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Abstract

Miniaturized bioreactor (MBR) systems are routinely used in the development of mam-

malian cell culture processes. However, scale-up of process strategies obtained in

MBR- to larger scale is challenging due to mainly non-holistic scale-up approaches. In

this study, a model-based workflow is introduced to quantify differences in the process

dynamics between bioreactor scales and thus enable a more knowledge-driven scale-

up. The workflow is applied to two case studies with antibody-producing Chinese ham-

ster ovary cell lines. With the workflow, model parameter distributions are estimated

first under consideration of experimental variability for different scales. Second, the

obtained individual model parameter distributions are tested for statistical differences.

In case of significant differences, model parametric distributions are transferred

between the scales. In case study I, a fed-batch process in a microtiter plate (4 ml work-

ing volume) and lab-scale bioreactor (3750 ml working volume) was mathematically

modeled and evaluated. No significant differences were identified for model parameter

distributions reflecting process dynamics. Therefore, the microtiter plate can be applied

as scale-down tool for the lab-scale bioreactor. In case study II, a fed-batch process in a

24-Deep-Well-Plate (2 ml working volume) and shake flask (40 ml working volume)

with two feed media was investigated. Model parameter distributions showed signifi-

cant differences. Thus, process strategies were mathematically transferred, and model

predictions were simulated for a new shake flask culture setup and confirmed in valida-

tion experiments. Overall, the workflow enables a knowledge-driven evaluation of

scale-up for a more efficient bioprocess design and optimization.

K E YWORD S

mathematical process models, model-assisted scale-up, Monte Carlo uncertainty analysis,
quality by design

1 | INTRODUCTION

In the initial phase of bioprocess design and optimization, the identifi-

cation of an appropriate process strategy (e.g., feeding design) can be

demanding due to the large number of influencing factors.1-3 To accel-

erate the optimization procedure, miniaturized bioreactors (MBRs) are

typically applied in the field of mammalian cell culture processes with

Chinese hamster ovary (CHO) cells. Advantages are a reduced
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working volume (e.g., 1–2.5 ml in 24-Deep-Well-Plate—24-DWP) and

increased automation and parallelization possibilities.1,4-10 In the past,

several research groups have demonstrated the potential of MBRs for

the cultivation and optimization of mammalian producer cell

lines.1,11-14 However, the scale-up and scale-down of process under-

standing (i.e., knowledge) between MBR systems and benchtop- or

production-scale can be challenging due to varying process perfor-

mance and cellular changes.15-17 Nowadays, scientific methods are

increasingly applied to ensure process stability during scale-up, taking

the Quality by Design (QbD) methodology into account.6,15,18-20 QbD

demands the implementation of a knowledge-based workflow, which

can be used to understand the impact of critical process parameters

on the process performance.15,16,20,21 If purely data-driven

approaches are used in the knowledge-based workflow, the dynamics

of cell growth, metabolism and productivity are mostly not sufficiently

considered and quantified.15

To enable a more knowledge-driven decision making, mathematical

process models can be combined with statistical tools to further reduce

the experimental effort and to understand the complexity and dynamics

of an existing bioprocess in silico.3,22-26 Therefore, the mechanistics of

the bioprocess are modeled in different bioreactor scales and with vary-

ing process strategies (e.g., fed-batch). Additional process knowledge is

gained if effects of input uncertainties (e.g., experimental variations) on

model outcomes are considered and quantified (e.g., using Monte-Carlo

methods).15,27 By this, biological variability and fluctuations inherent in

bioprocesses are incorporated into the model and model parameter dis-

tributions.23,28 Subsequently, individual model parameter distributions

can be statistically compared to identify changes in the process dynam-

ics between the modeled scales, as shown in Möller et al.15 So far, this

approach was successfully applied for the model uncertainty-based

evaluation of an antibody-producing CHO process from shake flask cul-

tures up to pilot scale. However, the scale-up of process strategies

developed in rather undefined small scale MBR systems to mostly char-

acterized larger scale remains challenging.6

In this study, a model-based scale-up methodology is introduced

to evaluate and mathematically transfer the process dynamics from

MBR to larger scale bioreactors (i.e., lab-scale). Therefore, model-

parametric uncertainties are determined under consideration of

F IGURE 1 Model-based workflow for the scale-up of biotechnological processes
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experimental uncertainty in both investigated scales. This methodol-

ogy is shown for two different case studies with antibody-producing

CHO cells. In case study I (CS1), the methodology was applied to com-

pare a fed-batch process (GS-CHO) between the micro-matrix system

(4 ml working volume) and a stirred tank bioreactor (3750 ml working

volume). In case study II (CS2), the process dynamics in a fed-batch

process (CHO DP-12) with two different feeding media were com-

pared between a 24-DWP system (2 ml working volume) and shake

flask culture (40 ml working volume).

1.1 | Uncertainty-based workflow

In Figure 1, the suggested workflow for the model-assisted scale-up

of process strategies from MBR to larger-scale bioreactors is shown.

Aim of this workflow is the quantification of differences in the

process dynamics between MBR and larger-scale bioreactor systems.

Initially, experimental cultivation data of two different bioreactor

scales, for example, MBR and shake flask, are used to determine the

model-parametric uncertainties based on the experimental variability

(i.e., measurement errors). By this, the experimental variability in both

biological cell behavior and measurements are considered. Therefore,

the dynamics of the bioprocess are modeled (Figure 1 (1)) and the

model parameters are adapted multiple times for each scale based on

an assumed normally distributed measurement error of the experi-

mental data (Figure 1 (2)).15 For each scale, individual model parame-

ter distributions are determined. In order to evaluate significant

differences in the dynamics of the cultivations between different

scales, the model parameter distributions are statistically compared

(Figure 1 (3)). The differences are quantified (Figure 1 (4)) and tested

for significance (Figure 1 (5)). The approach of statistical testing of

model parameter distributions was derived from previous studies in

the field of systems biology and are advantageous for bioprocess

design and optimization since the process dynamics of the biological

system are captured.23,24 If no differences between both model

parameter distributions are identified (Figure 1 (6)), the dynamics can

be seen as comparable at both scales (process dynamics of small scale

reflects the larger-scale) and the scale-up is evaluated successfully

(Figure 1 (9)). Otherwise, if the model parameter distributions are

different (Figure 1 (7)), a mathematical conversion of the parameter

distributions between both scales is performed to convert the process

dynamics from MBR to larger scale (Figure 1 (8)). Subsequently, the

outcomes are validated by experiments at the larger scale. This meth-

odology enables a model-assisted scale-up and validation of process

strategies obtained in MBR systems for a more holistic process under-

standing (Figure 1 (9)).

2 | MATERIALS AND METHODS

2.1 | Cell line and preculture

2.1.1 | Antibody-producing GS-CHO (CS1)

An industrial glutamine synthetase CHO (GS-CHO) cell line (Lonza,

UK) producing an IgG4 antibody was used in the CS1 experiments.10

Cells were thawed and transferred to 49 ml of CD-CHO medium (Life

Technologies, UK) containing 25 μmol L−1 methionine sulphoximine in

a vented 250 ml shake flask (Corning Life Sciences, USA). Cells were

expanded on an orbital shaker with 25 mm shaking diameter

(Sartorius, UK) at 160 rpm, 37�C, 5% CO2, 70% humidity and pas-

saged every 3–4 days. The inoculum was prepared after 12–14 days

of pre-expansion from cell populations in the exponential growth

phase. The seeding density of all cultivations was 0.3 × 106 cells ml−1.

