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Abstract

Despite decades of studies, there is still no consensus on what type of serial de-

pendence, if any, might be present in risky asset returns. The serial dependence

structure in asset returns is complex and challenging to study, it varies over time,

it varies over observed time resolution, it varies by asset type, it varies with liq-

uidity and exchange and it even varies in statistical structure. The focus of the

work in this thesis is to capture a previously unexplored notion of serial de-

pendence that is applicable to any asset class and can be both parameteric or

non-parameteric depending on the modelling approach preferred. The aim of

this research is to develop new approaches by providing a model-free definition

of serial dependence based on how the sign of cumulative innovations for a given

lookback horizon correlates with the future cumulative innovations for a given

forecast horizon. This concept is then theoretically validated on well-known time

series model classes and used to build a predictive econometric model for future

market returns, which is applied to empirical forecasting by means of a profit-

seeking trading strategy. The empirical experiment revealed strong evidence of

serial dependence in equity markets, being statistically and economically signif-

icant even in the presence of trading costs. Subsequently, this thesis provides an

empirical study of the prices of Energy Commodities, Gold and Copper in the fu-

tures markets and demonstrates that, for these assets, the level of asymmetry of

asset returns varies through time and can be forecast using past returns. A new

time series model is proposed based on this phenomenon, also empirically val-
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idated. The thesis concludes by embedding into option pricing theory the find-

ings of previous chapters pertaining to signed path dependence structure. This

is achieved by devising a model-free empirical risk-neutral distribution based on

Polynomial Chaos Expansion and Stochastic Bridge Interpolators that includes

information from the entire set of observable European call option prices un-

der all available strikes and maturities for a given underlying asset, whilst the

real-world measure includes the effects of serial dependence based on the sign

of previous returns. The risk premium behaviour is subsequently inferred from

the two distributions using the Radon-Nikodym derivative of the empirical risk-

neutral distribution with respect to the modelled real-world distribution.



Impact Statement

The knowledge presented in this thesis could be put to a beneficial use in several

manners, both inside and outside academia.

The proposed models on signed path dependence can generate material

benefits inside academia in the field of Econometrics, enriching the existing suite

of models by proposing a new paradigm to deal with stochastic processes that

exhibit memory that decays much slower than what is implied by an exponen-

tial decay but that at the same time does not imply an explosion in variance. I

believe there is still great potential to enhance standard econometric theory by

further exploring and applying the concept of “signed path dependence” that is

introduced in this thesis. Moreover, the knowledge presented in this thesis can

also generate material benefits inside academia in the field of Empirical Asset

Pricing. There is still not much consensus on how serial dependence manifests

itself in risky markets such as Equities, Currencies and short to mid-term Com-

modity Futures. The empirical findings of this thesis are relevant to such an

interesting field. Further, the final chapter of this thesis demonstrates how such

findings can be put to a beneficial use also in the field of Derivatives Pricing, by

challenging usual assumptions of market behaviour and risk-premium.

Nevertheless, the benefits that this thesis can generate are not limited to

inside academia. Outside academia, there is great demand from banks and in-

vestment managers for models that can capture as many empirical features of

financial markets as possible and be used to generate better informed market pre-
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dictions and enhanced risk management activity. In addition to financial institu-

tions, commodity producers can benefit from the application of the econometric

models here introduced by including into their pricing and hedging strategies

the additional information extracted from the markets using the models here

proposed.

In the limit, the impact of this thesis could manifest itself internationally, as

the knowledge here disseminated propagates to individuals and organisations.

The benefits to any individual use of the models here proposed are expected to

manifest within a relatively short period of time; however, if further research is

indeed triggered by the contents of such thesis, a larger benefit can materialise

in the context of a broader field of research, over many years, decades or longer.
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Chapter 1

Introduction

This chapter gives a brief introduction on the history behind the subject inves-

tigated and what motivates this research. Subsequently, the objectives of the

research are delineated, along with the methods used to accomplish such objec-

tives. The chapter is concluded by listing the structure of the rest of the thesis.

This introductory chapter is intentionally kept relatively informal and does not

give many details on the underlying theories - such details are later given in the

Literature Review.

1.1 Motivation

The question on whether it is possible to obtain abnormally high excess returns

in investments by identifying predictability in the financial markets is probably

as old as the financial markets themselves. And the most baffling feature of this

question is that more than 150 years after the first proposed answer, there is still

no consensus on what is the right answer.

The foundations of free markets are believed to have been introduced by

Adam Smith in his 1776 book colloquially known as “The Wealth of Nations”

[1]. In free markets, market participants are self-interested and prices tend to
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oscillate around some true or fundamental value. Jules Regnault is credited with

an early publication of an answer to the question of how financial markets evolve

through time, publishing in 1863 his book Calcul des Chances et Philosophie

de la Bourse [2]. His book applied several concepts of probability and statistics

known at the time and after considerable reasoning, one of his main conclusions

is given using capital letters in the middle of page 50: “L’ÉCART DES COURS EST

EN RAISON DIRECTE DE LA RACINE CARRÉE DES TEMPS” or, in English, “the

changes in course [of the prices] are directly proportional to the square root of

time”. In 1900, mathematician Louis Bachelier expanded upon Jules Regnault’s

work to deduce the first known financial forecasting model which assumed price

changes followed a random walk in continuous time [3].

The seminal work by Benjamin Graham published in his 1946 book The

Intelligent Investor [4] proposed an investment analysis framework involving

detailed scrutiny of company accounts, to calculate fundamental values, and

thus ascertain when a given investment is cheap or expensive. The objective

would be to buy cheap stocks and sell expensive ones. Any excess performance

thus obtained would be at the expense of irrational traders, who bought and

sold on emotional grounds and without the benefit of detailed analysis.

In 1970 the question about the possibility of developing trading strategies

that would yield abnormally high excess returns appeared to be solved when the

Efficient Market Hypothesis (EMH) was proposed by Eugene Fama [5], not only

advocating unpredictability of the markets, but also giving a strong explanation

for it in terms of economic theory, backed by considerable empirical evidence.

Such theory was widely accepted by the bulk of the academia, with numerous

different types of tests being implemented and confirming its validity. Over the

two following decades any publications on the contrary would be seen with some

degree of skepticism.

The significant rise in the popularity of index funds that track major market
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indexes – both mutual funds and ETFs – is due at least in part to widespread

popular acceptance of the efficient markets hypothesis. Investors who subscribe

to the EMH are more inclined to invest in passive index funds that are designed

to mirror the market’s overall performance, and less inclined to be willing to pay

high fees for expert fund management when they don’t expect even the best of

fund managers to significantly outperform average market returns.

The economic argument behind the EMH is very compelling. If in a highly

competitive market there is a way to get return predictability beyond a drift

coming out of being compensated for taking a risk, this will be as inefficient as

leaving a €500 bill on the table in a very crowded pub: in no time somebody

will go there and will get the bill for themselves, so in a matter of instants there

will be no more inefficiency to be exploited.

By the late 1990s the volume of opposing publications – also backed by

empirical evidence – would have grown to a level difficult to ignore. Whilst even

the proponents of the EMH did not argue in favour of markets being strongly

efficient, opponents have found evidence that would put into question even the

weak form of market efficienty.

A fringe field of behavioural economics was gaining more and more traction,

to the point that in 2002 Daniel Kahneman, a psychologist, was awarded the

2002 Nobel Memorial Prize in Economic Sciences for his contributions based

on empirical studies of human behaviour in situations of financial uncertainty.

It was an acknowledgement by the academic circles that human behaviour in

financial markets is somewhat predictable – but not an acknowledgement that

the asset prices themselves are predictable. However, the market crash of 2008-

09 and successful exploitation by a number of hedge funds gave further support

to the theory that market returns had some element of predictability that could

be exploited to enhance the overall returns of an investment portfolio.

Eventually, two different schools of thought evolved and became main-
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stream in financial economics. As a consequence of such evolution, a rather

interesting fact happened in 2013: Eugene Fama was awarded the Nobel Memo-

rial Prize in Economic Sciences for the contribution to the field of economics that

his theory and subsequent academic work provided.

However, the same 2013 prize was awarded jointly with Robert Shiller, a

leading behavioural economist and arguably a heavy critic of Eugene Fama’s

theory. This time, it was an acknowledgement by the academic circles that no-

body had the definite answer to the question of market predictability – and, as

a human science problem, probably nobody ever will have the definite answer

– but considerable progress had been achieved to form two economically and

empirically justifiable theories.

Incidentally, a PhD student supervised by Eugene Fama in the early nineties

researched on evidence to disprove Dr Fama’s theory, and used the results of

his own doctoral research as basis to later establish one of the most successful

investment management companies in the world, with hundreds of employees

and US$185 billion in assets under management1.

Compelled by evidence, another credible theory has arisen, merging con-

cepts of evolutionary psychology, behavioural finance and efficient markets.

Maybe, there is a €500 bill on the table after all. It is just that the table is

not in a crowded pub; the table actually is hidden in a dark corner of a poorly

lit haute-cuisine restaurant for exclusive members and getting there to pick it up

will need a fair bit of resources: be it in the form or capital, or research, or cul-

tural change, or all of them. The inefficiency will stay there for as long as there

is not enough knowledge about it and speculative capital seeking to exploit it.

This theory became known as the Adaptive Markets Hypothesis.

Interestingly enough, Eugene Fama himself eventually conceded that there

is some predictability in market returns. In a joint publication with another re-

1Data as at 30th September 2019. Source: http://www.aqr.com

http://www.aqr.com
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spectable author in the 105th volume of the Journal of Financial Economics in

2012 [6], they write in the conclusions that “there are common patterns in av-

erage returns in developed markets. Echoing earlier studies, [they] find value

premiums in average returns in all four regions [they] examine (North America,

Europe, Japan, and Asia Pacific), and there are strong momentum returns in all

regions except Japan.” However, this won’t disprove the efficient market hypoth-

esis, as they explain these potential anomalies to likely arise out of local value

risk premiums associated with size and local momentum premium extremes that

few mutual funds would be able to exploit.

This context provides exciting motivation for a novel research aiming to

contribute to areas of knowledge that have not been explored yet.

1.2 Research Objectives

This research doesn’t aim to definitively unlock the Holy Grail of market pre-

dictability. It would be presumptuous of me to say I can do that. Nonetheless,

there are three core questions this thesis aims to answer:

1. Is there any way to detect on a systematic basis patterns of serial depen-

dence in financial market returns and use them to make any type of pre-

diction better than a random guess?

2. If yes, can a new econometric model be proposed that embeds such pat-

terns into the information used to make economic forecasts and enhance

existing risk management techniques?

3. What are the implications of any previous findings to derivatives pricing

theory and models?

An answer to the first question is inspired by the concept of "time-series

momentum" introduced in [7]. In this work, the authors show that a simple but

elegant linear time-series regression model that uses only the sign of previous

returns could be used to generate useful information about the sign of future
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returns. This satisfies the requisite of the first question that this thesis aims to

answer. Therefore, it is natural to expand upon such model and provide contri-

butions to the existing literature.

Whilst the first question is worded in a way that is relatively easy to solve

given existing literature, answering the subsequent questions can be relatively

more complex. Given the noisy nature of financial markets, I do not expect de-

terministic economic forecasts to have any meaningful value in this area - and

the focus therefore should shift to probabilistic forecasting methods. I note that

probabilistic economic forecasting and risk measurement are intrinsically linked

and as such, as soon as a good probabilistic method is developed, there is an im-

mediate application of such a method into risk measurement and management.

Finally, answering the second question brings immediately a link to the third

question, as the pricing of derivatives is totally driven by probabilistic forecasts,

albeit in a different probability measure than the one under which the second

question is answered. This leaves the research with the final core objective to link

the two probability measures of interest and ascertain if there are any relevant

findings when performing such exercise.

Above all, the main objective of this thesis is to produce material valuable

to both the investment community and academics alike. All other objectives are

just intermediate targets to achieve the final goal.

1.3 Research Methodology

As with any research, the choice of which methods to use and how to imple-

ment them is driven by the central questions the researcher wants to answer.

Given that these topics certainly engage the interest of thousands of researchers

across the world, there is plenty of literature available on this subject backed

both by widely accepted theory and plenty of empirical experiments. Hence,

the first stage of the research corresponds to an extensive and comprehensive
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literature review, which will ensure valuable research time is not wasted either

directing the research into areas that have already been proven unfruitful or sim-

ply “reinventing the wheel”. It will also ensure the best techniques available are

leveraged upon.

The quantitative nature of the questions and expected answers naturally

demands the research to be geared towards quantitative methods. Qualitative

methods would bring little relevant information to this particular study as they

would be centred into a handful of specific events and heavily depend on un-

proven assumptions in order to be translated into a generic case relevant to all

markets studied. Quantitative methods, on the other hand, can provide quick

and unbiased interpretation and direct applicability of the results, being able to

capitalise on a substantial volume of intraday data available. These quantitative

methods will be applied in the context of an Evaluation Research.

Professor William Trochim gives a good definition of how this type of re-

search is supposed to be conducted [8]: “Evaluation is the systematic acquisition

and assessment of information to provide useful feedback about some object.”

Throughout this thesis, a number of theories and hypothesis will be formu-

lated which will be tested via one or more statistical models calibrated to em-

pirical evidence gathered from Equity markets, Foreign Exchange markets and

Commodity Futures markets. Thereafter, several systematic experiments will be

devised aiming at validating such models and providing useful conclusions.

1.4 Thesis Structure

The thesis is structured in six chapters, including the present introductory chap-

ter. Chapter 2 provides a literature review presenting key concepts in general

statistics, econometrics, risk management models and derivatives pricing which

will be used throughout the entire thesis, giving examples and counter-examples

when applicable. Stylised facts and other empirical findings in the relevant fields
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are also discussed. Chapter 3 introduces the concept of "signed path depen-

dence," demonstrates how this concept ties up with existing econometric models

and develops a machine learning method that can be used to predict the sign of

future market returns using the sign of previous market returns. Chapter 4 pro-

vides a framework to make probabilistic economic forecasts of financial markets

by understanding how the shape of the return distribution is influenced by pre-

vious realisations of market returns. Chapter 5 develops a new method to obtain

an arbitrary risk-neutral measure based on observed European call option prices

and to link it to a real-world measure that exhibits signed path dependence.

Chapter 6 concludes the work.

1.5 Research Output

The research output from this thesis has been published in/submitted to the

following journals and conferences:

• F.S. Dias, F. Kiraly, G.W. Peters, "Non-parametric Price Momentum Models

for Global Equity Index and Currency Markets", Royal Economic Society

Conference, Bristol, United Kingdom, 2017

• F.S. Dias, F. Kiraly, G.W. Peters, "Testing for Serial Correlation of Unknown

Form Using Signed Path Dependence", 2nd International Conference on

Econometrics and Statistics, Hong Kong, 2018

• F.S. Dias and G.W. Peters, "A Non-Parametric Test and Predictive Model for

Signed Path Dependence", published in Computational Economics, 2019

• F.S. Dias, "Using Conditional Asymmetry to Predict Commodity Futures

Prices", submitted to the International Journal of Financial Markets and

Derivatives, 2020
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• F.S. Dias and G.W. Peters, "Option Pricing with Polynomial Chaos Ex-

pansion Stochastic Bridge Interpolators and Signed Path Dependence",

Preprint, 2020, available at https://papers.ssrn.com/sol3/

papers.cfm?abstract_id=3588871

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3588871
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3588871


Chapter 2

Literature Review

This chapter provides a review of important theoretical concepts and empirical

evidence already documented in existing literature. Such results will be relied

upon throughout the remainder of the thesis.

2.1 The Efficient Markets Hypothesis

The arrival of new information into asset price formation has been subject of

extensive discussion. If such information is always fully reflected and incorpo-

rated into market prices, asset returns should be largely unpredictable and in

the long run driven by compensation for taking market risk. Such a perspec-

tive on the driver for returns on investment is most directly justified in settings

in which there exists a competitive double auction market with informed ra-

tional market participants that will not make irrational errors on a systematic

basis, and instead will exploit any known informational inefficiency until its ex-

haustion. This is typically formulated in financial mathematics pricing theory

through concepts such as the Efficient Market Hypothesis (EMH), von Neumann

Morgenstern rationality and other related financial assumptions on markets and

agent behaviours as captured in, for instance, the technical discussions on such
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assumptions in Chapters 9 and 14 of [9].

Initial work on the EMH focussed heavily on statistical properties of stock

prices ([10],[11],[12]), arguing that in strongly efficient markets asset prices

fluctuate in unpredictable and completely random ways. The seminal work in

[5] has subsequently provided the definition of three forms of financial market

efficiency:

• Weakly efficient markets, where the market price of an investment incor-

porates all information contained in the price history of that investment,

meaning that historical price series and trends have no value to predict

future prices. A mathematical interpretation of this level of efficiency is

that changes in market prices exhibit no form of serial dependence and

knowledge of a stock’s price history cannot produce excess performance

as this information is already incorporated in the market price. This form,

if true, also means that technical analysis (or chartism) techniques (i.e.

analysing charts of prices and spotting patterns) will not produce excess

performance.

• Semi-strong efficient markets, where the market price of an investment

incorporates all publicly available information. Knowledge of any public

information cannot produce excess performance, as this information is al-

ready incorporated in the market price. This form, if true, means that fun-

damental analysis techniques (i.e. analysing accounting statements and

other pieces of financial information) will not produce excess performance.

A mathematical interpretation of this level of efficiency is that changes in

market prices exhibit no form of serial dependence and that there is no

other lagged exhogenous variable known to the general public that can be

used to predict future changes in market prices.

• Strongly efficient markets, where the market price of an investment in-
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corporates all information, both publicly available and privately available,

for example information about a share price that is available only to com-

pany insiders. Knowledge available only to insiders cannot produce excess

performance as this information is already incorporated in market prices.

Stock markets around the world are subject to regulation. Often rules exist

to prevent individuals with access to price sensitive information, which is

not yet public, from using this information for personal gain. For exam-

ple, senior management involved in merger and acquisition talks are often

banned from trading in the stock of their company. Such rules would be

unnecessary if strong form efficiency held. However, one can argue that

if senior management were allowed to trade their own company’s stock,

then strong form EMH would be possible.

Such school of thought has evolved considerably and several different tests

have been developed.

Tests for the weak form of financial market efficiency are similar in nature

to the test given in [13]: let Pt be the price of a stock at time t. Assume that Pt

obeys the following equation:
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If a market is weakly efficient, αi = 0 for any K ≥ 1, K ∈ N and εt are i.i.d.

In [13], Equation 2.1 was applied to the daily changes of the FTSE 30 index

(representing the UK stock market) and the authors have concluded that in their

experiment αi was statistically equal to zero for any K ≥ 1 and they failed to

reject the hypothesis that the residuals of the model were i.i.d.

Similar experiments were applied to other markets, finding similar results.
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In [14] a Genetic Algorithm was developed to test the weak form of the EMH in

the EUR/USD rate by finding the best parameters of a technical trading system

that would yield the best returns in a training sample and then the returns of the

same algorithm were tested out-of-sample, with the algorithm being updated on

a rolling basis. Their procedure found that best performing trading rules in the

training sample could not perform well out-of-sample, yielding support for the

weak form of the EMH.

There is some evidence, however, that the weak form of the EMH might be

violated only during small intervals of time. In [15] the authors split the time

series of concern into disjoint partitions and found that, at times, the residuals

were not i.i.d. within a partition even though they could not reject the hypothesis

of the residuals being i.i.d. across the entire time series.

It’s clear, however, that the fact that a specific test does not detect serial

dependence in a given price series does not guarantee in itself that serial depen-

dence is not present: it is only evidence that a particular form of dependence is

not present, but there might still be another form of serial dependence that was

undetected due to test misspecification. This motivates a continuous research

on finding potential new models that can cope with such alleged dependence

and, ideally, use the detected dependence to make informed predictions of fu-

ture market behaviour.

Tests of semi-strong and strong form market efficiency were also extensively

studied. These are outside of the scope of the present thesis as the goal of this

research is to formulate models for serial dependence that can provide informa-

tion about future market returns without the aid of any exogenous variables,

either of public knowledge or private knowledge. Testing the strong form of the

EMH is particularly problematic as a puristic test would require the researcher to

have access to information that is not in the public domain. Nonetheless, studies

can be made focussing on how well-timed were the purchases and sales made
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by company insiders. A notable study [16] found that purchases made by insid-

ers earned abnormal returns of more than 6% per year; however, sales made by

insiders did not earn significant abnormal returns.

Tests of EMH are fraught with difficulty. There is a substantial body of lit-

erature proving the existence of mispricings, in contravention of EMH. Unfortu-

nately, there is also a substantial body of literature providing evidence for various

forms of EMH. Both schools of thought can cite a great deal of empirical evidence

and an impressive wealth of statistical tests.

It is reasonable to ask, from a philosophical point of view, how it could come

about that we have categorical proof of mutually contradictory statements. One

possible explanation is that many published tests make implicit and explicit, but

possibly invalid, assumptions (for example normality of returns, or stationarity

of time series). Some of the differences are purely differences of terminology.

For example, do we regard anomalies as disproving EMH, if transaction costs

prevent their exploitation?

More subtle is the need to make an appropriate allowance for risk. The EMH

is not contradicted by a strategy which produces higher profits than the market

portfolio by taking higher risks. The market rewards investors for taking risks,

so we expect, on average, a high-risk strategy to result in higher returns. What

would contradict the EMH is an investment strategy that provided returns over

and above those necessary to compensate an investor for the risk they faced.

Unfortunately, there is no universally agreed definition of risk, and therefore no

perfectly accurate way of measuring whether any detected excess returns have

arisen out of excess risk or out of violations of the EMH.

The question of whether or not markets are efficient has important impli-

cations for investment management. Active fund managers attempt to detect

exploitable mispricings, since they believe that markets are not universally ef-

ficient. Passive fund managers simply aim to diversify across a whole market,
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perhaps because they do not believe they have the ability to spot mispricings.

If markets are inefficient, we would expect active managers with above average

skill to perform better than passive managers. However, performance should be

considered net of various fees and transaction costs (e.g. brokerage, market im-

pact). To demonstrate an exploitable opportunity in the market, the opportunity

should be sufficiently large to remain intact even after all these costs are taken

into account.

Moreover, different stock exchanges have different levels of required disclo-

sure of information. Hence it would be reasonable to expect different markets

to have different levels of efficiency. For example, the New York Stock Exchange

(NYSE), which requires a high level of disclosure, should be more efficient than

a market with limited disclosure requirements.

There is also no commonly accepted definition of what constitutes publicly

available information. For example, unlike professional fund managers, private

investors are unable to gain access to the senior management of companies.

Clearly, fund managers have an advantage in terms of being able to form an

opinion on the competence of the management team and the strategy of the

company. Fund managers are also increasingly utilising alternative sources of

data (e.g. satellite images, web searches, social media etc) to generate excess

performance. Even if information is publicly available, there is a cost involved

in obtaining the information quickly and accurately. Any advantage achieved by

acting on price relevant information could well be eroded by the cost of obtaining

and analysing that information.

Finally, it’s noted that tests of the EMH might never be conclusive, as there

is no ground truth defining what is an "Efficient Market". Tests are based on

premises and assumptions and conclusions are based on inductive reasoning

and no matter how large the sample of empirical observations supporting or not

supporting a hypothesis, this is just inferring a hypothesis from singular events.
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Any conclusion drawn this way may always turn out to be false.

2.2 Behavioural Finance and Prospect Theory

The EMH has a key underlying assumption that an investor is rational and has

well-defined and stable preferences regarding the outcomes of its investments.

Further, rational investors are assumed risk-averse and take decisions by max-

imising their expected utility - this is also known as Expected Utility Theory

(EUT). Von Neumann and Morgenstern [17] established a rigorous axiomatic

basis for the expected utility approach, which still forms the foundation for most

of the economic literature on investor behaviour under conditions of uncertainty.

One of the consequences of the axioms of Von Neumann and Morgenstern is that

the utility function of a rational investor is smooth and convex.

Having said that, since its inception, the Expected Utility Theory (EUT) has

drawn criticism from various quarters, primarily as a result of its axiomatic char-

acterisation of preferences. These critics include Friedman and Savage [18],

who argued that an individual can have different utility functions (to be under-

stood as attitudes to risk), depending on initial wealth. This observation was

motivated by people’s contrasting tendencies to buy insurance (risk-averse) and

gamble (risk-seeking). In the Friedman and Savage approach, individuals are

risk-seeking at low levels of wealth, and risk-averse at high levels of wealth.

Similarly, Markowitz [19] also criticised the general underpinnings of the EUT,

arguing that utility should be measured relative to changes from a reference

point rather than in absolute values of wealth.

Perhaps the most famous critique of the EUT emerged in the 1970s from a

series of papers by two psychologists, namely Daniel Kahneman and Amos Tver-

sky, culminating in their seminal 1979 paper on Prospect Theory [20]. Prospect

theory was borne out of various laboratory experiments and sought to detail how

human decision-making differs systematically from that predicted by EUT, and
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how human beings consistently violate the rationality axioms that form its basis.

The model is descriptive: it tries to model real-life choices, rather than optimal

decisions.

There are two phases of decision-making described in Prospect Theory:

1. Editing/framing phase - where outcomes of a decision are initially ap-

praised and ordered.

2. Evaluation phase - choosing among the appraised options.

Editing leads to a representation of the acts, outcomes and contingencies

associated with a particular choice problem. It involves a number of basic op-

erations that simplify and provide context for choice. The two basic operations

involved in the editing process (others also exist) are:

• Acceptance: people are unlikely to alter the formulation of choices pre-

sented.

• Segregation: people tend to focus on the most ‘relevant’ factors of a deci-

sion problem.

Within this process, framing effects refer to the way in which a choice can

be affected by the order or manner in which it is presented. Standard economic

theory considers such transformations to be innocuous with no substantive im-

pact on decisions.

Once prospects are edited, decision makers move on to the evaluation stage

where they make their choice. Kahneman and Tversky observed a number of

behavioural patterns in people when evaluating various alternatives. Some be-

havioural patterns include:

• Reference Dependence or Anchoring Bias: people derive utility from gains

and losses, measured relative to some reference point, rather than from

absolute levels of wealth. This emerges from the idea that people are more
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attuned to changes in attributes rather than absolute magnitudes. This

generates utility curves with a point of inflexion at the chosen reference

point.

• Endowment effects: The endowment effect occurs when a person’s prefer-

ences depend upon what they already possess. This implies that a person’s

preferences depend upon a certain reference point, perhaps determined by

the person’s possessions.

• Loss Aversion: People are much more sensitive to losses (even small ones)

than to gains of the same magnitude. In experiments, the pain from a loss

is estimated to be twice as strong as the pleasure from an equivalent gain.

Thus, utility curves are asymmetrical in the domain of gains and losses

relative to some reference point and are not necessarily convex.

Prospect Theory has been used to explain some puzzles that could not be

explained by the EUT by including the concept of asymmetry in the pricing of

stocks. Benartzi and Thaler [21] proposed an explanation for the well-known

puzzle that the long-term returns of US equities are higher than the long-term

returns of US Treasury Bills by a much greater margin than predicted by the EUT

([22]). According to their theory, loss averse investors will require much higher

returns (and hence much lower prices to the stocks) to compensate for potential

losses arising out of investments in stocks than rational investors assumed by the

EUT.

A different puzzle is noted by [23] that stocks of companies that are either

distressed, bankrupt or that had just come out of an IPO have average returns

that are lower than other stocks of similar or even lower risk of failure - some-

thing that is inconsistent with the idea that the market prices risk rationally,

as higher risk assets in theory should yield higher returns. They formulated a

model that incorporated asymmetrical outcomes and non-convex utilities and
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noted that stocks with return distributions that are heavily right-tailed would be

priced higher than other stocks (hence yielding lower returns). In their study,

they noted that distressed and bankrupt stocks on average underperform but

a small minority become success stories and command extremely high returns.

Similarly, a small minority of new IPOs grow fantastically well from a small com-

pany to the new Google or the new Amazon. The unlikely possibility of such

strong gains is overweighted by investors that are willing to pay a high price for

these assets, even it this means a low expected return. Consistent with [23], an

empirical study made by [24] found that the higher the predicted skewness of

an initial public offering stock, the lower is its long-term average return.

Behavioural Finance might provide some explanation to the existence of

serial dependence in equity returns. For example, suppose a company has filed

for bankruptcy and there is clear and public information about its asset and

liabilities to make it unequivocal that its stock is worth zero. However, the stock

still trades above zero based on hopes of a better reality for the company - or,

maybe, based on denial of reality. These hopes/denial are not compatible with

a rational investor behaviour and will fade away slowly through time, creating

a situation where the price has a definite trend towards zero, yielding a serial

dependence structure in the price of the said stock.

2.3 Serial Correlation in Financial Markets and

Trading Strategies

It is a stylized fact that asset returns do not exhibit linear serial correlation [25];

however, a number of different tests have been proposed in the literature which

have detected statistically significant evidence that asset returns exhibit some

form of serial correlation which is not necessarily linear. This could be at odds

with the weak form of the Efficient Market Hypothesis if the outcome of such
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tests can also be used to perform informed predictions about future market re-

turns.

A simplified test of the EMH can be done using standard unit root tests such

as the Augmented Dickey-Fuller test [26], the Phillips-Perron test [27] and the

KPSS test [28]which look for violations to the hypothesis that asset prices follow

a Random Walk, in line with that would be expected from the weak form of the

EMH. This approach has been applied in an investigative study in [29]. If the

price time series follows a Random Walk, then it must have a unit root while

the return series must not. This approach, however, might be considered less

powerful because its bound to detect only strong deviations of the EMH as it is

possible that a time series does not have a unit root yet still has some form of

serial correlation.

Section 3 of [30] provides an extensive review of the most well-known

methods. One of the most popular tests is the variance ratio test (VR), first

proposed by [31]. Under the VR test, the following statistic is calculated:
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Pt is the price of a stock at time t and N is the total number of price observations

since the start time 0. The test postulates that, in the absence of serial correla-

tion, the test statistic J(q) follows a standard Gaussian distribution as N →∞

for any choice of q> 1,q ∈N.

Remark 1. Notice that the VR statistic given by Equation 2.2 is in essence testing
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whether the variance of the q-period log-return is statistically equal to q times the

variance of the one-period log-return. Also, for Equation 2.2 to be well defined, N

must be a multiple of q when choosing the values of N and q to calculate the test

statistic.

