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A b stract

The stability and transition  of a compressible boundary layer, on a flat or 

curved surface, is considered using rational asym ptotic theories based on the large 

size of the Reynolds num bers of concern. The Mach num ber is also trea ted  as 

a large param eter with regard to hypersonic flow. The resulting equations are 

simpler than , but consistent with, the full Navier Stokes equations, bu t num er­

ical com putations are still required. This approach also has the advantage th a t 

particular possible mechanisms for instability an d /o r transition can be studied, 

in isolation or in combination, allowing understanding of the underlying physics 

responsible for the breakdown of a lam inar boundary layer.

The nonlinear interaction of Tollmien-Schlichting waves and longitudinal vor­

tices is considered for the entire range of the Mach number; it is found th a t com­

pressibility has significant effects on the solution properties. The argum ents break­

down when the Mach num ber reaches a certain, large, size due to the ‘collapse’ of 

the m ulti-layered boundary layer present and thus we are naturally led on to inves­

tigate this new regime where ‘non-parallelism ’ m ust be incorporated in the theory. 

Also, the effects of compressibility are then more significant, analytically, causing 

the governing equations to be more complicated, and further analytic progress 

relies on shorter scales being employed for any perturbations to the basic flow. 

The numerical solution is discussed along with a non-linear asym ptotic solution 

capturing a ‘finite-tim e b reak -u p ’ of the interactive boundary layer.

This work suggests th a t for larger Mach numbers the crucial non-linear in­

teraction is between inviscid modes and Gortler vortices and these are discussed 

in the remaining chapters. The inviscid modes are studied initially w ith no shock 

present, before the theory is modified for the inclusion of shock-w ave/boundary 

layer interaction. In the last chapter the G ortler-vortex mechanism for large Mach 

num bers is considered.
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C hapter 1

G eneral In trod u ction .

§1.1 B O U N D A R Y  LAYER STA BILITY  TH EO R Y .

T he question why most fluid flows are turbu len t ra ther than  lam inar has re­

ceived m uch attention by investigators during the past hundred years or so. The 

efficiency of, for example, turbine blades or aircraft wings is reduced significantly 

by the  presence of turbulent flow; thus there has been, and still is, much research 

aimed at understanding how and why small disturbances in lam inar flows can 

cause the onset of transition to turbulence. The theoretical study of such dis­

turbances (instabilities), of lam inar flow (liquid or gaseous) is commonly known 

as ‘hydrodynam ic stability theory’. Our concern in this thesis is with the study 

of such disturbances situated within thin regions (‘boundary layers’) th a t form 

alongside solid surfaces in the presence of high relative speed fluid flow. This 

aspect of hydrodynam ic stability theory is known as ‘boundary layer stability the­

ory’. In  particu lar, we consider high-speed compressible flows; there is currently 

m uch in terest in such flows because of the desire to  design and build faster/m ore 

fuel-efficient aircraft and space vehicles.

§1.1.1 H is to r ic a l  b a c k g ro u n d .

M any notable results concerning the instability of inviscid flows were discov­

ered by Rayleigh (1880, 1887, 1913). In these early years, it was usual to consider 

external fluid flows to be inviscid. This assum ption resulted in easier governing 

equations b u t the so called ‘no-slip’ condition (no relative tangential motion on 

solid boundaries) had to be neglected for solutions. P ran d tl (1904) first introduced 

the idea of a th in  boundary layer forming adjacent to solid surfaces in the pres­

ence of high speed flow. He showed th a t in these boundary layers it is necessary to 

take viscosity into account bu t the no-slip condition could now be satisfied. This 

boundary layer theory was subsequently developed by P ran d tl and other work­

ers. It is convenient here to introduce the concept of the  Reynolds number, Re; 

this dynam ical similarity param eter depends on the free-stream  velocity, a typical 

length-scale and the viscosity of the flow, L  and respectively.
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* ^
Reynolds (1883) found th a t the combination Re = - characterizes the flowoo

completely; flows having different u ^  L  and values bu t the sam e Reynolds 

num ber have the same solution in term s of non-dim ensionalised quantities. The 

size of the Reynolds num ber is found to be very large for aerodynam ical flow, 

typically R e  ~  106 or larger. P rand tl and his colleague Blasius showed that 

boundary layers on a flat plate are of thickness 0 (R e ~  2 ); thus these layers are 

th in , consistent w ith P ran d tl’s original idea.

At this juncture , it is also convenient to introduce a second param eter of 

dynam ical-sim ilarity param eter, the so-called Mach num ber,

M  =  —  •JlaOO -- >

the ratio  of the free-stream  speed, to the speed of sound, a ^ ,  in the  free- 

stream . The Mach num ber m easures the compressibility of the  flow. Incom press­

ible flows have =  00 so th a t M ^  = 0; in this case, if the wall and free-stream  

tem peratures are equivalent, the boundary-layer tem perature  profile can be taken 

to be constant and the governing equations are greatly simplified. Compressible 

flows having 0 < M qq < 1 are commonly referred to as being subsonic; whilst 

those w ith M 00 > 1 are referred to as being supersonic.

The equations governing boundary-layer flow can, in general, only be solved 

analytically by use of similarity variables, enabling the num ber of independent 

variables to be reduced. The first and most celebrated of these sim ilarity solutions 

was found by Blasius (1908), for the flow induced by the presence of a flat plate in 

a uniform stream ; whilst Von K arm an (1921) derived the form  of the  velocity field 

for the flow caused by a ro tating  disc. Similarity solutions for o ther incompressible 

flows have also been found. The first significant contribution for compressible flows 

was by Von Mises (1927) who found a solution for compressible flow on a flat plate 

close to  the leading edge, in term s of the stream -function. Crocco (1941) solved the 

equations of m otion by treating the downstream co-ordinate and velocity as the 

independent variables. However, the m ethod usually used to  solve the  compressible 

boundary-layer equations is due to  Dorodnitsyn (1942) and Howarth (1948). Their 

solution is based on a stretching of the co-ordinate by m eans of an integral based 

on the local tem peratu re. Comprehensive reviews of boundary layer theory  can 

be found in the  books by Schlichting (1960) and Stew artson (1964).
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We now consider boundary-layer stability. At the tu rn  of the century, vis­

cosity was commonly thought to act only to  stabilize the flow: there were many 

results, mostly due to Lord Rayleigh, concerning the instability of incompressible

inviscid flows; in particular, it was believed th a t flows w ithout inflexional profiles
an d . H e i s m b & y

were stable. A few years later, Taylor (1915)^ P rand tl (1923^independently  

indicated th a t viscosity can destabilize a  flow th a t is otherwise stable. These 

discoveries led to the first viscous theory of boundary-layer instability, due to 

Tollmien (1929). This theory was further developed by Schlichting (1933a,1933b, 

1935, 1940) and by Tollmien (1935); num erical results were obtained and some 

predictions concerning the onset of transition to  turbulence were made. However, 

outside of Germany, these theories received little acceptance (see, for instance, 

Taylor 1938); due mainly to the lack of experim ental verification of the theories. 

However, Schubauer & Skram stad (1947) reported th a t instability waves had been 

observed experimentally in a boundary layer; th a t they were closely connected 

to transition; and moreover, th a t there was a close correlation between their ob­

served behaviour and the predicted behaviour from the theories of Tollmien and 

Schlichting. Thus the la tte r researchers’ viscous, linear, theory of boundary-layer 

instability was fully vindicated; these instability waves are now referred to  as 

Tollmien-Schlichting waves, in recognition of their contributions.

The next significant advance in the theory of the Tollmien-Schlichting waves 

followed nearly three decades later when Bouthier (1973)^and G aster (1974) in­

cluded non-parallel flow effects which are due to boundary layer growth. Their 

asym ptotic m ethod involves a successive approxim ation procedure, treating Re~% 

as a small param eter. At zeroth order the  O rr-Som m erfeld equation (see later) is 

obtained and m ust be solved numerically. N on-parallel effects then introduce forc­

ing term s on the righ t-hand  sides of the higher-order equations. An alternative 

approach to this reliable and efficient procedure was developed by Smith (1979a) 

who dem onstrated th a t, for high Reynolds num bers, the Tollmien-Schlichting 

modes could be described by the so called ‘triple deck’ structure. This sh o rt- 

scaled structure, consisting of three th in  layers adjacent to  the wall in which clas­

sical boundary-layer theory no longer describes the flow (see later subsection), 

had been independently discovered ten years earlier by Messiter (1970), Neiland

(1969) and Stewartson & Williams (1969) to describe the self-induced separation
BcathLzS' cUR- n e t  Oorrvpcxr ,̂ *cke. prope-r\^  u v  tVve^ru o j u L
^ ^ rv n \e < \b . q



of flows. We note th a t the link between the Tollmien-Schlichting modes and the 

triple-deck scales is, in fact, implied from the work ofjLin (1945), who studied 

the viscous instability of incompressible flows. The remarkable finding by Sm ith 

proved to be the catalyst for m any subsequent studies of the linear and nonlinear 

viscous stability properties of various boundary layer flows, based on the triple 

deck approach, i.e. Bodonyi & Sm ith (1981); Duck (1985); Goldstein (1984); Hall 

& Sm ith (1984, 1989); Sm ith (1988); Sm ith &; Burggraf (1985); and Sm ith, Doorly 

& R othm ayer (1990), to nam e bu t a (varied) few.

