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A R T I C L E  I N F O   

Keywords: 
Genetic genealogy 
SNP microarrays 
Whole-genome-sequencing 
Familial searching 
Identity by descent 
Forensic DNA analysis 
Crime investigation 

A B S T R A C T   

Investigative genetic genealogy (IGG) has emerged as a new, rapidly growing field of forensic science. We 
describe the process whereby dense SNP data, commonly comprising more than half a million markers, are 
employed to infer distant relationships. By distant we refer to degrees of relatedness exceeding that of first 
cousins. We review how methods of relationship matching and SNP analysis on an enlarged scale are used in a 
forensic setting to identify a suspect in a criminal investigation or a missing person. There is currently a strong 
need in forensic genetics not only to understand the underlying models to infer relatedness but also to fully 
explore the DNA technologies and data used in IGG. This review brings together many of the topics and examines 
their effectiveness and operational limits, while suggesting future directions for their forensic validation. We 
further investigated the methods used by the major direct-to-consumer (DTC) genetic ancestry testing companies 
as well as submitting a questionnaire where providers of forensic genetic genealogy summarized their operation/ 
services. Although most of the DTC market, and genetic genealogy in general, has undisclosed, proprietary al-
gorithms we review the current knowledge where information has been discussed and published more openly.   

1. Introduction 

It is a fundamental principle of genetics that individuals who are 
closely related will share DNA from their common ancestors; and the 
more distant the relationship, the less DNA is shared. Familial searching 
of national DNA databases [1] using 16–22 autosomal STRs will only 
provide links through partial matches to immediate relatives such as 
siblings, parent-offspring (50% of DNA shared) or, at most, avuncular 
relationships, e.g. uncle-nephew (25% shared); although even half-sibling 
relationships can be difficult to resolve with limited STR data. Once fa-
milial searching is extended over a longer range to pairwise comparisons 
of first cousins, second cousins, third cousins and beyond (12.5%, 3.13% 
and 0.78% DNA shared, respectively) there is the requirement for genetic 
variation at much higher densities than the standard forensic tests have 
been able to achieve up till now. High-resolution commercial 
direct-to-consumer tests which include a relative-matching feature have 
been available for more than a decade [2]. These tests are currently 
analyzed using high-density microarrays genotyping more than 600,000 
SNPs, providing matches with both close and distant relatives. By distant 

we refer to degrees of relatedness exceeding that of first cousins, in 
contrast to genealogists who use the term distant for relationships beyond 
4th or 5th cousins. Genealogists have used these tests routinely since their 
inception as a tool to help with their family history research, both to 
confirm existing relationships and find new relatives [3]. Such tests are 
also used in unknown parentage searches [4,5], with thousands of 
adoptees, donor-conceived individuals and foundlings successfully using 
the commercial tests to connect with siblings and identify biological 
parents. Conversely, tests have revealed unexpected discoveries such as 
the finding of unknown siblings or the discovery that the social parent is 
not the biological parent [6]. Therefore, it was only a question of time 
before the same techniques were applied to forensic DNA from a 
crime-scene or the remains of missing persons. The barrier hindering the 
forensic implementation of long-range familial searching was the lack of a 
method to generate the required high-density SNP data from degraded 
DNA which would be compatible with the genetic genealogy databases. 

Three major factors are necessary to reach the level of effectiveness 
for relative matching achieved by genetic genealogy: i. large-scale 
autosomal SNP genotype data with marker numbers in the hundreds 
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of thousands and available at an affordable price; ii. large databases of 
these SNP genotypes open to public access; and iii. a simple but well- 
founded system for comparing related pairs using this large-scale SNP 
data. While the use of dense SNP microarray data had already been 
studied in forensic contexts [7–11], such technology became readily 
available to the public in 2007 through direct-to-consumer testing 
companies (the ‘DTCs’) with the launch of tests from deCODE Genetics 
and 23andMe, costing nearly $1000 [12]. Early tests were based on the 
Illumina OmniExpress microarray, but the field is now dominated by the 
Illumina Infinium Global Screening Array (GSA), which currently has a 
core set of 654,027 SNPs and the ability to add up to 50,000 custom 
markers.1 As the cost of testing decreased and more companies entered 
the market, SNP databases began to grow exponentially. The inflection 
point was reached in 2018 and in that year more DNA tests were sold 
than in all previous years combined [13]. As of August 2020, the four 
principal genetic genealogy DTC companies have tested over 36 million 
people (see Table 2, Section 5). 

An autosomal SNP-based system of matching relatives in a commercial 
DNA database first became available in 2009 with the launch of the 
Relative Finder2 feature from 23andMe (now known as DNA Relatives). 
FamilyTreeDNA (FTDNA) introduced their Family Finder test in 2010.3 

AncestryDNA entered the autosomal SNP market in 20124 and MyHeritage 
DNA launched their DNA product in 2016.5 Of the commercial companies, 
only FTDNA allows law-enforcement matching within the opted in section 
of its database. GEDmatch, a citizen science website founded in 2010, 
proved crucial to the initial development of investigative genetic geneal-
ogy. GEDmatch allows DNA profiles to be uploaded from a wide variety of 
sources, including law enforcement samples, so that cross-company com-
parisons can be performed using an additional range of tools. 

The arrest of Joseph DeAngelo as the suspected Golden State Killer in 
2018 brought the investigative use of genetic genealogy to the world’s 
attention [14]. Genetic genealogy has since been used to generate 
investigative leads in nearly 200 cold cases and some active investigations 
[2,15–18]. Many of the technical details around the analysis of forensic 
DNA for long-range familial searching are still not in the public domain, as 
commercial interests restrict publication of much of the information 
needed to properly assess how large-scale SNP genotyping techniques are 
applied to evidential material – typically with DNA limited in quantity 
and quality. In addition, there is a lack of transparency on the part of law 
enforcement agencies. IGG is used to generate an investigative lead and 
the details of the IGG work have not yet been scrutinized in court. Con-
tradictory stories of how the Golden State Killer was caught have been 

published and further details only became available two years after his 
arrest from information leaked to the Los Angeles Times.6 Nevertheless, 
whole genome sequencing to create SNP datasets that mirror 
microarray-based genotyping has been widely adopted to ensure sensi-
tivity to challenging forensic samples [17]. Many of these techniques 
adapted the approaches developed to analyze ancient DNA, where 
sequence targets are much more degraded [19]. While most relative 
searching systems are centred on matching stretches of shared DNA 
[20–22] (referred to as segments), alternative analyses exist and are being 
developed which could offer more viable approaches when insufficient 
SNP genotypes from poor DNA prevent reliable segment matching [23, 
24]. In this review, we attempt to fill some of the gaps in knowledge that 
currently exist, with emphasis on the DNA analysis regimes in use for 
long-range familial searches. To compensate for the lack of information in 
the public domain we sent out a questionnaire to some of the forensic 
science providers in the US. This includes a number of questions relating 
to the use of technologies and genetic genealogy in their assistance to law 
enforcement. The answers are submitted from private companies, 
potentially with conflicts of interests, and we have taken care to 
peer-review them as far as possible. The responses received to the ques-
tionnaire are compiled in Supplementary File S1. 

We use the term investigative genetic genealogy (IGG), also known 
as forensic genetic genealogy, to describe the use of SNP-based relative 
matching combined with family tree research to produce investigative 
leads in criminal investigations and missing persons cases. The term 
forensic genealogy is sometimes used in this context but has a distinct 
meaning in US genealogical circles and relates to all questions of a legal 
nature that require genealogical analyses, including disputed inheri-
tance, identification of military personal and citizenship claims.7 Two 
papers published in 2019, Greytak et al. [15], and Kennett [2] provide 
informative overviews of genetic genealogy used in forensic in-
vestigations. Useful additional information, an updated review of 
forensic genetic genealogy practice and a list of many successful crime 
investigations was provided in 2020 by Katsanis [16]. We also recom-
mend the comprehensive information compiled by the International 
Society of Genetic Genealogy (ISOGG) in their genetic genealogy wiki 
portal with 622 articles,8 including a wealth of information on IGG. 

2. Inference of relatedness 

There is a wide range of approaches to infer the genetic relationship 
between two or more individuals [20,25–35]. The aim of relationship 
inference, as defined in this review, is to determine whether regions of 
DNA are shared identical by descent (IBD), i.e., through common 
ancestry. Comprehensive summaries of this topic are provided by Weir 
et al. [29], and Browning and Browning [36]. Speed and Balding [34] 
review methods referred to as part of the post-genomic era, which we 
term exploratory approaches. In contrast, Thompson [33] reviews what 
we term pedigree-based methods. The following sections provide a brief 
description of these approaches, summarized in Fig. 1, and an overview 
of the underlying statistical theory. We do not discuss the number of 
markers required for each approach in detail and all numbers should be 
seen as approximate, heavily dependent on the case, the population or 
other factors. As a rule of thumb, simple versions of exploratory ap-
proaches require higher marker numbers evenly distributed across the 
genome, while pedigree-based methods tend to require fewer markers, 
but still evenly distributed. 

Table 1 
The percentage proportion by country of the ten most frequent GEDmatch up-
loads for user’s country of origin. Web analytics data from Verogen (up to 
September 2020).   

Country Users  Country Users 

1 United States  65%  6 Germany  1% 
2 United Kingdom  9%  7 Sweden  1% 
3 Canada  6%  8 Ireland  1% 
4 Australia  4%  9 New Zealand  1% 
5 France  2%  10 Netherlands  1%  

1 Version 3, details available at: https://emea.illumina.com/products/by-ty 
pe/microarray-kits/infinium-global-screening.html.  

2 See: https://blog.23andme.com/news/introducing-relative-finder-the-newe 
st-feature-from-23andme/  

3 See: https://thegeneticgenealogist.com/2010/07/19/a-review-of-family-t 
ree-dnas-family-finder-part-i  

4 See: https://www.ancestry.com/corporate/newsroom/press-releases/anc 
estry.com-dna-launches  

5 See: https://blog.myheritage.com/2016/11/introducing-myheritage-dna/ 

6 See: https://www.latimes.com/california/story/2020-12-08/man-in-the-w 
indow.  

7 See: https://www.forensicgenealogists.org  
8 ISOGG Wiki: https://isogg.org/wiki 
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2.1. Exploratory approaches 

The exploratory approach benefits from being able to provide a 
measure of relatedness without any prior information. Briefly, it uses the 
observed genotype states and summarizes the number of shared alleles or 
shared stretches of alleles. Manichaikul et al. [27] describe a method to 
estimate the so called Cotterman coefficients using dense SNP data. 

Cotterman coefficients are summarized in the kinship coefficient and 
probability to share zero alleles IBD. A similar approach is implemented in 
PLINK [37]. Both can be seen as methods-of-moment estimators. 
Browning et al. [31,38,39], Gusev et al. [40] as well as Henn et al. [20] 
outline an alternative model whereby segments of shared DNA are iden-
tified, see Fig. 1. The simplest version of this approach utilizes dense SNP 
data to identify stretches of half-identical genotypes. A half identical 

Table 2 
Analysis and SNP genotyping details of the four main DTCs and GEDmatch. Information has been compiled from the company websites as well as the scientific 
publications given in the table. When data was not available ‘n/a’ is given.   

23andMe Ancestry.com FTDNA GEDmatch MyHeritage 

Website www.23andme.com www.ancestry. 
com/dna 

www.familytreedna.com www.gedmatch.com www.myheritage.com/dna 

Company 
founded 

2006 1996 2000 2010 2003 

Sells DNA tests Yes Yes Yes No Yes 
Launch of 

microarray- 
based relative- 
matching test 

2009 2012 (US) and 
2015–16 (33 other 
countries) 

2010 n/a 2016 

Accepts customer 
uploads from 
other 
companies 

No No Yes. 23andMe, AncestryDNA, 
MyHeritageDNA 

Yes. Uploads accepted 
from over 20 companies 

Yes. 23andMe, AncestryDNA, 
FTDNA, Living DNA v1 

Law enforcement 
uploads 

No No Yes Yes No 

International 
availability 

50+ countries 34 countries All countries except Sudan and 
Iran 

Worldwide All countries except Israel, Iran, 
Libya, Sudan, Somalia, North 
Korea, Lebanon and Syria 

Database size 12 million 19 million 1.4 million 1.45 million 4.5 million [22] 
Chip used Customised Illumina GSA Customised Illumina 

OmniExpress 
Customised Illumina GSA n/a Customised Illumina GSA 

Total SNPs 654,027 ~700,000 654,027 n/a 654,027 
Autosomal SNPs 621,575 637,639 621,575 n/a 621,575 
X- SNPs 27,176 28,892 27,176 n/a 27,176 
Autosomal DNA 

match 
thresholds 

Option 1: 9 cM and at least 
700 SNPs for one half- 
identical region; Option 2: 
5 cM and 700 SNPs with at 
least two half-identical 
regions being shared 

6 cM per segment 
before the Timber 
algorithm is applied 
and a total of at least 
8 cM after Timber is 
applied 

Option 1: 9 cM and 500 SNPs for 
one half-identical region; Option 2: 
7.7 cM for the first half-identical 
region and a total of at least 20 cM 
(including the shorter matching 
HIRs between 1 cM and 7 cM); 
Option 3: 5.5 cM and at least 500 
SNPs for the first half-identical 
region for about 1% of customers 
who come from specific non- 
European populations 

7 cM. Default SNP 
count is set to vary 
dynamically. SNPs 
down to 3 cM can be 
seen in the One-to-One 
tool 

8 cM for the first matching 
segment and at least 6 cM for the 
2nd matching segment; 12 cM 
for the first matching segment in 
people whose ancestry is at least 
50% Ashkenazi 

X-DNA match 
thresholds 

For half-IBD segments: Male 
vs male: 200 SNPs, 1 cM; 
male vs female: 600 SNPs, 
6 cM; female vs female: 1200 
SNPs, 6 cM; For full-IBD 
segments: 500 SNPs, 5 cM 

Not applicable 1 cM and 500 SNPs for both males 
and females; matches must already 
meet the autosomal DNA matching 
criteria 

7 cM. Default SNP 
count is set to vary 
dynamically. SNPs 
down to 3 cM can be 
seen in the One-to-One 
tool 

Not applicable 

Scientific 
publications on 
IBD detection 

Durand et al. 2014 [59] and 
Henn et al. 2012 [20] 

Ball et al. 2020 [21]   Petter et al. 2020 [22] 

Adapted from Tim Janzen’s Autosomal DNA Testing Comparison Chart in the ISOGG Wiki: https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chart 

Fig. 1. An illustration of three approaches to infer relat-
edness between a pair of individuals, illustrated in their 
simplest form. In the likelihood ratio (LR) approach two 
competing hypotheses are compared and the LR expresses 
how much more likely the genotypes are given the first 
hypothesis. In the segment approach stretches of half- 
identical genotypes are compared and once opposite ho-
mozygotes are detected, the segment is terminated. The 
method-of-moments estimator (MoM) compares the indi-
vidual genotype states and summarizes them over a large 
number of SNPs providing estimates of the kinship between 
the individuals.   
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stretch is terminated once opposite homozygotes are detected at a certain 
point. The length of the segment (or haplotype) is recorded as well as the 
segment’s SNP number. The non-probabilistic version of the segment 
model requires two parameters, the segment length in centiMorgans (cM) 
and the number of SNPs in a segment.9 If a segment exceeds a set 
threshold it is added to the total length of shared segments. Setting the 
threshold too low can potentially result in higher levels of false matches, 
whereas higher thresholds may eliminate true matches; although it should 
be noted that all likelihood-based forensic measurements must establish a 
threshold to balance false positive and false negative rates accordingly. In 
relationship tests a false positive result incorrectly includes an unrelated 
individual, while a false negative result excludes the true relationship, but 
may incorrectly suggest alternative relationships. Finding appropriate 
likelihood thresholds, with maximization of this cost/benefit trade-off 
applies to most statistical evaluations in forensic case work. The 
segment model has been adopted by all the major direct-to-consumer 
(DTC) genetic testing companies in different versions10 and imple-
mented in various freely available tools [31,37,40–45]. Variations of the 
segment model implement a pre-phasing step whereby the paternal/-
maternal origin of each allele is determined and used to potentially 
improve the accurate detection of IBD segments [38]. The DTC Ances-
tryDNA uses a version of the BEAGLE algorithm [46] to phase short pieces 
of DNA and subsequently uses phased haplotypes to identify what they 
term seed segments [21]. Information about the frequency of shared 
haplotypes can be used to further strengthen the weight of a segment 
match [36,44]. Haplotype frequency is taken into account in the matching 
algorithms at AncestryDNA where their so-called Timber algorithm 
compares segments with a reference panel and down-weights the genetic 
distance for regions which have unusually high levels of matching [21]. 
Haplotype frequency estimation could potentially help identify rare 
shorter segments shared through recent common ancestry [47]. A further 
refinement, which Browning et al. [38] refer to as probabilistic versions of 
the segment model, uses a statistical approach (hidden Markov model) to 
model the IBD states and compute LOD scores determining whether a 
particular segment is IBD or not. The probabilistic models are likely to 
perform better for the detection of shorter IBD segments, e.g. below 
4–5 cM, but require significantly more computational power [48]. 