In [31] it was noted that the VR statistic had optimal power when testing a

random walk model against an alternative hypotheses of a random walk plus a

mean-reverting process. Nevertheless, their results also indicated that such an

alternative hypothesis was not a complete description of stock price behaviour.

Further, several studies found that the VR statistic did not follow a standard

Gaussian distribution across several global equity markets [32].

Nonetheless, we also note the following complications of the VR test:

• If q is very large in Equation 2.2, there might too few observations to cal-

culate the VR statistic exactly as described in the equation and therefore

in practical applications overlapping data is typically used to potentially

improve power of the VR test; however, the use of overlapping data also

creates difficulties when analyzing the exact distribution of the VR test

statistic.

• Even if the VR test shows there is evidence of some form of serial corre-

lation, on its own it is not evidence of a violation of the weak form of the

EMH because the VR statistic does not provide information sufficient to

make informed predictions of future market price behaviour.

Other well-known tests aiming to reject the hypothesis of the absence of

serial correlations in financial markets include the automatic Box-Pierce test in

[33], long-memory tests in [34], Hurst Exponent tests in [35] and tests on the

frequency domain that can be found in [36]. Most of these tests are akin to

Portmanteau tests where the alternative hypothesis is arguably specified in a

loose manner.
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An interesting model used for time series prediction is given in [7], where

the authors define a linear regression of the return of an asset scaled by its ex-

ante volatility against the sign of its return lagged by some amount of time and

shows empirically there is strong evidence of predictability when a lagged 1-year

return is used to predict the return one month ahead. It has been shown that

for several markets the financial return in a particular month was positively cor-

related with the sign of the cumulative financial return of the previous twelve

months, a phenomenom the authors called "time series momentum" and that

would arguably be the source of positive returns in trend-following strategies.

Empirical experiments demonstrated that, when employed together with a suit-

able leveraging strategy based on volatility scaling, such a phenomenom could

be used to build investment strategies that offered a risk-reward ratio superior to

the one offered by conventional equity investments such as buying and holding

a passively managed investment fund linked to an equity index.

Similar studies of this nature can also be found in [37] where the authors

establish relationships between univariate trend-following strategies in assets in

futures markets and commodity trading advisors in order to examine questions

of capacity constraints in trend following investing.

Additionally, [38] found evidence of negative serial dependence in daily re-

turns of international stock, equity index, interest rate, commodity and currency

markets, with such negative dependence becoming even stronger when the re-

turns are decomposed into overnight (markets closed for trading) and intraday

(markets open for trading). These studies though lacked a stronger theoretical

basis, being instead more focussed on the empirical aspects.

Given that the construction of a profitable trading strategy is one of the main

practical uses of a model that can predict future market returns, the performance

evaluation of methods developed in this theses to test serial correlation is heavily

guided by the financial aspects, such as statistical and economic significance



2.3. Serial Correlation in Financial Markets and Trading Strategies 36

of theoretical profits. However, we also remark that some studies claim that

apparent profits from strategies based on serial correlation might actually not

be arising out of serial correlation in returns but possibly out of intermediate

horizon price performance ([39]) or exogenous factors such as the presence of

informed trading ([40]) or imbalances in liquidity and transaction costs ([41]).

In such cases, the use of time series models will not yield significant benefits to

an investor in the long run, as claimed in [42].

An example of false discoveries applied to evaluating trading methods is

given in [43]. In that manuscript, amongst other things, the authors evaluated

a simple predictive strategy: an investment analyst would choose one stock ran-

domly and send predictions to 50000 different people saying that, after one

week, the chosen stock would go up and predictions to other 50000 different

saying the same stock would go down. At the end of that week, the analyst

would check if the stock went up or down and from the group of 50000 peo-

ple that received the correct "prediction" a week before, the analyst would send

25000 predictions saying that, after one week, the stock would go up and 25000

predictions saying that the stock would go down. And the same process is re-

peated every week for ten weeks. At the end of 10 weeks, 97 people would have

seen the analyst "predict" correctly the sign of the stock return one week ahead

for ten weeks in a row which, from their point of view, it would have been very

unlikely to be obtained by random guess (p= 0.000976). As a result, these 97

people conclude that the model used by the investment analyst has superior pre-

dictive ability to predict the sign of a stock return, and that is clearly a wrong

conclusion. The authors used this example to warn anyone evaluating predic-

tive market models to avoid inadvertently creating multiple testing biases which

can come, for example, from model overfitting, and proposed corrective actions

based on standard multiple inference tests, such as the Benjamini and Yekutieli

Test [44].
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Heeding this warning, the predictive methods in Chapters 3 and 4 have

always been evaluated in out-of-sample environments and a minimalist num-

ber of parameters has always been chosen. In particular, the choice of a static

training sample for the machine learning method of Chapter 3 meant in practice

that there was no parameter calibration on new market data for more than nine

years, and the model still performed well even after being left without being

updated for such a long time interval, which can be seen as a good evidence

against overfitting biases such as the one mentioned in [43].

2.4 Machine Learning and Predictive Models

for Financial Markets

It is noted that this thesis uses cross-validation and bootstrap techniques to cali-

brate and test the predictive model proposed. A comprehensive review of these

techniques can be seen in [45]. Numerous studies have used similar techniques

to extract serial dependence and predict future behaviour in market prices: [46],

[47] and [48] to name a few.

In [46], three different classifiers are used to predict the sign of the return

of the Dow Jones Industrial Average index on a given day based on the returns

of the previous days. These classifiers are based on an Artificial Neural Network

(ANN), k-Nearest Neighbour algorithm and a Decision Tree, respectively.

All three algorithms had their parameters calibrated using a 5-fold cross

validation, with 80% of the data being used to train the model and the remaining

20% of the data used to evaluate the classification error. The authors reported

60% accuracy in the prediction using the ANN classifier and 57% accuracy in the

prediction using the other two classifiers, with the prediction accuracy measured

by the number of days a sign was correctly predicted against the total number

of days for which a prediction was made.
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In [49] the authors used machine learning methods to choose individual

stocks as components of equity investment portfolios and to make predictions of

expected returns of stocks and equity indices. The authors investigated nearly

30,000 individual stocks over 60 years from 1957 to 2016 and used as predictors

94 characteristics for each stock, interactions of each characteristic with eight ag-

gregate time-series variables, and 74 industry sector dummy variables, totalling

more than 900 baseline signals. These predictors were used to fit, for each stock,

different calibrations of Neural Networks, Random Forests and Boosted Regres-

sion Trees, with the fitted models used for prediction and selection of stocks

to invest based on the highest predicted expected return. The machine learning

methods were also benchmarked against a simple Ordinary Least Squares fitting.

The authors reached important conclusions:

• Price return over the last month (which they referred to as one-month

momentum) was the most influential predictor in all machine learning

models, with the second most influential predictor being the size of the

company being traded.

• Shallow learning (between one and three layers in the neural network)

outperformed deep learning (more than three layers in the neural net-

work), which the authors presumed to be a result of the low signal-to-noise

ratio typical of financial returns and the fact that financial time series, how-

ever complete, will always contain substantially less observable data than

other non-financial settings such as computer vision.

• Using machine learning methods to choose portfolios increased the Sharpe

ratio of the investment portfolio from 0.61 (if no machine learning is ap-

plied and the investor simply buys and holds a stock) to 1.35 (if the stocks

are chosen based on a rank of the expected returns predicted by a neural

network algorithm).
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Studies such as the one aforementioned have interesting value in the field

of Computational Economics though they lack a clear link to Time Series models

predominantly used in the field of Econometrics, which is the main area of re-

search in the present thesis. Therefore, although similar machine learning and

classification methods were used to guide part of our research, these methods do

not provide a complete model framework needed in our research, being mostly

of ancillary value.

2.5 Sign Tests and Financial Event Analysis

Stock prices can be affected by events happening in previous days - which could

cause some form of return predictability if the impact of the event can be forecast.

An area of active research for these effects is Event Analysis: according to [50]

there are at least 500 published papers that deal with event study methodology

and this number continues to grow. A widely used approach to analyse these

events is based on sign tests. Such concept, brought to mainstream finance by

[51] and refined by [52], is based on the assumption that if market prices are

reflecting all the information available due to the occurrence of any particular

event, abnormal returns should not happen after that event and therefore the

frequency of positive and negative returns conditional on that event occurring

should stay unchanged compared to its unconditional long term frequency.

The earliest documented use of a sign test for financial event analysis can be

seen in [53], which examines the stock price reaction to stock splits by studying

nominal price changes after the occurrence of the split. Using a sample of 95

splits from 1921 to 1931, the author found that the price increased in 57 of the

cases but declined in only 26 instances.

In formal statistical framework, this problem has been formulated as re-

jecting a null hypothesis of no abnormal positive return frequencies after the

occurrence of the event and is based on the following test statistic:
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z=
|p0− p|

p

p (1− p)N

where p0 denotes the observed fraction of positive returns after the event

in question, p is the long-term unconditional frequency of positive returns and

N is the number of observations. Under the null hypothesis, this statistic asymp-

totically follows a Normal distribution with zero mean and unit variance.

The test specification above has the potential to be very powerful regard-

ing situations with a small signal-to-noise such as finance given that it removes

a considerable amount of noise and, as such, is the preferred approach of the

present thesis. However, the sign test aforementioned requires some improve-

ment in order to be used in a time series context. For example, the "event" is not

clearly defined as a function of a lookback window or forecasting horizon or as

a function of the time series properties themselves. This limits how much the

statistic can be generalised into a prediction model or how much its power can

be studied. In fact, according to [50] the power and specification of sign tests

based on financial events have not been documented.

2.6 Business Cycles, Trading Rules and

Conditional Asymmetry

Numerous tests have been developed to identify business cycles in equity markets

whereby there are periods of consistently low returns (informally known as "bear

markets") and periods of consistently high returns (informally known as "bull

markets").

In one of the studies, using over 160 years’ worth of monthly US equity

data, [54] used a variation of the Markov Switching model [55] to explain fea-

tures such as the duration of these states and the volatility dynamics under each

market.
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Whilst studies using 160 years worth of data should be looked at with cau-

tion given that markets are very different than 160 years ago with regards to

the use of automation, the trading volumes and the industry/sector of major

corporations, some features are still relevant to present days. For example, the

S&P 500 had its lowest first-quarter return ever in the first-quarter of 2020, even

lower than the stressful record set in the first-quarter of 1938 [56], meaning that

old observations representing high volatility periods are still relevant to present

days.

An application of business cycle models in the UK markets can be seen in

[57], also demonstrating clear periods of consistently low returns and periods of

consistently high returns. The presence of such periods of continuity in the di-

rection of the market has motivated studies attempting to detect whether at least

the future sign of the market returns is predictable based on previous returns: a

few recent examples can be seen at [58], [59] and [60].

Subsequent work on an extended universe of assets and over a greater his-

torical record [61] found that in each decade since 1880 investment strategies

based on time series momentum using lookback horizons of one month, three

months and twelve months would have delivered positive average returns with

low correlations to traditional asset classes. The authors claimed such a strategy

has delivered positive average returns in each market, with an average Sharpe

ratio of approximately 0.4 net of transaction costs (where the Sharpe ratio is

defined as the quocient between the annualised return of the strategy and is

annualised standard deviation). Based on such evidence, the authors have con-

cluded that the presence of monthly trends in global market returns is a pervasive

feature of such markets.

Another study applied simple well known trend-following trading rules by

the means of different parameterisations of moving average crossovers and ob-

served that such trading rules, when applied to 22 different commodity futures
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prices on a monthly frequency, yielded positive returns which were both eco-

nomically and statistically significant [62].

Some studies attempted to ascertain whether a potential source of nonlin-

ear serial dependence in financial returns arises out of conditional asymmetry.

Under the presence of conditional asymmetry, the shape of the probability dis-

tribution of the returns varies in a way that can be expressed as a function of

previous returns.

Using a time-varying log-gamma distribution, in [63] the authors found in

the NYSE composite daily returns from 1981 to 1999 evidence of time varying

skewness driven by, amongst other factors, the return in the previous day. In

[64] the authors obtained skewness estimates from the risk-neutral probability

distribution taken from a sample of option prices from 1996 to 2005 and verified

strong correlation between risk-neutral skewness and the future returns of the

underlying stocks.

2.7 Option Pricing Theory: Real-World and

Risk-Neutral Distributions

The question of predictability of market returns has drawn strong interest by

many academics and practicioners in the field of finance. Such level of interest

does not appear to wane and recent work has brought additional evidence to be

analysed that, though relatively well documented, is yet to be incorporated into

risk management practices and mainstream option pricing theory.

In modern option pricing theory it is accepted that the price of an option

does not depend on the actual probabilities of events happening and instead

depends on an agreement between buyers and sellers of an acceptable value for

these probabilities. To understand why, this can be demonstrated using a simple

example.
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Suppose we are back to the day just before the final of the Fifa World Cup

2018 and we know the final is France vs Croatia, so we know for sure that there

are only two possible outcomes to who is going to be the champion: either France

or Croatia. However, there is disagreement between the actual probabilities of

who is going to be the champion. French supporters believe there is a 70%

probability of France being the champion. Croatian supporters, on the other

hand, believe Croatia will surprise France, and therefore for them the probability

of France being the chamption is only 45%.

One French and one Croatian supporter would like to bet on the outcome

of the final, but there is no market for that, so they come to Fabio Dias, a clever

middleman who proposes the following deals:

• For the French supporter, Fabio offers a deal whereby if France is the cham-

pion a £100 bet returns £142.85 (with a full loss if Croatia is the cham-

pion). The French supporter sees it as a fair bet as, for him, the expected

value of the £100 bet is £100 so the French supporter accepts it in princi-

ple.

• For the Croatian supporter, Fabio offers a deal whereby if Croatia is the

champion a £100 bet returns £181.82 (with a full loss if France is the

champion). The Croatian supporter also sees it as a fair bet given that, for

him, the expected value of a £100 bet is £100 so the Croatian supporter

accepts it in principle.

In this situation, Fabio would have guaranteed a profit of at least £18.18

with no risk (in case Croatia is the champion and Fabio has to pay £181.82 to

the Croatian supporter out of the £200 initially paid by the two supporters), with

a chance of a profit of £57.15 in case France is the champion.

The Croatian and French supporters, however, are more clever than Fabio

and decide to talk to each other before signing the deal with the middleman.
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They notice that if they agree between themselves a deal where both pay £100

but the winner takes all the £200 home, they will get an outcome that is better

for both of them than if they had dealt with Fabio. So they tell greedy Fabio to

look for another person to exploit and they agree to the alternative deal between

themselves directly.

In this simple example, we can see that, irrespective of whether the support-

ers agreed the actual probability of France being the champion, they agreed on a

price for the bet that implied that the probability of France being the champion

was 50%. In the terminology of modern option pricing theory, this probability

is called the risk-neutral probability. The actual probability of France being the

champion did not affect directly the price of the bet. This probability is called

the real-world probability. The two probabilities relate to each other via a quan-

tity called the market price of risk. The market price of risk reflects how much

market participants are willing to pay to insure themselves in case certain events

occur.

Notice that real-world probablities always relate to future events and there-

fore there is no "ground truth" for them in the sense that any of their properties

will depend on model assumptions. On the other hand, there is a "ground truth"

for some properties of risk-neutral probabilities, which can be obtained by simply

looking at actual transaction prices in the derivatives market. More specifically,

the Fundamental Theorem of Asset Pricing [65] states that when there are no

arbitrage opportinuties there is a risk-neutral measure equivalent to the real-

world probability measure such that the price π at time zero for any derivative

contract with maturity at time T is given by:

π=

∫ ∞

−∞
exp(−rT )q(x) f (x)dx (2.3)

where r is the continuously compounded risk-free interest rate from time zero
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until time T , q(x) is the risk-neutral distribution of the asset price x at time T

and f (x) is the payoff of the derivative contract at time T given the asset price.

Obviously, in practical applications the probabilities of events are more com-

plex than a simple binomial distribution as in the footballing example. For exam-

ple, in practical applications in stock markets it is widely known that derivatives

(which can be seen in the context of our footballing example as bets) that pay

at equity market crashes are more expensive than derivatives that pay at equity

market rallies - a phenomenom also known as the "volatility skew". The pres-

ence of a volatility skew does not necessarily mean that markets are more likely

to go down than to go up. It only means that market participants are willing

to pay more to insure themselves against markets going down than to insure

themselves against markets going up.

The empirical findings of [7], [61], [66] and [67] are compatible with asset

price dynamics models for the real-world probability distribution that incorpo-

rate an element of time dependence in the mean of the process. There are al-

ready several models that can incorporate time dependent mean, such as [68],

[69] and [70]. However, these models have the drawback that they imply a

non-negligible linear serial dependence in asset returns, a condition that is not

expected to hold in Equity and Currency markets [25]. As such, these models

are well established for use in Interest Rate and Commodity markets.

On the other hand, risk-neutral distributions that accurately reflect all mar-

ket prices being observed must be able to handle somewhat complex and ar-

bitrary distributions. Non-parametric or semi-parametric models that can be

calibrated to option prices can be found in previous work such as [71], [72] and

[73].

The research in [71] is considered a pioneering work in the field of option

pricing under the assumption of arbitrary stochastic processes for the underlying

asset price. In this case, the risk-neutral density qJ(PT ), where PT is the asset
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price at time T , has a specific functional form given by:

qJ(PT ) = a(PT )+
κ2(qJ)−κ2(a)

2!
d2 a(PT )

d P2
T

−
κ3(qJ)−κ3(a)

3!
d3 a(PT )

d P3
T

+
κ4(qJ)−κ4(a)+3(κ2(qJ)−κ2(a))

2

4!
d4 a(PT )

d P4
T

+ε(PT )
(2.4)

where ε(PT ) is a residual error, a(PT ) is an approximating density function (the

log-normal density was chosen in [71]) and κi(q) is the i-th cumulant of the

distribution corresponding to density q. For reference, the first three cumulants

of any given distribution are the three central moments and the fourth cumulant

is a measure of its kurtosis.

2.8 Polynomial Chaos Expansion

Another possible way to express complex risk-neutral distributions is the use of

Polynomial Expansions.

In [74] the authors demonstrate that any arbitrary risk-neutral distribution

q(x) can be expressed as a polynomial expansion of an auxiliary density w(x)

as long as w(x) dominates q(x), similarly to Equation 2.4. In this case, the

approximation is still made on the density function.

Polynomial Chaos Expansion (PCE), first introduced by Wiener in 1938

[75], aims to approximate a random variable that follows any arbitrary prob-

ability distribution by a weighted sum of polynomial functions of random vari-

ables following well-known, simple distributions. In the most common practical

application of PCE, let X ∈R be the random variable of interest and Y ∈Rm be

the random variable in terms of which X will be expressed, also known as the

germ. We want to find the weights w j, j ∈N such that

X =
∞
∑

j=0

w jψ j (Y ) (2.5)
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where ψ j form an orthogonal basis with respect to the probability density func-

tion f (Y ) of Y , i.e.
∫

ψi (Y )ψ j (Y ) f (Y )dY = 0

for all i 6= j.

The most straightforward case is the Hermite Chaos Expansion, where the

polynomial functions ψ j are Hermite polynomials and the random variable Y

follows a multivariate Gaussian distribution of independent marginals. A good

tutorial to PCE can be found in [76].

Risk-Neutral distributions have already been expressed using PCE in [77].

In that manuscript, the authors tested three different assumptions for the

stochastic process driving the evolution of the random variable X through time: a

Geometric Brownian Motion, an Ornstein–Uhlenbeck process and a CIR process

[78]. These processes are customarily used in financial applications to model

risk-neutral distributions of equity markets and interest rates. The authors de-

rived PCE approximations to the solutions of the Stochastic Differential Equa-

tions (SDEs) applicable to each of these processes. Their numerical simulations

demonstrated that the PCE approximations obtained provided good approxima-

tions to the known closed-form solutions with a good rate of convergence, show-

ing a promising potential for future research on the use of PCE to obtain solutions

of other SDEs that do not have closed-form solutions.

However, a natural expansion of option pricing models is to develop meth-

ods that can incorporate all available market information into a model-free de-

termination of the risk-neutral distribution by choosing an appropriate germ and

polynomial basis and linking Equation 2.3 to Equation 2.5. When observed op-

tion prices are given as input, such calibration scheme would yield PCE weights

that reflect observed option prices and guarantee by construction that the risk-

neutral distribution obtained is a valid distribution at all times, something that
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cannot be guaranteed with a naive calibration of Equation 2.4 (in this Equation

there is no guarantee that qJ(PT ) will always be greater than zero, for example).

To the best of our knowledge, Chapter 5 is the first in the literature that has

performed this link and provided a full calibration method to obtain the weights

in a Hermite Chaos Expansion, testing the results in an empirical setting.



Chapter 3

A Non-Parametric Test and

Predictive Model for Signed Path

Dependence

This chapter provides theoretical contributions to the literature by proposing in

Section 3.1 a non-parametric definition of signed path dependence and demon-

strating the sufficient and necessary conditions for it to be present in covariance

stationary time series. Further, Section 3.2 proposes a formal inference proce-

dure to detect serial correlation of unknown form based on a hypothesis testing

formulation of signed path dependence, which is validated on experiments on

synthetic data in Section 3.3. This chapter provides empirical contributions to

the literature in Section 3.5 by using the test previously defined to detect ev-

idence of serial correlation in a number of equity index and foreign exchange

markets. Additionally, based on the test statistic proposed, a predictive model is

defined and used to feed trading strategies whose out-of-sample performance is

analysed, gross and net of transaction costs.

This chapter contributes to the field of research of machine learning ap-
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plied to financial markets predicion by developing its own classifiers which are

bespoke to markets that have signed path dependence and hence will have bet-

ter classification performance than models such as Support Vector Machines,

Genetic Algorithms for trading rules and others, given that these aim to be more

generic and hence less sensitive to peculiar market features. After all, it is ex-

pected that a test whose null hypothesis is more specific to a particular problem

in financial time series is likely to have more power and more accurate esti-

mation properties than a test based on wider machine learning tools that will

consequently imply a wider scope for its equivalent null hypothesis.

This chapter focuses solely on both how to detect serial correlation in a

formal statistical manner and how to model it, paving the way to build predic-

tive models that can be used for the purposes of general market forecasting/risk

management or even for the development of trading strategies. As such, techni-

cal discussions around assumptions on the price discovery process which might

or might not generate price predictability are left outside of the scope of this

research.

Further, as with any time series, its behaviour can abruptly change due to

exogenous reasons; it is a common problem that can possibly reduce the us-

ability of time series models, even though the tuning scheme based on a rolling

observation window used in the calibration of the predictive model hereby pro-

posed can alleviate this problem by readapting the model to most recent data

and leaving obsolete data out of the fitted model.

3.1 Defining Signed Path Dependence in a Time

Series Context

In this section we propose an extension of the concept of time series momentum

introduced in [7]. In [7] it has been shown that for several markets the financial
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return in a particular month was positively correlated with the sign of the cu-

mulative financial return of the previous twelve months. Empirical experiments

demonstrated that, when employed together with a suitable leveraging strategy

based on volatility scaling, such a phenomenom could be used to build invest-

ment strategies that offered a risk-reward ratio superior to the one offered by

conventional equity investments. Our statistical framework is more general so

that it provides a model-free hypothesis test for the presence of significant cor-

relation, positive or negative, between the financial return in a given forecast-

ing horizon against the sign the cumulative financial return over any arbitrary

lookback window and use such alleged presence to predict the sign of future

market returns. We also provide a method to detect the optimal lag to be used

for forecasting and analyse our definition from the point of view of a number of

parametric econometric models.

In most of this work, we will consider a single asset whose price is observed

at different time points T ⊆ Z, interpreted as unit intervals of observation. We

will denote the log-price of the asset at time t ∈ T by p(t), the log-return by r(t),

as usual defined as r(t) := p(t)− p(t−1).

We further define cumulative log-returns over longer time scales as follows:

(i) r−n (t) = p(t)− p(t−n) =
∑n−1

i=0 r (t− i),

the (n unit intervals) lookback cumulative log-return at time t.

(ii) r+h (t) = p(t+h)− p(t) =
∑h

i=1 r (t+ i),

the (over a horizon of h unit intervals) look-ahead cumulative log-return at

time t.

As it is common, by slight abuse of notation, we will denote by the above

objects simultaneously random variables from which they may be obtained as

observations/realisations, with arguments t,n,h being the only quantities con-

sidered fixed and not random. When expectations are taken, they are taken over

the whole generative process. In the definitions below, we will condition on some
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observational knowledge at a time point t; at this state, r−n(t) is constant (not

random) for any n, while r+h is a random variable since the future price p(t+h)

is unknown. Additionally, throughout this chapter we shall be referring to r as

the estimated long term mean log-return of the asset being modelled and we

shall refer to s(t+1) = sgn(r(t+1)− r) where sgn is the sign function. In the

context of estimation, bs(t +1) ∈ {−1,1} is the predicted realisation of s(t +1)

given the observed realisation of the log-return time series up until time t.

Definition 1 generalizes the concept of time series momentum by the use of

conditional expectations of cumulative returns:

Definition 1 (Signed Path Dependence). We say the considered asset (or the as-

sociated process) has signed path dependence with memory n at forecast horizon

h> 0 - or simply dependence(−n,+h) - if, for all t where r−n (t) 6= nE[r (t)] it

holds that

sgn(r−n (t)−E[r−n (t)])(E[ r+h (t)| r−n (t)]−E[r+h (t)]) 6= 0 (3.1)

Definition 1 intuitively says that, in a process with signed path dependence,

knowledge of the lookback cumulative innovation over n time intervals in the

past allows us to guess the sign of the look-ahead cumulative innovation h inter-

vals in the future. If the expression on the left side of Equation 3.1 is positive,

this sign will be the same, and if negative, the sign will be the opposite.

We intentionally look only at two cumulative innovations and only at the

sign of the future one to keep the definition intentionally parsimonious; this will

allow us to check whether there is serial correlation without having to specify

the exact quantitative nature of such a dependence. While being less strong

for forecasting than an explicit forecasting model, we intentionally abstain from

a more parametric approach as we first want to answer the question whether

there is any form of dependence that could be forecast instead of right away
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making a forecast of a specific form. However, our definition still allows one

to forecast future innovations with more accuracy than making a random guess

(by accurately forecasting their signs) and such a forecasting exercise on its own

might after all be the best forecast one can make about future innovations if they

are highly dynamic and seemingly unpredictable.

Formally, we would like to point out that the definition of signed path depen-

dence depends on the lookback and look-ahead horizons n and h, as well as p(t)

considered as a random variable. n and h are parameters of either definition, and

while p(t) is unobserved we will see that “having serial dependence” is a prop-

erty that can be estimated from observations of p(t) via predictive strategies.

Further properties and basic observations pertaining to signed path dependence

of a time series are listed in Remark 2 below.

Remark 2. Some remarks about Definition 1:

(i) The main advantage of the new dependence concept over established measures

of correlation such as Pearson and Copula-based measures comes to the fact

that it naturally removes from the estimation noise that is highly present

in financial applications. Such noise makes impossible to determine linear

serial dependence measures for equities, as documented by [25]. However,

at the end of the chapter there are tests on empirical data demonstrating

superior performance to the Pearson counterpart, which comes exactly from

the removal of noise in the estimation framework.

(ii) The definition could also have been made as a function of prices only at three

time points, namely at times t, t+h, and t−n.

(iii) The same asset can have both positive dependence (−n,+h) and negative

dependence (−n′,+h′) simultaneously as long as the pair (n,h) is different

from the pair (n′,h′).

(iv) As the definition requires the inequality to hold for all time points t, it is

possible that it won’t hold across the entire process; however, one can also
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define a local version of dependence where the inequality would hold only in

a localised version of the process.

(v) The definitions make no assumption on the probability distribution of the

returns of the asset or the rate of decay of statistical dependence of two points

with increasing time interval.

(vi) The definitions are independent of the time scale on which the estimation is

done: given three time points, it does not matter whether or not the observa-

tions have finer resolution. This means parameters for high frequency data

and low frequency data can be estimated using the same algorithm and even

the same time series: for example, if one has a high frequency data series but

sets the forecasting horizon h to a sufficiently large number, one will be in

essence making low frequency forecasts.

In this chapter, we theoretically validate our definition of signed path depen-

dence by verifying the conditions for its presence in the class of linear processes

that admit a Wold representation.

A key assumption in the models subsequently defined is that the input series

is covariance stationary. Such a property is defined as follows:

Definition 2 (Covariance Stationarity). A time series r(t) is covariance stationary

if E[r (i) r (i+ p)] = Cp for all i> 0, i+ p> 0 where Cp is a constant number.

We now provide the necessary and sufficient conditions for positive or neg-

ative path dependence in the case of covariance stationary processes. Our char-

acterization will build on the the explicit classification of such processes given

by Wold’s representation Theorem 1 [79].

Theorem 1 (Wold Representation Theorem). Every covariance stationary time

series r(t) can be written as the sum of two time series, one deterministic and one
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stochastic, in the following form:

r(t) =
∞
∑

j=0

b jε(t− j)+η(t), (3.2)

where εt is an uncorrelated innovation process, b j ∈ R, and η(t), is a pure pre-

dictable time series, i.e. P [η(t+ s)|r(t−1), r(t−2), . . .] = η(t + s),s ≥ 0 where

P [η(t+ s)|x] is the orthogonal projection of η(t+ s) on x.

Remark 3. All linear processes have a Wold representation. Furthermore, one may

consider this theorem as an existence theorem for any stationary process.

The derivation of necessary conditions for signed path dependence in sev-

eral parametric models depends on the lemma below:

Lemma 1. Let x1≤i≤n be independent and normally distributed random variables

with zero mean and variance s2
i . For a fixed j, 1≤ j ≤ n, given positive weights

b1≤i≤n we have that

E

�

x j

�

�

∑

1≤i≤n

bi x i

�

= b j

s2
j

∑

1≤i≤n b2
i s2

i

∑

1≤i≤n

bi x i (3.3)

Lemma 1 allows us to validate the definition of positive dependence in a

number of well known time series model classes, as long as the innovations are

Gaussian. We note that extensions can be developed for other classes of driving

white noise sequences, including heavy tailed cases.

