
Learning Neural Point Processes with Latent Graphs
Qiang Zhang

University College London
London, United Kingdom
qiang.zhang.16@ucl.ac.uk

Aldo Lipani
University College London
London, United Kingdom
aldo.lipani@ucl.ac.uk

Emine Yilmaz
University College London & Amazon

London, United Kingdom
emine.yilmaz@ucl.ac.uk

ABSTRACT
Neural point processes (NPPs) employ neural networks to capture
complicated dynamics of asynchronous event sequences. Existing
NPPs feed all history events into neural networks, assuming that
all event types contribute to the prediction of the target type. How-
ever, this assumption can be problematic because in reality some
event types do not contribute to the predictions of another type.
To correct this defect, we learn to omit those types of events that
do not contribute to the prediction of one target type during the
formulation of NPPs. Towards this end, we simultaneously consider
the tasks of (1) finding event types that contribute to predictions
of the target types and (2) learning a NPP model from event se-
quences. For the former, we formulate a latent graph, with event
types being vertices and non-zero contributing relationships being
directed edges; then we propose a probabilistic graph generator,
from which we sample a latent graph. For the latter, the sampled
graph can be readily used as a plug-in to modify an existing NPP
model. Because these two tasks are nested, we propose to optimize
the model parameters through bilevel programming, and develop
an efficient solution based on truncated gradient back-propagation.
Experimental results on both synthetic and real-world datasets
show the improved performance against state-of-the-art baselines.
This work removes disturbance of non-contributing event types
with the aid of a validation procedure, similar to the practice to
mitigate overfitting used when training machine learning models.
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1 INTRODUCTION
Many types of events occur asynchronously in the world. There
is a proliferation of research interest in capturing their temporal
dynamics so as to predict which type of events will happen next
and when. A de facto mathematical tool to model such events is
temporal point process [10, 13]. This finds applications in many
domains such as financial analysis [3], social networks [20] and
clinical visiting [49]. Here, these applications are characterized by
the presence of (a) more than one event type, and (b) events that
can mutually influence themselves, i.e., the occurrence of one type
of event at a certain time can cause or prevent the occurrence of
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future events of the same or another type. Discovering correla-
tion and dependency of events is important in the prediction and
explainability of future asynchronous events.

Various neural network-based studies have explored the complex
impact of historical events on the occurrence of future ones [16, 39,
42, 46, 54]. These works feed historical events into a neural network
to compute either a conditional intensity, a cumulative intensity or
a conditional probability. One major issue is that these neural point
processes (NPPs), when predicting the occurrence of an event type,
use all types of historical events before any given moment, failing
to consider some event types do not actually contribute to predict-
ing that event type. This failure hurts NPP as non-contributing
types can be disturbance. Therefore, it is important to remove such
disturbance from the formulation of NPPs.

To address the aforementioned issue, we learn to omit non-
contributing event types to remove their disturbance on TPPs when
predicting the target types. Specifically, we consider the following
two tasks: (1) finding the set of event types that contribute to the
prediction of one target type, and (2) learning NPP from event se-
quences. Since the contributing relationship is pairwise and not
mutually exchangeable, we formulate a latent graph, with event
types as vertices and binary contributing values as directed edges.
We develop a probabilistic graph generator based on the Random
Graph theory. To learn NPP, we use the generated graph to modify
a NPP model by masking off certain events whose types do no
contribute to the target type. Because these two tasks are nested,
we formulate them as a bilevel programming problem and develop
an efficient solution based on truncated gradient back-propagation.
The bilevel programming with the aid of the training-validation
procedure aims to minimize the overall generalization error. The
contributions of this paper are:

• We learn to omit non-contributing event types for the pre-
diction of the target types during learning NPPs. The con-
tributing relationships among event types constitute a latent
graph; to sample a graph, we develop a probabilistic graph
generator based on Random Graph. The generated graph
modifies the formulation of NPP.
• We formulate the two tasks, i.e., learning NPP and finding
the set of contributing event types, as a bilevel programming
problem. An efficient solution is also provided to optimize
the model parameters.
• We conduct systematic experiments on both synthetic and
real-world datasets to show the superiority of our model
against state-of-the-art baselines.

The reminder of the paper goes as follows: § 2 introduces the used
notations; § 3 presents preliminary concepts about temporal point
process, and introduces Random Graph and bilevel programming
that help formulate our idea; § 4 details how to formulate a NPP and
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employ the bilevel programming solution; § 5 describes the used
datasets and experimental setup; § 6 is devoted to experimental
results; § 7 summarizes related works and § 8 concludes the paper.

2 NOTATION
In this section we introduce the notation used throughout the paper.

Symbol Description
U a set of event types.
S an event sequence.
𝑡 the time of an event.
𝑢, 𝑣 the type of an event.
𝑖, 𝑗 the order number of an event in a sequence.
𝑁𝑢 (𝑡) the counting process for the events of type 𝑢.
H𝑡 the set of events that happened before time 𝑡 .
𝜆∗ (𝑡) the conditional intensity function.
𝑝∗ (𝑡) the conditional probability density function.
𝐹 ∗ (𝑡) the cumulative distribution function.

3 PRELIMINARIES
3.1 Temporal Point Processes
A temporal point process [13, 14] is a stochastic process that models
a sequence of events in a continuous time domain. It can be equiva-
lently represented as a counting process 𝑁 (𝑡), which records the
number of events that have happened before time 𝑡 . A multivariate
point process describes the temporal evolution of multiple event
types U. Let S = {(𝑣𝑖 , 𝑡𝑖 )}𝐿𝑖=1 be an event sequence, where the
tuple (𝑣𝑖 , 𝑡𝑖 ) is the 𝑖-th event, 𝑣𝑖 ∈ U and 𝑡𝑖 ∈ R are its event type
and timestamp respectively. LetH𝑡 := {(𝑣 ′, 𝑡 ′) |𝑡 ′ < 𝑡, 𝑣 ′ ∈ U} be
a sequence of historical events that occurred prior to 𝑡 .