2.2. The likelihood approach 

The likelihood approach has its merits as investigators are presented 
with a probability stating how likely the genetic data are, assuming hy-
pothesis one (H1): the individuals are related as claimed vs. hypothesis 
two (H2): that they are unrelated or have an alternative relationship. 
Using likelihood comparisons to determine relatedness has traditionally 
been part of forensic and medical genetics for some time [49–51]. This 
approach requires the formulation of hypotheses to assess, for instance: 

H1: Two individuals are full cousins. 
H2: Two individuals are unrelated. 
The likelihood is then computed by conditioning on each hypothesis 

separately. A likelihood ratio can be formed stating how much more 
likely or unlikely the observed genotypes are given hypothesis H1 
compared to H2 [52]. Evaluating the likelihood is normally associated 
with computationally intensive algorithms [53,54] for dense SNP data 
and many typed individuals. For pairwise comparisons the algorithms 
can be condensed, and results obtained with minimum computational 
effort. Thompson suggested the use of a maximum likelihood approach 
(MLE) to estimate the relatedness coefficients for pairs of individuals 

[55]. However, this method is restricted to non-inbred individuals using 
unlinked markers. Weir expanded these ideas by including population 
substructure in the MLE model [56]. The inference of relatedness 
beyond first cousin level requires expanded marker panels of more than 
~10,000 SNPs, and linkage must be accounted for [23,30]. This is in 
contrast to current forensic practice where unlinked STR or SNP markers 
are used, though recent progress suggests a move towards more 
expanded marker panels [57,58]. A maximum likelihood approach ac-
counting for linkage requires the estimation of the relatedness co-
efficients in combination with inheritance patterns. Genealogical 
applications normally only provide a range of relationships rather than 
an exact level of relatedness. Therefore, a discrete grid of relatedness 
coefficients can be evaluated instead of a continuous optimization, i.e., 
the MLE approach can compute the likelihood of e.g., the twenty most 
common degrees of relatedness and then report the highest likelihood, 
or the top listed likelihoods if these have similar values. 

The likelihood approach further benefits from being able to use 
reduced genotype data, normally comprising pruned genome-wide SNP 
data. A naïve approach uses only a minimum distance as the inclusion 
criterion. Closely located SNPs are expected to contain a high degree of 
redundant information, mainly through the association of alleles in a 
population. While a large proportion of SNPs with low minor allele 
frequencies on average convey little information, when a few rare var-
iants are shared they can provide strong support for relatedness. 
Maximum information (i.e. heterozygosity) is achieved when the minor 
allele frequency for a bi-allelic marker is 0.5. Therefore, more intricate 
thinning procedures would utilize measures of allelic associations and 
population frequency data to prune SNP data. 

Kling et al. [24] compared exploratory and likelihood approaches 
(including four degrees of relationships) finding that to identify distant 
relatives, they provide equal power while the likelihood approach tends 
to falsely include unrelated individuals as distant relatives to a greater 
extent than exploratory approaches. Note that Kling et al. used a naïve 
version of the segment approach, mimicking that of GEDmatch, and 
better performance would be expected for the more evolved versions 
[38,40,44,59,60]. As with the likelihood methods, the exploratory ap-
proaches do not provide an exact degree of relatedness, but a range of 
possible relationships which can be investigated through genealogical 
research. Ultimately, taking a case to court currently requires the 
formulation of hypotheses and a likelihood ratio which is then converted 
into a posterior probability stating how likely a certain hypothesis is, 
given all circumstantial evidence [52,61]. Exploratory approaches are 
currently only used in forensic analysis to generate investigative leads 
and are not presented in court, where STR profiling remains the uni-
versally accepted way to establish identity or the link between suspect 
and crime scene. However, Ge and Budowle [62] have suggested that a 
shift from STRs to dense SNP data could eventually occur which would 
require establishing new statistical methods in forensic genetics and 
acceptance as a secure system of identification by courts of law. 

2.3. Limitations 

In forensic applications, obtaining data for panels of >500,000 SNPs is 
not always possible, partly due to the nature of forensic samples but also 
due to the panels and platforms used in routine work. The exploratory 
approaches require very dense panels of markers to accurately determine 
relationships. Fig. S1 illustrates that in a small study performed, at least 
56,000 SNPs are needed to determine first cousins, while siblings only 
require 29,000 SNPs. In contrast, the likelihood approach does not rely on 
as dense a set of markers as the exploratory approaches. It benefits from 
using allele frequencies to infer relationships and thus, in theory, a few 
shared rare variants can indicate strong support for relatedness. This 
could also represent a drawback if inappropriate frequency databases are 
used, as demonstrated in Kling [23]. Limitations in the number of geno-
typed SNPs could potentially be overcome by using imputation, described 
later. A further drawback of the likelihood approach is the need to 

9 The threshold on the number of SNPs in a segment is primarily defined to 
ensure sufficient marker density in any given region. Further, in a forensic 
setting, marker density cannot necessarily be ensured, for instance due to low 
quality DNA samples.  
10 ISOGG at: https://isogg.org/wiki/Autosomal_DNA_testing_compari 

son_chart 
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account for linkage disequilibrium (LD) when SNP numbers increase. 
Kling showed that the false positive rate (i.e. false inclusion of true un-
related individuals at various degrees of relationship) is heavily inflated if 
LD is not accounted for with SNP numbers exceeding 30,000, particularly 
in some populations [23]. In contrast, LD can be naturally incorporated 
into the segment approach where SNPs could be in LD (i.e. shared through 
distant population ancestry) in short segments, but when segments are 
longer, little LD is detected between their start and stop positions [63–65]. 
Browning et al. incorporated adjustments for LD in their segment model 
[38]. Chiang et al. [66] showed that many inferred segments 1–2 cM long 
actually result from conflation of a number of smaller segments of at least 
0.2 cM or longer. AncestryDNA recently illustrated that some longer 
segments, even up to 50 cM, were identified to be shared by individuals 
from a common population.11 They also showed a lack of concordance in 
matching in mother-father-child trios for inferred IBD up to 30 cM and a 
50% discordance rate at 6 cM (Fig. 3.3 in Ball et al. [21]). 

The question of how far inference of relatedness can reach was first 
addressed by Donnelly in 1983 [67]. Donnelly investigated the theo-
retical probabilities of two people of different degrees of relatedness 
sharing a portion of their genome identical by descent. This study found 
that in theory all second cousins should share some DNA identical by 
descent, but roughly 2% of all third cousins and 30% of all fourth cousins 
would share no detectable DNA relationship. This work further high-
lighted the limits of genetic genealogy and the important principle that 
not all genealogical relationships will be genetic ones [68]. The degree 
to which relationships can be detected using available genotype data 
was investigated by Huff et al. [45]. Using a maximum-likelihood 
method known as ERSA, they identified 80% of sixth- and 
seventh-degree relatives amongst 169 individuals. Henn et al. [20] 
investigated IBD sharing in a much larger dataset of over 20,000 in-
dividuals drawn from the 23andMe database and HGDP-CEPH panel. 
Using unphased data, it was possible to detect ~90% of third cousins 
and 46% of true fourth cousins. There is a considerable overlap between 
the distribution of shared DNA for distant relatives (see Table 1 in 
Balding et al. [34] and Ball et al. [21]), which is why DTC reports give 
ranges of relationships rather than precise inferences. The 
crowd-sourced initiative “Shared cM Project” (see Section 5) provides a 
good overview of empirically collected data submitted by DTC cus-
tomers [69,70]. The use of whole genome sequence (WGS) data has the 
potential to further improve relationship estimations. Li et al. estimated 
that WGS data potentially increases the detection power for distant re-
lationships by 5–15% compared with microarray data [71]. 
Al-Khudahair et al. [72] described the use of whole genome sequence 
data where distant relatives (8–9th degree) could be detected using very 
rare genetic variants. Section 3.2 further explores the expected and re-
ported success rates using current databases. 

The inference of relatedness is confounded by pedigree collapse and 
endogamy. Ralph and Coop [73] provided empirical data of the 
inter-relatedness of all Europeans within the last 1000 years. They found 
that two European individuals from neighboring populations share be-
tween two and 12 genetic ancestors from the last 1500 years and over 100 
genetic ancestors within the last thousand years, with substantial regional 
differences in the level of sharing. They highlighted the difficulties of 
inferring the age of a single small segment of 10 cM and the impossibility 
of assigning a genealogical relationship. Gauvin et al. [74] found evidence 
of genome-wide sharing in the French Canadian population. Carmi et al. 
[75] found significant IBD sharing on segments over 3 cM and 5 cM in an 
Ashkenazi Jewish population and Gilbert et al. [76] found elevated levels 
of segment sharing in the Irish traveller population. 

Henn et al. [20] explored the effect of endogamy in HGDP-CEPH 
populations. Very high levels of segment sharing, and therefore very 
recent common ancestors, were detected in Surui and Karitiana, 

(Amazonian populations which are essentially extended families). 
However, high levels of segment sharing were also detected in the much 
larger Kalash and Yakut populations, indicating the minimum segment 
length threshold used to analyze IBD needs careful calibration in pop-
ulations with endogamy or recent bottlenecks [25]. 

IBD sharing on the X-chromosome was investigated by Buffalo, 
Mount and Coop [77] and a useful overview of the practical applications 
and limitations of X-chromosome matching for genetic genealogy is 
provided by Johnston (see X-DNA techniques and limitations in [78]) An 
X-chromosome match provided useful additional information in the 
Golden State Killer case, when a second cousin was found to have an 
X-chromosome match with the suspect DeAngelo.12 

2.4. The impact of errors 

Various errors can be introduced to SNP genotypes during the process 
of parsing variants. Such errors are broadly dividable into two subsets: 
technological errors and induced errors. Technological errors resulting in 
erroneously called genotypes can occur during DNA amplification and 
sequencing, or in the bioinformatics pipeline that performs sequence 
alignment or variant calling, see Fig. 2. Imputation and phase errors fall 
into the latter category. In the section on imputation we describe a small 
study where we investigate the errors introduced when inferring missing 
data. Furthermore, the process of phasing individual chromosomes can 
introduce errors [59,79], as shown in Fig. 2A. Using data from the 
23andMe database, Durand et al. [59] estimated a genotyping error rate 
of less than 1% and a phasing error rate (using BEAGLE [46]) of less than 
0.2%. AncestryDNA further found a phase error rate using the Underdog 
algorithm of 0.64% with a training set of 502,212 samples and suggested 
accuracy would improve with larger phasing panels [21]. 

Kling et al. demonstrated that the likelihood ratio approach is sensi-
tive to all errors, even at low percentages (detectable differences down to 

Fig. 2. Illustration of two types of errors. An IBD segment is prematurely 
terminated at the dashed red line with errors highlighted in red. (A) Phase 
errors occur when the chromosomes of an individual are separated into 
maternal and paternal origin and where the process of phasing (wrongly) 
switches chromosomes. (B) Genotyping errors occur either during the amplifi-
cation process or at the bioinformatic genotyping level. 

11 See: https://blogs.ancestry.com/ancestry/2015/6/8/filtering-dna-mat 
ches-at-ancestrydna-with-timber/ 

12 See: https://www.oxygen.com/crime-news/barbara-rae-vente-reacts-to-go 
lden-state-killer-joseph-deangelos-guilty-plea 
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0.05%) [23] when these are not accurately modelled. Similarly, de Vries 
et al. [In submission, 2020] demonstrated that the segment approach is 
sensitive to wrongly called homozygotes for error rates as low as 0.5% 
(personal communication). One of the strengths of non-probabilistic 
versions of segment matching, where phasing is not used, is that it is 
only sensitive to wrongly called homozygote genotypes, which can pre-
maturely terminate a shared segment. Durand et al. [59] suggest applying 
a haplotype score incorporating the phase and genotyping error rates. 
This score could be used as a post-processing step to filter spurious IBD 
segments. Other researchers have studied and incorporated error rates 
into their segment models [39,48], and most commercial segment 
matching implementations are believed to model for errors [20–22]. 

From a forensic perspective, many contact trace samples are likely to 
be of low quality and quantity, analyzed with low-depth whole genome 
sequencing, whereas database samples, commonly analyzed with SNP 
microarrays, are expected to have significantly lower error rates [80]. 
To illustrate the effect of genotyping errors and the impact on shared 
segments we conducted a small study using data from 1000 Genomes 
samples [81]. We simulated data according to the procedures detailed in 
Kling et al. [23] and induced errors in one of the genotypes at different 
levels (2%, 1% and 0.5%), see Supplementary File S2. The results are 
illustrated in Supplementary File S2, Fig. 1 where no model accounting 
for errors is used, which show that levels of detectable shared DNA drop 
rapidly with increasing error rate. At 2% error rates, a pair of full sib-
lings share on average ~500 cM of detectable total segments compared 
to roughly 2800 cM without errors. Supplementary File S2, Fig. 2 con-
tains an equivalent illustration when a single error per segment is 
allowed and shows a considerable improvement in terms of detecting 
broken segments. Furthermore, Supplementary File S2, Fig. 2 demon-
strates an implementation of the error model presented in Petter et al. 
[22]. In our implementation, four homozygote errors per segment are 
allowed while simultaneously only retaining a match if a segment of 
above 6 cM without errors is detected. Fig. 3 further illustrates how 
errors affect the individual segment and indicates that for e.g. full sib-
lings, a few long shared segments are split into multiple shorter seg-
ments. Some will disappear, failing to exceed the detection threshold, 
while others are accumulated into the total length of shared DNA. 

