push 06

Return stack operationsThese words tend to the transfer of values between
the data stack and the return stack.

>R pop data stack TOS and push it to return stack

R> pop return stack TOS and push it to data stack

@R pushes (a copy of) return stack TOS to data stack

Heap operationsThese words tend to the transfer of values to and from the
heap.

@ pushes the value from the data stack TOS heap address on
the data stack

! stores data stack NOS value on the TOS address in the heap

Control statementsThese words tend to the decision of whether, and if so,
how many times will other statements be executed. Please note that each
token of these commands carries its own separate semantics in Forth but we
explain them together as their combination easily relates to standard control
statements in other languages. “..x” denotes a sequence of Forth words.

IF..THEN pops the data stack TOS and executes ..
if it is equal to 1

IF..1ELSE..2THEN pops the data stack TOS and executes
executes ..1 if it equals to 1, otherwise
executes ..2

BEGIN..1WHILE..2LOOP keeps executing ..2 while ..1 equals to 1

DO..LOOP executes .., increments index (TOS) and
repeats the same while the index does not
equal to the limit (NOS)

Subroutine controlThese words tend to the new word definition and invo-
cation. New words are defined with : sub .. ;, where : marks the start of

6In ANSI Forth, FALSE is represented with -1.
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the subroutine, sub denotes the subroutine / word identifier, .. denotes the
subroutine commands, and ; marks the end of the subroutine.

: sub saves the address of the subroutine for use in sub-
sequent subroutine calls.

sub calls a subroutine sub

; exits a subroutine

Variable creationThese words tend to the definition of variables.

VARIABLE var creates a variable var on the heap

CREATE var ALLOT int creates an array var of size int on the
heap

var variable call; pushes the value of var to
data stack

OtherThese words are not a part of the Forth specification and were intro-
duced to ease the experience.

NOP does nothing

MACRO: sub .. ; treats the identifier sub as a macro: prior to start-
ing the interpretation, the identifier sub is replaced
with its defining words ..

These are the (core) words that make up our Forth instruction set F. For
more detail on the exact semantics of these commands, see Appendix A.1.

Lastly, we support code commenting with two types of comments:

\ comment from backslash to end of line

( in-line comment in parentheses )

The in-line comments in parentheses are often used as stack comments to
indicate the stack invariants by indicating the state of the stack before and
after the word execution, separated by --. For example, the stack comment
(a1 .. an seq_len -- an .. a1) for the word SORT in Listing 3.1 aims to
explain that SORT removes the top value of the stack (seq_len) and shuffles the
elements below (it sorts them, but we could not write that down compactly).
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1 : BUBBLE ( a1 .. an seq_len-1 -- a1 .. an seq_len-1 )
2 DUP IF >R
3 OVER OVER < IF SWAP THEN
4 R> SWAP >R 1- BUBBLE R>
5 ELSE
6 DROP
7 THEN
8 ;
9 : SORT ( a1 .. an seq_len -- an .. a1 )

10 1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP
11 ;
12 2 1 3 3 SORT \ Example call

Listing 3.1: A Bubble sort implementation in Forth. Note that in ANSI Forth
specification, the word BUBBLE in line 4 should be replaced by the
word RECURSE.

Next, we present the Forth program, executed by the Forth interpreter ΥF
word by word, thus transitioning from a state to a state.

3.2.3 Forth Program

A Forth program P is a flat sequence of Forth words per Equation (2.24):

P = (w1,w2, . . . ,wn) . (3.2)

Given the compositionality of semantics in Equation (2.25), a program P is se-
mantically a composition of a transition functions, hence a transition function
too:

J P K = J (w1,w2, . . . ,wn) K

= J wn K◦ · · · ◦ J w2 K◦ J w1 K .
(3.3)

Though the Forth program P , and the state S are usually considered as a
part of the heap H, we consider them separate to ease the exposition.

ExampleAn example of a bubble sort algorithm implemented in Forth is
shown in Listing 3.1. We explain this program in the interest of easier under-
standing of this code as parts of it are used in the experimental section.

The recursive solution for the bubble sort in Listing 3.1 starts at line 12,
where the input is defined as a sequence of numbers (2 1 3) pushed on the
data stack together with the length of the sequence (3), after which the word
SORT is called.

The SORT word, defined in lines 9–11, executes the outer loop of the sort. This
loop calls the bubbling procedure BUBBLE which moves the biggest element of
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Figure 3.2: Graphical depiction of a part of the machine state (D,R,c) during Bub-
ble sort in Listing 3.1. Stack elements changed between steps marked
with a dashed line, left-pointing triangles denote program counters
pointing to the currently executed command of the program (also in-
dicated by command below the triangle). We omit the heap as it is
not used in the program. See text below for more detail.

the sequence to the bottom of the data stack. Concretely, line 10 sets up the
start (1- DUP) and the limit (0) of the DO loop and calls the body of the loop
as many times as the input sequence is long, minus 1. The body of the DO loop
saves the copy of the length of the input sequence on the return stack (>R R@),
calls the BUBBLE word, and returns back the length of the input sequence from
the return stack back to the data stack (R>). The final DROP just removes that
length from the data stack after the sequence has been sorted.

The BUBBLE word, defined in lines 1–8, executes the recursive logic of the
bubbling operation. DUP in line 2 duplicates the top of the data stack containing
the length of the subsequence, which guides the conditional IF. If the length
is 0, there are no more values to ’bubble’ so the length is dropped with DROP

in line 6. This effectively means that the element below the length of the
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sequence is in its correct place. Otherwise, if the length is non-zero, the length
of the subsequence is temporarily moved to the return stack (>R). The whole
of line 3 is the comparator that ensures that NOS is bigger or equal than
TOS. Following the comparison, line 4 returns the length of the subsequence
back to the top of the data stack and moves the lesser of the numbers in
the comparison on the return stack (R> SWAP >R). This denotes one bubbling
movement done, and the length of the subsequence is decremented (1-), and
BUBBLE is called recursively again on the subsequence. The machine state of the
Forth interpreter for the line 4 of the BUBBLE word, is depicted in Figure 3.2.
R> after the recursive call makes sure all the temporarily saved non-maximal
elements of the subsequence which were saved on the return stack are returned
on the data stack for the next bubbling iteration in the DO loop in line 10.

3.2.4 Forth Execution Loop and Interpretation

Execution LoopThe execution loop performs the execution cycle of Forth.
It executes the transition function of each word, and consequently the whole
program, over a sequence of intermediate states, thus making the core loop of
the Forth interpreter ΥF. Based on the instruction set F, the loop, given a
program P and an input state, produces the next state, per Equation (2.27).

Procedurally, the Forth execution loop implements a simple three-stage exe-
cution. First, it reads the current word wi of the program P that the program
counter c points to. Second, it searches for the definition of the word wi among
its core words and the word dictionary, and if found, it executes the word.
Third, if the word does not exist in the dictionary, it tries to convert it to a
literal, e.g. a number or a variable address, and if that fails, it throws an error.

Concretely, given a program P and a state at time t, S(t), the program counter
c of the state S(t) uniquely defines the word wPc(t) (where c(t) is the program
counter of the state S(t)) to be executed, and executes it on the state S(t),
leading it to the following state S(t+1) as follows:

S(t+1) =
r
wPc(t)

z
(S(t)) . (3.4)

InterpretationBased on this equation, which defines execution of a single
word, and the Equation (3.3), the interpreter ΥF presents a recurrent execu-
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tion/composition of words of program P , starting at the initial state S(0):

ΥF(P,S(0)) = (
r
wPc(t)

z
◦
r
wPc(t−1)

z
◦ · · · ◦

r
wPc(0)

z
)(S(0))

=
r
wPc(t)

z
(
r
wPc(t−1)

z
(. . .(

r
wPc(0)

z
(S(0))))) .

(3.5)

What is crucial to notice here is that the program counter c decides what is
the current word being parsed, looked up and executed, and that the execution
of that word determines the next word wc(t+1). This is directed by Forth’s
control statements and subroutine control words, which are ultimately reduced
to low-level jumps and conditional jumps (BRANCH and BRANCH0) to a set of
labels tagging code blocks (e.g. invoking a new word is a branch to a label
that tags the first word in the definition of the new word).

By now, we presented all the elements of the Forth interpreter—the machine
state, the instruction set, and the program, as well as the execution loop.
In the next section, we present the continuous approximation of the Forth
interpreter.

3.3 The Differentiable Forth Abstract Ma-
chine ∂4

When writing a Forth program, programmers define a sequence of Forth
words, i.e. a sequence of known state transition functions. This caters for the
case then the programmer knows how they want to model the computational
process. To accommodate for cases when the developer’s knowledge is incom-
plete, i.e. when the programmer does not know all the necessary detail how
to appropriately define the computational process, or even cases when defin-
ing the computational process is impossible, we extend Forth to support the
definition of a program sketch [Solar-Lezama et al., 2006]. As with standard
Forth programs (Equation (3.3)), sketches too are semantically a compo-
sition of transition functions. However, the important distinction between a
sketch and a program is that the sketch may contain transition functions whose
behaviour can be learned from data.

We achieve this ability to learn the transition functions by continuous re-
laxation of the Forth abstract machine. Continuous relaxation of the full
Forth abstract machine affords us the differentiability of the complete ma-
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Figure 3.3: A depiction of ∂4, the differentiable Forth abstract machine. The
input is written onto the differentiable data stack D, return stack R
and/or the heap H. Now, the instruction set d4 contains continuously
relaxed ∂4 commands. All of them are executed on the machine state
S and the results are weighted by the differentiable program counter c
and written back onto the machine state S. Finally, the differentiable
program counter c is advanced.

chine, which, when combined with gradient optimisation methods, supports
the training logic necessary to learn the transition functions and the represen-
tations of inputs. We can observe this through Equation (3.5)—a differentiable
abstract machine would enable us to choose parametrised transition functions,
such as neural networks, for words, as well as enable learning representations
of the input state S(0).

To this end, we introduce a differentiable Forth abstract machine ∂4—a
continuous relaxation of the Forth abstract machine. This abstract machine
comprises a continuous machine state representation S, a set of continuously
relaxed instructions d4, parametrised program/sketch Pθ, and a continuous
interpreter Υd4 performing continuous program execution.

We implemented ∂4 in TensorFlow [Abadi et al., 2015], and made it freely
available under the MIT license7 at https://github.com/uclnlp/d4/.

3.3.1 ∂4 Machine State Encoding

We map the symbolic machine state S = (D,R,H,c) of Forth, defined in
Section 3.2.1, to a continuous representation S = (D,R,H,c). This represen-
tation consists of two differentiable stacks—the data stack D and the return
stack R—a differentiable heap H and the program counter vector c. Figure 3.3

7https://opensource.org/licenses/MIT

https://github.com/uclnlp/d4/
https://opensource.org/licenses/MIT
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depicts the ∂4 abstract machine together with its elements.

The data stack D = (D,d) is a tuple consisting of a data buffer D and its top-
of-the-stack pointer d, and the return stack R = (R,r) consists of a return
buffer R and its top-of-the-stack pointer r.

We represent two types of values in ∂4: integers and general dense vectors.
Integers are represented with a normalised vector of non-zero values that sum
to 1, and we code all addresses and pointers d, r, and c, and literals as integers.
General dense vectors, on the other hand, do not have restrictions on their
values. That makes each memory buffer D, R, and H a matrix of row-vectors,
where each vector is either an integer vector or a general dense vector.

3.3.1.1 Differentiable Flat Memory Buffers

All three memory structures, the data stack D, the return stack R and the
heap H, are based on a generic differentiable flat memory (see Section 2.1.4)
M ∈ Rl×v, with l denoting the memory size, i.e. stack length, and v denoting
the value size.8 The difference is only in the data stack and the return stack
having their dedicated top-of-the-stack pointers d and r, respectively.

ReadThe differentiable flat memory buffer M has well-defined differentiable
reading and writing operations, as defined in Equation (2.16) [Graves et al.,
2014, 2016]. Concretely, the reading operation is defined as:

readM(a)ᵀ← aᵀM , (3.6)

where a ∈Rl denotes the address vector, and M ∈ {D,R,H}, denote that this
operation is applicable to all three memory structures. The address vector
a is represented as an integer with a normalised vector, with ∑

iai = 1 and
∀i 0≤ ai ≤ 1. In the one-hot vector case, this amounts to returning the exact
row-value from the buffer, indexed by the position of 1 in a.

WriteThe write operation is defined akin to the write operation in Neural
Turing Machiness (NTMs) [Graves et al., 2014] (Equation (2.17)):

writeM(x,a) : M(t+1)←M(t)− (a⊗1)�M(t) +x⊗a , (3.7)

8The equal value size v of all three memory buffers allows a direct transfer of vector
representations of values between them.
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where a is the address pointer.

As opposed to the NTM write formulation in Equation (2.17), we do not
explicitly use a custom learnt erase vector, but simply use the full address
vector a to delete the appropriate values from the memory buffer M.

3.3.1.2 Differentiable stack(s)

The general differentiable flat memory buffer formulation can use any network-
produced vector as the addressing vector. Differentiable stacks have a dedi-
cated top-of-the-stack (TOS) vector that is taken care of by each read and
write operation. Concretely, in addition to the memory buffers D and R, the
data stack and the return stack contain pointers to the current TOS element,
d,r ∈ Rl, respectively.

PushThis allows us to implement pushing as writing a value x into M and
incrementing the TOS pointer as a side-effect after writing:

pushM(x) : writeM(x,p) , [side-effect: p← inc(p)] (3.8)

where p ∈ {d,r} denotes either a data stack TOS or a return stack TOS,
and inc(p)ᵀ = pᵀO1+ is an increment operation with O1+ ∈ Rl×l being a left
circular shift matrix, i.e. an increment matrix defined as:

O1+
ij =

1 i+1≡ j (mod l)

0 otherwise
.

PopPopping is realised by multiplying the TOS pointer and the memory
buffer, and decreasing the TOS pointer as a side-effect after reading:

popM( )← readM(p) , [side-effect: p← dec(p)] (3.9)

where dec(p)ᵀ = pᵀO1−, and O1− is a right circular shift matrix, i.e. a decre-
ment matrix, defined as:

O1−
ij =

1 i−1≡ j (mod l)

0 otherwise
.
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Note that return values of unary operators such as 1+ and 1- can too in general
be calculated as a vector-matrix multiplication as above with appropriately
shaped matrices, O1+,O1− ∈ Rv×v.

By now, we can read from and write to any memory element, and execute
unary operations. To be able to construct a fully differentiable stack machine,
we need a way to influence the execution with a differentiable program counter
c.

3.3.1.3 Differentiable program counter

In a discrete machine, a program counter c points to the word which should
be executed, i.e. a program state the interpreter should transition to, whereas
in a differentiable interpreter a program counter c represents a probability
distribution over words, i.e. over program states the interpreter can transition
to. Concretely, the program counter c∈Rp, where p is the length of the sketch
Pθ and

∑
i c = 1, is a vector (i.e. soft-attention, as in Equation (2.15)) denoting

a probability distribution over words (state transitions) in the sketch Pθ. In a
case where the program counter c is a one-hot vector, i.e. all the probability
mass is on a single word, the result of the execution would be equivalent
to the execution of the discrete machine, i.e. the resulting transition would
correspond to a single command. However, in a general case, c weighs all the
possible transition states of a sketch Pθ and as a result leads the differentiable
interpreter to a mixed machine state which is the convex combination of c and
all the states that each word in Pθ leads to, from a starting state.9

In order to deal with diverting program flow, e.g. conditionals and loops,
which directly operate the program counter c, we need to define two branching
operations—the unconditional branch operation, and the conditional branch0
operation.

branchThe unconditional branch operator simply sets the c to a requested
address as:

branch(a) : c← a , (3.10)

thus diverting the program flow to the a address of the sketch Pθ. This
operation is used by default with every non-diverting command, to increment

9This makes the program counter c essentially a mean-field approximation of a categor-
ical distribution over all words in a sketch Pθ.
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the program counter by 1 as branch(inc(c)), but is also often used elsewhere,
for example for subroutine calls.

branch0 10 The conditional branch operation diverts the program flow, con-
ditioned on the value of the data stack TOS:

branch0(a) :

s← =(popD(),false)

c← sa +(1− s) inc(c)
, (3.11)

where false = 10 denotes a one-hot vector with 1 on the 0-th element of the
vector, and 0 elsewhere, representing a false evaluation of the comparison.
This makes the result of the operation expressing the program counter c a
convex combination of addresses a and the following program counter value
incc, hence possibly “splitting” the program counter over two values.11 Note
that the = command is defined as a binary operation tensor in the following
subsection.

3.3.2 ∂4 Instruction Set

Given the continuous reading, writing and branching defined in the previous
section, we can convert Forth instruction set F, defined as functions on dis-
crete machine states S in Section 3.2.2, to the ∂4 instruction set d4 operating
on the continuous machine states S.

For example, consider the Forth word DUP, which duplicates the top of the
data stack. Akin to the discrete version, the differentiable version of DUP does
the same by reading off the data stack TOS with x← readD(d), and pushes
the read value on the data stack pushD(x).

Akin to the unary operators inc and dec, which are defined as a vector-matrix
product, we define a binary operator as a bilinear tensor product:

op(x,y)← xᵀRopy , (3.12)

10The name branch0 signifies branching if a value (on the TOS) is equal to zero.
11Albeit the unconditional branch can be presented as a conditional branch (branch(a) =

branch0(a)◦pushD(0), we separate these two to lessen the burden on notation.
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where Rop ∈ Rl×l×l is a binary operation tensor defined as:

Rop
ijk =

1 iopj ≡ k (mod l)

0 otherwise
,

for all binary operators, including comparators op ∈ {+,−,∗,/,<,>,=}.

This concludes all helper functions sufficient to define all the commands of ∂4.
However, to simplify further exposition, we additionally define the next-on-
stack (NOS) pointer as:

p−1ᵀ← pᵀO1− .

The complete formalisation of continuously relaxed Forth words from Sec-
tion 3.2.2 is given in the following equations:

Data stack operations Since these carry out pushing, popping and data
transformations, their continuous relaxations include compositions of reading,
writing and unary/binary operation composition on the data stack D.

J int K def= pushD(1int)12 (3.13)

J DROP K def= popD() (3.14)

J DUP K def= pushD(readD(d)) (3.15)

J SWAP K def=



a← popD()

b← popD()

pushD (a)

pushD (b)

(3.16)

J OVER K def= pushD(readD(d−1)) (3.17)

J 1+ K def= writeD(inc(readD(d)),d) (3.18)

J 1- K def= writeD(dec(readD(d)),d) (3.19)

q
op

y def=


a← popD()

b← popD()

pushD (op(a,b))13

(3.20)
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Heap operationsThese operations are simply reading and writing operations
executed on the heap H.

J @ K def= pushD(readH(popD())) (3.21)

J ! K def=


x← popD()

a← popD()

writeH(x,a)

(3.22)

Return stack operationsGiven the nature of transferral to and from the
return stack, these operations are based on reading and writing operations
executed between the return stack R and the data stack D.

J >R K def= pushR(popD()) (3.23)

J R> K def= pushD(popR()) (3.24)

J @R K def= pushD(readR(r)) (3.25)

Control statementsThese statements particularly rely on the branching
commands branch and branch0. They are effectively implemented through
the use of label addresses. For example, addrword defines an address—a value
of the program counter at a specific location in the code—and invoking it in a
branching command returns the value of the address, effectively branching to
that location. Labelling and branching together enable control statements of
∂4.

J IF..1THEN K def=

branch0(inc(addrTHEN ))

J ..1 K
(3.26)

J IF..1ELSE..2THEN K def=



branch0(addr..2)

J ..1 K

branch(inc(addrTHEN ))

J ..2 K

(3.27)

12int is a literal denoting a non-negative integer, and J int K denotes the value of the
integer.

13op ∈ [+,-,*,/,<,>,=]
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J BEGIN..1WHILE..2REPEAT K def=



J ..1 K

branch0(inc(addrREPEAT ))

J ..2 K

branch(addr..1)

(3.28)

J DO..LOOP K def=



J .. K

J +1 = K

branch0(addr..)

J DROP DROP K

(3.29)

Subroutine controlThese commands boil down to saving calling addresses
in preprocessing and then using those addresses during runtime. In the prepro-
cessing step subroutine definition : sub effectively saves the address addrsub
as the address immediately after sub which is then used by the subroutine
invocation.

J sub K def=

pushR(inc(c))

branch(addrsub)15
(3.30)

J ; K def= branch(popR()) (3.31)

Variable creationVariable creation words are implemented with pre-
processing. Variable names used with both VARIABLE and CREATE are sim-
ply replaced with a statically pre-allocated address on the heap and their
invocations simply return the allocated addresses as literals.

Other NOP does nothing but simply stepping to the next word, and MACRO is a
function implemented via inlining before interpretation.16

3.3.3 ∂4 Sketches

We define a Forth sketch Pθ as a sequence of continuous transition functions
Pθ = (w1,w2, . . . ,wn). Here, J wi K : S→ S either corresponds to a neural Forth

15sub is a literal denoting a subroutine name.
16Inlining replaces a function call (word) with the body of the invoked function (word

definition).
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word or a parameterised transition function J wθi K : S×θ→ S, i.e. an MLP in
our case. We will call these trainable functions slots, as they correspond to
underspecified slots in the program code that need to be filled by learned
behaviour.

We allow users to define a slot w as an MLP by specifying the elements of the
MLP, concretely the input layer, the hidden layers and the output layer.

The input layer J win K : S → Rm consumes a user-specified subset of the ma-
chine state S(t) and produces a latent representation of the machine state,
fed into the following layer—a hidden or the output layer. The hidden layer
J wh K : Rm→ Rn consumes the representation of the previous layer (represen-
tation dimensions agree between layers) and maps it into a new latent repre-
sentation. The latent representation of the input or the previous hidden layer
is then transformed by the output layer J wout K : Ro→ S which maps it into
the next machine state S(t+1).

This enables us to chain these transformations like J w K = J wout K ◦ J whn K ◦
... ◦ J wh2 K ◦ J wh1 K ◦ J win K like the MLP does, as in Equation (2.8). To use
slots within Forth program code, we introduce a notation that reflects this
decomposition.

In particular, slots are defined by the following syntax:

{ input (-> hidden)∗ -> output } ,

where input specifies the input layer, (-> hidden)* specifies zero or more
hidden layers, and output specifies the output layer, as described in more
detail below.

InputWe provide the following two options for the input layer of the MLP:

static produces a static representation, independent of
the actual machine state; essentially a bias-only
input layer.

observe e1 . . . em concatenates the elements e1 . . . em of the machine
state S. An element can be a stack item Di at
relative index i, a return stack item Ri, etc.
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HiddenThe hidden layers are specified by chaining the affine transformation
and the activation function as in Equation (2.7), fully enabling the MLP layer:

linear N represents the affine transformation of the hidden
layer—a linear transformation that projects the
representation to N dimensions.

sigmoid, tanh represents the activation function ϕ of the hidden
layer.

OutputUsers can specify the following ways how the output can influence the
machine state:

choose w1 . . .wm chooses from the Forth words w1 . . .wm. Takes
the output of the previous layer, transforms it
into a softmaxed vector h of length m to pro-
duce a weighted combination of machine states∑m
i hiwi(S).

manipulate e1 . . . em directly manipulates the machine state elements
e1 . . . em by taking the output of the previous layer,
transforming it into a softmaxed vector and writing
it directly in the specified machine state elements
with writeM.17

permute e1 . . . em permutes the machine state elements e1 . . . em ; it
takes the output of the previous layer, and trans-
forms it into a softmaxed vector that weights the
m! permutations of state vectors in lexicographic
ordering, i.e. for 2 elements, the output is a convex
combination of e1e2 and e2e1.