Hawkes Processes. The history-dependent assumption of point
processes translates into an intensity function 𝜆∗ (𝑡) defined as:

𝜆∗ (𝑡) = 𝜇 +
∑

(𝑣′,𝑡 ′) ∈H𝑡

𝜙 (𝑡 − 𝑡 ′), (1)

where 𝜇 ≥ 0 indicates the base intensity independent of the history,
while 𝜙 (𝑡) > 0 is a triggering kernel measuring the event peer
influence. To emphasize the influence between various types of
events, we rewrite 𝜙 (𝑡) as 𝜙𝑢,𝑣 (𝑡) , which means a type-𝑣 history
event increases the intensity of a subsequent type-𝑢 event [19]. In
this example, the occurrence of a past type-𝑣 event increases the
intensity function 𝜙𝑢,𝑣 (𝑡 − 𝑡 ′) for 0 < 𝑡 ′ < 𝑡 . One of our tasks is to
learn 𝜆∗ (𝑡) of NPP from event sequences. Based on the intensity
function, it is straightforward to derive the probability density
function 𝑝∗ (𝑡) and the cumulative distribution function 𝐹 ∗ (𝑡) [43].

𝑝∗ (𝑡) = 𝜆∗ (𝑡) exp
(
−

∫ 𝑡

𝑡𝑖−1
𝜆∗ (𝜏)d𝜏

)
, (2)

𝐹 ∗ (𝑡) = 1 − exp
(
−

∫ 𝑡

𝑡𝑖−1
𝜆∗ (𝜏)d𝜏

)
. (3)

Optimization. The parameters of point processes can be learnt
by Maximum Likelihood Estimation (MLE). Other advanced and
more complex adversarial learning [51] and reinforcement learn-
ing [31] methods have been proposed, however we use MLE for its
simplicity. To apply MLE, a loss function is derived based on the

negative log-likelihood. The log-likelihood of S is defined as:

L = log

[
𝐿∏
𝑖=1

𝑝 (𝑡𝑖 )𝑝 (𝑢 = 𝑣𝑖 |𝑡𝑖 )
]

= log

[
𝐿∏
𝑖=1

𝜆(𝑡𝑖 ) exp
(
−

∫ 𝑡𝑖

𝑡𝑖−1
𝜆(𝜏)d𝜏

)
𝜆𝑣𝑖 (𝑡𝑖 )
𝜆(𝑡𝑖 )

]
=

𝐿∑
𝑖=1

log 𝜆𝑣𝑖 (𝑡𝑖 ) −
∫ 𝑇

0
𝜆(𝜏)𝑑𝜏 (4)

3.2 Random Graph
Random Graph (RG) is an elegant mathematical tool to work with
probability distributions over graphs [8]. It plays a role at the in-
tersection of probability theory and graph theory. By applying
probability distribution and random processes, RG aims to study
when certain properties of typical graphs are likely to arise [7]. The
general idea is to, given a set of isolated vertices, successively and
randomly add edges between these vertices. RG has been found
helpful to construct complex networks [33, 34].

The Erdös–Rényi (ER) Model. A variety of RG models have
been proposed to generate distributions over graphs. One of the
most commonly studied is the Erdös–Rényi (ER) model [18], which
assumes all graphs have the same probability to occur given a
fixed set of vertices and number of edges. Most closely, Gilbert [25]
propose𝐺 (𝑛, 𝑝), assuming that each edge between any pairs of the
𝑛 vertices exists independently with a fixed probability 0 < 𝑝 < 1.
With 𝐺 (𝑛, 𝑝), a graph is constructed by randomly connecting pairs
of vertices. The probability of one particular graph with𝑚 edges
is 𝑝𝑚 (1 − 𝑝)𝑁−𝑚 , where 𝑁 =

(𝑛
2

)
. Equivalently, each edge is an

independent Bernoulli random variable with the same probability.

3.3 Bilevel Programming
Bilevel programming specifies an optimization problem of two tasks
with a hierarchical relationship. More specifically, variables of one
task are nested to an optimal solution to the other task. The general
formulation of a bilevel programming problem consists of two parts:

min
𝜃 ∈Θ,𝜓

𝐹 (𝜃,𝜓 ) (5a)

s.t. 𝜓 ∈ arg min
𝜓 ′∈Ψ

𝑓 (𝜃,𝜓 ′) (5b)

where the functions 𝐹 : R𝑛1 ×R𝑛2 → R and 𝑓 : R𝑛1 ×R𝑛2 → R are
the upper-level and lower-level task objectives. Similarly, 𝜃 ∈ Θ ⊂
R𝑛1 is the upper-level variable and𝜓 ∈ Ψ ⊂ R𝑛2 is the lower-level
variable. More details can be found in reference [12].

Bilevel programming has been studied in numerous areas. His-
torically, it is closely related to the game theory [47] in economics
Recently, bilevel programming has contributed to various ML tasks
including model selection [5], multi-task learning [21] and adver-
sarial training [40], and hyper-parameter tuning [22].

4 METHOD
To emphasize the effects between types 𝑢 and 𝑣 , we factorize the
kernel 𝜙𝑢,𝑣 (𝑡) as

𝜙𝑢,𝑣 (𝑡) = G𝑢,𝑣 · 𝜅 (𝑡). (6)
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Jones, 2007]. It can be equivalently represented as a counting process, N(t), which records the55

number of events until time t. A multivariate point process describes temporal evolution of multiple56

event types U = {1, . . . , U}. Let S = {(ui, ti)}L
i=1 is an event sequence where the tuple of57

(ui, ti) is the i-th event of the sequence S. Here, ui 2 U is the event type and ti is the timestamp58

of the i-th event. One typical way to characterize point processes is via the intensity function59

�⇤(t) = �(t|H(t)), where H(t) denotes a set of historical events before time t. The history can be60

specified as H(t) := {(ui, ti) |ti < t, ui 2 U}. Given the history H(t), the intensity function of a61

type-u event is defined as the conditional probability that the type-u event has not happened before t62

and will happen during [t, t + dt),63

�u(t)dt := E[dNu(t)|H(t)], (1)

where dt is a sufficiently short time interval, Nu(t) is the counting process of the type-u and64

dNu(t) =
P

(ui,ti)2H(t) � (t � ti) dt is the differential of the counting process.65

Hawkes process An Hawkes process [Hawkes, 1971] is a temporal point process with history-66

dependent intensity in the form of67

�u(t) = µu +
X

(ui,ti)2H(t)

�(t � ti) (2)

where µu � 0 is an exogenous intensity independent of the history, �(t) reflects endogenous intensity68

dependent on the history. Besides, �(t) is supposed to be positive, integral and contain the underlying69

causal structure. To reflect causality, �(t) can be specified as �u,v(t) that captures the impact of a70
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Table 1:

⌅ N ⌥ •
⌅ 1 0 1 0
N 0 1 0 0
⌥ 0 1 1 0
• 1 0 1 1

Table 2:

⌅ N ⌥ •
⌅ 1 0 0 1
N 0 1 1 0
⌥ 1 0 1 0
• 0 1 0 1
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and will happen during [t, t + dt),63

�u(t)dt := E[dNu(t)|H(t)], (1)

where dt is a sufficiently short time interval, Nu(t) is the counting process of the type-u and64

dNu(t) =
P

(ui,ti)2H(t) � (t � ti) dt is the differential of the counting process.65

Hawkes process An Hawkes process [Hawkes, 1971] is a temporal point process with history-66

dependent intensity in the form of67
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(a) Event Sequences

Figure 1: The schematic representation of learning neural point process from observed event sequences.