Proof. Define z =
∑

1≤i≤n x i. Since the x i are independent, z is normally dis-

tributed with zero mean and variance
∑

1≤i≤n s2
i , hence (x i,z) are jointly nor-

mally distributed with correlation ρx i ,z =
si

q

∑

1≤i≤n s2
i

. From this result it follows

that

E

�

x j

�

�

∑

1≤i≤n

x i

�

=
s2

j
∑

1≤i≤n s2
i

∑

1≤i≤n

x i,

which implies the equality that was to be proven.
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The following theorem gives the conditions for negative or positive path

dependence for processes admiting a Wold representation:

Theorem 2 (Signed Path Dependence in Covariance Stationary Processes). Let

r (t) be a purely non-deterministic covariance stationary process with Gaussian in-

novations that has a Wold representation r (t)=
∑∞

j=0 b jε (t− j) with uncorrelated

innovations such that ε (t)∼N
�

0,σ2
t

�

.

If Ψ(h, t) :=
∑h

i=1

∑∞
j=h bi+ j−hσ

2
t−i− j+h+1 then the following characterization

holds:

(i) The process r (t) has positive dependence(−n,+h) if and only if Ψ(h, t)> 0

for all t.

(ii) The process r (t) has negative dependence(−n,+h) if and only if Ψ(h, t)< 0

for all t.

All above statements are independent of n.

Proof. Observe the following identity

r+h (t) =
h
∑

i=1

∞
∑

j=0

b jε (t+ i− j)

=
h−1
∑

i=0

 

bi

h−i
∑

j=1

ε (t+ j)

!

+
∞
∑

i=h

h
∑

j=1

bi+ j−hε (t− i− j+h+1),

(3.4)

implying that

E[ r+h (t)| r−n (t)] =
∞
∑

i=h

h
∑

j=1

bi+ j−hE[ ε (t− i− j+h+1)| r−n (t)]. (3.5)
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Similarly, the following identity holds

r−n (t) =
n−1
∑

i=0

∞
∑

j=i

b jε (t− i− j)

= b0ε (t)+(b0+ b1)ε (t−1)+ · · ·+ε (t−n+1)
n−1
∑

i=0

bi+ε (t−n)
n
∑

i=1

bi+ · · ·

=
n−1
∑

i=0

 

i
∑

j=0

b j

!

ε (t− i)+
∞
∑

i=n

 

i
∑

j=i−n+1

b j

!

ε (t− i)

=
∞
∑

i=0

 

ε (t− i)
i
∑

j=max(0,i−n+1)

b j

!

(3.6)

which implies that

E[ r+h (t)| r−n (t)] =

∞
∑

i=h

h
∑

j=1

bi+ j−hE



 ε (t− i− j+h+1)|
∞
∑

i=0

 

ε (t− i)
i
∑

j=max(0,i−n+1)

b j

!



.
(3.7)

Now, using the result from Lemma 1 yields the following expression

E[ r+h (t)| r−n (t)] =

∑h
i=1

∑∞
j=h bi+ j−hσ

2
t−i− j+h+1

∑∞
i=0σ

2
t−i

�

∑i
j=max(0,i−n+1) b j

�2 r−n (t) . (3.8)

Now define Ψ (h, t) =
∑h

i=1

∑∞
j=h bi+ j−hσ

2
t−i− j+h+1. As the denominator of

the expression in Equation 3.8 will always be positive, it follows that the sign

of E[ r+h (t)| r−n (t)] will be entirely determined by the sign of r−n (t)Ψ (h, t).

Thus if Ψ (h, t)> 0 for all t the process will have positive sign dependence and

if Ψ (h, t)< 0 for all t the process will have negative sign dependence.

Remark 4. Notice that the assumption of Gaussian innovations in Theorem 2 was

only critical in the proof to ensure that the distribution of the cumulative increments

was still Gaussian. Therefore, this assumption can be relaxed to an assumption
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that partial sums of the innovations of the process follow a stable law, i.e. their

distribution is such that a linear combination of variables with this distribution has

the same distribution up to location and scale parameters, and a similar derivation

of the same properties can be constructed that allows for heavy tailed and skewed

innovations.

Based on the results of Theorem 2, it becomes straightforward to infer in

any covariance stationary fitted time series model whether there is positive or

negative (or no) serial dependence in the sense of Definition 1 by finding its

equivalent Wold decomposition and verifying if the fitted parameter values sat-

isfy the derived conditions on the characteristic polynomial of AR and MA roots.

Moreover, notice that the definition of signed path dependence concerns

only deviations around the process unconditional expectation - i.e. the deter-

ministic part of the process. Also, if the process is linear, its innovations will

have the same variance. As such, we can state the following corollary:

Corollary 1 (Signed Path Dependence in Linear Covariance Stationary Pro-

cesses). Let r (t) be a linear covariance stationary process whose innovations follow

a distribution such that a linear combination of variables with this distribution has

the same distribution up to location and scale parameters. If r (t) has signed path

dependence of sign ζ ∈ {−1,1} with lookback nl and horizon h for some nl > 0,

then r (t) will have signed path dependence of the same sign ζ with lookback n and

horizon h for any integer n> 0.

Remark 5. Also notice that if these sufficient conditions in Theorem 2 are not

satisfied for all values of n∈N+ but only a finite subset of these, then the presence

of signed path dependence needs further refinement. In this way we comment that

these conditions are sufficient but not necessary.

To facilitate understanding, we conclude the section by enunciating two

lemmas that link the concept of Signed Path Dependence to known parametric
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time series models. These lemmas demonstrate one-to-one correspondences be-

tween parameter ranges and the presence of signed path dependence. Beyond

providing theoretical evidence and hence validation for our definition, these lem-

mas will allow us to generate data with known signed path dependence by sim-

ulating a parametric process with suitable parameter values and subsequently

use in the synthetic validation experiment given in Section 3.3. The first lemma

provides sufficient and necessary results for the simplest non-trivial case of time

series models, the AR(1) processes. The lemma supresses the constant term by

assuming that the variable being modelled has been measured as deviations from

its mean.

Lemma 2 (Signed Path Dependence in a Stationary AR(1) Process of Constant

Volatility). Assume that r (t) is a stationary AR(1) process given by

r (t) =ϕr (t−1)+ε (t) (3.9)

with i.i.d. innovations ε (t)∼N
�

0,σ2
�

and |ϕ|< 1. Then:

(i) The process r (t) has positive path dependence if and only if ϕ> 0.

(ii) The process r (t) has negative path dependence if and only if ϕ< 0.

In particular, ifϕ=0 the process has no signed path dependence, and all statements

above are independent of n and h.

Proof. From Equation 3.9 we have that

r (t) =
∞
∑

j=0

ϕ jε (t− j) . (3.10)

Now, let Ψ (h, t) = σ2
∑h

i=1

∑∞
j=hϕ

i+ j−h. It trivially follows that if ϕ > 0

then Ψ (h, t)> 0 and hence from Theorem 2 it follows that the process will have

positive path dependence irrespective of n and h. Equally, if ϕ=0 then Ψ (h, t)=

0 and as such the process will have no signed path dependence.
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Also notice that

Ψ (h, t) =σ2
h
∑

i=1

ϕi

1−ϕ
=σ2

ϕ
�

1−ϕh
�

(1−ϕ)2
. (3.11)

As whenever 0>ϕ>−1 we have that 1−ϕh> 0, it follows that whenever

0>ϕ>−1, Ψ (h, t)<0 irrespective of h and therefore, from Theorem 2 it follows

that the process will have negative path dependence.

The second lemma derives conditions for Autoregressive Fractionally Inte-

grated Moving Average (ARFIMA) models. These models generalize ARMA mod-

els by introducing long-memory features considering a non-integer differencing

parameter. Note that the ARFIMA (=FARIMA) models include the ARIMA mod-

els (as ARFIMA(p,d,q) with d integer), the ARIMA models include the ARMA

models (as ARMA(p,q)=ARIMA(p,0,q)), and the ARMA models include the AR

models (as AR(p) =ARMA(p,0)), including the AR(1) of the first lemma.

Lemma 3 (Signed Path Dependence in an ARFIMA(p,d,q) Process). Assume that

r (t) is a purely non-deterministic ARFIMA(p,d,q) process with i.i.d. Gaussian

innovations given by Φ(B)(1−B)d r (t) = Θ (B)ε (t), where Φ and Θ are poly-

nomials of degree p resp. q in the backshift operator B, with i.i.d. innovations

ε (t) ∼ N
�

0,σ2
�

. Let
∑∞

j=0 b jε (t− j) be the Wold representation of the ARMA

process Θ(B)Φ(B)ε (t) and define Ψ(h) =
∑h

i=1

∑∞
j=h bi+ j−h. It holds that:

(i) If d >−0.5, the process r (t) has positive path dependence for all h∈N+ and

n∈N+ if and only if dΨ(h)> 0; and

(ii) If d >−0.5, the process r (t) has negative path dependence for all h∈N+ and

n∈N+ if and only if dΨ(h)< 0.

Additionally, if p= q= 0, it holds that:

(i) The process r (t) has positive path dependence if and only if d > 0.

(ii) The process r (t) has negative path dependence if and only if −0.5< d < 0.
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Proof. According to [80], an ARFIMA(p,d,q) process can also be written as

Φ(B) r (t) =Θ (B)

�∞
∑

k=0

Γ (k+2d)
Γ (k+1)Γ (2d)

ε (t−k)

�

(3.12)

and therefore we have that

r (t) =
Θ (B)

Φ(B)Γ (2d)

∞
∑

k=0

Γ (k+2d)
Γ (k+1)

ε (t−k) =
∞
∑

k=0

Γ (k+2d)
Γ (k+1)

∑∞
j=0 b jε (t− j)

Γ (2d)
.

(3.13)

If d >−0.5 then
∑∞

k=h
Γ (k+2d)
Γ (k+1) > 0 and sgn(Γ (2d)) = sgn(d). Therefore, using

the same derivation as per the proof of Theorem 2, it follows that given h∈N+

the sign of dΨ(h) will determine whether the process has positive or negative

path dependence for all n.

Additionally, when p= q= 0, Φ(B) =Θ (B) = 1 and hence the process will

have positive path dependence for all h and n whenever d >0 and negative path

dependence whenever −0.5< d < 0.

Notice that ARFIMA models can demonstrate signed path dependence if

they are at least in fact in the sub-class of invertible processes and may or may

not contain long memory. In the case of reversal properties of an ARFIMA model

we learn that invertible models are also of interest and again these sub-class of

models may or may not contain long memory properties. Most interestingly,

we see that in the special case of only fractional differencing of the process, i.e.

no AR and no MA components of the process, we can only have positive path

dependence in the ARFIMA process if the process is invertible and it may or may

not be stationary or contain long memory. In the case of the ARFIMA model

with no AR and no MA components of the process, then negative dependence

can only occur in sub-processes which have the properties that they dont have

long memory, furthermore, they must be invertible and stationary.
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3.2 Inference Under Signed Path Dependence

The models in the previous section assumed some structure for the serial cor-

relation present in the series. We now derive a non-parametric hypothesis test

for signed path dependence under certain regularity conditions. These regular-

ity conditions are listed in Assumption 1. The test proposed assumes that these

conditions hold over the entire series, but one can allow for a localised version

of the test by segmenting the series being tested and testing each segment. The

inference procedure proposed aims to test the following assumption (the single

sided version of the test would swap the inequality sign for a greater than or less

than sign depending on whether positive or negative path dependence is being

tested):

H0 (Absence of Linear Correlations between Signs and Returns): given

n, for all k≤ n the sign of the sum of the previous k observations has no linear

correlation with the observation 1-step ahead, i.e. E[sgn(r−k (t)) r (t+1)] = 0

for all k≤ n.

H1 (Presence of some Linear Correlation between Signs and Returns):

r (t) are associated such that E[sgn(r−k (t)) r (t+1)] 6=0 for some value of k≤ n.

Before formally stating the not too restrictive classical regularity conditions,

a definition is needed:

Definition 3 (Lindeberg Condition). A time series r(t) is said to satisfy the Lin-

deberg condition if for all ε> 0 the following holds:

l imn→∞
1
n

n
∑

i=1

∫

|x |>ε
p

n
x2d fi = l imn→∞

1
n

n
∑

i=1

E
�

(r (i))2 I{|r (i) |>ε
p

n}
�

= 0

(3.14)

where fi is the density function of r(i) and I is the indicator function.

The intuition behind the Lindeberg condition is that, in the series being

tested, the individual contribution of any observation to the sum of the variances
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of all observations should be arbitrarily small for a sufficiently large series.

The regularity conditions are given by the following assumption:

Assumption 1. The time series being tested r(t) is comprised of deviations from the

long-term mean of a stochastic process with a well-defined mean, hence having zero

mean by definition, is covariance stationary in the sense of Definition 2, satisfies

the Lindeberg condition and weighted partial sums of the process are assumed to

follow asymptotically a Gaussian law..

The assumption that the Lindeberg condition is satisfied is very general and

few processes of interest will fail to satisfy this condition so it is not overly re-

strictive in any sense. Also notice that, as the series being tested is assumed

covariance stationary in the sense of Definition 2, Theorem 2 will guarantee

that if this series has positive or negative path dependence for a given forecast

horizon h, it will have the same property (i.e. it will be always positive or always

negative) for all values of the memory n, and at all time points t. So, one can fix

the forecast horizon h= 1 and test for signed path dependence at that forecast

horizon by aggregating the time series over t (for example, testing with daily

data if the forecast horizon h equals to one day, testing with weekly data if it

equals to one week, and so on so forth).

Before proposing our test statistic, we will state a result on which we will

base the derivation of the asymptotic distribution of our test statistic under the

null hypothesis for the class of processes which are covariance stationary. For

proof, see [81].

Theorem 3 (Central Limit Theorem for Covariance Stationary m-Dependent

Variables). Let R= r (1) , r (2) , . . . , r (n) be random variables of zero mean and fi-

nite variances such that r (t) is uncorrelated with r (t+ i) for all i>m, m fixed. If

the variables are covariance stationary and satisfy the Lindeberg condition then, as

n→∞,
∑n

t=1 r(t)
σ
p

n
D
→N(0,1) with σ2=E

�

(r (t))2
�

+2
∑m

k=1E[r (t) r (t+k)].
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The asymptotic distribution of our test statistic is given by the following

theorem:

Theorem 4 (Critical Rejection Value of the Test Statistic). Given an arbitrary

positive value of n, define d (t) = r(t)ω(t) where ω(t) =
∑n

i=1 sgn
�

∑t−1
k=t−i r(k)

�

n and

let d = 1
s−n

∑s
j=n+1 d ( j). Let r(t) be a time series that satisfies Assumption 1 and

define a random vector R :=(r (1) , r (2) , . . . , r (s))where s is a given constant. When

s→∞, under the null hypothesis of Absence of Linear Correlations between Signs

and Returns the test statistic H (R)
D
→N(0,1) with

H (R) =
d

r

∑n
τ=−n bγ(τ)

s−n

(3.15)

where

bγ(τ) =
1

s−n

s−n
∑

j=|τ|+1

�

d ( j)−d
��

d ( j−|τ|)−d
�

. (3.16)

Therefore, for a given significance threshold α, the null hypothesis will be re-

jected if |H|>Φ−1
�

1− α2
�

where Φ−1 (x) is the inverse standard normal cumulative

distribution function of x.

Proof. As ω(t+1) = 1
n

∑n
k=1 sgn(r−k (t)), we have that

E[d(t)] =
n
∑

k=1

E[sgn(r−k (t−1)) r (t)] (3.17)

and hence under the null hypothesis it follows that E[d (t)] = 0.

Further, given that r(t) is assumed covarance stationary, by Theorem 2 we

know that the value of sgn(r−k (t))E[r (t+1) |r−k (t)] is the same for all k and

hence if

sgn(r−k (t))E[r (t+1) |r−k (t)] = 0 (3.18)

for all k≤ n, then the equality will also hold for all k> n. Therefore, under the
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null hypothesis we have that

E[sgn(r−k (t)) r (t+1)] = 0 (3.19)

for all values of k which implies that d(t) is uncorrelated with d(t + i) for all

i> n, hence being n-dependent.

Additionally, as 0< |ω(t)| ≤ 1, we have that

E
�

(d (i))2 I{|d (i) |>ε
p

n}
�

=E
�

(r (i)ω(i))2 I{|r (i) |>
ε

|ω(i) |
p

n}
�

≤E
�

(r (i))2 I{|r (i) |>
ε

|ω(i) |
p

n}
� (3.20)

implying that d(t) also satisfies the Lindeberg condition given that r(t) is as-

sumed to satisfy it.

Therefore, as per Theorem 3, we have that under the null hypothesis, when

s→∞ the statistic defined in Equation 3.15 will converge in distribution to a

standard normal normal variable as bγ defined in Equation 3.16 is the sample

estimator of the variance of d.

Remark 6. There are situations where one would be interested only to test for a

specific sign of the signed path dependence. For example, if the aim is to test the

suitability of trend-following strategies, one would be interested to test only for

positive signed dependence. Equally, if the aim is to test the presence of mean rever-

sion in a particular series, one would be interested to test only for negative signed

dependence. These situations can be accommodated by making the test proposed

in Theorem 4 one-sided and rejecting the null hypothesis if H > Φ−1 (1−α) for a

positive sign dependence test or if H <Φ−1 (α) for a negative sign dependence test.

Remark 7. The test statistic defined in Equation 3.15 can also be interpreted

as a correlation coefficient if normalised by the sum of all absolute returns one-

step ahead instead of normalised by the sample variance, i.e. if calculated as
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ρ =
∑s

j=n+1 d( j)
∑s

j=n+1 |r( j)|
. This coefficient will be bounded between -1 and 1, with its sign

indicating the sign of the path dependence being estimated and its absolute value

indicating the strength of such dependency. Section 3.5 calculates this coefficient

for a number of financial assets and forecast horizons and compares its values and

significance against the same metrics for the Pearson correlation of the future return

against the average return over the previous n days. We chose comparing our mea-

sure against the Pearson correlation to provide a meaningful comparison between

signed path dependence and classical dependence in correlation metrics. The results

show that this coefficient was able to detect a significantly positive serial correla-

tion in situations where its Pearson counterpart was not significantly different than

zero.

Remark 8. Theorem 4 can be easily extended with relaxation of the Lindeburg

condition to admit covariance stationary processes which admit an analogous α-

stable limit theorem result. Interested readers are referred to derivations of such

results in [82].

Remark 9. Theorem 4 is similar in nature to the asymptotic derivation of rejection

criterion for signed rank tests. Interested readers are referred to derivations of such

results in [83].

As the test given by Theorem 4 relies on the asymptotic distribution of the

test statistic under the null hypothesis, one might want to investigate how large

the sample should be to obtain approximate convergence. In this subsection,

an alternative test is proposed that has the same asymptotic distribution for the

test statistic under the null hypothesis. This way, one can run both tests under

the same simulation experimental conditions whilst increasing the sample size

of the simulated data to assess the power of the test, also obtaining an indication

of the speed of convergence of the asymptotic test given by Theorem 4. Such test

is described in Algorithm 1. The test relies on an empirical percentile bootstrap
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to get a confidence interval for the test statistic under the null hypothesis of no

signed path dependence and can therefore be used to check whether the value of

test statistic calculated in the given sample is outside of this confidence interval,

rejecting the null if this is the case.

Algorithm 1 Bootstrap procedure to test for signed path dependence

Input: R= (r (1) , r (2) , . . . , r (z)) a sample of length z of observed log-returns, a
significance threshold α and a number of simulations W

Output: TRUE if the null hypothesis of no signed path dependence is rejected
with Type I error probability α and FALSE otherwise

1: Generate matrix U ∈ [0,1]W×z with each Uw,t drawn i.i.d. according to a
discrete uniform distribution on the set {1,2,. . . ,z}

2: Generate W random series r ′w(t) of length s such that r ′w(t) := r(Uw,t)
3: Construct an array B of length W so that B(1 ≤ w ≤W ) = H

�

r ′w
�

where
H
�

r ′w
�

is the test statistic given by Equation (3.15) calculated over series r ′w
4: Construct cFB the empirical cdf of B
5: Evaluate chα← in f {x ∈R :cFB (x)≥ 1− α2 }
6: Return TRUE if |H (R) | ≥chα or FALSE otherwise

The bootstrap test proposed is adequate to check for convergence of the

asymptotic test statistic given by Theorem 4 because of the result given by

Lemma 4:

Lemma 4 (Convergence of the Bootstrap Test Statistic Distribution under the

Null Assumption). Let chα be the 1− α2 empirical percentile of the bootstrap test

statistic used to reject the null hypothesis of the test procedure given by Algorithm 1

at significance threshold α. For large samples (s→∞), chα→Φ−1
�

1− α2
�

, where

Φ−1 is the inverse CDF of a standard normal distribution. Therefore, for large

samples, the critical rejection value of the bootstrap test statistic given by Algorithm

1 converges to the critical rejection value of the test given by Theorem 4.

Proof. Let hα be the 1− α2 quantile of the true distribution of the test statistic

given by Equation (3.15) under the null hypothesis stated in the second para-

graph of Section 3.2. As per [84] (p. 187), P
�

hα>chα
�

= α
2 +

cp
s where c is a

constant value. Hence when s→∞ we have that P
�

hα>chα
�

→ α
2 .
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Now, as per Theorem 4 the true distribution of the test statistic given by

Equation (3.15) converges to a standard normal as s→∞. Therefore hα→

Φ−1
�

1− α2
�

and hence P
�

chα<Φ
−1
�

1− α2
�

�

→ α
2 , meaning that chα→Φ−1

�

1− α2
�

.

It is worth noting that the rejection of the null hypothesis of the test given

by Theorem 4 also implies that one can build a predictive model for the sign of

return one step ahead based on the sign of the cumulative returns observed on

the previous n steps. This is further explored in Section 3.5. The section com-

pares the performance of a predictive model based on signed path dependence

to make buy and sell decisions against the performance of an investment strat-

egy known as Buy & Hold, which in essence is always buying and hence always

estimating bs(t+1) = 1. Theorem 5 gives the mathematical construction of the

predictive model to be studied.

Theorem 5 (Mathematical Construction of the Predictive Model). Obtain

bs(t+1) by performing the following steps:

1. Given a log-return sample r (1) , r (2) , . . . , r (t) estimate the sample mean as

r =
∑t

i=1 r (i)/t.

2. Apply the test given by Theorem 4 to the given sample to detect if there is path

dependence of any sign and let ζ̂∈{−1,1} be the sign of the path dependence

detected.

3. If ζ̂= −1 choose n such that E[sgn(r−n (t)−nr) r (t+1)− r]< 0 and set

bs(t+1) =−sgn(r−n (t)−nr)

4. Otherwise choose n such that E[sgn(r−n (t)−nr) r (t+1)− r]> 0 and set

bs(t+1) = sgn(r−n (t)−nr)

Also define the prediction loss of a predictive strategy as L = −bs(t+1) r (t+1).

Note that the prediction loss of a Buy & Hold strategy is trivially given by LB&H =

−r (t+1). For the aforementioned strategy we have that E
�

L
bs(t+1)

�

< E[LB&H]



3.2. Inference Under Signed Path Dependence 69

if the null hypothesis of the test given by Theorem 4 is not true for the demeaned

returns r (1)− r, r (2)− r, . . . , r (t)− r.

Proof. If the null hypothesis of the test given by Theorem 4 is not true then there

is a value of ζ̂ ∈ {−1,1} such that ζ̂ = sgn(E[sgn(r−n (t)−nr) r (t+1)]− r).

In that case, we have that if ζ̂ = −1 then E[−sgn(r−n (t)−nr) r (t+1)] >

r =⇒ E
�

L
bs(t+1)

�

< E[LB&H] as E[LB&H] = −r. Equally, if ζ̂ = 1 then

E[sgn(r−n (t)−nr) r (t+1)]> r =⇒ E
�

L
bs(t+1)

�

<E[LB&H].

We conclude the section by describing a predictive algorithm that attempts

to forecast the sign of future asset returns using the method described in Theo-

rem 5. Notice that the method given by Theorem 5 dynamically decides whether

the prediction should be made expecting a continuation of sign (ζ̂= 1) or rever-

sal of sign (ζ̂ = −1). Given that the particular case of trading strategies that

only assume continuation in sign (trend-following) receives special attention in

Finance, see [62]. Our algorithm will cater for both cases (only continuation

assumed or dynamic decision between continuation and reversals). To achieve

that, we define two different predictors in Definition 4 and Definition 5:

Definition 4 (Moving Average (MA) Classifier). An MA(n, r) predictor re-

ceives a log-return sample r = (r (1) , . . . , r (n)) and predicts that bs(n+1) =

sgn(r−n (n)− r).

Definition 5 (Dynamic Moving Average (DMA) Classifier). A DMA(n, r, ζ̂) pre-

dictor receives a log-return sample r =(r (1) , . . . , r (n)) and predicts that bs(n+1)=

ζ̂×sgn(r−n (n)− r) where ζ̂∈ {−1,1}.

In order to apply these methods for prediction, parameters n, r and ζ̂ have

to be estimated. Naturally, r can be estimated as the sample mean log-return.

The remaining parameters can be estimated by weighted least squares of an

adequately defined error function. A simple suitable error weighted function
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can be given as ε (t) = r (t)(bs(t)− s(t)). Also, it is clear from Theorem 5 that

predictions made by the aforementioned predictors will not be useful in a process

that has no signed path dependence. Therefore, before attempting to apply any

of these methods, the test defined in Theorem 4 is applied to the return series

used to fit the model to ascertain the presence of signed path dependence, given

that in the absence of this property no prediction should be attempted. This

yields Algorithm 2.

Remark 10. Algorithm 2 implements the DMA predictor, but it can be easily mod-

ified to implement the MA predictor by fixing ζ̂= 1 and performing a single sided

test in Step 1.

As with any statistical model, there are multiple ways to estimate its pa-

rameters and weighted least squares is just one simple possibility. The empirical

tests presented in Section 3.5 have been performed using a more sophisticated

machine learning algorithm, whose detailed description is outside of the scope

of the main text of this chapter. A description of the machine learning algorithm

in the form of commented pseudocode is available in Section and the R imple-

mentation of the machine learning algorithm used in the empirical experiments

of this chapter is available under request.

While the use of such a machine learning method is not required to establish

the main results in the paper, we have chosen it for our empirical application

because the use of Train and Test sets reduces potential overfitting that could

come out of a simple weighted least squares procedure, and the use of a rolling

model tuning stage produces better estimates of how accurately the predictive

model will perform in a practical scenario where the model gets updated as new

data arrives with the passage of time.
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Algorithm 2 Simplified predictive method based on signed path dependence

Input: R= (r (1) , r (2) , . . . , r (z)) a sample of length z of observed log-returns in
chronological order, a significance threshold α and a test lookback horizon
n′

Output: 0 if no prediction was made for s(z+1), bs(z+1) otherwise

1: if

�

�

�

�

�

�

d
√

√

∑n′
τ=−n′

bγ(τ)

s−n′

�

�

�

�

�

�

>Φ−1
�

1− α2
�

then

2: Compute r← 1
z

∑z
i=1 r (i)

3: Compute n̂, ζ̂← argmin
n∈N+:n<<z
ζ∈{−1,1}

∑z
i=n+1 (r (i)(ζ×sgn(r−n (i−1)− r)−sgn(r (i)− r)))2

4: Return ζ̂×sgn(r−n (z)− r)
5: else
6: Return 0
7: end if

3.3 Validation of Correctness by Simulation

In this section we validate by simulation the properties of the test given in Sec-

tion 3.2 by simulating synthetic time series where parameters are chosen so that

positive or negative signed path dependence is guaranteed in the simulated se-

ries. As part of the validation exercise, the test defined in Section 3.2 is applied

to a number of different synthetic series and used to detect the simulated de-

pendence. Such results can be used to infer the robustness of the test statistic

against the following factors:

1. Different assumptions in the functional form of the input time series;

2. Strength of the dependence present in the input time series, including the

effect of long-range dependence;

3. Time varying variance in the input time series when the required assump-

tion of covariance stationarity is met; and

4. Time varying variance in the input time series when the required assump-

tion of covariance stationarity is not met.

Robustness against the aforementioned factors in a controlled environment
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can give assurances for the suitability of the test in empirical applications, where

the actual functional form of the input time series is not known and the required

assumption of covariance stationarity might not necessarily be met. Moreover,

comparing different levels of Type I and Type II error probabilities across all

validation scenarios can give useful insights on which properties have higher

impact on the accuracy of the test and any potential biases.

The goals of the present section are to demonstrate that the previous deriva-

tions are correct and to get an idea of the power of the test under different

serial correlation structures. The Type I error probabilities as function of signif-

icance threshold reported in Figures 3.1 to 3.6 are not expected to stay always

near the identity line as our simulation is intentionally mixing several differ-

ent strenghts of serial dependence in the cases being tested, generating very

non-homogeneous samples. Under such circumstances, the test might be con-

servative and have actual Type I error probabilities that are much lower than

the desired significance threshold, but this conservatism will be adequate if at

all times the test does not drive the user to wrong conclusions by having Type I

error probabilities that exceed the identity line (i.e. a proportion of false rejec-

tions of the null hypothesis greater than the desired significance threshold). In

Section 3.4 it is demonstrated with homogeneous samples that the Type I error

probabilities of the test here proposed stays very close to the identity line in the

scenarios where it should be.

We start our synthetic examples by the simplest case of the AR(1) models.

As per Lemma 2, we know that the sign of the dependence for an AR(1) process

depends entirely on the sign of the parameterφ, and all series r j (i) have positive

path dependence when ϕ j > 0 while all other series will not have so. Therefore

the first synthetic validation experiment performed by us is given by the steps

below:
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Experiment 1. Perform the following steps to illustrate Lemma 2:

1. Generate P = 1000 AR(1) series of length z = 1000 so that r j (i) =

ϕ j r j (i−1)+ε j (i)with r j (1)=ε j (1), 0< i≤ z, 0< j≤ P,ϕ j=4
�

j
5P −

P+1
10P

�

and ε j (i) ∼ N(0,1).

2. Fix the significance threshold α and apply the single sided version of the

asymptotic test to detect positive path dependence as per Remark 6 to all

the P series.

3. Use the known presence of positive dependence to calculate the type I and type

II error probabilities respectively by counting how many of the series where

j ≤ P+1
2 had the null hypothesis rejected and how many of the series where

j> P+1
2 had the test failing to reject the null hypothesis.

4. Perform Steps 2 and 3 using the bootstrap test defined in Algorithm 1 to detect

positive path dependence (as a control case).