2.5. The use of DNA mixtures 

In contrast to single-source DNA samples, mixtures of several con-
tributors are common in forensic samples. In terms of using mixtures as 
court evidence, there are various methods to estimate the evidential 
weight of a DNA sample [82–86]. Extending such analyses further, studies 
have examined the viability of using mixtures for familial searching 
[87–89] indicating feasibility even with common forensic STRs. 

In the long-range familial searching process of IGG little has been 
scientifically documented on the analysis of mixtures. Greytak et al. [15] 
state that two-person mixtures with one contributor known, were suc-
cessfully analyzed with microarray data but without exact details dis-
closed. Furthermore, a Forensic Magazine article13 described the use of 
WGS analysis of a mixture and subsequent separation through condi-
tioning on the victim’s DNA profile, although also lacking details of the 
method. State-of-the-art methods in forensic DNA analyses use quantita-
tive models where allele peak heights help infer individual contributor 
genotypes (termed probabilistic genotyping). In current IGG, the search is 
conducted with a single source DNA profile,14 so a searchable profile must 
be obtained by deconvolution of the mixture, either by conditioning on 
known contributors or by combining a statistical model and information 

about the balance of allelic signals. As a consequence, the resulting profile 
used in the search has a level of uncertainty and the analysis benefits from 
estimation of the false/true positive rates affected by this uncertainty. 
Standard forensic mixture deconvolution incorporates the uncertainty 
into a statistical model to potentially allow a search. The current version 
of CODIS [90] software does not allow for quantitative or qualitative 
mixture models. However since CODIS allows export of the complete 
database, external software can be used for this purpose [91]. 

From a statistical point of view, the pedigree-based approach bene-
fits from being able to consider different genotype combinations (and 
weights) in the calculations. Dørum et al. [92] demonstrated that linked 
markers can be used in a qualitative model allowing future expansion of 
marker panels. Exploratory approaches, on the other hand, rely on large 
numbers (and segments) of uninterrupted SNPs. IGG relies on the gen-
eration of a SNP profile with sufficient genotypes to be accepted into the 
databases to allow LE matching. The approaches would have to rely on a 
single deconvolution where the profile of the perpetrator is extracted 
instead of a more probabilistic approach. 

Whole genome sequencing of low-level DNA tends to yield low mean 
coverage conveying little information on the exact level of individual 
contributors. However, a statistical model can be developed to extract a 
contributor in a mixture based on allele dosage (i.e. read counts). Fig. 4 
illustrates a two-person mixture and how it is possible to extract the 
perpetrator based on a known contributor. Without using information on 
allele dosage, only homozygotes can be called with certainty. If the 
mixture is a homozygote genotype then the perpetrator must be a ho-
mozygote as well, disregarding dropouts, and therefore the second con-
tributor’s genotype is irrelevant. For heterozygote mixture genotypes, the 
perpetrator can be a heterozygote or homozygote for either of the alleles, 
potentially inferred using information from the second contributor. 
Inflating the number of erroneous homozygotes is quickly detrimental to 
genealogy searches, so potential solutions are to always infer a hetero-
zygote genotype for the perpetrator, or to remove these ambiguous ge-
notypes. The former can lead to an increase in the number of false 
positives, while the latter can potentially increase false negatives since 
fewer SNPs are called. If information on allele dosage is available, such 
information can be used if heterozygote genotypes contain a minimum 
number of reads. Raw data from microarrays contain intensity levels that 
potentially allow mixture contributors to be separated, as described by 
Homer et al. [93]. However, we do not recommend the use of such 
microarrays for forensic analyses (see Section 7.1). 

We performed a small study where unrelated individuals from the 
1000 Genomes Project were drawn at random in a pairwise approach. The 
genotypes were mixed (equal proportions) and deconvoluted using three 
different models, two qualitative and one quantitative, as outlined in 
Supplementary File S2, section B. Under the assumptions in our study, 
genotypes could be deduced with 99.9% accuracy when the quantitative 
model was used, with 4–5% of genotypes dropping out due to uncertainty 
in the deconvolution process, as shown in Supplementary File S2, Fig. 4. 
The qualitative models both resulted in an inflation of errors. We did not 
explore the impact of the deconvolution accuracy on the inference of 
relatedness but assume that it is minimal for the quantitative model, given 
the low error rates. 

3. Genealogy research 

3.1. Genealogical research 

Genealogical research is a key component of IGG and generally the 
most time-consuming part of the process, though time spent on research 
will vary depending on many factors including closeness of the matches, 
the supporting network of matches, family size and availability of 
genealogical records. In a UK pilot study [94] genealogists solved one 
case which had matches with immediate family members within three 
hours, while they estimated more complicated cases with matches at 
third or fourth cousin levels needed 50–100 h of research. Some cases 

13 See: https://www.forensicmag.com/564243-New-Genetic-Genealogy-Tech 
nique-Can-Separate-DNA-Mixtures/.  
14 Strictly speaking, since biallelic SNPs are used, it can never be perfectly 

deduced if a profile is single source or not. However, allelic balances can give 
information on the number of contributors. 
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analyzed by the DNA Doe Project required hundreds of hours of research 
by volunteer teams. IGG is only possible because of the large quantities 
of genealogical records from around the world which have been digi-
tized and indexed in the last two decades. The Church of Jesus Christ of 
Latter-day Saints has been at the forefront of this process and provides 
free access to billions of worldwide records through its FamilySearch 
website (https://www.familysearch.org). The FamilySearch Wiki allows 
access to information on the availability of worldwide genealogical re-
cords and provides articles on the research process. Users can upload 
family trees, and the site hosts the FamilySearch Family Tree (claimed to 
be the largest family tree in the world). Commercial companies, such as 
Ancestry.com, Findmypast, Geneanet and MyHeritage, have also tran-
scribed and indexed billions of records and provide subscription-based 
online access. These sites also allow users to upload family trees 
which can then be searched by other users. Therefore, it is now possible 
to easily access family trees, birth, marriage and death records, censuses, 
electoral registers, newspaper articles, wills and a variety of other his-
torical records from many different countries. There are also many na-
tional and regional archives around the world with growing collections 
of digitized records which are freely available online. Research which 
previously took years and required visits in person to archives and re-
positories can now be done online in a matter of hours. 

IGG involves researching not just historical records but tracing lines 

forward to the present day in what is termed descendancy research or 
reverse genealogy. This requires access to records on living people. 
Some modern records are available on the genealogy sites mentioned 
above but these records can be supplemented by searches on social 
media, particularly Facebook, which can offer a lot of information about 
living people and their family relationships. Online obituaries, particu-
larly in the US, often provide complete lists of descendants and relatives 
of the deceased. People finder sites like BeenVerified and Intelius are 
particularly useful for US searches. 

Successful genetic genealogy searches require not just easy access to 
genealogical records and a good understanding of how to evaluate 
genealogical evidence but also considerable experience of interpreting 
DNA evidence. There are university courses which provide a route to a 
career as a professional genealogist15 and several organizations world-
wide which provide credentials for genealogists [95]. However, many 
good professional genealogists are not accredited and have learnt through 
experience rather than a formal education programme. Genetic genealogy 
is a new discipline where best practice is being developed slowly through 
the collective experiences of those who are actively working in the field, 
many of whom are hobbyists. There are no official genetic genealogy 

Fig. 3. Results from simulations of 1000 pairs of relatives. For each simulation, errors are induced in one of the profiles at an increasing rate (see legend). The 
number of shared segments (computed as the total length of shared cM) using 5 cM as a detection threshold, were counted and accumulated towards a total length (x- 
axis). (A) Full siblings, (B) first cousins, (C) second cousins and (D) third cousins. 

15 See: https://www.mdpi.com/2313-5778/1/1/4 
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qualifications and no organization which can testify to an individual’s 
ability to work on IGG cases. Many of the leading practitioners in IGG 
have had no formal genealogy training and have no accreditations. 
Accreditation with a genealogical organization is no guarantee that an 
individual has a sufficient level of expertize in genetic genealogy. This 
lack of professionalization makes it challenging for LE agencies wishing to 
employ a genetic genealogist to judge whether they have the relevant 
skills and expertize [2]. 

The IGG process starts with the upload of a SNP profile to one or 
more of the three databases where it is currently permitted: GEDmatch, 
FTDNA and DNASolves. Each company has different protocols for the 
use of their database by LE agencies, as described below. 

The match lists are assessed by the genealogist who determines 
whether or not a genetic genealogy search is likely to be productive. If 
the query profile generates one or more matches at the second or third 
cousin level or closer, then the case is likely to be worth investigating. 
Second cousins are considered to be the “sweet spot” where identifica-
tion should be possible [4]. However, much depends on the quality of 
the matches and whether or not the individuals can be identified 
through their username and/or e-mail address and by their family tree, if 
provided. The search will be more difficult if the query profile has 
ancestry from a country with limited availability of online genealogical 
records or where access to records on living people is more restricted. 

Once the top matches have been identified, a check is made of the 
shared matches to identify genetic networks (clusters) of related matches. 
For example, second cousins share a set of great-grandparents in common 
and any matches which match both the query profile and a second cousin 
are likely to be related through a common ancestral couple in one specific 
quadrant of the family tree. The family trees of the shared matches are 
searched or built out to identify a common ancestral couple for all the 
people in the cluster. Descendancy research then traces the lines forward 
to the present day to identify candidates of interest. If additional clusters 
of related matches can be identified, then the genealogist will look for 
intersections (triangulations) between clusters, e.g., a marriage involving 
surnames from two distinct clusters. All the different genetic networks or 
clusters must be consistent with the identification with each match 
sharing the appropriate amount of DNA for the hypothesized relationship. 
However, because full siblings have identical ancestral family trees, ge-
netic genealogy generally only ever narrows down the search to the 
offspring of a specific couple. It cannot determine which of a number of 
siblings is the suspect or the missing person, unless additional data for 

their descendants are available. 
If the matches are all more distant (e.g. at third/fourth cousin level or 

beyond) the family trees can still be worked on, but it is often necessary 
to perform targeted testing of people identified through the genealogical 
research as possible closer relatives of the person of interest (e.g. second 
cousins). The individual is approached and asked to help with the 
investigation by taking a commercial genetic ancestry test and upload-
ing the results to one of the databases which participates in law 
enforcement matching. The genealogist can then check that the indi-
vidual matches the perpetrator in the expected way. Target testing thus 
helps to confirm that the correct branch of the family tree is being 
researched and narrows down the search pool, though the practice does 
have ethical implications, particularly if the DNA sample is obtained 
without the appropriate informed consent.16 

The genetic genealogy research process is described in greater detail 
in Greytak et al. [15] and Thompson et al. [94]. The methodology is also 
demonstrated in the presentations delivered at the Institute for Genetic 
Genealogy conferences, with presentation recordings available online.17 

The DNA Adoption website has web pages describing the processes of 
tree triangulation and connecting trees.18 

3.2. Success rates 

As well as the quality and quantity of forensic DNA in a case, the 
chances of a successful identification depend on the size of the database 
plus the number and quality of the cousin matches. Edge and Coop [96] 
investigated the question of the expected number of genetic cousins at 
varying degrees in databases of different sizes to assess the chances of 
success. Using simulations and some simplifying assumptions, their 
findings indicate that in a database of one million individuals with 
ancestry from the same population, there is a high probability (>95%) of 
having at least one genetically detectable third cousin match sharing two 
or more DNA segments. At that time, the GEDmatch database had nearly 
one million profiles accessible to LE searches so this study demonstrated 
that the identification of Joseph DeAngelo as the Golden State Killer was 
within expectations and that there was a high chance that US individuals 
with European ancestry could be identified in a database of this size. 

A study by Erlich et al. [97], using empirical data from the MyHer-
itage database (1.28 million SNP profiles at the time of study), found 
that ~60% of searches for individuals of European ancestry would result 
in a third-cousin or closer match with a total 100 cM or more shared 
segments. In 15% of the queries at least 300 cM in total was shared, 
signifying a second cousin or closer relationship which could provide 
highly informative investigative leads. They corroborated the results by 
performing similar queries on a smaller scale in the GEDmatch database 
which led to ~76% of cases with 100 cM or more shared and ~10% of 
cases with 300 cM or more shared. Erlich’s study estimated that 75% of 
the MyHeritage database was of Northern European ancestry. The model 
presented in their study predicted that only 2% of a target population 
would need to be represented in a DNA database to provide a third 
cousin match for nearly everyone in the database. 

Two studies have demonstrated the potential utility of IGG in a Eu-
ropean setting and have validated the methodology. In a pilot study from 
the UK of ten volunteers, genetic genealogists were able to re-identify four 
of the ten individuals in the GEDmatch database (1.2 million SNP profiles 
at the time of study). One of the identified individuals had Indian heritage 
via St Vincent and the Grenadines, indicating the methods can potentially 
work for people of non-European descent if the right matches are avail-
able [94]. A study from Sweden generated an investigative lead in Croatia 

Fig. 4. Illustration of a separation of a Mixture of two contributors (deconvo-
lution) illustrated for a stretch of SNPs using a Known contributor. Data for the 
mixture is obtained from a sequencing analysis where sequence read counts are 
available for each variant. Therefore, the underlying deconvolution model 
could be probabilistic using the Read counts for each allele to deduce the most 
likely Genotype of the unknown contributor. The third marker highlights the 
inferred genotype with a star (*) indicating that the deconvolution is highly 
uncertain for this particular marker, with high allelic imbalance once the 
known contributor has been extracted, further suggesting that this marker 
should be blanked in the final genotype. 

16 See: https://onezero.medium.com/how-cops-are-using-your-dna-to-catch 
-criminals-fe27a1d69e85.  
17 The recordings are available for a fee from: https://i4gg.org  
18 See: https://dnaadoption.org/first-timers/step-7/ and: https://dnaadop 

tion.org/first-timers/step-8/ 
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in the case of an unidentified male murdered in 2003 [17]. In a more 
recent case from Sweden, Daniel Nyqvist was identified as the suspect in a 
2004 double murder of a young boy and a woman through matches with 
fourth cousins and as a result of extensive family tree building.19 

The searchable portion of GEDmatch which is accessible for inves-
tigative purposes changed dramatically in May 2019 following concern 
amongst some genealogists and users after it was used for a search which 
was not covered by the existing site policy [98,99]. GEDmatch set to 
zero the number of ‘kits’ (herein, a kit refers to an individual’s SNP 
dataset uploaded to GEDmatch, mainly produced and held by the DTCs) 
against which LE investigators could query and introduced an opt-in 
framework, where users own the choice to allow their SNP kit to be 
included in the portion that can be compared for investigative segment 
matching purposes.20 Prior to the reset, ~700,000 of the one million or 
more GEDmatch profiles were available for investigative query. Private 
profiles, duplicate profiles, those with insufficient SNPs or excessive 
gaps in SNP coverage and specialized datasets (e.g., surname or ancestry 
groups) were all excluded from searches. GEDmatch was the subject of a 
security breach in July 2020,21 but they have indicated to us that only a 
minimal number of users have since deleted their accounts, and the 
database continues to grow. In a presentation at the 31st International 
Symposium on Human Identification in September 2020,22 Verogen, 
who acquired the GEDmatch database in December 2019, said 1.1 
million users had uploaded 1.45 million DNA profiles. Over 285,000 
users have opted in to LE matching and 83% of new users opt-in to LE 
matching. Verogen have made internal assessments to test the efficiency 
of the opted-in profiles for investigative searches. When a small cohort 
of known investigative SNP kits were compared internally against the 
opt-in portion of the database, and then against the opted-out portion, 
the opt-in portion provided equivalent potential leads to the opt-out 
database in ~80% of cases. 