However, there are other stabilities of boundary layers, apart from  the viscous 

Tollmien-Schlichting modes. We have already noted th a t the inviscid stability of 

incompressible flows was first studied over a century ago; the m ost significant 

result, th a t the flow profile necessarily m ust be inflexional for the flow to be un ­

stable, was found by Lord Rayleigh. The first significant study of the inviscid 

instability of compressible flows was by Lees h  Lin (1946). They extended the 

theorem s of Rayleigh to the case of compressible flows and found th a t com press­

ible boundary-layer flows are inviscidly unstable, in contrast to their incom press­

ible counterparts. The first study of a compressible boundary-layer is a ttrib u ted  

to K uchem ann (1938) bu t his assum ptions were extremely restrictive. These re­

strictions were relaxed somewhat by Lees & Lin who, in addition to  their inviscid 

theory (m entioned above), also considered viscous disturbances, in close analogy 

with the incompressible asym ptotic theory of Lin (1945). The viscous and inviscid 

linear stability properties of compressible boundary-layer flows have been com pre­

hensively studied by Mack (1965a, 1965b, 1969, 1984) providing a large source of 

numerical results. Mack finds th a t the inclusion of compressibility leads to  m any 

additional solutions, which he term s ‘higher m odes’. He finds th a t these higher 

modes are destabilized by ‘cooling’ the wall; several years earlier, Lees (1947) 

had predicted th a t cooling the  wall acts to stabilize the boundary layer. Balsa 

& Goldstein (1990), Cowley & Hall (1990) and Smith & Brown (1990) have re­

cently, independently, investigated the inviscid, linear, instabilities of large M ach 

num ber flows by asym ptotic m ethods in an a ttem pt to fit analytical theories to  

some of M ack’s results for inviscid disturbances. The viscous linear instability of 

compressible boundary-layer layer flows has been studied asym ptotically by Sm ith

(1989) using the compressible version of the triple deck theory.
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In the proceeding discussion we have restricted our atten tion  to  the instabil­

ities (viscous and inviscid) associated with two-dim ensional flows over a flat sur­

face. However there are two further classes of hydrodynam ic instabilities, centrifu­

gal and crossflow, appropriate  to concave-curved surfaces and three-dim ensional 

flows, respectively. To complicate m atters further, each of these instabilities can 

be ‘inviscid’ or ‘viscous’ in nature . The centrifugal instability m echanism  was first 

identified by Taylor (1923), during laboratory experiments concerned w ith the mo­

tion of fluid between ro tating  concentric cylinders. The flow is unstable to vortex 

structures (now referred to  as ‘Taylor vortices’) whose axes follow the  curvature of 

the flow stream lines. Hence the flow in curved channels is centrifugally unstable to 

Taylor vortices; whilst the flow in curved pipes is centrifugally unstable to ‘Dean 

vortices’ (Dean, 1928).

Our concern in this thesis is with external, boundary-layer, flows and the cen­

trifugal instability of these flows, over a concave wall, was established by Gortler 

(1940), after whom the particular instability is named. However, the  correct gov­

erning equations for the  linear Gortler vortex instability were not correctly for­

m ulated until the papers of Gregory, S tuart h  Walker (1955), Floryan & Saric 

(1979) and E l-H ady & Verma (1981), the la tter for compressible flows. Moreover, 

correct num erical results for this instability proved elusive until the paper by Hall

(1983), for the incompressible case; correct numerical results for compressible flow 

were first com puted by W adey (1990). Much analytical progress on the linear 

and non-linear stability  properties of Gortler vortices has been m ade in the last 

decade; these are principally due to Hall and colleagues. These asym ptotic theories 

are generally based on the ‘large-wavenum ber approxim ation’, first employed by 

Meksyn (1950) for the  Taylor vortex problem. S tuart (1960) and W atson (1960) 

showed how non-linear effects could be taken into account, for plane Poiseuille 

and Couette flows, close to  the position of neutral linear stability. Their approach 

requires the correction to the  m ean flow to be an order of m agnitude smaller than  

the m ean flow itself; however, Hall (1982b) has shown th a t this is not the case 

for the Gortler problem . A comprehensive review of the past fifty years’ Gortler 

vortex instability research can be found in the article by Hall (1990).

The final class of instabilities are found in three-dim ensional boundary lay­

ers (for which th ree  o rtho-norm al co-ordinates are necessary to  describe the flow).
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These instabilities, which can be either viscous or inviscid in nature , are commonly 

referred to  as ‘crossflow vortices’. This im portant instability m echanism receives 

little a tten tion  in this thesis, principally due to the difficulty of finding solutions 

to the three-dim ensional, compressible, boundary layer equations. Most studies 

of crossflow instability have considered the boundary-layer above a rotating disc 

since V on-K arm an’s is an exact solution of the Navier Stokes equations. This 

self-similar boundary layer was first used for this purpose by Gregory, S tuart & 

Walker (1955) in their classic paper on three-dim ensional boundary-layer instabil­

ity. Their theory has subsequently been extended by several researchers; notably 

by Hall (1986) and Bassom & G ajjar (1988). The extension of these theories to 

compressible flow above a rotating disc constitutes work under progress by sev­

eral workers. Another exact three-dim ensional solution to  the (incompressible) 

Navier Stokes is the ‘swept attachm ent-line’ boundary layer on an infinite flat 

plate. The instability of such a boundary-layer was first studied experimentally 

by Poll (1979); and theoretically by Hall, Malik &: Poll (1984). A fuller discussion 

of the crossflow instability can be found in the recent papers by Hall & Seddougui

(1990) and Bassom & Hall (1991), who investigate wave interactions in the swept 

a ttachm ent-line  boundary layer and non-stationary  crossflow vortex interactions 

in the boundary layer above a rotating disc, respectively.

Before concluding this discussion on boundary-layer stability theory it is 

worth recalling the motivation for such studies by several generations of inves­

tigators. It was (and still is) hoped and /o r believed th a t an understanding of the 

linear and non-linear stability properties of lam inar boundary-layer flows will lead 

to an understanding of the factors causing the onset of transition , of these lam inar 

flows, to a turbulent state. The prediction of when transition  occurs has been the 

subject of m any papers dating back to Schlichting (1933a).

M any of these ‘predictions’ of transition are based purely on the numerical 

results of linear theory; essentially, it is believed th a t if a flow is ‘sufficiently’ 

linearly unstable then  transition follows soon afterw ards. The m ost notable ex­

ample is the so-called ieN m ethod’, due to Sm ith &: G am beroni (1956) and Van 

Ingen (1956), still in routine use today in engineering studies. In this m ethod, if 

the linear instability theory predicts an e^-fo ld  increase in the  initial am plitude 

of the disturbance, then  transition to turbulence is predicted. Usually the value
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N  =  9 is chosen in this seemingly completely irrational transition criterion. How­

ever, this simple m ethod would not have rem ained in routine use for so long had 

it not had some success in predicting transition. This lim ited success is usually, 

ironically, a ttribu ted  to the (totally dis-regarded) non-linear effects being so pow­

erful th a t turbulence soon follows linear instability. Further, this m ethod relies on 

the notion of a ‘unique’ growth rate; for instance, Hall (1983) and Sm ith (1989) 

have indicated th a t such a notion is not tenable, for the general Gortler vortex 

problem  and for the viscous stability of large Mach num ber flows, respectively. 

Additionally, any transition predictions based on purely linear theories totally dis­

regard the possibility/probability of interactions between these instabilities; the 

individual ‘partic ipants’ of the interaction may all come from the same ‘group’ of 

instabilities (eg. multiple-wave interactions) or from different groups (eg. vor­

tex/w ave interactions). Individually, based on some linear transition criterion, the 

individual instabilities may not trigger the onset of transition but together they 

may. These nonlinear interactions are currently causing much excitm ent amongst 

theoreticians.

Further aspects of boundary-layer stability theory include (i), the notion of 

secondary instabilities to an initial primary disturbance (see, for instance, Hall 

& Horsem an, 1990); (ii) the investigation of fin ite-tim e  and other ‘b reak-ups’ of 

interacting unsteady boundary layers (see Sm ith, 1988); and (iii), the receptivity 

theory. The la tte r is concerned with the origin of the small disturbances; either 

due to surface roughness or freestream  fluctuations (see, for instance, Goldstein, 

1985; Hall, 1990).

Many review articles and books have been w ritten on boundary-layer theory 

an d /o r hydrodynam ic stability theory: these include the books by Drazin &: Reid 

(1981), Lin (1955), Schlichting (1960), Stewartson (1964); and the articles by Mack

(1984)f, Reid (1965), Reshotko (1976), Sm ith (1982) and S tuart (1963).

f this review paper was the source for many of the historical references cited in the present 

discussion.
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§1.1.2 T h e  in v isc id , v isco u s a n d  c e n tr ifu g a l in s ta b ilit ie s .

We now give a few more details concerning the particular instabilities to  be 

considered later in this thesis. Fuller details can be found in the references cited 

herein or later in the thesis.

Viscous instability theory.

We consider the linear theory first; then the disturbances (Tollmien-Schlichting 

modes) can generally be w ritten as norm al modes, tha t is the small disturbances 

are w ritten as proportional to

exp[z( J  adx  +  (3dz — u>f)],

containing all the streamwise (x), spanwise (z) and time (f) variation. The 

resulting equations, for three-dim ensional viscous disturbances of compressible 

boundary-layer flows, lead to an eighth-order system (see Mack, 1984) which has 

to be solved numerically. The order of this system  is reduced to fourth when the 

flow is incompressible. In this case, for a 2-D disturbance (/? =  0), the disturbance 

equations can be combined to yield the familiar Orr-Sommerfeld equation

(D 2 — a 2)2v = iRe[(au  — w )(D 2 — a 2) — a 2D 2u]v ,

C R .tL  Ls thfc. niuwb sOC bcVSeJL Orv bottfNctcx/TV^—koÂ <LT ^Av£cVcfve_ss^

for the norm al disturbance velocity am plitude v. Here D  =  d /d y  and u represents

the streamwise velocity profile of the boundary-layer flow. This equation, and the

eighth-order system for compressible flows, form the basis for much of the  work

done/being done in viscous linear stability theory. Later in this thesis we shall

refer to ‘O rr-Som m erfeld-type’ solutions for the viscous stability of compressible
SoVujbcoa

flows; by this we shall m ean solutions based on the numericaljbf the eighth-order 

system referred to above. We do so in order to distinguish such solutions from 

those calculated from  an alternative theory, based on the so-called ‘triple deck 

s truc tu re’.