5. Repeat the procedure for different values of α.

Figures 3.1 to 3.6 show the behaviour of type I and type II errors for the

bootstrap and asymptotic tests as a function of the significance threshold for the

procedure given by Experiment 1. Notice that it is not adequate to infer that the

test has low power solely due to Type I errors in these figures being lower than

the significance threshold. The Type I errors in these figures are lower than the

significance threshold because the data supplied to the experiment is, by con-

struction, including simulations from several different generative processes. For

example, in the case of the AR(1) test, the Type I error of the test stayed nearly

constant around 0.002 (as per Figure 3.1) because out of 500 AR(1) series with

φ coefficients varying from -0.4 to 0, in only one case the test produced a false

positive (i.e. failed to reject the null hypothesis thatφ>0). This not a shortcom-

ing in the test (arguably this can be taken as a positive outcome instead). The

significance threshold won’t necessarily be close to the ratio of false positives in
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the tests made in Section 3.3 because the test statistic under the null is derived

considering the specific case where φ = 0, and not for varying levels of φ. One

would expect to get approximately 25 false positives out of 500 AR(1) series only

if all the 500 AR(1) series supplied had φ = 0. This comparison is only made

in Section 3.4 and, as Table 3.1 shows, 23 false positives were obtained (0.046

Type I error for a 0.05 significance threshold).

The goal of the current section is not to ascertain if the test has low or high

power but instead is to certify that the test will not have completely unexpected

behaviour in extremes such as very negative values of φ for an AR(1) model.

Table 3.1 gives a much clearer picture of test conservatism and as the fourth

column of the table shows, when φ= 0 the ratio of false positives was mostly in

line with the significance threshold, as expected.

Figure 3.1 shows the behaviour of type I and type II errors for the bootstrap

and asymptotic tests as a function of the significance threshold for the procedure

given by Experiment 1. The two tests converged and the type I error probability

of the asymptotic test was not statistically different than the one of the bootstrap

test. The type II error probabilities of both tests are also not statistically different

than each other and always lower than 50%, suggesting that even though the

test is conservative, for the AR(1) series constructed it will fail to reject the null

when the alternative hypothesis truly holds only in the minority of the cases.

The model has also been validated by simulating an ARFIMA(0,d,0) series.

Lemma 3 gives the condition under the forecast horizon h= 1 where the sign of

the path dependence for this model class is known for the whole series: the sign

of the parameter d. To keep the simulation procedure simple, we have reused

the procedure given by Experiment 1 and in Step 1 we constructed the series

based on a single parameter −0.1≤ d ≤ 0.1, with the only modification being

that the series generated in Step 1 are ARFIMA(0,φ,0) series (instead of AR(1)).

Figure 3.2 shows the behaviour of type I and type II errors for the bootstrap
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and asymptotic tests as function of the significance threshold for the simulated

ARFIMA(0,d,0) series. The type I error probability of the asymptotic test in this

case is also not statistically different than the one of the bootstrap test. The type

II error probabilities of both tests are also not statistically different than each

other and always lower than 25%, suggesting that in the large majority of the

cases it will not fail to reject the null when the alternative hypothesis truly holds,

which can be seen as a positive trait in the test.

The synthetic experiment for the ARFIMA(0,d,0) model yielded conclusions

similar to the ones obtained for the AR(1) model, with the difference being that

both tests were considerably more powerful. This suggests the long-memory

feature of the ARFIMA model introduces a stronger signed path dependence to

the modelled time series than the one introduced by an AR(1).

In figures 3.1 to 3.6, the solid lines represent the simulated error proba-

bilities and the dashed lines represent a 95% confidence margin of the error

probability of each test, obtained via a Poisson approximation for the count of

false acceptances/rejections. The chart on the left shows the simulated type I

error probabilities of the asymptotic and bootstrap statistics as functions of the

significance threshold when these tests are applied to the generated series. The

black straight line corresponds to the identity line, where the test type I error is

exactly equal to the desired significance threshold. The chart on the right shows

the simulated type II error probabilities of the two tests as functions of the sig-

nificance threshold with the dashed lines being the 95% confidence margin.



3.3. Validation of Correctness by Simulation 76

Figure 3.1: Performance of the tests in the simulated AR(1) series.

Figure 3.2: Performance of the tests in the simulated ARFIMA(0,d,0) series.

Finally, to ascertain some boundary conditions for the applicability of our

tests, we have created a synthetic MA(n) series and analysed the behaviour of the

test by modifying it so that it has a) a very weak correlation structure; b) a non-

constant volatility that follows a stationary GARCH process; or c) a non-constant

and non-stationary volatility that is driven by a two-state Markov-switching pro-

cess.

To build the baseline MA(n) series we note that, as per Theorem 2, when the

forecast horizon h= 1 we have that the sign of the sum of the MA coefficients

will determine the sign of the path dependence of the model. We again have
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reused the procedure given by Experiment 1 but in Step 1 we generated MA(5)

series based on a single parameter −0.1≤φ ≤ 0.1 so that the coefficients of all

5 lags were equal to 4
5φ. The synthetic experiment for the MA(5) model yielded

conclusions similar to the ones obtained for the AR(1) model, with the difference

being that the test was slightly less powerful. Figure 3.3 shows the behaviour

of type I and type II errors for the bootstrap and asymptotic tests as function of

the significance threshold for the simulated MA(5) series. Like in the AR(1) case

the tests converged, with both the type I and type II error probabilities of these

tests not being statistically different amongst themselves. Additionally, the type

II error probabilities of both tests was still lower than 50% when the significance

threshold was 0.05 or higher.

Figure 3.3: Performance of the tests in the baseline simulated MA(5) series.

After generating the baseline case, we created a stressed MA(5) simula-

tion where series length is reduced considerably and the correlation structure

is weakened. In this stressed MA(5) simulation, the procedure given by Exper-

iment 1 was reused but in Step 1 we generated MA(5) series based on a single

parameter −0.1≤φ ≤ 0.1 so that the coefficients of lags 1, 3 and 5 were equal

to φ and the coefficients of lags 2 and 4 were equal to −φ. In this situation, the

average sum of all MA coefficients when the alternative hypothesis holds was
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still positive, equal to 0.05, though the alternating signs of the lags weaken the

overall positive dependence. Further, the procedure generated series of shorter

length z= 100.

Figure 3.4 shows the behaviour of type I and type II errors for the bootstrap

and asymptotic tests as function of the significance threshold for the stressed

MA(5) series. The type I error probability of the asymptotic test is always greater

than the one of the bootstrap test for a given significance threshold; when the

significance threshold is lower than 0.05 it is also above the identity line and for

a significance threshold lower than 0.015 the identity line falls below the 95%

confidence interval of the error probability for the asymptotic test though stays

very close to its lower boundary. At the same time, the type II error probability

of the asymptotic test is always lower than the one of the bootstrap test for a

given significance threshold, though it is always higher than 90%, suggesting

the test will conservatively fail to reject the null in many genuine cases that the

alternative hypothesis truly holds.

It is worth noting that the reduced power in this scenario is a consequence of

the intentionally weak correlation structure imposed and smaller sample. How-

ever, it is reassuring to observe in Figure 3.4 that even with a small sample (of

only 100 observations) the asymptotic test did not generate incorrect results.

Nevertheless, in the small sample the asymptotic test provided up to 2% more

false rejections than the bootstrap version of the test and its power approached

the one of the bootstrap test only at a significance threshold of 0.08 or higher. As

empirical applications are expected to have a weak correlation structure, when-

ever possible the bootstrap version of the test should be used instead of the

asymptotic version for smaller samples.

Despite being subject to series of very weak correlation structure, the asymp-

totic test still behaved reasonably, with adequate conservatism for all but very

low significance thresholds (α≤ 0.02), when the lower 95% confidence bound
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goes above the identity line. The bootstrap test remained adequate even for this

low significance threshold, though at the cost of an even reduced power.

Figure 3.4: Performance of the tests in the stressed MA(5).

Figure 3.5: Performance of the tests in the MA(5)-GARCH(1,1) series.

All simulations so far assumed constant volatility. In empirical applications,

volatility is known vary over time and to exhibit serial dependence ([25]). To

verify the effect of a non-constant volatility, we have changed the baseline MA(5)

case so that the error variance follows a GARCH(1,1) process with coefficients

α=1 (the constant term), β =0.89 (the term that multiplies the lagged squared

error) and γ= 0.1 (the term that multiplies the lagged variance). The choice of
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GARCH parameters ensured the series was still unconditionally covariance sta-

tionary. All other parameters of the baseline MA(5) model remained unchanged.

We note that, while the power of the test reduced slightly compared to the

baseline case, comparing Figures 3.4 and 3.5 one can see that the impact of a

GARCH volatility in the power of the test was smaller than the impact of reduced

correlation structure. The test remained very adequate even in the presence of

GARCH volatility and Type I errors stayed either within or under the identity line

for all significance thresholds.

Finally, to ascertain a boundary scenario where the main assumption of

covariance stationarity is not strictly satisfied, we have changed the baseline

MA(5) case so that the error variance follows a Markov Switching between two

equally probably GARCH(1,1) states. Such framework is widely popular in fi-

nancial market research and is accepted to be a relevant deviation from time

series models that has been extensively observed in empirical applications. In

one of the states, the error variance follows a GARCH(1,1) process with coef-

ficients α= 1, β = 0.89 and γ= 0.1 and in the other state the error variance

follows a GARCH(1,1) process coefficients α= 3, β = 0.95 and γ= 0.049. All

other parameters of the baseline MA(5) model remained unchanged.

Figure 3.6: Performance of the tests in the MA(5)-RSGARCH(1,1) series.
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We again note that, while the power of the test reduced slightly compared to

the baseline case, comparing Figures 3.4 and 3.6 one can see that the impact of a

GARCH volatility in the power of the test was smaller than the impact of reduced

correlation structure. The test remained very adequate even in the presence of

Regime Switching GARCH volatility and Type I errors stayed either within or

under the identity line for all significance thresholds, indicating adequate test

behaviour in stressed parameters.

It is noted that the testing procedure described in this section is similar to

the one performed in [85]. In that paper, the author proposed a test to detect

whether there was serial correlation present in a series, without inferring on

the shape of that serial correlation. Section 6 of this paper shows Monte Carlo

simulations of a) white noise processes of normally distributed errors, b) white

noise processes of non-normally distributed errors, c) AR(1) processes and d)

ARIMA(0,0.35,0) processes. The author demonstrated that the test proposed

was able to successfully identify serial dependence in cases c) and d) without

suffering from identification errors in cases a) and b).

The sign path dependence test, however, is different from the test in [85]

in the sense that the test in [85] had a higher number of parameters and per-

formed transformations to and from the frequency domain in order to obtain

conclusions about possible serial dependence in the series being tested, while

the sign path dependence test did not have to resort to the frequency domain

and only required a simple parameter (a large lookback window), offering a

better intuitive explanation of the results and procedures than the test proposed

in[85].

The section is concluded by noting that Lemma 4 has also been tested in the

synthetic experiments and the experiments demonstrated that the distribution of

the test statistic under the null for the asymptotic and bootstrap tests converged

as the size of the tested samples increased, as predicted by the Lemma. Figure
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3.4 illustrates the two distributions with a tested sample size of 100 observations

and it is noticeable that the confidence intervals of the Type I and Type II error

frequencies do not coincide in this small sample. However, Figure 3.3 shows

the same two tests now applied to a tested sample size of 1000 observations

and the confidence intervals for the Type I and Type II frequencies are much

more similar; in fact, the Type II error confidence bands for the asymptotic and

bootstrap tests almost coincide.

3.4 Model Specification Error Sensitivity Analysis

While the previous section provided good information about the correctness of

the test under several different generative models, its inhomogeneous nature

gave less infomation about the conservatism and power of the test. These fea-

tures will be analysed in the present section with the aid of the following exper-

iment.

Let x t be the data at time t, which is known to follow an AR(1) process

given by

x t =α+ϕx t−1+ et

where et follows a Standard Gaussian Distribution.

According to Lemma 2, if the underlying data being tested is known to fol-

low an AR(1) process, the test here proposed is equivalent to testing for the sign

of coefficient ϕ. To check if the test here proposed is excessively conservative

from the perspective of the Type I error probabilities, one can compare the Type

I and Type II error probability profile between the test here proposed and a Wald

test applied to the maximum likelihood estimates of ϕ.

Let’s first review the formulation of the Wald test. Let ϕ̂ be the Maximum

Likelihood Estimate (MLE) of ϕ and formulate the following null hypothesis:

H0: ϕ=ϕ0
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Under the null hypothesis, the Wald statistic given by

W =
(ϕ̂−ϕ0)

2

s2
ϕ

follows a χ2 distribution with one degree of freedom (note that s2
ϕ is an estimator

of the variance of the MLE, which can be obtained using the inverse observed

Fisher Information matrix).

Our goal, however, is to perform a single sided test: our null hypothesis is

actually

H0: ϕ≤ϕ0 with ϕ0= 0.

Because we are testing a single parameter, we can rely on the fact that the

square root of a random variable that follows a χ2 distribution with one degree

of freedom is a random variable that follows a standard Gaussian distribution

and work on the square root of the Wald statistic, i.e.:

p
W =

ϕ̂
q

s2
ϕ

,

which will follow a standard Gaussian distribution under the null assumption.

The procedure to compare the Type I and Type II error probability profiles

of the Wald test (single sided modification) and our test is the same given in

Section 3.3 but now modified to have just two homogeneous samples, one that

is uncorrelated (i.e. ϕ = 0 and one that has a single value of ϕ = 0.1, yielding

the following procedure:

Experiment 2. Perform the following steps:

1. Generate P = 1000 AR(1) series of length z = 1000 so that r j (i) =

ϕ j r j (i−1)+e j (i) with r j (1)= e j (1), 0< i≤ z, 0< j≤ P, e j (i) ∼ N(0,1),

ϕ j = 0 for j≤ P+1
2 and ϕ j = 0.1 for j> P+1

2 .

2. Fix the significance threshold α and apply the single sided version of the
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asymptotic test to detect positive path dependence described in the thesis to

all the P series.

3. Use the known presence of positive dependence to calculate the type I and type

II error probabilities respectively by counting how many of the series where

j ≤ P+1
2 had the null hypothesis rejected and how many of the series where

j> P+1
2 had the test failing to reject the null hypothesis.

4. Perform Steps 2 and 3 using the one sided Wald test as a control case.

5. Repeat the procedure for different values of α.

Experiment 2 yielded the probabilities shown in Table 3.1. As the table

shows, under the homogeneous samples provided the type I error probabilities

for the Wald test and for the asymptotic signed path dependence test behaved

as expected, with values that are close to the nominal significance level. Also

as expected, the Wald test was more powerful than the asymptotic signed path

dependence test as it was designed to work with the assumption that the input

data was an AR(1) process.

However, in practical situations one will not know in advance what is the

type of serial dependence that the data series being tested truly exhibits. Choos-

ing a test that works very well for an AR(1) process and using it for an input

data series that series that might resemble superficially an AR(1) process could

lead the user to incorrect conclusions if the true serial dependence structure in

the data is not AR(1), as the following experiment will demonstrate.

Let’s remember that as per Theorem 2, when the forecast horizon h= 1 we

have that the sign of the sum of the MA coefficients will determine the sign of

the path dependence of the model. We have now reused the procedure given

by Experiment 1 but in Step 1 we generated MA(5) series based on a single

parameter −0.1≤φ ≤ 0.1 so that the coefficients of all 5 lags are of the form

(b1, b2, b3, b4, b5)= (−2,−1,1,2,2)φ, where bi is the i-th coefficient of the Wold
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representation of the MA(5) process.

Under those circumstances,
∑5

i=1 bi =2φ⇒ sgn
�∑∞

i=1 bi
�

= sgn(φ), mean-

ing that the series will have positive (negative) sign dependence when φ is pos-

itive (negative). However, as the coefficient of the first lag is −2φ, an AR(1)

model fit will normally have a coefficient that has the opposite sign of the true

sign of the dependency, which comes from the higher lags.

Running this experiment and comparing the Type I and Type II errors of

the Wald test against the asymptotic signed path dependence test yielded the

results in Table 3.2. As the table shows, the Wald test performed badly, with

actual Type I error probabilities greater than 65% for all significance thresholds

tested - i.e. worse than if a coin toss was used as the criterion to reject the

null hypothesis. At the same time, the asymptotic signed path dependence test

was conservative due to the inhomogeneous nature of the given input samples

of Experiment 1 (homogeneous samples were only used in Experiment 2, Table

3.1) but always lower than the nominal significance level, hence not suffering

from model misspecification errors in this particular example. Moreover, Table

3.2 shows that the signed path dependence test was also more powerful than the

Wold test under all significance thresholds when faced with a model specification

problem.
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Table 3.1: Comparison of Type I and Type II Error Probabilities given a Significance Threshold for the AR(1) Series

Signif. Threshold Type I Err Wald Type II Err Wald Type I Err Sign Path Dp Type II Err Sign Path Dp
0.01 0.010 0.208 0.010 0.890
0.02 0.018 0.134 0.018 0.842
0.03 0.022 0.104 0.030 0.806
0.04 0.036 0.080 0.034 0.742
0.05 0.044 0.070 0.046 0.704
0.06 0.056 0.060 0.050 0.682
0.07 0.066 0.054 0.060 0.654
0.08 0.074 0.046 0.072 0.630
0.09 0.078 0.040 0.078 0.604
0.10 0.092 0.036 0.088 0.580

Table 3.2: Comparison of Type I and Type II Error Probabilities given a Significance Threshold for the MA(5) Series

Signif. Threshold Type I Err Wald Type II Err Wald Type I Err Sign Path Dp Type II Err Sign Path Dp
0.01 0.658 1.000 0.002 0.976
0.02 0.700 0.998 0.004 0.958
0.03 0.722 0.996 0.004 0.932
0.04 0.748 0.994 0.012 0.926
0.05 0.756 0.994 0.016 0.906
0.06 0.768 0.992 0.020 0.894
0.07 0.774 0.988 0.028 0.878
0.08 0.788 0.986 0.030 0.866
0.09 0.794 0.986 0.036 0.862
0.10 0.806 0.986 0.038 0.854
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3.5 Empirical Applications

This section applies to real financial data the test given by Theorem 4 and val-

idates the performance of trading strategies created based on Theorem 5. The

dataset used comprised of the time series of the prices for the MSCI Equity Total

Return Indices (in US Dollar, price returns plus dividend returns net of with-

holding taxes) for 21 different countries and the nominal exchange rates of 16

different currencies, all of them traded against the US Dollar. Table ?? lists the

equity indices and currencies studied.

For all the 37 financial instruments the daily log-returns (defined as the log-

arithm of the closing price at the end of day d+1 divided by the closing price at

the end of day d) were obtained based on the price series from 31-Dec-1998 to

31-May-2017, yielding 4,803 observations per instrument (and 177,711 obser-

vations in total). To conduct further analyses at different levels of observational

noise, several other sampling frequencies were studied. The same log-returns

were aggregated to weekly log-returns (defined as the logarithm of the closing

price at the end of the Friday of week w+1 divided by the closing price at the end

of the Friday of week w), yielding 961 observations per instrument (and 35,557

observations in total); the returns were also aggregated to monthly log-returns

(defined as the logarithm of the closing price at the end of the last business day

of month m+1 divided by the closing price at the end of the last business day

of month m), yielding 221 observations per instrument (and 8,177 observations

in total). Each of the MSCI Index studied currently has at least one tradable

Futures contract linked to it and many of them have also shortable ETFs linked

to them, which means the any predictive model resulting out of the experiments

performed in this paper can also be used to guide real equity investment strate-

gies.

In the case of exchange rates, to accurately reflect the total returns of the in-
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vestment strategies proposed, the results of the experiment include the financial

returns arising out of the interest rate differential between the issuing country

and the US (also known as the “rollover interest”) for each open position and

also include the interest paid on the cash deposit held as margin for the currency

trade.

Before testing any trading strategies, the first half of the sample described

in the second paragraph of this section (corresponding to observations from 31-

Dec-1999 to 31-Mar-2008) was used to calculate the test statistic defined in

Equation 3.15 and detect the presence of significant serial dependence in indi-

vidual assets. Tables ?? and ?? show the values of the serial correlation coeffi-

cient calculated as Remark 7 for forecast horizons of one day, one week and one

month (n= 5 in all cases).

The statistical significances in the tables were obtained using the test pro-

cedure described in Theorem 4. For control, the tables also display the Pearson

correlation coefficient between the average return of the n previous periods and

the 1-step ahead return. The significances of the Pearson correlation were es-

timated using a Fisher transform and its limiting Gaussian approximation. The

rationale for applying the test only on the first half of the sample is to ensure

there is no fitting bias in the trading model, whose performance is evaluated

using the second half of the sample and whose equities and currencies traded

are selected based on the test results.
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Table 3.3: Different correlation metrics for Equity Indices in the first half of the sample

Country Daily Weekly Monthly
Rho Pearson Rho Pearson Rho Pearson

AUSTRALIA 0.0193 -0.0248 0.0067 -0.0108 -0.0303 -0.0747
BRAZIL 0.0851*** 0.0218 0.0292 0.0072 0.1305** -0.0567
CANADA 0.0210 -0.0185 -0.0213 0.0120 0.1414** 0.1321*
CHILE 0.1642*** 0.0978*** 0.1012** 0.0449 0.1274 0.1054
CHINA 0.0871*** 0.0316* 0.0916** 0.0560 0.1914*** 0.0459
COLOMBIA 0.2021*** 0.0972*** 0.2152*** 0.1301*** 0.0590 -0.0083
CZECH 0.0557*** 0.0051 0.0989*** 0.0469 0.0447 -0.0353
FRANCE -0.0327** -0.0710*** -0.0271 -0.0278 0.1684*** 0.0308
GREECE 0.0809*** -0.0129 0.0445 0.0261 0.2160*** 0.0845
HONGKONG 0.0418*** -0.0045 0.0773** 0.0326 0.1407* 0.0200
HUNGARY 0.0671*** 0.0250 0.0699** 0.0262 0.0303 -0.0038
INDIA 0.1186*** 0.0540*** 0.1379*** 0.0750* 0.1145** 0.0011
JAPAN -0.0177 -0.0271* -0.0190 -0.0211 0.2458*** 0.2195**
MEXICO 0.0669*** -0.0045 0.0079 -0.0164 0.0253 -0.1339*
NEWZEALAND -0.0118 -0.0358** 0.0437 -0.0388 -0.0086 0.0376
RUSSIA 0.0661*** -0.0003 0.0537** -0.0162 -0.0572* -0.0973
SINGAPORE 0.0628*** 0.0276* 0.0774* 0.0497 0.2127** 0.0586
SOUTHAFRICA 0.0334** 0.0004 0.0266 0.0171 -0.0114 -0.1463*
TAIWAN 0.0546*** 0.0255 0.0123 0.0038 0.0852** 0.0143
UK -0.0450*** -0.1026*** -0.0249 -0.0532 0.1575** 0.0848
USA -0.0405*** -0.0668*** -0.0456 -0.0959** 0.0603* 0.0377
* Significantly different from zero at 10% significance threshold
** Significantly different from zero at 5% significance threshold
*** Significantly different from zero at 1% significance threshold
1 Daily, Weekly, Monthly represent the frequency the return was observed in order to calculate

the correlation metrics
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Table 3.4: Different correlation metrics for Currencies in the first half of the sample

Country Daily Weekly Monthly
Rho Pearson Rho Pearson Rho Pearson

AUDUSD 0.0107 -0.0125 0.0347 -0.0042 0.0108 -0.0086
BRLUSD 0.0791*** 0.0539*** 0.1283*** 0.0866** 0.2025** 0.1113
CADUSD -0.0291* -0.0319* 0.0041 0.0280 0.0252 0.0033
CHFUSD -0.0279* -0.0156 0.0123 0.0024 -0.0169 -0.0516
CZKUSD 0.0116 0.0152 0.0407 0.0391 0.0409 -0.0537
EURUSD -0.0112 0.0015 0.0312 0.0502 0.1393** -0.0149
GBPUSD -0.0193 -0.0033 0.0121 -0.0375 -0.0559* -0.0052
HUFUSD -0.0196 -0.0299* -0.0239 -0.0012 0.0046 -0.0210
INRUSD -0.0651* -0.0657*** 0.2311*** 0.1995*** 0.2657*** 0.0942
JPYUSD -0.0107 -0.0271* -0.0247 -0.0245 0.0504 0.0075
MXNUSD -0.0077 -0.0392** 0.0531 -0.0274 -0.0674 -0.1037
NOKUSD 0.0077 -0.0055 -0.0049 -0.0025 0.0069 -0.0667
NZDUSD 0.0043 -0.0199 0.0142 0.0046 0.1042 -0.0051
PLNUSD 0.0576*** 0.0275* 0.0292 0.0357 -0.0802 -0.0653
SEKUSD -0.0011 -0.0165 0.0330 0.0355 0.0411 0.0272
ZARUSD 0.0005 -0.0519*** 0.0868* 0.0467 0.1157 0.0712
* Significantly different from zero at 10% significance threshold
** Significantly different from zero at 5% significance threshold
*** Significantly different from zero at 1% significance threshold
1 Daily, Weekly, Monthly represent the frequency the return was observed in order to

calculate the correlation metrics
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It can be seen that the correlation coefficient proposed in this paper and its

associated test are more powerful than the Pearson estimate. Notably, only in

the case of New Zealander equities that the Pearson estimate was able to detect

significant correlation without our proposed method not simultaneously find-

ing any significant correlation, whilst for many equity indices only our proposal

could find a significant coefficient when the Pearson estimate was not signifi-

cantly different than zero. Another interesting finding is that even though most

of the equity indices had positive dependence, this was not always the case. For

example, US, UK and French equities bucked the trend and exhibited signifi-

cant negative dependence at a one-day forecast horizon and Russian equities

had significant negative dependence at a one-month forecast horizon. Interest-

ingly enough, the markets that had significant negative one-day dependence had

significant positive one-month dependence and the market that had significant

negative one-month dependence had significant positive one-day dependence.

It can also be seen that the procedure proposed in this paper detected de-

pendence in a mix of emerging and developed market currencies, with signifi-

cant one-day dependence being found in the Brazilian Real, Indian Rupee, Polish

Zloty, Canadian Dollar and Swiss Franc in addition one month-dependence be-

ing found in the Euro and British Pound. Our proposal detected dependence in

more currencies than the Pearson estimate could, though the Pearson estimate

detected one-day dependence on the Japanese Yen and Mexican Peso that was

undetected by our proposal. However, in most cases that the dependence found

is statistically significant it is of lower magnitude than with Equities and there-

fore less pronounced and likely to be less exploitable for economic purposes.

To validate the power of our predictive framework, the machine learning

version of Algorithm 2 (described in Section 3.6) has been applied to the data

described in the beginning of this section and the predictions were translated into

investment decisions: buy (when the predicted sign is positive) and sell (when
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the predicted sign is negative). The trading strategies were tested assuming the

following: (i) there are no short sale restrictions - which is most likely the case if

only futures are used to trade; and (ii) if a shortable ETF is used, its borrow cost

is no more than the interest on the cash received from the short sale proceeds.

Initially the markets are assumed frictionless but this assumption is relaxed at

the end of this Section by performing a sensitivity analysis to transaction costs.

To ascertain the out-of-sample performance of the trading models proposed,

five different performance metrics were calculated for all strategies and com-

pared against the same values of a Buy & Hold benchmark portfolio. The Buy &

Hold benchmark portfolio consisted of an equal weighted long position across

all 21 equity indices in the case of equity strategies and an equal weighted long

position across all 16 foreign currencies in the case of currency strategies. As the

rollover rates are being included in the calculation of the returns, the currencies

benchmark can be interpreted as a global unhedged money market investment

portfolio from a US investor’s perspective.

The peformance metrics used were:

• Average monthly out-of-sample returns of a portfolio that invested equally

weighted across all equities and currencies according to the underlying

classification strategy, per asset class per classifier;

• Standard Deviation of the out-of-sample monthly returns of the said port-

folio;

• Sharpe Ratio, not adjusted by the risk-free rate: simple average of the out-

of-sample monthly returns divided by their respective standard deviations;

and

• Maximum Drawdown: the maximum loss from a peak to through of the

cumulative monthly portfolio returns before a new peak is attained.

• Alpha, not adjusted by the risk-free rate: the intercept of a linear regression

between the returns of the strategy and the returns of the Buy & Hold
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portfolio.

The returns used to calculate the Sharpe Ratio and Alpha were not adjusted by

the risk-free rate to keep the implementation simple and avoid an extra choice

of variable (i.e. the choice of what constitutes a risk-free rate). The lack of ad-

justment does not change the conclusions of the present Chapter given that the

risk free rate has been very low or close to zero in most developed economies

since the Great Financial Crisis of 2008, which is the vast majority of the out-

of-sample period used for this experiment. All performance measures are also

accompanied by their standard errors calculated using the leave-one-out Jack-

knife method. Additionally, the Alpha was tested for statistical significance and

the Type I Error probability of the Hypothesis Test that the Alpha is greater than

zero is shown on all comparative performance tables.

The trading strategy given by Theorem 5 has been empirically tested using

the MA and DMA predictors to obtain out-of-sample predictions for the period

corresponding to the months from April-2008 to May-2017, equivalent to the

second half of the entire dataset used in this study. As our predictive method

only predicts one step ahead, after a prediction is made the in-sample period

gets the actual return observed one step ahead appended to it whilst the first

in-sample point is discarded, so that in the next iteration the algorithm is over

the new in-sample period. This is repeated until the end of the out-of-sample

period. Tables 3.5 to 3.10 list the returns gross of transaction costs; however, we

later incorporate transaction costs into our analysis.

The strategies proposed obtained their best performance when trading eq-

uities using a one-day forecast horizon. As Table 3.5 shows, the MA strategy

was able to get a monthly return that was more than three times the return of

the Buy & Hold strategy, with a monthly standard deviation that was almost

one third and, more importantly, a maximum drawdown that was less than

one sixth, meaning that the tail behaviour was even better than the average
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behaviour. The resulting Sharpe Ratio, when annualised, is greater than one,

a level taken as very good for the practitioners. The DMA strategy, that takes

both trend-following and contrarian positions, performed even better, with an

18bps gain in expected return over the MA and a reduced maximum drawdown

of just 3.7%, a fraction of the Buy & Hold maximum drawdown. The resulting

Sharpe Ratio, when annualised, is very high and close to two. This can be seen

as evidence that, on a one-day trading interval, the introduction of contrarian

positions in the DMA strategy can have a significant improvement over the pure

trend-following MA strategy. However, when applied to foreign exchange mar-

kets, both the MA and DMA trading strategies had returns close to zero with very

small standard errors. This is driven by the fact that not many currencies had

displayed significant correlation (as per Table ??) and the trading model only

enters into positions when the correlation detected is statistically significant.