Note that parameters of these layers are shared between the RNN execution
of the same MLP. We do not yet support parameter sharing between different
MLPs.

For example, consider the slot defined by:

{ observe D0 D-1 -> choose 1+ 1- }.

17Instead of softmaxing the output, one could rely on the optimisation to directly produce
the required output. However, this is substantially more difficult to train.
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This slot uses the data stack TOS (D0) and NOS (D-1) elements as state
representation to determine whether to execute 1+ or 1-. This corresponds to
a parametrised single-layer neural network whose input is the concatenation
of TOS and NOS vectors, and the output is the state S, equal to the convex
combination of states led to by the 1+ and 1- words.

3.3.4 ∂4 Execution Loop and the Interpreter

We model the ∂4 execution loop using an execution RNN which produces the
next state S(t+1) conditioned on the previous state S(t). A single command
execution (Equation (2.23)) is achieved by passing the current state S(t) to
each word/function J wi K of the sketch Pθ, and weighing the obtained outputs
with the program counter vector c:

ιPθ
(S(t−1)) =

|Pθ|∑
i=1

c
(t−1)
i J wi K(S(t−1)) = S(t) . (3.32)

Note that here the counter vector c weighs the state S(t−1) by simply weighing
each element of the state. Following Equation (2.10), the execution func-
tion defines the execution RNN, which defines the ∂4 interpreter Υd4 (Equa-
tion (2.27)) ran/unrolled for predetermined, user-specified t steps from a start-
ing state S(0) as:

Υd4(Pθ,S(0), t) = eRNNPθ
(S(0), t)

= (ιPθ
◦ . . .◦ ιPθ

◦ ιPθ
)(S(0))

= ιPθ
(. . .(ιPθ

(ιPθ
(S(0)))))

= S(t) ,

(3.33)

where t denotes the number of time steps to unroll the RNN, Pθ denotes the
sketch parametrised with θ, S(0) is the initial state, often initialised to the
required input, and allowing a slight abuse of notation where c is the program
counter corresponding to the state S(t−1). Clearly, this recursion, and its final
state, are differentiable with respect to the parameters θ of the sketch Pθ, as
well as the input state S(0).

Furthermore, in case of a parameterless sketch consisting of only ∂4 words (i.e.
no slots are present) and one-hot values, the final state S(t) of the ∂4 program
will correspond exactly to the final state of the equivalent Forth program.
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Figure 3.4: Graphical depiction of a part of the machine state during Bubble sort
sketch in Listing 3.3. Heap omitted for clarity as it is not used in the
sketch.

An example of a ∂4 machine state, during the Bubble Sort sketch in Listing 3.3
is depicted in Figure 3.4.

3.4 Training
Given a dataset of input-output pairs of machine start and desired end val-
ues, D = {(xi,yi)}, our goal is to infer the parameters θ of the sketch Pθ in
a supervised fashion. Although we can determine the complete start and end
state of the machine with the dataset D, in our experiments we use only the
data stack D—we set the input data xi on the data stack D and expect the
output yi on the same data stack after execution. In our case, the training
input xi uniquely defines a starting data stack D(0)

i = (D(0)
i ,d(0)

i ) and is di-
rectly encoded into the starting state S(0).18 Similarly, the training output yi
uniquely defines the desired final data stack D(t)

i = (D(t)
i ,d

(t)
i ).

Since the size of the outputted data stack and the desired one do not necessarily
have to correspond to each other. This is because as we might be interested
in only a subset of the stack, given the popping operation is non-destructive
and values stay on the stack. Therefore we introduce a mask Ki that indicates

18The training input xi is directly written on top of the “empty state”. In an empty
state, D and R are set to a matrix of one-hot zero rows, d and r are set to a one-hot value
pointing to the first element of the stack, and c is set to point to the first command of the
sketch Pθ.
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which components of both stacks should contribute to the loss. This mask
is uniquely defined by the desired output yi and it effectively denotes which
values of the data stack buffer we care about, and which should be ignored.
We define the loss function of ∂4 as follows:

Lθ(D) =
∑
i∈D

H(Ki�S(t)
i ,Ki� Ŝ(t)

i )

≈
∑
i∈D

H(Ki�D(t)
i ,Ki� D̂(t)

i )+H(Ki�d(t)
i ,Ki� d̂(t)

i ) ,
(3.34)

where H(x,y) = ∑
i−xi logyi is the cross-entropy loss19 and Ŝ(t)

i =
Υd4(Pθ,S

(0)
i , t)) is the final output state, with the circumflex denoting the

network output (i.e. the value estimate).

Since both the loss and the whole machine is end-to-end differentiable, we can
use backpropagation and any gradient optimisation method to optimise this
loss function and the parameters θ. Note that although we are optimising
parameters over a possibly long timeline, it would be possible to include trace-
based supervision, i.e. supervision at each intermediate state, as done by the
Neural Programmer-Interpreter (NPI) [Reed and De Freitas, 2016].

3.4.1 Interpreter Optimisations

The above-defined interpreter Υd4 requires a single RNN time step per tran-
sition. Concretely, a single time step implies the execution of every possible
state transition of the sketch Pθ, weighing each element of the state S with the
program counter c (Equation (3.33)), after which the program counter is up-
dated by either an increment (next instruction), explicit assignment (function
call, control statement operations) or a pop from the return stack (function
exit). Since every time step is computationally expensive, a full RNN execu-
tion is consequently very costly and decreasing the number of RNN steps, while
retaining the equivalence of the calculation would speed up both the training
and the inference. To that extent, we employ two strategies, the symbolic
execution and the branch interpolation.

Symbolic ExecutionWhenever we have a sequence of Forth words that
contains no slots and no branch entry or exit points, we can collapse said

19Note that the cross-entropy is applied element-wise and the result is the summation of
all the elements
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sequence into a single transition instead of naively interpreting words one-by-
one at each time step. We symbolically execute [King, 1976] a sequence of
Forth words to calculate a new machine state. We then use the difference
between the symbolically calculated machine state and the initial state to
derive the transition function of the sequence. This effectively means we derive
single-step transition function (concretely, which matrix/tensor operations) we
need to execute to produce the same effect as a sequence of multiple transition
functions corresponding to the sequence of words.

For example, starting in a symbolic state D = (d1,d2, ...,dl) and R =
(r1, r2, ..., rl), the sequence R> SWAP >R, swaps top elements of the data and
the return stacks, and results in a new symbolic state D = (r1,d2, ...,dl) and
R= (d1, r2, ..., rl). Comparing the initial state and the and the resulting state,
we derive a single transition (i.e. matrix/tensor operations) that only needs to
swap the top elements of D and R.

Branch InterpolationWe can apply symbolic execution on any sequence of
words where the transitions are independent of the machine state. However,
that does not hold for code with branching points—the machine state which
results from branching behaviour is contingent on the current machine state
and hence cannot be resolved symbolically.

For example, the code 0 = IF SWAP THEN DUP ELSE cannot be resolved
symbolically as the transitions themselves are dependent on the machine state
(concretely, if the data stack TOS is equal to 0, the resulting symbolic state
would be D = (d2,d1, ...,dl), otherwise it would be D = (d1,d1,d2, ...,dl).

However, we can still collapse IF-branches that involve no function calls or
loops, by executing both branches in parallel and weighing their output states
by the value of the condition. Doing this again effectively replaces a sequence
of matrix/tensor operations with a single equivalent operation. In cases where
IF branches contain function calls or loops, we simply fall back to the execution
of all words weighted by the program counter.

3.5 Experiments

We hypothesise that the differentiable interpreter ∂4, due to its strong archi-
tectural bias, enables:
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H1 arbitrarily complex inductive bias

H2 support of working both with discrete and continuous data

H3 training from a small number of input-output data

H4 strong generalisation

H5 composition with other neural models, due to its differentiable nature

In this section, we aim to experimentally verify these hypotheses by evaluating
∂4 on three tasks in total. The first two of these tasks are simple transduction
tasks on discrete inputs (H2), presented as neural programming tasks of sorting
and elementary addition, introduced in Reed and De Freitas [2016]. For each of
these tasks, we present two ∂4 sketches that capture different degrees of prior
knowledge—both sketches provide a recursive structure of the algorithms (H1),
enabling learning of number comparison for the sorting task, and digit addition
for the addition task. We show that, given only a small number of input-output
pairs (H3), ∂4 can learn to fill the sketch with the missing behaviour and that
the resulting sketch generalises well to problems several orders of magnitude
bigger than the training ones (H4).

The last task we apply ∂4 to is the task of solving an instance of Word Al-
gebra Problems—algebra problems expressed in natural language. We show
that ∂4 can train a basic algorithmic sketch trained jointly with an upstream
LSTM (H5). This shows that ∂4 can learn to read natural language narra-
tives, composed of both continuous (textual representations) and discrete data
(numbers) (H2), extract important numerical quantities and reason with them,
ultimately answering corresponding mathematical questions without the need
for explicit intermediate representations, as is done in previous work.

In addition to these experiments, we analyse the speed improvements of the
proposed optimisations, and qualitatively analyse the learning procedure.

3.5.1 Sorting

Sorting sequences of digits is a hard task for RNNs since they fail to generalise
to sequences even marginally longer from than the training sequences [Reed
and De Freitas, 2016]. Inspired by this issue, we investigate two sketches of
the Bubble Sort program in Listing 3.1 that enable learning to sort from only
a few hundred training examples, with a suitable bias.
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1 : BUBBLE ( a1 .. an seq_len-1 -- a1 .. an seq_len-1 )
2 DUP IF >R
3 { observe D0 D-1 -> choose NOP SWAP }
4 R> SWAP >R 1- BUBBLE R>
5 ELSE
6 DROP
7 THEN
8 ;
9 : SORT ( a1 .. an seq_len -- an .. a1 )

10 1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP
11 ;
12 SORT

Listing 3.2: The Compare sketch for the sorting task. Note that the data is
directly fed onto the data stack externally.

3.5.1.1 Sketches

By defining sufficient procedural structure from Listing 3.1, we make the re-
sulting network invariant to the input sequence length. The procedural part of
the sketch is effectively sorting the input sequence by repeatedly executing a
procedure which ensures that the biggest element of each sorting pass is moved
to the bottom of the sequence, while the learned part is effectively learning
the comparison of digits. Note that this comparison is implicitly learned from
the input-output data, without any prior information, while imposing a strong
inductive bias of the sorting algorithm containing loops, conditionals, function
calls and recursion.

We relax the specification of the Bubble Sort code into two sketches, the Com-
pare and the Permute sketch.

Compare sketchThe Compare sketch, listed in Listing 3.2, requires learning
just the comparison of the numbers (NOS and TOS) on the data stack. This
behaviour is learned by the slot—a parametrised neural network in the line 3
of Listing 3.2, which, observing the top two elements on the data stack (D0
and D-1), chooses to either do the swap (SWAP) or not (NOP). The rest of the
sketch is the same as the original Bubble Sort code in Listing 3.1.

Permute sketchThe Permute sketch, listed in Listing 3.3, provides less
structure and leaves more behaviour open to be learned. Concretely, in con-
trast to the Compare sketch, the Permute sketch requires learning both the
comparison of the two top elements on the data stack and taking care of the
length of the subsequence on the return stack. This is achieved by learning
to permute the NOS and TOS of the data stack and the TOS of the return
stack, conditioned on the values of the top two elements on the data stack that
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1 : BUBBLE ( a1 .. an seq_len-1 -- a1 .. an seq_len-1 )
2 DUP IF >R
3 { observe D0 D-1 -> permute D-1 D0 R0}
4 1- BUBBLE R>
5 ELSE
6 DROP
7 THEN
8 ;
9 : SORT ( a1 .. an seq_len -- an .. a1 )

10 1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP
11 ;
12 SORT

Listing 3.3: The Permute sketch for the sorting task.

need to be compared. The parametrised neural network in the slot in line 3
requires that both the value comparison and the permutation behaviour must
be learned.

3.5.1.2 Experimental Setup

We optimised each ∂4 sketch with Adam [Kingma and Ba, 2015] for a maximum
of 200 epochs, with early stopping on the development set. We added noise
to gradients [Neelakantan et al., 2015b] and clipped gradients [Pascanu et al.,
2013] larger than 1.0. We tuned the initial learning rate (1.0), batch size
(between 16 and 64), and the parameters of the gradient noise in a random
search on a development set for each task. During testing, we discretise all the
continuous elements of the machine making the test-time execution discrete.

BaselineWe compare these sketches to the standard seq2seq [Sutskever et al.,
2014] baseline. The seq2seq baseline models are single-layer networks with
LSTM cells of 50 dimensions. The training procedure for these models consists
of 500 epochs of Adam optimisation, with a batch size of 128, a learning rate
of 0.01, and gradient clipping when the L2 norm of the model parameters
exceeded 5.0.

DataAll the models were trained on randomly generated data—we uniformly
chose each digit of the sequence and sorted the obtained sequence to provide
a target. We generated the train, development and test sets containing 256,
32 and 32 instances, respectively. The low number of development and test
instances was chosen to decrease the computational cost of the evaluation.
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Table 3.1: Accuracy, expressed in Hamming distance, of Permute and Compare
sketches in comparison to a seq2seq baseline on the sorting problem.
Dagger † denotes values different from values reported in Bošnjak et al.
[2017]. For an explanation why that is, see the footnote.

Test Length 8 Test Length: 64
Train Length: 2 3 4 2 3 4
seq2seq 26.2 29.2 39.1 13.3 13.6 15.9
∂4 Permute 100.0 100.0 100.0† 100.0 100.0 100.0†

∂4 Compare 100.0 100.0 100.0† 100.0 100.0 100.0†

3.5.1.3 Testing Strong Generalisation

A quantitative comparison of our models on the Bubble sort task is provided
in Table 3.1. For a given test sequence length, we vary the training set lengths
to illustrate the model’s ability to generalise to sequences longer than those
it observed during training. We find that ∂4 quickly learns the correct sketch
behaviour, and it is able to generalise perfectly to sort sequences of 64 elements
after observing only sequences of length two, three and four during training.
In comparison, the seq2seq baseline falters when attempting similar generalisa-
tions, and performs close to chance when tested on longer sequences. Both ∂4
sketches perform flawlessly when trained on short sequence lengths. However,
they both under-perform when trained on a sequence of length 5 and beyond
since the execution RNN of ∂4 Bubble Sort unrolls to a large number of steps
(122), given the quadratic nature of the Bubble Sort algorithm). This, in
turn, causes numerical instabilities and erroneous large gradients which cause
the learning to diverge.

3.5.1.4 The Effect of the Dataset Size

When measuring the performance of the model as the number of training
instances varies, we can observe in Figure 3.5 the benefit of additional prior
knowledge to the optimisation process. We find that when stronger prior
knowledge is provided (Compare), the model quickly maximises the training
accuracy. Providing less structure (Permute) results in lower testing accuracy

†NOTE: In our experiments, long unrolls led to to numerical instabilities and erroneous
gradients. In Bošnjak et al. [2017] these values were lower due to these errors. Here we are
using the double precision (float64) to circumvent this issue. However, for train lengths 5
(unrolls to 122 steps) and beyond we still experience numerical instabilities, and none of the
standard fixes we tried worked for us.
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Figure 3.5: Accuracy of models for a varying number of training examples, trained
on input sequence of length 3 for the Bubble sort task. Compare,
Permute, and seq2seq (test 8) were tested on sequence lengths 8,
and seq2seq (test 3) was tested on sequence length 3.

initially, however, both sketches learn the correct behaviour and generalise
equally well after seeing 256 training instances. Additionally, it is worth noting
that the Permute sketch was not always able to converge into a result of the
correct length, and both sketches are not trivial to train.

In comparison, seq2seq baseline is able to generalise only to the sequence it was
trained on (seq2seq trained and tested on sequence length 3). When training
it on sequence length 3, and testing it on a much longer sequence length of 8,
seq2seq baseline is not able to achieve more than 45% accuracy.

3.5.1.5 The Effect of the Program Code Optimisations

To quantify the usefulness of the interpreter optimisations introduced in Sec-
tion 3.4.1, we run an ablation analysis over the options, analysing the number
of possible state transitions the RNN can take, the number of steps the RNN
takes in practice, and we take a look at the produced results.

Number of transitionsThe number of possible RNN transitions, produced
by each of the optimisation options is given in Table 3.2. We see that the
symbolic interpretation alone causes the number of transitions to halve. The



84 Chapter 3. ∂4: A Differentiable Forth Interpreter

Table 3.2: The effect of the optimisations on the number of state transition func-
tions of the Forth implementation of Bubble sort in Listing 3.1.

Symbolic Execution Branch Interpolation # transitions
- - 33
- ON 32

ON - 15
ON ON 15

branch interpolation causes only a saving of one transition function when sym-
bolic execution is not on. In this particular case, the branch interpolation does
not seem meaningful, but in cases where there are multiple commands under
each if and else branches, like IF DUP SWAP ELSE SWAP DUP THEN, branch
interpolation would still be useful even if symbolic execution was turned on.

Steps TakenThe number of steps taken, for each of the optimisation options
is given in Figure 3.6. Again, the symbolic execution single-handedly causes
a huge savings of a factor of almost 3. However, we see that the branch
interpolation, albeit it does not cause a big win (as a matter of a fact, if paired
with symbolic execution, it even results in a higher number of steps taken),
does make the number of execution steps constant, regardless of the input.

Qualitative Analysis In Figure 3.7 we can see the concrete output of each
of the optimisation options. We see the clear success of the symbolic execu-
tion, which merges a lot of commands, and the branch interpolation which is
applicable just on the single case of the IF command.

3.5.1.6 Qualitative Analysis of Program Counter Traces

In Figure 3.8 we visualise the program counter traces. The trace follows a single
example from the start, over the middle to the end of the training process.
At the beginning of training, the program counter starts to deviate from the
one-hot representation in the first 20 steps (not observed in the figure due to
unobservable changes), and after a single iteration of SORT, the sketch already
fails to correctly determine the next word. After a few training epochs ∂4
learns better permutations which enable the algorithm to take crisp decisions
and halt in the correct state.
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Figure 3.6: The effect of the optimisations on the number of (RNN) execution
steps. Note that “No Optimisation” and “Symbolic Execution” are
denoted by the filled area as the number of steps taken depends on the
input.

3.5.2 Addition

Next, we applied ∂4 to the problem of learning to add two n-digit numbers.
We rely on the standard elementary school addition algorithm, where the goal
is to iterate over pairs of aligned digits, calculating the sum of each to yield the
resulting sum. The key complication arises when two digits sum to a two-digit
number, requiring that the correct extra digit—a carry—be carried over to the
subsequent column.

We assume aligned pairs of digits as input, with a carry for the least significant
digit (potentially equal to 0), and the length of the respective numbers. The
sketches define the high-level operations through recursion, leaving the core
addition to be learned from data.

The specified high-level behaviour includes the recursive call template and the
halting condition of the recursion (no remaining digits, line 2 in Listing 3.4).
The underspecified addition operation must take three digits from the previous
call—the two digits to sum and a previous carry—and produce a single digit
(the sum) and the resulting carry. The rest of the sketch code reduces the
problem size by one and returns the solution, popping it from the return stack.
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Branch interpolation ON

: BUBBLE
    DUP IF >R
        OVER OVER < IF SWAP THEN
        R> SWAP >R 1- BUBBLE R>
    ELSE
        DROP
    THEN
;
: SORT
  1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP
;
2 4 2 7 4 SORT

: BUBBLE
    DUP IF >R
        OVER OVER < IF SWAP THEN
        R> SWAP >R 1- BUBBLE R>
    ELSE
        DROP
    THEN
;
: SORT
  1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP
;
2 4 2 7 4 SORT

: BUBBLE
    DUP IF >R→
-------→OVER OVER < IF SWAP THEN
        R> SWAP >R 1- BUBBLE R>→
---→ELSE
        DROP
    THEN
;
: SORT
  1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP→
;
2 4 2 7 4 SORT

: BUBBLE
    DUP IF >R→
-------→OVER OVER < IF SWAP THEN
        R> SWAP >R 1- BUBBLE R>→
---→ELSE
        DROP
    THEN
;
: SORT
  1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP→
;
2 4 2 7 4 SORT
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Figure 3.7: The results of different optimisation techniques applied to the Bubble
sort program in Listing 3.1. Single commands highlighted in green are
the result of standard execution, purple spans denote the commands
collapsed by branch interpolation, and the blue spans denote the com-
mands collapsed by symbolic execution. Arrows denote a cross-line
span. We can see the drastic effect of the symbolic execution and the
nuanced effect of the branch interpolation in this example.

We introduce two sketches for inducing this behaviour, the Manipulate
sketch and the Choose sketches.

Manipulate sketchThe Manipulate sketch, listed in Listing 3.4, provides
less prior knowledge as it directly manipulates the ∂4 machine state. It does
so by filling in a carry and the result digits, based on the top three elements of
the data stack—two digits and the carry—with a slot in line 6 of Listing 3.4.
The same slot translates to a 3-layer perceptron consisting of the input layer
with the tanh nonlinearity, a linear layer of 70 units and the output of 2 units.

Choose sketchThe Choose sketch, listed in Listing 3.5, provides more prior
knowledge by exactly specifying the results of the computation. Concretely,
the slot in line 6 contains a neural network that outputs the carry, and the slot
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HALT
SORT

DROP ;
R> LOOP

>R R@ BUBBLE
1- DUP 0 DO

: SORT
THEN ;

ELSE DROP
R>

1- BUBBLE
{ slot }

>R
DUP IF

: BUBBLE

(a) PC trace at the start of training.

HALT
SORT

DROP ;
R> LOOP

>R R@ BUBBLE
1- DUP 0 DO

: SORT
THEN ;

ELSE DROP
R>

1- BUBBLE
{ slot }

>R
DUP IF

: BUBBLE

(b) PC trace mid-training.

0
HALT
SORT

DROP ;
R> LOOP

>R R@ BUBBLE
1- DUP 0 DO

: SORT
THEN ;

ELSE DROP
R>

1- BUBBLE
{ slot }

>R
DUP IF

: BUBBLE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Steps

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

(c) PC trace at the end of training.

Figure 3.8: Program Counter traces for a single example at different stages of
training the Bubble sort Permute sketch in Listing 3.3. Blue—
successive recursion calls of BUBBLE; red—successive returns from the
recursion; purple—calls to SORT; green—the halting state. The rows
are labelled with words they represent after the optimisation step
which groups them together.

1 : ADD-DIGITS ( a1 b1 a2 b2 ... an bn carry n -- r1 r2 ... r_{n+1} )
2 DUP 0 = IF
3 DROP
4 ELSE
5 >R \ put n on R
6 { observe D0 D-1 D-2 -> tanh -> linear 70 -> manipulate D-1 D-2 }
7 DROP
8 R> 1- SWAP >R \ new_carry n-1
9 ADD-DIGITS \ call add-digits on n-1 subseq.