The ‘triple deck theory’, to  be described in some detail later in this the­

sis, provides a far superior theory for investigating both the linear and and non­

linear viscosity stability properties (the linear and nonlinear evolution of Tollm ien- 

Schlichting modes) of ‘h igh-R eynolds-num ber’ boundary-layer flows. We note
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th a t this high Reynolds num ber assum ption is not very restrictive; it has already 

implicity been m ade by the assum ption th a t a boundary-layer exists —  fu rther, 

recall th a t typical values are O ( l06), or larger, in practical flow situations. Essen­

tially, we are assum ing th a t the the onset of transition in an external b o u n d ary - 

layer flow is a high Reynolds num ber phenomenon. The unexpected link between 

the triple-deck s tructu re  and the Tollmien-Schlichting disturbances was estab ­

lished by Sm ith (1979a) who also rationally incorporated the non-parallelism  of 

the boundary-layer flow into his asym ptotic theory. More precisely, the trip le-deck 

theory describes m odes corresponding to the so-called ‘low er-branch’ of the  O rr-  

Sommerfeld neutral curve; the viscous modes corresponding to  its ‘u p p e r-b ran ch ’ 

are described by a very closely related five-tiered, short-scaled asym ptotic theory 

(see Bodonyi & Sm ith, 1981; Sm ith & Burggraf, 1985). The viscous m odes of a 

compressible boundary-layer flow have been studied by Smith (1989), using the 

compressible version of the triple deck theory.

In fact, the triple—deck structu re  is short-scaled; it has stream wise length of
3

0 [ R e ~ ^ )  and comprises of three, thin, stacked ‘decks’ (the lower, the m ain and
_  5 _  l  _  3

the upper decks) having heights 0 ( R e  %), 0 (R e  2 ) and 0 (R e  ? ) . The resulting 

governing system  of nonlinear equations comprises of the usual (incompressible) 

boundary-layer equations; however, in this non-classical theory, the pressure is not 

fixed by the freestream , instead it is driven by the viscous displacem ent effects, 

which in tu rn  are driven by the pressure. Fuller details can be found in the 

comprehensive review of ‘the high Reynolds num ber theory’ by Sm ith (1982). The 

trip le-deck-theory  approach has the benefit th a t it allows significant analytical 

progress to be m ade for non-linear problems; such investigations are principally 

due to  Sm ith and colleagues.

Finally, we note th a t the triple deck structure was discovered ten years before 

Sm ith’s classic paper, independently by Stewartson & W illiams (1969), Neiland 

(1969) and M essiter (1970). They were seeking a rational explanation of the  (seem­

ingly un-rela ted) problem  concerning the ‘self-induced separation’ of a  boundary  

layer from the surface in the  absence of external influences. Earlier, Goldstein 

(1948), has shown th a t classical boundary layer theory predicted a singularity in 

the solution for separating flow (or flow undergoing ‘reversal’), in the presence of 

an adverse pressure gradient.
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The inviscid instability.

Inviscid instabilities are those not driven by viscous effects, i.e. viscous term s 

do not enter their governing equations, although the underlying flow m ay be gov­

erned by viscosity. We are chiefly concerned with the inviscid linear instability of 

two-dim ensional boundary-layer flows and this is governed by the compressible 

form of Rayleigh’s equation,

a 2M£,(fi -  c)2 '
Pyy ~  2^ - jL-Py + I fP y  ~  (<*2 +  P )  u  — C 1

P =  0 ,( a 2 +  /32)T

p y ( 0) =  0, p(oo) =  0, (1.1.1a —c)

for the infinitesimal, wavelike, pressure disturbance p. Here u(y)  and T ( y ) are the 

streamwise-velocity and tem perature profiles of the underlying boundary layer 

and y  is the norm al similarity variable for the boundary layer. The constants a,/3 

and c are the scaled wavenumbers and wavespeed, respectively.

It is well known th a t (1.1.1) cannot have solutions unless a so-called g e n ­

e r a l i s e d  i n f l e x i o n  p o i n t  criterion is satisfied by the boundary-layer flow. This 

criterion, which requires th a t

for some y  > 0, can easily be derived by seeking a regular series form  for p ( y )  in

the neighbourhood of the critical level, where u  ~  c .  W hen solving the dispersion

relation (1.1.1), for c  = c(a ,/?) say, care m ust be taken to chose the correct solution

tha t m atches onto the viscous modes in the appropriate limit (see, for instance,

the book by Lin, 1955). The incompressible version = 0 , f  =  1) was first
cuvtL Loicec bvfl- Gq*>D)<xruL H&Llcu\(L C/9 5 ^

studied at the end of the nineteenth century by Lord Rayleigh^*nowadays there

is much renewed interest in the compressible case, (1.1.1), including extensions of

this theory to  other geometries.

The centrifugal instability mechanism.

These instabilities, which take the form of streamwise vortices, are only present 

in flows over concave surfaces. This surface curvature ( i f  of the  appropriate  size) 

leads to an extra  term  in the y-m om entum  equation of the ‘p lan ar’ form of the 

governing Navier Stokes equations. Associated with this curvature te rm  is a num ­

ber (nam ed after Taylor, Dean or Gortler; depending on the flow context) which
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is a m easure of the surface curvature. For illustrative purposes we outline the 

origin of this ‘ex tra ’ term  for incompressible boundary-layer flow over a curved 

wall defined by

y = R e~ ?g(x),  (x ,y )  = ^ ( x * , R e?y*),  (1.1.2a, b)

where (x * ,2/*) are the physical co-ordinates along and norm al to the wall, with 

associated velocity components (11* ,v*) =  u*00(u ,R e ~ ? v ) ,  respectively.

The P rand tl transform ation,

u —> u, v —> v -f g'(x)u  and y  —> y  -f g(x)

leaves the continuity and x-m om entum  equations unchanged bu t the transform ed 

y-m om entum  equation now contains the term  g”(x )u 2, due to  surface curvature. 

Note th a t, in (1.1.2a), the curvature g(x)  has been scaled on the boundary- 

layer thickness. The m agnitude of curvature, \g"(x)\, is essentially the Tay­

lo r/D ean /G ortle r num ber. There have been m any studies of centrifugal insta­

bilities, yielding so-called neu tra l/g row th-rate  curves which relate this num ber to 

the spanwise wavelength of the instabilities (vortices).

§1.2 T H E  P R E S E N T  TH E SIS.

The present work will consider some aspects of the viscous, inviscid and cen­

trifugal stability theories for compressible flows. In C hapter 2 we introduce and 

develop those aspects of compressible boundary-layer necessary for the later chap­

ters. In particular, the choice of constitutive relationship between viscosity and 

tem peratu re  is discussed; this has emerged as a m ajor them e of the present thesis. 

We investigate how the usual compressible triple-deck scales are modified due to 

the choice of the more realistic Sutherland’s form ula to  relate local tem perature 

and viscosity.

In C hapter 3, our concern is with the non-linear interaction of Tollmien- 

Schlichting (TS) modes and longitudinal vortices in the compressible boundary- 

layer flow over a flat plate. This work is an extension of the paper by Hall & 

Sm ith (1989) for incompressible flow. This interaction is form ulated within the 

framework of the compressible triple-deck theory. We com pare the results obtained 

with those for the incompressible case; it is found th a t the m ost significant effect
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of compressibility is due to the necessary obliqueness of the three-dim ensional TS 

waves for supersonic flows (Zhuk & Ryzhov, 1981 j ‘DunodZ. 195 5 } .

In C hapter 4, our concern is with the viscous stability of large-M ach-num ber, 

compressible, boundary layer flow. Sm ith (1989) has shown tha t the triple-deck 

theory, governing viscous stability, ‘collapses’ (breaks down) when the Mach num ­

ber rises to  become of the same order as a particular, fractional, power of the 

Reynolds num ber. We show th a t the asym ptotic theory describing the so-called 

‘u p p er-b ranch ’ viscous modes also collapses, simultaneously. The resulting, much 

larger, tw o-tiered structure is considered; some of the reasons behind the difficulty 

of finding analytical and numerical solutions are discussed. In the final section, 

even larger Mach numbers are considered in order to investigate the link between 

this tw o-tiered structure (governing viscous instabilities) and the so-called inter­

active boundary-layer structure, in which the impingement of a shock affects the 

basic boundary-layer state.

In C hapter 5, we consider the extension of the study of Smith (1988), concern­

ing the probability of ‘finite-tim e b reak -ups’ in unsteady, interactive, boundary 

layers, to the case of compressible flow. O ur principal concern is with extending 

the theory to the tw o-tiered boundary-layer structure  discussed in the previous 

chapter. The troublesome effects of compressibility result in a complicated ‘criti­

cal layer’ analysis. This critical-layer problem  remains unsolved, thus preventing 

definite conclusions although ‘finite-tim e b reak -u p ’ still appears likely and again 

is related to an inviscid form of Burger’s equation.