The GEDmatch database is dominated by users of European ancestry, 
particularly from anglophone countries. Table 1 gives the ten countries 
with the most GEDmatch uploads based on website analytics (data from 
Verogen, August 2020). The need for European GDPR compliance is also 
an influencing factor in the potential success rate as the consent process 
required EU users to opt in to use the database, following its acquisition by 
Verogen. 

GEDmatch is now supplemented by the FTDNA database where the 
number of profiles available for LE matching is not known. If the FTDNA 
database has a similar number of profiles accessible to LE the combined 
reach of the two databases may be approaching 600,000, though some 
duplication is likely. In time, critical mass could be reached where 
nearly any US individual of European descent could potentially be 
identified through IGG [97]. 

In response to our questionnaire, Parabon NanoLabs said they had 
recorded a significant recovery in the informativeness of GEDmatch 
since the opt out was implemented in May 2019, but match rates had not 
quite reached the levels available before. However, they indicated the 
number of cases where investigative leads and actionable information 
can be provided has not significantly changed, but this often requires 
uploading to FTDNA as well as GEDmatch. The segment matching 
evaluations made by Parabon NanoLabs, before and after the GEDmatch 
LE access changes, are summarized in Supplementary File S3. 

On 11th January 2021 Verogen updated the Terms of Service at 

GEDmatch.23 The wording was ambiguous but appeared to allow un-
identified human remains to be compared against the entire database.24 

The full implications of this change on the availability of profiles for law 
enforcement cases and the application of GDPR were unclear at the time 
of writing. 

3.3. Ethical considerations of IGG 

The use of IGG as an investigative tool raises many ethical and social 
issues [100,101]. The individual who makes their DNA available for law 
enforcement matching shares part of their genome with other close 
relatives and so their decision essentially affects their wider extended 
family who could potentially be involved in the investigation even 
though they have never taken a DNA test [2]. The use of surreptitious 
DNA testing to obtain confirmatory samples from the suspect also raises 
ethical issues, especially as in some cases the police have put multiple 
family members under surveillance to obtain these samples. The inter-
national nature of the consumer DNA databases and differing ap-
proaches to punishment raise ethical and human rights issues, 
particularly with regard to the death penalty which is still used in a 
minority of countries and in some US states.25 The use of IGG to identify 
and prosecute the mothers of abandoned babies has also been cited as a 
cause for concern, particularly in jurisdictions where there are no 
infanticide laws allowing for more lenient and compassionate treatment 
of mothers.26 Another emerging ethical issue is that of post-mortem 
privacy which is not currently protected by law [102]. Advances in 
technology are now making it possible to extract DNA from hair samples 
and artefacts of the deceased such as letters or razors.27 Genealogists are 
interested in testing the DNA of deceased relatives to help with their 
family history research, but should they have the ability to make a 
deceased relative’s DNA profile available for LE use? What happens if 
the descendants have conflicting views on such sharing? Qualitative 
research looking at the views of UK stakeholders found that there was 
considerable support for the use of IGG, but many interviewees com-
mented on a range of social and ethical concerns and expressed the need 
for independent regulatory oversight [18]. While interviewees all 
expressed the importance of individual informed consent, it was found 
that it is not an ethical panacea and there is a need for a more societal 
approach to consent in consultation with the public [103]. We have 
highlighted some of the key ethical and social issues discussed in the 
literature which we feel are important, but it is outside the area of 
expertize of the authors and beyond the scope of this paper to engage 
with them in depth. Much more research is needed on all these issues by 
bioethicists and social scientists in consultation with stakeholders and 
the general public in order to establish a suitable ethical and regulatory 
framework for the responsible use of IGG. 

4. Official guidelines for use of genealogy data in investigative 
practice 

The US Department of Justice (DoJ) released an Interim Policy on 
Forensic Genetic Genealogical DNA Analysis and Searching in November 
2019. The “scientific community and other interested parties” were 
encouraged to send comments to the FBI [104]. The policy clarifies that 

19 See: https://www.thetimes.co.uk/article/genealogist-uses-ancestry-we 
bsite-to-track-down-knife-killer-m60rs0j2l  
20 See: https://www.nbcnews.com/news/us-news/police-were-cracking-cold- 

cases-dna-website-then-fine-print-n1070901  
21 See: https://www.nytimes.com/2020/08/01/technology/gedmatch- 

breach-privacy.html  
22 See: https://www.ishinews.com/events/gedmatch-a-data-driven-platform- 

for-forensic-intelligence/ 

23 See: https://www.gedmatch.com/Documents/tos_20210111.html  
24 See: https://www.facebook.com/DNADoeProject/posts/28155137187073 

95  
25 See: https://dnaandfamilytreeresearch.blogspot.com/2019/05/civil-libert 

ies-vs-greater-good.html  
26 See: https://www.watersheddna.com/blog-and-news/mental-health-aware 

ness-baby-doe-cases and https://futurehuman.medium.com/dna-is-now-solvi 
ng-decades-old-newborn-killings-67dd0f9ccf82  
27 See: https://thegeneticgenealogist.com/2018/11/19/testing-artifacts-obt 

ain-dna-evidence-genealogical-research/ 
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the investigative agency “must have pursued reasonable investigative 
leads” but it did not make specific recommendations about the need to 
clear testing backlogs or the need to use familial searching first before 
resorting to genetic genealogy. The SWGDAM (the Scientific Working 
Group on DNA Analysis Methods) in the US convened a working group to 
publish a statement on genetic genealogy and published an Overview of 
Investigative Genetic Genealogy in February 2020.28 

Both the DoJ and SWGDAM recommendations emphasize the 
importance of a ‘CODIS first and last’ approach in investigative practice. 
The DoJ policy states: “before an investigative agency may attempt to 
use genetic genealogy, the forensic profile derived from the candidate 
forensic sample must have been uploaded to CODIS, and subsequent 
CODIS searches must have failed to produce a probative and confirmed 
match”. They then emphasize that a CODIS search must complete the 
investigation, stating: “a suspect shall not be arrested based solely on a 
genetic association generated by a genealogical service. If a suspect is 
identified after a genetic association has occurred, STR DNA typing must 
be performed and the suspect’s STR profile must be directly compared to 
the forensic profile previously uploaded to CODIS”. As DNA analysis 
techniques progress there will eventually be situations where SNP data 
sufficient for a genealogical analysis will be generated from evidential 
material where an STR profile has not, e.g., where a hair shaft at a crime 
scene is submitted for specialist analysis outside of routine crime labo-
ratory testing regimes. At this stage, which may have already been 
reached, the DoJ and SWGDAM guidelines must be reconsidered to 
address the way identity is established using SNPs in forensic cases 
without an STR profile from the crime scene. 

With regard to what is described as ‘investigative caution’ concerning 
the behaviour of investigators in being transparent about the purpose of 
relative searches made by genealogical analyses, they state: “Investigative 
agencies shall identify themselves as law enforcement to genealogical 
services and enter and search genetic genealogy profiles only in those 
service suppliers that provide explicit notice to their service users and the 
public that the law enforcement may use service sites to investigate 
crimes or to identify unidentified human remains”. Furthermore, when 
obtaining new DNA samples they state: “an investigative agency must 
seek informed consent from third parties before collecting reference 
samples that will be used for genealogy, unless it concludes that case- 
specific circumstances provide reasonable grounds to believe that this 
request would compromise the integrity of the investigation”. The 
SWGDAM recommendations largely echo those of the DoJ, by saying a 
CODIS search in state or national databases should be made before 
instigating genealogical analyses and a CODIS search should conclude the 
investigation to complete the exclusionary/inclusionary process. On 
public consent for LE access, SWGDAM state: “policies/procedures should 
be established which consider applicable privacy policies and the data-
base provider’s terms of service, a level of transparency of techniques 
employed, and maintenance of the public trust”. 

The UK Biometric and Forensics Ethics Group recently published a 
report on investigative genetic genealogy which covers the feasibility of 
using the technique in the UK and ethical issues arising from its use.29 

The National Police Chiefs Council in the UK currently recommends 
against use of genetic genealogy databases.30 Forensic scientists in 
Australia have published a working paper on operationalizing forensic 
genetic genealogy in an Australian context [105]. Following the reso-
lution of a recent double murder in Sweden assisted by IGG (see above), 
public pressure to use the method in other cases has emerged. The 
double murder case was selected as a pilot study, initiated by the Legal 

Affairs Department at the Swedish Police Authority, to evaluate the 
suitability of IGG from a Swedish perspective and examine its compli-
ance with current Swedish laws. The experiences from this pilot are 
currently being evaluated, involving technical, legal and ethical aspects. 

5. Direct-to-consumer testing 

Most current discussions of genetic genealogy describe four main 
DTC companies: AncestryDNA; 23andMe; MyHeritage; and FTDNA, 
each offering SNP microarray-based insights into an individual’s health 
risks and/or ancestral roots, plus the opportunity to find links to pre-
viously unknown relatives that match for a pre-set minimum proportion 
of chromosomal segments. Each company uses a slightly different 
approach to detect putative IBD segments, commonly without disclosing 
all details about the exact implementation of their algorithm. They each 
apply different thresholds for declaring a match, but none report 
matches that share less than 7 cM. With the limitations of microarray 
technology, it is estimated that 20% of matches are false positives [22]. 
Most DTC’s relative-searching analyses require customers to opt-in. 
AncestryDNA and 23andMe restrict matching to customers who have 
directly tested with the company. FTDNA and MyHeritage permit the 
upload of raw SNP data from 23andMe and AncestryDNA to expand the 
potential number of links to relatives. 

The DTCs provide lists of matches and the suggested range in which 
the relationship might occur. The matches only provide a rough guide-
line and the genealogist makes further interpretation of the most prob-
able degree of relatedness based on genealogical information and the 
related genetic network of matches. The analytical tools provided by the 
DTCs for estimating relationships can be supplemented by additional 
tools. The Shared cM Tool on the DNA Painter website (https://dnapai 
nter.com/) reports cM value ranges and averages. It allows the user to 
enter the total cM shared and generate a table of probabilities for the 
possible range of relationships (probabilities inferred from the Ances-
tryDNA Matching White Paper [21]). The Shared cM Project collects and 
summarizes crowd-sourced data on the range of sharing for various 
degrees of self-reported relationship [69]. The project, last updated in 
March 2020, has almost 60,000 submissions for nearly 50 different re-
lationships.31 Although participants have the opportunity to state if 
endogamy is suspected in their own family tree, they may have under-
estimated the degree of endogamy occurring. Therefore, the average 
total shared cM and upper range limits collected by the project are likely 
to be inflated. Some outlying values were removed from undetected 
misattributed parentage and data entry errors. Nevertheless, the 
compiled values and their distribution as histograms of average total cM 
(excluding alleged relationships without shared DNA) provide valuable 
aids for the interpretation of segment sharing data and a useful point of 
comparison with the predicted relationships given by the DTCs and 
GEDmatch. It should be noted that since DTCs use different detection 
thresholds which change over time, these numbers are only rough es-
timates reflecting that particular method and parameters. 

The four DTC’s microarray compositions are summarized in Table 2. 
Note that ISOGG list 32 separate genetic testing companies, but we 
concentrate on the four with the largest customer databases. The two 
next largest DTCs are the Genographic Project and Living DNA. 
Although Genographic had more than one million participants, it ceased 
making analysis data available to customers in June 2020. However, 
many participants have transferred Genographic data to FTDNA.32 

Living DNA has a worldwide customer base but is focused on Britain and 

28 See: https://www.swgdam.org/publications and the publication: ”Over-
view of Investigative Genetic Genealogy.”  
29 See: https://www.gov.uk/government/publications/use-of-genetic-g 

enealogy-techniques-to-assist-with-solving-crimes  
30 See: https://www.thetimes.co.uk/article/police-wont-use-genealogy-sites- 

for-cold-cases-vvk0rbhqg 

31 See: https://thegeneticgenealogist.com/2020/03/27/version-4-0-march 
-2020-update-to-the-shared-cm-project/  
32 See: https://learn.familytreedna.com/imports/already-tested-genographic- 

project-can-join-family-tree-dna/ 
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Ireland. It introduced a relative-matching feature called Family Net-
works in February 2018, initially restricted to close matches.33 The 
matching range was expanded in May 2020 to provide matches with 
more distant cousins, but the number of matches obtained is modest in 
comparison to those of the four main DTCs. Several companies, such as 
Dante Laboratories, Full Genomes Corporation, Nebula Genomics and 
YSEQ, now offer WGS direct to the consumer, and the cost of WGS 
services continues to fall. However, there is no database which can fully 
leverage the information contained in WGS data to infer relationships. 
Advanced users can extract specific SNP profiles for upload to GED-
match. While FTDNA accepts SNP profiles generated from WGS from LE 
accounts, such uploads cannot be made by regular customers. In theory, 
customers could mimic the file formats for DTC microarrays to upload a 
WGS-generated SNP profile. 

Each of the four main DTCs has specific rules of engagement for their 
interactions with LE investigators seeking to match forensic DNA with 
their customer’s data. These frameworks are well covered in the ISOGG 
Investigative Genetic Genealogy FAQs34 and we summarize their current 
positions along with the SNP testing features of each DTC below in 
descending order of SNP profile database size. 

5.1. AncestryDNA 

AncestryDNA (http://ancestry.com) is by far the biggest DTC in the 
genealogy field, with nearly 20 million SNP profiles. It provides auto-
somal SNP testing based on a modified Illumina OmniExpress − changed 
in 2016 from v1 with 682 K SNPs to v2 (~300 K underperforming or 
uninformative SNPs swapped, reducing total SNPs to 637 K). Although 
AncestryDNA’s microarray includes X-chromosomal SNPs, these are not 
used in their analyses, but are available through raw data download to 
the customers. AncestryDNA previously offered Y-DNA and mtDNA tests 
but discontinued them in 2014. Company policy is “not to allow law 
enforcement to use Ancestry’s services to investigate crimes or to 
identify human remains”, but when a warrant or subpoena is issued, 
“data relating to the DNA of an AncestryDNA user will be released only 
pursuant to a valid search warrant from a government agency with 
proper jurisdiction”, and “when we receive a request our team reviews it 
to make sure it satisfies legal requirements and our policies. If we believe 
the request is overly broad, we will try to narrow it to the extent legally 
permitted”35 Although not permitting LE access to the DNA database, 
the genealogical records and family trees held by AncestryDNA’s parent 
company Ancestry.com are used extensively in IGG searches. In some 
cases, target testing to narrow down the search pool is done first at 
AncestryDNA before uploading to those databases allowing LE searches. 