The first factor G𝑢,𝑣 ∈ {0, 1} indicates whether type-𝑣 events
contribute to predicting type-𝑢 events; a matrix G = [G𝑢,𝑣] ∈
{0, 1} |U |×|U |] . The second factor is a kick function 𝜅 (𝑡) that char-
acterizes the time-decaying influence of one historical type-𝑣 event
on the occurrence of one future type-𝑢 event.

We find a G revealing non-contributing types while simultane-
ously learning 𝜅 (𝑡) from event sequences. Towards this end, we
propose a probabilistic way to generate the matrix G. As the prob-
abilistic generator is nested with the kick function, we formulate
this procedure as bilevel programming: the upper-level task is to
generate the graph G while the lower-level task is to learn the kick
function for the prediction of sequential data. Fig. 1 is a schematic
illustration of the proposed model. The graph generator takes event
sequences as input to calculate the graph distribution, from which
we sample a latent graph and use it to modify a NPP model. The loss
minimization of NPP via bilevel programming forces to discover
the optimal graph G for event prediction.

4.1 Probabilistic Graph Generator
This section presents a Probabilistic Graph Generator (PGG) that
uncovers the latent graph from observed event sequences. We use
G = (U, E) to denote a graph (matrix), whereU is the set of nodes
and E = {G𝑢,𝑣 |G𝑢,𝑣 = 1} is the set of edges. For sake of consistency,
we use G to represent the graph. Generating the graph G involves
discrete variables, which hinders continuous gradient-based opti-
mization. An alternative is to parameterize a probability distribution
over graphs. Therefore we propose a probabilistic graph generator
(PGG). We first develop a analytical basis of the distributions of
graph structures based on Random Graph, then describes how to
sample from the graph distribution.

Since the graph is latent, we reconstruct edges based on Ran-
dom Graph. One of the most commonly studied RG models is the
Erdös–Rényi model, which assumes that each edge is generated
independently with a same probability [25]. While for the graph,
we assume the existence of an edge is merely decided by the pair of
involved event types, with different probabilities. Based on this as-
sumption, we consider G𝑢,𝑣 to be conditionally independent given
the vertices 𝑢 and 𝑣 . In the regime of Bayesian models, this is equiv-
alent to assuming the same prior on all possible structures.

Because a contributing relationship is assumed to be determined
only by event types, we employ type embeddings to compute the
probability of the existence of directed edges. We use an embedding

matrix 𝐸 to obtain dense type embeddings from the one-hot form,
𝒕𝒑𝑢 = 𝐸 ∗ one_hot (𝑢) where one_hot (𝑢) is the one-hot form
representation of the type 𝑢, 𝒕𝒑 ∈ R |U |∗𝑑 is the dense type em-
bedding and 𝑑 is the dimension of type embeddings. For the event
type 𝑢 and 𝑣 , we compute type embeddings 𝒕𝒑𝑢 and 𝒕𝒑𝑣 with an
embedding matrix 𝐸. Hence the probability that type-𝑣 contributes
to predicting the type-𝑢 is computed as:

𝜃𝑢,𝑣 = 𝜌𝑒
−∥𝒕𝒑𝑢∗𝑊G∗𝒕𝒑T

𝑣 ∥ . (7)

Here,𝑊G ∈ R𝑑∗𝑑 denotes a matrix of trainable parameters, which
breaks the equality between 𝜃𝑢,𝑣 and 𝜃𝑣,𝑢 ; 𝜌 is a hyper-parameter
that controls the graph sparsity. A more complicated model such as
neural networks could be tried but we empirically find Equation 7
works well possibly because of the smaller number of parameters.
Then, we use a Bernoulli distribution to indicate type-𝑣 contributes
to predicting type-𝑢

G𝑢,𝑣 ∼ Ber(𝜃𝑢,𝑣) . (8)

By modeling all possible edges as a set of mutually independent
Bernoulli random variables with parameter matrix 𝜃 we can sample
a graph as G ∼ Ber(𝜃 ). One problem with the sampling of Bernoulli
distribution is the inability to gradient-based end-to-end training.
To solve this problem, we apply the Gumbel-Max trick that pro-
vides a simple and efficient way to draw samples from a Bernoulli
distribution [37].

Suppose the graph space is denoted asG = {G}. The the number
of edges increase quadratically with the number of nodes |U|, and
the graph space G expands as 2 |U |×|U | . We analyze our model
owns an advantage of good linear scalability compared to coun-
terparts that search the whole exponentially large set of graph
structures with differentiable optimization, such as reinforcement
learning [56]. This can be explained by facts: (1) the graph gener-
ator calculates the existence of an edge merely based on the two
involved nodes; and (2) the parameterization of Bernoulli variables
enables one to sample a new graph in the space complexity of
𝑂 ( |U|2) and trivial time complexity due to the merit of parallel
sampling.

4.2 Modify NPPs with Dependency Graph
We now describe how to use the sampled graph G to modify a
NPP. As an event consists of its type and timestamp, we represent
the event (𝑣𝑖 , 𝑡𝑖 ) 𝒙𝑖 = 𝒕𝒑𝑣 + 𝒑𝒆 (𝑣𝑖 ,𝑡𝑖 ) , where 𝒑𝒆 is the positional



embedding. We choose to modify the SAHP model by [54] because:
(1) the factor G𝑢,𝑣 can be easily used as a plug-in to remove certain
types of events from history if these types do not contribute to
the predictions of another event type, and (2) it is the state-of-the-
art point process model. Specifically, we modify the conventional
way of computing attention scores, i.e., embedded Gaussian, by
multiplying G𝑢,𝑣 ∈ {0, 1}:

𝑓 (𝒙𝑖+1, 𝒙 𝑗 ) = G𝑢,𝑣 · exp
(
𝒙𝑖+1𝒙𝑇𝑗

)
, (9)

where 𝑢 and 𝑣 are the types of the (𝑖 + 1)-th and 𝑗-th event. G𝑢,𝑣
hinders historical influence of type-𝑣 events if type-𝑣 does not
contribute to predicting type-𝑢. The rest of how to compute the
intensity is the same as [54]. The attention scores 𝑓 (·, ·) is used
to calculate a hidden embedding 𝒉𝑢,𝑖+1 that summarizes influence
of history events before 𝑡𝑖+1 on the type-𝑢 event at the (𝑖 + 1)-th
position of a sequence, where the function 𝑔(·) is a linear transfor-
mation. 𝒉𝑢,𝑖+1 is used to calculate three dynamic parameters 𝜇𝑢,𝑖+1,
𝜂𝑢,𝑖+1 and 𝛾𝑢,𝑖+1. The three parameters are used to compute the
intensity function, and the objective function of the event sequence.
Details are in the Appendix.