10 R> \ put remembered results back on the stack
11 THEN
12 ;
13 ADD-DIGITS

Listing 3.4: The Manipulate sketch for the Addition problem. Input data is
used to fill data stack externally.
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1 : ADD-DIGITS ( a1 b1 a2 b2 ... an bn carry n -- r1 r2 ... r_{n+1} )
2 DUP 0 = IF
3 DROP
4 ELSE
5 >R \ put n on R
6 { observe D0 D-1 D-2 -> tanh -> linear 10 -> choose 0 1 }
7 { observe D-1 D-2 D-3 -> tanh -> linear 50 -> choose 0 1 2 3 4 5 6 7 8 9 }
8 >R SWAP DROP SWAP DROP SWAP DROP R>
9 R> 1- SWAP >R \ new_carry n-1

10 ADD-DIGITS \ call add-digits on n-1 subseq.
11 R> \ put remembered results back on the stack
12 THEN
13 ;
14 ADD-DIGITS

Listing 3.5: The Choose sketch for the Addition problem. Input data is used to
fill data stack externally.

Table 3.3: Accuracy (Hamming distance) of Choose and Manipulate sketches
in comparison to a seq2seq baseline on the addition problem. Note that
lengths corresponds to the length of the input sequence (two times the
number of digits of both numbers).

Test Length 8 Test Length 64
Train Length: 2 4 8 2 4 8
seq2seq 37.9 57.8 99.8 15.0 13.5 13.3
∂4 Choose 100.0 100.0 100.0 100.0 100.0 100.0
∂4 Manipulate 98.58 100.0 100.0 99.49 100.0 100.0

in line 7 specifies a neural network that needs to learn to output the resulting
digit, both being conditioned on the two digits and the carry on the data stack.

BaselineAs in the sorting experiment, we use seq2seq model as a baseline.
The hyperparameter sweep is identical to the sweep done in the sorting exper-
iments Section 3.5.1.2.

Training detailsWe trained the addition Choose and Manipulatex
sketches presented in Table 3.1 on a randomly generated train, development
and test sets of sizes 512, 256, and 1024 respectively. We uniformly sampled
each digit of each n-digit numbers and added them to construct the target.
The batch size was set to 16, and we used an initial learning rate of 0.05

3.5.2.1 Generalisation

In a set of experiments analogous to those in our evaluation on Bubble sort,
we demonstrate the performance of ∂4 on the addition task by examining
test set sequence lengths of 8 and 64 while varying the lengths of the train-



3.5. Experiments 89

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
# training examples

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

choose (test 16)
manipulate (test 16)
Seq2Seq (test 8)
Seq2Seq (test 16)

Figure 3.9: Accuracy of models for a varying number of training examples, trained
on input sequence of length 8 for the addition task. Manipulate,
Choose, and seq2seq (test 16) were tested on sequence lengths 16,
and seq2seq (test 8) was tested on sequence length 8.

ing set instances (Table 3.3). The seq2seq model again fails to generalise to
longer sequences than those observed during training. In comparison, both
the Choose sketch and the less structured Manipulate sketch learn the
correct sketch behaviour and generalise to all test sequence lengths (with an
exception of Manipulate which required more data to train perfectly). In
additional experiments, we were able to successfully train both the Choose
and the Manipulate sketches from sequences of input length 24, and we
tested them up to the sequence length of 128, confirming their perfect training
and generalisation capabilities.

Note that our experiments with Manipulate include softmaxing values writ-
ten on the stack, as described in Section 3.3.3. If we remove the softmax, the
sketch is able to learn only from the minimal sequence length of 2, and none
other. We conjecture that this is due to difficulty of the direct state manipula-
tion where the neural network in the slot needs to directly write the unbounded
value on the data stack, and thus learn by itself the required output, as opposed
to Choose sketch where the user defines the output directly.

The role of softmaxing can be thought of as a neural version of typing—it
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types the output to a number from 0 to l, as opposed to the more specific
(categorical) type in the choose sketch.

3.5.2.2 Accuracy per number of training examples

We tested the models to train on datasets of increasing size on the addition
task. The results, depicted in Figure 3.9 show that both the Choose and
the Manipulate sketch are able to perfectly generalise from 256 examples,
trained on sequence lengths of 8, tested on 16. In comparison, the seq2seq
baseline achieves 98% when trained on 16384 examples, but only when tested
on the input of the same length, 8. If we test seq2seq as we tested the sketches,
it is unable to achieve more than 19.7% accuracy.

3.5.3 Word Algebra Problems

Word algebra problems are often used to assess the numerical reasoning abili-
ties of schoolchildren. Questions are short narratives which focus on numerical
quantities, culminating with a question. For example:

A florist had 50 roses. If she sold 15 of them and then later picked
21 more, how many roses would she have?

Answering such questions requires both the understanding of language and of
algebra—one must know which numeric operations correspond to which phrase
and how to execute these operations.

Previous work cast word algebra problems as a transduction task by mapping a
question to a template of a mathematical formula, thus requiring manually la-
belled formulas. For instance, one formula that can be used to correctly answer
the question in the example above is (50 - 15) + 21 = 56. In previous work,
local classifiers [Roy and Roth, 2015, Roy et al., 2015], hand-crafted gram-
mars [Koncel-Kedziorski et al., 2015], and recurrent neural models [Bouchard
et al., 2016] have been used to perform this task. Predicted formula templates
may be marginalised during training [Kushman et al., 2014], or evaluated di-
rectly to produce an answer.

In contrast to these approaches, ∂4 is able to learn both, a soft mapping from
text to algebraic operations and their execution, without the need for manually
labelled equations and no explicit symbolic representation of a formula, by
jointly training a ∂4 sketch with a neural sequence model.
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Figure 3.10: The Word Algebra Problem model: a Neural Forth Abstract Ma-
chine (on the left) executing the Word Algebra Problem sketch, con-
nected to the BiLSTM which reads word problems (on the right).
Output vectors corresponding to a representation of the entire prob-
lem, as well as context representations of numbers and the numbers
themselves are fed into H to solve tasks. The entire system is end-
to-end differentiable.

3.5.3.1 Model Description and the Sketch

Our model is fully end-to-end differentiable, consisting of a ∂4 interpreter with
an appropriate sketch, and a BiLSTM reader.

The BiLSTM reader reads the text of the problem and produces a vector
representation (word vectors) for each word, concatenated from the forward
and the backward pass of the BiLSTM network. We use the resulting word
vectors corresponding only to numbers in the text, numerical values of those
numbers (encoded as one-hot vectors), and a vector representation of the whole
problem (concatenation of the last and the first vector of the opposite passes)
to initialise the ∂4 heap H. This is done in an end-to-end fashion, enabling
gradient propagation through the BiLSTM to the vector representations. The
process is depicted in Figure 3.10.

The sketch, depicted in Listing 3.6 dictates the differentiable computation.
First, it copies values from the heap H – word vectors to the return stack R,
and numbers (as one-hot vectors) on the data stack D. Second, it contains
four slots that define the space of all possible operations of four operators on
three operands, all conditioned on the vector representations on the return
stack. These slots are i) permutation of the elements on the data stack, ii)
choosing the first operator, iii) possibly swapping the intermediate result and
the last operand, and iv) the choice of the second operator. These four slots
fully define the space of all possible formulas over three operands and four
operators (e.g. X+Y-Z, (X-Y)/Z, etc.), however, the model needs to learn which
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1 VARIABLE QUESTION \ address of the question on H

3 CREATE REPR_BUFFER 4 ALLOT \ allotting H for representations
4 CREATE NUM_BUFFER 4 ALLOT \ and numbers

6 VARIABLE REPR \ addresses of the first representation
7 VARIABLE NUM \ and number

9 REPR_BUFFER REPR !
10 NUM_BUFFER NUM !

12 \ macro functions for:
13 MACRO: STEP_NUM NUM @ 1+ NUM ! ; \ incrementing the pointer to numbers in H
14 MACRO: STEP_REPR REPR @ 1+ REPR ! ; \ incrementing the pointer to reps. in H
15 MACRO: CURRENT_NUM NUM @ @ ; \ fetching current numbers
16 MACRO: CURRENT_REPR REPR @ @ ; \ fetching current representations

18 CURRENT_NUM \ copy numbers to D
19 STEP_NUM
20 CURRENT_NUM
21 STEP_NUM
22 CURRENT_NUM

24 QUESTION @ >R \ copy question vector ..
25 CURRENT_REPR >R \ .. and representations of numbers to R
26 STEP_REPR
27 CURRENT_REPR >R
28 STEP_REPR
29 CURRENT_REPR >R

31 \ based on the question and number representations...
32 { observe R0 R-1 R-2 R-3 -> permute D0 D-1 D-2 } \ permute stack elements
33 { observe R0 R-1 R-2 R-3 -> choose + - * / } \ choose the first operation
34 { observe R0 R-1 R-2 R-3 -> choose SWAP NOP } \ swap prev. result and 3rd num
35 { observe R0 R-1 R-2 R-3 -> choose + - * / } \ choose the second operation

37 R> DROP R> DROP R> DROP R> DROP \ empty out R

Listing 3.6: The Word Algebra Problem sketch

equation to induce in order to calculate the correct result. The final set of
commands simply empties out the return stack R.

3.5.3.2 Experimental Setup

We evaluate the model on the CC dataset, introduced by Roy and Roth [2015].
CC is notable for having the most diverse set of equation patterns, consisting
of four operators (+, -, ×, ÷), with up to three operands.

The CC dataset is partitioned into a train, development, and test set containing
300, 100, and 200 questions, respectively. The batch size was set to 50, and we
used an initial learning rate of 0.02. The BiLSTM word vectors were initialised
randomly to vectors of length 75. The stack width was set to 150 and the stack
size to 5.
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Table 3.4: Accuracies of models on the CC dataset. The asterisk denotes results
obtained from Bouchard et al. [2016]. Note that i) GeNeRe makes use
of additional data, ii) the difference between our seq2seq baseline and
the one in Bouchard et al. [2016] stems from the Bouchard et al. [2016]
baseline being trained on train+dev sets following hyperparameter se-
lection on the dev set.

Model Accuracy (%)
Template Mapping

Roy and Roth [2015] 55.5
seq2seq (our implementation) 85.0
seq2seq∗ Bouchard et al. [2016] 95.0
GeNeRe∗ Bouchard et al. [2016] 98.5

Fully End-to-End
seq2seq 0.0
∂4 96.0

3.5.3.3 Results

We compare against three baseline systems: (1) a local classifier with hand-
crafted features [Roy and Roth, 2015], (2) a seq2seq baseline, and (3) the same
model with a data generation component (GeNeRe) Bouchard et al. [2016]. All
baselines are trained to predict the best equation, which is executed outside
of the model to obtain the answer. In contrast, ∂4 is trained end-to-end from
input-output pairs and predicts the answer directly without the need for an
intermediate symbolic representation of a formula.

Neural ModelsThe comparison between ∂4 and neural baselines is shown
in Table 3.4. Our method slightly outperforms the seq2seq baseline from
Bouchard et al. [2016]. However, upon reimplementation of the seq2seq base-
line and a close inspection of the code by Bouchard et al. [2016], we noticed
that their model was trained on the train+dev set after they selected the best
hyperparameters on the dev set. As expected, we confirmed that the effect of
their train set expansion has a positive effect on the final results. However,
we still decided to train ∂4 on train set only and use the dev set for early
stopping, as is the standard practice. The reason why we decided to stick with
the standard practice is that when training on train+dev, we cannot use the
dev set for early stopping. This implies we have to train the model for a pre-
determined number of epochs, hoping that the training stops when the model
generalises since at this point the dev set performance is what is being opti-
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mised and cannot be used as a reliable estimate of the model’s performance.
In that sense, we cannot directly compare to the accuracies of the seq2seq
baseline and GeNeRe from Bouchard et al. [2016].

However, our goal here is not to achieve the state-of-the-art results over
GeNeRe (though it is quite possible that their performance is lower when
trained on train set only) but to establish a close-to enough model that is,
crucially, trained end-to-end without additional formulas. It is worthwhile to
emphasise once again that, as opposed to GeNeRe and seq2seq from Bouchard
et al. [2016], which are template mapping models, ∂4 is trained completely
end-to-end, from the text of the problem to the final numeric result. Addition-
ally, we ran the seq2seq baseline in the same end-to-end fashion, to quantify
the difficulty of the task when solved end-to-end. The results confirm that the
task is difficult—the seq2seq baseline is unable to train at all as it lacks data
to even start learning arithmetic expressions and execution.

Comparison to Roy and Roth [2015]After publishing Bošnjak et al.
[2017], where we compared the neural models with the model of Roy and
Roth [2015], we noticed that there are significant differences in the datasets
used in the experiments between Roy and Roth [2015] and Bouchard et al.
[2016].

Concretely, the dataset splits in Bouchard et al. [2016] were done randomly,
whereas the splits in Roy and Roth [2015] were done in a structured way which
makes the task much more difficult, justifying the large difference between the
performances of these two models. The issue stems from the fact that that Roy
and Roth [2015] split the dataset into 6 folds, where each fold contains prob-
lems from a single equation category (e.g. addition followed by subtraction,
subtraction and multiplication, etc.), making the dataset more challenging.
Since they have split the dataset into train and dev only, Bouchard et al.
[2016] wanted to split the dataset into train, dev and test, but they split the
dataset randomly, mixing the equation categories across datasets, making the
problem significantly easier to solve.

For a fair comparison, we ran our model on the original split. We split the
train set into train and dev by making the dev set a random subset of the
train set. The results of this experiment can be found in Table 3.5. We can
observe that ∂4 performs poorly on this split as the model struggles to catch
the relationships applicable over different equation templates. Interestingly,
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Table 3.5: Performance of ∂4 and the model from Roy and Roth [2015] on splits
from Roy and Roth [2015]

Model Accuracy (%)
Template Mapping

Roy and Roth [2015] 45.2
Fully End-to-End

∂4 5.0

when comparing the performance of Roy and Roth [2015] on the random split
and the harder split, their model yields only 10% improvement, showing that
the model struggles even though it has access to all the equation templates at
training time. In contrast to that, ∂4 is able to clearly capitalise on the access
to all equation templates, which boosts its score drastically. It is again worth
emphasising that ∂4 is trained fully end-to-end, without using the formula
template, thus solving a harder problem, as opposed to the Roy and Roth
[2015] model.

3.6 Related Work
We present differentiable interpreters in the light of connections they draw from
several related areas of research: computability of neural networks, program
induction and synthesis, probabilistic programming and recent computational
architectures in neural networks.

3.6.1 The Computational Power of Neural Networks

A body of prior groundwork established the theoretical background behind
the mathematical notion of program expressivity and execution through the
computational power and subsequent use of that power for language interpre-
tation.

From Turing Completeness...The computational power of neural networks
has been studied since the early days of neural networks. McCulloch and Pitts
[1943] showed the correspondence between feed-forward neural networks with
hard-thresholds and propositional logic, positing that the RNNs are even more
expressive, and drawing conclusions that a NN with a tape is Turing Complete.
The subsequent work of Kleene [1951] built on top of their work to relate the
representational powers of hard-threshold neural networks and finite automata.



96 Chapter 3. ∂4: A Differentiable Forth Interpreter

Later, Pollack [1987] showed that a particular architecture of RNNs with high-
order connections is Turing complete, while Franklin and Garzon [1990] showed
Turing completeness of a neural network with an unbounded number of neu-
rons. This work lead to the seminal work of Siegelmann and Sontag [1991]
and Siegelmann and Sontag [1995] who finally proved Turing completeness of
finite RNNs without high-order connections.20 This work gave a theoretical
background to the representational power of recurrent architectures. Recent
work by Pérez et al. [2019] corroborated these findings on modern NN archi-
tectures, which do not just interpret an algorithm but learn it as well. Though
these proofs require infinite precision and computation time which computers
cannot achieve, [Weiss et al., 2018] further shows that different architectures
exhibit different computational powers in practice.

...to Language Interpretation and CompilationThe Turing completeness
of NNs entails their ability to simulate Universal Turing Machines, effectively
making them interpreters for other Turing Machines. Some of the prior work
focused on using these abilities of neural networks to build neural interpreters
and compilers; translations of programs in a high-level language into a neu-
ral network which executes said program. Siegelmann [1994] were the first
who proposed compiling a program, in their case written in the NEural Lan-
guage (NETL), to a NN which computes the original program. Intended as a
bridge between the symbolic and neural computation, their system compiled
a FOL or any general algorithm to a RNN that simply executes it, without
learning. Later, Gruau et al. [1995] presented a compiler that translates a
PASCAL [Wirth, 1971] program into a neural network that executes it. Inter-
estingly, although their neural compiler defines a function that calls a learned
NN in the code, they do not support its training. Similarly, Siegelmann [1996]
compile a program written in Neural Information Processing Programming
Language (NIL) to a NN and enable training it with neural evolution. A series
of work [Neto et al., 1998, 2003, Neto, 2006] showed that programs written in
a high-level language called NETDEF can be translated to a modular RNNs,
with Neto et al. [2000] adding to it the theoretical support to learn. Lastly, not
all efforts were focusing on high-level programming languages, though; Neto
et al. [2004] translated high-level Turing Machine programs in a form of partial

20On an interesting side-note, Siegelmann [1995] and Siegelmann [2012] show that neural
networks with real numbers can achieve computational power beyond the Turing limit, but
that work is out of the scope of this thesis.
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recursive function descriptions to NNs. However, subsequent work did mostly
use higher-level programming languages to facilitate use.

On a related note, the programming language community worked on the no-
tion of smooth software and smooth interpretation. DeMillo and Lipton [1991]
proved the existence of continuous functions which can capture the execu-
tion of discrete state transition functions, i.e. that software can be cast via
continuous functions. Though their work did not recognise any practical ap-
plications of it, later work by Chaudhuri and Solar-Lezama [2010, 2011] used
this to introduce the concept of “smooth interpretation” defined via relaxing
discrete programs’ states with Gaussian mixture distributions. Interestingly,
they utilise it to synthesise parameters of, essentially, program sketches, but
via Nelder-Mead [Nelder and Mead, 1965], a gradient-free optimisation tech-
nique. In more recent work, Inala et al. [2018] additionally relax this Gaussian
smoothing akin to our approach and find parameters with a combination of
SAT solving [Eén and Sörensson, 2003] and sequential quadratic program-
ming [Gill et al., 2005]. to synthesise both the discrete and floating-point
parameters of the sketch.

3.6.2 Program Synthesis

The idea of program synthesis [Gulwani et al., 2017] is as old as AI [Church,
1957], and has a long history in computer science [Manna andWaldinger, 1971].
Whereas a large body of work has focused on using genetic programming [Koza
and Koza, 1992] to induce programs from the given input-output specifica-
tion [Nordin, 1997], there are also various Inductive Programming approaches
[Kitzelmann, 2009] aimed at inducing programs from incomplete specifications
of the code to be implemented [Albarghouthi et al., 2013, Solar-Lezama et al.,
2006]. Further work even tackled the problem of learning sketches from cor-
pora of code [Murali et al., 2018]. We tackle the same problem of sketching,
but in our case, we fill the sketches with neural networks able to learn the
slot behaviour. It is worth noting that the very recent work on neural models
pushed the state of the program synthesis research by either employing elab-
orate deep learning models [Parisotto et al., 2017], or by aiding a specialised
synthesiser [Parisotto et al., 2017].
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3.6.3 Probabilistic and Bayesian Programming

Our work is closely related to probabilistic programming languages such as
Church [Goodman et al., 2012]. They allow users to inject random choice prim-
itives into programs as a way to define generative distributions over possible
execution traces. In a sense, the random choice primitives in such languages
correspond to the slots in our sketches. A core difference lies in the way we
train the behaviour of slots: instead of calculating their posteriors using proba-
bilistic inference, we estimate their parameters using backpropagation and gra-
dient descent. This is similar in-kind to TerpreT’s FMGD algorithm [Gaunt
et al., 2016], which is employed for code induction via backpropagation. In
comparison, our model which optimises slots of neural networks surrounded
by continuous approximations of code enables the combination of procedural
behaviour and neural networks. In addition, the underlying programming and
probabilistic paradigm in these programming languages is often functional and
declarative, whereas our approach focuses on a procedural and discriminative
view. By using an end-to-end differentiable architecture, it is easy to seam-
lessly connect our sketches to further neural input and output modules, such
as an LSTM that feeds into the machine heap.

3.6.4 Memory Augmented Neural Networks

Recently, there has been a surge of research in differentiable execution and
program synthesis in deep learning, with increasingly elaborate deep mod-
els. Many of these models were based on differentiable versions of abstract
data structures. Most well-known out of the continuous data structures are
the continuous stack [Giles et al., 1990, Sun, 1991, Das et al., 1992, 1993,
Sun et al., 1993, Joulin and Mikolov, 2015, Grefenstette et al., 2015], contin-
uous queue [Grefenstette et al., 2015] and the general continuous memory, i.e.
heap [Graves et al., 2014, Weston et al., 2015, Sukhbaatar et al., 2015].

Following them are the continuous abstract machines, such as the
NTM [Graves et al., 2014] and their successors Differentiable Neural Com-
puters [Graves et al., 2016], the Neural RAM [Kurach et al., 2016], and
the Neural GPUs [Kaiser and Sutskever, 2016]. These continuous abstract
machines are primarily used as algorithm learners that induce algorithmic
behaviour from data, which already sets them apart from ∂4 which focuses
on incorporating algorithmic knowledge into models. Taking a closer look at
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these models, we see some similarities as well as differences between them,
based on the data and the algorithm representation they are using.

The NTM and the Neural RAM, similarly to ∂4, represent its data with a
soft one-hot alike representation throughout the model. In principle, the same
should be possible with fully dense data too, like the word embeddings used
in our word algebra problem experiments. Neural GPUs, on the other hand,
are using one-hot input data, but their hidden representations are completely
opaque and cannot be interpreter nor easily influenced in any way.

All these models are based on different continuous abstract machines, which
translates to different properties of their algorithm representation. The NTM,
even though working with soft one-hot alike data, still contain an opaque model
(MLP or LSTM) that represents its hard-to-interpret transition function that
essentially codes up the program. Even if we were able to reliably extract an
interpretable transition function, working with it is still quite hard because
it requires a lot of effort to understand and program it. Neural GPUs are
even worse in that regard as they are essentially a neural cellular automata
which are impossible to interpret and to program. Neural RAM is better
in that sense, as it generates a circuitry of commands that are interpretable
and programmable. However, the language this machine implements, though
easier to work with than with a Turing Machine, is less powerful than an
assembly language and would require more careful planning when dealing with
loops in their circuit-based execution. Admittedly, all these models can induce
somewhat complex behaviour purely from data, which we do not do in this
work, but we enable significantly easier incorporation of concrete programmatic
constructs into models, which these models cannot.

Related to our efforts is also the Autograd [Maclaurin et al., 2015b,a], which
enables automatic gradient computation in pure Python code, but does not
define nor use differentiable access to its underlying abstract machine.

The work in neural approximations to abstract structures and machines natu-
rally leads to more elaborate machinery able to induce and call code or code-
like behaviour. Neelakantan et al. [2016] learned simple SQL-like behaviour—
querying tables from the natural language with simple arithmetic operations.
Although sharing similarities on a high level, the primary goal of our model is
not induction of (fully expressive) code but its injection. Andreas et al. [2016b]
compose parse tree -guided neural modules to produce the desired behaviour
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for a visual QA task. Neural Programmer-Interpreters [Reed and De Freitas,
2016] learn to represent and execute programs, operating on different modes
of an environment and are able to incorporate decisions better captured in a
neural network than in many lines of code (e.g. using an image as an input).
Users inject prior procedural knowledge by training on program traces and
hence require full procedural knowledge. In contrast, we enable users to use
their partial knowledge in sketches.