AncestryDNA has been the most transparent in outlining the process 
used to identify IBD segments by releasing a white paper which de-
scribes the principles and processes well [21]. Fig. S2 summarizes the 
steps taken to define each segment match. SNP data is phased into 
sections of sequentially arranged alleles using an adaptation of BEAGLE 
developed into a more efficient algorithm called Underdog. A separate 
algorithm, Timber, handles haplotype frequency estimation from the 
millions of profiles this DTC holds. 

5.2. 23andMe 

23andMe (http://www.23andme.com) has more than 12 million 

users as of January 2021, over 80% of whom have opted in to participate 
in research. They currently offer one test (used for multiple analysis op-
tions)36 using the Illumina GSA with additional customized SNPs 
providing Y-chromosome DNA and mitochondrial DNA ancestry reports. 
The GSA was preceded by four different configurations of the Illumina 
OmniExpress microarray (v1, 2007–8, indeterminate custom SNP set; v2 
2008–10, 556 K SNPs; v3, 2010–13, 930 K SNPs; v4, 2013–17, 585 K 
SNPs). Of the four main DTCs, 23andMe is the only one to fully incor-
porate X-chromosome data in their relative-matching process. The 
emphasis of 23andMe is on trait and disease risk associations from the 
collective SNP data compiled by the company, with customers self- 
reporting their lifestyle/behaviour, disease histories and known charac-
teristics, which in turn provides some input to the forensic phenotyping 
knowledge base [106,107]. 23andMe were the first DTC to introduce 
segment matching tests to link customers to unknown relatives on the 
23andMe database. The initial segment analysis regime to identify 
so-called ‘cryptic relatives’ was published by Henn et al. in 2011 [20]. 

23andMe do not give any access to customer information from re-
quests by LE authorities, stating: “use of the 23andMe Personal Genetic 
Service for casework and other criminal investigations falls outside the 
scope of our services intended use. However, 23andMe must respond to, 
and is expected to comply with, court orders, subpoenas, or search war-
rants for genetic and personal data. 23andMe state: “they would use every 
legal remedy possible" to challenge a request for such legally enforced 
access to 23andMe customer data.37 23andMe’s transparency report in-
cludes details of LE requests for information and is updated on a quarterly 
basis. As of May 2020, it had received seven requests, all from US 
agencies, pertaining to 10 users, and all were refused, with no data passed 
to LE authorities (https://www.23andme.com/transparency-report/). 

5.3. MyHeritage 

MyHeritage (http://www.myheritage.com) is estimated to have over 
4.5 million SNP profiles, and accepts free data transfers from 23andMe, 
AncestryDNA, FTDNA and Living DNA. They originally used the Illu-
mina OmniExpress but moved to the GSA in 2019. They launched a new 
microarray-based health test in June 2019 and the GSA has been 
customized to provide ancestry and health informative SNPs.38 

Although X-chromosome data is available in the raw DNA data down-
load it is not currently incorporated into the relative-matching service. 

The MyHeritage database unwittingly provided the breakthrough 
match in the Golden State Killer case. The terms and conditions have 
since been changed and the company now specifically “prohibits law 
enforcement use of its DNA services” and states “we will not provide 
information to law enforcement unless required by a valid court order or 
subpoena for genetic information”.39 However, because MyHeritage 
accepts uploads from people who have tested at other companies it is 
theoretically possible that they are vulnerable to unauthorized LE up-
loads, though a high-quality and near-complete SNP profile would be 
needed to pass quality control checks. To prevent such potential 
breaches, Yaniv Erlich of MyHeritage and colleagues [97] proposed a 
system of cryptographic signatures for the raw data text files provided 
by valid DTCs but to date there is little interest in adopting such a 
scheme. Erlich et al. recently published [22] details on the new 
matching algorithm of MyHeritage which builds on a similar model to 

33 See: https://livingdna.com/blog/family-networks-a-new-dna-driven-match 
ing-system-and-family-tree-reconstruction-method/  
34 See: https://isogg.org/wiki/Investigative_genetic_genealogy_FAQs  
35 AncestryDNA, Ancestry guide for law enforcement: https://www.ancestry. 

com/cs/legal/lawenforcement 

36 Customer options are ancestry and traits or ancestry and health. The 
23andMe health service is only available in the US, Canada, UK, Denmark, 
Finland, Ireland, Sweden and The Netherlands.  
37 See: https://blog.23andme.com/news/our-stance-on-protecting-customers- 

data/  
38 See: https://education.myheritage.com/article/an-introduction-to-the 

-myheritage-dna-health-test/  
39 MyHeritage, Privacy policy, July 2020: https://www.myheritage.com 

/privace-policy/ 
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AncestryDNA using shorter phased seed segments and extending them 
using unphased data. The study also contained details about models for 
errors without disclosing exactly what the standard parameters in the 
matching algorithms were. 

5.4. FTDNA 

FamilyTreeDNA (FTDNA) launched in 2000 and were the first 
company in the US to offer direct-to-consumer ancestry testing [108]. 
The initial focus was on Y-chromosome and mitochondrial DNA testing 
as a tool for genealogical research, with Y-DNA results focused on sur-
name projects. FTDNA were the second company to offer an autosomal 
DNA test for finding relative matches with the Family Finder test 
launched in 2010.40 FTDNA initially used an Affymetrix Axiom micro-
array with ~563,000 autosomal SNPs. They changed to the Illumina 
OmniExpress in February 2011 with ~710,000 autosomal SNPs.41 

FTDNA moved to a customized Illumina GSA in spring 2019. 
FTDNA appears to apply a system of half-identical segment matching 

with unphased genotypes, although their algorithms are proprietary, 
and no technical details have been published. The original threshold for 
a match was set at 20 cM total shared and a minimum longest segment of 
7.69 cM for 99% of customers and 5.5 cM for the other 1%. Thresholds 
were updated in 2016, comprising a reduced minimum shared cM total 
but at least one segment required to be 9 cM or longer.42 Matching 
segments must have at least 500 overlapping SNPs.43 Matches are re-
ported in a list with information on total number of shared cM, length of 
the longest segment and the predicted relationship range. FTDNA pro-
vides relationship predictions in four ranges: immediate matches, close 
matches, distant matches and speculative matches.44 Although the 
minimum segment size for a match is set at 9 cM, once a match has been 
declared all segments down to 1 cM are included in the cM total. The 
majority of these small segments are either false matches (pseudo-seg-
ments) because of the lack of phasing or they are not genealogically 
relevant. Genetic genealogists normally recalculate the total cM shared 
to exclude segments under 7 cM to obtain a more realistic number. 
Matches for Ashkenazi Jews are down-weighted to account for the un-
derlying endogamy in the population, though the technical details of the 
algorithms have not been published.45 Users can download a list of their 
matches and the shared segment data. The problem of small false seg-
ments is seen when viewing known relations from different generations, 
in the chromosome browser, as shown in Fig. 5A and B. 

FTDNA do not include X-DNA in total cM shared and an X match is 
only reported when two individuals have an autosomal DNA match. 
Once an X-DNA match is declared, FTDNA reports X-DNA matches down 
to 1 cM. There is a high false positive rate with these small X-DNA 
matches which is partly explained by the low SNP density on the X- 
chromosome on current microarrays. The false positives are clearly 
evident when comparing the low number of male X-DNA matches, 
which are naturally phased, with the unusually high number of female 
X-DNA matches. A small study found major discrepancies between the 
number of male and female X-DNA matches.46 

FTDNA has accepted autosomal transfers from other testing com-
panies since 2013.47 In March 2018 FTDNA announced it was collabo-
rating with BC Platforms who would provide a solution for incorporating 
genotype data from multiple chips into the database and dealing with 
backwards compatibility of historical data.48 No details of the methods 
used have been published to date. 

FTDNA’s ability to accept third-party uploads inevitably made them 
susceptible to unauthorized uploads from non-genealogical sources. In 
January 2019 it was revealed that the FBI had infiltrated the FTDNA 
database and FTDNA had agreed to collaborate and continue to provide 
FBI access.49 However, this meant existing customers not wishing to 
make their profiles available for LE use were denied access to the 
matching database for their own genealogical research. Following a 
backlash, in March 2019 FTDNA allowed customers to opt out of LE 
matching. EU citizens were opted out to comply with GDPR rules but 
could choose to opt back in.50 Concerns remain about the lack of 
informed consent for the remaining customers who were automatically 
opted in, as many were unaware of the FBI breach.51 New customers 
worldwide can choose whether to participate in LE matching when they 
activate their kit. In December 2020 further details of the Golden State 
Killer case emerged and it transpired that FTDNA had tested the rape kit 
and allowed the FBI to upload the profile to the FTDNA database as part 
of a covert operation. The FBI had invoked a legal privilege to prevent 
the disclosure of this information, thus raising concerns about the 
transparency and accountability of the FBI.52 The FTDNA database has 
over 1.4 million SNP profiles,53 though the number available for LE 
matching is unknown. 

LE agencies wishing to use the FTDNA database are required “to 
register all forensic samples and genetic files prior to uploading to the 
FTDNA database. Permission to use the service is only granted after the 
required documentation is submitted, reviewed, and approved.” 
Permission to use the FTDNA database for law enforcement purposes is 
only granted “to identify the remains of a deceased individual” and “to 
identify a perpetrator of homicide, sexual assault, or abduction”.54 

FTDNA works with US LE agencies but will consider working with 
agencies outside the US on a case-by-case basis. Gene By Gene (http 
s://genebygene.com/forensics/), the parent company of FTDNA, has 
its own testing laboratory in Houston, Texas, which has established a 
forensics division performing DNA extraction and testing in house. LE 
uploads are also accepted for a fee when testing has been done else-
where.55 LE kits are not visible to other FTDNA users regardless of 
whether they have opted in or opted out, and LE agencies receive a more 
restricted match list than regular customers. However, and similar to 
MyHeritage, FTDNA is theoretically susceptible to unauthorized LE 
uploads seeking to gain access to the entire database rather than the 
restricted LE matching portion. 

40 See: https://thegeneticgenealogist.com/2010/07/19/a-review-of-fa 
mily-tree-dnas-family-finder-part-i/  
41 See: the archive version of the FTDNA FAQs: https://web.archive.org/web/ 

20110927060537/http://www.familytreedna.com/faq/answers.aspx?id=39  
42 See: https://thegeneticgenealogist.com/2016/05/24/family-tree-dna-upda 

tes-matching-thresholds/  
43 See FTDNA learning centre article: https://learn.familytreedna.com 

/autosomal-ancestry/universal-dna-matching/number-snps-ibd-segment/  
44 See: https://learn.familytreedna.com/autosomal-ancestry/universal-d 

na-matching/possible-relationships-family-finder-match/  
45 See: https://learn.familytreedna.com/jewish-dna-testing/autosomal-dna 

-research-challenging/  
46 See: http://blog.kittycooper.com/2014/12/small-segments-on-the-x-by- 

kathy-johnston/ 

47 See: https://www.familytreedna.com/autosomal-transfer  
48 See: https://www.prnewswire.com/news-releases/gene-by-gene-selects-bc- 

platforms-to-enhance-its-world-leading-genomic-data-processing-services-675 
954313.html  
49 See: for instance https://www.buzzfeednews.com/article/salvadorhernan 

dez/family-tree-dna-fbi-investigative-genealogy-privacy  
50 See: https://www.newscientist.com/article/2196433-home-dna-testing-fi 

rm-will-let-users-block-fbi-access-to-their-data/  
51 See: https://www.nytimes.com/2019/02/04/business/family-tree-dna-fbi. 

html  
52 See: https://www.latimes.com/california/story/2020-12-08/man-in-the-w 

indow  
53 See: https://ggi2013.blogspot.com/2020/02/how-big-is-familytreedna-da 

tabase.html  
54 See: https://www.familytreedna.com/legal/law-enforcement-guide and 

https://learn.familytreedna.com/ftdna/law-enforcement-faq/  
55 See: https://www.theatlantic.com/science/archive/2019/10/genetic 

-genealogy-dna-database-criminal-investigations/599005/) 
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6. Third-party services 

In addition to the databases provided by the four main DTCs, there 
are two third-party services – GEDmatch and DNASolves – which do not 
sell DNA test kits but provide databases that accept uploads and can be 
used for LE matching. Below we address GEDmatch in particular since 
this portal has been the main entry point for LE up till now. Three 
additional third-party databases – DNA.Land (https://dna.land/), 
Geneanet (https://en.geneanet.org/) and Geni (https://www.geni. 
com/) – accept autosomal DNA uploads and could be vulnerable to 
unauthorized uploads, but these databases are all very small and less 
likely to be the focus of investigations. 

6.1. GEDmatch 

GEDmatch (https://www.gedmatch.com/) was founded in 2010 as a 
hobbyist website by genealogists Curtis Rogers and John Olson to sup-
plement the tools provided by the DTCs and to help in particular with 
unknown parentage searches.56 GEDmatch is a freemium website with 
both free and paid-for tools that perform a series of comparisons to other 
uploaded profiles and provide additional functionalities. GEDmatch was 
acquired in December 2019 by Verogen, a private forensic genomics 

company.57 

The portal allows the user to search for matches with people who 
have tested on different platforms and at different testing companies. 
GEDmatch now accepts SNP profiles from over 20 DTC providers and is 
able to accept raw data from both microarrays and whole genome 
sequencing. They further allow users to upload DNA profiles obtained 
from ancient DNA (aDNA) samples or from the testing of artefacts of 
deceased people (e.g. testing the tooth or bone of a deceased parent or 
the DNA of a deceased relative obtained from a letter) as long as some 
quality criteria (i.e. number or density of genetic markers) are fulfilled. 
Artefact testing for genealogical purposes is still in its infancy but is 
likely to be a growth sector in the future.25. GEDmatch also has a tool 
available in the Tier 1 subscription which allows the user to combine 
SNP sets from multiple testing platforms into a ‘superkit’ to maximize 
the potential/reach of the search.58 

GEDmatch has a dedicated law enforcement portal known as GED-
match Pro (https://pro.gedmatch.com/) which was launched in 
December 2020. Law enforcement are now charged a fee to upload a 
SNP profile and LE uploads are no longer accepted on the main GED-
match website. On 11th January 2021 Verogen subtly updated the site 

Fig. 5. An FTDNA chromosome browser comparison of an individual compared with their paternal grandfather (red) and a paternal 3rd cousin twice removed (blue). 
Fig. 5A shows only matching segments of 7 cM or more, while Fig. 5B shows all the unphased segments down to 1 cM in size. It is apparent that many of the small 
segments do not overlap with the segments inherited from the grandfather. The individual shares 1513 cM across 33 segments with their grandfather when all the 
segments down to 1 cM are included. When segments under 7 cM are removed, they share 1497 cM across 28 segments. The individual shares 60 cM across 15 
segments with their third cousin twice removed when all the segments down to 1 cM are included, but when excluded, they share just one 27 cM segment containing 
6900 SNPs. 