Remark. SAHP uses the attention mechanism to measure con-
tributions of each event type. This model holds the underlying
assumption that it is beneficial to consider all types when predict-
ing the target one. However, as we explained in the Introduction
section, this assumption is problematic because some event types
may not contribute. Adding 𝐺𝑢,𝑣 in Eq.(9) provides the option to
omit those non-contributing event types so as to avoid their dis-
turbance. In this way, the learned attention is a more accurate
measurement of contributions.

We underline the graph does not represent a causal structure as
the objective, unlike the penalized log-likelihood such as Bayesian
Information Criterion, focuses on predictive performance. The la-
tent graph is most similar to Granger causality (G-causality). From
the viewpoint of temporal point processes, G-causality aims to
identify a subset of event types 𝑉 ⊆ 𝑈 for the type-u event, such
that 𝜆𝑢 (𝑡) only depends on historical events of types in V. The
fundamental difference is that G-causality is deterministic while
the latent graph in this paper is stochastic.

4.3 Bilevel Programming
Type embeddings are used to (1) generate the graph G in Equation 7
and (2) calculate the influence weights of historical events with
Equation 15. Direct optimization of Equation 4 can be infeasible:
gradient descents of NPPs can change type embedding matrix 𝐸,
which can change the graph G generated by PGG and further
the landscape of the NPP loss function; since the gradients are
calculated based on the losses, the changes in the landscape mean
that the previous gradients are no longer aligned to the descent
direction of the actual loss. Because the embeddingmatrix 𝐸 of NPPs
are nested to an optimal solution of the PGG, bilevel programming
is a natural fit to find the optimum.

Objective Formulation. Bilevel programming involves two nested
tasks. Our ultimate goal is to find the graph G ∈ G that minimizes
the generalization error of the point process, therefore the mini-
mization of this error should play a leading role. We formulate the

bilevel programming as

min
𝜃 ∈Θ,𝜓

EG∼Ber(𝜃 ) [𝐹 (G,𝜓 )], (10a)

s.t. 𝜓 ∈ arg min
𝜓 ′∈Ψ

EG∼Ber(𝜃 ) [𝑓 (G,𝜓 ′)] . (10b)

Eq. (10a) and Eq. (10b) are the upper and lower objective function
respectively; the upper-level variables are the parameter 𝜃 (actually
the parameter𝑊G as shown in Equation 7) of the graph generator
while the lower-level variables are the parameter 𝜓 of the NPP,
including the embedding matrix 𝐸 and other trainable parameters
in the conventional NPP models.

The upper objective aims to find an optimal binary structure G
while the lower objective aims to learn a point process model given
G. As the upper objective is to minimize the generalization error, it
can be implemented as the loss on the validation subset 𝐷val. We
therefore set out to use the training dataset 𝐷tr to learn the kick
function for a fixed dependency graph, and use the validation 𝐷val
to find the optimal graph.

𝐹 (G,𝜓 ) = −
∑
S∈𝐷val

L(S|G,𝜓 ) (11a)

𝑓 (G,𝜓 ) = −
∑
S∈𝐷tr

L(S|G,𝜓 ) (11b)

where L is the log-likelihood function of event sequences defined
in Eq. (4). The minimization of the negative log-likelihood forces
to discover the optimal graph G for event prediction. Equivalently,
this model uses a validation set for the sake of generalization.

The resulting bilevel problem is difficult to solve efficiently
for the following two reasons: 1) the solution of Eq. (10b) can-
not be written in a closed form due to the non-convex objective;
and 2) the intractability of the expectation: EG∼Ber(𝜃 ) [𝑓 (G,𝜓 )] =∑
G∈G 𝑝𝜃 (G)L(S|G,𝜓 ) since it is composed of 2 |U |×|U | cases.

Therefore, we now develop an efficient algorithm to find approxi-
mated solutions.

Efficient Optimization. Bilevel programming can be tackled
via replacing the minimization of 𝑓 with repeated applications
of an iterative dynamics Ξ [15]. One common approach imple-
ments Ξ as iterative gradient descents [22, 36]. Let 𝜓 (𝐾) indicate
the lower variables after 𝐾 iterations of the dynamics Ξ, that is,
𝜓 (𝐾) = Ξ(𝜓 (𝐾−1) , 𝜃 ) = Ξ(Ξ(𝜓 (𝐾−2) , 𝜃 ), 𝜃 ) and so on.

Assuming that, given any 𝜃 , the optimal solution to the lower-
level objective is unique, we define𝜓 as an implicit function𝜓 (𝜃 )
of 𝜃 , then bilevel programming reduces to find the optimal upper
variable 𝜃 [12]. If 𝜃 and𝜓 are real numbers and the functions and
dynamics are differentiable, we can compute the gradient of the
upper function 𝐹 (𝜃,𝜓𝐾 ) w.r.t. 𝜃 using the chain rule [23]:

∇𝜃 𝐹 (𝜃,𝜓𝐾 ) = 𝜕𝜃 𝐹
(
𝜃,𝜓𝐾

)
+ 𝜕𝜓 𝐹

(
𝜃,𝜓𝐾

)
∇𝜃𝜓𝐾 , (12)

where∇ indicates the gradient and 𝜕 the partial derivative.∇𝜃 𝐹 (𝜃,𝜓𝐾 )
is called hyper-gradient. The right-hand side of this equation re-
quires unrolling the dynamics repeatedly 𝜓𝑘+1 = Ξ(𝜓𝑘 , 𝜃 ) with
1 ≤ 𝑘 ≤ 𝐾 , and can be implemented efficiently using reverse-mode
algorithmic differentiation [26].