As demonstrated in Table 3.7, there was a reduction in performance, gross

of transaction costs, when the forecast horizon lengthened from one day to one

week. However, as Table 3.11 shows, there was a commensurate reduction in

trading activity, meaning that depending on the level of transaction costs, it

might be more advantageous to trade using a one week forecast horizon (as

opposed to a one day forecast horizon). Whilst the average monthly return of

the strategies is no longer statistically different than the Buy & Hold, they have

considerable lower risk which translates into a significanly positive Alpha. The

DMA trading strategy did not have a significant difference in risk-adjusted perfor-

mance compared to the MA strategy, with both obtaining similar Sharpe Ratios

and Alphas. This can be seen as evidence that, in longer forecast horizons, equity

markets have mostly positive dependence and trend-following trading strategies

alone will capture this dependency, with the inclusion of contrarian trading not

adding economic value.

In the case of weekly currency trading, Table 3.8 shows similar performance
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when compared to the daily strategy (gross of transaction costs), though the

DMA strategy had a slight improvement. Like in the case of the daily frequency,

the Alphas generated by currency trading are not significanly different than zero,

though the maximum drawdown of the DMA strategy was much lower than the

one of the Buy & Hold, indicating potential use of the model for risk management

and forecasting purposes.

As shown in Table 3.9, the equity strategies did not provide monthly returns

statistically different than the one of the Buy & Hold though they did have much

reduced risk, again translating into a significanly positive Alpha. This means

all equity trading strategies applied to all forecast horizons proposed produced

significantly positive Alphas. As it can be seen in Table 3.11, there was a re-

duction in portfolio turnover when lengthening the forecast horizon from one

week to one month (from about 75% of the portfolio per month to about 25%

of the portfolio per month). This reduction is most likely not enough to justify

the reduction in performance for investors with access to relatively sophisticated

execution methods and low execution costs, but is likely to justify the implemen-

tation of a smart-beta / semi-passive strategy, as it will yield a similar return to

Buy & Hold but with a considerable reduction in market risk and limited portfolio

turnover.

We remark that the currency strategies with monthly trading (shown in

Table 3.10) also did not produce an Alpha statistically different than zero, though

the significant reduction in maximum drawdown was another feature present in

this case. Therefore, we conclude that the use of the strategies proposed in

currency markets is not likely to add economic value on its own, but there is

potential risk management and forecasting value for the underlying correlation

model.

All the results so far are gross of transaction costs. The previous steps have

avoided embedding the costs as part of the model given that the actual transac-
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tion costs an investor has will depend massively on a large numbers of factors

that are particular to each individual investor: whether market or limit orders

are used, the order execution algorithm, the latency between the server issuing

the order and the exchange receiving the order, the size of the order, the choice

of broker, the level of commissions and rebates are all factors affecting the final

cost.

In [86] is presented a thorough descriptive analysis of trades executed in

the US equity markets by 664 institutions that traded 100 times or more per

month during the time period from January 1, 1999 to December 31, 2005.

The authors found that the difference between the costs of the lowest quintile

and the highest quintile was as high as 69 basis points. They also found that

institutions in the lowest quintile were able to get negative execution shortfalls,

meaning their technology, order execution policy and broker arrangements was

able to add value to the gross returns, instead of removing it. Similar findings

are made by [87] where the authors claim the lowest quartile of execution costs

by institutional investors in UK equities was only 0.4 basis points whilst the top

quartile had costs of 27.8 basis points. Therefore, instead of fixing a single cost

number, we have chosen a set of possible costs per transaction and combined

it with the out-of-sample metrics provided in Tables 3.5 to 3.10 to determine

what would be return of a given strategy if it was subject to a given level of

transaction costs. To make the numbers easier to compare between themselves

and with Buy & Hold, we have rescaled the net returns for all strategies by the

ratio of the strategy’s monthly standard deviation and the Buy & Hold’s monthly

standard deviation - i.e. all returns, net of transaction costs, are risk adjusted so

that all of them have the same market risk as the Buy & Hold strategy.
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Strategy B&H MA DMA
Monthly Avg Return 0.31% (0.60%) 1.07% (0.24%) 1.25% (0.22%)
Monthly Std Deviation 6.27% (0.68%) 2.48% (0.56%) 2.26% (0.59%)
Sharpe Ratio 0.0502 (0.0999) 0.4312 (0.0833) 0.5516 (0.0867)
Max Drawdown 56.2% (19.2%) 6.3% (2.9%) 3.7% (2.4%)
Alpha N/A 0.0111 (0.0023) 0.0128 (0.0020)
p-value (Alpha > 0) N/A <0.0001 <0.0001
1 Column B&H states the financial gain of simply buying a stock and not selling

it, hence holding it as a passive investment
2 Column MA states the financial gain of implementing a trading strategy that

buys (sells) the stock when the MA classifier predicts a positive (negative) return
one step ahead

3 Column DMA states the financial gain of implementing a trading strategy that
buys (sells) the stock when the DMA classifier predicts a positive (negative)
return one step ahead

Table 3.5: Comparative performance of the strategies applied to equity indices on daily data, gross of transaction costs.
Standard Errors in parenthesis.
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Strategy B&H MA DMA
Monthly Avg Return -0.10% (0.28%) -0.03% (0.04%) 0.00% (0.03%)
Monthly Std Dev 2.93% (0.25%) 0.43% (0.04%) 0.33% (0.04%)
Sharpe Ratio -0.0355 (0.0964) -0.0776 (0.0984) -0.0208 (0.0990)
Max Drawdown 28.5% (12.1%) 6.7% (3.5%) 3.7% (2.5%)
Alpha N/A -0.0004 (0.0004) -0.0001 (0.0003)
p-value (Alpha > 0) N/A 0.8296 0.6044
1 Column B&H states the financial gain of simply buying a stock and not selling

it, hence holding it as a passive investment
2 Column MA states the financial gain of implementing a trading strategy that

buys (sells) the stock when the MA classifier predicts a positive (negative) re-
turn one step ahead

3 Column DMA states the financial gain of implementing a trading strategy that
buys (sells) the stock when the DMA classifier predicts a positive (negative)
return one step ahead

Table 3.6: Comparative performance of the strategies applied to currencies on daily data, gross of transaction costs.
Standard Errors in parenthesis.
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Strategy B&H MA DMA
Monthly Avg Return 0.34% (0.61%) 0.35% (0.22%) 0.28% (0.17%)
Monthly Std Dev 6.33% (0.66%) 2.28% (0.41%) 1.77% (0.36%)
Sharpe Ratio 0.0533 (0.0993) 0.1539 (0.0894) 0.1595 (0.0757)
Max Drawdown 56.2% (19.2%) 8.9% (5.7%) 6.6% (2.9%)
Alpha N/A 0.0040 (0.0020) 0.0031 (0.0016)
p-value (Alpha > 0) N/A 0.0240 0.0245
1 Column B&H states the financial gain of simply buying a stock and not selling

it, hence holding it as a passive investment
2 Column MA states the financial gain of implementing a trading strategy that

buys (sells) the stock when the MA classifier predicts a positive (negative)
return one step ahead

3 Column DMA states the financial gain of implementing a trading strategy that
buys (sells) the stock when the DMA classifier predicts a positive (negative)
return one step ahead

Table 3.7: Comparative performance of the strategies applied to equity indices on weekly data, gross of transaction costs.
Standard Errors in parenthesis.
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Strategy B&H MA DMA
Monthly Avg Return -0.09% (0.27%) -0.03% (0.03%) 0.01% (0.03%)
Monthly Std Dev 2.82% (0.25%) 0.52% (0.07%) 0.32% (0.05%)
Sharpe Ratio -0.0318 (0.0969) -0.0573 (0.1034) 0.0047 (0.0993)
Max Drawdown 28.5% (11.4%) 1.9% (1.1%) 1.6% (0.7%)
Alpha N/A -0.0003 (0.0005) 0.0000 (0.0003)
p-value (Alpha > 0) N/A 0.7682 0.5112
1 Column B&H states the financial gain of simply buying a stock and not selling

it, hence holding it as a passive investment
2 Column MA states the financial gain of implementing a trading strategy that

buys (sells) the stock when the MA classifier predicts a positive (negative)
return one step ahead

3 Column DMA states the financial gain of implementing a trading strategy that
buys (sells) the stock when the DMA classifier predicts a positive (negative)
return one step ahead

Table 3.8: Comparative performance of the strategies applied to currencies on weekly data, gross of transaction costs.
Standard Errors in parenthesis.
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Strategy B&H MA DMA
Monthly Avg Return 0.30% (0.60%) 0.34% (0.27%) 0.34% (0.23%)
Monthly Std Dev 6.27% (0.68%) 2.36% (0.38%) 2.05% (0.23%)
Sharpe Ratio 0.0473 (0.1002) 0.1174 (0.0910) 0.1165 (0.0905)
Max Drawdown 56.2% (19.2%) 11.4% (7.9%) 8.2% (5.5%)
Alpha N/A 0.0041 (0.0024) 0.0039 (0.0021)
p-value (Alpha > 0) N/A 0.0458 0.0305
1 Column B&H states the financial gain of simply buying a stock and not selling

it, hence holding it as a passive investment
2 Column MA states the financial gain of implementing a trading strategy that

buys (sells) the stock when the MA classifier predicts a positive (negative)
return one step ahead

3 Column DMA states the financial gain of implementing a trading strategy that
buys (sells) the stock when the DMA classifier predicts a positive (negative)
return one step ahead

Table 3.9: Comparative performance of the strategies applied to equity indices on monthly data, gross of transaction costs.
Standard Errors in parenthesis.
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Strategy B&H MA DMA
Monthly Avg Return -0.10% (0.28%) -0.01% (0.04%) 0.00% (0.03%)
Monthly Std Dev 2.94% (0.25%) 0.53% (0.09%) 0.35% (0.07%)
Sharpe Ratio -0.0334 (0.0970) -0.0113 (0.1035) -0.0065 (0.1064)
Max Drawdown 28.5% (12.1%) 5.1% (4.1%) 3.5% (2.1%)
Alpha N/A -0.0001 (0.0005) 0.0000 (0.0003)
p-value (Alpha > 0) N/A 0.5856 0.5621
1 Column B&H states the financial gain of simply buying a stock and not selling

it, hence holding it as a passive investment
2 Column MA states the financial gain of implementing a trading strategy that

buys (sells) the stock when the MA classifier predicts a positive (negative) re-
turn one step ahead

3 Column DMA states the financial gain of implementing a trading strategy that
buys (sells) the stock when the DMA classifier predicts a positive (negative)
return one step ahead

Table 3.10: Comparative performance of the strategies applied to currencies on monthly data, gross of transaction costs.
Standard Errors in parenthesis.



3.5. Empirical Applications 103

It is noted that the strategies above could be also run without the help of the

machine learning algorithm that is used to calibrate the lookback window. As an

experiment to gauge the benefit of the use of the machine learning algorithm,

a simple DMA classifier was run on the test sample with no fitting of the look-

back window and using a blank choice of n= 1, ζ̂=−1, guided by the findings

of [38] that equity markets tend to be mean-reverting on daily forecasting hori-

zons. This simple classifier had a surprisingly good monthly return of 1.07%,

which compares to 1.25% of the machine learning algorithm given on Table 3.5

(and the difference is not statistically significant given the standard errors in the

table). However, the simple classifier also had a monthly standard deviation of

5.82%, as opposed to the 2.26% of the machine learning classifier, meaning that

the simple uncalibrated strategy indeed had a similar return profile, but was sub-

ject to a much higher variability of returns, being suboptimal from the point of

view of risk-adjusted performance. Therefore, one can conclude that the main

benefit of the machine learning algorithm over the uncalibrated naive strategy

was better dynamic risk management of trading positions.

The level of transaction activity for each strategy was also calculated as this

is an additional input needed to calculate the net returns. Table 3.11 shows

how many times the portfolio was entirely rebalanced over a month. It can

be seen that the Daily Equities MA strategy had the highest turnover, trading

on average 11.319 times the entire portfolio in a typical month. On the other

hand, the Monthly FX DMA strategy had the lowest turnover, trading only 5% of

the portfolio per month. FX strategies naturally had lower turnovers as the test

identified less evidence of serial correlation in currencies than in equities, so it

traded them less.

Table 3.12 shows the returns of the strategies applied to equities. The daily

strategies have the best returns for investors that can achieve low trading costs.

In particular, if one can achieve trading costs of 5bps per trade (a level that can be
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achieved for the most sophisticated investors), the EQ DMA strategy would have

obtained an annualised return of more than 20% for the same level of risk that

the Buy & Hold would have obtained an annualised return of 3.87%. However,

even with trading costs as high as 20bps per trade (a level that is attainable

even for savvy retail investors), trading the DMA strategy on a monthly basis

can achieve an annualised return in the region of 10% for the same level of risk

of the Buy & Hold.

Table 3.13 shows the returns of the strategies applied to currency trading.

Given that no strategy could have a positive Alpha, it is also seen that no strategy

could have a positive annualised return net of costs, though the Buy & Hold re-

turn was also negative for the period. Therefore, these strategies when applied

to currencies cannot provide absolute returns on their own. Nevertheless, it is

also worth noting that the lower maximum drawdown indicates some potential

use of the underlying model for Global Fixed Income portfolios, where the for-

eign carry interest is also a component of the return, and the strategies would

be acting as currency risk mitigants.

It is noted that Tables 3.12 and 3.13 do not report significance ratios or

standard errors because the transaction costs were assumed constant for each

level of assumed costs. The variability of the results can be ascertained by com-

paring the values of the same row across different columns; for example Table

3.12 shows that there is a variability between 25% and -25% in the total an-

nualised returns of the DMA Daily trading strategy just due to transaction costs

alone. This is very strong evidence that good management of transaction costs

is as important as the trading strategy itself.
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Equities Currencies
Daily Weekly Monthly Daily Weekly Monthly

MA DMA MA DMA MA DMA MA DMA MA DMA MA DMA
9.81 11.32 0.94 0.61 0.30 0.18 2.06 0.92 0.55 0.31 0.11 0.05

Table 3.11: Average monthly turnover per strategy (times the portfolio size)

Cost per transaction 3 bps 5 bps 10 bps 15 bps 20 bps
Daily EQ MA 24.58% 18.16% 2.71% -11.93% -25.80%
Daily EQ DMA 31.79% 23.55% 3.83% -14.70% -32.11%
Weekly EQ MA 10.96% 10.31% 8.71% 7.12% 5.53%
Weekly EQ DMA 11.50% 10.96% 9.62% 8.28% 6.94%
Monthly EQ MA 9.04% 8.88% 8.46% 8.05% 7.63%
Monthly EQ DMA 10.87% 10.75% 10.46% 10.16% 9.87%
Annualised Return of Buy & Hold gross of any transaction costs 3.87%

Table 3.12: Annualised return, net of costs, per equity trading strategy per level of costs

Cost per transaction 2 bps 4 bps 6 bps 10 bps 15 bps
Daily FX MA -6.10% -9.47% -12.82% -19.47% -27.71%
Daily FX DMA -2.67% -4.60% -6.53% -10.37% -15.15%
Weekly FX MA -2.66% -3.37% -4.08% -5.50% -7.27%
Weekly FX DMA -0.48% -1.13% -1.77% -3.05% -4.65%
Monthly FX MA -0.55% -0.69% -0.84% -1.13% -1.50%
Monthly FX DMA -0.33% -0.43% -0.53% -0.73% -0.98%
Annualised Return of Buy & Hold gross of any transaction costs -1.16%

Table 3.13: Annualised return, net of costs, per currency trading strategy per level of costs
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The results net of transaction costs show that even though the economic

and statistical value of the signed path dependence models for currency trading

is low, this value can actually be high for equity trading. The results of Table 3.12

can be compared to the results reported at Table 3 of [88], where the authors

propose an equity trading strategy based on a filter model that aims to exploit

serial correlation of stocks, reporting the returns of their strategy net of trans-

action costs and split per level of correlation. In their experiment, stocks with

mean-reverting prices (i.e. negative serial dependence) obtained very negative

returns, but for stocks with high levels of serial dependence they could obtain

a total annualised return between 20.5% and 21%, net of transaction costs im-

plied by the "typical bid-ask spread" observed in the fifty year window between

1964-2014. Under transaction costs of 5bps or lower, Table 3.12 shows that our

proposed strategy can obtain returns marginally better than the ones reported

by [88].

3.6 Machine Learning Estimation Method

This section describes a machine learning method that reads a data stream of

log-returns in chronological order t = 1,2,. . . and for each r(t) read it returns

either bs(t+1) or zero if it cannot make a reliable prediction for this sign, which

could happen either because there is not enough observed information up until

time t to make such prediction or because the test defined in Theorem 4 could

not find evidence of signed path dependence in the series provided up until that

point.

The section alternates between pseudocode, in a smaller font to make it dis-

tinguishable, and descriptive text. Reading this section requires some knowledge

of object-oriented programming concepts as the pseudocode listed comprises of

an object-oriented implementation aimed to be ported into languagues such as

C++ and Python. All required variables are listed and commented in the pseu-
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docode.

A single class object is described in this section. Such an object, once fully

initialised, should be run by sequentially invoking method Classify every time

a new data point is observed, obtaining either bs(t+1) or zero. For a practical

application, the output of the method Classify is translated into a trading strategy

with three decisions: buy, sell or take no position.

All class variables only require private visibility and are listed as follows:

className the name of the classifier being implemented (either MA or DMA)

R a list that will contain a sample of observed log-returns for a given asset at a given trading

frequency

P a list that will contain positive integer numbers candidate values for the parameter n of the

classifier being implemented

z an integer number corresponding to the desired learning sample size, assumed even for

simplicity

α the significance threshold for the application of the signed path dependence test

w an integer number corresponding to a retuning interval

v an integer number corresponding to a retraining interval

n′ an integer number corresponding to a test lookback horizon

nmax the optimal value of the classifier lookback for prediction

bTrade indicating whether the asset is worth trading or not

r the long term unconditional mean of the return process

ζ the sign of the path dependence being assumed by the predictive method

countSinceTune storing how many data points have been read since the last time the classifier

was tuned

countSinceTrain storing how many data points have been read since the last time the clas-

sifier was trained

The class object contains four different methods: Initialise, Classify, Predict

and Update.

Method Initialise is implemented as below:

procedure INITIALISE(P = (n1,n2, . . . ,nN ), z> 0, 1>α> 0, w> 0, v> 0, n′ > 0, className)

this.R←; . R is initialised as the empty set and will be built as new data is observed
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this.P ← P; this.z ← z; this.α ← α; this.w ← w; this.v ← v; this.className ←

className

this.countSinceTune← 0; this.countSinceTrain← 0; this.n′← n′

end procedure

Description of method Initialise: This method is the class constructor and will

be called whenever an instance of the class is created. It stores into internal

memory all parameters that are required by subsequent methods and initialises

other relevant internal variables. Creating an instance of this class will always

require the following parameters:

• className : one of MA or DMA, representing the classifier being imple-

mented by this instance of the class - notice that it is a decision of the user

whether only sign continuation is to be assumed or if a dynamic decision

between continuation and reversals is needed.

• P : a list of integers containing acceptable values for the parameter n of

the classifier being implemented (the actual choice of n will be performed

by method Update).

• z : an integer corresponding to the desired learning sample size, to be used

by methods Classify and Update.

• α : the significance threshold to be used by method Update.

• w : an integer corresponding to a retuning interval, to be used by method

Update.

• v : an integer corresponding to a retraining interval, to be used by method

Update.

• n′ : an integer corresponding to a test lookback horizon, to be used by

method Update.

Method Classify is implemented as below:

function CLASSIFY(r (t))

Append r (t) to the end of list this.R
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if leng th(this.R)> this.z then

Drop the first element of list this.R

end if

if leng th(this.R) = this.z then

Call this.Update()

if bTrade= TRU E then

return this.Predict(this.R, this.r, this.nmax )

end if

end if

return 0

end function

Description of method Classify: This is the only public method of the class. It

should be called every time t a new data point has become available and returns

either bs(t+1) or zero, which also can be taken as a trading decision: -1 meaning

negative / sell; 1 meaning positive / buy; 0 meaning no predicted sign / take no

position. The only parameter required to run this method is:

• r (t) : the observed data point (log-return).

The method stores r(t) in an internal class variable, in sequential order so

that it can be used in subsequent iterations and updates of the model. However,

if after storing r(t) the internal storage has z+1 points (with z given during

initialisation), the method will drop the oldest (first) data point of the internal

storage to ensure that the learning sample size stays constant at z.

If there are fewer than z data points in the internal storage, the method

simply returns zero, not attempting any prediction until more data is received

to fill up the internal storage. Otherwise, it calls the internal method Update

which will learn the optimal values for parameters n and r given the data in the

internal storage and save to internal memory the results of the test defined in

Theorem 4.

Finally, if the test results saved in memory inform that there is no significant
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path dependence in the series saved to the class internal storage, the method will

again simply return zero. Otherwise, it will return the result of calling the inter-

nal method Predict giving the whole data in the internal storage as the parameter

R and the parameters n and r as obtained in the method Update.

Method Update is implemented as below:

procedure UPDATE( )

this.countSinceTune← this.countSinceTune+1

this.countSinceTrain← this.countSinceTrain+1

if this.countSinceTune=w then . The tuning stage is performed inside this block

this.r← 1
z

∑z
i=1 this.R(i)

if this.className = "MA" and d
√

√

∑this.n′
τ=−this.n′

bγ(τ)

s−this.n′

>Φ−1 (1− this.α) then

this.bTrade← TRU E

this.ζ← 1

else if this.className = "DMA" and

�

�

�

�

�

�

d
√

√

∑this.n′
τ=−this.n′

bγ(τ)

s−this.n′

�

�

�

�

�

�

>Φ−1
�

1− this.α
2

�

then

this.bTrade← TRU E

this.ζ← 1 if d
√

√

∑this.n′
τ=−this.n′

bγ(τ)

s−this.n′

>Φ−1
�

1− this.α
2

�

or -1 if d
√

√

∑this.n′
τ=−this.n′

bγ(τ)

s−this.n′

<Φ−1
� this.α

2

�

else

this.bTrade← FALSE . The asset is not worth trading

end if

this.countSinceTune← 0

end if

if this.countSinceTrain= v then . The training stage is performed inside this block

r1←
2
z

∑z/2
i=1 this.R(i)

this.nmax ← argmax
n∈P

2
z

∑z
i= z

2+1 exp(this.R(i)× this.Predict((this.R(i−z/2) , . . . , this.R(i−1)) , r1,n))

this.countSinceTrain← 0

end if

end procedure

Description of method Update: This is an internal method that performs

the learning process of the class, split into two stages:

• Tune: This stage decides if any reliable prediction can be made and sets
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other relevant internal variables of the class. To enhance runtime perfor-

mance, the Update method runs this stage only once every w iterations

(with w given during initialisation) and relies on results from previous

runs (stored in internal memory) when this stage is not run. This stage

uses all data points in the internal storage of the class to decide if the asset

is worth trading by checking for significant path dependence as follows:

– If the classifier being implemented by this instance of the class is the

MA classifier, the test defined in Theorem 4 is applied to all stored

data points to look for significant positive path dependence only, and

the asset is deemed worth trading if such dependence is found.

– Alternatively, if the classifier being implemented by this instance of

the class is the DMA classifier, the test defined in Theorem 4 is applied

to all stored data points to look for significant path dependence of any

sign which, if found, would make the asset worth trading.

If the asset is deemed worth trading, the method estimates its long term

mean return (and stores it internally for future usage) as the observed

mean return over all data points in the internal storage of the class.

• Train: This stage decides the actual value of n that should be used for

classification. To enhance runtime performance, the Update method runs

this stage only once every v iterations (with v given during initialisation)

and relies on results from previous runs (stored in internal memory) when

this stage is not run. This stage splits the data points in the internal stor-

age into two subsamples of equal length: training (the first chronological

half of the stored list) and validation (the second chronological half of the

stored list, henceforth referred to as Rvalidation). Using the mean return

over the training sample as an input to the classifier being trained, it finds

which value of n produces the highest classification gain over the validation
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sample, with the gain defined as:

G (n) = exp

 

∑

r(t)∈Rvalidation

r (t)×bs(t)

!

(3.21)

where bs(t) is obtained by method Predict using r equal to the mean return

over the training sample, R=(r(t−1), r(t−2), . . . , r(t−z/2)) and n as the

lookback parameter.

All learned parameters are stored in the private class variables for subsequent

usage.

Remark 11. The gain function chosen has the advantage of being linear on the

returns, which means it can also be used to evaluate the returns of a portfolio com-

prised of several assets invested according to the underlying classification strategy.

And, finally, method Predict is implemented as below:

function PREDICT( R, r, n )

return this.ζ×sgn
�

∑n−1
i=0 (R(leng th(R)− i)− r)

�

end function

Description of method Predict: This is an internal method that performs the

actual prediction as a direct one step ahead implementation of Definition 4 if

className = "MA" or as per Definition 5 if className = "DMA", returning

either -1 or 1. It receives three inputs:

• R : a list of log-returns in chronological order, assumed to be the most

recent returns up to the point that the method Predict was called.

• r : the long term mean log-return of the asset.

• n : the value of the lookback parameter.

In case this instance of the class is a DMA classifier, the value of ζ̂ will have

already been obtained and stored internally by method Update by the time this

method is called.
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In the empirical experiment of Section 3.5, the tuning stage of the algo-

rithm was done every six months, which meant a retune was done after six new

monthly data points, 24 new weekly data points and 126 new daily data points.

The training stage was done monthly, which meant a retrain was done for every

new point for monthly data, after 4 new points for weekly data and after 21 new

points for daily data.



Chapter 4

Using Conditional Asymmetry to

Predict Commodity Futures Prices

This chapter presents an empirical study of a number of commodity prices in the

futures markets fitted to a novel time series model where the source of nonlinear

serial dependence in returns arises out of conditional asymmetry: the shape of

the probability distribution of the returns varies in a way that can be expressed

as a function of previous returns. This property of the fitted time series model

is used to provide predictions with respect to future returns by identifying mo-

ments in time where the future expected return is positive or negative. Moreover,

the model here proposed can also be easily linked to the profitability of trend-

following / time-series momentum trading strategies by interpreting the values

of the coefficients obtained.

This chapter provides the following contributions to the existing literature:

(i) an up-to-date empirical study demonstrating evidence of continued profitabil-

ity of a trend-following strategy applied to commodity futures markets between

2009 and 2019; (ii) a parametric time series model that can model of nonlin-

ear serial dependence in the shape of the distribution of price returns and can
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provide useful information about the expected future behaviour of a seemingly

uncorrelated stochastic process; (iii) an additional empirical application of this

model to generate of probabilistic forecasts of variables subject to nonlinear se-

rial dependence triggered by dependent changes in the shape of their distribu-

tion.

The chapter is structured as follows: Section 4.1 provides the formulation

of the model and explains how to estimate the required parameters of the model,

which reparametrizations can be performed to enhance numerical stability of the

computations involved and which properties can be used to extract nonlinear se-

rial dependence of a given time series. Section 4.2 demonstrates on a number of

commodity future price series the empirical performance of the model to detect

nonlinear serial dependence and potentially guide investment decisions, while

Section 4.3 benchmarks the probabilistic predictions of markets generated by

the model proposed in this manuscript against the ones made by an ARMA(p,q)-

GARCH(1,1) model.

4.1 Model Formulation and Fitting

The mathematical foundation behind the study here proposed is based on the

standard formulation of time-varying regime switching models. The literature

review in [89] gives a good background on such models. In our formulation, the

asset return model is based on a constrained form of Gaussian mixture whose

weights are time-varying and specified as a logistic regression of the asset return

at lag t−1 and the sign of the cumulative return of the asset between times t−n

and t−2.

Let frt |n;pt−1,pt−2,pt−n−1
be the probability density function of the log-return rt

conditional on the prices observed at times t−1, t−2 and t−n−1. We propose

that
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frt |n;pt−1,pt−2,pt−n−1
=wϕ

�

µH ,σ2
t

�

+(1−w)ϕ
�

µL,σ2
t

�

, (4.1)

w=
1

1+exp(−zt)
,

zt =α+β rt−1+γsgn(pt−2− pt−n−1)

where sgn is the sign function, ϕ (x , y) is the density function of a Normal dis-

tribution of mean x and variance y , w is the probability at time t that the asset

is in a high-return regime, µH ≥ 0 is the expected return of the asset in the high-

return regime, µL ≤ 0 is the expected return of the asset in a low-return regime

and σ2
t is the overall volatility of asset returns, which is allowed to vary through

time (and hence can follow any ARCH process [90] or similar variant). The other

additional parameters are α, β and γ, which will determine how the probability

of staying in the high-return regime behaves through time.

Notice that, as the sign function is bounded between 1 and -1, irrespective

of how arbitrarily large is the choice of parameter n, the contribution of zt to

the variance of the returns will be bounded. At the same time, all returns from

t−n to t−2 will have equal weight in their contribution to zt , hence allowing

for a very slow decay in the serial dependence of the process, as documented

by several empirical experiments. Finally, as will be shown later, the process zt

is a useful by-product of this model formulation, as one can establish whether

the asset return is expected to be positive or negative at time t by observing this

quantity, which can be known with certainty at time t−1.

The formulation above resembles the time-varying regime switching model

proposed in [91], which is also known as a Logistic Mixture model. However,

in [91] the regime weights are not self-excited, as it is the case in Equation

4.1. Another similar auto-regressive model in the literature is the Gaussian Mix-

ture Auto-Regressive model (GMAR) where the means of each component in the

Gaussian Mixture follow auto-regressive processes. A general formulation of a
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GMAR model can be found in [92]. Smooth Transition Autoregressive (STAR)

models [93] also aim to capture time series dynamics where there is a transition

between two or more auto-regressive regimes; in STAR models though the condi-

tional distribution of the dependent variable is typically assumed to be Gaussian

instead of a Gaussian Mixture.

The choice of a two state regime in Equation 4.1 is driven by a large volume

of empirical evidence that commodity returns can be accurately described using

a two state regime switching model. In [94] the authors analysed a sample of 12

different commodity spot prices that included metals and energy and observed

with high statistical significance the presence of two distinct regimes in all the

commodities analysed, with a clear difference in volatility across both regimes.