56 See: https://www.theatlantic.com/science/archive/2018/06/gedmatch-po 
lice-genealogy-database/561695/ 

57 See: https://www.forensicmag.com/559058-Verogen-CEO-GEDmatch-Will- 
Be-Improved-Not-Changed/  
58 See: https://www.beholdgenealogy.com/blog/?p=2963 
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policy to allow unidentified human remains to be compared against the 
entire database.59 Profiles uploaded to identify the perpetrator of a vi-
olent crime will continue to be matched only against the opt-in portion 
of the database. This change was made without the consent of the users 
and was a reversal of the decision taken in May 2019 to opt out the entire 
database from law enforcement matching and seek fresh consent from 
users. It is not clear how the distinction between offenders and un-
identified remains will be enforced. It also not clear how Verogen can 
effectively identify LE users and prevent unauthorized uploads. 
Although LE uploads are expected to be declared as such, there is no 
regulation of this process outside of the guidelines and code of practice 
issued by the US DoJ and SWGDAM (see Section 4). 

6.1.1. GEDmatch SNP uploads and analyses 
Uploading a set of SNP genotypes, whether from a DTC raw data file 

or as compiled variants from a microarray or WGS analysis of forensic 
DNA, initiates the GEDmatch processing, which begins with the parsing 
of SNP data to ensure viability, followed by the assignment of a kit 
number. LE uploads are marked as research kits and so are excluded 
from comparisons made by individual users with their own kits and are 
not visible to other users. The SNP data are subjected to a process called 
tokenization, creating a compressed site-specific binary format which 
allegedly would not be possible to de-code in a security breach. As part 
of this process, health-related SNPs, SNPs with low minor allele fre-
quencies and SNPs with no calls are removed in the tokenization. All 
comparisons in the database are done with the token files. Details of the 
tokenization process are given in Supplementary File S4. Once toke-
nized, the original upload is deleted, so it is not possible for SNP allele 
calls to be accessed directly either by a user or through malicious attacks 
on the site. However, if the phenotype of the query profile is known it is 
still possible to infer that matches have a particular trait of interest as 
demonstrated by Leah Larkin in a cystic fibrosis case study.60 

The DNA File Diagnostic Utility can be used to verify the number of 
SNPs used in the token files. There are two different versions. The 
standard token file is used for all the GEDmatch tools with the exception 
of the One-to Many comparisons which uses the slim token file. To save 
processing time, heterozygous SNPs are removed from the slim token 
file. These SNPs would produce universal matches so do not provide any 
additional information. 

GEDmatch data viability checks reject SNP numbers below 50,000 as 
insufficient for reliable segment comparisons, so potentially useful 
datasets from very degraded DNA may require troubleshooting of the 
DNA extract to increase call rates or a proportion of genotypes may be 
inferred by SNP imputation (see Section 8). Although imputation can 
‘rescue’ scant genotype coverage when analyzing very challenging 
forensic DNA, in the most extreme cases uploading heavily imputed data 
leads to excessive numbers of false associations – commonly observed as 
a high proportion (up to 25%) of the reference profiles associating with 
the query file. 

The One-to-Many tool is used to search for matches in the GEDmatch 
database. There are two different versions of this tool: the standard 
version and a beta version which has enhanced functionality and some 
additional features limited to Tier 1 subscribers. The One-to-Many tools 
look for all the SNPs in common between any two kits and then uses a 
simple system of half-identical matching to look for matching segments. 
The basic tools provide a list of 3000 matches, while additional matches 
can be viewed with the Tier 1 tool. Segments under 7 cM are excluded by 
default, but there is an option to set more specific thresholds both for 
length (cM) and number of required SNPs in each segment. The One-to- 

Many reports also include X-chromosome matches. The match list pro-
vides information on the length of the largest segment, the total cM 
shared, plus the number of generations between the pair suggested by 
their segment overlaps. The number of overlapping SNPs is also re-
ported. If there is a low overlap, as happens for example when 
comparing a GSA kit with an OmniExpress kit, the overlap is marked in 
pink in the beta tool to highlight that caution is needed in the inter-
pretation of results. All GEDmatch kits marked as ‘private’ or ‘research’ 
are excluded from the matching process. For LE kits the One-to-Many 
comparison is made with the subset of profiles permitting LE access. 
More details on the number of matching segments, their individual cM 
lengths/SNP numbers, and the bounding genome co-ordinates of these 
segments are given in the follow-up One-to-One searches made for each 
of the most closely related individuals. The One-to-One X-DNA com-
parison tool provides additional information on X-chromosome 
matches. Smaller segments down to 3 cM can be seen in the One-to-One 
tools. 

The listed individuals in GEDmatch are identified in the match list by 
their kit number (assigned to each member’s uploaded SNP profile), self- 
designated name or alias, and an e-mail address. It is common for one 
member with a single e-mail to manage a large number of individual 
kits. The ‘People who match both, or 1 of 2 kits tool’ can be used to 
identify the list of matches shared between two kits which is the foun-
dation of cluster building. It is possible to see who matches the query 
profile but clicking on their kit numbers reports the matches of each 
match. Therefore, it is potentially possible to build up an extended 
network of matches. An automated clustering tool is available as a Tier 1 
tool. Finally, Q-matching is available in Tier 1 tools, in which the Q 
process considers the individual statistical characteristics of each SNP, 
gaps in coverage, and several other factors to provide a more evidence- 
based analysis of segments before they are reported.61 

6.1.2. Data security and user privacy 
As with all entities storing sensitive information, public genetic da-

tabases are particularly susceptible to breaches, either as a way to obtain 
the genetic data itself or to upload forged profiles potentially misleading 
LE investigators. The security of users’ kit permissions in GEDmatch is 
now centre stage in discussions about the consequences of the security 
breach of July 2020.62 Malicious attacks on GEDmatch could seek to 
target information on three types of data: i. SNP genotypes which are not 
accessible online; ii. kit numbers and the associations produced relative 
to other kit numbers; and iii. users’ names or aliases and e-mail ad-
dresses. The July 2020 breach reset each user’s permissions so that 
private and research kits, including LE kits, became part of the segment 
matching comparisons and kit numbers were displayed among putative 
familial networks. Therefore, if queries were conducted in the 3-hour 
period of the attack, the ramifications are that putative associations 
were displayed temporarily to include kit number, name/alias and e- 
mail of each. Other information potentially accessed included the DTC 
used to create a kit. It is not clear whether other information was ob-
tained from the GEDmatch attack, as the low numbers of targeted 
MyHeritage users would suggest the email addresses were obtained by 
running One-to-Many queries where the source DTC is indicated. Online 
user forums have recommended GEDmatch members delete their kits 
and re-upload with new kit numbers for the same SNP data, as a security 
measure which resets links between kit numbers and personal infor-
mation. Since their recent acquisition of GEDmatch, Verogen have made 
repeated assurances that the SNP file reconfiguration process in GED-
match makes a person’s genetic data secure from data mining attacks. 
These SNP data include the rs-number; GRCh37 coordinate; and allele 
calls. Health sensitive and low minor allele frequency sites are stripped 

59 See: https://futurehuman.medium.com/deleted-dna-data-just-reappeare 
d-on-a-popular-database-e1f43587f7ec This article also highlights the second 
data breach at GEDmatch in January 2021.  
60 See: https://thednageek.com/cystic-fibrosis-a-case-study-in-genetic-privac 

y/ 

61 See: https://www.gedmatch.com/Documents/Qdocs.pdf  
62 See: https://www.nytimes.com/2020/08/01/technology/gedmatch- 

breach-privacy.html 
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from the SNP file that is uploaded. This is an important point, as it has 
been reported that the One-to-One comparison tool can be used to mine 
genotypes by using artificial SNP datasets designed to find known rel-
atives and estimate the genotypes when mismatches are found. Recent 
studies by Edge and Coop [109] and Ney et al. [110] have demonstrated 
an attacker could upload artificial files and attempt to extract the large 
majority of allele calls of other GEDmatch kits. They concluded that the 
visualizations and other results such as segment boundaries leak enough 
information for attackers to infer over 90% of the SNPs used in the 
comparisons. Therefore, this could potentially indicate a significant 
privacy violation for the targeted individuals. Verogen has stated that a 
series of measures are now in place, which effectively block such attacks. 

The system of using kit numbers at GEDmatch to access DNA profiles 
and match lists brings a risk of sensitive accounts, e.g. LE accounts, being 
exposed as a result of user error, for example, if the kit number of a 
private or research kit is inadvertently shared or published. In the case of 
James Curtis Clanton, LE published the GEDmatch kit number of the 
crime scene profile in a publicly available affidavit for his arrest war-
rant, along with the initials of the people in the match list. As a result, all 
of the suspect’s family members could easily be identified by anyone 
with a basic understanding of genealogy.63 Although the kit was 
removed after LE personnel were alerted, many people would have had 
access to the match list up to this time, and such a breach could 
potentially compromise an investigation. 

6.2. DNASolves 

Set up in December 2019, DNASolves (https://dnasolves.com) is run 
by Othram (https://www.othram.com), and is intended to be a dedi-
cated SNP database for LE use. As of March 2020, there were estimated 
to be several thousand profiles in the database.64 DNASolves accepts 
SNP data from the four main DTCs and sequencing data in other formats 
(BAM/SAM, FASTQ or VCF). Some of the database plans were revealed 
in a podcast with David Mittelman, CEO and founder of Othram, on the 
Genialis website (aired March 2020).65 Users contribute data to DNA-
Solves solely to solve crime; there is no public-facing search and users 
cannot be matched with relatives or access anyone else’s data but their 
own. People can voluntarily submit their name, date of birth and their 
parents’ names as data points to help investigators. When LE agencies 
submit data for a case, their credentials are validated. The matching 
algorithm is similar to that of AncestryDNA (personal communication, 
David Mittelman). The database is currently a grassroots effort with a 
user group on Facebook where new features are discussed.66 Although 
DNASolves is now actively accepting uploads there are no reported cases 
of it yet being used to produce investigative leads. 

7. Technologies that generate a SNP dataset from forensic DNA 

There are three ways that SNP genotype datasets suitable for relative 
searches can be generated from forensic DNA: i. using the same type of SNP 
microarrays as those adopted by the DTCs; ii. whole-genome sequencing 
(WGS) to obtain sufficient sequence coverage to reliably call heterozygote 
variant sites; iii. use of massively parallel sequencing (MPS) to perform 
targeted sequencing. This latter category can be further divided into 
amplicon-based methods (amplifying a smaller subset of SNPs with higher 
overall informativeness than those genotyped by a full SNP microarray) 

and hybridization capture methods. These different genotyping technolo-
gies are described below, and Fig. 6 illustrates the main steps included in 
the workflows. The genotyping technologies have different characteristics 
including analysis cost; availability of off-the-shelf assays; instrumentation 
requirements; data handling capacities required; and protocols available 
and optimized for the analysis of low quantity/low quality DNA. Note that 
it is possible to perform relative searches, which are not necessarily based 
on segment matching, but neither GEDmatch nor the DTCs currently use 
alternatives to the measurement of shared IBD segments. Therefore, when 
a subset of a typical DTC SNP dataset is assembled comprising 10,000, 
20,000 or 50,000 SNPs, all uploads to GEDmatch are rejected due to 
insufficient data for IBD segment matching. This SNP density limit will 
potentially change in the near future as a result of initiatives by Verogen to 
develop smaller SNP sets for forensic analysis which will be suitable for 
their ForenSeq MPS platform, but informative enough to make reliable 
relationship inferences (see Section 7.4). 

7.1. SNP microarrays 

SNP microarrays have been the system of choice for over 15 years to 
genotype large numbers of SNP sites in a single workflow [111–113]. The 
basis of SNP allele detection with microarrays is to let fragmented sample 
DNA sequences hybridize to oligonucleotide sequences bound to a surface 
or to beads. In Illumina’s BeadArray technology these oligo-sequences are 
designed to end prior to the SNP position, and the variant nucleotide(s) in 
the test sample are identified by single base extension. The Affymetrix 
(now part of Thermo Fisher Scientific) microarray technology uses frag-
mented DNA labelled with fluorescent dyes and then hybridized to a dense 
panel of allele-specific capture probes on the microarray surface. Hybrid-
ization of the DNA fragments containing the target SNP nucleotides, to one 
or both allele capture probes, produces dye signals detected by microscopic 
examination of the microarray surface corresponding to each genotype. 
There are multiple replicated capture probes per allele and SNP to ensure 
reliable consensus genotype analysis. In early microarray versions there 
was a degree of non-specific hybridization, but the sensitivity and reli-
ability of the probe designs has improved markedly and, with optimized 
signal processing pipelines in place, microarrays deliver a very reliable 
system for SNP genotyping. The two most commonly used microarrays for 
SNP genotyping are Illumina GSA (654,000 target SNPs) and Illumina 
CytoSNP (850,000 target SNPs). Prior to the introduction of the GSA in 
2016, the Illumina OmniExpress was the most commonly used microarray. 
Affymetrix provides the most commonly used alternative SNP microarray 
technology to the Illumina system. All current DTC analyses are based on 
Illumina OmniExpress or GSA microarrays with the addition of up to 50, 
000 customized SNPs, with the exception of Living DNA (using Affyme-
trix). The CytoSNP microarray has more SNP targets, but unfortunately 
only provides a 104 K marker overlap with the GSA. Therefore, imputation 
is required to increase the overlap and facilitate relative searches (see 
Section 8). The CytoSNP microarray is used by Parabon NanoLabs both for 
phenotype predictions and for upload to genealogy databases [15]. 
Generally, SNP microarrays require 20–100 times more DNA than would 
be considered a standard input quantity of 1 nanogram (ng) for other 
forensic DNA tests, and this has hindered the technology’s adoption for 
forensic analysis since it was first developed. Wendt et al. recently 
demonstrated in a titration experiment (1–200 ng of input DNA), using the 
Infinium Omni2.5Exome-8 chip, that high genotype concordance and call 
rates can be obtained down to 25 ng of input DNA [114]. However, the 
quality of the DNA used, in terms of degradation, levels of inhibitory 
substances and ratios of bacterial to human DNA in the sample, has a much 
greater effect on SNP call rates and their reliability (i.e. the genotype 
concordance recorded) than pushing DNA input levels below recom-
mended quantities, as shown by the Bode Technology experiments out-
lined in Section 7.3. Two advantages with SNP microarray typing are the 
comparatively low cost and the ease of variant calling compared to the 
much more demanding bioinformatic analysis required by whole-genome 
sequencing. 