In chapter 6, our concern is with the inviscid instability of hypersonic flow 

over a flat plate. Two cases are considered. Firstly, the stability of the flow far 

downstream  of the leading edge is considered, here the effect of the shock is negli­

gible; the basic boundary-layer flow structure, in this case, was first form ulated by 

Freem an & Lam (1959), based on an idea by Hayes & Probstein (1959). Secondly, 

the stability of flow close to the leading edge of the plate is considered, here, in 

the so-called strong interaction region, the flow state  is strongly affected by an 

attached  shock. This flow was first elucidated by Bush (1966). In both  cases it is 

found th a t the most unstable linear modes are trapped  within thin ‘tem perature 

ad justm ent layers’, situated imm ediately above the hot (inner) boundary layers. 

The small wavenumber behaviour of these modes is considered, asymptotically.
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Finally, in C hapter 7, we consider the co-existence of the centrifugally-driven 

G ortler instabilities and the inviscid Rayleigh modes, in hypersonic b oundary - 

layers on concave walls; the la tte r instabilities having been previously considered in 

isolation, in C hapter 6. The Gortler instability in hypersonic flows is form ulated for 

Sutherland-fluids; we find th a t the most dangerous modes are inviscid in character 

and th a t they are also trapped  within the thin tem perature adjustm ent layer. 

In  Section 4 we discuss how the presence of a strongly non-linear vortex state  

will affect (modify) the Rayleigh instability properties. Both types of modes are 

considered: those associated with the  hot boundary layer and those associated with 

the tem perature adjustm ent layer. In the last section we note th a t ‘vortex/w ave’ 

interaction is likely.

Presentations and reports.

The work contained in C hapter 3 was first presented at EU R O M EC H  261 

held at ISITEM, Nantes, France in June 1990. The work contained in Sections 4 

and 5 of C hapter 6 was first presented a t the 32nd British Theoretical Mechanics 

Colloquium (B.T.M .C.) held a t St. Andrews in April 1990; the work contained in 

the whole of C hapter 6 forms the basis of the ICASE Report no. 90-40 (Blackaby, 

Cowley Sz Hall, 1990). An earlier version of some of the work described in Section 

5 of C hapter 7 was presented at the 31st B.T.M .C. held at Exeter in April 1989; 

whilst the work described in Section 2 of the same chapter forms the basis for part 

of the ICASE Report no. 90-85 (Fu, Hall & Blackaby, 1990).
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C hapter 2 

C om p ressib le  b oundary layer th eo ry

§2.1 IN T R O D U C T IO N .

In this chapter we introduce and develop those aspects of compressible bound­

ary-layer theory necessary for the later chapters. For a m ore complete discussion 

of some of these aspects the reader is referred to the excellent book by Stewartson 

(1964), as well as the m any references cited later in this chapter.

Later in this section we discuss the physical assum ptions th a t need to be 

m ade/are  usually taken when considering the governing (compressible) Navier- 

Stokes equations, before discussing the choice of constitutive relationship between 

viscosity and tem perature. The appropriate choice of viscosity-tem perature re­

lation is a m ajo r them e of this thesis; we choose one th a t is m ore physically 

appropriate over large tem perature variations th an  th a t usually chosen by the­

oreticians. A brief discussion of the atm osphere then  follows, prom pted by the 

need for typical values of the tem perature therein, to feed into the theories before 

obtaining quantitative results.

In §2.2 we form ulate the boundary layer equations for non-interactive steady 

flows (no shock effects). These are investigated in some detail in C hapter 6 but 

in this chapter we are content with merely deducing those properties (mostly 

concerning the ‘wall values’) directly related to the triple-deck scales discussed in 

the following section. In §2.3 the compressible triple-deck s tructu re  is discussed 

and particular atten tion  is paid to the ‘new’ scales m ade necessary by our choice of 

the tem perature-viscosity  relation. This m athem atical s truc tu re , which describes 

the m ajor viscous stability properties, is shown to  enlarge into a longer, tw o- 

tiered structure  as the Mach num ber increases to a certain large size (but smaller 

than  tha t for which the effects of a shock on the base flow are significant). The 

same (qualitative) structure  had been deduced by Sm ith (1989) bu t for a different 

(linear) viscosity-tem perature relation.

§2.1.1 The param eters o f dynam ical sim ilarity

We consider the boundary layer due to high-speed uniform  flow of a compress- 

ible^over a flat plate. Suppose th a t L  is the distance from the  leading edge, and
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u oo i a oo> Poo  and P l o i  are the velocity, speed of sound, density and shear viscosity 

of the free stream  flow, then  we assum e th a t the Reynolds num ber,

R e  =  P°°U} ° L , (2.1.1a)
P'OO

is large. This is not unreasonable as one is already assuming the presence of a 

boundary layer. The second im portan t param eter is the Mach num ber,

Mco =  %  (2.1.16)
®oo

which we take to be 0 (1 ) for the tim e being. Later we shall consider large Mach 

num bers and then we m ust further assume th a t Re  is much greater th an  M qq (or 

some power of it). Again this is not unreasonable when one recalls th a t in practical 

circumstances a large Reynolds num ber is typically of size O (106), whilst a  large 

Mach num ber is much smaller, typically O (101) in m agnitude.

§2 .1.2 F o rm u la tio n

We adopt a non-dimensionalisation based on coordinates L x  (where x  is in the 

direction of flow and y is norm al to  plate), velocities u ^ u ,  time pressure

Poou *<£>P'> density pJoP, tem peratu re  T ^ T , and shear and bulk viscosities and 

respectively, where the subscript oo denotes the value of the quantity  in the 

free-stream. On the assum ption th a t the fluid is a perfect gas w ith a constant 

ratio of specific heats 7 , the governing equations of the flow are

J l  +  V • (pu) = 0, (2.1.2a)

p f f  =  - V p  +  ^ [ 2V  • (fig) + V ( ( / /  -  2- p ) V  ■ «)], (2.1.26)

-  <7 -  D M i g  + jJ L -V  . <„VT) +  (2.1.2c)

l M loP = PT 1 (2.1.2 d)

where
1 (  du{ d u j \  

ei3 = o ( +  ~o~ ) 5 (2.1.3a)2 \dxj dxi J ’
2

$  =  2y,g  : g  +  ( / /  — ~ / i ) ( V  • u )2 , (2 .1 .3 6 )
o
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and P r  is the constant P ran d tl num ber. For more details on the derivation of these 

compressible Navier-Stokes equations see Stew artson (1964). Note th a t (2.1.2d) 

gives tM^qPoq =  1 : the non-dimensionalised pressure in the free-stream  is not 

unity. These equations can easily be generalised, for instance, to  account for a 

non-zero external pressure-gradient an d /o r real gas effects such as d issociati on.

§2.1.3 Real and ideal gases.

The atm osphere is not a real gas and strictly the above equations should be 

m ore complicated due to  the inclusion of the fact th a t air (in the atm osphere) is 

a cocktail of numerous gaseous atom s and molecules. In particular, within a hot 

boundary layer these will be dissociating and chemically reacting. Further we shall 

see later in this chapter th a t the upper atm osphere is polluted, from natu ra l (e.g. 

volcanic activity) and m an-m ade (e.g. the exhaust fumes from supersonic aircraft) 

sources, and th a t its therm odynam ic properties depend on latitude, the nature  of 

the surface below and on the season. This thesis is prim arily a m athem atical study 

and, as custom ary in such studies, the ‘idealness’ of the fluid (air) is assumed to 

be ‘fairly high’, allowing analytical and num erical solutions.

Real gas effects can be incorporated into the governing equations by appeal­

ing to the ‘Kinetic Theory of Gases’ or to  the more general theory of ‘Statistical 

M echanics’. The significant change in our governing equations would be a modifi­

cation of the gas law, (2.1.2d), especially when the boundary layer is hot. Also one 

would obtain better models for the specific heats, viscosity and therm al diffusivity. 

For a much fuller discussion the reader is referred to the plethora of books con­

cerned with the ‘Kinetic Theory of Gases’ (i.e. Jeans, 1940; Loeb, 1934; C hapm an 

& Cowling, 1970 - see also the paper by Lighthill, 1957), whilst m any books on 

viscous flow theory (i.e. Pai, 1956; Schlichting, 1960; Stewartson, 1964) contain 

very good introductory accounts.

The advent of super-com puters coupled with ever increasing sophisticated 

numerical techniques, the exhaustion of ideal-gas problems and interest in real 

gas effects as a new source of problems for researchers an d /o r because they are 

genuinely felt necessary for a more realistic theory, the desire to build/im prove 

supersonic and hypersonic vehicles, and other reasons, is leading to significant ad­

vances towards more realistic theories and thus a be tter theoretical understanding
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of the  physical processes governing the transition of a  lam inar flow to  a  turbulent 

state.

§2.1.4 T he ratio o f  specific heats and the P rand tl num ber.

In  this study  we are assuming th a t physical quantities such as the specific 

heat capacities, cp and  cw, at constant pressure and constant volume respectively, 

and their ra tio

7  =  — i (2-1-4)cv

are constant. By this we m ean th a t although we m ay choose different ‘constant’ 

values for 7 , for different flow situations (see la ter chapters), the variation of 7 

with tem pera tu re  (i.e norm al distance from plate) is small enough to  be neglected 

in our m athem atical formulation. The same is true  for the th ird  param eter of 

compressible flow, the P rand tl number

P r  = (2.1.5)

where k is the  therm al diffusivity; note th a t we are evaluating it using the free- 

stream  values of the relevant quantities. The P ran d tl num ber is a m easure of the 

ratio of heat conduction and viscous stress m echanisms at play in the  boundary 

layer.