To solve the bilevel optimization problem efficiently, we develop
a solution based on iterative gradient descents [44]. Specifically,



Algorithm 1: The algorithm to learn a NPP.
input : 𝐷tr, 𝐷val, 𝜌 , 𝜂1, 𝜂2, 𝐾

1 begin
2 Initialize parameters
3 while Stopping condition is not met do
4 𝑘 ← 1, 𝜃 ← PGG(𝑊 , 𝜌)
5 while Lower objective decreases do
6 G𝑘 ∼ Ber(𝜃 ) // Sample a graph

7 𝑓 (G𝑘 ,𝜓𝑘 ) = ∑
S∈𝐷tr L(S|G

𝑘 ,𝜓𝑘 )
8 𝜓𝑘+1 = Ξ

(
𝜓𝑘 ,G𝑘

)
// Optimize the lower

objective function

9 𝑘 ← 𝑘 + 1
10 if 𝑘 = 𝐾 then
11 G𝑘 ∼ Ber(𝜃 )
12 𝐹 (G𝑘 ,𝜓𝑘 ) = ∑

S∈𝐷val L(S|G
𝑘 ,𝜓𝑘 ).

13 𝑝𝑘 ← 𝜕𝜓 𝐹

(
G𝑘 ,𝜓𝑘

)
, 𝑞𝑘 ← 𝜕G𝐹

(
G𝑘 ,𝜓𝑘

)
// Compute the hyper-gradients

14 for 𝑗 from 𝑘 − 1 to 𝑘 − 𝐾 do
15 G 𝑗 ∼ Ber(𝜃 )
16 𝑝 𝑗 ← 𝑝 𝑗+1𝜕𝜓Ξ

(
𝜓 𝑗 ,G 𝑗

)
,

𝑞 𝑗 ← 𝑞 𝑗+1 + 𝑝 𝑗 𝜕GΞ
(
𝜓 𝑗 ,G 𝑗

)
17 𝜃 ← 𝜃 − 𝜂2𝑞 𝑗 // Optimize the upper objective

function

18 𝑊G ←𝑊G − 𝜂2∇𝑊G𝜃
19 𝑘 ← 1

20 return 𝜃,𝜓

we implement the learning dynamics based on the principle of
stochastic gradient descent (SGD):

𝜓𝑘+1 = Ξ
(
𝜓𝑘 ,G𝑘

)
= 𝜓𝑘 − 𝜂∇𝜓 𝑓

(
G𝑘 ,𝜓𝑘

)
, (13)

where 𝜂 is the learning rate and G𝑘 ∼ Ber(𝜃 ) is the 𝑘-th drawn
with 1 ≤ 𝑘 ≤ 𝐾 . This leads to 𝜓 convergence because it depends
on 𝜃 when 𝐾 → ∞ [9]. Given that 𝜓𝐾 is the approximation of
the optimal solution of the lower-objective Eq. (10b), we need to
estimate the hyper-gradient for the upper-objective Eq. (10a) to
update 𝜃 :

∇𝜃EG∼Ber(𝜃 )
[
𝐹

(
G𝐾 ,𝜓𝐾

)
] = EG∼Ber(𝜃 ) [∇𝜃 𝐹

(
G𝐾 ,𝜓𝐾

)]
=EG∼Ber(𝜃 )

[
𝜕G𝐹

(
G𝐾 ,𝜓𝐾

)
∇𝜃G + 𝜕𝜓 𝐹

(
G𝐾 ,𝜓𝐾

)
∇𝜃𝜓𝐾

]
. (14)

The swap of expectation and gradient is based on the finite num-
ber of random variables and a bounded 𝐹 . Note that ∇𝜃G occurs
in both Equation 13 (through ∇𝜃Ξ

(
𝜓𝑘 ,G𝑘

)
) and Equation 14. We

use the so-called straight-through estimator [4], setting ∇𝜃G := 𝐼 .
Finally, we take the single sample Monte Carlo estimator of Eq. (14)
to update the parameters 𝜃 as also done by [23]. Algorithm 1 de-
scribes how to solve the bilevel optimization problem. Shaban et al.
[44] analyze that the bias of the 𝐾-iteration gradient as the ap-
proximation decays exponentially in 𝐾 . This exponential decaying
property guarantees the convergence of bilevel programming to

update the upper variables with truncated back-propagation. More
convergence analysis can be found in [44].

Computational Complexity. Conventional NPPs, like SAHP [54],
do not require bilevel programming, so we analyze this additional
complexity brought by calculating hyper-gradients in Alg. 1. Hyper-
gradients calculation requires a time complexity of𝑂 (𝑐𝐾) and space
complexity of 𝑂 (𝑛2𝐾), where 𝑐 = 𝑐 (𝑛1, 𝑛2) is the time complexity
to compute the dynamics Ξ and 𝑛1, 𝑛2 are the dimensions of the
𝜃 and𝜓 . For the sake of computational complexity, we use a trun-
cated version of hyper-gradient as proposed by [44]. Specially, we
truncate the computation and estimate the hyper-gradient every
𝐾 ′ iterations where 𝐾 ′ < 𝐾 .

5 EXPERIMENTS
5.1 Datasets
To examine the performance of the proposed model, we report com-
parative experiment results from synthetic and real-world datasets.
These datasets are carefully chosen from previous publications in
a way to possess various ranges of properties, such as sequence
length and number of event types. Sequences in each dataset are
assumed to be independent and identically distributed. Table 1
summarizes statistical information of all datasets. The synthetic
dataset is originally generated by [54] with the Python package
tick 1. Real-world datasets are taken from previous research works 2.
To facilitate the training and evaluation process of the models, each
dataset consists of three subsets: training, validation and test. All
reported values are from the test subsets. Following previous work,
we compare models according to their testing loss and prediction
performance [16, 39, 54].

5.2 Real-world Datasets
Retweet. The Retweet dataset contains information of when a

post will be retweeted by which type of users. It contains a total
number of 24,000 retweet sequences. In each sequence, an event is
a tuple of the tweet type and time. There are 𝑈 = 3 types: “small”,
“medium” and “large”. The “small” retweeters are those who have
fewer than 120 followers, “medium” retweeters have more than 120
but fewer than 1,363 followers, and the rest are “large” retweeters.
The proportion of the “small”, “medium” and “large” type is 50%,45%
and 5% respectively. As for retweet time, the first event in each
sequence is labeled with 0, while the next events are labeled with
reference to their time interval with respect to the first event in
this sequence.