A similar finding was made in an empirical analysis of crude oil futures made

in [95]. Further, in [96] the authors analysed futures contracts for 4 different

metals plus crude oil and observed that a two state regime was the best fit for

copper, zinc and crude oil futures and a three state regime was the best fit for

gold and silver futures, though the difference in the location parameter was not

statistically significant between two of the three regimes for gold and silver.

It is noted that the seminal work about informed trading described at [97]

has described market order flow to be explained by a three-state regime, where

there can be "good news", "bad news" and "no news". The model in Equation 4.1

does not contradict the market description of [97] and it can be easily adapted to

include an extra variable corresponding to the probability of a "no news" event,

though at a cost of increasing the chance of overfitting and consequently in-

creasing the risk of lower out-of-sample predictive ability. As noted in Chapter

3, financial time series tend to have a high level of noise in proportion to the

signal being detected and the main motivation of the concept of signed path de-

pendence was to reduce the sensitivity of the model fit to such noise. Introducing

an extra variable and an extra state might go against this motivation, especially
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in the case of a model fit to monthly returns, which will naturally be a reduced

set of observations. The goal of this model is not to predict the actual order

flows that occur on a daily basis but instead to predict the impact of a persistent

market event on returns over longer term horizons, typically monthly. A model

based on order flow data such as the one described in [98] is better suited for

an application that involves understanding the actual order flow.

Remark 12. The variable zt can be interpreted as a latent factor that represents the

persistence of an imbalance in supply and demand of a specific commodity. While it

is clear that commodity spot prices change over time as a direct result of changes in

supply and demand, it is not immediately clear that commodity future prices change

as a direct result of changes in supply and demand. Derivatives trade in "zero net

supply" markets, where each buyer has always a matching seller. Due to this zero

net supply condition, changes in derivative prices might not necessarily be driven

by changes in the fundamentals driving the spot prices, as some of the buyers or

sellers can simply be financial agents not exposed to the supply and demand effects,

trading purely as market-makers or speculators. Despite the presence of financial

agents guaranteeing a zero net supply condition for commodity futures prices, a

number empirical studies have demonstrated that these agents do not substantially

alter the dynamics of commodity futures prices and the same supply and demand

imbalances that affect the spot prices also affect the futures prices. In [99], the au-

thors applied a Dynamic Equicorrelation to the returns of commodity futures of four

different categories (energy, precious metals, industrial metals and agriculture) and

verified that the level of time-varying co-movement across these contracts was very

low for agricultural commodities and low for energy and industrial metals, sug-

gesting that fundamentals specific to physical supply and demand each commodity

were the main drivers of the prices of these futures contracts instead of financial

conditions. A similar conclusion was reached for crude oil futures by [100], who
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analysed how structural breaks in the co-integration between WTI oil futures and

Brent oil futures could be explained by events that affected oil production, inven-

tories and international trade and verified that dates of major global fundamental

events coincided with the points where these structural breaks occurred. Finally, it

is also worth citing the work in [101] where the authors analysed changes over time

in net futures positions by commercial firms and compared against the changes over

time in net futures positions by financial agents and noted that although financial

firms tended to trade as counterparties of commercial firms, there was no evidence

that the changes in positions of financial firms were causing the movements in fu-

tures prices to deviate from movements in inventories, which are typically driven by

supply and demand.

As in most parametric time series models, there are several different ways to

estimate the parameters of the model implied by Equation 4.1. In this manuscript

the model will be estimated via maximum likelihood. This allows the estimation

of volatility parameters to be done at the same stage that the estimation of all

other model parameters is done by expanding the likelihood function so that it

includes the volatility parameters of the chosen volatility model and estimating

all parameters simultaneously in the expanded likelihood function. Further, it

keeps the model estimation procedure very similar to what is already established

in the field of regime switching models.

Like in ARCH-type and in regime switching models, the likelihood func-

tion can be expressed as a product of iterated conditional likelihood functions.

Let rt be the asset return at time t, σ2
t its variance at time t which is assumed

known with certainty given the previous history of asset returns up until that

point (this does not preclude it from being modelled by some conditionally het-

eroskedastic process, and it indeed is modelled as such in Section 4.2) and let

θn= (µH ,µL,α,β ,γ) the vector of parameters to be estimated, given the hyper-
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parameter n. Define ζt = sgn
�

∑n−1
i=1 rt−i

�

= sgn(pt−1− pt−n).

Notice that

frt ,rt−1,...|n;θn
= frt |n;rt−1,ζt−1,θn

frt−1|n;rt−2,ζt−2,θn
. . . frn+1|n;rn,ζn,θn

frn,ζn|n;θn

with frt |n;rt−1,ζt−1,θn
given by Equation 4.1. Therefore

L (n;θn) = log
�

frt ,rt−1,...|n;θn

�

= log
�

frn,ζn|n;θn

�

+
t
∑

i=n+1

log
�

fri |n;ri−1,ζi−1,θn

�

.
(4.2)

For sufficiently large n, the second term of the sum in Equation 4.2 will

dominate the sum, hence the maximum likelihood estimate of θ is given by

cθn= argmax
θ

s. t.µH≥0
µL≤0

t
∑

i=n+1

log( f (ri|n; ri−1,ζi−1,θn))

which can be reparameterised to an unconstrained maximum likelihood estima-

tion problem by defining µH = µ̃2
H , µL =−(µ̃L)

2 and θ̃n = (µ̃H ,µ̃L,α,β ,γ) and

obtaining

cθ̃n= argmax
θ̃n

t
∑

i=n+1

log
�

f
�

ri|n; ri−1,ζi−1, θ̃n
��

(4.3)

with the value of cθn being subsequently obtained from cθ̃n of Equation 4.3 by

substitution.

In this manuscript, the value of n was also chosen via maximum likelihood

by obtaining the maximum likelihood estimates of θn for all values of n between

1 and nmax where nmax is a user input representing the maximum value that n

can be used to fit the model without compromising the stability of the estimates

due to a low number of observations. The chosen value of n would be the value
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between 1 and nmax that yielded the highest likelihood value for the maximum

likelihood estimate of θn. To ensure all likelihood values are comparable, all

estimates were made using the same observation set, which meant that for each

possible value of n, the first nmax−n observations available to fit the model were

discarded.

As mentioned before, the process zt =α+β rt−1+γζt−1 can be used to infer

whether at time t the asset price p (t) is expected to be positive or negative. To

understand how, notice that it follows from Equation 4.1 that

E[rt |zt] =
1

1+exp(−zt)
µH+

exp(−zt)
1+exp(−zt)

µL

which implies that

E[rt |zt]≥ 0 ⇐⇒ −exp(zt)µL ≤µH⇒

E[rt |zt]≥ 0 ⇐⇒ zt ≥− log
�

−
µH

µL

�

.

In an empirical setting, one can define the estimator ba =− log
�

− bµH
bµL

�

and

predict the sign of the future return rt as

Úsgn(rt) = sgn
�

bα+ bβ rt−1+bγsgn(pt−2− pt−n−1)−ba
�

. (4.4)

This prediction strategy is explored in Section 4.2. Additionally, one can

use Equation 4.1 to make a probabilistic prediction of rt , which can be useful

for the calculation of metrics such as Value-at-Risk, Potential Future Exposure or

also to guide any hedging strategy of commodity price risk. This is explored in

Section 4.3.

Finally, it is noted that the standard errors for the maximum likelihood esti-

mates of the parameters can be calculated obtaining the estimated Fisher Infor-

mation by finite differences of the log-likelihood at the maximum point. There-
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after, the estimated standard errors are the square roots of the diagonal elements

of the inverse of the estimated matrix. For example, if the maximum likelihood

estimate is vector cθn =
�

bµH ,bµL,bα, bβ ,bγ
�

then the standard error of, say, bµH is

estimated by

Òse(bµH) =

√

√

√

√

 

−
∂ 2L (θn)
∂ µ2

H

�

�

�

�

�

θn=cθn

!−1

=

√

√

√

√

(bµHδ)
2

2L
�

cθn

�

− L
�

cθnµ+L

�

− L
�

cθnµ−L

�

cθnµ+L
=
�

bµH (1+δ) ,bµL,bα, bβ ,bγ
�

cθnµ−L
=
�

bµH (1−δ) ,bµL,bα, bβ ,bγ
�

where δ is an arbitrarily small real number. The standard errors of all other

parameters can be calculated following a similar logic. Its also noted that, should

the covariances between the estimated parameters be of interest, these can also

be obtained from the inverse of the estimated Fisher Information matrix.

4.2 Forecasting Price Direction in Commodity

Futures Markets

The model of Equation 4.1 has been fitted to different commodities covering six

of the most liquid futures contracts for Energy and Metals. Agricultural com-

modities were not included in the sample due to the fact that their prices are

also affected by seasonality and the model implied by Equation 4.1 cannot cap-

ture seasonality effects, with such effects being left outside of the scope of the

present manuscript.

Prices were sourced from the Quandl continuous futures database using an

observation dataset spanning from September-1990 to August-2019, with the

exception of Brent Crude Oil that had price data only from May-1993 onwards

and the returns calculated from the prices thereafter. The commodities analysed
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are listed on Table 4.1. The model was fitted using nmax = 25. The predictions

were made in an out-of-sample set of 125 months ending in August-2019 using

constant parameters fitted before the start of the out-of-sample period, with a

forecast horizon of one month.

Return series have been obtained by taking the logarithm of the quotient

between the month-end futures price of the contract month that is second to

expire against the previous month-end futures price of the contract month that

is third to expire. As all six commodities used in the elaboration of the present

manuscript have consecutive monthly expires spanning at least the first three

contract months, our return series corresponds in practice to the return of hold-

ing a long position in the same contract throughout a calendar month and rolling

this position to the subsequent expiry month at month-end.

To include the effects of conditional heteroskedasticity in the model estima-

tion, an exponentially weighted moving average variance method ([102]) was

implemented. In such formulation, the variance at time t is given by

σ2
t =λσ

2
t−1+(1−λ) r

2
t−1 (4.5)

where σ2
1= r2

1 . The parameter λ was estimated by maximum likelihood by sub-

stituting Equation 4.5 into Equation 4.1 and maximising the likelihood function

given by Equation 4.3.

Table 4.2 shows the maximum likelihood estimates for the six commodities

studied. The estimated values can be interpreted as follows:

• For all commodities studied, the parameter estimate of β was positive,

indicating that positive returns in the previous month t −1 increase the

probability that a high-return regime will occur in month t, hence increas-

ing the expected return in month t. This is consistent with the existence

of profitable trend-following strategies in this asset class.
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• For all commodities other than Copper, the parameter estimate of n was in

the region of 12 and the parameter γ was positive, suggesting evidence of

long term persistence in their returns affecting the returns of almost one

year later. This is also consistent with the existence of profitable trend-

following strategies that aim to extract value from long term trends.

• For Copper, the parameter n was 23 and the parameter estimate of γ was

negative, suggesting evidence of long term anti-persistence in returns after

about two years. This is consistent with the existence of Copper trading

strategies that aim to extract value from long term mean-reversion.

The sign estimator given by Equation 4.4 was used to drive investment de-

cisions of a hypothetical Managed Futures strategy that would trade on all six

commodities, taking long positions in the associated futures contract whenever

the predicted sign was positive and short positions whenever the predicted sign

was negative. The overall portfolio was equally weighted on all commodities

and no variance-weighting technique was applied. It is worth noting that the

return series for five out of the six contracts had the same annualised standard

deviation of circa 30%, with the only exception being Gold that had a standard

deviation of about half of that amount. This indicates that variance-weighting

would have had limited influence on the results.

Table 4.3 shows the annualised returns of the hypothetical strategy and

annualised standard deviations, calculated by multiplying the standard deviation

of monthly returns times the square root of twelve. The numbers are shown gross

of transaction costs; however, as the strategy only involves one futures trade per

month, these costs are not expected to materially erode the returns, especially if

coupled with good order execution algorithms. It is noted that Brent Crude Oil,

Gas Oil and Gold offered the best risk-return profile of all six but trading WTI

Crude Oil did not generate excess returns.
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Table 4.1: Data coverage per commodity analysed

Commodity No. of Fitting Observations Quandl 2nd Month Code Quandl 3rd Month Code
Brent Crude Oil 190 months (1) ICE_B2 ICE_B3
WTI Crude Oil 222 months (2) CME_CL2 CME_CL3
Gas Oil 222 months (2) ICE_G2 ICE_G3
Natural Gas 222 months (2) CME_NG2 CME_NG3
Gold 222 months (2) CME_GC2 CME_GC3
Copper 222 months (2) CME_HG2 CME_HG3
1 From May-1990 to March-2009
2 From September-1990 to March-2009

Table 4.2: Maximum Likelihood Estimates of Logistic Mixture Parameters

Commodity bn (1) bµH bµL bα bβ bγ bλ

Brent Crude Oil 11 0.025 -0.085 3.854 43.08 1.083 0.874
WTI Crude Oil 12 0.024 -0.053 1.564 15.73 1.398 0.813
Gas Oil 11 0.036 -0.029 0.786 21.35 1.463 0.801
Natural Gas 10 0.128 -0.031 -1.826 3.075 0.819 0.975
Gold 10 0.045 -0.011 -1.476 0.186 0.867 0.787
Copper 23 0.004 -0.267 10.21 27.36 -4.496 0.925
1 Lookback horizon of the logistic mixture model, also estimated (i.e. not a

fixed parameter)
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Table 4.3: Investment Performance of Hypothetical Managed Futures Strategy.

Commodity Ann Return Ann Std Dev Sharpe Ratio
Brent Crude Oil 5.23% 27.30% 0.192
WTI Crude Oil -2.68% 28.74% -0.093
Gas Oil 11.20% 25.20% 0.445
Natural Gas 5.56% 31.10% 0.173
Gold 3.42% 16.68% 0.205
Copper 0.46% 21.71% 0.021
Overall Portfolio 6.37% 12.93% 0.493

It is also noted that the overall portfolio comprising of the six commodities

had a material reduction in risk against each individual commodity (measured

by the portfolio’s standard deviation) together with a good positive return, which

can be take as evidence that the prediction errors across all of the six commodi-

ties were largely uncorrelated.

The returns on Table 4.3 can be compared to results already documented

in the literature for commodity futures trading strategies based on serial depen-

dence of returns. There are two leading studies: the cross sectional momentum

[103] and the time-series momentum [7].

The time-series momentum analysis is very similar to the concept of signed

path dependence introduced in Chapter 3 where it correlates the sign of the

return n steps ahead against the sign of the return h steps back. In particular,

the MA classifier of Chapter 3 with n= 12 and h= 1 for monthly observation

frequency is equivalent to the study done in [7]. In this manuscript, the authors

applied their predictive model to build a portfolio of positions in commodity

futures, which would hold for one month a long (i.e. positive weight) exposure

in a commodity futures contract in case the return in the previous twelve months

was positive or a short (i.e. negative weight) exposure in case this return was

negative. The authors did not report the Sharpe Ratio of the overall portfolio,

but reported the Sharpe Ratio of individual commodities and their numbers were

comparable to the ones in Table 4.3. For example, their Sharpe Ratio of 0.05 for
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Natural Gas was slightly lower than our Sharpe Ratio of 0.17 for Natural Gas

and their Sharpe Ratio of 0.5 for Gas Oil was similar to our Sharpe Ratio of

0.44. The authors reported clearly better results for the Brent Crude Oil, with

a Sharpe Ratio of 0.7 in their study against our Sharpe Ratio of 0.2. However,

as the authors did not report an overall portfolio Sharpe Ratio, the comparison

cannot be done to the full extent as in a practical situation the returns of the

overall portfolio are more important than the returns of individual components.

The cross-sectional momentum study aimed to build a portfolio based on

relative returns by ranking the commodities over their returns in the previous

12 months and assigning weights based on the rank: so the commodity with

the highest rank would have the highest positive weight in the portfolio and the

commodity with the lowest rank would have the lowest weight in the portfolio,

which would be a negative weight as the weights were normalised around the

mean rank so as to sum zero. Using 27 different commodities and the aforemen-

tioned method, the authors in [103] obtained a portfolio Sharpe Ratio of 0.51,

which is very close to our portfolio Sharpe Ratio of 0.49.

To confirm that the returns of the overall portfolio are statistically signifi-

cant, a dummy investment strategy was created that would trade all six com-

modities over the same 125 out-of-sample months and take long or short po-

sitions by uninformed guessing (random number generation), with both cases

taking equal probability. This strategy was simulated 5000 times so as to gen-

erate an empirical distribution for the average return of this dummy strategy

over the 125 out-of-sample months, which was used as a null distribution for a

hypothesis test against the null hypothesis that the average return of the overall

portfolio (on Table 4.3) is equal to or less than the one obtained by random un-

informed guessing. The critical value for this test at 5% Type I error probability

was obtained as 4.85% and, as the overall portfolio returns (6.37%) were greater

than the critical value, the null hypothesis can be rejected and the returns can
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be considered statistically significant at such level of confidence.

This section is concluded by analysing the behaviour of the predictions made

for specific commodity contracts to ascertain the boundary conditions under

which the Managed Futures strategy based on such predictions can be profitable

and the conditions that cause such strategy to generate negative excess returns.

To achieve that, two commodities are analysed: Gas Oil (the one whose trading

yielded the best returns as per Table 4.3) and WTI Crude Oil (the one yielding

the worst returns).

Figure 4.1 shows the evolution of a hypothetical index whose baseline value

of 100 is set at the end of Dec-2008 and for each month thereafter the index value

changes in the same proportion that the price has changed in a calendar month

for the Gas Oil futures contract that had become the second month to the expire

at the end of that month, in line with the futures expiry logic that was used to

choose which contracts were going to be traded in the hypothetical Managed

Futures strategy analysed on Table 4.3. In other words, this index corresponds

to the evolution of an initial investment of 100 US Dollars in a long-only position

in Gas Oil futures, rolling on a monthly basis.

The index values are then superseded with vertical dashed lines correspond-

ing to the dates where the sign of the one month-ahead return predicted by the

model has changed: for example, the dashed line with an upwards arrow at the

end of July-2010 means that the model started to predict a positive monthly re-

turn for Gas Oil futures; thereafter, the model stayed predicting a positive return

until the end of May-2012, when it started to predict a negative monthly return,

illustrated by the subsequent dashed line with a downwards arrow.
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Figure 4.1: Predicted start dates of Gas Oil Futures uptrends (dotted vertical line with upwards arrow) and downtrends (dashed vertical line
with downwards arrow). Baseline 100 at 31-Dec-2008.
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Figure 4.2: Predicted start dates of WTI Crude Oil Futures uptrends (dotted vertical line with upwards arrow) and downtrends (dashed vertical
line with downwards arrow). Baseline 100 at 31-Dec-2008.
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It can be seen that there were four times when the model correctly antici-

pated large moves/trends in Gas Oil futures prices (July-2010, Sep-2014, May-

2015 and June-2017). Such correct predictions generated substantial value and

were able to offset the relatively larger number of instances where the model

anticipated a change of sign but such change did not materialise - i.e. false

positives. As Table 4.3 demonstrates, Gas Oil trading was able to obtain excess

profits despite having more false positives than otherwise due to the magnitude

of the correctly anticipated trends.

Figure 4.2 shows the evolution of a hypothetical index constructed in the

same way as in Figure 4.1 but using WTI Crude Oil futures instead. It can be

seen a similar pattern to the one of Gas Oil futures, with large moves/trends

in WTI Crude Oil futures being correctly anticipated in May-2013, Aug-2014,

May-2015 and Sep-2017; however, there were too many false positives at times

of high volatility, which meant that incorrect predictions generated large losses

that eroded the returns in correctly anticipated trends.

It is worth noting that the strategy trading WTI Crude Oil futures was ac-

cumulating positive returns until Sep-2018 and these cumulative returns turned

negative after extraordinary trendless volatility in the last 11 months out-of-

sample, with a drawdown of almost 70% peak to through. Given the high vari-

ability of the returns of the proposed trading strategy applied to a single com-

modity, it is recommended that an overall commodity portfolio should be formed

(as done in this study and in many others in the literature) and, ideally, this com-

modity portfolio should sit within a well balanced investment portfolio.



4.3. Economic Probabilistic Forecasts in Commodity Futures Markets 132

4.3 Economic Probabilistic Forecasts in

Commodity Futures Markets

There is another rather important empirical application for the model implied

by Equation 4.1: probabilistic forecasts of economic variables. Probabilistic fore-

casts have an additional information as opposed to point forecasts, providing the

level of uncertainty around a forecast. Though the changes in the level of vari-

ability in market variables due to recent returns can be easily accounted for by

conditionally heteroskedastic variance models, Equation 4.1 allows an econome-

trician to obtain a full probability density for the variable being forecasted that

can take into account changes in the tail behaviour and return asymmetry due

to recent returns in addition to the information also given by variance models.

As a comparative experiment, Equation 4.1 with an exponentially weighted

moving average conditional variance as per Equation 4.5 (with the same fitted

parameters that are shown on Table 4.2) was used to compute 125 out-of-sample

probabilistic predictions (one per out-of-sample month) for each of the six com-

modities analysed in this study. As a benchmark, the same months and com-

modities had probabilistic predictions made using an ARMA(p,q)-GARCH(1,1)

model with Gaussian errors. Such model is commonly used in the forecasting

of Value-at-Risk models for investment banks and other fund management insti-

tutions and assumes the log-returns follow the dynamics given by the following

equation:

rt =µ+
p
∑

i=1

Ai rt−i+
q
∑

i=1

Miεt−i+εt

εt |rt−1, rt−2, . . .∼N
�

0,σ2
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�

σ2
t =ω+τε

2
t−1+υσ

2
t−1.

(4.6)



4.3. Economic Probabilistic Forecasts in Commodity Futures Markets 133

The estimated parameters of the ARMA(p,q)-GARCH(1,1) model are given

on Table 4.4. These parameters were computed using the exact same sample

that was used to fit the Logistic Mixture model. The hyperparameters p and q

were chosen using the stepwise procedure of [104].

In order to have meaningful conclusions for this experiment, one needs to

have a way to objectively determine which probabilistic predictions had the best

out-of-sample performance. This can be challenging given that, even though

the predictions are full probability distributions, the actual observations com-

prise always of a single point. Probabilistic predictions are normally assessed

for quality of fit and predictive power using scoring rules [105]. An empirical

application of probabilistic predictors and scoring rules in the field of Finance,

with additional illustrations, can be seen in [106], where different predictions

made for the probability of a lender defaulting are ranked and compared for

out-of-sample predictive ability.
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Table 4.4: Maximum Likelihood Estimates of ARMA(p,q)-GARCH(1,1) Parameters

Commodity p q bµ bA1 bA2 bA3 ÒM1 Òω bτ bυ

Brent Crude Oil 0 1 0.010 0.215 0.0006 0.150 0.784
WTI Crude Oil 1 0 0.004 0.191 0.0003 0.165 0.811
Gas Oil 1 0 0.001 0.162 0.0003 0.166 0.815
Natural Gas 0 0 -0.003 0.0005 0.062 0.914
Gold 0 0 -0.004 0.0001 0.137 0.817
Copper 3 1 0.002 -0.775 0.236 0.209 0.854 0.0001 0.033 0.966

Table 4.5: Comparison of Out-of-Sample Probabilistic Predictions

Commodity ARMA-GARCH Logistic Mixture Paired T-Test Reject
Average CRPS Average CRPS p-Value Logistic ≤ ARMA-GARCH

Brent Crude Oil 0.044 0.046 0.01038 Yes
WTI Crude Oil 0.047 0.049 0.06882 No
Gas Oil 0.040 0.046 0.003153 Yes
Natural Gas 0.052 0.109 < 0.0001 Yes
Gold 0.026 0.038 < 0.0001 Yes
Copper 0.043 0.035 > 0.9999 No
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In this manuscript, to determine which probabilistic predictor had the best

out-of-sample performance, the Continuous Ranked Probability Score (CRPS)

was used, based on the implementation of [107]. The CRPS is given by [105]:

CRPS (F, x) =

∫ ∞

−∞
(F (y)−1{y ≥ x})2 d y

where F(x) is the cumulative distribution function of x and 1 is the indicator

function.

The CRPS rule used in the present thesis has the advantage that the expected

score will be maximised if and only if the true distribution of the generative pro-

cess is used as the probabilistic predictor being evaluated, provided that this

distribution has a finite first moment. A scoring rule that satisfies such a prop-

erty is also known as being a "strictly proper" scoring rule. The CRPS rule is not

the only rule to have been used already in a financial application. In [108] the

Logarithmic Score is used to compare density forecasts generated using three

different probabilistic models for the United States monthly inflation rate. The

authors noted that their choice of score was due to its simplicity (as the Loga-

rithmic Score is simply the logarithm of the probability estimate for the actual

outcome) and ease of interpretation given that the aggregation of the difference

between several scores for different predictions can be easily interpreted as a

weighted likelihood test.

For each of the six commodities, each of the 125 out-of-sample probabilistic

predictions were assigned a CRPS when the prediction was based on the Logistic

Mixture model and another CRPS for the prediction based on the ARMA(p,q)-

GARCH(1,1) model. The two sets of 125 scores were then compared using a

two sample paired T-test to detect with a Type I Error probability of 5% whether

the ARMA(p,q)-GARCH(1,1) average score was equal to or greater than the av-

erage score for the Logistic Mixture model. Rejection of this hypothesis implies
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that the Logistic Mixture model provided significantly better forecasts than the

ARMA(p,q)-GARCH(1,1) model. Results are shown on Table 4.5. It can be seen

that the Logistic Mixture model provided a higher average score for five out of

the six commodities, and in four of them the difference was statistically signifi-

cant.

Finally, a few specific cases are shown to illustrate why the model implied

by Equation 4.1 provides a better probabilistic predictor than an ARMA(p,q)-

GARCH(1,1) predictor. Figure 4.3 shows a probabilistic prediction for the price

at the end of Jul-2011 of the Gas Oil Futures contract maturing in the month of

Sep-2011, as if performed at the end of Jun-2011.

At that time, the Gas Oil Futures Prices had come from a sequence of

monthly appreciations in value. This caused the entire predicted distribution

by the Logistic Mixture model to shift to the right. However, the immediately

preceding month actually had a fall in the price of Gas Oil futures, which caused

the ARMA(p,q)-GARCH(1,1) distribution to shift to the left, as there are no long

term effects in this model. As the chart shows, the long term trend continued

and the price of the commodity appreciated, as opposed to the prediction made

used by the Logistic Mixture model. It is noted that the Logistic Mixture model

also has a short term memory component; however, in the case of this particu-

lar situation, the positive long term effect was stronger than the negative short

term effect. It is not always like this, though: in other cases in the same sample

the opposite combination occurred, where the short term effect had a stronger

impact in the prediction than the long term effect.
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Figure 4.3: Illustration of Probabilistic Prediction for the Gas Oil Futures

It is noted that whilst the trading strategy for WTI Crude Oil did not generate

excess profits, the model still can be adequately used to elaborate probabilistic

forecasts of this commodity too. Trading strategies are mainly predictions of a

single value (in this case the sign) whilst probabilistic predictions attempt to pro-

vide a more complete view of the uncertainty, predicting an entire distribution.

Figure 4.4 compares the distributions between the prediction made with the use

of the Equation 4.1 and the ARMA(p,q)-GARCH(1,1) model for the price of the

WTI Crude Oil futures contract maturing in the month of Jan-2016, as if made

in Oct-2015 for the price level at the end of Nov-2015.

It can be seen that, whilst both predicted distributions were relatively cen-

tered around the same location, the prediction made with the use of the Equation

4.1 had a left tail that was heavier than the right tail - this was due to previous

falls in the price of WTI Crude Oil. It is worth noting that the shape of the dis-

tribution given by Equation 4.1 varies dynamically and the left tail is not always

heavier than the right tail (for example during predicted uptrending markets),

something that could not be achieved using the ARMA(p,q)-GARCH(1,1) model

even if a skewed distribution is assumed for the error term, as this model cannot

cope with time-varying skewness. As it can see in the picture, the futures price
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that actually materialised in Nov-2015 turned out to be very low indeed, in line

with the increased left tail risk predicted by the model.

Figure 4.4: Illustration of Probabilistic Prediction for the WTI Crude Oil Futures

The previous figures illustrated that the model proposed in this chapter

provides an enhanced accuracy in probabilistic forecasts for commodity futures

prices against a simple ARMA-GARCH predictor. Therefore, the use of the model

proposed in this chapter can provide additional information to economic plan-

ning around commodity price risk exposure.



Chapter 5

Option Pricing with Polynomial

Chaos Expansion and Signed Path

Dependence

In the previous chapters the concept of signed path dependence was introduced

and fit to empirical observations of market returns in the real-world measure

with a view to enhance the accuracy of time series models used for trading and

risk management of assets with no optionality (i.e. cash assets and futures con-

tracts). One might be interested to know if the previous findings can provide

any contribution to the literature on assets with optionality. This chapter aims

to provide this contribution by proposing a model to gauge to what extent the

claimed presence of signed path dependence affects the behaviour of the market

price of risk.

In order to reduce model specification risk and in accordance with the main

approach followed by this thesis, we propose a non-parametric model for the

extraction of the risk-neutral density with little assumptions over the underly-

ing real-world process. Parametric models tend to underestimate the tails of
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the risk-neutral distribution in part due to an empirical property of asset returns

called stochastic volatility [109] where the arrival of new information at a ran-

dom arrival time causes a large temporary but persistent shock to the asset return

distribution, making the presence of outlier returns much higher than most para-

metric models can reach. In fact, even parametric models for stochastic volatility

tend to underestimate the tails of the risk-neutral distribution [110]. The risk-

neutral distribution is also known to be asymmetric [72], which increases the

challenge for parametric models.

One of the most well-known methods that still is widely used in the industry

is based on an Edgeworth series expansion of the risk-neutral density [71], but

this method has a drawback that it is not guaranteed to always provide a valid

risk-neutral density as the resulting density is not guaranteed to be non-negative

in all points or to integrate to one. In [73] a modified version of the Edgeworth

expansion is provided where constraints are placed to ensure the resulting risk-

neutral density is a valid density at all times. In [111] the risk-neutral distribu-

tion is obtained as a convolution of a fixed kernel and some arbitrary density

function and a similar approach has been followed in [112] for estimating the

stochastic volatility effect in a standard option pricing model.