The constant values of 7  and P r  need to be chosen as they cannot be scaled 

out of the governing equations. W hat values should be chosen? Once values have 

been chosen we effectively have lost the powerful generality of our results. Such a 

situation does not arise in the corresponding incompressible theory.

On fifth page of his book, Stewartson (1964) writes

“...the value of the constant [ P r  ] is a function of the paper quoted ...” ,

which, in the opinion of the present author, is still appropriate  today. The same 

can be said for 7 . Moreover there appears to be reluctance by some authors to 

explicitly s ta te  the actual values they have used; whereas some authors seems to 

choose values ju s t to be different from, or even perhaps, in an a ttem pt to outdo, 

fellow researchers; whilst others use ‘actual’ d a ta  from  experim ental measurem ents 

in their num erical codes. We choose, for the tim e being, the values 7  =  1.4 and

P r  =  0.72, these being the most commonly used for air - however in much of the
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theory th a t follows it is advantageous to take the  ‘so-called’ model value, th a t is 

P r  = 1, leading to  much simplified analysis and num erics. The value of 7  is known 

to decrease as the tem perature increases (see Stew artson, 1964, page 9) and we 

make use of this fact in later chapters.

§2.1.5 The constitu tive relationship betw een v iscosity  and tem perature.

A part from boundary conditions, the governing equations (2.1.2a-d) need to 

be closed by an additional relation expressing the viscosity in term s of the other 

therm odynam ic quantities. It is generally assum ed th a t the viscosity is solely 

dependent on the tem perature and the best constitutive form ula (for an ideal gas 

away from very low tem peratures) is

S = f L ,  (2.1.6a , 4)

known as Sutherland’s formula (Sutherland, 1893 -for a discussion of his theory 

see, for example, Loeb,1934; Jeans, 1940; C hapm an Sz Cowling, 1970 ). This for­

mula takes into account th a t molecules, as well as being a ttracto rs  of one another 

at short distances, have inpenetrable hard kernals (centres). Here C  is another 

constant whose quoted values, again, vary from author to  author: Stewartson 

notes th a t C  is about 110°K whereas the value of 117°K is used by Rosenhead et 

al. Note also the dependence of S  on T the free-stream  tem perature- this effec­

tively means th a t cannot be scaled out of our governing system of equations if 

S utherland’s formula is employed. Moreover it m eans th a t we have to  decide, as 

theoreticians, w hat value of T^  to choose for our calculations, leading to a further 

loss of generality. We consider the choice of T^  in the next subsection.

There are two simpler viscosity-tem perature relations th a t are commonly 

used. The first are the so-called ‘power laws’

/ i o c T  (2.1.7)

where 0.5 < u> < 1.0. These have been shown to be very good interpolation 

formulae for m oderate tem perature variations. Note th a t for, T  1, Sutherland’s 

formula has a power-law form, at leading order, with u> =  The second, even 

simpler, relation is known as C hapm an’s law

/x =  C T  (2.1.8)
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where C is another constant. Recently the rationality of such an assum ption has 

been questioned (for example by Prof. F .T . Sm ith, 1987; and m ore critically by 

Prof. P. Hall, 1989, during independent, private discussions w ith the author): 

the constant C  can only m atch at one of the two boundaries (the plate and the 

freestream ). Denoting the (nondimensionalised) tem perature and shear viscosity 

a t the wall (plate) by Tw and respectively, then  C  is generally ‘evaluated at 

the wall’, th a t is

where Tw is known (theoretically or experimentally) and fiw =  fiw(Tw) follows 

from Sutherland’s form ula, for instance.

At best, C hapm an’s law is a reasonable interpolation form ula over small tem ­

peratu re  variations. Despite the fact tha t it is not a rational approxim ation to 

Sutherland’s form ula, particularly for large tem perature variations, it is commonly 

used by theoreticians, as a model, due to its linear form resulting in simpler equa­

tions. In this thesis S u therland’s formula is taken to  relate viscosity to tem perature  

as there are often large tem perature  variations. We shall see how, by evaluating 

the constant C  a t the  plate using Sutherland’s formula, compressible triple-deck 

theory, conventionally form ulated using Chapm ans law (see for instance, Stew art­

son & W illiams, 1969; Stew artson, 1974; Smith, 1989), can be modified to  include 

the effect of large wall tem peratures for large M 0c. The first two papers contain 

the same sentence suggesting th a t the scalings given therein should generalise eas­

ily to  account for whatever viscosity law might be chosen; we show th a t this is 

indeed the case, later in this chapter.

§2.1.6 The free-stream  tem perature: what value should be chosen?

In the last sub-section it was noted th a t if one chooses to employ Sutherland’s 

form ula to relate the viscosity to  the tem perature then the free-stream  tem perature  

T^  cannot be scaled out of the resulting theory. Thus a value for it m ust be chosen 

if one wants quantitative results. There appear to  be three sensible approaches in 

his choice. Firstly, one may want to compare a new approach with existing results 

and so one would choose appropriately (tha t is if a value has been quoted in the 

latter); secondly, one may want to  correlate theory with experim ents (perform ed
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in a wind tunnel, say) and thus T (and the other constants 7  and P r )  should be 

chosen to relate to  experim ental conditions; lastly, one m ay simply wish to  use a 

typical physical value of in the atm osphere. In  fact this approach tu rns out 

to  be not as simple as it sounds and as there is no discussion of this point, to  the 

au th o r’s knowledge, to  date in the  im m ediate (compressible flow) literatu re , we 

spend a little tim e discussing the tem perature profile of the atm osphere.

The concept of a ‘s tandard  atm osphere’ could be appealed to  to  supply the 

desired inform ation inform ation regarding the tem peratures in the  atm osphere. 

The basis of these models (see for example Rosenhead et al, 1952, page 124; Pai, 

1956, page 15.) is th a t, in the lower atm osphere, th e  air tem perature  decreases 

linearly with altitude until a level is reached where the  tem perature  rem ains con­

stan t at about 217°K. There are problems though: thef&are only very simplistic 

models; the available d a ta  m ay be out-of-date and the  actual model values differ 

slightly from source to  source.

At this juncture, it is worth remembering th a t in therm odynam ics the tem ­

perature m ust be ’absolute’, th a t is such th a t its zero point corresponds to the 

sta te  of no internal energy of the constituent atom s and molecules. In addition, 

the  use of ‘im perial’ (B ritish) and ‘m etric’ units for m easurem ent has resulted in 

no less than  four commonly quoted units: degrees Celcius, Fahrenheit, Kelvin and 

Rankine. If we denote by C, F, K, R the (same) tem perature  m easured in the 

above units, respectively, then the conversion formulae are given by

( C  +  273.15,
K  =  < 0.55556F +  255.37, (2.1.10)

I 0.55556.R.

The present work is form ulated with tem perature  m easured in degrees Kelvin.

On the grounds th a t the ‘standard  a tm osphere’ models quoted in books on 

compressible, lam inar boundary layer flow appear too simplistic and because they 

may also be a need to  consider higher altitudes th an  those modelled, it was de­

cided to tu rn  to the literature on the physical nature  of the atm osphere. The 

consultation of some of the several recent and interesting books and publications 

concerning atm ospheric dynamics (for example, Wallace &: Hobbs, 1977; Kellogg 

&: Mead, 1980; Wells, 1986; M cIntyre, 1990) highlights how idealistic the notion of 

a ‘standard  atm osphere’ really is. In these references the ‘standard  atm osphere’ is
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Figure 2 .1. The vertical tem perature profile of the United S ta tes’ ‘standard  

atm osphere’f.

f The author is grateful to Dr. P. Lewis for her help in producing this figure.
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considered as consisting of four layers (see Figure 2.1), each having its own distinc­

tive properties. It is clear th a t the choice of T ^ ,  to  be used in the theories, clearly 

depends on whereabouts in the atm osphere we are concerned with. Supersonic air­

craft generally fly in the stratosphere, above the troposphere: the m ain residence of 

w ater vapour and ice particles (clouds) in the atm osphere. The lower th ird  of the 

stratosphere is very stable in the sense th a t there is very little vertical mixing. It 

is here where the tem perature remains constant a t about 217°K, the value quoted 

earlier from the simpler model found in some compressible-viscous-laminar-flow 

literature.

The lack of mixing referred to  above results in the stratosphere acting as a 

‘reservoir’ for certain types of atmospheric pollution. Here the residence tim e of 

aerosols is of the order of 1-2 years, com pared w ith about 10 days in the tropo­

sphere adjacent to the E a rth ’s surface. The origin of such pollution varies eg. (i) 

dust from volcanic eruptions (ii) debris from past nuclear explosions (iii) exhaust 

fumes from high-flying supersonic aircraft. The la tte r may initiate photo-chemical 

reactions resulting in the reduction of the high ozone (O 3 - a tri-atom ic gas) 

concentration in the stratosphere which screens the E a rth ’s surface from harmful 

ultra-violet radiation (although we note th a t there are probably more significant 

culprits of ozone depletion such as, for example, chloro-flucro-carbons and other 

harm ful chemical re-agents and catalysts currently being released/discharged into 

the  atm osphere from some land-based industrial plants and waste-disposal sites). 

Above this stable layer we see th a t the tem perature  fluctuates widely with alti­

tude. In addition to the dependence of tem perature  on altitude, it also depends on 

several other factors such as altitude, natu re  of the  E a rth ’s surface below, season 

and year.