StackOverflow. The StackOverflow dataset includes sequences
of user awards within two years. StackOverflow is a question-
answering website where users are awarded based on their pro-
posed questions and answers to questions by others. This dataset
contains in total 6,633 sequences. There are𝑈 = 22 types of events:
Nice Question, Good Answer, Guru, Popular Question, Famous
Question, Nice Answer, Good Question, Caucus, Notable Question,
Necromancer, Promoter, Yearling, Revival, Enlightened, Great An-
swer, Populist, Great Question, Constituent, Announcer, Stellar

1https://github.com/X-DataInitiative/tick
2https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U

https://github.com/X-DataInitiative/tick
https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U


Table 1: Statistics of the used datasets.

Dataset # of Types Sequence Length # of Sequences
Min Mean Max Train Validation Test

Synthetic 2 68 132 269 3,200 400 400
Retweet 3 50 109 264 20,000 2,000 2,000
StackOverflow 22 41 72 736 4,777 530 1,326
MIMIC 75 2 4 33 527 58 65

Table 2: The KL-divergence of the estimated intensity against the ground truth.

Event type RMTPP CTLSTM FullyNN LogNormMix SAHP THP Ours
1 1.89 1.75 1.55 1.53 1.46 1.45 1.22 ± 0.06
2 1.72 1.69 1.47 1.47 1.24 1.23 1.08 ± 0.08

Table 3: Negative log-likelihood per event on the four test sets.

Dataset RMTPP CTLSTM FullyNN LogNormMix SAHP THP Ours
Synthetic 1.85 1.83 1.55 1.43 1.35 1.33 1.17±0.03
Retweet 7.43 6.95 6.23 5.32 4.56 4.57 3.89±0.08
StackOverflow 2.44 2.38 2.21 2.01 1.86 1.84 1.54±0.06
MIMIC 1.33 1.36 1.03 0.78 0.52 0.54 0.43±0.05

Question, Booster and Publicist. With this dataset, we learn which
type of awards will be given to a user and when.

MIMIC-II. The Multiparameter Intelligent Monitoring in In-
tensive Care (MIMIC-II) dataset is developed based on an electric
medical record system. The dataset contains 650 sequences, each
of which corresponds to a patient’s clinical visits in a seven-year
period. Each clinical event records the diagnosis result and the
timestamp of that visit. The number of unique diagnosis results is
𝑈 = 75. According to the clinical history, a temporal point process
is supposed to capture the dynamics of when a patient will visit
doctors and what the diagnose result will be.

5.3 Experimental Setup
For a fair comparison, beside using the train, validation and test sets
already defined by the dataset, we further split the training set into
a sub-training set (80%) and a sub-validation set (20%), which are
used in the lower and upper objective functions respectively. We
tune the hyper-parameters based on the validation set and report
performance on the test set. We explore the number of attention
heads in the set {1, 2, 4, 8, 16}. Another hyper-parameter is the
number of attention layers. We explore this hyper-parameter in
the set {2, 3, 4, 5, 6}. The dependency graph is implemented as a
mask, and we conduct a logical conjunction with the mask that
prevents future attending. We use Adam to optimize both the lower
and upper objectives. The learning rate 𝜂 ranges from 10−7 to
10−4 with a multiplication step of 10 while the sparsity parameter
𝜌 ranges from 0.3 to 0.9 with an addition step of 0.1. The scaling
factor 𝛽 is chosen from [0.2, 0.4, 0.8, 1.6, 3.2, 6.4]. We employ tricks
including dropout, weight regularization and early stopping to
prevent overfitting. Mini-batch size is set to be 32, which allowed a
proper use of the memory of our Nvidia GeForce GTX 1080 cards.

5.4 Baselines
To evaluate our model, we compare it with state-of-the-art NPP
models. All the baselines are trained as indicated in their papers.

• Recurrent Marked Temporal Point Processes (RMTPP). This
model [16] uses RNN to learn a representation of influences
from past events, and time intervals are explicitly encoded.
• Continuous Time LSTM (CTLSTM). [39] use a continuous-
time LSTM, which includes intensity decay and eliminate
the need to encode event intervals as numerical inputs.
• Fully Neural Network (FullyNN).[42] propose to model the
cumulative intensity function with a feed-forward network.
• Log Normal Mixture (LogNormMix).[46] suggest to model
the conditional probability density distribution by a log-
normal mixture model.
• Self-AttentiveHawkes Process (SAHP) [54] uses self-attention
to calculate intensity with time-shifted position embeddings.
• Transformer Hawkes Process (THP) [57]) is a concurrent
self-attention based point process model with additional
structural knowledge.

6 RESULTS AND DISCUSSION
For a fair comparison, we tried different hyper-parameter configu-
rations for baselines and our model, and selected those with the best
validation performance. Because the proposed model is a random-
ized procedure, we report both averages and standard deviations of
our achieved performance.

Goodness of fit on the synthetic dataset. With the synthetic
dataset, the true intensity is available and we are able to evalu-
ate the goodness-of-fit of the estimated intensity. We compute the
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Figure 2: QQ-plot of true VS estimated intensities of types. The x-axis and the y-axis represent the quantiles of the true and
estimated intensities. For each model the top figure is for the type-1 events while the bottom figure is for the type-2 events.

KL-divergence 𝐾𝐿(𝑝 | |𝑞) between the true distribution and the es-
timated one, where 𝑝 and 𝑞 indicate the truth and the estimation
respectively; results are shown in Table 2. We achieve the lowest
KL-divergence, 1.22 and 1.08 on average, for the two event types,
indicating that our model is able to best approximate the intensity.
From the QQ-plots of estimated intensity in Figure 2, we observe
that the intensity estimated by SAHP produces the most similar
distribution to the true one, which indicates that SAHP is able to
best capture the underlying complicated dynamics of the synthetic
dataset.

Sequence Modelling. We evaluate the ability of the models us-
ing the negative log-likelihood (NLL) as evaluation metric, as done
in prior works [39, 46]. The higher the NLL is the less a model is
able to model an sequence of events. Tab. 3 presents the results
of this evaluation on each test subset. We observe that that our
model achieves the best average NLL loss with small standard de-
viations, outperforming the baselines in all datasets. RMTPP and
CTLSTM have very similar performance except on the Retweet
dataset, where CTLSTM achieves a lower NLL than RMTPP.