Neural approaches to language compilation have also been researched, from
compiling a language into neural networks [Siegelmann, 1994, Neto et al., 1998,
2003], over building neural compilers [Gruau et al., 1995] to adaptive compila-
tion [Bunel et al., 2016]. However, that line of research did not perceive neural
interpreters and compilers as a means of injecting procedural knowledge as we
did. To the best of our knowledge, ∂4 is the first working neural implemen-
tation of an abstract machine for an actual programming language, and this
enables us to inject such priors in a straightforward manner.

Most recent workQuickly after we published a preprint of our work, more
work on differentiable interpreters kept popping up, showing that similar ideas
were developed concurrently. Notably, TerpreT’s [Gaunt et al., 2016] (pub-
lished as a preprint 3 months after our paper) neural network backend is an
instance of a differentiable interpreter, employed for inductive program syn-
thesis via backpropagation. Soon after, Feser et al. [2017] improved program
induction via a set of structural changes modelled on functional program-
ming constructs. Most similar to our work is the work by Gaunt et al. [2017]
which successfully used differentiable interpreters for program synthesis with
parametrised neural networks. Their differentiable interpreter is able to jointly
induce code and train a neural network invoked in the same code. Albeit it
seems that their model can fully induce code thus obviate a need for strong
priors, our contribution still stands as it includes more complex programmatic
structures such as unbounded loops and recursion, can be used to write longer
code, and was published as a pre-print 6 months before their work. Their work
opened interesting further development in the form of HOUDINI [Valkov et al.,
2018], a neuro-symbolic hybrid that combines the symbolic program synthesis
and differentiable function interpretation able to reuse neural networks from a
library of components.

Lastly, we want to acknowledge DeepProbLog [Manhaeve et al., 2018], end-
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to-end trainable integration of a probabilistic logic programming language
ProbLog [De Raedt et al., 2007] with neural networks. This model successfully
combines symbolic and sub-symbolic reasoning of a logic-based declarative lan-
guage which is faster to execute has a smaller code footprint and produces
comparable, and in some cases even better results than ∂4—it can be trained
from longer input sequences on the sorting task. Even though it can provide
better results in some cases, we note that with a lighter and optimised imple-
mentation, ∂4 should be able to perform much better than it does now, but
we leave this for future work.

The wave of “differentiability” caught on and produced many other differen-
tiable models, which due to differentiability, can now be treated like mod-
ules ready to be connected into a bigger model. Notable examples include
differentiable physics engines [de Avila Belbute-Peres et al., 2018], used as
parts of ML-based robotics models [Degrave et al., 2019], differentiable ren-
dering [Loper and Black, 2014, Li et al., 2018, Liu et al., 2019], differentiable
optimisation [Djolonga and Krause, 2017, Amos and Kolter, 2017], differen-
tiable dynamic programming [Mensch and Blondel, 2018], differentiable arith-
metic units [Trask et al., 2018], differentiable satisfiability solvers [Wang et al.,
2019], and others [Ferber et al., 2019].

3.7 Conclusion and Future Work
In this chapter we presented ∂4, a differentiable interpreter for the Forth
programming language. By designing ∂4 through a series of continuous ap-
proximations of the discrete interpreter execution, and using backpropagation,
we are able to utilise it as a way to provide strong and complex procedural
inductive biases. ∂4 complements programmers’ prior knowledge by allowing
them to code a strong and complex procedural inductive bias while enabling
learning of unspecified behaviours. We showed experimentally that ∂4 learns
to sort, add and solve word algebra problems, by using program sketches and
a small number of input-output pairs, while achieving strong generalisation.

Future WorkThere are several directions we plan to explore for the future
work of ∂4. More user-friendly language paradigms, like functional,
logic, or in general declarative programming, as well as other host languages
can ease the programmers’ efforts, increase productivity, and open new venues,
for example, differentiable database querying. Scaling up learning and ex-
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ecution would open up the possibilities of using even larger and more complex
programs, as well as induce or synthesise larger parts of the learned behaviour.
Sketch synthesis, based on, for example, a hybrid of search and continuous
relaxation, would enable us to synthesise larger portions of the unknown code,
leaving less of coding to the user and more to the model. Integrating sketch-
ing with non-differentiable transitions, such as those arising in interaction
with a real environment can open up quick mastery of otherwise difficult-to-
learn tasks, such as computation, reasoning and optimisation, in the reinforce-
ment learning setting. Notably, we see differentiable sketch programming as a
promising approach in Hierarchical Reinforcement Learning as sketching can
enable learning parts of machines in Hierarchies of Abstract Machines [Parr
and Russell, 1998]. Finally, we see Natural Language Processing (NLP)
as an application domain which can particularly benefit from sketching as
tasks in machine reading, numerical reasoning and knowledge base inference
are particularly amenable to the sketching approach.



Chapter 4

gNTP: Greedy Neural Theorem
Provers

Automated reasoning over real-world data, such as KBs and natural language
is an essential challenge for AI and NLP [Craven et al., 1998, Etzioni et al.,
2006, Banko et al., 2007]. Standard symbolic reasoning approaches provide a
sound way to reason with knowledge, though at a computational cost and the
need to formalise knowledge symbolically [Green and Raphael, 1968, Wino-
grad, 1972]. Learning approaches such as NNs, on the other hand, provide a
way to efficiently learn from raw data, though at the expense of transparency
and difficulties with systematic generalisation [Marcus, 2018, Chollet, 2019,
Marcus, 2020]. Neuro-symbolic integration promises principled integration of
these two approaches that enable robust learning and structured reasoning
with what is learned [Garcez et al., 2019]. One such model, a differentiable
Datalog interpreter NTP [Rocktaschel and Riedel, 2017], blends the strong in-
ductive bias of symbolic reasoning with representation learning. However, the
NTP relies on a computationally demanding continuous relaxation of declara-
tive (logic) interpretation. This relaxation renders NTPs infeasible to use for
but small KBs and further disheartens their application to natural language.

In order to scale NTPs to larger KBs, we analyse the computational bottlenecks
of their proof generation and present a pruning strategy to cut down their time
and memory complexity drastically. This gain in efficiency, in turn, drives us to
consider further expanding NTPs to utilise compositional aspects of language
to reason over KBs and natural language texts jointly. The resulting model,
dubbed gNTP, can scale to large KBs to perform deductive-like reasoning on
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learned dense representations of both KBs facts and natural language texts.

4.1 Scaling Reasoning as a Strong Inductive
Bias

The benefit of neuro-symbolic systems is their ability to capitalise on the com-
plementary strengths and weaknesses of both neural and symbolic models,
inheriting the best of both worlds [Garcez et al., 2012]. Symbolic models
are easily interpretable and can strongly generalise from a small number of
examples, but are brittle and prone to failure in noisy and ambiguous envi-
ronments, such as natural language and real-world KBs [McDermott, 1987].
Neural models, on the other hand, are robust to noise and ambiguity, but are
rarely interpretable and do not generalise well outside of the training distribu-
tion. Recent neuro-symbolic systems [Garcez et al., 2019] enable learning dense
representations of symbols, allowing for ambiguous and non-discrete compari-
son of symbols, maintaining interpretability and strong generalisation [Marcus,
2018]. A notable model in this class of systems is the Neural Theorem Prover.

NTPs [Rocktaschel and Riedel, 2017] are an end-to-end differentiable reasoning
model, effectively a differentiable interpreter for a Datalog-alike [Roussel,
1975, Ceri et al., 1989] logical language, based on a continuous relaxation
of the backward chaining algorithm [Russell and Norvig, 2009]. Following the
structure of the interpreter, defined in Section 2.3.2, NTPs follow the backward
chaining algorithm (Section 2.2.2) and soft unification to build a full proof-
tree for proving a goal G in a given KB. The backward chaining proof path
construction enables NTPs their strong inductive bias of symbolic reasoning,
while the continuously relaxed unification operator enables end-to-end learning
of dense representations for symbols. This structure enables NTPs to learn
interpretable rules from data and makes them explainable as both proof paths
and induced rules are interpretable.

However, though the continuous relaxation of the underlying logic (declarative)
interpreter is what enables all these desirable properties, it is also at the crux of
their inability to scale to large datasets. During both training and inference,
NTPs need to compute all possible proof paths needed for proving a goal,
relying on the continuous unification of the goal with all the rules and facts in
the KB, as opposed to the standard unification which unifies goals only with
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compatible rules and facts. This often becomes infeasible for even medium-
sized datasets, as the number of proof paths grows exponentially. This issue
can be even more dramatic when considering applying NTPs on facts expressed
in natural language, as one can easily collect many more facts expressed in
natural language than in regular KBs. Adding facts and rules expressed in
natural language can thus drastically increase the size of the KBs, making
scaling somewhat of a prerequisite for applying NTPs to reasoning over natural
language. Finally, NTPs are interpretable as they produce readable induced
rules. However, proof paths produced are interpretable too and they are highly
indicative of how the model utilises the induced rules. This utilisation of rules
by proof paths is another element of models’ interpretability that has not yet
been analysed.

We pose the following research questions:

• Can we overcome the scalability issue of NTPs and scale them up to
large datasets without sacrificing their evaluation performance?

• How can we make NTPs reason with KBs and natural language texts?

• Is the interpretability of NTPs as useful as presented by Rocktaschel and
Riedel [2017]?

We answer these questions by showing that:

• NTPs scores prefer closest representations of unified atoms to goals, so we
can radically reduce the computational complexity of both inference and
learning by only unifying goals with the k-nearest neighbouring atoms,
preferring the most promising proof paths instead of enumerating them
all.

• an attention mechanism further lowers down the representational com-
plexity of rule-learning and helps to achieve better evaluation perfor-
mance.

• employing these two techniques improves both the memory and the run-
time performance of NTPs while performing as well or better than NTPs
on small link prediction tasks.1

• integrating a compositional language reader which represents natural lan-
1Also known as Knowledge Base Completion tasks; tasks of automatic inference of miss-

ing facts in KBs.
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guage as predicates by composing word representations enables NTPs to
incorporate textual knowledge in KBs and jointly learn the represen-
tations of text in the same embedding space as the representations of
symbols.

• a qualitative analysis of proofs and induced rules reveals that decoding
induced rules with a 1-nearest neighbour can result in erroneous inter-
pretations.

The contributions in this chapter are the following: i) we present gNTP, an
efficient NTP model which significantly reduces the time and space complex-
ity requirements by greedily reducing the number of candidate proof paths
and lowering the number of parameters for rule learning with the attention
mechanism, ii) we extend gNTP with a compositional reading module which
jointly embeds predicates and natural language texts in the same embedding
space, iii) we experimentally show that gNTP perform on par with, or better
than NTP at a fraction of the cost, and can achieve competitive link predic-
tion results on large-scale datasets while being able to provide interpretable
explanations for each prediction and iv) that decoding induced rules with the
method presented in Rocktaschel and Riedel [2017] can even be misleading,
and that best-ranking proof paths too should be used when interpreting the
induced rules.

4.2 Background: Neural Theorem Provers

Logic program interpreters can give answers to queries when the answers can be
logically deduced from the KB, relying on unification for inspecting equality
between symbols compared during the deduction. For cases where symbols
are not the same but might support the concept of similarity, standard logic
programming fails. Rocktaschel and Riedel [2017] introduced NTPs as a way
to expand logic programming with the ability to deduce over symbols based on
their similarity, importantly, by learning representations of KB symbols from
data.

NTPs are a class of neural network models for end-to-end differentiable de-
ductive reasoning. They mimic the backward chaining proving strategy
(Section 2.2.2) by recursively building a neural network which enumerates
all possible proof paths for proving a goal over the KB, up to a specific
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proof depth, making the enumeration effectively a depth-limited Breadth-First
Search (BFS). To support learning representations in a KB K, NTPs expand
a given KB with a set of parameters, Kθ = (K, θ), where θ stands for a learned
d-dimensional vector representation for each constant and predicate symbol in
KB, indexed by the symbol, e.g. θlocatedIn ∈ Rd.

4.2.1 Continuous Relaxation of Backward Chaining

The recursive enumeration of all proof paths by NTPs relies on three modules
for building this neural network, derived from same-named modules in Sec-
tion 2.2.2; the unification module unify, which compares sub-symbolic rep-
resentations of symbols, and mutually recursive or and and modules, which
jointly enumerate all the possible proof paths, before the final aggregation
selects the single, highest-scoring state.2

We briefly overview these modules and the training procedure in the following.
We follow the notation presented in the previous section while simplifying the
notation with a partial function definition, treating failure as the omission of
the function definition.

Unification module In backward chaining, unification [Herbrand, 1930,
Robinson, 1965] is the process of finding substitutions that make two logical
expressions look identical [Russell and Norvig, 2009] as a means of check-
ing whether they can represent the same structure. Symbolic unification
checks for equality between the corresponding elements of two atoms, e.g.
atoms districtIn(X,Z) and districtIn(bloomsbury,london) unify as
their predicates are equal, and the variables can be bound to symbols via the
substitution {X/bloomsbury,Y/london}. This is a strict process that does
not support the notion of possible similarity between atoms, e.g. locatedIn,
could be similar to situatedIn or united_kingdom could be similar to
great_britain.

In lieu of the symbolic unification in Equation (2.20), NTPs employ contin-
uous unification, which enables comparing different symbols with similar se-
mantics, by comparing their vector representations with a similarity function,
e.g. sim(locatedIn,situatedIn) = f(θlocatedIn, θsituatedIn). This continuous

2Though NTPs would, as would the backward chaining, return all proof paths, the
model assumes that only the highest-scoring proof path is the valid one, hence the final
proof aggregation.
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unification makes comparing ground atoms and applying rules possible even
in cases where discrete symbols differ:

unifyKθ(H,G,S) =

S if H =G= []

unifyKθ(H
′,G′,S′) if |H|= |G|,H = [h :H ′],G= [g :G′]

where

S = (ψ,ρ)

S′ = (ψ′,ρ′)

ψ′ = unify-var(h,g,ψ)

ρ′ = min(ρ,sim(h,g,Kθ)) .
(4.1)

Note that now, the proof state S = (ψ,ρ) consists of two elements: the sub-
stitution ψ, as in backward chaining, and the proof score ρ which quantifies
the agreement of two substitutions. This reflects on the unify-var function
which does not lead to unification failures as in Equation (2.21), but allows
comparison of all expressions:

unify-var(h,g,ψ) = ψ∪


{h/g} if h ∈ V

{g/h} if h /∈ V,g ∈ V

∅ otherwise

. (4.2)

The continuous unification operator now calculates a proof score ρ for each
proof path by relying on a similarity function sim defined with a Radial Basis
Function (RBF) kernel [Broomhead and Lowe, 1988]:

sim(h,g,Kθ) =


exp

(
−‖θh− θg‖2

2σ2

)
if h,g /∈ V

1 otherwise
, (4.3)

where θg and θh are representations from Kθ corresponding to symbols h and
g. We can see that, by design, the unification of a variable and a constant does
not influence the proof score (Equation (4.2)), while the unification between
two different symbols influences the score if the symbol similarity is lesser than
the current proof score (Equation (4.1)).

For example, given atoms locatedIn(london,uk) and situatedIn(X,Y),
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and a proof state S = (ψ,ρ), the unify module calculates the similarity of
embedding representations θlocatedIn and θsituatedIn with a RBF kernel, up-
dates the substitution set ψ′ = ψ ∪ {X/london,Y/uk}, and calculates the
new proof score as ρ′ = min(ρ,sim(θlocatedIn, θsituatedIn)).

OR moduleThe or module aims to prove the goal by unifying it with every
fact and rule in the KB Kθ.

Formally, as in Equation (2.18), or unifies the goal G with the head H of each
rule H :− B ∈ K, and calls the and module with the resulting substitution to
prove atoms in the body B of each rule:

orKθ(G,d,S) =
S′

∣∣∣∣∣∣ H :− B ∈ Kθ

S′ ∈ andKθ(B,d,unifyKθ(H,G,S))

 . (4.4)

For example, given a goal G = situatedIn(london,uk), and the rule
locatedIn(X,Y) :− districtIn(X,Z),capitalOf(Z,Y), the model would
unify the goal with the head locatedIn(X,Y) of the rule, and instantiate and
modules, to prove sub-goals in the body districtIn(X,Z),capitalOf(Z,Y)

of the rule .

AND moduleThe and module, in turn, aims to recursively prove a list of
sub-goals such as body atoms in a rule. Concretely, given a list of sub-goals,
G= [g :G′], the andmodule will apply the substitution ψ to the sub-goal g, and
call the or module to further unify it with the rules in the KB. The resulting
state of the unification is the starting state to further recursively prove the rest
of the list, the tail G′ by invoking the and module on it, as in Equation (2.19):

andKθ(G,d,S) =


S if G= []S′′

∣∣∣∣∣∣ S
′ ∈ orKθ(ψ g,d−1,S)

S′′ ∈ andKθ(G′,d,S′)

 d > 0,G= [g :G′]
.

(4.5)
For example, when invoked on the rule body B from the example before,
the and module will first substitute variables with constants for the sub-goal
districtIn(X,Z) and invoke the or module on it. Starting with the resulting
state, and is invoked on capitalOf(Z,Y).

We depict the interplay of all these modules in the NTP model in an example
of a run on the KB in Listing 2.1 on the goal situatedIn(bloomsbury,uk)
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in Figure 4.1. Note that now, in contrast with the backward chaining example
in Figure 2.3, the mutual recursion of the and and or in NTP produces a
significantly larger proof space, where the only failure encountered (depicted
for comparison) is the result of the loop avoidance [Van Gelder, 1987].

NTP as Differentiable Logic Interpreter Following the exposition in Sec-
tion 2.3.2, per Equation (2.28), NTP is a differentiable logic interpreter:

Υntp(Kθ,G,d) = max{ρ | (ψ,ρ) ∈ orKθ(G,d,(∅,1)} , (4.6)

with the initial proof state set to (∅,1), an empty substitution set and a starting
proof score of 1. The execution of the or function results in the enumeration of
all the proof paths of the goal G on a KB Kθ, to a pre-specified depth d. NTPs
assume that only the highest-scoring proof path is the correct one, hence the
maximisation over the scores ρ.

4.2.2 Training

We can learn the parameters θ of the predicate and constant representations by
optimising the binary cross-entropy loss on the final proof score. By iteratively
masking facts in the KB and trying to prove them using all the other available
facts and rules [Rocktaschel and Riedel, 2017] we get:

LKθ(D) =
∑

(G,y)∈D
−y log(Υntp(Kθ,G,d))− (1−y) log(1−Υntp(Kθ,G,d))

=
∑

(G,y)∈D
H(y,Υntp(Kθ,G,d))+H(1−y,1−Υntp(Kθ,G,d)) ,

(4.7)

where D = {(G,y)} is the dataset containing pairs of goals G and labels y,
where y = 1 for the goals present in the KB Kθ. The negative examples, in this
case, are sampled from the positive ones by corrupting the entities and setting
y = 0.

The original NTP model is computationally demanding, so Rocktaschel and
Riedel [2017] implement two optimisations to speed up training—batch pro-
cessing of several proofs in parallel, and limiting the number of possible unifi-
cations of free variables in rules with a differentiable K-max heuristic [Rock-
taschel and Riedel, 2017].

Note that, strictly speaking, though NTPs are continuous, they are not dif-



4.2. Background: Neural Theorem Provers 111

XQLI\� � �ᵰ� ��� �ᵰ� ȡ�%� XQLI\� � �ᵰ� ��� �ᵰ� ȡ�%�

XQLI\� � �+ᵰ� ��� �ᵰ� ȡ�%�

XQLI\� � �ᵰ� ��� �ᵰ� ȡ�%� XQLI\� � �ᵰ� ��� �ᵰ� ȡ�%�

XQLI\� � �+ᵰ� ��� �ᵰ� ȡ�%�

%�

`ŚţƿŏĒČĭĒȽ
�èƓĒ

PD[
ȡ

�� �ᵰ� ȡ�

�� �ᵰ� ȡ� �� �ᵰ� ȡ� �� �ᵰ� ȡ� �� �ᵰ� ȡ�

RU� �ᵰ� ��� �ᵰ� ȡ�%� RU� �ᵰ� ��� �ᵰ� ȡ�%�

 �^;�EORRPVEXU\��<�XN`

 �^;�EORRPVEXU\��<�XN��=�ORQGRQ`

 �^;�EORRPVEXU\��<�XN��=�XN`

 �^`

%�

XQLI\� � �ᵰ� ��� �ᵰ� ȡ�%� XQLI\� � �ᵰ� ��� �ᵰ� ȡ�%� XQLI\� � �+ᵰ� ��� �ᵰ� ȡ�%�

RU� �ᵰ� ��� �ᵰ� ȡ�%�

DQG� � �> @ ��ᵰ� ȡ��%� DQG� � �> @ ��ᵰ� ȡ��%�

DQG� � �> @ ��ᵰ� ȡ���%� %�

XQLI\� � � ��� � � XQLI\� � � ��� � � XQLI\� � �+ ��� � �

RU� � ��� � �

ᵰ�

ᵰ�

ᵰ�

ČĹƓƟƉĹąƟOŚȠăŏţţŘƓăƧƉǅȐȽŏţŚČţŚȡ

ąèƆĹƟèŏxĬȠŏţŚČţŚȐȽƧŌȡ

ČĹƓƟƉĹąƟOŚȠ×ȐȽâȡ ąèƆĹƟèŏxĬȠâȐȽØȡŏţąèƟĒČOŚȠ×ȐȽØȡ ȑȦ Ȑ

ƓĹƟƧèƟĒČOŚȠăŏţţŘƓăƧƉǅȐȽƧŌȡ

�� � ȡ��� � ȡ�

+

Figure 4.1: An example of the execution of NTP on a small knowledge base. The
knowledge base, presented in Listing 2.1, is also noted in the top right
corner. Circles signify substitutions, squares atoms (with circles next
to squares signifying applying a substitution to an atom) and pen-
tagons signify the output scores. The colour codings of the KB and
the unifications follow through the example. We omit some calls to and
for clarity. The calls resulting in failure are transparent to accentuate
that the algorithm ignores them, but we present them for comparison
to Figure 2.3. As opposed to the linearly recursive call structure in ∂4,
we can note the fully recursive structure of calls in NTP. Note the sig-
nificantly larger number of proof paths that the algorithm maximises
over, compared to Figure 2.3—this is what we aim to improve.
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ferentiable since the min and max functions used are not differentiable every-
where. However, they do have subgradients that we can use to propagate the
gradient information through the extrema of these functions.3

Logic Program InductionThe ability to learn continuous representations
of predicates opens the possibility of learning interpretable rules from data.
Rocktaschel and Riedel [2017] show that manually specifying rule templates
such as #p(X,Y) :− #q(X,Z),#r(Z,Y), where #p,#q,#r denote learned
predicates with θ#p, θ#q, θ#r as free parameters, it is possible to learn rules
from data. They show that the parameters can be learned from data and
simply decoded for inspection by searching the closest representation of each
parameter in the space of all predicate parameters.

4.3 Greedy Neural Theorem Provers

The NTPs, as presented in Section 4.2, are end-to-end differentiable models
capable of deductive reasoning, learning representations, program synthesis
and they provide explainable predictions. In theory, this makes them an excel-
lent candidate for models for theorem proving over text. In practice, however,
the representation learning capacity of these models comes at a huge cost—
computational intractability for all but the small KBs.