Summarising, the choice of T needs careful consideration. The notion of 

global (general) quantitative results, from one choice, is not sensible (a rem ark also 

m ade by Stewartson, 1964). The above brief review of the dynamics of the atm o­

sphere has also shown tha t a study of real gas effects should really be generalised 

to  include ‘real atmosphere effects’. Finally we note th a t the aerosols (pollutants) 

mentioned above could trigger transition (pertu rb  the lam inar flow critically) on 

vehicles flying in the stratosphere. At lower altitudes (in the troposphere) there is
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also the additional factors of water vapour (leading to  the form ation of ice on air­

craft bodies) as well as the, generally unavoidable, build up of insect debris on the 

aircraft surface during take-off and landing. Here we are touching on the theories 

of roughness effects and ‘receptivity’ for predicting/understanding  the  transition 

from  lam inar flow to  a turbulent state. These interesting and im portan t theories 

are beyond the  scope of this thesis in which it is assum ed th a t infinitesimally small 

disturbances are (initially) present and we do not concern ourselves on their origin.

§2.2 N O N -IN T E R A C T IV E  ST E A D Y  FLOW S

We now tu rn  to the m athem atical problem of solving the governing equations 

for a steady lam inar boundary layer in a compressible fluid. Note th a t we are 

assuming th a t Re  1, but tha t Moo ~  ^ (1 )  at present. The similarity solution 

and its large Mach num ber properties are investigated in more detail in C hapter 

6, where a  slightly different notation is used.

§2.2.1 T he sim ilarity solution

The boundary layer equations can be recovered by first substituting

l t v l
5 = Re? pdy , v =  Re  (2 .2 .1a,6)

Jo

where the Dorodnitsyn-Howarth variable, £, is introduced for convenience, and 

then  taking the limit Re  —► oo.

For steady two-dimensional flow over a flat plate, a similarity solution to these 

equations existsf. W ith

V = u = ip0  p V  = ~(ipx +  Cxi’c),
\ /2x

=  \ / 2z / ( 77), T  = T(rj), p = p(77), P = p (tj), P = ^ p ~ '  (2.2.5a -  h)

the governing similarity equations are found to be

p T  = l  = 7 Af^pao, (2.2.3a)

f f v v  =  (2.3.66)

f if there is no external pressure-gradient and the boundary conditions are independent of X.
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f T v +  ^  ( £ t , )  +  (7 -  m l o ^ f v v 2 =  0, (2.2.3c)

(2.2.3d, e)

C T  - C hapm ans’ law

A*= { /  1 4- S  \  3
I -------- ) T ?  - Sutherland’s form ula

I v r  +  s y

subject to the boundary conditions

f ( 0 )  =  / ,( 0 )  =  0, / ,(o o )  =  T(co) =  1, (2.2.3/)

and

T (0) =  (fixed wall — tem perature), or Tv(0) =  0 (insulated wall). (2.2.3^)

The form of (2.6a) is a result th a t, for a non-interactive steady flow (no-shock),

the norm al gradient of the pressure is constant, i.e the pressure takes its non- 

dimensionalised free-stream  value.

§2.2.2 Wall shear o f  base flow: the m odel Chapm an-fluid

The joint assum ption th a t the P randtl num ber is unity and th a t C hapm an’s 

viscosity law holds is popular in theoretical studies of lam inar boundary layers in 

compressible fluids. These lead to the simplifications

f  fr}T) *1" Cfrwi) =  0, (2.2.4a)

r  = 1 + [(n -  1) +  i ( 7  -  1 )Ml(n +  / , ) ( !  -  / ,) ] ,  (2.2.46)

where

n = ^ ~ ,  Tin, =  1 +  (2.2.5a, b)
-Lina **

The quantity Tina is the wall tem perature for the the case of an insulated wall 

and the fraction n  is a m easure of heat transfer at the wall. An insulated wall 

corresponds to n = 1, when

T  =  1 +  -  f„2), (2.2.6)

whilst n < 1 correspondsto wall cooling.
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Blasius’ equation, so familiar in the theory of incompressible flow, can be 

recovered by writing

/ = J ^ / b M ,  VB = J ^ j V  (2-2.7)

so th a t / b  satisfies

2 / b / b  +  / b  — 0, / s ( 0) — / b ( 0) — / b  — 1- (2 .2.8a — d)

Recalling the well-known properties of the Blasius function

A 772
/ b  (v b ) =  - y 2 - +  • • •, As ~  0.3221..., (2 .2 .9a,4)

for rjB 1, we see th a t the shear at the wall of the basic flow is

drj d(
u y\y—o — I f 7777 d£ dy y=Q

=  (2.2.i° )

A b  / Re
= T ^ y ~ c '

where we have w ritten Ab  =  Ab®~^-

Note th a t if we relax our assum ptions to allow for general P r ,7 and n  values 

the effect is only felt through Tw in the above expression for the wall-shear.

§2.2.3 Wall shear o f base flow: Sutherland-fluid

We now suppose th a t the viscosity is related to  the tem peratu re  by the more

realistic Sutherland’s law. We make no assum ptions on the values of 5 ,7 , Pr,M oo

and wall cooling coefficient n. The tem perature T  appears in the equation for /  

and so we have to solve two coupled (fifth-order) ordinary differential equations to  

obtain the /  and T  profiles, for each choice of the param eters ( P r ,7 , 5 , n , Moo). 

Recall th a t we require / ( 0) =  f v (0) =  0 ; defining

As =  / „ ( 0 ) ,  (2.2.11a)

we see tha t

f M =  Y 7l2 +  -"> * 7 < 1 -  (2.2.116)
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The first crucial point to note here is th a t

As =  ^ s ( P r ,  7 , 5 , n , Moo)

in contrast to the simple value of \ b  for C hapm an’s law. Thus for the present 

case of a Sutherland-fluid, the wall-shear of the base flow is now

Uy'y~° Tw V 2x
A s  I Re

(2.2.13)
As Re

where A5 =  A5X ?.

The second crucial point is th a t C  is usually treated  to be 0 (1 ), bu t for large 

Mach num ber (see later)

As ~ A fA fJ ,  +  ••• ,  A f ~ 0 ( l ) .  (2.2.14)

1
The same resulting M ^  factor to the wall-shear can be obtained, in an ‘ad-hoc

We,
fashion’, from the Chapm an-form ulation by evaluating C at the wallrjlwill see later

th a t Tw ~  M ^  so tha t C = ~  Tw~? ~  M ex>~ 1, and hence the result.
-L w

It is im portant to note th a t the two expressions for the wall shear cannot 

be equated however C is calculated: the first expression has been derived from  

assuming C hapm an’s law holds everywhere and so j  ^ at the wall does 

not make it right, despite the fact th a t such a J i*  is sufficient to capture the
1

‘missing’ M<£> factor for large Mqq. It is im portan t to rem em ber th a t A5 bears no 

relation to Ab ' in the next section we give new triple deck scalings tha t scale out 

the correct wall shear, not some ‘fixed-up’ approxim ation of it based on C hapm an’s 

law everywhere apart from one position. Note the m athem atical sym m etry

^B  ^ 5 ✓ v

^  ^  (2'2 J5>

of the two expressions for the wall-shear This replacement is used in the next 

section (to remove A#) when we show how the new Sutherland-scalings can be 

simply picked out from the Chapm an law ones. This transform ation does not 

completely remove C from the scalings, it simply removes th a t due to the wrong 

wall shear being used; the remaining C  factors result from scaling the ratio
P w

out of the lower deck equations: see later.
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The incompressible limit has, in particular, no tem perature variation across 

the  boundary layer and we can easily see th a t then  the two approaches are equiv­

alent: they both give ^  =  1 so th a t Blasius’ equation is obtained from both  

viscosity-tem perature relations.

§2.3 CO M PR ESSIBLE TR IPL E  D E C K  TH EO R Y

The triple-deck structure has been discussed in the introduction. Here we 

pay particular attention on the compressible version. In past years there was more 

interest in supersonic than  incompressible flows. In the following subsection we 

review the literature; beginning with a brief overview and then go on to discuss 

particular papers in more detail.

§2.3.1 Significant advances in the theory.

The advent of quicker aircraft resulted in the desire to understand why a su­

personic boundary layer separated, despite no external influence (ie. before the 

impingement of a shock on the boundary layer). Significant progress was m ade by 

Lighthill (1950, 1953), but more than  fifteen years passed before Neiland (1969) 

and  Stewartson & Williams (1969) independently showed how these ideas could 

form  the basis of a rational solution to  self-induced separation- the (supersonic) 

triple-deck; tribute must also be payed to  M essiter (1970) who also, independently, 

discovered the triple deck structure (for the case of incompressible flow; also ad­

dressed by Stewartson, 1969). There then followed much activity based on the new, 

revolutionally structure, principely by Stew artson and his co-workers throughout 

the world. These studies are reviewed by Stew artson (1974). There then appears 

to  have been a slow down in such studies, in favour of incompressible studies of 

flow through pipes and channels, etc, to  see if the new theory could shed light on 

problems tha t the old theory could not - it could be argued th a t such problems 

are more appealing to researchers because of their possible physiological applica­

tions. In addition, there was much interest in the properties of critical layers and 

in fitting an asymptotic description to the upper-branch of the Orr-Sommerfeld 

neutral curve to complement the triple-deck theory describing the lower branch.
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This was followed by interest in the nonlinear evolution of disturbances and, re­

cently, interactions involving waves and vortices. The paper by Sm ith (1989) has 

now regenerated interest in compressible triple deck theory.

We now give a  few more details of some of the studies m entioned above and 

mention a few more. Lighthill (1950) showed th a t a  purely inviscid theory is 

inadequate to  explain the phenomenon of self-induced separation and shortly af­

terwards he introduced the notion of an internal viscous layer (Lighthill, 1953). 