2.1.2 | Antibody-producing CHO DP-12 (CS2)

CHO DP-12 cells (clone #1934, ATCC CRL-12445, kindly provided by

T. Noll, Bielefeld University, Germany) producing an interleukin-8 anti-

body were used in CS2. The cell line was cultivated in animal

component-free and chemically defined TC-42 medium (Xell AG, Ger-

many). The medium was supplemented with 42 mmol L−1 of glucose,

6 mmol L−1 of glutamine and 200 nmol L−1 of methotrexate (all

Sigma-Aldrich, Germany). One milliliter of cryoculture (107 cells ml−1)

was thawed and inoculated into a vented single-use shake flask (baf-

fled, 40 ml working volume, Corning Life Sciences, USA) with 40 ml

prewarmed medium. The incubator (Kuhner LT-X, Kuhner AG, Swit-

zerland) conditions were set to 37�C temperature, 5% CO2, and 85%

humidity. The orbital shaker was set to a shaking frequency of

200 rpm with 25 mm shaking diameter.

2.2 | Fed-batch cultivations

The setups for all cultivations are summarized in Tables 1 and S1.

2.2.1 | Fed-batch cultivation in micro-matrix (CS1)

Prior to each experiment, each well of a micro-matrix (Applikon-Bio-

technology, The Netherlands) was filled with 2 ml of 1×PBS (Life

TABLE 1 Performed cultivations in CS1 and CS2

Aim

Number of

cultivations

Working volume

(cultivation system)

Process

development

1 4 ml (micro-matrix, CS1)

Scale-up 1 2.5–3.75 L (BIOSTAT B-

DCU, CS1)

Process

development

8 2 ml (24-DWP, CS2)

Process

development

4 30–50 ml (shake flask, CS2)

Validation 4 30–50 ml (shake flask, CS2)
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Technologies, UK). The cassette was then covered with the micro-

matrix feeding module and mounted onto the micro-matrix system. The

pH was monitored for at least 2 h using the HMI software. The offset

of the online pH was then corrected by comparison to the

corresponding readings of an offline pH meter (Mettler Toledo, Switzer-

land). The inoculum was prepared by mixing prewarmed CD-CHO

medium with the appropriate volume of cell broth to reach a cell density

of 0.3 × 106 cells ml−1. PBS was then removed and replaced with 4 ml

of the inoculum. The liquid feed bottle was filled with 1 mol L−1 sodium

hydroxide (Acros, Belgium) and all lines were primed before the cultiva-

tion commenced. The agitation speed was set to 250 rpm (25 mm

orbit), pH was controlled at 7.2 using either overlay with carbon dioxide

or automated base additions. The dissolved oxygen was controlled at

30% using either overlay of air or nitrogen. The temperature was con-

trolled at 37�C. Feeding with Efficient Feed B (Life Technologies, UK)

was performed after 3 days of cultivation and was repeated on Days

5, 7, 9, and 11 with bolus additions ranging between 286 and 400 μl to

match the volumetric additions at the 5 L scale bioreactor.

2.2.2 | Fed-batch validation in 5 L scale (CS1)

Benchtop-scale cultivations were performed in a 5 L BIOSTAT B-DCU

STR (B. Braun Biotech, Sartorius, UK), equipped with a 45-degree pit-

ched blade impeller in down-pumping configuration. The rotational

speed was set to 260 rpm and the vessel content was continuously aer-

ated with 0.07 vvm via a ring sparger. The pH was controlled at 7.2

using either sparging of carbon dioxide or 1 mol L−1 sodium hydroxide

additions. The DO was maintained at 30% by sparging either air or

nitrogen. The temperature was controlled at 37�C and 1% Antifoam C

Emulsion (Sigma-Aldrich, UK) was added as needed. Since Antifoam C is

commonly used in cell culture processes, its impact on cell growth and

metabolism was not focused in this study. Cells were seeded in equili-

brated CD-CHO medium at a concentration of 0.3 × 106 cells ml−1 and

cultivated in an initial working volume of 2,500 ml.

Feeding with 250 ml of Efficient Feed B commenced after 3 days

of cultivation and was repeated on Days 5, 7, 9, and 11. All cultiva-

tions are described in Section 2.2 and are summarized in Table 1.

2.2.3 | Fed-batch cultivation in 24-DWP (CS2)

A re-usable squared-bottom 24-DWP (SMCR1424, Duetz System,

Kuhner AG, Switzerland) with a working volume of 1–2.5 ml was

used.29 The 24-DWP was placed in an incubator (Kuhner LT-X,

Kuhner AG, Switzerland) and mounted on a holder (SM318000,

Kuhner AG, Switzerland). Cultivation conditions were set to 37�C, 5%

CO2, 85% humidity and 220 rpm with an orbitally shaking diameter of

25 mm. 0.3 × 106 cells ml−1 were inoculated in pre-warmed medium

containing 42 mmol L−1 glucose, 6 mmol L−1 of glutamine and

200 nmol L−1 methotrexate (same medium as in Section 2.1). Every

24 h a sample of 200 μl was taken and directly diluted in 800 μl

1×PBS (Sigma-Aldrich, Germany). Two different constituted feed

media were used for feeding. Among other differences, feed medium

A contained 111 mmol L−1 glucose (Basic CHO feed, Xell AG), and

feed medium B 222 mmol L−1 glucose (HEK FS feed, Xell AG). Both

feed media (Feed A and Feed B) were supplemented with 9 mmol L−1

glutamine (Sigma-Aldrich, Germany). The set-ups for all cultivations in

the 24-DWP with respect to feed volume, concentrations and initial

time point are listed in Table S1.

2.2.4 | Fed-batch cultivation in shake flasks (CS2)

The shake flask cultivations were part of a previous publication, please

see Möller et al.3 Out of these data, four cultivations characterized by

a feed concentration of 111 mmol L−1 glucose (Feed A), were

selected. The glutamine concentration of the feed medium varied

from 9 to 38 mmol L−1. The feed concentrations and feeding time

points varied for all cultivations (see Table S1).

2.3 | Mathematical process model

The cell culture processes in this work are described by mathematical

process models including well known metabolic links, such as glucose

related to lactate production. As shown in previous publications,3,15,30

the applied model is capable to describe the growth and metabolism of

CHO cells in different process conditions and bioreactor scales. It

should be noted that this approach is not solely limited to a certain class

of mathematical process models and diverse models could be used if

they describe the dynamics of cell growth and metabolism, such as

hybrid or logistic models.31,32 To simulate growth and metabolism,

adapted mathematical process models, modified from Kuchemüller

et al30,33 and Möller et al3,15 were used in CS1 and CS2. All calculations

and computational methods were performed in MATLAB 2018b.

2.3.1 | Mathematical process model CS1 (GS-CHO)

In CS1, the cell growth (Xt—total cell density, Xd—dead cell density, Xv—

viable cell density, see Table S2, Eqs. (3)–(5)) was modeled based on a

virtual limiting concentration cLs (Table S2, Eq. (14)).34 Due to the altered

cell metabolism of the GS-CHO cell line, glutamine (cGln, Table S2,

Eq. (8)) is not only consumed but also formed based on the glutamate

(cGlt) uptake (Table S2, Eq. (15)) and the present growth rate μ. The

uptake of glucose (cGlc, Table S2, Eq. (7)) and cGln (Table S2, Eq. (8)) led

to the formation of lactate (cLac, Table S2, Eq. (11)) and ammonia (cAmm,

Table S2, Eq. (12)) by glycolysis and glutaminolysis, respec-

tively.15,35 The cell-specific uptake rates for cGlc and cGln (Table S2,

Eqs. (18)–(19)) were modeled as a function of the current concen-

tration of cGlc and cGln. Furthermore, a growth-associated term

was implemented in Eq. (16) to describe the reduction of the cell-

specific uptake rates at lower growth rates.15 cLac and cAmm are

proportional to cGlc and cGln uptake (YLac/Glc and YAmm/Gln). The

uptake of cLac is described by cGlc lower 0.5 mmol L−1.
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The antibody (cAb, Table S2, Eq. (13)) is expressed constantly and

modeled as a function of the cell density.36 Changes in the working

volume (Table S2, Eq. (6)) and concentrations due to sampling and

bolus feeding (bolus fed-batch) are also considered in the mass bal-

ances. All equations of the mathematical process model can be seen

in Table S2.