63 The affidavit is available online at: https://denver.cbslocal.com/wp-conten 
t/uploads/sites/15909806/2019/12/1216_DougCo-Cold-Case-Arrest_James 
-Curtis-Clanton.pdf  
64 See: https://onezero.medium.com/how-cops-are-using-your-dna-to-catch 

-criminals-fe27a1d69e85  
65 See: https://www.genialis.com/2020/03/04/dna-solves-the-oldest-cold-cas 

e-with-david-mittelman-podcast-18/  
66 See: https://www.facebook.com/groups/DNASolves 
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Fig. 6. Illustration of four different categories of technology for genotyping a large number of SNPs. In the diagrams the “star” represents a SNP position of interest. 
In each category there are a variety of different methods and the figure just illustrates the main steps. (A) Whole-genome sequencing starts with fragmentation of the 
DNA. This can be performed with sonication or restriction enzymes. This creates a library of random, shorter segments of DNA to which adapters are ligated. The 
adapters contain sequences for the sequencing step, the library amplification step and barcodes to aid sample multiplexing. After amplification of the library it is 
ready for sequencing. (B) Amplicon-based methods start with the enrichment of the targets using traditional PCR amplification. Adapters are then ligated to the 
amplicons and, after library amplification, the targeted region is ready for sequencing. (C) Hybridization capture methods start with fragmentation of the DNA. After 
adapter ligation the fragments of interest are captured via probe hybridization. The probes are then removed and after library amplification the sequencing can be 
performed. The sequencing step for A, B, and C is performed using standard MPS on any existing platform (e.g. Illumina NextSeq/NovaSeq, Thermo Fisher Scientific 
Ion GeneStudio). (D) Microarray typing (here illustrated by Illumina BeadArray technology) starts with the amplification of the whole genome (whole genome 
amplification, WGA) after which the amplified DNA is fragmented. The fragmented DNA is then hybridized to complementary sequences which are attached to beads. 
These oligo sequences are designed to end prior to the SNP position. Via single base extension the variant nucleotide(s) in the test sample can be identified using 
fluorophore-labelled nucleotides. 
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7.2. Whole-genome sequencing 

The ability to sequence the whole genome of an individual in a viable 
single workflow has been refined much more recently than SNP micro-
array technologies. Initially confined to genetic research, WGS is now 
increasingly applied to clinical studies – where a rapid and practical 
sequencing system is required. The workflow is quite straightforward 
and starts by shearing the DNA into smaller fragments, achieved by, e.g. 
sonication. Sequencing adapters and sample indexes are then ligated 
onto these fragments. The library is amplified and after one or several 
purification steps it is ready for sequencing. Illumina and Thermo Fisher 
Scientific each offer whole-genome-scale sequencing systems with 
greatly expanded nucleotide reading throughput. Both companies have 
adapted the chemistry and nucleotide detection of their MPS targeted 
sequencing solutions now increasingly applied to forensic DNA analysis 
with the MiSeq-based and Ion S5 systems. Of the two options, Illumina 
have dominated the approaches to sequencing human whole genomes 
with the HiSeq X and NovaSeq systems, and each has been successfully 
applied to sequence-challenging forensic DNA samples ([17] and Sec-
tion 7.3, respectively). There are kits and protocols available to analyze 
as little as 50 pg of DNA, e.g. using the ThruPLEX DNA-Seq Kit (Takara), 
although such a low amount requires pure, good quality DNA. One 
advantage of the WGS protocol is that the input in the library prepara-
tion is fragmented DNA, which increases the probability to obtain results 
from degraded forensic samples. Brandhagen et al. [115] employed a 
whole-genome shotgun sequencing approach on rootless human hair 
shafts and showed that complete mitochondrial genomes (mtGenomes) 
could be recovered from aged hair shafts in reasonable quantities. 
However, the sequencing data in their study was not sufficient to pro-
vide any reasonable depth of coverage across the nuclear genome. A 
probable cause was that their libraries were sequenced on a MiSeq with 
considerably less sequencing capacity than high-throughput NextSeq or 
NovaSeq platforms. A method has recently been developed to extract 
DNA from rootless hair shafts to create SNP genotype datasets from WGS 
for upload to GEDmatch. The methodology has not been published to 
date but has reportedly been used to identify two murder victims.67 

An additional advantage with whole-genome sequencing is that, if 
high coverage data are obtained, it is possible to design and extract 
genotypes for any custom SNP panel. Thus, there is no need to target 
specific primers or probes. The disadvantages remain the high cost and 
computational workload when performing the bioinformatics and ge-
notype calling. 

7.2.1. Application of whole-genome sequence SNP genotyping to a real case 
The application of HiSeq X WGS analysis of DNA extracted from the 

femur of a 2003 murder victim by Tillmar et al. [17] was documented in 
detail. The researchers used carefully constructed validation measures 
throughout the process to ensure there was sufficient sequence coverage 
for robust SNP genotype calling from these data. They were able to build 
a SNP dataset of more than 1.3 million variants that allowed efficient 
querying of the GEDmatch database. We describe the process used in 
detail next, since this was achieved by a forensic laboratory that was 
already investigating the case with conventional DNA analyses, rather 
than a commercial supplier who may not wish to disclose proprietary 
methods in such detail. 

The sequencing pipeline followed three steps. First, DNA was extrac-
ted by standard phenol-chloroform methods from two grams of bone 
powder [116]. A critical part of this preparatory step was the checks made 
of the DNA quality prior to WGS. As well as quantitation with NanoDrop 
and checks of DNA integrity with Agilent TapeStation tests, MPS-based 
genotyping of an established forensic ID-SNP panel [117] ensured the 
DNA extracts would be suitable input for WGS. Prior genotyping by MPS 

also provided a concordance check of the SNP calls made by WGS at lower 
average sequence coverage. The MPS system tested the Qiagen QIAseq 
Investigator 140-SNP identification panel (131 SNPs used), set to a min-
imum coverage threshold of 200X and allele read frequency limits of 
0.4–0.6 for heterozygotes and 0.1–0.9 for homozygotes. Additional 
GlobalFiler STR profiling was run alongside the MPS tests. Second, three 
library preparations were made in parallel from the single bone powder 
DNA extract with the ThruPLEX® DNA-seq 48S Kit (R400427, Takara). 
Each library used 3 ng of fragmented DNA prepared by sonication to 
produce fragments with a mean size of 400 basepairs (bp). Sequencing 
was performed with an Illumina HiSeq X instrument and v2.5 sequencing 
chemistry using paired-end sequencing and read lengths of 150 bp. Third, 
a bioinformatics pipeline was created to compile the three FASTQ files by 
alignment to human genome build hg19 and was recalibrated to adjust for 
potential misalignments caused by flanking indels, etc., with GATK. 
Duplicated, broken and non-specifically mapped reads were removed 
using Qiagen Biomedical Genomics Workbench v5.0.1. 

For the GEDmatch relative searches 1378,481 SNPs were selected from 
the complete WGS variant dataset based on an optimum intersect of SNPs 
from the DTCs’ adapted GSA and Illumina OmniExpress sets, comprising: 
23andMe v5; AncestryDNA v2; and FTDNA/MyHeritage v1 microarrays. 
SNP genotyping quality was checked by applying four QC criteria to the 
HiSeq X sequence output: sequence coverage; allelic balance; Q-score and 
forward-reverse read ratio. Threshold values for these were, respectively: 
10 or more homozygote reads, 5 or more per allele heterozygote reads; 
0.5–0.7 heterozygote allele ratios; Q-scores higher than 25; and a read ratio 
of at least 0.2. From almost 3 billion reads, 86.7% were successfully aligned 
to the reference genome with a mean coverage of 32.2X. In the WGS-based 
SNP genotypes, 122/127 (WGS/MPS QC passed) cross-check genotypes 
passed their respective thresholds and were concordant. Approximately 
75% of targeted SNPs passed the above thresholds, leading to a total of 
1035,274 SNPs which were considered to be reliably called and compiled 
into the query profile for this case. 

The GEDmatch relative search was marked for LE purposes and made 
across the full database of ~1.2 million reference profiles, i.e. before the 
opt-in setting was applied from member’s choice to permit LE access. 
Searches returned several thousand putative relatives, but these were 
refined by choosing the top 100 matches that had >10 cM matching the 
query profile and 7 cM in common with others in the match list. This led 
to 36 putative relatives being analyzed further which created four clusters 
of individuals estimated to have been linked by their relationships to 
common grandparents. Information for some of the matched relatives 
indicated a Croatian origin and in fact, could be located more precisely to 
an area of ~40 km radius in NW Croatia. At this stage, meaningful 
investigative leads could be given to the police for their enquiries. These 
analyses are particularly important in establishing a benchmark for the 
validation of a new approach to forensic SNP genotyping and its appli-
cation to IGG. They show the value of a forensic laboratory performing 
the WGS analyses who are well versed in applying multiple QC checks to 
novel techniques, as well as the diligence and depth of experience 
necessary for the handling of limited evidential material. 

7.3. Evaluation of technology for forensic samples 

There are few scientific studies on the suitability of each technology 
applied to forensic casework. Bode Technologies published a webinar 
(“Forensic Genealogy: Unlocking the Science of Genealogy”) outlining 
an evaluation of Illumina GSA/CytoSNP microarrays and WGS for 
forensic DNA analysis in a valuable series of comparative tests [62]. 
Evaluations were based on the traditional measure of forensic sensitivity 
using dilution series of control DNA and artificial degradation of the 
same samples by progressively longer periods of sonication. Quality of 
SNP genotyping was measured by concordance rates (% of concordant 
genotypes with 250 ng input) and call rates (% of genotypes called), 
with input DNA quantities of 250; 50; 10; 2; 1; 0.5; and 0.25 ng extracted 
from blood and sperm. From the results presented in the webinar, 

67 See: https://www.nytimes.com/2019/09/16/science/hair-dna-murder. 
html 
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microarray technology (1x CytoSNP, duplicated GSA runs from two 
different analysis laboratories supplying data to Bode) was able to 
provide high call rates from 100% (250 ng− 50 ng) reducing to 95% for 
10 ng of blood-based input DNA, which only dropped to 90–95% at 2 ng 
input (1–0.25 ng not reported or analyzed). The lowest concordance 
rates were 89% in the 2 ng sample, but this lowest rate was an outlier 
value for general rates of 100–95% concordant genotypes, and one GSA 
analysis laboratory was consistently higher for both values indicating 
that established expertize and experience with handling low level 
microarray input affects the quality of results obtained. Apart from these 
differences, no discernible differences were detected between CytoSNP 
and GSA results. Sperm fraction DNA gave much lower call rates ranging 
from 90% down to ~65% (50 ng duplicates to 2 ng, respectively; no 
100 ng analyses made), and concordance of 100–92% was similar to that 
from blood-based DNA. Degraded DNA produced by sonication and 
measured by Degradation Index (DI) had high concordance in micro-
array analyses of 100–98%. However, once DI values reached 6.6, 11.1 
and 21 (from 1.4) call rates dropped to between 90% and 58%, meaning 
microarray technology struggled to detect damaged DNA with SNP 
target fragments of sufficient size to hybridize successfully. 

WGS analysis was provided by a laboratory specializing in this tech-
nique using the Illumina NovaSeq 6000 system. Call rates for blood and 
sperm extracts were slightly lower with WGS than microarrays (97–87% 
in blood DNA, 93–41% in sperm fraction DNA), but concordance was 
consistently high at all input levels at: 100% (250 ng) to 98% (2 ng) in 
blood, and not dropping below 99% in all inputs (no 250 ng input). When 
very low levels of input DNA were examined this high sensitivity was 
maintained; duplicates of 2, 1, 0.5 and 0.25 ng of blood DNA had 92–91% 
call rates and were at or close to 100% concordance. This translated to 
GSA microarrays reaching > 91% concordance with WGS data in blood 
and > 81% in semen. Therefore, the overall trend in sensitivity mea-
surements indicated WGS was more sensitive than microarrays and this 
sensitivity was more consistent—concordance dropped much less mark-
edly as input DNA was reduced despite slightly fewer calls being made. 

Following these experiments, an interesting evaluation of the SNP 
dataset informativeness obtained from each technique was performed 
using GEDmatch to examine known matches to kits from the control DNA 
used. The low template DNA SNP dataset obtained from the GSA micro-
array matched 9/13 kits in GEDmatch, compared with 11/13 with WGS, 
indicating more extensive SNP genotypes from WGS with minimal input 
DNA. The difference in the performance of WGS vs microarrays was much 
more marked when uploading SNP datasets from degraded DNA, with no 
kit matches amongst the top 18 with GSA-analyzed DNA having DI values 
of 6, 11 and 21; in contrast to WGS, with matches to all the top 18 with 
DNA at DI values of 1 and 21. Bode Technologies concluded from these 
studies that WGS is the system of choice for forensic DNA as it is a more 
accurate and sensitive SNP genotyping system for degraded DNA, 
matching or exceeding genotype call rates from microarrays. 

7.4. Capture-based massively parallel sequencing technologies 

Massively parallel sequencing (MPS) based methods using hybridi-
zation capture can genotype a large number of SNPs. These techniques 
have many similarities with whole-genome sequencing but, instead of 
including all fragments in the library to be sequenced, only those from 
regions of interest are captured and sequenced. The major advantages 
with this approach are that only relevant sequences are analyzed and 
deeper coverage is consequently obtained for those targets [118]. 
However, one disadvantage is that efforts are needed for the design of 
the probes (or “baits”) used to capture the sequences of interest. Several 
different hybridization capture methods exist and have been developed. 
The main steps of the method are similar (see Fig. 6) but variation exists, 
especially in the way the targets are captured [119]. Some examples of 
commercial hybridization capture technologies are SureSelect (Agilent), 
HaloPlex (Agilent), Nextera (Illumina), myBaits (Arbor Biosciences), 
Twist technology (Twist Bioscience) and SeqCap (Kapa HyperExplore). 

In hybridization capture methods the template genomic DNA is first 
randomly sheared by e.g. sonication or restriction enzymes. Sequencing 
adapters (which can also include sequences for library amplification, 
sample barcoding, etc.) can then be ligated to the fragmented DNA. The 
sequences of interest are captured using oligonucleotide probes. These 
synthetic probes are hybridized to the regions of interest and these hy-
bridized regions are further captured by, e.g. magnetic beads, enabling 
non-targeted DNA fragments to be washed out. The probes are then 
removed from the targets prior to library amplification and sequencing. 
Sequencing can be performed using standard MPS approaches such as 
MiSeq/NextSeq/NovaSeq (Illumina) or Ion GeneStudio (Thermo Fisher 
Scientific). The number of targets, the desired depth of coverage per 
target, the level of sample multiplexing and other variables determine 
the level of sequencing capacity needed. 