This was the crucial step towards understanding the phenom enon and is generally 

regarded as a classic work. The full implications of this paper were finally realised, 

independently, by Neiland (1969) and Stewartson & W illiams (1969). The former 

is w ritten in Russian and although an English translation  is available, we shall 

concentrate our discussion on the la tte r principally as it is more readily accessible 

(outside the Soviet Union).

The paper by Stewartson & Williams is another classic and a personal favour­

ite. It begins with a full review of related studies up to  th a t tim e, continues by 

deriving the two-dimensional, steady supersonic triple deck scalings and nonlin­

ear equations (the consistency of the approach is established a posteriori) , before 

discussing their numerical m ethod and solutions. The paper concludes w ith a  com­

parison of the new results with those of previous studies. The review by Stewartson 

(1974) gives a different presentation, as well as reviewing the large am ount of re­

search work th a t resulted from the original paper. A year la ter Brown, Stewartson 

& Williams (1975) investigated the hypersonic-boundary-layer-flow, occuring im ­

mediately behind a shock, to link together the known pressure-displacem ent laws 

of supersonic and hypersonic flows. This paper, like m any others of th a t era, use 

C hapm an’s viscosity law even though the more realistic Sutherland’s formula leads 

to a quite different formulation (see, for example, Bush, 1966). The assum ption 

tha t 7 is asym ptotically close to unity has to be m ade.

The next notable contribution was the comprehensive review of ‘high Reynolds 

num ber flow’ theory by Smith (1982). The m otivation of the Reynolds-number- 

powers found in the triple deck scales (common to incompressible and compress­

ible theory) is discussed in Section 3 of this review, whilst Section 4 contains an 

overview of previous work on compressible boundary-layer flows. Another review, 

by Ryzhov (1984), contains a note concerning the necessary oblique-ness of neutral
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ToUmien-Schlichting waves as the Mach num ber increases (see Zhuk Sz Ryzhov, 

1981). It also provides many, other helpful references to  work by researchers in the 

Soviet Union. In addition the paper considers the unsteady, three- dimensioned 

triple-deck, la ter studied by Smith (1989). The la tte r considers eigenrelations, 

resulting from  a linear stability analysis, and their consequences on stability. A 

significant result is th a t non-parallel effects are im portan t for large M ach numbers 

when, at the  sam e tim e, the whole triple deck structu re  collapses. Related work 

was carried out independently by Duck (1990) who also investigated numerically 

the nonlinear developm ent of the Tollmien-Schlichting waves.

The last-quoted paper by Smith has been a catalyst for several related studies, 

including some of the present work presented in this thesis. Such studies include 

an extensive investigation of the transonic regime (Bowles Sz Sm ith, 1989); axisym- 

metric flows (Duck Sz Hall, 1989, 1990); hypersonic flow over wedge with shock 

fitted into the  upper-deck (Cowley Sz Hall, 1990); effects of wall cooling on stability 

properties (Seddougui, Bowles Sz Smith, 1989); and the asym ptotic description of 

compressible upper-branch modes (G ajjar Sz Cole, 1989).

§2.3.2 The Sutherland-fluid triple-deck scales.

In previous sectionswe saw th a t the expression for the wall-shear of the basic 

flow was modified by the use of Sutherland’s formula ra ther th an  C hapm an’s law. 

This will have to  be incorporated into the triple-deck scales.

The wall-shear does not account for all of the C-factor appearing in each of 

the Chapman-law-scalings; the remaining C-factors are due to  the rescaling of 

the m om entum  equations of the lower deck so th a t the coefficient of the viscous 

term  is unity. The thinness of the lower-deck, adjacent to the wall, results in the 

tem perature, density and viscosity there all being effectively constant (a t leading 

order), taking their wall values - see Stewartson Sz Williams (1969, page 191). 

In this th in  layer, the equations appear incompressible apart from coefficients 

involving p w and fiw which can be, and are, scaled out. For example, the x- 

m om entum  equation has the form



Here v w  =  is the wall value of the  kinem atic viscosity- it is this quantity th a t 
Pw

leads to the additional C -  factors m entioned above. We consider this quantity to 

see how the  use of Sutherland’s alters things. In fact

I
C T *  -C hapm an’s law

/  1 4- S  \  5 ( 2 .3 .2 a ,  b )

I —------— ) Tw -Sutherland’s formula
\J-W ^  /

which suggests the replacement

C - >  ( - - - - -  5  ^  T j  =  — , (2 .3 .3 )
\ T W +  S )  T J  v '

for the remaining C-factors in the  scalings, to yield the required Sutherland-law- 

scalings. Alternatively they could be derived from ‘first principles’ following the 

m ethod of Stewartson & W illiams (1969). Note th a t (2.2.3) merely means th a t 

we are evaluating the Chapm an constant at the wall via Sutherlands formula- this 

can be thought of as defining the value of C .

As an example, we consider the stream  wise ‘sho rt’ x-scale. The scales for 

a  general viscosity law are given by Stewartson & Williams, although they then 

imm ediately chose C hapm an’s viscosity law for definiteness. The scalings corre­

sponding to the latter have generally been used ever since; their generalisation to 

the unsteady, three-dimensional case can be found, for instance, in Sm ith (1989). 

In the last paper, the x- scaling is w ritten in the form

x - x 0 = Re~  (2.3.4)

where the scaling ATi, with respect to  our notation and non-dim ensionalisation, 

has the value
3 3

c s r j
K 1 ~  —5------------

X & M l  -  1)5

r -

(2.3.5)

v ^ /  ( M l ,  -  1)5

which, making the replacements described above, transform s to

\ /2 7 \ T w J  ( M l  — 1)5

“(̂l) (2.3.6)
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The other scalings can be similarly transform ed and the complete set follows, 

starting  with the length and tim e scales (common to  all three decks)

[x — z o , z  — z q ]  =  Re * K i [ X , Z ] ,  (2.3.7a,6)

_  5

Kl = (^ t)  ^  ~ x ) ( 2 '3'7c)
_  3

t =  R e ~ l  ( ^ | )  r | ( M ^  -  1)“ Ti, (2.3.7d)

w h e re to , zo) corresponds to  the location of the initial disturbance of the lam inar 

base-flow. In the viscous sublayer, or lower deck,

_  3

y  =  R e~ i ( ^ | )  T ^ ( M l  -  1 ) ~ I y , (2.3.8a)

and to  leading order

u =  Re~ s  ( ^ | ) I ^ | r | ( M ^ - l ) _ Jt7, (2.3.86)

3

V =  R e ~I -  l)-iv, (2.3.8c)

w =  R e ~ i  ^ V ^ l r i ( J W ^ - X ) - i T V ,  (2.3.8d)

p - Poo = R e - l  (2.3.8d)

The thinness of this viscous sub-layer results in the  density being effectively con­

stan t, taking i t ’s wall value a t leading order,

, J 0(Re~%)  : Fixed wall tem perature /« o o \
P = Pw + \  _ i (2.3.8e)

[ 0 ( R e  ? ) : Insulated wall,

where the size of the correction term  is implied from the limiting form  of the  m ain 

deck solution (see later discussion). Recall tha t the scalings have been introduced 

to  normalize the resultant governing equations, which from the Navier-Stokes equa­

tions are

41



Ux  + VY + W Z = 0, (2.3.9a)

Ut  +  UUx + V U y  +  W U z  =  - P x  +  Uy y , (2.3.96)

W T +  U W X  +  V W Y +  W W Z =  - P z  +  W Yy , (2.3.9c)

in  th e  lower deck, w ith the y —m om entum  equation yielding

PY =  0. (2.3.9d)

Note th a t  these are merely the unsteady, 3-D imcompressible boundary-layer eqau- 

tions. The principal boundary conditions are

U = V  = W  = 0 a t y  =  0, (2.3.9e)

U ~ Y  + A ( X , Z , T ) ,  W  —» 0 ( y _1), as K —► oo, (2 .3 .9/, g)

for no slip at the solid surface and for m atching w ith the m ain deck, —A  repre­

senting the unknown relative displacement. The m ain deck has

y = R e ~ ? y , (2.3.10)

and merely transm its small displacement effects across the boundary layer as well

as sm oothing out the induced velocity component w , in the form

_  3

u =  U0(y) +  R e -S  t p ^ T i ( M l - l ) - ^ A U ' 0(y) + -- - ,

v =  - R e ~ i  ( J ^ y ii l , T ^ ( M l >- l ) i A x U 0(y) + --- ,

w =  R e ~ i  ( ^ | ) 24 r i ( M ^ - l ) - i D i l o ( 0 ) / ( i l o ( y ) t 7 o ( y ) ) - l - - - - ,

1
P - Poo=  R e - i  ( ^ | ) V l r J ^ ( M i - l ) - i P ( X , Z , r ) +  --,

_  3

p = Ro(y) + R e - *  ( ^ )  \ Z * T * ( M l - l ) - 1*AR'0( y ) +  -- ■

(2.3.11 a - e )

Here Uo(y), Ro(y)  are the steamwise-velocity and density base-flow profiles, respec­

tively, of the  steady, non-interactive boundary-layer. Note th a t for an insulated 

wall (i.e. no external cooling) R 0(0) =  0, so th a t there is no need for the density
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disturbance in the  lower-deck to be as large as 0 (i2e  S). However if the  wall is 

kept a t a  fixed tem peratu re  then i?0(0) ^  0 and so the  disturbance size in the 

lower-deck m ust be 0 ( R e ~ * ) ,  the same as the streamwise velocity u-distubance 

(Stew artson, 1974). Finally, note th a t f?o(0) =  p w

The unknow n function satisfies D x  — —P z  from the spanwise m om entum  bal­

ance and (2.3.9<7) shows the jet-like response in the cross-flow due to the  spanwise 

variation in the  pressure, the velocity w  reaching its m axim um  am plitude inside 

the lower deck. This feature is crucial to  understanding the interaction between 

two oblique Tollmien-Schlichting modes and a longitudinal vortex (Hall & Smith, 

1989; see also next chapter).