2.3.2 | Mathematical process model CS2 (CHO
DP-12)

The prediction of the cell growth (Xt, Xd, and Xv, Table S3, Eqs. (30)–

(32)) was performed based on the main substrates cGlc (Table S3,

Eq. (34)) and cGln (Table S3, Eq. (35)). Changes in the cGlc, cLac

(Table S3, Eq. (36)), cAmm (Table S3, Eq. (37)), cAb (Table S3, Eq. (38))

and cultivation volume (Table S3, Eq. (33)) were modeled as described

in Section 2.3.1. The inhibitory effect of cAmm was considered in the

Monod-like structured model (Table S3, Eq. (39)). Equations of the

mathematical process model can be seen in Table S3.

2.4 | Quantification of model-parametric
uncertainty

The aim of the proposed workflow is the quantification and compari-

son of the process dynamics in MBR and larger-scale bioreactors. The

process dynamics are described by mathematical process models, and

the model parametric uncertainty is determined based on the experi-

mental uncertainty. Therefore, the model parameters are adapted

repeatedly (1,000 times) and the experimental data is sampled (Monte

Carlo sampling, see Figure 1 (1–3)) considering an experimental nor-

mally distributed relative error of 5% standard deviation, according to

Möller et al15 and Wechselberger et al37 (for initial values see

Table S4). To adapt the model parameters, the objective function

(weighted sum of squared residuals [RSMD]) between the simulated

and experimental data for all time points and variables was minimized

using the Nelder–Mead algorithm, as commonly used for model

parameter identification.3,22,23,38 Alternative approaches for model

parameter identification and adaption are the Bayesian inference

method26,39,54 as well as the adaptive experimental redesign which

have been discussed in the past.40-42 Furthermore, model-based

Design of Experiments strategies could be used to design initial exper-

iments and identify suitable model parameters.43 The RSMD was cal-

culated from the squared difference between the experimental yi,m

and simulated value ys,m divided by the number of data points n in the

data set (Eq. (1)). kw is used for weighting individual data points.

RMSD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
m=1

ys,m−yi,m
� �2

n
�kw

vuut ð1Þ

Based on the Monte-Carlo sampling and individual adapted model

parameters, model parameter probability distributions reflecting the

parametric uncertainty can be determined. To evaluate the adapted

model parameters and the simulated data, the coefficient of determi-

nation R2 was calculated (Eq. (2)).

R2 = 1−

Pn
i=1

yi−ysð Þ2

Pn
i=1

yi−�yð Þ2
ð2Þ

The R2 lies between 1 and minus infinity and is defined as the

residual of 1 minus the ratio of the squared differences between the

experimental-simulated (yi − ys)
2 as well as the squared differences

between the experimental data and their mean (yi − �yi )
2. R2 is equal to

1 if simulated data corresponds to the experimental data

measured.15,44

2.5 | Statistical comparison of probability
distributions

To identify differences in the process dynamics between the two

scales, the quantified model parameter distributions are compared

statistically using analysis of variance (ANOVA). The p value calculated

by the ANOVA function indicates if the difference is significant

(α = 1%).15 Generally, three different significance levels (p values)

were chosen (p < 0.001 = highly significant—**,

p < 0.01 = significant—*, p ≥ 0.01 = not significant—n.sig). Subse-

quently, the means and sample variance were determined for two

samples (two model parameter distributions of one model parameter

at two scales or experimental setups). The boxplots for each individual

model parameter distributions show the 25th and 75th percentile

(interquartile distance, bottom and top edges of the box) as well as

the upper and lower whiskers covering 99.3% (according to MATLAB

preset) of the data set if the data are normally distributed.45

2.6 | Monte Carlo-based uncertainty bands

The process variability was simulated based on the former determined

model parametric uncertainty. Therefore, uncertainty bands, rep-

resenting the uncertainty propagation, were determined by calcula-

tion of the mean and the 10 and 90% quantiles of each individual

model parameter distribution (1,000 simulations with normally distrib-

uted standard deviation of 5%) using the function “prctile.” Subse-

quently, simulations with mean, 10 and 90% quantile model

parameter values were performed.

2.7 | Transfer of process dynamics

The mathematical transfer was based on the main assumption that

the differences in mean and coefficient of variance (CV) are consistent

and transferable to cultivation systems with changed experimental
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setup, scale or feed constitution. First, mean, standard deviation and

CV were determined for all individual model parameter distributions

and the differences of these values between two selected systems

(e.g., 24-DWP and shake flask, same feed constitution) were calcu-

lated. Second, the calculated differences were transferred to an, for

example, 24-DWP cultivation system with varying feed constitution.

The resulting values for the individual model parameter distributions

(i.e., means and standard deviations) were then used as initial values

for randomized parameter distributions (1,000 parameter values) of a

predicted unknown cultivation system using the randn function in

MATLAB. Subsequently, means, standard deviations and CV were

determined again.

2.8 | Engineering parameters during scale-up

A matched mixing time approach was used as scaling criterion in CS1.

The mixing time for cell cultivations in the micro-matrix and the 5 L

bioreactor was roughly 6 s. The mixing time was determined in a pre-

experiment by iodine decolorization and additionally verified by the

Dual Indicator System for Mixing Time at the UCL (London, UK) for

260 rpm and 3500 ml working volume. In CS2, shaking diameter and

frequency were defined according to the manufacturer's protocols.

2.9 | Growth and metabolite analysis

2.9.1 | GS-CHO (CS1)

Cell counts were performed immediately after sampling using a

ViCELL XR (Beckman Coulter, UK). The remaining sample volume was

centrifuged at 16,100 × g for 5 min. The supernatant was analyzed for

nutrients, metabolites, and dissolved CO2 using a Bioprofile FLEX

(Nova Biomedical, USA). For both analyzes, samples were diluted with

1×PBS (Life Technologies, UK) where appropriate. The concentration

of IgG4 was determined by affinity chromatography using a 1 HiTrap

Protein G HP column (GE Healthcare, UK) in combination with an

Agilent 1200 (Agilent Technologies, UK) high-performance liquid

chromatograph (HPLC).

2.9.2 | CHO DP-12 (CS2)

Xt was determined with the Z2 particle counter (Z2, Beckman Coul-

ter, USA). For further analysis, the cell suspension was centrifuged at

300 × g for 3 min and the supernatant was frozen (−20�C). The cell

pellet was resuspended in 4�C 1×PBS. The viability of the cells was

determined with a DNA staining method (DAPI method). For this,

1 μg ml−1 DAPI was added to the cell suspension and measured with

a flow cytometer and the 405 nm laser and 450/50 nm (FITC-A) fil-

ter signal (CytoFlex, Beckman Coulter, USA). SSC-A versus FSC-A

and FSC-H versus FSC-A gating was used to exclude measured cell

debris and doublets from non-stained viable cells. Thirty thousand

events were recorded in total (CyteExpert Software, Beckman Coul-

ter, USA).