EventDependency. This part interprets what the proposedmodel
learns from observed event sequences after convergence. Taking
the StackOverflow dataset as an example, we visualize in Fig. 3 the
learnt parameter 𝜃 on the left and a sampled graph on the right.
This parameter 𝜃 contains the Bernoulli distributions of edges be-
tween pairs of event types. The cell at the 𝑢-th row and the 𝑣-th
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Figure 3: Visualization of the latent dependency graph (𝜃 )

column is the 𝜃𝑢,𝑣 indicating the probability that type-𝑣 events
contribute to predicting type-𝑢 events. In this figure we observe
that the elements in the diagonal are all above 0.5, i.e., these event



Table 4: 𝐹1 (%) and NRMSE for event prediction on the four test subsets.

Dataset Synthetic Retweet StackOverflow MIMIC
𝐹1 NRMSE 𝐹1 NRMSE 𝐹1 NRMSE 𝐹1 NRMSE

RMTPP 40.32 37.07 41.22 1276.41 5.44 207.79 28.76 6.83
CTLMST 43.80 35.08 39.21 1255.05 4.88 194.87 34.00 6.49
FullyNN 45.21 33.34 43.80 1104.41 6.34 173.92 33.32 5.43
LogNormMix 42.09 32.64 45.25 1090.45 3.23 154.13 32.86 4.12
SAHP 58.50 31.32 53.92 1055.05 24.12 133.61 36.90 3.89
THP 58.45 31.24 53.86 1054.43 23.89 134.02 37.05 3.76
Ours 62.18±0.23 30.51±0.52 58.29±0.63 1021.47±1.43 28.34±0.19 114.74 ±3.24 38.80±0.81 3.42±0.66

Table 5: Model running time (Seconds) on the retweet dataset with a Titan Xp GPU card.

Model RMTPP CTLSTM LogNormMix FullyNN SAHP THP Ours
Time 92.22 134.69 85.32 87.53 86.97 87.49 95.34

types own a self-excitation property. Some types predicts others
and such dependency pattern can be sparse and asymmetric.

Event Prediction. We compare the prediction performance of
our model against the state-of-the-art baselines. The task here
is to predict the next event, including type and timestamp, given
historical events. Event type prediction is a multi-class classification
problem and we evaluate performance using micro 𝐹1. Because a
time interval is a real number, we use the Normalized Root Mean
Square Error (NRMSE) as the evaluation metric, defined as 𝜀𝑖 =

(𝑡𝑖+1 − 𝑡𝑖+1)/(𝑡𝑖+1 − 𝑡𝑖 ) where 𝑡𝑖+1 is the predicted timestamp and
𝑡𝑖+1 is the ground truth, and 𝑡𝑖+1 − 𝑡𝑖 is the ground-truth time
interval. The results in Tab. 4 show that our model outperforms the
baselines in terms of 𝐹1 and NRMSE on all prediction tasks. One
interesting finding is the incorporation of the latent graph leads to
a clear improvement in event type prediction in terms of 𝐹1.

Computational efficiency. To compare the computational effi-
ciency of our method with neural baselines, we report in Table 5 the
running time on the retweet dataset with a Titan Xp GPU card. The
mini-batch size is 32 and running time is averaged by 10 epochs. We
observe that our method spends longer time attention-based NPPs,
although we employ an efficient implementation of bilevel program-
ming. The average running time of our method is almost 10 seconds
longer than SAHP and even longer than discrete RNN-based NPPs,
but still less than continuous LSTM-based NPPs.

Graph Sparsity. Graph sparsity is a fundamental property that
influences graph structures. In this paper, we use 𝜌 to control the
graph sparsity: the smaller 𝜌 is, the sparser the graph is. To illustrate
the influence of graph sparsity, we tune 𝜌 and show the correspond-
ing evaluation performance on the StackOverflow dataset. Table 6
describes how the performance of event prediction changes with dif-
ferent 𝜌 . We report the average values only. The best performance
is achieved at 𝜌 = 0.7.

7 RELATEDWORK
Neural Point Process. Point process conventionally assumes a

fixed form of intensity, such as Hawkes process with an exponential

Table 6: The influence of 𝜌 on the performance.

𝜌 0.3 0.4 0.5 0.6 0.7 0.8 0.9
NLL 2.08 1.90 1.83 1.68 1.54 1.65 1.79
𝐹1 21.80 23.16 25.65 26.65 28.34 27.03 25.89
NRMSE 140.84 135.61 129.43 121.54 114.74 119.43 126.05

kernel, to account for the additive influence of an history event. To
increase the capacity of point process, neural networks have been
adopted to consider more complex phenomenon such as preventive
effects and non-exponential influence. Initial works used recurrent
neural networks either in a discrete way [16], a continuousway [39],
or a multi-scale multi-channel architecture [24]; then self-attention
was also used by [54, 57]. [57] develop a Structured Transformer
Hawkes (STH) model that studies the relationship between point
processes. It assumes the modeling of one point process might con-
tribute to the modeling of another. Each vertex in the STH’s graph
is associated with a point process. Other efforts have been made
to model the cumulative intensity function [42] and conditional
probability density [46]. One issue that has been ignored in these
works is that these NPP models take all types of historic events
to predict the future ones, neglecting that some event types may
not contribute to the prediction of another type. This study aims
to correct this defect by learning to omit those non-contributing
event types when predicting the target type via NPPs.

Graphs have been incorporated into temporal point processes. Lin-
derman and Adams [33] aims to discover the latent graph structure
among individual events instead of event types. Linderman and
Adams [33] use a probabilistic method to extract mutual influence
among individual events rather than event types. Bhattacharjya
et al. [6] propose a proximal graphical event model to reveal rela-
tionships among event types, but this model makes a parametric
form of the intensity function and is not as capable as NPPs. Shang
and Sun [45] incorporate graph convolutional networks to capture
the correlation between event sequences into Hawkes processes but
they use undirected graphs while our graph is directed. Wu et al.
[50] model event propagation via graph biased NPPs; the graph is



a visible followship network among people on social media. Most
of these works assume their graphs are already existing and they
directly input the graph to a neural network while we generate a
latent graph by a probabilistic graph generator.