The methods in the cited literature tend to have less power to explain rel-

atively complex risk-neutral distributions and with the recent market and tech-

nological developments a vast amount of tradable option price data is becoming

increasingly available, raising the question on whether it is valuable to follow

approaches that expand the risk-neutral distribution into a Polynomial Chaos

Expansion (PCE) that in theory can fit any distribution with infinite accuracy

as long as there is enough data. In [74] a method is proposed to expand the

density function using PCE and in [77] a method is proposed to obtain a risk-

neutral distribution by expanding the return process via PCE. In [113] and [114]

PCE is applied to the problem of risk-neutral density estimation in the context
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of stochastic volatility.

In this work we also use a PCE expansion based on the return process, as this

ensures by construction that the risk-neutral density obtained is always a valid

density, which will not necessarily be the case on an unconstrained expansion of

the density function. Having said that, we contribute to the literature on propos-

ing a data-driven method similar to the one described in [115] for a different

problem. Our approach is the first, to the best of our knowledge, that calibrates

a Polynomial Expansion of the random variable itself directly on option prices

and simultaneously embeds the Fundamental Theorem of Asset Pricing directly

into the derivation of the weights for the Polynomial Expansion.

In this chapter we develop a three stage process to obtain a full description

of the market price of risk:

(i) First we fix a maturity date and assume a Hermite-Gaussian Polynomial

Chaos representation for the risk-neutral distribution of the underlying as-

set returns between the measurement date and the maturity date. For each

maturity, the polynomial weights are obtained by minimising the option

pricing error via a least-squares procedure and subsequently all different

maturities are connected via a stochastic interpolation scheme based on a

stochastic bridge interpolator. Note that this step is independent of what-

ever functional form the underlying asset price process might have. We

call it the model-free empirical risk-neutral distribution. We then couple

the PCE calibrations at each time together by a stochastic bridge interpo-

lator that allows us to obtain a consistent dynamic for the model free PCE

option surface calibrations over time as a stochastic process.

(ii) Then we choose a model for the real-world asset price dynamics that can

be calibrated to historical observations for the purposes of risk manage-

ment, or can be embedded into an SDE model for the purposes of option

pricing. In this thesis the model is proposed so as to include the effects
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of signed path dependence in the asset price behaviour. In this regard

we develop an novel extension of a non-markovian non-parameteric dy-

namical process to capture features of signed path depedendence whilst

preserving uncorrelated return structures that can arise in markets such as

equities and currencies.

(iii) Finally, we estimate the functional form of the market price of risk by mod-

elling the Radon-Nikodym derivative of the empirical risk-neutral distri-

bution with respect to the modelled real-world distribution. Our model is

able to capture a non-constant market price of risk using a natural cubic

spline basis calibrated to the quantiles of the risk-neutral distribution.

The chapter is structured as follows: Section 5.1 describes the non-

parametric method used to fit the risk-neutral distribution via PCE; Section

5.2 provides a comparision between our method and the Edgeworth expansion

method, still considered by many in the industry as the gold standard for arbi-

trary derivation of the risk-neutral density; Section 5.3 gives a brief pause on

risk-neutral work to focus on the impact of signed path dependence on the dis-

tribution of the real-world returns at any given European option expiry; Section

5.4 joins the work of the previous sections and Section 5.5 shows an empirical

application that clarifies all the theoretical stages of our procedure. Section 6

concludes the work.

5.1 An Alternative Representation of the

Risk-Neutral Distribution

We start by proposing a model-free methodology to obtain a risk-neutral distri-

bution that can acommodate any arbitrary set of call prices of common maturity

that can be calibrated to the observed market prices with an arbitrary degree of

accuracy. We note that the applicability of such a method is not limited to any
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specific model for the asset price; instead, it creates a model-free link between

the actual option prices observed and the models for the real-world probability

distribution of asset prices and the respective market price of risk, which can be

calibrated to historical data and reflect empirical properties of asset prices. So as

to ensure there is always at least one risk-neutral measure which is equivalent to

the real-world measure, markets are assumed arbitrage-free in the formulation

of this work. This can be relaxed in subsequent works that extend these ideas.

The current section details the first stage of the process given in the begin-

ning of the present chapter, starting with a key definition:

Definition 6. Let ψq
�

ξi1 ,ξi2 , . . . ,ξim

�

an m-dimensional Hermite polynomial of

order q, where ξi j∈{1,2,...,∞} is a set of i.i.d. standard Gaussian variables. The

Hermite Polynomial Chaos Expansion of a random process r(t) is given by

r(t) = w̃0(t)ψ0+
∑∞

i1=1

�

w̃i1(t)ψ1
�

ξi1

�

+
∑i1

i2=1

�

w̃i1,i2(t)ψ2
�

ξi1 ,ξi2

�

+
∑i2

i3=1

�

w̃i1,i2,i3(t)ψ3
�

ξi1 ,ξi2 ,ξi3

�

+ . . .
�

��

(5.1)

where w̃{·}(t) are scalar coefficient functions to be estimated.

Equation 5.1 comprises an infinite sum, so in order to apply it to practical

circumstances the maximum polynomial order must be truncated at a maximum

order q and maximum dimension m. To simplify notation, the truncated version

of Equation 5.1 can be written in the following form:

r(t) =
J
∑

j=1

w̃ j(t)ψ j
�

ξ
�

+ε(m,q) (5.2)

where ξ = (ξ1,ξ2, . . . ,ξm) is an m-dimensional Gaussian random vector with

i.i.d. marginals of zero mean and unit variance, ε(m,q) is a truncation error

at a maximum order q and maximum dimension m, w̃0(t), w̃1(t), . . . , w̃J(t) are

the estimated weights at time t of the Hermite polynomials of this truncated
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expansion and J =
∑q

i=0
(m+i−1)!
(m−1)!i! is the number of terms in this expansion after

the truncation.

Remark 13. We remark that numerous methods exist to guide the degree and trun-

cation selection, see for instance [116]

Now, let (π1,π2, . . . ,πM ) be the prices (observed at time t) of M Eu-

ropean call options on the same underlying asset of different strike prices

(K1,K2, . . . ,KM ) but equal time to maturity T and let q(r, T ) be the risk-neutral

probability density of the log-return of that asset between times t and T , with St

being the asset price at time t. The log return process r(t) represented above in

a PCE formulation itself is capturing the dynamics of the log return transformed

from the the underlying asset price St at time t. Note, we assume in this work

without loss of generality that there is a single underlying asset of interest.

As the markets are assumed arbitrage-free, it follows from the Fundamental

Theorem of Asset Pricing [65] that there is a risk-neutral measure equivalent to

the real-world probability measure and that the European call price for any com-

bination of strike and maturity is given by the expected value of the discounted

payoff of the option.

Therefore, if λ is the continuously compounded risk-free rate, as

the payoff at time t of an European call option of strike Kv is given by

max(0,St exp(r(t))−Kv), we have that the following holds for all v ∈

{1,2,. . . , M} at time t:

πv =

∫ +∞

−∞
exp(−λ(T − t))max(0,St exp(x)−Kv)q(x , T )dx . (5.3)

Let πv
�

W̃ (t)
�

be the price of option v obtained by substituting Equation 5.2

into Equation 5.3. Given that the Hermite polynomials form an orthogonal basis

with respect to the probability density function of a standard Gaussian variable,
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we have that:

πv
�

W̃ (t)
�

=
∫ +∞
−∞ . . .

∫ +∞
−∞ exp(−λ(T − t))max

�

0,St exp
�

∑J
j=1 w̃ j(t)ψ j

�

ξ
�

�

−Kv

�

ϕm
�

ξ
�

dξ1 . . .dξm (5.4)

whereϕm
�

ξ
�

is the density function of an m-dimensional Gaussian variable with

i.i.d. marginals of zero mean and unit variance. Note that any arbitrary set of

option prices can be fit with an arbitrary accuracy by taking m→∞ and q→∞.

It is known that Wiener first defined ‘Homogeneous Chaos’ as the span of

Hermite polynomial functionals of a Gaussian process and then the class of Poly-

nomial Chaos can be defined as a member of that set of representations. Accord-

ing to the Cameron-Martin theorem, the Fourier Hermite series converge to any

L2 functional in the L2 sense.

In the context of stochastic processes, this implies that the homogeneous

chaos expansion converges to any processes with finite second-order moments.

Therefore, such an expansion provides a means of representing a stochastic pro-

cess with Hermite orthogonal polynomials.

Other names such as ‘Wiener chaos’, ‘Wiener-Hermite chaos’, etc., have also

been used in the literature.

In this thesis we are working in the non-heavy tailed finite quadratic varia-

tion context, see further details in [117].

We remind a well known fact that if ψ j
�

ξ
�

is an m-dimensional Hermite

polynomial of order q, then ψ j
�

ξ
�

can also be expressed as a tensor multiplica-

tion of m unidimensional Hermite polynomials, each of order q in the product

cross space of dimension m, yielding the following relationship:

ψ j
�

ξ
�

=
m
∏

i=1

ψq(i, j) (ξi) (5.5)

where
∑m

i=1 q(i, j) = q and q(i, j) ∈ {0,1,2,. . . ,q}. Therefore, Equation 5.2 be-



5.1. An Alternative Representation of the Risk-Neutral Distribution 146

comes

r(t) =
J
∑

j=1

�

w̃ j(t)
m
∏

i=1

ψq̂(i, j) (ξi)

�

+ε(m,q) (5.6)

where q̂ is an m×J matrix containing all possible combinations of non-negative

integers so that each column of q̂ is unique and adds up to an integer between

0 and q.

The relationship given by Equation 5.6 is very useful in practical applica-

tions as it allows a simplified implementation of multidimensional Hermite poly-

nomials. Moreover, the following theorem gives an important property of Equa-

tion 5.4:

Theorem 6 (Convexity of Implied Pricing Function). πv
�

W̃ (t)
�

is convex on

w̃ j(t) for all j.

Proof. Given that exp(x) is convex on x and max(0, x) is also convex on x , as St

is positive and Kv is a constant it follows that max(0,St exp(x)−Kv) is convex on

x and max
�

0,St exp
�

∑J
j=1 w̃ j(t)ψ j

�

ξ
�

�

−Kv

�

is convex on
∑J

j=1 w̃ j(t)ψ j
�

ξ
�

.

Further, as the sum is a composition with an affine function, which pre-

serves convexity, it is therefore also convex on w̃ j(t) for all j. Finally, note that

Equation 5.4 implies that πv
�

W̃ (t)
�

is an expectation of a convex function un-

der a multivariate Gaussian law. As the expectation is an operator that preserves

convexity, it follows that πv
�

W̃ (t)
�

is convex on w̃ j(t) for all j.

Let cW (t) = (bw1(t), bw2(t), . . . , bwJ(t)) be the least-squares estimator of

W̃ (t) = (w̃1(t), w̃2(t), . . . , w̃J(t)), i.e:

cW (t) = argmin
W̃ (t)∈RJ

M
∑

v=1

�

πv−πv
�

W̃ (t)
��2

. (5.7)

Due to Theorem 6, there is a unique global optimum cW (t). However, an ana-

lytical closed-form expression for cW (t) cannot be found because the improper
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integral in Equation 5.4 does not have an analytical closed-form expression when

J > 2 (when J = 1 or J = 2 the solution can be obtained using the Black-Scholes

formula [118] as the underlying asset will simply follow a lognormal distribu-

tion) and therefore the partial derivatives required to be calculated in order to

generate a closed-form expression for the solution of Equation 5.7 can only be

calculated numerically. Having said that, also due to Theorem 6, a standard

nonlinear optimisation procedure applied to Equation 5.7 is expected to con-

verge to the global optimum weights provided that the integration error is small

when calculating the improper integral in Equation 5.4 during the iterations of

the nonlinear optimisation method being applied.

Remark 14. Notice that the errors minimised by Equation 5.7 are dollar weighted

pricing errors. In [119] the authors analyse a number of option pricing model error

metrics, one of them being the dollar weighted pricing errors, which are given in

Equation 4.1 of their paper. Equation 5.7 in this thesis is equivalent to Equation

4.1 in [119].

In this manuscript we propose a Monte Carlo-based method to calculate the

improper integral in Equation 5.4, which is particularly efficient in this setting

since the target distribution can be sampled exactly and there is a tensor cross

space formulation. Algorithm 3 lists the steps of the method. While due to Monte

Carlo simulation noise the subsequent nonlinear optimisation step is not guaran-

teed to converge to the global optimum, Monte Carlo methods are better suited

for the calculation of the integral in Equation 5.4 due to the high dimension of

integration, which can make a quadrature based integral evaluation of the ob-

jective function passed to the optimisation algorithm computationally unfeasible

as the integral will have to be calculated multiple times (possibly hundreds of

times).
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Algorithm 3 Monte Carlo integration procedure to calculate Equation 5.4

Input: A number of simulations N , a Gaussian dimension m, a poly-
nomial truncation order q, a set of candidate PCE weights W̃ (t) =
(w̃1(t), w̃2(t), . . . , w̃J(t))where J is the same as in Equation 5.2, the underly-
ing asset price St , the annualised (continuously compounded) risk free rate
λ and an option price πv of strike prices Kv and time to maturity T − t

Output: The value of πv
�

W̃ (t)
�

according to Equation 5.4
1: Generate matrix ξ∈RN×m with each ξu,w drawn i.i.d. according to a stan-

dard Gaussian distribution.
2: For each row u of matrix ξ, calculate r̃u(t)=

∑J
j=1

�

w̃ j(t)
∏m

i=1ψq̂(i, j)
�

ξu,i

��

with q̂ defined as in Equation 5.6.
3: Return exp(−λ(T−t))

N

∑N
u=1 max(0,St exp(r̃u(t))−Kv)

Any standard nonlinear optimisation method can be used with an initial

guess of W̃ (t) = 0 and πv
�

W̃ (t)
�

calculated as in Algorithm 3 to obtain the

optimum weights that minimise Equation 5.7.

Remark 15. In our experiments, we noted that regenerating the random matrix

of Step 1 of Algorithm 3 at each iteration of the nonlinear optimisation method

converged to weights that generated a risk-neutral distribution that fitted better the

market prices, though the optimisation took longer to converge. Loosely speaking,

one can expect that if the random matrix of Step 1 is generated only once and then

kept the same throughout the entire optimisation, the weights will be fitted in part

to the simulation noise of that particular matrix generation, whilst if this matrix

is regenerated at each iteration of the optimisation method, no overfitting of this

kind can occur.

The results of this section are independent of the assumed price dynamics

for the underlying asset. In fact, they could be used on their own if the only inter-

est is to price other derivatives whose payoff function only depends on the asset

price at the observed maturity. Having said that, the model can also be extended

to cater for multi-period dynamics in a stochastically consistent framework that

is again model free, through the use of a stochastic interpolation method based
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on Brownian bridges. We note, that generalised forms of stochastic interpolator

are also possible here w.l.o.g. such as the work of [120].

In order to perform such a extension, we assume the following:

Assumption 2. Let t1 > 0, t2, . . . , tT be the maturities for which there are quoted

option prices available. For any intermediate time t such that t i−1≤ t ≤ t i, under

the risk-neutral distribution the following relationship holds:

r(t) =
t− t i−1

t i− t i−1
r(t i−1)+

t i− t
t i− t i−1

r(t i)+B(t) (5.8)

where B(t) is a Brownian bridge between points t i−1 and t i such that B(t i−1) =

B(t i) = 0.

In other words, we assume that under the risk-neutral measure the cumu-

lative asset return up to an unobserved (unquoted) option expiry date is given

by a time-weighted average of the two adjacent observed maturities plus a ran-

dom noise, which can be expressed using a Brownian bridge between the two

observed maturities.

Now, as the weights w̃ j(t i),1≤ j ≤ J ,1≤ i ≤ T are obtained at each t i by

minimising Equation 5.7 independently of t j 6=i, under Assumption 2 Equation

5.8 yields

r(t) =
t− t i−1

t i− t i−1
r(t i−1)+

t i− t
t i− t i−1

r(t i)+
(t i− t i−1)−(t− t i−1)

p

t i− t i−1

√

√ t− t i−1

(t i− t i−1)−(t− t i−1)
ξB+ε(m,q)

=
J
∑

j=1

�

t− t i−1

t i− t i−1
w̃ j(t i−1)ψ j

�

ξi−1
�

+
t i− t

t i− t i−1
w̃ j(t i)ψ j

�

ξi
�

+
�

+

√

√

√ (t i− t)(t− t i−1)
t i− t i−1

ξB+ε(m,q)

(5.9)

where ξi−1 and ξi are m-dimensional standard Gaussian variables of indepen-

dent marginals and ξB is an independent standard Gaussian variable. Therefore,

the risk-neutral distribution of r(t) can be fully determined by the risk-neutral

distributions of r(t i−1) and r(t i).

Finally, we remark that as we are calibrating our estimation directly on ob-
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servable option prices and ξB has expected value of zero, the Martingale re-

striction required on parameterisations of a risk-neutral distribution ([121]) is

implicitly satisfied.

5.2 Comparative Analysis Against Existing

Literature

In the literature review chapter and in the introductory section of the present

chapter we noted the existence of previous work ([71], [72] and [73], list is not

exhaustive) aiming to generalise the risk-neutral distribution so as to capture

features present in observable option prices. Our work is similar in nature to

the literature cited in the introductory section; however we claim our work con-

tributes to the existing literature by performing a path-based expansion instead

of a density-based expansion.

In density-based expansions, the modelled risk-neutral distribution ob-

tained is not guaranteed by construction to be non-negative at all times and

to always integrate to 1. To cater for that, the skew and kurtosis of the ap-

proximated distribution must be constrained. Chapter 18 of [122] gives specific

details of the required restrictions on skew and kurtosis to ensure these expan-

sions can produce a density. These requirements can be rather restrictive and

we contribute to the literature by proposing an alternative approach based on a

path-based polynomial expansion for the returns in Equation 5.2 that avoids the

restrictions that would be needed in the conventional case where the risk-neutral

distribution itself is approximated.

To illustrate the difference in concepts, we cite the work in [71], which is

considered a pioneering work in the field of option pricing under the assumption

of arbitrary stochastic processes for the underlying asset price, and compare it

against our work. In our work, the functional form of the risk-neutral density



5.2. Comparative Analysis Against Existing Literature 151

q(r, T ) is implicit, following from the Fundamental Theorem of Asset Pricing

which ensures that the resulting implicit density function obeys the relation-

ship given in Equation 5.3. Thereafter, the PCE weights are obtained based on

the observed option prices and using the stochastic bridge interpolation for the

path-based expansion given by Equation 5.2. If the risk-neutral density q(r, T )

is needed, it can be obtained by sampling the paths of Equation 5.2 given the

estimated values of the weights.

The alternative approach to our path based stochastic path expansions is to

instead expand a representation of the density such as that proposed in [71]. In

this case the risk-neutral density qJ(ST ), where ST is the asset price at time T ,

has a specific functional form given by:

qJ(ST ) = a(ST )+
κ2(qJ)−κ2(a)

2!
d2 a(ST )

dS2
T

−
κ3(qJ)−κ3(a)

3!
d3 a(ST )

dS3
T

+
κ4(qJ)−κ4(a)+3(κ2(qJ)−κ2(a))

2

4!
d4 a(ST )

dS4
T

+ε(ST )
(5.10)

where ε(ST ) is a residual error, a(ST ) is an approximating density function (the

log-normal density was chosen in [71]) and κi(q) is the i-th cumulant of the

distribution corresponding to density q. For reference, the first three cumulants

of any given distribution are the three central moments and the fourth cumulant

is a measure of its kurtosis.

The model in [71] has the following potential challenges:

• qJ(r, T ) given by Equation 5.10 is not guaranteed to be a valid density

function for a finite number of terms in the expansion and the magnitude

of the residual error ε(ST ) normally is analysed using numerical analysis

given that only in a limited number of cases it’s possible to derive a closed-

form expression for the boundaries of such error.

• As a consequence of the above, the theoretical option prices derived in [71]
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are not directly related to the risk-neutral density implied by Equation 5.10

and, for a finite number terms in the expansion, may not be equal to the

expected value of the discounted option cash flow under the risk-neutral

measure.

• Equation 5.10 comprises of an expansion of the true density function

around its central moments. This might not necessarily yield good be-

haviour at the tail of the distribution and, in some applications, the tail

of the distribution is of high importance. In such cases it is better to use

quantile based expansions such as the expansions proposed in [123].

• Equation 5.10 does not provide a way to ensure different maturities are

connected to each other in a consistent way.

We believe that, by applying a path-based expansion calibrated directly on

observed option prices, our model addresses the aforementioned challenges by

construction.

Remark 16. In Equation 12 of [71], fitted option prices are expressed as the stan-

dard Black-Scholes formula plus adjustments according to each of the central mo-

ments of the true risk-neutral probability density. We acknowledge that our formu-

lation does not permit such interpretation for option prices, though we believe that

in practical pricing applications this should not be a material drawback. On the

other hand, the process structure of our Equation 5.9 used to obtain a full process

provides a substantial contribution to pricing accuracy by generating a consistent

connection between hedging points, analogous to consistent yield curve prediction

methods such as [124]. Further, in our formulation the option prices will be directly

related to the risk-neutral density and equal to the expected value of the discounted

option cash flow under the risk-neutral measure.

We conclude this section by noting the following differences between the
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other works cited in the introductory section and our own work:

• [72] is very similar in nature to our work but expands the distribution itself

via PCE instead of the returns and as such is not guaranteed to provide

a valid distribution at all times. In their application, this issue was not

relevant as they only wanted to obtain estimates of central moments such

as skewness and kurtosis but not the entire distribution; and

• [73] provides a good solution to the tail estimation via a multipoint Padé

approximant (which is different in nature than a direct PCE expansion).

Their work also expanded the distribution instead of the paths; however,

an optimisation constraint was added to ensure the estimated density in-

tegrated to 1.

5.3 The Asset Price Process Under Signed Path

Dependence

We now demonstrate the second stage of the three stage process mentioned in

the beginning of the present chapter. In fact, any asset price process could be

used to fulfill this stage; however, we would like to focus on a process that em-

beds the empirical findings of [7], [66] and [67] as motivated in the discussion

in our literature review.

Let pt ∈ R+ be the price of an asset at time t ∈ N+ and rt = log(pt/pt−1)

be its log-return. To create a simple generative process for the log-returns that

is compatible with the empirical findings listed in Chapter 2 and simultaneously

does not generate an explicit functional form for its linear autocorrelation struc-

ture we postulate that such log-returns have a time dependent mean that oscil-

lates between two states:

• a high state when it is positive, occurring whenever pt−1> pt−n−1; and
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• a low state when it is negative, occurring otherwise.

The value n∈N+ corresponds to a lookback parameter, which can be either fixed

as an input or estimated using the procedure described in [66].

Remark 17. The above structure implies a positive correlation between sgn(pt−1−

pt−n−1) and rt , in line with the time series momentum effect reported in [7]. A

dynamic correlation that changes over time between positive and negative can be

easily acommodated by introducing a time varying correlation parameter, in line

with the DMA classifier described in [66].

In this section two models will be presented, the first will have a dynamic

drift but homogeneous volatility structure; the second model will incorporate

a form of dynamic stochastic volatility captured by a GARCH structure. Both

models are consistent with the empirical findings listed in Chapter 2.

The aforementioned assumptions can be written in mathematical notation

as follows:

Assumption 3. At time t, the log-return rt obeys the following distribution:

rt s











N (µH ,σt) , if pt−1> pt−n−1

N (µL,σt) , otherwise
(5.11)

where N (x , y) is a normally distributed variable with mean x and standard devi-

ation y, σt ∈R+, µH ∈R+ and µL ∈R−.

Assumption 4. The variance of the process is constant through time, i.e. σt =σ∈

R+,∀t.

Figure 5.1 illustrates the dynamics of the probability distribution of the as-

set log-returns under Assumptions 3 and 4 with n= 2 and so that the returns

up to time t = 2 are assumed known. Notice that the distribution of rt>2 is a
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Gaussian mixture with 2t−3 components having non-zero weights equal to the

probabilities of the sequences of positive and negative log-returns occuring in

the order given by the tree and 2t−3 components having zero weights given that

the mean of the distribution at time t = 3 is known with certainty.

Figure 5.1: Illustration of the dynamics for the conditional mean of the process under
Assumption 3

Throughout the remainder of the manuscript, the following notation is

used: 1{·} is the indicator function, b·c is the greatest integer less than or equal

to · and the operator r−n is defined so that

r−n(t) =











∑n
i=1 rt−i, i f n> 0

0, otherwise.
.

We now derive results that will allow us to obtain the real-world distribution

of asset returns under Assumptions 3 and 4. Knowing such distribution we can

subsequently use the information from the empirical risk-neutral distribution to

assess the impact of our assumptions on the risk premium.

The following theorem provides the base for our results:



5.3. The Asset Price Process Under Signed Path Dependence 156

Theorem 7 (Conditional Probability Density Function of Single Period Return).

Denote the probability space of the process rt by (Ω,Ft , P), where Ft is the natural

filtration generated by this process. Let f (rT |Ft−1) be the conditional probability

density function of rT for T ≥ t. If Assumptions 3 and 4 hold, then

f (rT |Ft−1) =1{r−n(t)≤ 0}
2T−t−1
∑

i=0

(Π(i, t, T − t+1)φ (rT , i)) +

1{r−n(t)> 0}
2T−t+1−1
∑

i=2T−t

(Π(i, t, T − t+1)φ (rT , i))

(5.12)

where

Π(i, t,w) =
∏w

j=2

�

SB(i, j,w),B̄(i, j,w)
�

r−(n− j+1)(t)
��bw− j+1(i) �FB(i, j,w),B̄(i, j,w)

�

r−(n− j+1)(t)
��1−bw− j+1(i),

b j (i) =
�

i
2 j−1

�

−2
�

i
2 j

�

,

B (i, j,w) =
j−2
∑

k=max(0, j−n−1)

bw−k (i) , B̄ (i, j,w) =min(w−1,n)−B (i, j,w)

φ (rT , i)=
1

p
2πσ2

�

b1 (i)exp

�

−
(rT −µH)

2

2σ2

�

+(1− b1 (i))exp

�

−
(rT −µL)

2

2σ2

��

,

Fu,w (r) =Φ
�

r−(uµH+wµL)
σ
p

u+w

�

, Su,w (r) = 1− Fu,w (r)

with Φ(·) being the cumulative distribution function of a standard normal variable.

Remark 18. The intuition behind Theorem 7 is that rT |Ft−1 follows a Gaussian

mixture distribution of 2T−t+1 components, whose weights can be obtained by list-

ing all integers from 0 to 2T−t+1−1 in binary form and, for each binary represen-

tation listed, mapping the i-th bit from right-to-left to realisations of r−n(T − i+1)

so that a value of one corresponds to a positive realisation, as the following dia-

gram illustrates. Each component will have a weight equal to the probability of

that binary sequence occurring.
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0 : (00. . . 00) → (r−n(t)≤ 0, r−n(t+1)≤ 0,.. . , r−n(T −1)≤ 0, r−n(T )≤ 0)
1 : (00. . . 01) → (r−n(t)≤ 0, r−n(t+1)≤ 0,.. . , r−n(T −1)≤ 0, r−n(T )> 0)

...
2T−t+1−2 : (11. . . 10) → (r−n(t)> 0, r−n(t+1)> 0,.. . , r−n(T −1)> 0, r−n(T )≤ 0)
2T−t+1−1 : (11. . . 11) → (r−n(t)> 0, r−n(t+1)> 0,.. . , r−n(T −1)> 0, r−n(T )> 0)

Proof. From Equation 5.11 it follows that rt is normally distributed with stan-

dard deviation σ and mean 1{r−n(t)≤ 0}µL+1{r−n(t)> 0}µH . It also follows

that

f (rt+1|Ft−1) =1{r−n(t)≤ 0}
�

Φ

�

r−(n−1)(t)−µL

σ

�

gL (rt+1)+

�

1−Φ
�

r−(n−1)(t)−µL

σ

��

gH (rt+1)

�

+

1{r−n(t)> 0}
�

Φ

�

r−(n−1)(t)−µH

σ

�

gL (rt+1)+

�

1−Φ
�

r−(n−1)(t)−µH

σ

��

gH (rt+1)

�

where gL(·) is the density function of a normally distributed variable with mean

µL and standard deviation σ and gH(·) is the density function of a normally

distributed variable with mean µH and standard deviation σ. Expanding to rT

we have that f (rt+1|Ft−1) will have the following form:

f (rT |Ft−1) = gL

2T−t−1
∑

i=0

P[Λi]+ gH

2T−t+1−1
∑

i=2T−t

P[Λi] (5.13)

whereΛi is a sequence of T− t+1 events in the probability space
�

Ω,Ft+ j, P
�

,0≤

j≤ T − t, each event of being either r−n (t+ j)> 0 or r−n (t+ j)≤ 0 so that

P





2T−t−1
⋃

i=0

Λi



= 1.

As such, f (rT |Ft−1) is a Gaussian mixture of 2T−t+1 components, half of them

equal to gL (rT ) and half of them equal to gH (rT ). Now, to obtain the weights of

each component, consider the sequence of binary digits D= {s0,s1, . . . ,s2T−t+1−1}
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where each element of the sequence has T − t+1 digits so that:

si = (b1(i), b2(i), . . . , bT−t+1(i))

b j (i) =
�

i
2 j−1

�

−2
�

i
2 j

�

.

Consider the mapping m : D→F where

m(si) =Ft−1

T−t+1
⋃

j=1











�

∑t+ j−1
k=t+ j−n−1 rk > 0

�

, if b j(i) = 1
�

∑t+ j−1
k=t+ j−n−1 rk ≤ 0

�

, if b j(i) = 0.

By construction, this mapping is a bijection between D and FT−1 and therefore

P[D] = 1.

Now, let Λi = m(si). As rt is continuous, P[rk = 0] = 0 and therefore we

have that

P[Λi] =
∏T−t+1

j=2 P

�

�

2bT−t− j−1 (i)−1
�∑t+ j−1

k=t+ j−n−1 rk ≥ 0

�

�

�

�

j
⋃

w=2

�

(2bw−1 (i)−1)
∑t+w−2

k=t+w−n−2 rk ≥ 0
�

�

(5.14)

The conditional probabilities in Equation 5.14 will follow from Assumption

3 as the distribution of
∑t+ j−1

k=t+ j−n−1 rk conditional on knowing the sequence of

events prior to time k is a sum of normally distributed variables of same standard

deviation σ and means equal to either µH or µL.