The concentration of cGlc, cGln, and cLac concentrations were

quantified with a bio-chemistry analyzer (YSI 2900D, Yellow Springs

Instruments, USA). cAmm was determined with an enzymatic test kit

(AK00091, nzytech, Portugal). The cAb was measured with bio-layer

interferometry (Octet RED, Pall ForteBio, cLac) with protein A biosen-

sors (Pall ForteBio). All metabolite and product concentrations were

measured according to the manufacturer's protocol.

3 | RESULTS AND DISCUSSION

The presented model-based workflow (see Figure 1) was introduced

to quantify, compare and potentially transfer the process dynamics

between MBR and larger-scale. In CS1, the GS-CHO culture was

modeled in the micro-matrix system (MM) and 5 L bioreactor (5 L BR),

model-parametric uncertainties were derived and statistically com-

pared. In CS2, model parametric uncertainties and differences in pro-

cess dynamics between 24-DWP and shake flask culture were

determined and compared first. Then, changes in the model parameter

distributions were mathematically converted and the bioprocess strat-

egy was transferred to shake flask scale.

3.1 | Model-based scale-up CS1

3.1.1 | Adaptation of model parametric
uncertainty (CS1)

As proposed in the model-based workflow (see Figure 1), model

parameters of the MM (Section 2.2.1) and 5 L BR (Section 2.2.2) were

initially adapted to experimental data by modeling process outcomes

and minimizing the RMSD value (Section 2.4). To compare the simula-

tion to the experimental data, individual mean model parameter values

were determined and both data sets were displayed in comparison to

the simulated data (see Figure 2). Due to missing cultivation data, cGln

was simulated but is not shown in Figure 2. The corresponding time-

dependent MM and 5 L BR plots can be seen in Figures S2 and S3. An

average goodness of fit R2 was determined for both data sets (see

Section 2.4, Eq. (2)). As can be seen in Figure 2, Xv, Xd, and Xt

(Figure 2a–c) were sufficiently simulated by the mean model parame-

ters with R2 of 0.87 (Xv), 0.67 (Xd), and 0.91 (Xt) for MM and 5 L BR.

Changes in cGlc (Figure 2d) due to sampling and feeding were

modeled with high accuracy (R2 = 0.96). The formation of lactate due

to glucose (Figure 2e) consumption was simulated with R2 = 0.62. At

the end of cultivation, the uptake of lactate was underpredicted (see

Figures S2 and S3). cAmm (Figure 2f) was modeled with R2 = -1.07. The

uptake and feeding of glutamate (Figure 2g) was simulated with high

accuracy (R2 = 0.91). At the end of the cultivation, slight deviations

between the experimental and simulated data occurred. The forma-

tion of antibody (Figure 2h) was well described by the model equa-

tions and the mean model parameters (R2 = 0.94). The concentration
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of the introduced unknown component cLs decreased over the cultiva-

tion time and reached zero at the end of the cultivation. Changes in

the culture volume due to sampling and feeding were calculated (not

shown, see Figures S2 and S3).

Overall, cell growth and metabolism of the GS-CHO cell line are

sufficiently described at different scales (4 and 3,750 ml, respectively)

and the process dynamics can be evaluated by the introduced mathe-

matical process model and the adapted mean model parameters under

uncertainty. However, a deeper understanding of the complex cell-

specific metabolism, for example, the glutamate and glutamine

uptake/formation is necessary as several biological effects are still

unknown or difficult to describe. Until now, GS-CHO cell growth and

metabolism was modeled in batch and fed-batch cultures by several

groups.46-48 Similar to Xu et al (2019), an unstructured kinetic model

rather than a more structured and comprehensive model considering

the light and heavy chain formations of the antibody product and

extra as well as intracellular fluxes of carbohydrates and amino acids

were used.48 Nevertheless, it can be concluded that this type of the

presented unstructured model was sufficient for the prediction of

growth and antibody formation.

3.1.2 | Statistical comparison of model parameter
distributions MM and 5 L BR (CS1)

To quantify potential differences in the process dynamics between

the MM and 5 L BR (as proposed in Figure 1 (4)), the differences in

the model parameter distributions resulting from individual model

parameter adaptations were initially analyzed by ANOVA (see

Figure 1 (3)). For this, 5 out of 17 model parameters were selected

based on sensitivity analysis (see Möller et al15). Due to the metabo-

lism of GS-CHO cells and the direct correlation of growth and

F IGURE 2 Comparison of simulated (Sim:) and experimental data (Exp:) of fed-batch cultivation performed in MM (o) and 5 L BR (•, CS1),
n = 1. The goodness of fit is described by R2 (see Section 2.4, Eq. (2))
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antibody formation with cGlc, sensitive glucose-related model parame-

ters were selected. First, differences in mean model parameters were

calculated and normalized to their starting values (e.g., μmax,norm, see

Table S4). Second, the significance value between the calculated dif-

ferences was determined (see Figure 1 (5)).

As can be seen in Figure 3, small deviations in the mean model

parameters between the model parameter distributions of the MM

and 5 L BR were quantified for cell metabolism-related model

parameters.

The relative mean model parameter values are summarized in

Table S5. Model parameter describing the cell growth μmax,norm and

the antibody formation rate qAb,max,norm did not change significantly.

This is confirmed by similar maximal Xv (12.9 × 106 and 13.4 × 106

cells ml−1 after 220 and 213 h, respectively) and cAb (0.77 and

0.86 g L−1 after 345 and 316 h, respectively) in both bioreactor sys-

tems. Significant differences were identified for glucose-related model

parameters. KGlc,norm was 56.8% lower, KS,Glc,norm 10.6% higher and

qGlc,max,norm 45.4% higher in the 5 L BR. Compared to the 5 L BR, the

total working volume was kept constant in the MM and feeding vol-

ume was adjusted accordingly to different sample volumes (see

Figure S2). The central metabolism of mammalian cell lines is complex

and flexible due to deregulation2 and adaption of the central metabo-

lism to changing extracellular substrate concentrations or heterogene-

ities in the bioreactor system35,49,50 which could led to changes in

KS,Glc,norm, KGlc,norm, and qGlc,max,norm mean in the MM and 5 L BR.

Overall, the model parameter distributions of the MM and 5 L BR

showed only marginally significant differences (see Figure 1 (6)) in the

glucose metabolism with obviously no influence on the bioprocess

dynamics. Furthermore, no differences were present for cell growth

and antibody formation. Therefore, under consideration of model

parametric uncertainties, it can be concluded that the growth and

product formation were the same in both bioreactor systems and that

the MM reflected the process dynamics of the 5 L BR (see Figure 1

(9)). Thus, no mathematical conversion and transfer of the process

dynamics (see Figure 1 (8)) was needed and the MM can be consid-

ered as a suitable scale-down device in terms of cell growth and prod-

uct formation.

3.2 | Model-based scale-up CS2

3.2.1 | Adaptation of model parametric
uncertainty DWP Feed A and SF Feed A (CS2)

According to the proposed model-based workflow (see Figure 1),

changes in the process dynamics due to different scales should be

quantified and evaluated for the 24-DWP (referred as DWP Feed A

and DWP Feed B) and shake flask culture with Feed A (referred as SF

Feed A) (see Figure 1 (1 and 2)). The simulated and experimental data

of DWP Feed B as well as time-dependent plots are shown in

Figures S1 and S4. As shown in Figure 4a–c, Xv, Xd, and Xt were suffi-

ciently simulated by the mean model parameter values with R2 = 0.72

(Xv), 0.40 (Xd), and 0.88 (Xt).