In this section, we present gNTPs, models which i) attack the issue of compu-
tational intractability by employing a heuristic to filter out proof paths deemed
unnecessary, thus making the model scale to larger datasets ii) incorporate a
compositional language reader making them readily applicable to text-enriched
datasets, as a step towards natural language reasoning.

4.3.1 Scaling up NTPs

In general, the inability of NTPs to scale to bigger datasets stems from three
interconnected causes. First, NTPs inherit the complexity of the backward
chaining algorithm, usually implemented with the DFS search strategy. Sec-
ond, the inherited complexity is additionally exacerbated by the continuous
unification which, instead of checking for equality, needs to calculate the com-
patibility of all symbols. Finally, this is yet worsened with the need to utilise

3The gradient is passed through the path of the minimum/maximum element, respec-
tively.
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the (depth-limited) BFS strategy to enumerate all the proof paths, as a prereq-
uisite to simplified Graphics Processing Unit (GPU) computation and efficient
batching. The combination of these three issues creates a significant com-
putational bottleneck in the model. Here, we focus on solving the issue of
continuous unification as a core computational issue introduced by the model.

As opposed to a discrete theorem prover, where the unification stops non-
comparable symbols to be unified and further explored, the continuous uni-
fication allows comparison of all symbols, implying that a simple equal-
ity check now expands to a similarity calculation to all elements in the
KB. Concretely, for each (sub-)goal, the process of enumeration and scor-
ing all bounded-depth proof paths requires unifying the (sub-)goal with all
the representations of all rule heads and facts in the KB. Furthermore,
the expansion of rules with more than one atom in the body causes an
increase of the sub-goals to prove (paired with the unification increase),
both because all atoms in the body need to be proven, and because rules
(e.g. locatedIn(X,Y) :− districtIn(X,Z),capitalOf(Z,Y)) may con-
tain newly introduced free variables which are not present in the head of the
rule, and these variables additionally complicate the calculation as instead of
binding them to the same value, their binding needs to be calculated by the
unification. Even though Rocktaschel and Riedel [2017] addressed this issue
with the differentiable k-max, the differentiable k-max still requires an on-the-
spot calculation of all the scores before choosing only the top-ranking ones.

We propose implementing a heuristic approach that tackles the complexity
of continuous unification, thus mitigating the computational costs of NTPs
unification, making them readily applicable to large datasets, and opening up
the possibility of applying them to text-enriched data. We dub these models
gNTPs, given the greedy nature of the heuristic.

We implemented gNTPs in Tensorflow Eager [Agrawal et al., 2019] and made it
freely available under the MIT license at https://github.com/uclnlp/gntp.

4.3.1.1 Greedy Unification

We analyse the issues of continuous unification on two fronts, the unification
of goals with facts, and the unification of goals with atoms in rules (i.e. rule
selection).

https://github.com/uclnlp/gntp
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Greedy Fact UnificationThe number of facts in real-world KBs can be
large [Paulheim, 2017], for example, Freebase [Bollacker et al., 2008] contained4

637 million facts [Dong et al., 2014], while the Google Knowledge Graph con-
tains 18 billion facts [Nickel et al., 2015] . This is why NTP-style unification of
sub-goals with each one of the facts is simply intractable on such huge datasets.
Concretely, let us assume a simple parametrised KB Kθ composed of n facts
and no rules. Given a query G over a rule-free Kθ, and following Equation (4.5)
and Equation (4.4), NTP reduces Equation (4.6) to the following problem:

Υntp(Kθ,G,1) = max{ρ | (ψ,ρ) ∈ unifyKθ(F,G,(∅,1)),F ∈ Kθ} , (4.8)

that is to say, to find the maximum scoring path, NTP needs to find a single
fact F ∈Kθ, that, when unified with the goal G yields the maximum unification
score. This implies that NTPs will compute the unification score between the
sub-goal G and every fact F ∈Kθ in order to find the one which corresponds to
the maximum score. Given that this scales linearly with the number of facts in
the KB for all the leaves of the proof tree, this is computationally prohibitive
for large datasets.

Moreover, NTPs will only return a single highest proof score. This means that
during training, NTPs update parameters only along the path of the highest
proof score. During inference, NTPs provide only the highest proof score.

The insights that finding the maximum scoring path reduces to finding the fact
F closest to the goal G, the notion that we need to obtain only a single proof
score and the fact that the similarity used in the unification is calculated via a
RBF kernel, suggests we can cast this problem as a Nearest Neighbour Search
(NNS) problem [Fix, 1951, Bentley, 1975, Yianilos, 1993]. Utilising NNS is
feasible since the RBF kernel, used by the NTPs is monotonically decreasing
with the increasing Euclidean distance between the goal G and the fact F .
Identifying the closest fact F to the goal G would permit the reduction of the
number of path computations from O(|Kθ|) to O(1), not factoring in the cost
of the NNS search, thus casting the problem in Equation (4.8) to:

Υntp(Kθ,G,1) = max{ρ | (ψ,ρ) ∈ unifyKθ(F,G,(∅,1)),F ∈NKθ
k (G)} , (4.9)

that is, given the goal G we restrict the search for the closest fact F to a

4Freebase was supplanted by Wikidata from May 2016.
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Euclidean local k-neighbourhood NKθ
k (G) defined as:

NKθ
k (G) = k-argmin

F∈Kθ
‖θF − θG‖ . (4.10)

This problem in Equation (4.8) is equivalent to the problem in Equation (4.9),
but we still need to be able to calculate the k-nearest neighbours NKθ

k (G)
efficiently to benefit from this. Here, we propose to efficiently compute the
nearest neighbours between a sub-goal G and facts F ∈ Kθ with fast NNS
algorithms. However, finding nearest neighbours is a difficult task—due to
the curse of dimensionality [Bellman, 2015], finding the exact neighbourhood
of a point in a Euclidean space is very costly [Indyk and Motwani, 1998].
Experiments showed that methods for identifying the exact neighbourhood can
rarely outperform brute-force linear scan methods when the dimensionality is
high [Weber et al., 1998], and that the high dimensionality exacerbates possible
issues of the quality of the NNS results [Beyer et al., 1999, Hinneburg et al.,
2000]

One practical solution is to utilise Approximate Nearest Neighbour Search
(ANNS) algorithms, which focus on finding an approximate solution to the
k-NNS problem. Several families of ANNS algorithms exist, such as Locality-
Sensitive Hashing [Andoni et al., 2015], Product Quantisation [Jegou et al.,
2011, Johnson et al., 2017] and Proximity Graphs [Malkov et al., 2014].
One of the most promising approaches is the Hierarchical Navigable Small
World [Malkov and Yashunin, 2018], a graph-based incremental ANNS struc-
ture which offers significantly better logarithmic complexity scaling during
neighbourhood search than other approaches [Li et al., 2019]. In our first
series of experiments, we experimented with this technique as a part of the
nmslib5 library.

Another practical solution is to utilise a fast, exact NNS algorithm, executed
on a GPU, such as Facebook AI Similarity Search (FAISS) [Johnson et al.,
2017].6 Since optimised for GPU computation, this library provides exact
results in less time than the approximate methods, for large enough datasets
(up to 1 million facts). However, for more than 1 million facts, it would be
advisable to use ANNS algorithms, some of which are also implemented on a
GPU, such as the GPU implementation of the Product Quantisation in FAISS

5https://github.com/nmslib/nmslib
6https://github.com/facebookresearch/faiss

https://github.com/nmslib/nmslib
https://github.com/facebookresearch/faiss
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In this work, we opt for the exact NNS with GPU support with FAISS for
efficient NNS. We chose the exact one simply because the GPU-supported NNS
is significantly faster than the CPU-based ANNS for the sizes of problems we
deal with here. For even larger datasets, however, the exact NNS stops being
a viable option.

Notice one important remark here: both the ANNS and NNS models build an
indexing structure for the particular instance of the KB, and the cost of that
index building is often higher than the cost of querying it. To offset this cost,
we chose to re-build the index every i-th batch. This choice to act upon stale
information from a stale index invalidates the equivalence of Equation (4.8)
and Equation (4.9). However, we assume that small updates by stochastic
gradient descent would not necessarily invalidate previous search indexes and
thus support the choice of a heuristic on stale information.

Greedy Rule SelectionAnalogous to facts, we can extend the same pro-
cedure to select which rules to activate for proving a given goal as well.
For example, given a goal situatedIn(london,uk) and a rule head H

locatedIn(X,Y), it is sensible to expand said rule if there is high similar-
ity between the embedding θlocatedIn and θsituatedIn. Strictly speaking, this
local decision of choosing a rule with a closer predicate (or predicate and one
atom, in the case of sub-goals with one variable assigned), is a greedy deci-
sion which does not guarantee the highest scoring path in the end. However,
although the rule chosen due to the high similarity to the goal may lead to a
sub-optimal proof path, we empirically observed that unifying the goal with
the closest rule heads is likely to generate high-scoring proof paths.

Specifically, in our implementation, we generate a set of NNS indexes cor-
responding to a partitioning Part(Kθ) of the KB where each element of the
partition groups all facts and rules in Kθ sharing the same signature. For exam-
ple, all facts such as locatedIn(london,uk) and situatedIn(london,uk)
share the same index, as well as all atoms of the form p(X,a) and q(Y,b).7

Having both the fact and rule unification cast as a NNS problem, and having
indexes for NNS both the fact and rule selection defined through a partitioning

7In total, the number of these partitions equals at most 2v, where v is the number of
variables in an atom.
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Part(Kθ) of the KB, allows us to redefine the or module as:

orKθ(G,d,S) =
S′

∣∣∣∣∣∣ H :− B ∈NPart(Kθ)
k (G)

S′ ∈ andKθ(B,d,unifyKθ(H,G,S))

 , (4.11)

where instead of unifying a goal G with all facts and rule heads in the KB, we
constrain the unification with ANNS to only facts and rule heads in the local
neighbourhood of the goal NPart(Kθ)

k (Kθ).

4.3.1.2 Attention

We can use NTPs to learn interpretable rules [Rocktaschel and Riedel, 2017].
However, since the number of parameters associated with predicates is the
same as the number of parameters associated with constants, rule learning
can be quite inefficient in cases where the number of predicates is smaller
than the number of dimensions. For example, considering a rule example
#p(X,Y) :− #q(X,Z),#r(Z,Y), we observe that the number of parameters
in it is three times the size of the embeddings d, and learning them directly
can take time, given that the model needs to find a good set of parameters in
the full d-dimensional space.

Given that the rules would ideally employ embeddings of existing predicates,
we propose to constrain the number of parameters in predicate embeddings
by using an attention mechanism [Bahdanau et al., 2015] over already known
predicates in the KB.

Concretely, given P , a set of known predicates in the KB, KP
θ , the subset of

the KB corresponding to P , and P, a matrix of embeddings of P , we re-define
the predicate parameters θP per Equation (2.15) as:

θᵀP = softmax(θ̂P)ᵀP , (4.12)

where θ̂P are the (new) attention parameters associated with predicates P (one
value per predicate).

The attention has a twofold effect here. First, it can improve the parameter
efficiency of the model by lowering the number of parameters for training
rules in cases where the number of known predicates is lower than than the
embedding size d, by introducing c|P| parameters for each rule rather than cd,
where c is the number of trainable predicate embeddings in the rule. Second,
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it has a constraining effect on the trainable embeddings as it drives the newly
learned embedding to a convex hull of known predicates in the KB.

4.3.2 Joint Reasoning on Knowledge Bases and Natural
Language

Natural language is characterised by compositionality, a property crucial to
production and understanding of a large (seemingly infinite) number of sen-
tences with a limited number of words [Katz and Fodor, 1963, Davidson, 1967,
Grandy, 1990]. In short, the principle of compositionality dictates that mean-
ing of a unit of text is a function of the meaning of its constituent words and the
rules that combine them [Cresswell, 1973, Partee, 1995]. In the representation
learning setting, this is often modelled by representing sentences as functions
of representations of its elements.

NTPs do not use compositional representations; they entirely rely on mono-
lithic representations of symbols, hence any representation of relations or enti-
ties from a piece of text would rely on representing the full text as a single sym-
bol. Given the compositional character of language, this seems like a wasted
opportunity. For example, sentences like “London is located in the UK” and
“London is in the UK” obviously both testify to a relationship between entities
london and the uk in the KB, and share much informational content, which
would not be captured by a monolithic representation.

This inspired us to expand gNTPs to support reasoning with textual knowledge
using compositional language representation.

We focus on representing knowledge in the form of textual facts, treat-
ing the text between the entities in the KB as a relation mention [Mintz
et al., 2009], assuming that sentences mentioning two entities express a
relation between them [Hoffmann et al., 2011]. For example, we rep-
resent “Bloomsbury is a quarter of London” with a relation mention
"[#1] is a quarter of [#2]" and entities bloomsbury and uk in a textual
fact "[#1] is a quarter of [#2]"(bloomsbury,london).8 Other than
using the text between these two entities, we can also use other information
representations such as whole sentences [Riedel et al., 2010], or derivative
information such as parts of the dependency parse [Riedel et al., 2013].

8[#1] and [#2] denote placeholders for the first and the second entity/argument of the
textual fact.
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Figure 4.2: An example of the execution of gNTP on a small knowledge base,
presented in the top right corner. Circles signify substitutions, squares
atoms (with circles next to squares signifying applying a substitution to
an atom) and pentagons signify the output scores. The colour codings
of the KB and the unifications follow through the example. We omit
some calls to and for clarity. The calls resulting in FAIL are transparent
to accentuate that the algorithm ignores them, but we present them
for comparison to Figure 4.1. Note that the model maximises over only
two proof paths in this case. The difference is even more pronounced
on larger KBs.

To that end, we expand the KBs with textual facts, by expanding standard
predicates with relation mentions. The standard predicates are encoded by
a look-up into the parameters θ, whereas relation mentions are encoded with
a compositional reading module reader which maps a sequence of token rep-
resentations into the same d-dimensional space of the original predicate. By
composing token representations into a representation of the mention, we ef-
fectively model the compositional aspect of language [Mikolov et al., 2013].

Formally, given a relation mention m, and the knowledge base Kθ with pa-
rameters expanded with a set of token embeddings, the reader encodes the
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surface pattern m as a mean of embeddings of tokens t ∈m:

readerKθ(m) = 1
|m|

∑
t∈m

θt . (4.13)

Although reader can be implemented by any parametrised differentiable ar-
chitecture, such as CNNs [Kalchbrenner et al., 2014], RNNs [Mikolov et al.,
2010] or a transformers [Vaswani et al., 2017], we opted for a simple parameter-
free averaging model for the sake of simplicity and efficiency. It is worthwhile
noting that, albeit simple, the averaging model has been shown to perform
on par or even better than other, more elaborate models, thanks to a lower
tendency to overfit to training data [White et al., 2015, Arora et al., 2017,
Mitchell et al., 2018]. We leave more elaborate parametrised models for future
work.

An example of a gNTP run on a text-enriched KB can be seen in Figure 4.2.
Note the drastic reduction in complexity, when compared to NTP in Figure 4.1,
resulting in a smaller proof tree.

4.4 Experiments

Given that the goal of modelling gNTPs is to deal with computational in-
tractability of NTPs and make them applicable to textual data, we hypothesise
that gNTPs:

H1 perform similarly to NTPs on smaller datasets, where they can be di-
rectly compared

H2 are more time and memory performant than NTP

H3 scale to large datasets, as a direct consequence of H2, and if they do, we
aim to investigate how they compare to state-of-the-art models

H4 can utilise the newly-added ability to deal with textual data, and we aim
to see whether they successfully use the added benefit of the aforemen-
tioned data

H5 can provide interpretable rules and proofs, useful for qualitative analysis

We test these hypotheses via an extensive evaluation of gNTPs models on
multiple tasks, splitting them by the dataset size to small and large datasets.
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We start with four small datasets of varying sizes and complexities, on which
we quantify the performance of gNTPs compared to the performance of NTPs
(H1). Concurrently, we compare gNTPs with other state-of-the-art link predic-
tion models as well as with related, continuous-logic and path-based models.
Afterwards, we compare the time and memory use of gNTPs and NTPs on
the same small datasets, given that these datasets present the limit of usage
for NTPs (H2). Next, we test the scaling capabilities of gNTPs by running
them on three large datasets and comparing them to multiple state-of-the-art
models and baselines (H3). We interleave small and large datasets experiments
with qualitative analyses, to analyse the use of interpretable rules and proofs
(H5). Finally, we conclude the experimental section with the analysis of gNTP
on the text-enriched Countries datasets (H4).

4.4.1 Datasets, Evaluation and Baselines

4.4.1.1 Datasets

To compare gNTP with NTP and state-of-the-art link prediction models, we
use the same datasets as Rocktaschel and Riedel [2017], namely the Countries
S1, S2, S3, Nations, Kinship and UMLS datasets. Due to their humble size,
we refer to these datasets as small datasets. Countries is the Nickel et al.
[2016b] version of the Bouchard et al. [2015] dataset, intended as a benchmark
dataset for testing long-range reasoning capabilities of link prediction models.
It is a dataset of 1158 facts about 244 countries, denoting relationships of
neighbourhood and affiliation (2 relations) to a hierarchy of 23 subregions and
5 regions (countries, subregions and regions being the entities) of the world.
The dataset is split based on countries so that each country in the development
(20 countries) and the test (20 countries) set has at least a neighbour in the
train (204 countries) set. This is the basis for three progressively harder ver-
sions of this dataset. Countries S1 is missing the region affiliation of test set
countries, making it solvable by utilising the subregion information with the
trainsitivity rule locatedIn(X,Y) :− locatedIn(X,Z),locatedIn(Z,Y).
Countries S2, in addition to S1, is missing the subregion affiliation of test set
countries, making it solvable by inferring location from neighbour information:
locatedIn(X,Y) :− neighborOf(X,Z),locatedIn(Z,Y).9 Countries S3,

9Neighbouring countries might not be in the same region hence this rule does not always
hold
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in addition to S2 is missing the region affiliation of all neighbours of all
countries in the dev and test sets, making it solvable via the three-hop rule
locatedIn(X,Y) :− neighborOf(X,Z),neighborOf(Z,w),locatedIn(w,Y).

To test the usefulness of textual capabilities of gNTP, we generated variants
of the Countries datasets named Countries with mentions by randomly
replacing a varying percentage of training set triples with a randomly chosen
mention out of a set of human-generated mentions. The mentions we used are
enumerated in Table B.1.

Following Countries as the benchmarking datasets, we use three datasets used
in previous work [Kemp et al., 2006, Kok and Domingos, 2007] for relational
learning, namely the Nations, Kinship and UMLS datasets. Nations [Rum-
mel, 1976] is a political dataset, containing interactions (relations) between
nations (entities).10 Kinship [Denham, 1973] is a dataset containing complex
kinship structures exhibited in the Australian Alyawarra tribe, containing kin-
ship relationships (relations) between individuals (entities) of the tribe [Den-
ham, 1973]. UMLS [McCray, 2003] is a biomedical ontology, presenting rela-
tionships (relations) between high-level concepts (entities).

Since gNTPs allow us to experiment on significantly larger datasets than
NTPs, we use the standard large datasets, WN18, WN18RR, and FB122.
WN18 [Bordes et al., 2013] is a subset of WordNet [Miller, 1995], a lexical
KB for the English language, exhibiting lexical relationships (relations) be-
tween word senses (entities). WN18RR [Dettmers et al., 2018] is a harder
derivative of WN18, with fixed test leakage issues. FB122 [Guo et al., 2016] is
a dataset of 122 Freebase relations extracted from FB15k, coming with 47 ex-
ternally induced rules, which can further be used, if the model supports using
them. The rules are significant as they are the basis for the test set, which is
split into two. Test-I contains triples that cannot be directly inferred by pure
logical inference with the provided rules, whereas Test-II contains triples that
can.

The statistics of all the datasets, both the small and the large ones are given
in Table 4.1.

10And features of nations encoded as unary relations which have been filtered out of the
dataset
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Table 4.1: Dataset statistics for both the small (Countries, Nations, Kinship and
UMLS) and the large datasets (WN18, WN18RR, FB15k-237).

Dataset # relations # entities # triples

train dev test total

Sm
al
ld

at
as
et
s

Countries [Bouchard et al., 2015]
S1 2 272 1111 24 24 1159
S2 2 272 1063 24 24 1111
S3 2 272 979 24 24 1027

Nations [Rummel, 1976] 56 14 1,592 199 201 1,992
Kinship [Denham, 1973] 26 104 8,544 1,068 1,074 10,686
UMLS [McCray, 2003] 49 135 5,216 652 661 6,529

La
rg
e
da

ta
se
ts WN18 [Bordes et al., 2013] 18 40,943 141,442 5,000 5,000 151,442

WN18RR [Dettmers et al., 2018] 11 40,943 86,835 3,034 3,134 93,003

FB122 [Guo et al., 2016]
Test-I

122 9,738 91,638 9,595
5,057 106,290

Test-II 6,186 107,419
Test-ALL 11243 112,476

4.4.1.2 Evaluation

We follow the standard evaluation protocols as Rocktaschel and Riedel [2017].
For Countries, this means reporting the performance in terms of the Area
Under the Precision-Recall Curve (AUC-PR) [Davis and Goadrich, 2006].

For all the other datasets, we generate all possible corruptions of test fact
arguments, filtering out corrupted facts that occur in the KB. We then predict
the ranking of the test fact and its corruptions, and report the Mean Reciprocal
Rank (MRR) [Voorhees, 2001] and the fraction of correct entities found in the
top n ranked ones (HITS@n) [Bordes et al., 2013].

4.4.1.3 Baselines

NTPsWe compare the performance of gNTP primarily with the performance
of their predecessor, NTP. Note that the results reported in Rocktaschel and
Riedel [2017] were calculated with an incorrect evaluation function—if sev-
eral facts have the same score, the ranking function assigns them the same
(best) rank, which artificially inflates the result. We corrected the issue and
recalculated the results of their publicly available models.11

Neural Link PredictorsNext, we compare the performance of gNTP with
state-of-the-art Neural Link Predictors, DistMult [Yang et al., 2014], Com-
plEx [Trouillon et al., 2016] and ConvE [Dettmers et al., 2018]. These models
jointly learn each entity and relation embedding with a d-dimensional vec-
tor and optimise a differentiable scoring function based on these embeddings,
minimising the KB reconstruction error [Nickel et al., 2016a].

11https://github.com/uclmr/ntp

https://github.com/uclmr/ntp
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Neuro-symbolic models Finally, we report the results of two other neuro-
symbolic reasoning systems, MINERVA [Das et al., 2017a], a reinforcement
learning -based KB graph traversal model, and NeuralLP [Yang et al., 2017],
a model which similarly learns first-order logical rules through a series of dif-
ferentiable operations.

4.4.1.4 Experimental Setup

We followed the experimental setup of Rocktaschel and Riedel [2017] where
necessary. Concretely, we provided the same rule templates, and learned
their relation embeddings, but have not provided any rules in a form of tem-
plates with pre-trained embeddings. We selected the best hyperparameters
through a hyperparameter sweep for each gNTP model. We use the Adam
optimiser [Kingma and Ba, 2015] with the default settings for 100 epochs, on
embeddings of size 100, running the models for the depth of 1. For small
datasets, we swept the values of batch size in [128,256,512,1024], and we fixed
the batch size to 1000 for the large datasets. Next, we swept the values of
the learning rate in [0.05,0.01,0.005], and values of k in [1,2,5]. On FB112 we
ran the first 95 epochs passing gradients only through rule embeddings, thus
pre-training rules, and then training entity embeddings and rules for the last
5 epochs. This forces gNTPs to learn good rules first.