The main advantage with capture approaches, apart from offering 
high multiplexing capabilities, is that they are amenable to all sample 
types, from high-quality genomic DNA to severely degraded DNA (e.g. 
[120,121]). DNA from forensic samples and human remains is often of 
poor quality and, as a result of degradation, the DNA is already broken 
up into fragments, so such approaches are particularly suitable for 
forensic analysis. However, hybridization capture is more costly than 
amplicon-based approaches, but has been shown to be superior when 
testing mtDNA from human remains [122]. Many of the existing hy-
bridization capture methods were initially optimized for research 
studies and clinical testing where large quantities of DNA are available. 
Nevertheless, several protocols have been adjusted for lower DNA input 
[123]. Hybridization capture methods have been used for a long time to 
study human aDNA, for which the DNA quantity/quality may be similar 
to forensic samples [124,125]. Very large custom-designed SNP panels 
have been developed and employed on a variety of different aDNA 
sample types. For example, Mathieson and colleagues [126] used a hy-
bridization capture method to target approximately 1240,000 SNPs to 
analyze historical genetic variation among 230 West Eurasians dating 
between 6500 and 1000 BCE. Almost 600,000 of these SNPs were 
included on the Affymetrix Human Origins microarray. The samples in 
their study comprised teeth, petrous bones, femurs and other sources. 
Interestingly, they compared their data with that of a similar study using 
whole-genome sequencing, indicating that while the mean number of 
reads generated per sample with the capture approach was ~40 times 
lower, median coverage per analyzed SNP was ~4 times higher. Feld-
man et al. [127] used the same capture assay to successfully produce 
genotype data from Bronze/Iron age individuals. 

Although most of the hybridization capture companies offer custom- 
made panels, we have not found any large-scale (>100 K SNPs) studies 
on forensic samples combined with genealogically relevant SNPs. 
However, Shih et al. [128] analyzed a custom SeqCap assay (Roche) to 
capture the mtDNA genome and a smaller number of autosomal SNPs 
(~400). They tested their assay on forensic samples (telogen hairs, mock 
stain samples, etc.) and obtained highly accurate SNP genotype data. We 
expect more studies and case reports to be published in the near future in 
which hybridization capture methods are applied to forensic analyses. 
Lastly, Ancestry.com launched an MPS-based AncestryHealth test in 
August 202068 using a large hybridization capture assay developed by 
Twist Biosciences.69 

At the time of writing, a targeted SNP genotyping system, using MPS 
to generate data for SNP sets at a much-reduced scale of approximately 
ten thousand loci, was being developed by Verogen following their 

68 See: https://www.genomeweb.com/sequencing/ancestry-rolls-out-sequenc 
ing-based-health-offering-focused-common-conditions; https://news.thomasne 
t.com/fullstory/new-ngs-technology-powering-ancestryhealth-enables-fas 
t-genetic-screening-40038209  
69 See: https://www.biospace.com/article/releases 

/twist-bioscience-launches-new-ngs-solutions-highlights-customers-at-2020-a 
dvances-in-genome-biology-and-technology-conference/. 
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acquisition of GEDmatch. The new assay, named the ForenSeq Kintelli-
gence Kit (https://verogen.com/products/forenseq-kintelligence-kit/) 
was announced in January 2021, and comprises <10,250 SNPs which 
exclude medically important loci or those with low minor allele fre-
quencies. The kit is based on the established ForenSeq library preparation 
approach using the MiSeq FGx forensic genomics system (validated for 
forensic use [129]). To develop the ForenSeq Kintelligence Kit, Verogen 
performed detailed bioinformatic analyses of the relative performance of 
component SNPs on various Illumina microarrays uploaded to GEDmatch, 
in order to gain knowledge of optimum candidates for smaller, forensi-
cally relevant SNP sets. Verogen will use a new IBS (identical by 
state)-based analysis tool supporting data from the new assay and used in 
the LE portal. The advantage of developing a ‘built for purpose’ SNP set 
for kinship analysis is not only an improved performance with challenging 
DNA (expected to work on forensic samples with DNA concentrations at 
sub-nanogram levels), but it is also feasible that SNP details can be 
encoded at each stage of the genotyping and query processes enabling 
better protection of kits in GEDmatch used for investigative purposes. 

8. SNP genotype imputation 

As discussed previously, DTC companies as well as scientific studies use 
a variety of different SNP microarrays and their marker configurations can 
change over time. Although some microarrays have a large proportion of 
overlapping SNPs, others have a considerable amount of non-overlapping 
SNPs which may reduce the power in database searches and segment an-
alyses. One example is the transition from Illumina’s OmniExpress to their 
GSA microarray which have fewer than 200,000 SNPs in common.70 

Missing data may also be the result of low-quality or degraded DNA. A way 
to increase the number of genotypes, and increase the proportion of 
overlapping SNPs, is to predict the missing genotypes with a method 
known as genotype imputation. Genotype imputation may also be relevant 
to apply when an analysis of DNA of low quantity and/or quality results in 
a large proportion of missing genotypes. A database search may be 
impossible to conduct if the number of missing SNPs is too large. 

The aim of imputation is to predict the genotypes for SNPs not directly 
genotyped in a sample. One of the first studies using genotype imputation 
was in connection with the identification of genetic risk variants for type 2 
diabetes. The study compared their results with those from similar studies 
conducted with different genotyping microarrays [130]. Since then, 
imputation has become a standard analysis tool for various purposes and 
has been used mainly in the field of medical genetics [131]. Some of the 
most common applications of imputation have been to increase the power 
obtained from genome wide association studies (GWAS) [132], to 
improve the resolution in fine-mapping studies (e.g. [133]) and to facil-
itate meta-analysis by combining data from different sets of genotyping 
microarrays into one unified set of SNPs (e.g. [134]). Although rare, there 
are also examples of genotype imputation for forensic STR typing pur-
poses. Edge et al. as well as Kim et al. recently published two studies in 
which they demonstrated that a standard STR profile can be used to 
impute genome-wide SNP data (and vice versa) [135,136]. 

The underlying principle of genotype imputation is that any two in-
dividuals, including those who are apparently unrelated, will share short 
segments of DNA from a distant common ancestor. Factors like high levels 
of linkage disequilibrium (LD) and low recombination rates within small 
stretches of chromosomal segments will conserve haplotype variants 
through many generations. Shared segments can be identified if the 
observed genetic variants in the studied individual are compared with 
variants from a panel of reference individuals. From these shared seg-
ments, missing data in the sample can be predicted based on the observed 
genetic variants in the reference individuals. In practice, the genotype 
data (for both test individuals and reference individuals) is first converted 
into haploid format (i.e. haplotypes) by phasing methods [137]. There is a 

wide range of phasing software and many of them now combine phasing 
and imputation. The principle of phasing is illustrated in Fig. 7, and 
population haplotype frequencies are used to probabilistically estimate 
the most likely haplotype configuration. Many of the phasing models use 
hidden Markov models (HMM) for this inference. 

Once phasing is completed, the missing variants in the test sample 
can be predicted from the variants present in the reference individuals 
with matching haplotypes (see Fig. 8). A studied haplotype will be a 
mosaic of the reference haplotypes where changes may represent his-
torical recombination events, but differences may also represent his-
torical mutations, gene conversions and genotyping errors. Most of the 
imputation methods also utilize an HMM framework and may differ in 
the parameters and the setup of the HMM [131]. A key component in the 
development of new methods and models for phasing and imputation is 
to decrease the computational burden to better handle larger reference 
data sets and to speed up the computations without loss of accuracy. A 
selection of available software is presented in Table S1. The genotype 
predictions are not always perfect, and many of the programs provide a 
prediction probability along with the imputed genotype which corre-
sponds to the uncertainty of the imputed variants [138]. 

The performance of imputation depends on several factors. For 
example, the imputation error rate increases as the minor allele fre-
quency decreases [138,139]. The reason for this is that rare alleles will 
be observed less often in the reference data and they tend to have lower 
levels of LD with common variants, which increases the uncertainty in 
the imputation [140]. Other factors that affect the error rate are the 
number, density and quality of the observed genotypes in the DNA 
analysis [46,141]. An additional important factor is the size and the 
population origin of the reference panel. Larger reference panels have 
increased imputation accuracy, and since genotype imputation depends 
on finding haplotype segments shared between reference and target 
haplotypes, a matching reference population is relevant to use [131,138, 
142]. Having a reference panel with very little genetic similarity with 
the test sample can decrease the imputation accuracy. At present, 
several public or partially public reference panels exist and include the 
HapMap project [143], 1000 Genomes phase 3 [81] UK10K project 
[144,145], and Trans-Omics for Precision Medicine (TOPMed) [146]. 
The TOPMed project includes more than 100,000 sequenced samples. 

What level of accuracy can be expected in practice? Based on the 
factors outlined above, it is hard to be certain, but for the microarrays 
and SNPs included in genealogy testing a reasonable estimate may be 
~1% or less [21]. However, the commercial companies have databases 
of millions of customers and will therefore have much larger reference 
panels for imputation than are currently available to academic re-
searchers. For illustrative purposes we performed a genotype imputation 
test on a SNP profile from one of the co-authors. The genotypes of the 

Fig. 7. Phasing of genotype data into haplotype format using a probabilistic 
approach. Assume that genotypes have been observed for two SNPs (“SNP1” 
and “SNP2”) and they require phasing into haplotypes. In theory, there are two 
pairs of phase alternatives (alt A and alt B). If there is population data with 
haplotype frequencies it is possible to estimate the probability for each pair of 
phase alternatives. In this example, HWE is assumed and the result shows that 
variant B is the most probable phase alternative given the observed genotypes 
and underlying population data. This example is based on a similar example in 
Browning et al., 2013 [38]. 70 See: https://isogg.org/wiki/Autosomal_SNP_comparison_chart 
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SNPs included in the current version of the microarray used by Ances-
tryDNA were used to estimate the error rate when reducing the number 
of observed SNPs for imputation and thus increasing the masked SNPs 
which required imputation. Although no direct conclusions can be 
drawn from this single experiment, the imputation error rate was around 
1% or less, even when the number of SNPs was reduced to less than 100, 
000 (Supplementary File S2, Fig. 5). 

It has been noted that several of the companies use genotype impu-
tation, at least to some degree, either to accept transfers from different 
companies or to ensure backwards compatibility with the OmniExpress 
microarray, though no published details are available. The MyHeritage 
imputation process has been described in a company blog post.71 

However, the extent of imputation amongst DTC and forensic service 
providers, and its specific application in genealogical analyses beyond 
MyHeritage are not known. 

9. Concluding remarks: proportionality and the CODIS gap 

While IGG is an exciting and powerful forensic genetic technique 
which has led to the successful resolution of many long-standing cold 
cases, its use has highlighted systemic problems in the US criminal 
justice system. It has become apparent that many cold cases could have 
been solved much earlier using existing DNA technologies. It is esti-
mated there are many thousands of profiles from convicted offenders 
which are legally mandated but have yet to be collected.72 In Wash-
ington State alone, 30,000 convicted offenders are thought to be missing 
from the CODIS database, highlighting an increasing ‘CODIS gap’ in the 
US.73 In a growing number of cases, IGG has identified suspects who had 
a criminal history but were not in CODIS.74 This includes two criminals 
in Texas who were executed without having their DNA taken.75 

The problem of untested sexual assault kits has been well 

documented and publicized, but although many grants have been 
awarded over the years to clear the backlog, it continues to increase.76 

Testing on its own will not solve the problem if funding is not also 
provided to pay for the costs of investigating and prosecuting cases.77 

The CODIS gap is further exacerbated by the piecemeal use of fa-
milial searching in the US. It is currently confined to 12 of the 50 US 
states (Arizona, California, Colorado, Florida, Michigan, New York, 
Ohio, Texas, Utah, Virginia, Wisconsin, and Wyoming), is explicitly 
prohibited in Maryland and Washington DC, and is not permitted in the 
federal CODIS database.78 Familial searches are restricted to people who 
are already in the CODIS database and, because they have been con-
victed of a crime, are considered to have forfeited some rights to privacy. 
Therefore, familial searching has far fewer privacy implications than 
IGG, which extends searches to both close and distant relatives who are 
in a genealogy DNA database, not all of whom have given specific 
consent for their profiles to be used. IGG can also involve networks of 
related family members who have not had their DNA tested but are 
approached for target testing.79 It is therefore sobering to find that some 
cases where IGG was used could have been solved much earlier if fa-
milial searching had been implemented. For example, Patrick Leon 
Nicholas was identified as a suspect in the murder of Sarah Yarborough 
in Washington State, yet could have been caught through familial 
searching because his brother’s DNA was entered into CODIS in 2005.80 

Joseph DeAngelo, the Golden State Killer, had a brother who was con-
victed of a felony. He could have been caught many years earlier if fa-
milial searching had been in use at the time and if the law had been in 
place to allow police to take DNA from arrestees [2]. 

Proportionality is a key concept in forensics when attempting to 
balance the privacy rights of the individual versus the need for public 
safety [147]. It is vital to ensure that the least privacy-invasive methods 
are used first and IGG is used as a last resort and not to compensate for 

Fig. 8. An illustration of how genotype impu-
tation works. The original SNP data is shown on 
the left. This set consists of SNP genotypes 
observed directly from the DNA analysis but 
also missing genotypes (marked with “?/?”). 
First, the observed diploid data is phased into 
haplotypes, which are then compared with 
haplotypes from a reference panel (e.g. phased 
1000 Genomes data). Second, missing SNP al-
leles can be predicted using the matching hap-
lotypes in the reference data and a probabilistic 
model. The final genotype set, which includes 
both original and imputed genotypes, is shown 
on the right.   

71 See: https://blog.myheritage.com/2018/01/major-updates-and-impr 
ovements-to-myheritage-dna-matching/.  
72 See: https://www.corrections1.com/products/police-technology/investi 

gation/biometrics-identification/articles/hidden-in-prison-thousands-of-inmat 
es-not-in-dna-databases-8r9qlgaNHXfvA4aJ/  
73 See: https://www.atg.wa.gov/news/news-releases/ag-ferguson-wins-addit 

ional-25-million-fund-sexual-assault-kit-initiative-program  
74 See: https://www.nbcnews.com/news/us-news/national-disgrace-holes 

-dna-databases-leave-crimes-unsolved-decades-n1236748  
75 See: https://web.archive.org/web/20190202013800/https://www.fore 

nsicmag.com/news/2019/02/police-discover-oregon-cold-case-killer-was-exec 
uted-texas-1999 and: https://www.kwtx.com/content/news/DNA-confirms- 
ID-of-man-who-killed-area-real-estate-agent-in-1981–562531361.html 

76 See: https://promega.foleon.com/theishireport/november-2019/pursuing- 
justice-the-state-of-the-sexual-assualt-kit-backlog-in-the-united-states/ and 
https://www.channel4.com/news/us-rape-survivors-wait-for-justice-amid- 
backlog-of-dna-testing-kits  
77 See: https://web.archive.org/web/20160303071244/http://www.forensi 

cmag.com/articles/2015/12/going-beyond-codis-illusion-rape-kit-testing-pan 
acea  
78 See: https://www.nbcnews.com/news/us-news/familial-dna-puts-elusive- 

killers-behind-bars-only-12-states-n869711  
79 See: https://www.nbcnews.com/news/us-news/they-lied-us-mom-says- 

police-deceived-her-get-her-n1140696  
80 See https://www.kiro7.com/news/local/wednesday-at-5-30-why-isnt-wash 

ington-using-dna-tool-to-solve-crimes-/1010311730/s-/1010311730/ 
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genome sequencing of human remains to enable genealogy DNA database 
searches – a case report, Forensic Sci. Int. Genet. 46 (2020), 102233. 

[18] G. Samuel, D. Kennett, The impact of investigative genetic genealogy: perceptions 
of UK professional and public stakeholders, Forensic Sci. Int. Genet. 48 (2020), 
102366. 
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