The consumption of glucose (Figure 4d) and glutamine (Figure 4e)

as well as changes in the concentrations due to feeding and sampling

of medium was modeled accurately and were comparable to Möller

et al.15 Deviations can be mainly attributed to the over-predicted cell

densities at the end of the cultivation. The progression of cLac

(Figure 4f) was predicted precisely until 72 h and then over-predicted

(R2 = -12.1). After 72 h, cLac increase declined and a constant cLac was

F IGURE 3 Boxplots of normalized
model parameters of fed-batch cultivation
MM and BR (CS1). The intrinsic
distribution of 1,000 independent model
parameter estimations is displayed per
box. All model parameters are normalized
to their individual starting value during

model parameter estimation (see
Tables S4 and S5). n.sig, not significant
(p ≥ 0.01); *, significant (p < 0.01); **,
highly significant (p < 0.001)
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observed. The experimental and simulated concentration profiles can

be seen in the time-dependent plots (see Figures S4 and S5). This

effect is part of a different research study focusing on the metabolic

regulation of the pyruvate dehydrogenase complex and its role during

the lactate switch.51 Until 120 h, cAmm (Figure 4g) was modeled well

but due to underpredicted cGln, cAmm was underpredicted as well

(R2 = 0.46). The course of cAb (Figure 4h) was modeled with good

accuracy and was associated with the progression of the viable cell

density (R2 = 0.77). Changes in the culture volume (Figure 4i) because

of sampling, feeding and evaporation of medium were calculated.

Overall, the growth and product formation as well as the dynam-

ics in the 24-DWP with the two different constituted Feeds A and B

(see Figure S1) and shake flask with Feed A were simulated and

reflected sufficiently by the introduced model and mean model

parameters at different scales (2 and 30 ml working volume, respec-

tively) and under experimental uncertainty. However, similar to CS1,

deeper insights into the complex metabolism under substrate

limitation and cellular regulations are necessary to further reduce

deviations.

3.2.2 | Statistical comparison of model parameter
distributions DWP Feed A and SF Feed A (CS2)

Similar to CS1 and suggested in the workflow (Figure 1), changes in

the process dynamics between the DWP and shake flask culture due

to different scales are analyzed by ANOVA (see Figure 1 (3)). Subse-

quently, the differences in the model parameter distributions resulting

from individual parameter estimations are quantified (see Figure 1 (4)).

The mean model parameter values are summarized in Table S5. As in

Section 3.1.2 the individual model parameter distributions of the sen-

sitive model parameters (see Möller et al15) are compared and tested

for significance (Figure 1 (5)). In contrast to CS1, glutamine-related

model parameters were considered as more relevant in CS2 due to the

F IGURE 4 Comparison of simulated (Sim:) and experimental data (Exp:) of 4 fed-batch cultivations performed in 24-DWP with Feed A (o) and
shake flask with Feed A (•, CS2). The goodness of fit is described by R2 (see Section 2.4, Eq. (2))
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metabolism of the CHO DP-12 cells. For the model parameter distribu-

tions of SF and DWP with Feed A, seven significantly different model

parameter distributions with varying mean model parameter value were

identified, as can be seen in Figure 5a.

As indicated by the location of the median and interquartile dis-

tance of the boxplots, all investigated model parameter distributions

changed for growth- and metabolism-related model parameters.

Highly significant differences (**) were identified for all sensitive

model parameters between SF Feed A and DWP Feed A. The growth-

related mean model parameter values of μmax,norm increased by 11.1%

and KS,Gln,norm decreased by 5.5% for DWP Feed A. Compared to SF

Feed A, KGln,norm decreased by 7.5% and KAmm,norm by 45.7% whereas

the model parameter values of qGln,max,norm (35.1%), qAb,max,norm

(13.3%), and YAmm/Gln,norm (22.3%) increased for DWP A. These differ-

ences can be directly related to higher Xv (27.3 × 106 cells ml−1 com-

pared to 14.9 × 106 cells ml−1 after 168 h for SF and DWP Feed A,

see Table 1) and changed metabolic profile (see Figures 4, S4 and S5).

Mora et al reported differences in growth and protein expression for

dhfr-deficient CHO cells in 24-DWP and conventional shake flask cul-

tures which can be mainly attributed to changes in the physical cul-

ture conditions.52 The decrease in qGln,max,norm for SF Feed A can be

related to different cGln profiles and thus changes in the process

dynamics which are reflected by the process model. Compared to

DWP Feed A, simulated and experimental cGln deviated more for SF

Feed A and the cGln reached 0 mmol L−1 after 144 h whereas a con-

centration of 1.3 mmol L−1 was measured after 264 h (see Figures S4

and S5). For SF Feed A higher KAmm,norm values were obtained due to

higher cAb (0.42 g L−1 compared to 0.21 g L−1 for DWP Feed A after

213 h, see Table S1) at the end of cultivation and the use of KAmm,norm

as boundary condition for antibody formation (see Table S3, Eq. (23)).

It can be concluded that between different bioreactor scales

physical process conditions and process dynamics changed for DWP

Feed A and SF Feed A (see Figure 1 (7)). These differences can be

reflected by significant changes in the model parameter distributions

of growth-associated as well as product formation-associated model

parameters. The histograms of the corresponding model parameter

distributions (see Figures S9 and S11) showed normal distribution and

reflected the parametric uncertainty based on the experimental varia-

tion. According to the proposed workflow, a mathematical conversion

of the determined differences (Figure 1 (8)) and transfer of the pro-

cess strategy (Figure 1 (9)) between the scales should be performed.

3.2.3 | Mathematical conversion of model
parameter distributions DWP Feed A and SF Feed
A (CS2)

The differences in means, standard deviations, and CV of the individ-

ual model parameter distributions between DWP Feed A and SF Feed

F IGURE 5 (a) Comparison of fed-batch cultivations DWP Feed A
and SF Feed A (CS2). (b) Comparison of fed-batch cultivations DWP
Feed A and DWP Feed B (CS2). Boxplots of normalized model
parameters. The intrinsic distribution of 1000 independent model
parameter estimations is displayed per box. All model parameters are
normalized to their individual starting value during model parameter
estimation (see Tables S4 and S5). n.sig, not significant (p ≥0 .01); *,
significant (p < 0.01); **, highly significant (p < 0.001)

TABLE 2 Mathematical conversion
mean model parameter distributions
DWP Feed A and SF Feed A (CS2)

Model parameter Mean DWP Feed A Mean SF Feed A Δ Unit

μmax 0.0409 0.0363 0.0045 (h−1)

KGln 1.0634 1.1432 0.0798 (mmol L−1)

KAmm 10.965 15.978 5.0132 (mmol L−1)

KS,Gln 0.0344 0.0363 0.0019 (mmol L−1)

qGln,max 4.36 × 10−11 2.83 ×10−11 1.53 ×10−11 (mmol (cell h)−1)

qAb,max 3.04 ×10−10 2.64 ×10−10 4.04 ×10−11 (mmol (cell h)−1)

YAmm/Gln 1.0479 0.8145 0.2334 (−)
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A were calculated as described in Section 2.7. Calculated mean values

of the sensitive model parameters are summarized in Table 2.

3.2.4 | Statistical comparison of model parameter
distributions DWP Feeds A and B (CS2)

As a consequence of differences between DWP Feed A and SF Feed

A (see Section 3.2.2) and thus process dynamics, differences due to

varying feed constitutions (Feeds A and B) should be investigated in

MBR-scale.