4.4.2 Link Prediction on Small Datasets

4.4.2.1 Quantitative Analyses

We contrast the performance of gNTP with its predecessor, NTP and baselines
from the category of Neural Link Predictors (DistMult, ComplEx, and ConvE),
as well as the neuro-symbolic baselines MINERVA and NeuralLP, of which
the latter one is a differentiable first-order rule learner. The results of the
comparison are presented in Table 4.2.

There are a handful of conclusions to take from these results. First and fore-
most, gNTPs either have comparable performance to NTPs or outright out-
perform them consistently through the benchmark datasets. Other than the
issue of the erroneous evaluation of NTP in the original paper, which directly
hurt the performance of NTP, we hypothesise that the dominance of gNTP
stems largely from it supporting a thorough hyperparameter sweep, which
NTP simply cannot do due to its scaling issues.
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Table 4.2: Link prediction results for small datasets. Results from Das et al.
[2017a]a, Dettmers et al. [2018]b, Yang et al. [2017]c. Globally best
results in bold, best result among the graph and neural logic models
underlined. Note that the NTP results form Rocktaschel and Riedel
[2017] were recalculated to fix the evaluation issue described in the text.

Countries Nations Kinship UMLS
S1 S2 S3

AUC-PR MRR HITS MRR HITS MRR HITS
@1 @3 @10 @1 @3 @10 @1 @3 @10

Neural Link Prediction Models
DistMulta 0.98±0.00 0.69±0.02 0.16±0.01 – – – – 0.88 0.80 0.94 0.98 0.94 0.92 0.97 0.99
ConvEb 1.00±0.00 0.99±0.01 0.86±0.05 0.82 0.72 0.88 1.00 0.83 0.74 0.92 0.98 0.94 0.92 0.96 0.99

ComplExa 0.99±0.00 0.88±0.02 0.48±0.06 – – – – 0.84 0.75 0.91 0.98 0.89 0.82 0.96 1.00

Graph-Based Models
MINERVAa 1.00±0.00 0.92±0.02 0.95±0.01 – – – – 0.72 0.61 0.81 0.92 0.83 0.73 0.90 0.97

Neural Logic Models
NeuralLPa 1.00±0.00c 0.75±0.00c 0.92±0.00c – – – – 0.62 0.48 0.71 0.91 0.78 0.64 0.87 0.96

NTP 0.91±0.15 0.87±0.12 0.57±0.18 0.61 0.45 0.73 0.87 0.35 0.24 0.37 0.57 0.80 0.70 0.88 0.95
gNTP 1.00±0.00 0.88±0.03 0.86±0.04 0.73 0.60 0.81 0.99 0.74 0.62 0.84 0.95 0.86 0.76 0.95 0.99

gNTP (attention) 1.00±0.00 0.91±0.03 0.85±0.06 0.78 0.68 0.86 1.00 0.76 0.64 0.85 0.96 0.86 0.76 0.95 0.99

Second, as noted in Rocktaschel and Riedel [2017] for NTPs, gNTPs too still
lag behind specialised link prediction models, even more so since in the mean-
time there has been a number of models steadily pushing the performance on
these datasets upward. gNTPs still have issues in learning subsymbolic repre-
sentations, in particular since the unification score relies on applying the min
operation on the representation elementwise, as opposed to neural link pre-
dictors which have a higher capacity for learning specialised representations,
given that they directly optimise the score of the triple. A possible avenue
for future work would be to investigate different ways to integrate score-based
link predictors into the unification score, from regularisation, over forming a
mixture of experts, to redesigning the unification score to directly utilise state-
of-the-art triple scoring. In our experiments, we decided not to push learning
auxiliary losses in the model as Rocktaschel and Riedel [2017] did as our goal
here was not to break state-of-the-art but advance the original NTP model.

Third, gNTP outperforms or performs as well as MINERVA and NeuralLP
on all but the Countries S2 and S3 datasets showing that gNTP still has an
advantage when compared to other interpretable models.

Finally, gNTPs still keep the interpretability of NTPs as its major advantage
over uninterpretable systems such as neural link predictors—one can both
inspect inducted rules as a means of interpreting what the model learned, as
well as reconstruct the proof path the system chooses as the highest-scoring
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Table 4.3: gNTP-induced rules on the Countries dataset. The upper half of the
rules are the valid ones, whereas the lower half are the invalid ones.
Rules in bold are rules necessary to solve the dataset.

Rule Score

Countries S1

neighborOf(X, Y) :- neighborOf(Y, X) 0.98
locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y) 0.81
locatedIn(X, Y) :- neighborOf(X, Z), neighborOf(Z, Y) 0.67
locatedIn(X, Y) :- locatedIn(Y, X) 0.48

Countries S2

neighborOf(X, Y) :- neighborOf(Y, X) 0.98
locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y) 0.95
locatedIn(X, Y) :- neighborOf(X, Z), locatedIn(Z, Y) 0.68
locatedIn(X, Y) :- neighborOf(X, Z), neighborOf(Z, Y) 0.72

Countries S3

neighborOf(X, Y) :- neighborOf(Y, X) 1.00
locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y) 0.93
locatedIn(X, Y) :- neighborOf(X, Z), locatedIn(Z, Y) 0.95
locatedIn(X, Y) :- neighborOf(X, Z), neighborOf(Z, W), locatedIn(W, Y) 0.95
locatedIn(X, Y) :- locatedIn(X, Z), neighborOf(Z, W), neighborOf(W, Y) 0.70
locatedIn(X, Y) :- locatedIn(X, Z), neighborOf(Z, W), locatedIn(W, Y) 0.73

one. We take a look at some of the induced rule per dataset, and a few
interesting proof paths for the Nations, Kinship and UMLS datasets

4.4.2.2 Qualitative Analyses

CountriesAs we can see in Table 4.3, gNTP induces the necessary rules to
solve each of the Countries datasets. The model also induces some incorrect
rules, as well as multiple instances of the correct rules (not presented in the
table), albeit with varying scores. Note here that the rule and proof scores are
calculated by calculating the proof score as in Equation (4.1), by comparing the
similarity between the learned representations of the rule predicates and their
1-NN decoded predicates, as in Rocktaschel and Riedel [2017]. Though this
does happen often in our experiments, by analysing the highest-scoring proof
paths, we notice that only the highest-scoring rule is used in these proof paths,
whereas the others are not. This finding tells us that we should take care when
decoding the rules and that we should also take a look at the highest-scoring
proof paths to analyse which of the rules are being used by the model.
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Table 4.4: gNTP-induced rules and proofs on the Nations dataset.

Rules

Rule Score

commonbloc2(X, Y) :- commonbloc2(Y, X) 0.88
unweightedunvote(X, Y) :- unweightedunvote(Y, X) 0.83
exports3(X, Y) :- relexports(X, Y) 0.73
tourism(X, Y) :- relstudents(Y, X) 0.58
unoffialacts(X, Y) :- unoffialacts(X, Z), unoffialacts(Z, Y) 0.53
embassy(X, Y) :- officialvisits(Y, X) 0.31

Proofs

Proof Score

G commonbloc2(burma, egypt)
∵ commonbloc2(X, Y) :- commonbloc2(Y, X)

commonbloc2(egypt, burma)
0.88

G unweightedunvote(netherlands, poland)
∵ unweightedunvote(X, Y) :- unweightedunvote(Y, X)

unweightedunvote(poland, netherlands)
0.83

G negativecomm(cuba, usa)
∵ commonbloc2(cuba, usa)

0.69

NationsNext, we present some of the both high and low -scoring rules induced
on the Nations dataset, as well as proofs for some goals in Table 4.4. Though
Rocktaschel and Riedel [2017] did not include proof paths in their research, we
find it interesting to see them as a way to understand gNTPs better. In the
case of the Nations dataset, gNTPs induce and often use fairly straightforward
symmetric relations, but do not necessarily use them for every proof as is the
case when a proof contains similar facts, with one of the entities being differ-
ent. Other induced rules often indicate a relationship between two relations
which were derived from the same or similar/related data, for example, the
exports3(X, Y) :- relexports(X, Y) rule is indicative of the strong con-
nection between the relative value of exports and normalised principal exports
between nations.

KinshipRules and proofs for the Kinship dataset are presented in Table 4.5.
Given that the dataset is anonymised, it is difficult to understand whether
the rules and the proofs are correct. However, it is interesting to observe that
the model induces more or less just the standard symmetric relations, but it
often uses just facts for proving goals. Using just fact unification to prove
a goal implies similarity between people in facts being compared, i.e. symbol
embeddings for related people end up being similar.



128 Chapter 4. gNTP: Greedy Neural Theorem Provers

Table 4.5: gNTP-induced rules and proofs on the Kinship dataset.

Rules

Rule Score

term0(X, Y) :- term0(Y, X) 0.98
term4(X, Y) :- term4(Y, X) 0.88
term15(X, Y) :- term5(Y, X) 0.78
term9(X, Y) :- term15(X, Z), term5(Z, Y) 0.16
term10(X, Y) :- term5(X, Z), term15(Z, Y) 0.07
term24(X, Y) :- term15(X, Y) 0.04
term24(X, Y) :- term24(X, Z), term0(Z, Y) 0.03

Proofs

Proof Score

G term0(person93, person3)
∵ term0(X, Y) :- term0(Y, X)

term0(person3, person93)
0.98

G term17(person74, person15)
∵ term17(person74, person8)

0.95

G term11(person1, person84)
∵ term11(person1, person66)

0.94

G term4(person12, person49)
∵ term4(X, Y) :- term4(Y, X)

term4(person49, person12)
0.88

UMLSWe present the rules and proofs for the UMLS dataset in Table 4.6.
UMLS is interesting as the rules induced include not just the symmetric re-
lations but the transitive relations too. Interestingly, most of the transitive
relations have similarly low scores and are decoded as the isa transitive rela-
tion.

4.4.3 Quantifying gNTP Scalability

To quantify the scalability of gNTP with respect to NTP, we empirically anal-
yse their runtime and memory use during training as performance metrics. We
focus on training only as similar performances are expected during inference.
Given that the number of neighbours is an important parameter performance-
wise, we quantify the performance of gNTP for different values of it.

RuntimeTo quantify the runtime of each model, we compare them by mea-
suring their average number of examples processed during 10 batches of train-
ing, per model. We want to quantify the maximal runtime performance that
each model can achieve, and to that extent, we approximately determine the
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Table 4.6: gNTP-induced rules and proofs on the UMLS dataset. Note that the
double occurrence of the isa(X, Y) :- isa(X, Z), isa(Z, Y) rule is a
result of the rule 1-nearest neighbour interpretation. The embeddings
of these rules are different, but the interpretation is the same.

Rules

Rule Score

interacts_with(X, Y) :- interacts_with(X, Z), interacts_with(Z, Y) 0.92
isa(X, Y) :- isa(X, Z), isa(Z, Y) 0.65
isa(X, Y) :- isa(X, Y) 0.64
isa(X, Y) :- isa(X, Z), isa(Z, Y) 0.59
degree_of(X, Y) :- degree_of(X, Z), degree_of(Z, Y) 0.41
conceptually_related_to(X, Y) :- isa(X, Z), conceptually_related_to(Z, Y) 0.29

Proofs

G performs(professional_or_occupational_group, health_care_activity)
∵ performs(group, health_care_activity)

0.99

G produces(genetic_function, hormone)
∵ produces(genetic_function, enzyme)

0.98

G interacts_with(invertebrate, fish)
interacts_with(amphibian, fish)

∵ interacts_with(X, Y) :- interacts_with(X, Z), interacts_with(Z, Y)
interacts_with(invertebrate, amphibian)

0.92

G isa(steroid, substance)
isa(chemical, substance)

∵ isa(X, Y) :- isa(X, Z), isa(Z, Y)
isa(steroid, chemical)

0.64

maximum batch size each model can use to fit the memory of an NVIDIA
GeForce GTX 1080 Ti GPU. Note that by doing this, we are quantifying the
approximately maximum potential speedup gained by gNTP. This cannot be
considered as the exact upper bound on the speedup of gNTP due to two rea-
sons: i) the architecture of GPUs can often cause a bigger average number
of processed examples achieved with lower batch size, and ii) the process of
finding the maximum batch size was approximate.

MemoryTo evaluate the memory use for each model, we compare the maxi-
mum GPU memory utilisation of both models, again over 10 training batches,
but importantly, comparing the models of the same batch size. This enables
us to quantify the difference between the memory use of gNTP and NTP on
equal grounds. Note here that the NTP often cannot utilise higher batch sizes
as it rapidly reaches top memory capacity. We compared the GPU memory
utilisation because both models make use of the GPU memory (the computa-
tion of all proof paths is done on the GPU and the embeddings used in them
need to fit in the GPU memory), and gNTP saves the NNS index on it. In our
previous experiments, we did this on CPU to ensure that we include the size
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Figure 4.3: The runtime and memory performance of gNTP, relative to NTP. The
performance is expressed as the models’ ratio of the average number
of examples processed (runtime), and the maximum GPU memory
used (memory) in 10 training batches. Lightly green area signifies
better performance of gNTP and the light red area signifies better
performance of NTP, also denoted with the green (better) and the red
(worse) arrows.

of the ANNS saved in RAM, and as a fail-safe, in case NTP did not fit into
the GPU memory, as it often did not.

The results of both of the performance measures are presented in Figure 4.3.
We immediately observe that gNTPs are substantially more time and memory
performant.

Concretely, gNTPs yield significant speedups of an order of magnitude for the
Countries S1 and S2 datasets, two orders of magnitude for Countries S3 and
Nations, and even three orders of magnitude for Kinship and UMLS, when
using only the top-nearest neighbour. With a higher number of neighbours,
the gains fall due to the cost of NNS querying, as well due to additional engi-
neering details around the utilisation of the NNS. This is particularly evident
in the case of the Countries datasets where for k larger than 20, NTPs per-
form better due to the overhead of NNS. We also observe the trend of gNTPs
consistently outperforming NTP with the increased size of the dataset—the
larger the dataset, more the gain gNTPs exhibit. This indicates that, should
it be possible to run NTP on large datasets, we would expect the same trend
to continue, thus the time performance gain of gNTP would be in increasing
orders of magnitude.

gNTPs are also more memory efficient, with clear possible savings above an
order of magnitude for reasonable sizes of k. Similar findings from the runtime
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Table 4.7: Link prediction results on small datasets of gNTP with a varied number
of neighbours. Globally best results in bold, best results for each gNTP
and gNTP (attention) underlined.

Countries Nations Kinship UMLS
S1 S2 S3

AUC-PR MRR HITS MRR HITS MRR HITS
@1 @3 @10 @1 @3 @10 @1 @3 @10

gNTP

k = 1 1.00±0.00 0.88±0.03 0.86±0.04 0.74 0.62 0.83 1.00 0.64 0.50 0.73 0.93 0.70 0.57 0.78 0.92
k = 2 1.00±0.00 0.69±0.19 0.83±0.07 0.73 0.60 0.81 0.99 0.74 0.62 0.84 0.95 0.86 0.76 0.95 0.99
k = 5 0.99±0.03 0.90±0.00 0.88±0.04 0.74 0.62 0.84 0.99 0.71 0.57 0.82 0.95 0.84 0.73 0.95 0.98
gNTP (attention)

k = 1 1.00±0.00 0.91±0.03 0.85±0.06 0.75 0.63 0.84 0.99 0.59 0.45 0.68 0.86 0.71 0.59 0.80 0.90
k = 2 1.00±0.00 0.92±0.04 0.85±0.06 0.78 0.68 0.86 1.00 0.72 0.58 0.83 0.95 0.85 0.74 0.94 0.99
k = 5 1.00±0.00 0.91±0.01 0.78±0.15 0.73 0.61 0.81 0.99 0.76 0.64 0.85 0.96 0.86 0.76 0.95 0.99

experiments apply; for larger values of k performance gains of gNTPs drop,
for Countries, gNTPs perform worse than NTPs for k > 20, and the trend of
gNTPs ourperforming NTPs on datasets of increasing sizes still holds.

In addition, we analysed the performance of gNTPs with and without attention
as a function of the number of neighbours k. The results in Table 4.7 do not
suggest a strong relationship between k and model performance as the best
performances are achieved across all the tested values of k ∈ {1,2,5}. However,
we do observe that for the smallest of datasets (Countries) lower values of k ∈
{1,2} achieve the best performances, and for others a larger value of k ∈ {2,5}
performs the best, even though lower values of k yield only marginally worse
performance than the best ones. This additionally affirms the importance of
sweeping k as a hyperparameter. Note that there is discrepancy between the
best values in Table 4.7 and Table 4.2 because we chose the best performing
model per each k based on models’ development set performances. This implies
that the best performing models from Table 4.2 appear in Table 4.7, but there
are even better-performing ones even though they have a globally lower dev set
performance. This finding tells us that the best development set performance
does not necessarily correspond to the best test set performance.

We can clearly state that the proof path pruning in gNTPs drastically in-
creases the efficiency of learning (and the inference process as they both rely
on the same model mechanisms). These findings indicate that gNTPs should
be readily applicable to large datasets, which we do next.
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Table 4.8: Link prediction results for the WN18 and WN18RR datasets. Results
from [Das et al., 2017a]a, [Yang et al., 2017]b, [Dettmers et al., 2018]c,
[Kadlec et al., 2017]d, [Trouillon et al., 2016]e. Globally best results in
bold, best results among the graph and neural logic models underlined.
Note that NTPs cannot run on these datasets.

WN18 WN18RR

MRR HITS MRR HITS
@1 @3 @10 @1 @3 @10

Neural Link Prediction Models
DistMult 0.797d – – 0.95 0.433a 0.410 0.441 0.475
ConvE 0.943c 0.935 0.946 0.956 0.438a 0.403 0.452 0.519

ComplEx 0.941e 0.936 0.945 0.947 0.415a 0.382 0.433 0.480
Graph-Based Models
MINERVA – – – – 0.448a 0.413 0.456 0.513
Neural Logic Models
NeuralLP 0.940b – – 0.945b 0.463a 0.376 0.468 0.657

NTP – – – – – – – –
gNTP 0.940 0.938 0.943 0.944 0.434 0.410 0.442 0.484

4.4.4 Link Prediction on Large Datasets

Previously, we showed the potential of gNTP to scale to large datasets. Here we
evaluate their performance on large link prediction datasets, WN18, WN18RR
and FB122.

4.4.4.1 Quantitative Analyses

WN18 and WN18RRWe evaluate the performance of gNTPs and the base-
line models on the WN18 and WN18RR datasets in Table 4.8. In terms of
ranking accuracies, we observe gNTPs comparing well to ComplEx and Neu-
ralLP, though still lagging behind ConvE on the WN18 dataset. However, on
the WN18RR, gNTPs, though outperforming complex, still lag behind Neu-
ralLP and MINERVA, as well as ConvE.

Next, we wanted to contrast one representative of neural link predictors and
gNTP to see whether there are any differences in the treatment of the dataset—
where does the link prediction perform better and gNTP fails and vice-versa.
To that extent, we compared gNTP and ComplEx per-predicate in terms of
MRR on the test set of both datasets.

The results, presented in Table 4.9 and Table 4.10 show that gNTP and
ComplEx have complementary strengths and weaknesses. We observe that
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Table 4.9: Per-predicate MRR comparison for ComplEx and gNTP on the WN18
dataset.

Predicate ComplEx gNTP

_hyponym 0.890 0.937
_member_holonym 0.809 0.912
_hypernym 0.891 0.934
_part_of 0.826 0.921
_derivationally_related_form 0.917 0.035
_member_of_domain_topic 0.745 0.722
_instance_hyponym 0.776 0.490
_synset_domain_topic_of 0.746 0.771
_synset_domain_region_of 0.689 0.362
_member_of_domain_region 0.667 0.417
_has_part 0.839 0.680
_also_see 0.511 0.554
_instance_hypernym 0.774 0.645
_member_meronym 0.815 0.614
_verb_group 0.677 0.951
_synset_domain_usage_of 0.776 0.775
_member_of_domain_usage 0.722 0.769
_similar_to 1.000 1.000

Table 4.10: Per-predicate MRR comparison for ComplEx and gNTP on the
WN18RR dataset.

Predicate ComplEx gNTP

_hypernym 0.092 0.022
_derivationally_related_form 0.941 0.934
_member_meronym 0.133 0.055
_has_part 0.123 0.046
_also_see 0.522 0.593
_member_of_domain_region 0.040 0.011
_verb_group 0.825 0.893
_synset_domain_topic_of 0.184 0.042
_instance_hypernym 0.241 0.093
_member_of_domain_usage 0.201 0.030
_similar_to 1.000 0.764

gNTPs benefit from a clear logical structure on the WN18 dataset, which
is characterised by a more logical relational structure. For instance, in-
ducing almost crisp rules such as part_of(X,Y) :− has_part(Y,X),
hyponym(X,Y) :− hypernym(Y,X), and hypernym(X,Y) :− hyponym(Y,X),
aids gNTP in accurately predicting the underlying structure in WN18 by using
these rules to yield more accurate results on the part_of, _hyponym and the
_hypernim relations, as presented in Table 4.9.

On the other hand, we can also observe that, in some cases, logic rules
and continuous unification do not suffice for some relations. For exam-
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Table 4.11: Link prediction results on the FB122 dataset. Results from Minervini
et al. [2017]a, Guo et al. [2016]b, Garcia-Duran and Niepert [2017]c.
Globally best results in bold, best results among the models which do
not use rules underlined. KALE, ASR methods, and KBlr use the
set of rules provided by Guo et al. [2016] while neural link predictors
and gNTPs do not.

Test-I Test-II Test-ALL

MRR HITS MRR HITS MRR HITS
@3 @5 @10 @3 @5 @10 @3 @5 @10

U
se

R
ul
es

KALE-Preb 0.291 0.358 0.419 0.498 0.713 0.829 0.861 0.899 0.523 0.617 0.662 0.718
KALE-Jointb 0.325 0.384 0.447 0.522 0.684 0.797 0.841 0.896 0.523 0.612 0.664 0.728
ASR-DistMulta 0.330 0.363 0.403 0.449 0.948 0.980 0.990 0.992 0.675 0.707 0.731 0.752
ASR-ComplExa 0.338 0.373 0.410 0.459 0.984 0.992 0.993 0.994 0.698 0.717 0.736 0.757
KBlrc – – – – – – – – 0.702 0.740 0.770 0.797

N
o

R
ul
es

TransEa 0.296 0.360 0.415 0.481 0.630 0.775 0.828 0.884 0.480 0.589 0.642 0.702
DistMulta 0.313 0.360 0.403 0.453 0.874 0.923 0.938 0.947 0.628 0.674 0.702 0.729
ComplExa 0.329 0.370 0.413 0.462 0.887 0.914 0.919 0.924 0.641 0.673 0.695 0.719
gNTPs 0.314 0.338 0.373 0.415 0.987 0.990 0.991 0.992 0.684 0.697 0.713 0.733

ple, gNTP is not able to learn a set of rules for accurately predicting the
_derivationally_related_form predicate, where ComplEx simply thrives.
However, ComplEx predictions are not easy to explain, since the score is a
function of the embedding of the predicate and the entities involved in the
prediction.