Granger Causality for Point Processes. Granger causality can
identify a subset of event typesV ⊆ U for the type-𝑢 event, such
that 𝜆𝑢 (𝑡) only depends on historical events of types in V [11,
28, 38]. Eichler et al. [17] propose to connect Granger causality
with 𝜙𝑢,𝑣 . Lasso and sparse-group-lasso have also been explored
in [2, 52]. Achab et al. [1] uncover the Granger causality of Hawkes
processes by learning the kernels’ integrals. These methods do not
employ neural networks thus may not capture complicated event
dynamics. [48] estimate Granger causality by likelihood reduction
while [55] use an axiomatic attribution method to convert event
contributions to a GC statistic. These methods are performed after
the fitting of the model (in post-processing) yet these NPP models
still suffer from the same issue thereof, i.e., they use all event types.
The latent graph we generate is quite similar to Granger causality,
but the difference is that Granger causality is deterministic while
the latent graph is probabilistic.

Uncovering the Latent Graph Structure. As this paper in-
volves a latent graph, we review works on how to uncover latent
graphs from observed data. This line of works are mainly in the
areas of graph and network analysis. The task of link prediction in-
fers the existence of an edge between a pair of vertices [35] yet link
predictions are mostly semi-supervised or require vertex informa-
tion. Graph generators based on deep learning are aimed to reflect
properties of available graphs [27, 32, 53]. Johnson [29] propose a
differential neural model to produce graphs but requiring supervi-
sion from ground truth. Kipf et al. [30] use an encoder-decoder to
infer latent relationships between entities and capture the dynamics
of physical systems. Franceschi et al. [23] employ a graph neural
network to uncover graph structures and classify vertices.

8 CONCLUSION
Not all event types contribute to the prediction of one target type.
This paper aims to remove disturbance of non-contributing types
from NPPs. We simultaneously consider two tasks: (1) finding a
set of contributing event types and (2) learning NPP from event
sequences. We propose a probabilistic graph generator, from which
a graph is sampled and then used to modify a NPP. As the tasks are
nested, we formulate them by bilevel programming and develop
an efficient solution. Using validation based log-likelihood that is
due to choice of the graphical structure to tune edge-probabilities
is a reasonable idea, and reflects the popular practice of using a
validation set to tune parameters in the interest of generalization.
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Appendix

A MODIFY THE INTENSITY FUNCTION
WITH THE SAMPLED GRAPH

We choose to modify the self-attention based neu-
ral point process [54] because: (1) the dependency
factor G𝑢,𝑣 can be easily used as a plug-in to re-
move certain types of events from history if these
types do not contribute to the prediction of an-
other event type, and (2) it is a state-of-the-art
point process model. Specifically, we modify the
conventional way of computing attention scores,
i.e., embedded Gaussian, by multiplying G𝑢,𝑣 ∈
{0, 1},

𝑓 (𝒙𝑖+1, 𝒙 𝑗 ) = G𝑢,𝑣 · exp
(
𝒙𝑖+1𝒙

𝑇
𝑗

)
, (15)

where 𝑢 and 𝑣 are the types of the 𝑖 + 1-th and 𝑗-
th event. G𝑢,𝑣 is a plug-in, which hinders historical
influence of type-𝑣 events if type-𝑣 does not con-
tribute to predicting type-𝑢.
The rest of how to compute the intensity is the

same with [54]: (a) the attention scores 𝑓 (·, ·) is
used to calculate a hidden embedding 𝒉𝑢,𝑖+1 that
summarizes influence of history events before 𝑡𝑖+1
on the type-𝑢 event at the (𝑖 + 1)-th position of a
sequence,

𝒉𝑢,𝑖+1 =

(
𝑖∑
𝑗=1

𝑓 (𝒙𝑖+1, 𝒙 𝑗 )𝑔(𝒙 𝑗 )
)
/

𝑖∑
𝑗=1

𝑓 (𝒙𝑖+1, 𝒙 𝑗 ),

(16)
where the function 𝑔(·) is a linear transformation;
(b) 𝒉𝑢,𝑖+1 is used to calculate three dynamic param-
eters 𝜇𝑢,𝑖+1, 𝜂𝑢,𝑖+1 and 𝛾𝑢,𝑖+1,

𝜇𝑢,𝑖+1 = gelu
(
𝒉𝑢,𝑖+1𝑊𝜇

)
, (17)

𝜂𝑢,𝑖+1 = gelu
(
𝒉𝑢,𝑖+1𝑊𝜂

)
, (18)

𝛾𝑢,𝑖+1 = softplus
(
𝒉𝑢,𝑖+1𝑊𝛾

)
; (19)

and (c) the three parameters are used to compute
the intensity function,

𝜆𝑢 (𝑡) = softplus(𝜇𝑢,𝑖+1+
(𝜂𝑢,𝑖+1 − 𝜇𝑢,𝑖+1) exp(−𝛾𝑢,𝑖+1(𝑡 − 𝑡𝑖))) .

(20)

B EXPERIMENTS
B.1 Synthetic Dataset

We generate a synthetic dataset using the open-
source Python library tick. A two-dimensional point
process is generated with base intensities 𝜇1 = 0.1
and 𝜇2 = 0.2. The triggering kernels consist of a
power law kernel, an exponential kernel, a sum of
two exponential kernels, and a sine kernel:

𝜙1,1(𝑡) = 0.2 × (0.5 + 𝑡)−1.3 (21a)
𝜙1,2(𝑡) = 0.03 × exp(−0.3𝑡) (21b)
𝜙2,1(𝑡) = 0.05 × exp(−0.2𝑡) + 0.16 × exp(−0.8𝑡)

(21c)
𝜙2,2(𝑡) = max(0, sin(𝑡)/8) for 0 ≤ 𝑡 ≤ 4 (21d)
In Figure 4 we show the four triggering kernels

of the 2-dimensional point processes. Simulation
is conducted based onOgata’s simulation algorithm [41].

0.00

0.25

0.50

φ
1,

1
(t

)

φ
1,

2
(t

)

0 2 4

t

0.00

0.25

0.50

φ
2,

1
(t

)

0 2 4

t

φ
2,

2
(t

)

Figure 4: The four triggering kernels of the synthetic dataset
with 2 event types.


	Abstract
	1 Introduction
	2 Notation
	3 Preliminaries
	3.1 Temporal Point Processes
	3.2 Random Graph
	3.3 Bilevel Programming

	4 Method
	4.1 Probabilistic Graph Generator
	4.2 Modify NPPs with Dependency Graph
	4.3 Bilevel Programming

	5 Experiments
	5.1 Datasets
	5.2 Real-world Datasets
	5.3 Experimental Setup
	5.4 Baselines

	6 Results and Discussion
	7 Related Work
	8 Conclusion
	References
	A Modify the Intensity Function with the Sampled Graph
	B Experiments
	B.1 Synthetic Dataset