Significance between the mean model parameter values of DWP

Feeds A and B were identified for 5 out of 7 sensitive model parame-

ters (see part B Figure 5). An increase of 4.5% was determined for the

maximum cell specific growth rate μmax,norm for DWP Feed B, directly

influencing cell growth. These differences were confirmed by higher

final viable cell densities (Xv of 19.2 × 106 cells ml−1 after 192 h com-

pared to 13.1 × 106 cells ml−1 after 162 h for DWP Feeds A and B,

respectively). Model parameters influencing glutamine uptake

(KGln,norm and qGln,max,norm) changed significantly (**), which was con-

firmed by slightly different cGln profiles (see Figure S4). Besides, anti-

body formation rate qAb,max,norm (**, direct association of growth and

antibody formation, cAb of 0.17 and 0.30 g L−1 after 213 and 264 h

for DWP Feeds A and B, respectively, see Table 1, setup 1) increased

by 16.3% and YAmm/Gln,norm (**) decreased by 16.4% (**) for DWP

Feed B. KAmm,norm and KS,Gln,norm did not changed significantly (n.sig).

In summary, differences in the process dynamics of the growth and

metabolism were determined and evaluated between DWP Feed A

and SF Feed A as well as DWP Feeds A and B. Thus, changes in

dynamics due to varying feed constitution and bioreactor scales can

be reflected by the introduced process model and changed individual

model parameter distributions. The quantified differences in mean

and variance of the individual model parameter distributions (DWP

Feeds A and B) will be used to transfer the process dynamics of the

MBR system to a cultivation system in development scale (i.e., shake

flask) with unknown process outcomes as proposed in the workflow

(see Figure 1 (7–9)).

3.2.5 | Transfer of process dynamics (CS2)

Based on the differences in the process dynamics between 24-DWP-

and shake flask scale and varying feed constitution, the mathematical

conversion of the dynamics and the information transfer (see Figure 1

(8)) was performed to quantify an unknown cultivation system and

enable scale-up (see Figure 1 (9)). Therefore, differences in mean, CV

and standard deviation were calculated, that is, between DWP Feeds

A and B, and then transferred to the unknown system, that is, SF Feed

B (shake flask culture with Feed B). In Table 3, the change in the mean

value of μmax after the information transfer is exemplarily shown.

Significant (*) and highly significant differences (**) were identi-

fied for all model parameters except KAmm,norm and KS,Gln,norm. The

interquartile distance, location of the median and whisker length of

the boxplots varied (Figure S6).

Simulation of predicted cultivation (CS2) with the estimated mean

model parameter values, a shake flask fed-batch cultivation with initial

Feed B feeding after 48 h was simulated. The progression of the simu-

lated cell density and product concentration as well as the experimen-

tal data of the validation experiment (as described in Table S1) can be

seen in Figure 6.

The course of the Xv (Figure 6a) was simulated accurately by the

mathematically converted and transferred model parameters from

DWP- to shake flask scale (within uncertainty bands). cAb (Figure 6b)

TABLE 3 Information transfer for the prediction of μmax for an
unknown cultivation system (CS2)

Cultivation system Mean μmax (h
−1) (h−1) CV (−)

DWP Feed A 0.0409 0.0044 0.11

DWP Feed B 0.0427 0.0026 0.06

SF Feed A 0.0363 0.0031 0.086

SF Feed B 0.0382 0.0015 0.041

F IGURE 6 Simulated (−) and
experimental data (o) for SF Feed
B fed-batch cultivation and
validation experiment performed
in shake flask culture (30–50 ml,
CS2) and feeding after 48 h. The
dotted lines represent the 10%
and 90% quantiles based on the
model parameter distributions.
Average values were used (n = 4)
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was simulated qualitatively but over-predicted (outside the uncer-

tainty bands). The maximal Xv of 26.5 ± 0.5 × 106 cells ml−1 and cAb

of 0.26 ± 0.003 g L−1 was measured after 216 and 240 h, respec-

tively. Compared to DWP Feed A, DWP Feed B and SF Feed A (all

validation experiments) the Xv increased by 95%, 47% and 53%,

respectively. The maximum cAb (Figure 6b) increased by 82 and 75%

compared to DWP Feed A and SF Feed A validation experiments,

respectively, but was similar to the final concentration of the DWP

Feed B cultivation. The over-prediction of the product titer mainly

resulted from high antibody formation rates qAb and the direct relation

to the Xv. The antibody formation for CHO DP-12 cells was found to

be dependent on a variety of different effects, for example, sub-

population formation,53 cell-cycle-dependent metabolic regulations

(i.e., regulation of pyruvate dehydrogenase complex) and so far, not

well identified effects.23

4 | CONCLUSION

In this work, a model-based workflow for the scale-up of a process

strategy developed in MBR- to larger scale as well as evaluation and

comparison of the process dynamics was introduced. The dynamics are

described by mathematical process models and model parameters

determined under consideration of experimental variability. Based on

the model parameter probability distributions generated for different

bioreactor scales and media constitutions, differences in the dynamics

were quantified. The model-based workflow was discussed for two dif-

ferent case studies. On the one hand side, it was shown that process

dynamics of a GS-CHO cell line in a micro-matrix and commonly used

5 L bioreactor system are comparable based on the evaluated growth-

and product-related model parameter distributions. This confirmed the

main assumption of similar process conditions in the MM and 5 L

BR. On the other hand side, a 24-DWP and shake flask culture showed

significant differences in the model parameter distributions influencing

the bioprocess dynamics. According to the workflow, changes were

mathematically converted and model outcomes of an unknown cultiva-

tion at shake flask scale were simulated adequately. Thus, the proposed

workflow can be sufficiently used to scale-up process strategies from

small to larger scale for a more knowledge-driven decision making.

Beside the scale-up application, MBRs and the workflow are also appli-

cable for the evaluation of scale-down approaches. Additional studies

will focus on the automated conduction of manually performed parts of

the workflow and the coupling of computational fluid dynamics with

mathematical process models. The combination of this workflow with

advanced analytical tools may be beneficial to capture fast changes in

the process dynamics and identify so far unknown effects.24

NOTATION

ABBREVIATION

24-DWP 24-Deep-Well-Plate

Ab antibody

Amm ammonium

ANOVA analysis of variance

BR bioreactor

CHO Chinese hamster ovary

CS case study

CV coefficient of variation

DAPI 40 ,6-diamidino-2-phenylindole

Feed A/B feed medium A/B

FITC-A fluorescein isothiocyanate filter in flow

cytometry

FSC forward scatter

Glc glucose

Gln glutamine

Glt glutamate

GS-CHO glutamine synthetase Chinese hamster ovary

Lac lactate

LHS Latin-Hypercube sampling

MBR miniaturized bioreactor

MM micro-matrix

PBS phosphate-buffered saline

QbD Quality by Design

RMSD root mean square deviation

SF shake flask

STR stirred tank reactor

NOMENCLATURE

p significance level (−)

ci concentration of the component i (mmol L−1)

ci,0 initial concentration fed-batch (mmol L−1)

Fi concentration of component i in feed

(mmol L−1)

FStart time, start of feed (h)

FEnd time, end of feed (h)

Fpoints number of feed points (−)

FV feed volume (ml h−1)

kd cell-specific death rate (h−1)

Ki kinetic constant (mmol L−1)

kLys cell-specific lyse rate (h−1)

KS,i Monod constant (mmol L−1)

kw weighting factor (−)

i cell-specific growth rate (h−1)

n number of data points (−)

p significance factor (−)

qi substrate-specific uptake and formation rate

(mmol (cell h)−1)

R2 coefficient of determination (−)

rpm rounds per minute (min−1)

σ standard deviation (h−1)

t time (h)

Vi reactor volume (ml)

Xd death cell density (cells L−1)
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Xt total cell density (cells L−1)

Xv viable cell density (cells L−1)

Yi,j yield coefficient (−)

yi experimental value (−)
�yi Mean experimental value (−)

ys simulated value (−)

vvm volumetric aeration rate (min−1)

ACKNOWLEDGMENT

We thank Tanja Hernández Rodríguez (Ostwestfalen-Lippe University

of Applied Sciences and Arts, Biotechnology and Bioprocess Engineer-

ing) for feedback on statistical tools. Open Access funding enabled

and organized by ProjektDEAL.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

AUTHOR CONTRIBUTION

All authors contributed to the paper. All authors have read and agreed

to the published version of the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

ORCID

Ralf Pörtner https://orcid.org/0000-0003-1163-9718

Johannes Möller https://orcid.org/0000-0001-9546-055X

REFERENCES

1. Betts JPJ, Warr SRC, Finka GB, et al. Impact of aeration strategies on

fed-batch cell culture kinetics in a single-use 24-well miniature biore-

actor. Biochem Eng J. 2014;82:105-116.

2. Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P. Cell and Tissue Reac-

tion Engineering. Berlin Germany: Springer Science; 2008.

3. Möller J, Kuchemüller KB, Steinmetz T, Koopmann KS, Pörtner R. Model-

assisted design of experiments as a concept for knowledge-based

bioprocess development. Bioprocess Biosyst Eng. 2019;42:867-882.

4. Betts JI, Doig SD, Baganz F. Characterization and application of a min-

iature 10 mL stirred-tank bioreactor, showing scale-down equivalence

with a conventional 7 L reactor. Biotechnol Prog. 2006;22:681-688.

5. Chaturvedi K, Sun SY, OBrien T, Liu YJ, Brooks JW. Comparison of

the behavior of CHO cells during cultivation in 24-square deep well

microplates and conventional shake flask systems. Biotechnol Reports.

2014;1-2:22-26.

6. Gernaey KV, Baganz F, Franco-Lara E, et al. Monitoring and control of

microbioreactors: an expert opinion on development needs. Bio-

technol J. 2012;7:1308-1314.

7. Lye GJ, Ayazi-Shamlou P, Baganz F, Dalby PA, Woodley JM. Acceler-

ated design of bioconversion processes using automated microscale

processing techniques. Trends Biotechnol. 2003;21:29-37.

8. Micheletti M, Barrett T, Doig SD, et al. Fluid mixing in shaken bio-

reactors: implications for scale-up predictions from microlitre-scale

microbial and mammalian cell cultures. Chem Eng Sci. 2006;61:

2939-2949.

9. Rouiller Y, Perilleux A, Collet N, Jordan M, Stettler M, Broly H. A high-

throughput media design approach for high performance mammalian

fed-batch cultures. MAbs. Vol 5. New York, United States: Taylor &

Francis; 2013:501-511.

10. Wiegmann V, Giaka M, Martinez CB, Baganz F. Towards the develop-

ment of automated fed-batch cell culture processes at microscale.

Biotechniques. 2019;67:238-241.

11. Barrett TA, Wu A, Zhang H, Levy MS, Lye GJ. Microwell engineering

characterization for mammalian cell culture process development.

Biotechnol Bioeng. 2010;105:260-275.

12. Girard P, Meissner P, Jordan M, Tsao M, Wurm FM. Small scale biore-

actor system for process development and optimization. Animal Cell

Technology: Products from Cells, Cells as Products. Dordrecht, The

Netherlands: Springer; 1999:323-327.

13. Silk NJ, Denby S, Lewis G, et al. Fed-batch operation of an industrial

cell culture process in shaken microwells. Biotechnol Lett. 2010;32:

73-78.

14. Wolf MKF, Lorenz V, Karst DJ, Souquet J, Broly H, Morbidelli M.

Development of a shake tube-based scale-down model for perfusion

cultures. Biotechnol Bioeng. 2018;115:2703-2713.

15. Möller J, Hernandez Rodriguez T, Müller J, et al. Model uncertainty-

based evaluation of process strategies during scale-up of biopharma-

ceutical processes. Comput Chem Eng. 2020;134:106693.

16. Neubauer P, Cruz N, Glauche F, Junne S, Knepper A, Raven M. Con-

sistent development of bioprocesses from microliter cultures to the

industrial scale. Eng Life Sci. 2013;13:224-238.

17. Delvigne F, Takors R, Mudde R, Gulik W, Noorman H. Bioprocess

scale-up/down as integrative enabling technology: from fluid

mechanics to systems biology and beyond. J Microbial Biotechnol.

2017;10:1267-1274.

18. Ferreira AP, Tobyn M. Multivariate analysis in the pharmaceutical

industry: enabling process understanding and improvement in the

PAT and QbD era. Pharm Dev Technol. 2015;20:513-527.

19. Patil AS, Pethe AM. Quality by design (QbD): a new concept for

development of quality pharmaceuticals. Int J Pharmaceut Qual Assur.

2013;7:13-19.

20. Rathore AS. Roadmap for implementation of quality by design (QbD)

for biotechnology products. Trends Biotechnol. 2009;27:546-553.

21. Sin G, Gernaey KV, Lantz AE. Good modeling practice for PAT appli-

cations: propagation of input uncertainty and sensitivity analysis. Bio-

technol Prog. 2009;25:1043-1053.

22. Kroll P, Hofer A, Ulonska S, Kager J, Herwig C. Model-based methods in

the biopharmaceutical process lifecycle. Pharm Res. 2017;34:2596-2613.

23. Möller J, Korte K, Pörtner R, Zeng AP, Jandt U. Model-based identifi-

cation of cell-cycle-dependent metabolism and putative autocrine

effects in antibody producing CHO cell culture. Biotechnol Bioeng.

2018;115:2996-3008.

24. Möller J, Bhat K, Riecken K, Pörtner R, Zeng AP, Jandt U. Process-

induced cell cycle oscillations in CHO cultures: online monitoring and

model-based investigation. Biotechnol Bioeng. 2019;116:2931-2943.

25. Narayanan H, Luna MF, Stosch M, et al. Bioprocessing in the digital

age: the role of process models. Biotechnol J. 2020;15:1900172.

26. Hernandez Rodriguez T, Posch C, Schmutzhard J, et al. Predicting

industrial scale cell culture seed trains - a Bayesian framework for

model fitting and parameter estimation, dealing with uncertainty in

measurements and model parameters, applied to a nonlinear kinetic

cell culture model, using a MCMC method. Biotechnol Bioeng. 2019;

116:2944-2959.

27. Anane E, Garc a AC, Haby B, et al. A model-based framework for par-

allel scale-down fed-batch cultivations in mini-bioreactors for acceler-

ated phenotyping. Biotechnol Bioeng. 2019;116:2906-2918.

28. Zahel T, Hauer S, Mueller EM, et al. Integrated process modeling: a

process validation life cycle companion. Bioengineering. 2017;4:86.

29. Duetz WA, Witholt B. Oxygen transfer by orbital shaking of square

vessels and deepwell microtiter plates of various dimensions. Biochem

Eng J. 2004;17:181-185.

ARNDT ET AL. 13 of 14

https://orcid.org/0000-0003-1163-9718
https://orcid.org/0000-0003-1163-9718
https://orcid.org/0000-0001-9546-055X
https://orcid.org/0000-0001-9546-055X


30. Kuchemüller KB, Pörtner R, Möller J. Efficient Optimization of Pro-

cess Strategies with Model-Assisted Design of Experiments.235–249.
New York, NY: Springer US 2020.

31. Glassey J. Hybrid modeling of pharmaceutical processes and process

analytical technologies. Hybrid Modeling in Process Industries. New

York, United States: CRC Press; 2018:191-212.