On the WN18RR dataset, ComplEx shines on relations that reflect
the cluster structure of the underlying graph, such as _also_see and
_derivationally_related_form as it does not need to rely on an under-
lying logical structure as gNTP does, it can more accurately handle the cases
where such a structure is missing. Yet, ComplEx yields less accurate results
on relations which can be accurately predicted by leveraging an underlying
logical structure, which gNTP can learn and then leverage at test time.

Given that ComplEx and gNTP have complementary strengths and weak-
nesses, we believe the gap between them can be narrowed down by using
ComplEx or any other link prediction algorithm as a regulariser (akin to the
NTP-lambda in the original NTP paper), by proposing a mixture of experts,
and possibly by adding a mixture of correctly induced rules from multiple runs
of gNTP.

All in all, gNTP can learn symmetry rules, while also softly unifying related
predicates and by leveraging such rules can perform better or on par with
ComplEx on relations exhibiting a clear logical structure (symmetric relations),
while still benefiting from the continuous unification.
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FB122The link prediction results for FB122 are presented in Table 4.11. It
presents the results of the baselines we use throughout the chapter (TransE,
DistMult and ComplEx) with a series of three additional models which can
utilise rules in the dataset. These models are KALE [Guo et al., 2016], Dist-
Mult and ComplEx using Adversarial Sets [Minervini et al., 2017] (a method
for incorporating rules in neural link predictors with adversarial training), and
KBlr [Garcia-Duran and Niepert, 2017]. Note that these methods have access
to the 47 rules coming with the dataset, while gNTP does not, and it needs to
induce them to make accurate predictions.

Results, presented in Table 4.11 show that gNTP, though not having access to
rules, can perform on-par with methods that have access to them. Concretely,
gNTP lags behind specialised rule-using baselines when there is no clear logical
structure in the dataset, as in the Test-I split. However, where the dataset
exhibits a clear logical structure, as in the Test-II split, gNTP can induce
the rules to fit the structure to its advantage, and not just use the manually
provided rules, as the rule-using baselines do.

4.4.4.2 Qualitative Analyses

WN18 and WN18RRTable 4.12 displays gNTP-induced rules and proofs
for the WN18 dataset, and Table 4.13 presents the same for the WN18RR
dataset, giving us a glimpse of what gNTP learned. We see that gNTP
mostly learned symmetrical and anti-symmetrical relations, which it strongly
uses throughout the dataset. However, what is more interesting is that
gNTP can find alternative, non-trivial explanations, based on the similar-
ity between entity representations. For example, on WN18 gNTP can ex-
plain that congo.n.03 is a part of africa.n.01 by leveraging the similarity
between africa.n.01 and the african_country.n.01, and the fact that
the african_country.n.01 is a hyponym of congo.n.03. Similarly, on
WN18RR, it explains that chaplin.n.01 is a film_maker.n.01 by lever-
aging the fact that chaplin.n.01 is a comedian.n.01 and the similarity
between the film_maker.n.01 and comedian.n.01.

Further inspection of rules induced by gNTP on these two datasets yields
interesting findings. For instance, we see that on WN18 gNTP induces crisp
_similar_to(X,Y) :− _similar_to(Y,X), whereas on WN18RR it does
too albeit with a very low score. A deeper look into when the rule is used, we
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Table 4.12: gNTP-induced rules and proofs on the WN18 dataset.

Rules

Rule Score

_part_of(X, Y) :- _has_part(Y, X) 1.00
_hypernym(X, Y) :- _hyponym(Y, X) 0.99
_hyponym(X, Y) :- _hypernym(Y, X) 0.99
_similar_to(X, Y) :- _similar_to(Y, X) 0.97
_has_part(X, Y) :- _member_meronym(Y, X) 0.97
_derivationally_related_form(X, Y) :- _hypernym(Y, X) 0.91
_hyponym(X, Y) :- _hyponym(Y, X) 0.77

Proofs

Proof Score

G _part_of(congo.n.03, africa.n.01)

∵ _part_of(X, Y) :- _has_part(Y, X)
_has_part(africa.n.01, congo.n.03)

∵ _part_of(X, Y) :- _has_part(Y, X)
_instance_hyponym(african_country.n.01, congo.n.03)

1.00

0.79

G _hyponym(extinguish.v.04, decouple.v.03)

∵ _hyponym(X, Y) :- _hypernym(Y, X)
_hypernym(decouple.v.03, extinguish.v.04)

∵ _hyponym(X, Y) :- _hypernym(Y, X)
_hypernym(snuff_out.v.01, extinguish.v.04)

0.99

0.92

G _derivationally_related_form(rewrite.v.01, rewriting.n.01)

∵ _derivationally_related_form(X, Y) :- _hypernym(Y, X)
_hypernym(revise.v.01, rewrite.v.01)

∵ _derivationally_related_form(X, Y) :- _hypernym(Y, X)
_hypernym(trench.v.05, excavate.v.04)

0.81

0.21

G _derivationally_related_form(chorus.n.05, chorus.v.01)

∵ _derivationally_related_form(X, Y) :- _hypernym(Y, X)
_hypernym(hippopotamus.n.01, even-toed_ungulate.n.01)

∵ _derivationally_related_form(X, Y) :- _hypernym(Y, X)
_hypernym(sympathy.n.02, feeling.n.01)

0.40

0.03

Table 4.13: gNTP-induced rules and proofs on the WN18RR dataset.

Rules

Rule Score

_verb_group(X, Y) :- _also_see(Y, X) 0.96
_derivationally_related_form(X, Y) :- _derivationally_related_form(Y, X) 0.95
_member_meronym(X, Y) :- _hypernym(Y, X) 0.94
_synset_domain_topic_of(X, Y) :- _hypernym(Y, X) 0.90
_member_of_domain_usage(X, Y) :- _hypernym(Y, X) 0.85
_has_part(X, Y) :- _hypernym(Y, X) 0.83
_similar_to(X, Y) :- _similar_to(Y, X) 0.05
_also_see(X, Y) :- _similar_to(Y, X) 0.02

Proofs

Proof Score

G _verb_group(respire.v.02, breathe.v.01)
∵ _verb_group(X, Y) :- _also_see(Y, X)

_verb_group(breathe.v.01, respire.v.02)
0.96

G _verb_group(respire.v.02, breathe.v.01)
∵ _hypernym(hyperventilate.v.02, breathe.v.01)

0.85

G: _instance_hypernym(chaplin.n.01, film_maker.n.01) 0.81
∵ _instance_hypernym(chaplin.n.01, comedian.n.01)
∵ _instance_hypernym(scipio.n.01, general.n.01) 0.63
G: _hypernym(krypton.n.01, noble_gas.n.01) 0.91
∵ _hypernym(krypton.n.01, chemical_element.n.01)
∵ _hypernym(tellurium.n.01, chemical_element.n.01) 0.60
G: _has_part(tennessee.n.01, knoxville.n.01) 0.54
∵ _has_part(india.n.01, jabalpur.n.01)
∵ _has_part(alaska.n.01, anchorage.n.03) 0.53
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see that in WN18 it is often utilised, whereas on WN18RR it is never used for
prediction. This is a direct consequence of the way WN18RR was created, as
these particular examples are filtered out of the dev and test sets.

We observe an intriguing rule _verb_group(X,Y) :− _also_see(Y,X) on
WN18RR. This rule is interesting, as it is often used to express multiple sym-
metrical relationships with predicates such as _also_see (indicating an alter-
nate or equivalent version of a word sense), _verb_group (indicating equivalent
verb sense denoting a higher abstraction level) and _similar_to (expressing
closely related meaning) [Fialho et al., 2011]. We take a look at the final proof
paths for a few examples and see that the same rule is used to prove facts with
different predicates:

G _also_see(coherent.a.01, logical.a.01)

∵ _verb_group(X, Y) :- _also_see(Y, X)

and _also_see(logical.a.01, coherent.a.01)

G _verb_group(allow.v.03, permit.v.01)

∵ _verb_group(X, Y) :- _also_see(Y, X)

and _verb_group(permit.v.01, allow.v.03)

G _similar_to(dynamic.a.01, hold-down.n.01)

∵ _verb_group(X, Y) :- _also_see(Y, X)

and _similar_to(hold-down.n.01, dynamic.a.01)

This essentially tells us that the rule in question is used for representing sym-
metry between multiple relations and that the originally proposed decoding of
the rule with a one-nearest-neighbour in Rocktaschel and Riedel [2017], though
informative, should be taken with caution, as though the interpretation of the
rule is crisp/discrete, the rule itself does not necessarily behave like one. This
rule is likely a product of the winner-takes-all strategy employed by both the
score function calculation and the fact and rule selection. A possible way to
alleviate this issue is to follow the findings of de Jong and Sha [2019], who
suggest propagating gradients not just through the top ranking proof paths
but top-k paths.

However, one important take is that though gNTPs do not produce a concrete
representation of a rule as we might wish, we can still decide whether that rule
is meaningful or not, and use such insights for refining the model, improving
our understanding of the domain, or providing explanations for any given
prediction. Hence we suggest looking at the final proof paths when assessing
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1 timeZone(X, Y) :- containedBy(X, Z), timeZone(Z, Y)
2 nearbyAirports(X, Y) :- containedBy(X, Z), contains(Z, Y)
3 nationality(X, Y) :- placeOfBirth(Y, X)
4 children(X, Y) :- parents(Y, X)
5 spouse(X, Y) :- spouse(Y, X)

Listing 4.1: An excerpt of the gNTP-induced rules on the FB122 datset.

these rules as they are highly informative of the use of each of these rules.

FB112We briefly take a look at the rules gNTPs induce on the FB112 dataset.
From the excerpt of the rules induced, presented in Listing 4.1, we can see they
indeed are meaningful.

It is worth noting that FB122 was derived from the problematic [Dettmers
et al., 2018] FB15k dataset, with Test-I and Test-II splits exemplifying the
datasets issues. Test-I triples cannot be predicted with the help of rules and
were designed with a similar intention to the FB15k-237 dataset, whereas the
Test-II triples can since they are a direct subset of FB15k.

The finding that gNTP performs well when there is a clear logical structure in
the dataset is similar to the finding on the WN18(RR) datasets, corroborating
the complementary strengths of the link prediction models (better representa-
tion fit) and gNTP (better use of the logical structure).

4.4.5 Experiments with Text

To evaluate the effect of the compositional reader for integrating textual in-
formation, we created a modified version of the Countries datasets. We re-
placed an increasing percent of training set triples from each of the Coun-
tries S1, S2 and S3 datasets, with human-generated textual mentions. Each
relation in the replaced triple was randomly sampled from a set of 30 tex-
tual mentions, per each relation, catalogued in Table B.1. For example, the
fact neighbourOf(uk,ireland) can be replaced by the mention "[#1] is

positioned closest to [#2]"(uk,ireland).

Then, we evaluate two ways of integrating textual mentions, by either i) treat-
ing them as a monolithic predicate, or by ii) parsing the mentions through an
encoder, as described earlier. It is important to note that both of these cases
are trained on the same (decreasing) amount of training data, with mentions
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Figure 4.4: The performance of gNTPs on Countries with mentions dataset. We
replaced a varying number of training triples with human-generated
mentions and integrated them as facts in the KBs in two ways i) by
encoding the mentions as standalone predicates, and ii) by encoding
them with a compositional reader. We conducted the experiments
using the standard NTP representation (left) and the attentional rep-
resentation of gNTPs (right). Each experiment was run on 10 different
random seeds.

not being a part of the training set—the model uses them as supporting facts
in the proof process but does not directly optimise them as goals. This effec-
tively decreases the amount of information the model uses with the increasing
percent of data held out (converted to text), but still enables the model to
optimise their representations.

The results, presented in Figure 4.4, present two findings. First, the proposed
compositional encoding reader yields consistent improvements of the ranking
accuracy, especially if attention is used. In case of using the attention for
predicate representation, the compositional reader performs better from 40%
of held-out data. When standard predicate representation is used, the compo-
sitional reader performs better on Countries S1 and S2 from 70% of held-out
data, but performs roughly the same as the non-compositional reader for Coun-
tries S3. Second, we see that the attentional predicate representation performs
significantly better than the standard representation, as is expected given that
the standard representation needs to learn a much higher-dimensional repre-
sentation of the predicates.

Since during training the KB is expanded with the textual mentions, rules
learned by gNTPs can include both logic atoms and textual mentions. We see
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1 neighborOf(X, Y) :- neighborOf(Y, X)
2 neighborOf(X, Y) :- "[#1] was a neighbor of [#2]"(Y, X)
3 neighborOf(X, Y) :- "[#1] is a neighboring state to [#2]"(Y, X)
4 locatedIn(X, Y) :- "[#1] was a neighboring state to [#2]"(X, Z),
5 "[#1] was located in [#2]"(Z, Y)
6 locatedIn(X, Y) :- "[#1] can be found in [#2]"(X, Z),
7 "[#1] is located in [#2]"(Z, Y)

Listing 4.2: An excerpt of rules extracted by gNTP on the Countries dataset with
text.

exactly this happening when we take a look at the learned rules, as listed in
Listing 4.2—gNTPs induce meaningful rules which include textual information
too.

4.5 Related Work
We contrast gNTPs to related models across three central areas: neural net-
work architectures, relational learning and Machine Learning -powered scaling.

4.5.1 Neural Network Architectures

Memory Augmented Neural NetworksRecent advances in memory-
enabled neural architectures aim to deal with the issues of generalisa-
tion [Graves et al., 2014, Joulin and Mikolov, 2015, Grefenstette et al.,
2015, Kaiser and Sutskever, 2016], reasoning abilities [Weston et al., 2015,
Sukhbaatar et al., 2015] and one-shot learning [Santoro et al., 2016] that neu-
ral networks often exhibit. Memory Augmented Neural Networks take the
approach of enriching neural networks with a differentiable external memory,
enabling these models to learn to represent and manipulate dense represen-
tations on long time scales via reading and writing to the external memory.
However, even though there is a pressure to disentangle algorithm learning
from learning the input representations, there is no guarantee that algorithm
learning and learning input representations still do not conflate. In contrast to
that, gNTPs do not learn the algorithm but fix it in the form of (differentiable)
backward chaining, and then learn input representations given the fixed algo-
rithm. Another way of improving the generalisation and extrapolation abilities
of neural networks consists of designing architectures capable of learning gen-
eral, reusable programs—atomic primitives that can be reused across a variety
of environments and tasks [Reed and De Freitas, 2016, Neelakantan et al.,
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2016, Parisotto et al., 2017]. We argue that gNTPs are such an architecture
where one can easily reuse the induced set of rules by incorporating it into
other KBs.

Differentiable InterpretersDifferentiable interpreters enable the transla-
tion of declarative or procedural knowledge into a neural network architecture
exhibiting strong inductive biases of said knowledge. In Chapter 3 we propose
∂4, a differentiable abstract machine for the Forth programming language, en-
abling the construction of neural networks with a strong inductive bias of a
procedurally written program. Rocktaschel and Riedel [2017] propose a dif-
ferentiable implementation of the backward chaining algorithm, while Evans
and Grefenstette [2018] propose a differentiable forward chaining algorithm,
both effectively differentiable Datalog interpreters. Providing a way to en-
code strong inductive biases into models by partially defining the program
structure used to construct the network comes with a significant drawback—
their computational complexity makes them unusable except for small learning
problems, and training them with Stochastic Gradient Descent (SGD) has also
been shown to be a challenge [Gaunt et al., 2016]. Our work shows that there
is a feasible way to push forward that limit and scale to larger problems.

Neural Module NetworksAndreas et al. [2016b] introduced Neural Module
Networks, an end-to-end differentiable composition of jointly trained neural
modules. The allure of Neural Model Networks comes from the ability to define
and train differentiable composable models and interpret and execute their
compositions as simple programs. This modularity is particularly useful when
dealing with reasoning tasks from visual and natural language inputs, such as
question answering [Andreas et al., 2016a], visual question answering [Andreas
et al., 2016b] and reasoning over text with arithmetic modules [Gupta et al.,
2019].

We recognise NTPs as a recursive differentiable composition of or and and

modules, following the backward-chaining reasoning algorithm, jointly trained
on downstream reasoning tasks. Interestingly, though in previous work the
structure of the composition is statically drawn from the data, and in our
work, it is statically drawn from the data and the model parameters, other
approaches are trying to learn the module composition [Hu et al., 2017, Jiang
and Bansal, 2019]
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4.5.2 Relational Learning

Inductive Logic ProgrammingThe paradigm of Inductive Logic Program-
ming (ILP) uses (usually first-order) logic as a description language for a KB
and addresses induction of rules from facts and background knowledge to an-
swer queries [Muggleton, 1991, Muggleton and De Raedt, 1994]. Systems such
as MARVIN [Sammut and Banerji, 1986], FOIL [Quinlan, 1990], Progol [Mug-
gleton, 1995], ALEPH [Srinivasan, 2001] and Metagol [Muggleton et al., 2015,
Cropper and Muggleton, 2015, 2016] are symbolic systems that search over
discrete space of rules/logic programs, and can even invent new predicates and
induce recursive rules [Cropper and Muggleton, 2016]. Though both ILP and
gNTP can induce rules from data, ILP systems do not learn relation and atom
representations. Besides, similarly to gNTPs, the ILP community is actively
searching for heuristics to speed up the induction process [Muggleton and Feng,
1990, Giordana et al., 1994, Srinivasan, 2000, Železnỳ et al., 2002, DiMaio and
Shavlik, 2004], consequently enabling mining rules from large KBs [Galárraga
et al., 2013, Chen et al., 2016]. Heuristics too push the ability of these systems
to extract rules from textual data; SHERLOCK [Schoenmackers et al., 2010] is
another ILP system in-kind related to gNTPs, given its ability to extract rules
from web texts, though gNTPs are aiming towards reasoning over KBs while
using textual data, as opposed to extracting rules. Finally, it is worthwhile
mentioning the probabilistic formulation of ILP [De Raedt and Kersting, 2008]
as related work, and even though our work does not include a probabilistic ap-
proach, it would be an exciting possibility for future work.

Knowledge Graph EmbeddingBy embedding KB facts into a continuous
vector space, we can simplify manipulation of facts, while preserving the struc-
ture of the KBs [Wang et al., 2017b] and use scoring functions established on
triples or paths in the KBs to predict relationships (reason) between entities.
Out of this fairly busy field, we present two main categories, the score-based
and the path-based models.

Score-based models use either a distance or semantic similarity -based score to
increase the score of facts in a KB. Distance-based score models [Bordes et al.,
2013, Wang et al., 2014, Lin et al., 2015] push entities and relations in the
same space, with a distance metric ensuring translational functional depen-
dency between the entities in a fact. On the other hand, semantic similarity
-based models encode a similarity function, ranging from more straightforward
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functions [Nickel et al., 2011, Yang et al., 2014, Nickel et al., 2016b] to more
elaborate ones based on convolutions [Dettmers et al., 2018] or even different
number systems [Trouillon et al., 2016, Zhang et al., 2019].

Path-based models come in a few flavours. Random walk models [Lao and
Cohen, 2010, Lao et al., 2011, Gardner et al., 2013, 2014, Gardner and Mitchell,
2015, Wang et al., 2016] aggregate paths from random walks to predict a target
relation. Path-encoding models [Neelakantan et al., 2015a, Das et al., 2017b]
often use RNNs to encode multi-hop paths between entities in the KB and
use their aggregation for relation prediction. Similarly, some models utilise
Reinforcement Learning (RL) to learn to walk over KBs [Xiong et al., 2017,
Das et al., 2017a, Shen et al., 2018] and find predictive paths. All the models
above cannot produce useful rules, as gNTPs can.

Joint Text and KB representationBy embedding the KBs and text cor-
pora, entities, relations and natural language can be represented in the same
vector space, enabling meaningful and useful comparisons between them. This
idea of jointly embedding KBs and texts has been explored by both the knowl-
edge graph and the NLP communities.

The knowledge graph community’s interest in this joint embedding stems from
using the capabilities of KBs to reason, by using textual information to both ex-
pand KBs and reason with new relational facts [Wang et al., 2017b]. This first
started with initialising entity representations with textual descriptions [Socher
et al., 2013], but later moved towards models with entity [Wang et al., 2014,
Zhong et al., 2015, Xu et al., 2016] and relation [Toutanova et al., 2015] rep-
resentations enriched with textual information.

In NLP, this joint embedding has been explored by relation extraction
systems—systems for extraction of relational facts from natural language
texts [Mooney, 1999]. Notable approaches in relation extraction leveraged
KBs as a form of distant supervision—utilising KB facts as supervision to the
relation extraction process, assuming that sentences mentioning two entities
signify their relationship [Bunescu and Mooney, 2007, Mintz et al., 2009, Riedel
et al., 2010]. This form of assumption naturally led to many models mod-
elling texts and KBs in the shared embedding space: scoring-function based
models [Weston et al., 2013], matrix factorization [Riedel et al., 2013], ten-
sor decomposition [Chang et al., 2014], as well as exploring elaborate mention
encoders [Verga et al., 2016], and path-encoding models [Das et al., 2017b].
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Neuro-symbolic ModelsAiming to bring together the best of the neural
world and the symbolic world, neuro-symbolic approaches [Smolensky, 1988,
Garcez et al., 2015] combine neural networks learning symbolic reasoning. In-
terestingly, the history of neuro-symbolic systems coincides with the beginnings
of connectionism, given the aims of first artificial neurons to express logical cal-
culus [McCulloch and Pitts, 1943]. The idea of constructing neural networks
able to emulate boolean algebra and symbolic reasoning weakly took on [Mar-
tin and Talavage, 1963, Chan et al., 1989] until the 1990s. Recently, research
into neuro-symbolic systems took on resulted in logic-inspired neural archi-
tecture construction, learning and induction of rules in several types of logic,
from boolean formulas of propositional logic [Towell et al., 1990, Towell and
Shavlik, 1994, Shavlik and Towell, 1991, Garcez and Zaverucha, 1999, Stein-
bach and Kohut, 2002], over first-order logic [Shastri, 1992, Hölldobler et al.,
1999, França et al., 2014] to other non-classical logics [Garcez et al., 2007,
2008, 2014]. Interestingly, the idea of implementing neural networks simulat-
ing deduction [Komendantskaya, 2007], unification [Komendantskaya, 2011]
and even a neural inference engine for Prolog have been explored before [Chan
et al., 1993, Ding, 1995, Ding et al., 1996]. However, these directions did not
train any of the models in any way but used them for simulation.

Recently, there has been a surge of interest in neuro-symbolic models, usually
based on continuous approximations of the semantics of logic [Grefenstette,
2013, Serafini and Garcez, 2016] applied to reasoning and rule induction.

DeepProbLog [Manhaeve et al., 2018] uses continuous relaxation to imbue
ProbLog with neural predicates which can be applied on raw inputs, enabling
reasoning on raw inputs. Logic Tensor Networks [Serafini and Garcez, 2016,
Donadello et al., 2017] ground FOL terms, atoms and clauses in continuous
functions, allowing reasoning with knowledge-based constraints and Relational
Neural Machines [Marra et al., 2020] further generalise their approach.