Namely, if X1,X2, . . . ,Xu are i.i.d. variables following a normal distribution

with mean µH and standard deviation σ and Y1,Y2, . . . ,Yw are i.i.d. variables

following a normal distribution with meanµL and standard deviationσ, defining

Fu,w (r) = P

� u
∑

i=1

X i+
w
∑

i=1

Yi ≤ r

�

=Φ
�

r−(uµH+wµL)
σ
p

u+w

�
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we have for any j> 2 that

P

�

∑t+ j−1
k=t+ j−n−1 rk ≥ 0

�

�

�

�

j
⋃

w=2

�

(2bT−t−w−2 (i)−1)
∑t+w−2

k=t+w−n−2 rk ≥ 0
�

�

= SB(i, j,w),B̄(i, j,w)
�

r−(n− j+1)(t)
�

(5.15)

where

Su,w (r) = 1− Fu,w (r) ,

B (i, j,w) =
j−2
∑

k=max(0, j−n−1)

bw−k (i)

and

B̄ (i, j,w) =min(w−1,n)−B (i, j,w) .

Therefore, applying Equation 5.15 to Equation 5.14 and subsequently to

Equation 5.13 yields Equation 5.12, proving the main result.

Theorem 7 gives the distribution of single period returns. As the price of

an European option depends on the distribution of the price of the underlying

asset at maturity and such price evolves based on the cumulative returns over

mutiple periods, Theorem 7 needs to be extended so that the distribution of the

cumulative returns is derived.

Nevertheless, such a distribution follows directly from Equation 5.12. To

understand why, let rt;T =
∑T

i=t rt be the cumulative return between times t

and T . Notice that the same reasoning to obtain Equation 5.13 will also hold for

rt;T and hence f
�

rt;T |Ft−1
�

can also be written in the following form:

f
�

rt;T |Ft−1
�

=
2T−t+1−1
∑

i=0

φ
�

rt;T , i
�

P[Λi]

where P[Λi] has the same values and meaning as in Equation 5.13. To obtain

φ
�

rt;T , i
�

, notice that for each event Λi the cumulative return conditional on

this event rt;T |Λi is a sum of Gaussian variables, hence also Gaussian, meaning
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φ
�

rt;T , i
�

must be the density function of a Gaussian variable with some mean

and variance.

Under Assumption 4 the variance of this Gaussian density is simply

(T − t+1)σ2. To obtain the mean of such Gaussian function, one just need

to use the sequence b j(i) given in the body of Theorem 7 as this sequence con-

tains the information required to compute how many times a Gaussian of mean

µL was included in the sum rt;T and how many times a Gaussian of mean µH

was included. This yields the following corollary:

Corollary 2 (Conditional Probability Density Function of Multi Period Cumula-

tive Return). Let (Ω,Ft , P) be the probability space of the process rt , Ft be the

natural filtration generated by this process and f
�

rt;T |Ft−1
�

be the conditional

probability density function of
∑T

i=t rt for T ≥ t. If Assumptions 3 and 4 hold,

then

f (rT |Ft−1) =1{r−n(t)≤ 0}
2T−t−1
∑

i=0

�

Π(i, t, T − t+1)φ
�

rt;T , i
��

+

1{r−n(t)> 0}
2T−t+1−1
∑

i=2T−t

�

Π(i, t, T − t+1)φ
�

rt;T , i
��

(5.16)

where

φ
�

rt;T , i
�

=Φ





rt;T −
�

µH
∑T−t+1

j=1 b j (i)+µL

�

T − t+1−
∑T−t+1

j=1 b j (i)
��

σ
p

T − t+1





(5.17)

and all other variables have the same values and meaning as in Theorem 7.

Assumption 4 can be relaxed to the case where σt follows a GARCH(1,1)

process. To obtain this extension, we rely on the following theorem, whose proof

can be found in [125]:

Theorem 8 (Time Aggregation of GARCH(1,1) Variables). Let ε(t) be a random



5.3. The Asset Price Process Under Signed Path Dependence 161

variable following a Gaussian distribution with mean zero and conditional variance

at time t given by

σ2
t =ω+βσ

2
t−1+αε

2(t−1).

Given an integer m, the random variable

εm(t) =
m−1
∑

i=0

ε(t− i)

follows a Gaussian distribution with mean zero and conditional variance at time t

given by

σ2
m,t =ωm+βmσ

2
m,t−m+αmε

2
m(t)

where

ωm=ω
1−(β+α)m

1−(β+α)
,

αm= (β+α)
m−βm

and 0<βm< 1 is the solution of the quadratic equation

βm

1+β2
m
=

β (β+α)m−1

1+α2 1−(β+α)2m−2

1−(β+α)2
+β2 (β+α)2m−2

.

Now, note that Equation 5.11 in Assumption 3 can be rewritten as the fol-

lowing sum

rt = 1{r−n(t)≤ 0}µL+1{r−n(t)> 0}µH+εt .

Therefore we can obtain an approximation of the conditional probability density

function of rt under GARCH(1,1) variance by substituting the time-scaled stan-

dard deviation in the denominator of Equation 5.17 with the time-aggregated

standard deviation expression given by Theorem 8 and keeping unchanged the

terms involving the location parameters. In other words, if ε(t) is a random vari-

able following a Gaussian distribution with mean zero and conditional variance
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at time t given by σ2
t =ω+βσ

2
t−1+αε

2(t−1), then we have that:

f (rT |Ft−1)≈1{r−n(t)≤ 0}
2T−t−1
∑

i=0

�

Π(i, t, T − t+1)φ
�

rt;T , i
��

+

1{r−n(t)> 0}
2T−t+1−1
∑

i=2T−t

�

Π(i, t, T − t+1)φ
�

rt;T , i
��

(5.18)

where

φ
�

rt;T , i
�

=Φ





rt;T −
�

µH
∑T−t+1

j=1 b j (i)+µL

�

T − t+1−
∑T−t+1

j=1 b j (i)
��

Ç

σ2
(T−t),t



 ,

σ2
(T−t),t =ω(T−t)+β(T−t)σ

2
(T−t),2t−T +α(T−t)ε

2
(T−t)(t),

ω(T−t)=ω
1−(β+α)( T − t)

1−(β+α)
,

α(T−t)= (β+α)
( T − t)−β(T−t),

0<β(T−t)< 1 is the solution of the quadratic equation

β(T−t)

1+β2
(T−t)

=
β (β+α)T−t−1

1+α2 1−(β+α)2(T−t)−2

1−(β+α)2
+β2 (β+α)2(T−t)−2

and all other variables have the same values and meaning as in Theorem 7.

We note that the expression in Equation 5.18 is an approximation of the

density (and not an exact equality) because the variances across intermediate

time steps are different (as opposed to the case where they were constant, yield-

ing an exact equality in Equation 5.16). If the GARCH(1,1) variance is assumed

unconditionally stationary, the approximation error is expected to reduce as the

terminal time horizon T increases due to decreasing differences over the vari-

ances across intermediate time steps.
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5.4 The Risk Premium

In this section we demonstrate how to combine the two models from stage 1

and stage 2 of the three stage process introduced in the beginning of the present

chapter to obtain a non-parametric representation of a time-varying risk pre-

mium under the assumption of signed path dependence given by the functional

form introduced in Section 5.3. In order to do that and for the sake of clarity,

we first enunciate the theorem supporting our results:

Theorem 9 (Radon-Nikodym Theorem). Let Ω be a set, A a σ-algebra on this set

and P and Q two measures on (Ω,A). If P is σ-finite and absolutely continuous

with regard to Q, then there exists a non-negative measurable function D :Ω←R+

such that for any measurable set S∈A

P (S) =

∫

S

DdQ. (5.19)

The function D is also known as the Radon-Nikodym derivative of P with regard to

Q.

Remark 19. It’s a well known result that if an asset price follows a Geometric

Brownian Motion under the real-world measure, it will also follow a Geometric

Brownian Motion under the risk-neutral measure, and the only change between the

two measures is the drift of the process. In this special case, the Radon-Nikodym

derivative is a constant function that expresses the amount of expected returns above

the risk-free rate per unit of volatility - i.e. the risk premium. In our formulation,

we will follow a similar rationale, but the final shape of the risk premium will not be

a constant function. Instead, it will be a function that reflects the implied volatility

structure observed in market option prices and its interaction with a real-world

asset price process exhibiting signed path dependence.

Now let L be the Lebesgue measure and, for any Borel set S⊆R, define the
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probability measure P as

P (S) =

∫

S

f (rT |Ft−1)dL, (5.20)

where f (rT |Ft−1) is given by Equation 5.18. Also define the probability measure

Q as

Q(S) =

∫

S

f̂ (rT )dL, (5.21)

where f̂ (rT ) is the probability density function of rT given by Equation 5.9,

whose weights are estimated by solving Equation 5.7 using the procedure in

Section 5.1.

Both measures P and Q are absolutely continuous with regard to each other.

Therefore, Theorem 9 guarantees the existence of the Radon-Nikodym deriva-

tive of P with regard to Q. Let DP,Q be such derivative. The following assump-

tion is required for our estimation of the functional form of the Radon-Nikodym

derivative:

Assumption 5. Let DP,Q be the Radon-Nikodym derivative of measure P with re-

gard to Q. The following equality holds:

DP,Q (r) = lim
K→∞

K
∑

k=1

ck`k (rT )

where ck are unique coefficients and `k (·) form a natural cubic spline basis, i.e.

lim
r→−∞

`k (r) = lim
r→+∞

`k (r) = 0.

Assumption 5 implies that the functionDP,Q can be approximated by a linear

combination of a finite number of cubic spline basis functions, i.e.

DP,Q (r) =
K
∑

k=1

ck`k (rT )+ε (K) (5.22)
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where ε (K) is an error term.

In a practical application, each natural cubic spline `k can have only one

non-zero internal knot chosen by taking the probability distribution implied by

Q and obtaining a percentile proportional to k. The boundary knots should be

set to zero at very extreme percentiles of the distribution.

Remark 20. While Assumption 5 implies that the modelled Radon-Nikodym deriva-

tive is zero at extremely rare events, this should not be a cause of concern given that

the probability of extremely positive or extremely negative asset returns is nearly

zero in either the risk-neutral or the real-world measures, so even if the "true" value

of the Radon-Nikodym derivative at those points is different than zero, this will

not invalidate the conclusions of our subsequent derivations. We also note that the

quantile levels selected can be chosen arbitrarily on the support so numerically and

in practice this compact support approximation is not at all consequential. Fur-

thermore, if this was a concern one could readily construct a splice model where

tail components were incorporated.

Another required assumption is given as follows:

Assumption 6. Let DP,Q be the Radon-Nikodym derivative of measure P with re-

gard to Q and 1{·} be the indicator function. DP,Q (r) is independent of 1{r ≤ x}

for all x ∈R.

In other words, we assume that the likelihood of a future log-return exceed-

ing or not any given threshold level is independent of the market price of risk for

the return at that specific threshold. This assumption doesn’t necessarily mean

that the market price of risk is independent of the level of returns - quite the

contrary, in our model there is a very explicit dependency between the market

price of risk and the level of returns, as Section 5.5 will illustrate.
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Now, notice that the following relationship holds for any given x:

P (r ≤ x) =

∫ +∞

−∞
1{t ≤ x} f (r|Ft−1)dr =

∫ +∞

−∞
1{t ≤ x}DP,Q (r) f̂ (r)dr

Therefore, one can find the adequate coefficients ck by minimising some dis-

tance metric between the cumulative distribution function of r under the mea-

sure P and the cumulative distribution function of r under the measure Q. More-

over, let Q−1 (r) be the inverse cumulative distribution of r under the measure

Q. Defining a probability weighted distance metric as

d (P,Q,N) =
∑N

i=1

�

�

�

∫ +∞
−∞ 1

�

t≤Q−1
� i

N+1

�	

f (r|Ft−1)dr−
∫ +∞
−∞ 1

�

t≤Q−1
� i

N+1

�	

DP,Q(r) f̂ (r)dr
�

�

�

N

we have, due to Assumption 6 that

d (P,Q,N) = 1
N

∑N
i=1

�

�

�P
�

r ≤Q−1
� i

N+1

��

−Q
�

r ≤Q−1
� i

N+1

��

�

1+
∑K

k=1 ckEQ [`k (r)]
�

�

�

�

(5.23)

where EQ [·] is the expectation taken under the probability measure Q. Therefore

due to Equation 5.22 d (P,Q,N) is linear on ck and hence finding the values of

ck that minimise such distance can be solved very quickly and efficiently using

linear programming solvers.

To formulate the linear optimisation problem of interest, let’s define the

approximated Radon-Nikodym derivative as

DP,Q (r;K) =
K
∑

k=1

ck`k (r) (5.24)

and substitute Equation 5.24 into Equation 5.23.

Also notice that DP,Q (r;K) will only be a valid Radon-Nikodym derivative

if its expected value under measure P is equal to 1, therefore this constraint has
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to be added to the linear optimisation problem as well, yielding the following

problem:

minimise d (P,Q,N)

subject to
∫∞
−∞

�

∑K
k=1 ck`k (r)

�

f (r|Ft−1)dr = 1

ck ∈R,k= 1,.. . ,K

(5.25)

where K and N are input parameters.

Let’s now reduce the problem above to the general linear programming

form.

First, let di be defined so that, for i ∈ {1,.. . ,2N}

di+N−di= P
�

r ≤Q−1
�

i
N +1

��

−Q
�

r ≤Q−1
�

i
N +1

��

�

1+
K
∑

k=1

ckEQ [`k (r)]

�

.

Note that if di is constrained to be always non-negative, we have that

di+N+di=

�

�

�

�

�

P
�

r ≤Q−1
�

i
N +1

��

−Q
�

r ≤Q−1
�

i
N +1

��

�

1+
K
∑

k=1

ckEQ [`k (r)]

�

�

�

�

�

�

.

(5.26)

Now, substituting Equation 5.26 into Equation 5.25 and constraining di to

be always non-negative we obtain the optimum ck by solving the linear minimi-

sation problem given by Equation 5.27.

Such a minimisation problem can be easily and quickly solved with any

linear programming package freely available. In the case of our own sythetic

experiments, the solution was obtained in a single-core computer after less than

one minute of calculation.
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minimise
2N
∑

i=1

di

subject to
K
∑

k=1

ckEP [`k (r)] = 1,

K
∑

k=1

ckEQ [`k (r)]−
di−di+N

Q
�

r≤Q−1
� i

N+1

�� =
P
�

r≤Q−1
� i

N+1

��

Q
�

r≤Q−1
� i

N+1

�� , i= 1,.. . ,N ,

ck ∈R, k= 1,.. . ,K ,

di ≥ 0, i= 1,.. . ,2N .
(5.27)

5.5 PCE Model Validation and a Full Empirical

Example

In this section we calibrate the models of the previous sections to market prices

of two weekly expiries of the S&P500 E-mini Call Options on Futures (European

Style Exercise) observed on the Chicago Mercantile Exchange, demonstrating

how all models interact with each other in an empirical setting. We also val-

idate the Polynomial Chaos Expansion (PCE) model of Section 5.1 against an

hypothetical scenario where the underlying asset follows a Geometric Brownian

Motion (GBM), under which scenario the Black-Scholes formula provides the ex-

act "correct" price of an option and under which the PCE expansion should also

match nearly exactly the Black-Scholes prices. Further, we complete our PCE

model validation by comparing its results to the ones of a competing model that

follows the Edgeworth series expansion derived in [71] and discussed in Section

5.2.

The full list of market prices used to fit all models is given in Table 5.1. In the

case of a GBM assumption, the volatility parameter was set to 10% per annum

and the same maturities, strikes and underlying spot price were used as in the
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empirical setting. In both cases, for simplicity the risk-free rate was assumed

1.5% per annum, which was approximately the Overnight Indexed Swap rate at

the time.

Table 5.1: E-mini S&P 500 Observed Prices, Value Date (t): 09-Jan-2020

Maturity Date (T): 10-Jan-2020 17-Jan-2020
Index (v) Strike Price (Kv) Option Price (πv) Option Price (πv)
1 3200 76.25 80.50
2 3220 56.50 61.25
3 3235 41.75 47.75
4 3240 37.00 43.75
5 3245 32.25 39.50
6 3250 27.50 35.50
7 3255 23.00 31.50
8 3260 18.50 28.00
9 3265 14.50 24.25
10 3270 10.75 21.00
11 3275 7.50 18.00
12 3280 4.85 15.25
13 3285 2.95 12.50
14 3290 1.70 10.00
15 3295 0.90 7.75
16 3300 0.45 5.75
Spot Price (St): 3276

Figure 5.2: Illustration of fitted option prices under a hypothetical GBM assumption

Figure 5.2 shows the fitted Edgeworth series call prices and the fitted PCE
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call prices against the GBM assumption. It can be seen that both models provided

a very close fit, as expected.

Figure 5.3 shows the fitted Edgeworth series call prices and the fitted PCE

call prices against the market prices listed in Table 5.1. Small but noticeable

differences can be seen on the 6-day expiry fit. The Edgeworth series model did

not capture the volatility skew as well as the PCE model, with the Edgeworth se-

ries prices slightly underestimating the deeply in-the-money options and slightly

overestimating the deeply out-of-the-money options. The PCE model provided

a sligthly lower error overall as measured by the sum of errors squared over

all strikes. However, for at-the-money strikes, the Edgeworth series prices had

slightly better fit.

Figure 5.3: Illustration of different models fitted to S&P E-mini Options on Futures
prices

The behaviour of the two models can be better compared if the option

Greeks are also analysed under each model. The first two derivatives of the

call option price against the underlying stock price are shown across all strike

prices in Figure 5.4 (showing the first derivative, also known as "Option Delta")

and Figure 5.5 (showing the second derivative, also known as "Option Gamma").
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Figure 5.4: Illustration of S&P E-mini Options on Futures Delta under different models

Figure 5.5: Illustration of S&P E-mini Options on Futures Gamma under different mod-
els

The option Gamma reveals the strongest feature differences between both

models. The peak Gamma was lower in the case of the PCE model for both

expiries being analysed, though in the case of the 1-day expiry the difference

was much more pronounced. As Gamma peaks at at-the-money strikes, this

feature can be seen as evidence that the option prices under the PCE model are

less sensitive to small changes in the underlying asset than under the Edgeworth

series model. This might be a desirable feature for hedging in markets of low

volatility, as under the PCE model there would be less delta-hedging required
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given small offsetting market moves.

We also remark that the risk-neutral distribution under the PCE model was

used directly to estimate the fitted prices, while the estimation of the Edgeworth

series prices did not use the risk-neutral distribution. We also analysed the risk-

neutral distribution generated by the Edgeworth series model and we noticed

that it was not a valid risk-neutral distribution: it did not integrate to one and

had negative values at the tails of the distribution. Therefore, adjustments would

be needed to use this distribution to price more complex derivatives, rendering

the risk-neutral distribution inconsistent with the market prices even if the model

seemed to have a good fit.

Continuing with the empirical exercise, we have estimated a real-world

model for the S&P500 assuming signed path dependence. We have accepted

as valid Assumptions 3 and 4. Under such assumptions, three parameters are

required: µH (the expected drift for the day after a positive daily return on the

S&P500), µL (the expected drift for the day after a negative daily return on

the S&P500) and σ. While Assumption 4 is known not to hold in an empiri-

cal setting, in the case of our particular application this will not be a cause of

concern because we will be modelling a short time span, from 1 to 6 days, and

use the at-the-money 6-day implied volatility as a proxy for σ, therefore taking

into account the market views for the heteroskedasticity of market returns and

the projected dispersion of the market returns’ distribution at the time of the

estimation. Such procedure yielded the value of σ= 0.0865.

The parameters µH and µL, were estimated based on the time series of the

20 years of S&P500 daily returns from 10-Jan-2000 to 09-Jan-2020, yielding

5032 observations. These returns were partitioned into two samples, one where

the previous day’s return was negative and another one when this condition

was not true. The first return was not included in any sample (as it had no

previous return). The parameters of interest were estimated as the sample mean
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in each of the two partitions. A two-sample t-test was made and confirmed a

significant difference between the two means, with the null hypothesis of equal

means between the two samples being rejected at a Type I error probability lower

than 0.2%. Table 5.2 shows the results.

Table 5.2: S&P500 Signed Path Dependence Drift Parameters, 1 day interval

Parameter Estimated Value Estimate Std. Error
µH -0.000337 0.000206
µL 0.000735 0.000271
Two sample t Test p-value 0.001648

We noticed that µH was significantly negative and µL was significantly pos-

itive, suggesting a reversal effect in the S&P500 returns (days of positive returns

tending to be followed by days of negative returns and vice-versa). This is con-

sistent with the findings of [38].

Figure 5.6: Illustration of S&P E-mini Risk-Neutral and Real-World Probability Densities

Figure 5.6 shows a comparative chart of the two probability measures esti-

mated by our models together with the Risk-Neutral distribution obtained using

the model given by [71]. It can be easily seen that the risk-neutral density is very

asymmetric in both models, with a left tail that is much heavier than the one of

the real-world density. Such effect is much more pronounced on options with
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one day to expire, which can be seen as evidence that the market prices embed

large crash risks.

Figure 5.7 shows a comparative chart of the survival functions (one minus

the CDF) implied by the distributions illustrated in Figure 5.6. This comparison

is useful to illustrate the tail effects. It can be seen that the left tail is heavier in

our formulation compared to the one in the model given by [71] as the survival

function of our model approaches the value of 1 at much lower returns.

Figure 5.7: Illustration of S&P E-mini Risk-Neutral and Real-World Survival Functions

Table 5.3 lists the quantiles of the estimated densities. The 1-day 0.5% lower

quantile of the risk-neutral density has almost twice the magnitude of the same

quantile for the real-world density. Clearly this also reflects the thinner tails

of the Gaussian distribution of Assumption 3, but the magnitude of the effect

suggests a the risk-neutral density would exhibit a higher crash risk than the

real-world density even if another distribution was assumed for the real-world

stochastic process. Arguably this higher crash risk has been better captured by

the PCE model, given that it had good fit for deeply in-the-money and out-of-

the-money options.
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Table 5.3: S&P500 Futures Risk-Neutral and Real-World Probability Distribution Quan-
tiles

1 day to Expiry 6 days to Expiry
Quantile Risk-Neutral Real-World Risk-Neutral Real-World

0.005 -0.0374 -0.0226 -0.0483 -0.0321
0.01 -0.0270 -0.0208 -0.0308 -0.0288
0.05 -0.0089 -0.0148 -0.0168 -0.0200
0.1 -0.0063 -0.0115 -0.0139 -0.0154

0.15 -0.0052 -0.0092 -0.0114 -0.0124
0.2 -0.0042 -0.0074 -0.0089 -0.0100

0.25 -0.0033 -0.0059 -0.0065 -0.0079
0.3 -0.0023 -0.0046 -0.0043 -0.0060

0.35 -0.0014 -0.0033 -0.0023 -0.0042
0.4 -0.0006 -0.0021 -0.0004 -0.0025

0.45 0.0001 -0.0010 0.0013 -0.0010
0.5 0.0008 0.0002 0.0029 0.0005

0.55 0.0015 0.0013 0.0046 0.0021
0.6 0.0022 0.0024 0.0061 0.0036

0.65 0.0029 0.0036 0.0076 0.0053
0.7 0.0036 0.0048 0.0089 0.0071

0.75 0.0043 0.0062 0.0101 0.0091
0.8 0.0050 0.0077 0.0110 0.0112

0.85 0.0057 0.0094 0.0121 0.0136
0.9 0.0064 0.0117 0.0133 0.0165

0.95 0.0071 0.0149 0.0145 0.0210

To complete our empirical validation, we have implemented Equation 5.27

and solved it with values K = 25 and N = 100, which meant the natural cubic

spline basis had 25 knots spaced over each 3.85% percentile (1/26) of the risk-

neutral distribution.

We noted that in both expiries the optimal solution contained a positive

value of high magnitude for the coefficient cK and negative values of small mag-

nitude for all other coefficients. To reduce parameterisation and avoid overfit-

ting, we manually re-ran the model with only one non-zero coefficient (cK) and

obtained a very similar fit, meaning that a single natural cubic spline of one

intermediate knot at the 96.15% percentile of the risk-neutral distribution was

enough to provide good results.
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Figure 5.8 shows the value of the fitted Radon-Nikodym derivative for the

S&P 500 Futures for both expires considered in this manuscript. The results

presented in this figure are based on the model with a single non-zero weight.

Figure 5.8: Illustration of the S&P E-mini Radon-Nikodym Derivative

In the 6-day expiry, it can be seen that the risk-neutral measure gives more

weight to the center of the distribution than the real-world measure - though

the left tail gets more weight than the right tail, which is consistent with the

volatility skew present in equity markets. It is remarkable, however, that in the

case of the 1-day expiry, there is such a heavy weight given to the left tail of

the distribution that the value of the fitted derivative for positive returns decays

very quickly and reaches almost zero at the 99.5% quantile, while it is still much

higher than 1 at the 0.5% quantile, which is consistent with a very high crash

risk being priced into the risk-neutral measure.



Chapter 6

Conclusions and Future Work

This research has proposed a novel framework to deal with unstructured serial

dependence by introducing econometric models that are mainly focussed on the

behaviour of the sign of innovations in the stochastic process rather than the

innovations themselves. In this concluding chapter we list the main findings of

our research and propose future steps.

6.1 General Conclusions

In Chapter 3 we proposed a new definition of dependence, which we called

"Signed Path Dependence", that allowed a very structured statistical inference

framework to detect unstructured serial dependence by focussing only on the

sign of innovations in the stochastic process. In this way, irrespective of what is

the true functional form of serial dependence present in a series, as long as it

manifests itself in a consistent way over given lookback and forecast horizons,

such a dependence can be detected by our test. This definition also has the power

to simplify the interpretation of models with several parameters like ARFIMA by

establishing boundaries in the values of the parameters that can be interpreted

as simply positive or negative dependence.
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Our statistical inference framework was validated both via simulation in

synthetic models and in empirical data. In the case of empirical data for equity

indices, the framework was able to detect significant dependence that could not

be detected using a linear correlation model and was also able to feed a quanti-

tative trading model that provided risk adjusted returns which were significantly

superior to the ones of a Buy & Hold strategy and also robust to the presence of

transaction costs.

In Chapter 4 a new model was proposed that embeds the information con-

tained in previous returns into the shape of the probability distribution of future

returns of risky assets in a way that is similar to a conditionally heteroskedas-

tic variance model. This phenomenom, referred to as "Conditional Asymmetry",

was shown to be statistically significant in several commodity future prices.

We also demonstrated the conditions necessary to predict the sign of future

returns using proposed framework for conditional asymmetry and used these

predictions to guide investment decisions in Commodity Futures. In our empir-

ical experiment we obtained investment returns that were significantly superior

to the ones that would have been obtained if no framework was used to guide

investment decisions in the same financial instruments.

The chapter concluded by demonstrating another empirical application of

our model for conditional asymmetry: probabilistic predictions. We compared

the out-of-sample probabilistic predictions based on our model for Commodity

Futures prices against predictions based on an ARMA(p,q)-GARCH(1,1) model.

Using the Continuous Ranked Probability Score as a measure of out-of-sample

performance for both models, we were able to determine that our model had

superior performance than the benchmark ARMA(p,q)-GARCH(1,1) for all com-

modities other than Copper.

Chapter 5 provided an a novel framework to derive a risk-neutral distribu-

tion based on Polynomial Chaos Expansion that is consistent with option market
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prices across expiries and strikes and that provides consistent hedging points

over time via a Brownian Bridge. This model has been compared against a well

known Edgeworth series expansion. We have observed some empirical advan-

tages in our approach such as a better fit for the extremes of the distribution and

lower Gamma peaks providing a more stable hedging strategy.

We have also confirmed the findings of previous work in empirical finance

literature showing a reversal effect in the real-world distribution of S&P500,

where days of positive returns tended to be followed by days of negative returns

and vice-versa. Moreover, comparing the real-world distribution with the risk-

neutral distribution obtained with the PCE model, we found strong evidence that

market prices embed very high crash risks - and such risks can be better captured

by our PCE proposal.

Subsequently we have derived a novel way to explain the behaviour of the

market price of risk based on such effect and applied it to the S&P500 call prices

used to calibrate our PCE option pricing model, providing a valuable contribution

to theoretical and empirical asset pricing.

6.2 Future Work

The work on each of three main chapters of this thesis can be expanded in future

work.

The properties of test for signed path dependence introduced in Chapter 3

can be further explored. For example, it may be of interest to research what are

the boundary conditions for parametric models under which the test might not

work well. It may also be of interest to research about market conditions where

the test can produce better predictive performance.

The work on conditional asymmetry introduced in Chapter 4 can be ex-

panded by considering the inclusion of exogenous variables into Equation 4.1

and developing a more robust framework to deal with a multivariate envirnon-
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ment where multiple assets exhibit some form of joint conditional asymmetry.

This can be accomplished by expanding Equation 4.1 so that it becomes

frt |n;pt−1,pt−2,pt−n−1
=w(qt)ϕ

�

µH ,σ2
t

�

+(1−w(qt))ϕ
�

µL,σ2
t

�

where qt is some functional form of exogenous variables or lagged returns of

other assets and all other variables have the same meaning as in Equation 4.1.

In this case, provided that qt and the functional form of w(qt) are chosen appro-

priately, frt |n;pt−1,pt−2,pt−n−1
will be a well-defined probability density function.

From a practical point of view, our work on conditional asymmetry can be

further explored in the fields of market risk management and portfolio optimisa-

tion, especially if the model is expanded to a multivariate envirnonment. Several

financial institutions are legally required to control their market risk exposure by

performing predictions of what would be their financial losses at a given quan-

tile (also known as Value-at-Risk) and predictions of what would be the expected

value of the financial loss beyond that given quantile (also known as Expected

Shortfall). These metrics require knowledge of the probability density function

of future returns. Therefore, any gain in predictive accuracy of the probability

density function being used will be a potentially material contribution to the

overall financial system.

Finally, this thesis is concluded by pointing out that the work on Polynomial

Chaos Expansion and Stochastic Bridge Interpolators introduced in Chapter 5

can also be expanded to include other features such as stochastic discount fac-

tors, fatter-tail distributions for the bridge interpolation and Generalized Poly-

nomial Chaos Expansion to expansions in polynomials orthogonal with respect

to non-Gaussian probability measures.

As with any research, there is always scope for further refinement and im-

provement.
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