32. Xu P. Analytical solution for a hybrid logistic-Monod cell growth

model in batch and continuous stirred tank reactor culture. Biotechnol

Bioeng. 2020;117:873-878.

33. Kuchemüller KB, Pörtner R, Möller J. Digital twins and their role in

model-assisted design of experiments. Anal Bioanal Chem. 2020:

1-33.

34. Frahm B, Lane P, Märkl H, Pörtner R. Improvement of a mammalian

cell culture process by adaptive, model-based dialysis fed-batch culti-

vation and suppression of apoptosis. Bioprocess Biosyst Eng. 2003;26:

1-10.

35. Ozturk S, Hu WS. Cell Culture Technology for Pharmaceutical and Cell-

Based Therapies. New York, United States: CRC Press; 2005.

36. Frahm B, Lane P, Atzert H, et al. Adaptive, model-based control by

the open-loop-feedback-optimal (OLFO) controller for the effective

fed-batch cultivation of hybridoma cells. Biotechnol Prog. 2002;18:

1095-1103.

37. Wechselberger P, Sagmeister P, Herwig C. Model-based analysis on

the extractability of information from data in dynamic fed-batch

experiments. Biotechnol Prog. 2013;29:285-296.

38. Nelder JA. Mead R. a simplex method for function minimization. Com-

put J. 1965;7:308-313.

39. Moser A, Kuchemüller KB, Sahar D, et al. Model-assisted DoE soft-

ware: optimization of growth and biocatalysis in Saccharomyces

cerevisiae bioprocesses. Bioprocess Biosyst Eng. 2020.

40. Barz T, Korkel S, Wozny G, Lopez Cardenas DC. Nonlinear ill-posed

problem analysis in model-based parameter estimation and experi-

mental design. Comput Chem Eng. 2015;77:24-42.

41. Barz T, Sommer A, Wilms T, Neubauer P, Bournazou MNC. Adaptive

optimal operation of a parallel robotic liquid handling station. IFAC-

PapersOnLine. 2018;51:765-770.

42. Cruz Bournazou MN, Barz T, Nickel DB, et al. Online optimal experi-

mental re-design in robotic parallel fed-batch cultivation facilities. Bio-

technol Bioeng. 2017;114:610-619.

43. Abt V, Barz T, Cruz-Bournazou MN, et al. Model-based tools for opti-

mal experiments in bioprocess engineering. Curr Opin Chem Eng.

2018;22:244-252.

44. Cameron AC, Windmeijer FAG. An R-squared measure of goodness

of fit for some common nonlinear regression models. J Econometr.

1997;77:329-342.

45. Langford E. Quartiles in elementary statistics. J Statist Educ. 2006;14.

46. McLeod J, O'Callaghan PM, Pybus LP, et al. An empirical modeling

platform to evaluate the relative control discrete CHO cell synthetic

processes exert over recombinant monoclonal antibody production

process titer. Biotechnol Bioeng. 2011;108:2193-2204.

47. Niu H, Amribt Z, Fickers P, Tan W, Bogaerts P. Metabolic pathway

analysis and reduction for mammalian cell cultures: towards macro-

scopic modeling. Chem Eng Sci. 2013;102:461-473.

48. Xu J, Tang P, Yongky A, et al. Systematic development of temperature

shift strategies for Chinese hamster ovary cells based on short duration

cultures and kinetic modeling.MAbs. 2019;11:191-204.30230966.

49. Lara AR, Galindo E, Ramirez OT, Palomares LA. Living with heteroge-

neities in bioreactors. Mol Biotechnol. 2006;34:355-381.

50. Wang G, Tang W, Xia J, Chu J, Noorman H, Gulik WM. Integration of

microbial kinetics and fluid dynamics toward model-driven scale-up

of industrial bioprocesses. Eng Life Sci. 2015;15:20-29.

51. Möller J, Bhat K, Guhl L, Pörtner R, Jandt U, Zeng AP. Regulation of

pyruvate dehydrogenase complex related to lactate switch in CHO

cells. Eng Life Sci. 2020.

52. Mora A, Zhang S, Carson G, Nabiswa B, Hossler P, Yoon S. Sustaining

an efficient and effective CHO cell line development platform by

incorporation of 24-deep well plate screening and multivariate analy-

sis. Biotechnol Prog. 2018;34:175-186.

53. Möller J, Rosenberg M, Riecken K, Pörtner R, Zeng AP, Jandt U.

Quantification of the dynamics of population heterogeneities in CHO

cultures with stably integrated fluorescent markers. Anal Bioanal

Chem. 2020;412:2065-2080.

54. Hernández Rodríguez T, Posch C, Pörtner R, Frahm B. Dynamic

parameter estimation and prediction over consecutive scales, based

on moving horizon estimation: applied to an industrial cell culture

seed train. Bioprocess and Biosystems Engineering. 2020. http://dx.doi.

org/10.1007/s00449-020-02488-1.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Arndt L, Wiegmann V,

Kuchemüller KB, Baganz F, Pörtner R, Möller J. Model-based

workflow for scale-up of process strategies developed in

miniaturized bioreactor systems. Biotechnol Progress. 2021;

e3122. https://doi.org/10.1002/btpr.3122

14 of 14 ARNDT ET AL.

http://dx.doi.org/10.1007/s00449-020-02488-1
http://dx.doi.org/10.1007/s00449-020-02488-1
https://doi.org/10.1002/btpr.3122

	Model-based workflow for scale-up of process strategies developed in miniaturized bioreactor systems
	1  INTRODUCTION
	1.1  Uncertainty-based workflow

	2  MATERIALS AND METHODS
	2.1  Cell line and preculture
	2.1.1  Antibody-producing GS-CHO (CS1)
	2.1.2  Antibody-producing CHO DP-12 (CS2)

	2.2  Fed-batch cultivations
	2.2.1  Fed-batch cultivation in micro-matrix (CS1)
	2.2.2  Fed-batch validation in 5L scale (CS1)
	2.2.3  Fed-batch cultivation in 24-DWP (CS2)
	2.2.4  Fed-batch cultivation in shake flasks (CS2)

	2.3  Mathematical process model
	2.3.1  Mathematical process model CS1 (GS-CHO)
	2.3.2  Mathematical process model CS2 (CHO DP-12)

	2.4  Quantification of model-parametric uncertainty
	2.5  Statistical comparison of probability distributions
	2.6  Monte Carlo-based uncertainty bands
	2.7  Transfer of process dynamics
	2.8  Engineering parameters during scale-up
	2.9  Growth and metabolite analysis
	2.9.1  GS-CHO (CS1)
	2.9.2  CHO DP-12 (CS2)


	3  RESULTS AND DISCUSSION
	3.1  Model-based scale-up CS1
	3.1.1  Adaptation of model parametric uncertainty (CS1)
	3.1.2  Statistical comparison of model parameter distributions MM and 5L BR (CS1)

	3.2  Model-based scale-up CS2
	3.2.1  Adaptation of model parametric uncertainty DWP Feed A and SF Feed A (CS2)
	3.2.2  Statistical comparison of model parameter distributions DWP Feed A and SF Feed A (CS2)
	3.2.3  Mathematical conversion of model parameter distributions DWP Feed A and SF Feed A (CS2)
	3.2.4  Statistical comparison of model parameter distributions DWP Feeds A and B (CS2)
	3.2.5  Transfer of process dynamics (CS2)


	4  CONCLUSION
	ACKNOWLEDGMENT
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTION
	  DATA AVAILABILITY STATEMENT

	REFERENCES