Deep Relational Machine [Lodhi, 2013], on the other hand, induce rules and
use Restricted Boltzmann Machines to capture relational information in them,
but do not scale. Neural Logic Inductive Learning [Yang and Song, 2020]
differentiably end-to-end learns FOL rules hierarchically with a transformer,
to explain patterns in visual data. Similarly, DRUM [Sadeghian et al., 2019]
learns probabilistic logical rules for inductive and interpretable link prediction,
without requiring representations of entities in the KB.
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Other models enable both continuous reasoning and rule induction, as gNTPs
do. NeuralLP [Yang et al., 2017] uses a neural controller to learn to compose
TensorLog [Cohen, 2016] differentiable operators and learn rules over these
compositions. This method scales well and can integrate natural language
texts, as opposed to the original NTPs [Rocktaschel and Riedel, 2017]. When
compared to gNTPs, NeuralLP underperforms on all datasets we tested on ex-
cept WN18RR. Difflog [Raghothaman et al., 2019] extends Datalog to the con-
tinuous domain, assigning numeric weights to rules and optimising rule (pro-
gram) synthesis. It does, however, leave constants entirely symbolic, and does
not perform as well on Countries S1 and S3 as gNTPs do. Neural Logic Ma-
chines [Dong et al., 2019] use tensors to represent logic predicates and perform
sequential logic deductions on them. It does rely on symbolic inputs, though,
are challenging to train, and do not scale to large datasets. ∂ILP [Evans and
Grefenstette, 2018] is a differentiable ILP solver that constructs a network by
following the forward-chaining algorithm, similarly to the model of Campero
et al. [2018], who use forward-chaining to induce theories/rules and core facts
which can then infer the rest of the data. As forward-chaining algorithms,
though enabling predicate invention and induction of recursive rules, both of
these approaches cannot scale to non-toy datasets.

Some of these models can softly reason over texts, with NeuralLP being an
already mentioned one. Next, there is NLProlog [Weber et al., 2019] which
uses an external Prolog prover that relies on a similarity function and a pre-
trained sentence encoder to reason over texts. It is a RL model capable of
learning rules over natural language and enabling reasoning over texts, akin
to our fully differentiable gNTPs. Compared to gNTPs, NLProlog uses Prolog
for proof path search and evolution strategies to estimate gradients through
the non-differentiable search executed by Prolog. NLProlog also heavily relies
on thresholding the similarity function used, which is crucial to the scaling
capability they claim. However, their model has been applied on comparatively
small datasets compared to ours, so it is not clear at all whether their model
would even be able to scale to moderately sized datasets, let alone the large
datasets on which we evaluated. Finally, [Clark et al., 2020] show that a
transformer can learn to softly reason over natural language texts without the
need to represent knowledge formally, but just by relying on the text as an
expression of rules.
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4.5.3 ML-powered Scaling

The application of ML models has recently resulted in significant advances in
many hard domains [Silver et al., 2016] where hand-coded heuristics were once
heavily dominating [Silver et al., 2018]. These hard domains include combina-
torial optimisation problems [Bengio et al., 2018] such as Traveling Salesman
Problem [Bello et al., 2016, Khalil et al., 2017], (Mixed) Integer Program-
ming [Tang et al., 2019, Gasse et al., 2019], Boolean Satisfiability [Selsam and
Bjørner, 2019] and computational graph optimisation [Paliwal et al., 2019],
among others, program synthesis [Balog et al., 2017, Kalyan et al., 2018, Lee
et al., 2018] and, of course, theorem proving.

Albeit gNTP is not a direct competitor to symbolic theorem provers such
as ENIGMA [Jakubův and Urban, 2017], Vampire [Kovács and Voronkov,
2013] or E [Schulz, 2013], it is still noteworthy to emphasise that ML models
have pushed the limits of theorem proving too. Notable examples include
parametrised learning models for proof guidance learning [Loos et al., 2017,
Kaliszyk et al., 2018] and premise selection [Kaliszyk and Urban, 2015, Irving
et al., 2016, Wang et al., 2017a], and interestingly, even non-parametric models
such as NNS found their use, in fact, selection [Blanchette et al., 2016].

(Approximate) Nearest Neighbour SearchEfficient NNSs and ANNSs
methods have successfully improved, scaled and speed up various machine
learning tasks, including classification [Zaklouta et al., 2011], regression [Shen
et al., 2006], clustering [Moore, 1999, Liu et al., 2007], retrieval [Xia et al.,
2014], zero-shot learning [Palatucci et al., 2009], planning [Atramentov and
LaValle, 2002], and reinforcement learning [Dulac-Arnold et al., 2015].

Most similar to our work is the recent work of Rae et al. [2016] who use ANNS
to sparsify read and write operations in a memory-augmented network, as
a means of achieving magnitudes of time and memory savings. They apply
ANNSs to query an external memory, which is akin to our KB for the k closest
words. As opposed to them, gNTP build sequences of proof paths using a
chain of NNSs decisions. Similarly, Kaiser et al. [2017] use ANNS for scaling
memory-augmented model to large memory sizes, using it not just for hard
retrieval but incorporating it in the loss and ensuring that the ANNS result
affects the key formation.
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Maximum Inner Product SearchRelated to ANNS—a metric space -based
search—is the Maximum Inner Product Search (MIPS)—an inner product
space -based search. As opposed to finding the nearest vector in a metric
space, MIPS aims at finding a vector that results in the highest inner product
with a query vector. MIPS too has been used to scale and speed up ML mod-
els. Chandar et al. [2016] present a hierarchical memory network that exploits
the k-MIPS for the attention-based reader, making the model scale to large
memories, at a small cost to the accuracy. Spring and Shrivastava [2017] use
hashing-based MIPS during learning to reduce the computation load to every
layer of the model.

4.6 Conclusion and Future Work

The strong inductive bias of the backward chaining algorithm in NTPs en-
ables them to combine the strengths of theorem proving and neural networks
and deliver trainable reasoning over KBs. However, until now, they were not
applicable to large KBs nor KBs enriched with natural language due to their
prohibitive computational cost.

In this chapter, we propose gNTPs, a model that overcomes these limitations
by greedily considering only a subset of all the proof paths NTPs would oth-
erwise consider. We achieve this by limiting the proof paths to facts and rules
containing k-nearest atoms in the embedding space. This pruning results in
drastic speedups and memory efficiency, while, somewhat surprising, retaining
the same performance or outperforming NTPs. In turn, the ability of gNTPs
to scale opens up their application to the combination of structured and un-
structured data. By embedding logical atoms and textual mentions in the
same embedding space, gNTPs can successfully operate on natural language
-enriched KBs, unlocking the possibilities of further research in this area that
was not possible before.

Albeit the results are in general lower than those yielded by state-of-the-art
Neural Link Predictors on both the small and large datasets, they are still very
competitive and with the added benefits that gNTPs retain the induction of in-
terpretable rules and can provide human-readable proof paths as explanations
of its reasoning, at scale.
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Future WorkEven though gNTPs drastically prune the proof path enumer-
ation, they still prune it equally at each depth, meaning they retain the expo-
nential growth of the full enumeration. We can imagine further improving
the scaling capabilities of these models in several ways. First, we can en-
vision a dynamic beam search-alike enumeration strategy which enumerates
only a pre-specified number of proof paths, bringing the memory complexity
of the model further down into the linear region. Second, an MCTS-style ap-
proach to enumeration can bring the computational complexity of the model
down, while enabling better exploration of the proof state space. Third, and
somewhat orthogonal to the previous two, instead of the k-nearest neighbours,
we can employ a learned model which locally decides when to greedily expand
which rule at which depth. Such a model would enable us to side-step the
requirements on the embeddings and enable the model to work with different
scoring functions (e.g. ComplEx).

Logic-based reasoning suffers from the inability to represent model uncertainty,
which can be of crucial importance in reasoning tasks. We want to extend
gNTPs to a probabilistic generative framework that would enable us to
deal with uncertainty and utilise bidirectional/non-logical inferences through
the Bayes rule, enabling us to make predictions about unobserved relations
and facts.

Finally, we showed how gNTPs could deal with natural language texts by
jointly embedding text excerpts with KB triples into the shared embedding
space. In future work, we want to push this further and be able to meaning-
fully and interpretably extract and embed facts and rules from full sentences,
through a combination of model-guided parsing and joint embedding. Such an
approach would enable us to use gNTPs as provable and interpretable fact-
checking models applicable to text.
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Conclusions and Future Work

This thesis introduces differentiable interpreters—continuously relaxed ana-
logues of traditional program interpreters—as an effective way to exploit pro-
grams as background knowledge and utilise them as strong inductive biases
of neural networks. Differentiable interpreters are a single framework that en-
ables continuous execution of programs on inputs, but crucially, enabling the
use of gradient-based optimisation for inducing missing elements of the pro-
gram or learning input representation, given data. In this thesis we present
two differentiable interpreters, ∂4 and gNTPs.

5.1 Contribution Summary

∂4: A Differentiable Forth InterpreterWe introduce ∂4, a fully dif-
ferentiable interpreter for an imperative programming language Forth in
Chapter 3. We introduce the notion of incomplete programs for ∂4, differ-
entiable sketches, as a means of providing program-driven strong inductive
bias. Sketching provides a strong bias of known parts of the Forth program,
enabling the application of gradient-based optimisation for learning the un-
known parts. We apply sketching on learning parts of algorithms from data,
applying them on learning to sort and learning to add tasks, as well for solving
world algebra problems. The sketching approach enables training these models
on a small number of input-output pairs yet achieving strong generalisation
on these tasks. ∂4 requires the execution of all commands of the program at
each time step, in addition to following the full control flow of the program,
making it computationally intensive. We present optimisations to reduce the
load of the control flow, as its computational burden plagues longer programs.
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gNTP: Greedy Neural Theorem ProversThe need to run all commands
at every time step, on the other hand, is a principal issue of the differentiable
Datalog interpreter NTP. In order to learn representations of semantically
similar symbols, NTPs compare all facts to all sub-goals during the backward-
chaining proof path construction, making it impossible to scale to bigger KBs.
To curb this issue, we present gNTP in Chapter 4, a model which greedily
considers only paths involving representations of symbols closest to the cur-
rent sub-goal symbols, drastically improving model efficiency and scaling as
a result. Moreover, we widen the applicability of gNTP to textually-enriched
KBs by giving it a compositional reading module, enabling it to jointly embed
predicates and natural language texts in the same representation space. We
experimentally quantify that gNTP perform as well as NTP at a fraction of
the time and memory cost. The empirical demonstration of scaling enabled us
to apply gNTP to large datasets, yielding performance comparable to related
neuro-symbolic models, yet still lacking behind specialised link predictors. Fi-
nally, we demonstrated via qualitative analyses that the rules induced by the
model should not be judged by the nearest-neighbour decoding process of
Rocktaschel and Riedel [2017], but should be interpreted in conjunction with
best-ranking proof paths.

5.2 Discussion and Future Work

Continuous relaxation of discrete machinery showed itself as a fruitful approach
in many algorithm-learning tasks. Our contribution to this area showed that
we can capitalise upon explicit algorithmic knowledge and directly “bake it
in” the architecture of the model, making the model follow the program. We
showed that we can do this for complex programs, as well as making this
scale to large logic programs. However, the framework presented still exhibits
several limits, notably issues with learning efficiency and scaling.

Training ∂4 was not particularly straightforward and in most of our experi-
ments standard vanilla optimisation was not enough, so we had to resort to
optimisation tricks such as gradient noise and clipping. The model design had
to incorporate particular design choices, for example, we found it impossible
to train ∂4 models which would directly predict an element of the model state
without constraining it with a softmax. When learning the word algebra prob-
lems, we found that we had to sweep over a number of seeds in order to get
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the best performing model. In addition, even though we did not focus on the
inductive program synthesis task as a related differentiable interpreter Ter-
preT, we ran ∂4 on a very small program synthesis problem and experienced
the same problems as TerpreT. Concretely, we observed that it is quite diffi-
cult to synthesise even small programs due to the model getting easily trapped
into local optima. We did not pursue this line of work further due to the
conclusions made by TerpreT, showing that gradient optimisation as a local
optimiser simply cannot cope with the synthesis task as exhausting solvers can.
Similarly, we noticed that gNTP exhibits similar issues with learning; in some
experiments, we noticed it was necessary to pre-train rules in order to achieve
better performance. This showed us that there is still room for optimisation
improvement which could be a basis for future work.

On the other hand, ∂4 simply does not scale for long executions as it shares
standard RNN issues with diminishing gradients over long timescales. Simi-
larly, gNTP still does not scale for larger proof depths, due to its exponential
growth. Though some of these issues could be alleviated with more elaborate
models and mechanisms, these would still have a limited range of success.

Still, we think there are a few useful takeaways from our research.

Language ChoiceWe see language choice is crucial in modelling differentiable
interpreters. Not only does the language dictate the details of the continuous
approximation, but it also dictates the size of programs the interpreter can
handle and the magnitude of the control flow that it executes. We strongly
recommend that the choice of the host language should be task-oriented.

We initially intended to use ∂4 to construct a knowledge base theorem prover
by injecting the recursive structure of theorem proving, leaving either (or both)
the unification or the input representations to be learned. However, we quickly
realised that the code, and even more importantly the control flow, would ex-
plode in size for anything other than a trivial unit test. In this case, a dif-
ferentiable interpreter for a language fit for the logical reasoning task seemed
like a better fit, bringing our attention to NTP. Though still computationally
intensive, a differentiable interpreter for Datalog is still a far better perform-
ing alternative to an equivalent ∂4 sketch, not just because a logic language
offers a succinct representation for KBs, but importantly the execution of such
programs is inherently parallel—∂4 is sequentially recurrent whereas NTP is
fully recursive. This is a great fit for differentiable interpretation on a GPU,
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up to a point, which we successfully extended with gNTPs.

Likewise, Manhaeve et al. [2018] showed that the programs we presented in
Chapter 3 are in general smaller when expressed as a logic program, and also
produce a shorter control flow resulting in shorter execution time.

Similarly, should the task require (efficient) graph traversals, such as multi-hop
question answering over KBs, a differentiable interpreter for a graph traversal
Domain Specific Language (DSL) should be an excellent choice [Cohen et al.,
2019, 2020].

Fitness for a TaskTask-wise, we see that ∂4 holds ground on strongly biasing
the model with an algorithm, as well as gNTP works reasonably well for the
KB completion tasks, yet work done by Gaunt et al. [2016] and Feser et al.
[2017] shows that differentiable interpreters are simply not up to the task of
inductive program synthesis.

We still think, however, that there are promising tasks and promising new
languages on the horizon. Cohen et al. [2019] present Neural Query Language,
essentially a differentiable graph traversal interpreter, showing exciting results
on traversing huge graphs and learning relationships between nodes in the
graph. We think a similar approach can be expanded with representation
learning to enable large-scale associative memory recall.

On the other hand, even though the conclusions of Gaunt et al. [2016] indis-
pose differentiable interpreters for program synthesis, Gaunt et al. [2017] show
that there is still use for differentiable interpreters when synthesising (small)
programs involving continuous inputs. We hypothesise that this, or similar
approach integrating non-differentiable actions, can be used to synthesise pro-
grams, i.e. structure of quantum neural networks [Ostaszewski et al., 2019].

5.3 The Outlook

Having in mind both the benefits and the difficulties brought by differentiable
interpreters, we are still optimistic that the elements of this approach, con-
cretely the continuous relaxation of computational primitives, will still find
use in modern architectures, and we are hoping that further research down the
line will shine a light on how to effectively use them.

We hope ∂4 and the paradigm it helped establish will find its use cases in
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domains where tasks dictate dense representations, with high-level processing
difficult to learn, but possibly easier to, even if partially, specify libraries of
sketches. These libraries could enable faster learning of components for quick
master and learning of difficult-to-learn tasks such as computation, reason-
ing, optimisation and making differentiable counterparts of non-differentiable
losses.

As for gNTP, we hope to see it as a step towards scalable and interpretable
theorem proving applicable on natural language.
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Appendix to ∂4

A.1 Forth Instruction Set

In this section, we describe in detail the Forth instruction set briefly presented
in Section 3.2.2.

Description Format In order to explain the operational effect of each word,
in lieu of mathematical notation or the language of operational semantics [Lu-
cas, 1978], we use a a more pragmatic technical approach Forth literature uses
to describe words. This format focuses on explaining the effect of the word on
the data stack or the return stack, while describing other behaviour internal
to the interpreter in a free-form text. The effect of each word is described with
the following template:

WORD D: ( x -- y )

R: ( x -- y )

This is the free-form description of the WORD word. ( x -- y

) denotes the before (x) and after (y) state of a top of the data
stack (D:) or the return stack (R:) that is necessary to understand
the command, obviating the need for presenting the full state of
stacks. For example, ( x -- x*2 ) denotes that the top of the
data stack doubled in value, ( x -- ) denotes the removal of the
top of the stack, and ( -- x ) denotes insertion of a new value
on the stack.
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Data stack operations
x D: ( -- x )

Pushes the integer literal x to the data stack.

DROP D: ( x -- )

Pops the data stack TOS (non-destructive).1

DUP D: ( x -- x x )

Duplicates the data stack TOS.

SWAP D: ( x y -- y x )

Swaps the TOS and NOS on the data stack.

OVER D: ( x y -- x y x )

Pushes a copy of NOS as the new TOS.

1+ D: ( x -- x+1 )

Increments the data stack TOS.

1- D: ( x -- x-1 )

Decrements the data stack TOS.

+ D: ( x y -- x+y )

Addition operation—drops the data stack NOS and TOS and
pushes NOS+TOS to the data stack.

- D: ( x y -- x-y )

Subtraction operation—drops the data stack NOS and TOS and
pushes NOS-TOS to the data stack.

* D: ( x y -- x*y )

Multiplication operation—drops the data stack NOS and TOS
and pushes NOS*TOS to the data stack.

/ D: ( x y -- x/y )

Division operation—drops the data stack NOS and TOS and
pushes NOS/TOS to the data stack.

1The TOS value is still in memory, but the stack pointer is pointing to a value below it.
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> D: ( x y -- c )

Greater than comparator—drops the data stack NOS and TOS
and pushes literal c to TOS. c is set to 1 if x> y and 0 otherwise.2

< D: ( x y -- c )

Less than comparator—drops the data stack NOS and TOS and
pushes literal c to TOS. c is set to 1 if x < y and 0 otherwise.

= D: ( x y -- c )

Equality comparator—drops the data stack NOS and TOS and
pushes literal c to TOS. c is set to 1 if x= y and 0 otherwise.

Return stack operations
>R D: ( x -- )

R: ( -- x )

Pops the data stack TOS and pushes it to the return stack.

R> D: ( -- x )

R: ( x -- )

Pops the return stack TOS and pushes it to the data stack.

@R D: ( -- x )

R: ( x -- x )

Pushes a copy of the return stack TOS to the data stack.

Heap operations
@ D: ( addr -- x )

Takes the data stack TOS value as the heap address from which
it fetches the value x which it then pushes on the stack.

! D: ( x addr -- )

Takes the data stack NOS value as the value, and TOS as the
address. It then stores the value onto the heap under that address.

Control statements
Please note that each token (keyword) of these commands carries its own
separate semantics but we explain them together as their combination
easily relates to usual control statements in other languages ..x denotes

2In general, Forth interprets any non-zero value as TRUE and zero as FALSE.
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a sequence of words, and ? denotes effect contingent on the condition at
hand and the executed sequence of words.

IF ..1 THEN D: ( flag -- ? )

Pops the flag value off the data stack. If its value is TRUE
(non-zero value), it executes ..1.

IF ..1 ELSE ..2 THEN D: ( flag -- ? )

Same as above, but if flag is FALSE (zero) it executes ..2.

BEGIN ..1 WHILE ..2 REPEAT D: ( -- ? )

Executes ..1. If the (resulting) data stack TOS is TRUE, it
executes ..2, upon which it goes back to ..1. However, if the
TOS value is FALSE, it does not execute ..2 at all and resumes
with following words.

DO ..1 LOOP D: ( limit index -- ? )

Pops the data stack NOS and TOS as the limit and index, and
executes ..1. Upon completion, increments the index and checks
whether the index equals to the limit. If it does, continues with
following words, otherwise it pushes the limit and the incremented
index back to the data stack, and redirects control back to the
beginning of the loop (after DO).

Subroutine control
: SUB ..1 ;

Defines a new word named SUB, as the sequence of words ..1.
It effectively creates an entry in the interpreter dictionary which
points to the word following it. : denotes the start of the sub-
routine/word SUB as a sequence of words ..1, and ; signifies the
end of the subroutine.

SUB

R: ( -- pc-addr )

Subroutine/word invocation—the word SUB is invoked by pushing
the program counter c on the return stack, and assigning the
address of the word following the definition of SUB to c as the new
program counter.
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Variable creation
VARIABLE VAR

Creates a variable named VAR by reserving a single address on the
heap. It then binds the value of that address to the word VAR.

CREATE VAR ALLOT NUM

Creates an array variable named VAR by reserving NUM sequential
addresses on the heap. It then binds the value of the first of the
addresses to the word VAR. This effectively reserves an uninter-
rupted portion of the heap for the variable.

VAR D: ( -- var-addr )

Invoking a variable VAR by its name just returns the address of
the variable.

Other
NOP D: ( -- )

No-operation. Nothing is executed.

MACRO: SUB .. ;

Treats the word SUB as a macro—akin to a preprocessing direc-
tive, it replaces the SUB token with .. in the source code, before
interpretation.
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Appendix to gNTP

Table B.1: The set of textual mentions replacing the variable number of training
triples in Section 4.4.5 for the locatedIn and the neighborOf predi-
cates.

locatedIn(X, Y)

[#1] can be found in [#2] [#1] is based in [#2] [#1] is contained in [#2]
[#1] is currently in [#2] [#1] is found in [#2] [#1] is in [#2]
[#1] is localized in [#2] [#1] is located in [#2] [#1] is placed in [#2]
[#1] is positioned in [#2] [#1] is present in [#2] [#1] is set in [#2]

[#1] is sited in [#2] [#1] is situated in [#2] [#1] is still in [#2]
[#1] used to be found in [#2] [#1] was based in [#2] [#1] was contained in [#2]
[#1] was currently in [#2] [#1] was found in [#2] [#1] was in [#2]
[#1] was localized in [#2] [#1] was located in [#2] [#1] was placed in [#2]
[#1] was positioned in [#2] [#1] was present in [#2] [#1] was set in [#2]

[#1] was sited in [#2] [#1] was situated in [#2] [#1] was still in [#2]

neighborOf(X, Y)

[#1] borders with [#2] [#1] borders [#2] [#1] is a neighbor of [#2]
[#1] is a neighboring country of [#2] [#1] is a neighboring state to [#2] [#1] is adjacent to [#2]

[#1] is bordering [#2] [#1] is butted against [#2] [#1] is closest to [#2]
[#1] is nearest country to [#2] [#1] is nearest to [#2] [#1] is next to [#2]

[#1] is positioned closest to [#2] [#1] is positioned next to [#2] [#1] is right next to [#2]
[#1] neighbours with [#2] [#1] neighbours [#2] [#1] was a neighbor of [#2]

[#1] was a neighboring country of [#2] [#1] was a neighboring state to [#2] [#1] was adjacent to [#2]
[#1] was bordering [#2] [#1] was butted against [#2] [#1] was closest to [#2]

[#1] was nearest country to [#2] [#1] was nearest to [#2] [#1] was next to [#2]
[#1] was positioned closest to [#2] [#1] was positioned next to [#2] [#1] was right next to [#2]
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