The th ird , upper, deck then occurs where

y = R e - t K 1( M l >-  l ) ~ ? y  (2.3.12)

and

[u,v ,u ;,p] =  [1, 0, 0, P o o ]  +  R e ~ ^ K 2[u^2)^ 2\ M l 0 -  1 ) i ,u>(2),p (2)] H ,

Jf2 =  (2.3.13o — e)

together w ith similar perturbations of the uniform density and tem perature. These 

yield the supersonic potential-flow equation and m ain m atching conditions, for zero 

incident wave,

— 1) p'xx  ~  Pvv ~  P^zz ~  (2.3.14a)

p ^  —» 0 as y  —> oo, (2.3.146)

p (2) -> P, - p (s2) -► A x x ,  as p -> 0+ . (2.3.14c, d)

Subject to suitable farfield conditions of boundedness, the nonlinear problem  for 

?7, V, Wj P , A  in (2.3.9a — e) is closed, therefore, by the pressure-displacem ent law,

between P  and A , implied by (2.3.14a — c) controlling j£2\ X ,  p, Z, T ). This law

can be expressed in the form of a double integral bu t the above form ulation turns 

out to  be m ore convenient.

43



§2.3 .3  L in e a r  s ta b i l i ty :  th e  e ig e n re la tio n  fo r  T o llm ien —S ch lich tin g  w aves.

We tu rn  now to the linearized instability properties th a t were studied by Sm ith 

(1989) for the Chapm an-scalings- this paper is followed closely, where possible. 

W ith  a  relatively small disturbance of order h and a normal-m ode decomposition, 

so th a t

(17, V, W,  P, A) =  (y , 0 , 0, 0, 0) +  {h{U, V ,  W ,  P ,  A ) E  +  c.c.} +  0 ( h 2) (2.3.15)

with “c.c.” denoting complex conjugate and

E  = exp[i(aX  + 0 Z -  QT)} (2.3.16)

where a, (3 are the norm alised wavenumbers and ft  is the norm alised frequency, 

the governing equations (2.3.9a-c) reduce to

iaU  + VY +  i(3W  =  0, (2.3.17a)

- i Q U  +  i a Y U  +  V  = —i a P  +  U Y y  , (2.3.176)

- i i l W  +  io Y W  =  - i f i p  +  W Y y  , (2.3.17c)

subject to

U = V  = W  = 0 at y  =  0, (2.3.17d)

U -* A, W  -> 0, as y - ^ o o .  (2.3.17e)

Here the supersonic interaction in (2.3.14a — c) yields

=  h P  exp[—{(32/ ( M ^  — 1) — a 2} ^ y \ E  +  c.c. (2.3.18a)

providedf

Real{j32/ ( M ^  -  1) -  a 2}5 >  0. (2.3.186)

Hence the displacement law between P , A  is

=  ( 2 . 3 . 1 8 c )

f so that solutions decay as y  —> OO. If the inequality is reversed, the solutions are merely 

bounded and only stable Tollmien-Schlichting waves are possible — see discussion by Duck (1990).
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from (2.3.14d). Following the s tandard  analyses we obtain from (2.3.17a — c) the 

solution

{aU  +  0 W ) Y = B A i ( i T ) : ( T = { i a ) * Y  + t f ,  =  - i f o / a I  (2.3.19a)

where At denotes the Airy function and B  is an unknown constant. The no-slip 

and displacement conditions require

B { ia ) ^  Ai  (£0*) ^  l (a2 +  P2)P  anc  ̂ B(ia )~% k ( ^ )  =  a A ,  (2.3.196,c)

in tu rn , where
f°°/c =  / Ai(q)dq.
£()

The combination of (2.3.18c), (2.3.196, c) yields the eigenrelation

(ia )  V  +  /?2) =  {AV/ * ) { $ ) { — f — - - a 2}*,  (2.3.20)

between a , (3 and 17 for the norm al modes.

Spatial instability properties correspond to 17,/? kept real and ex. in general 

complex, whilst tem poral instability corresponds to real a ,/?  and complex 17. The

case of neutral stability, where all of a ,/?  and 17 are real occurs for £o =  —d \ i^

and (Az /«)(£o) =  d2i ^  where

di ~  2.2972 and d2 ~  1.0006. (2.3.21)

The dependence of these neu tral conditions on /? and is discussed by Smith

(1989), who also considers the asym ptotics of several limiting cases.

The constraint

£  >  V M l - l  (2.3.22)
ex

holds for neutral or tem poral instab ility /stab ility  waves, in view of (2.10b), m ean­

ing tha t the directions of such waves lie outside the Mach cones a t any particular 

point, ie.

8 > tan - l \ /  M^o — 1 where tan(0) =  —. (2.3.23a, 6)
J a

Note tha t 8 — 0 corresponds to  propagation in the streamwise direction, whereas 

increased 0, due to the above restriction, means th a t the propagation direction
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becomes more oblique. Thus neutral, supersonic Tollmien-Schlichting modes are 

necessarily three-dimensional in nature. This result appears in the review paper 

by Ryzhov (1984), and the earlier paper by Zhuk Sz Ryzhov (1981); it was also 

derived by Sm ith (1989) and found by Duck (1990)^£eo.c*lso TJUArs&Lxrv

§2.3.4 T he large M ach num ber lim it

One of the limiting cases, of the eigen-relation (2.3.20), th a t Sm ith (1989) 

went on to  investigate was the so-called hypersonic lim it when Moo is assumed to 

be large. This case leads to some interesting consequences for the whole compress­

ible triple-deck structure governing the first (Tollmien-Schlichting) - modes under 

consideration. For Moo >> 1, he found th a t the m ain features revolve around the 

regime where

( a , l 3 , n ) ^ ( M Z ^ a , M Z b , M Z 1Cl) + --- ,  (2.3.24)

where d,/3 and f2 are 0 (1), and the eigenrelation reduces to, at leading order,

i i a M 2 = ( — )({J)(/32 - a 2) i ,  =  (2.3.25)
K a*

Before considering the consequences of the regime (2.3.24), we m ust re tu rn  to 

the base, steady 2-D flow to investigate the dependency of the wall-values on the 

M ach num ber. For unity P rand tl num ber (Pr  =  1) and m oderate-to-no (external) 

wall cooling (so th a t n ~  0 (1 )), it can be seen from equation (2.2.4b)- which 

holds for both  temperature-viscosity relations of concern- th a t Tw ~  M ^,. Let us 

now consider arb itrary  P randtl num ber, bu t still assume th a t n  ~  0 (1 ) (or more 

precisely, larger than  any inverse power of Re  or Moo necessary). The governing 

equations for /  and T  are (2.2.3). We see from the  energy equation (2.2.3c) tha t, 

for Moo yp’ 1 and 7 — 1 ~  0 (1 ), we probably need to rescale T, /z, / ,  T). The 

boundary  layer has been defined using the Reynolds num ber (2.2.1a,b) and now 

we m ust investigate how this should be divided in to  sub-layers in the asym ptotic 

description for large Mach num ber. Such an investigation for the Chapman-law- 

case has recently been carried out simultaneously, and independently, by Smith 

Sz Brown (1989), Cowley Sz Hall (1990) and Balsa Sz Goldstein (1990)- the la tter 

concerning the closely related problem involving shear layers ; see also Hall Sz
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Fu (1989). We do not give m any details as these papers are based on the model 

C hapm an’s law which we have seen is a very idealistic assum ption to make when 

there are such tem perature variations. The m ain result is th a t the m ajority of 

the  boundary layer is hot (T ~  ^ l o )  an<l th a t the tem peratu re  adjusts to its free- 

stream  value in an asymptotically th in  layer th a t is distinct from, and moreover 

asym ptotically a long way from, the wall (plate). This is quite different from 

the  boundary-layer structure th a t results from the  m ore realistic Sutherland’s law 

th a t was found/rediscovered by Professor P. Hall (1989- private discussion with 

the author) -see the ‘forgotten’ paper of Freem an & Lam (1959)f; and those of 

Luniev (1959) and Bush (1966) which concern the ‘interactive’ boundary layer (in 

which a shock alters the boundary layer struc tu re  beneath).

We now briefly go through the argum ents for the Sutherland case (see C hapter 

6 for a fuller discussion): in this case there is an inner (therm al) layer (this can be 

seen a posteriori) where

f  =  J I C t7 ~ 0 ( 1 )

and

/  = AC MO + • • • , T = ACTo(0 + •••,/* = M“Vo(0 + ■ • ■.

Here a \ , . . .  are constants to be determ ined. In this th in  wall layer the tem ­

pera tu re  is hot and so Sutherland’s form ula reduces to the power-law form

p  oc T ?  (2.3.26)

at leading order, thus we require 2a4 =  a$. Balancing all term s in equations
a 3

(2.2.3b,c) yields two more conditions, a2 H a i =  0 and — <12 H— <13 — 3ai =  2.
2 2

The fourth condition necessary to solve for the four unknowns stem s from m atch­

ing to the rem ainder of the boundary layer th a t lies above this ‘therm al ’ sub­

boundary-layer. In particular we require th a t f v ~  0 (1 ) as we approach the top 

of the wall layer, which yields the condition <12 -f a\ =  0. Solving for a i, . . .  ,04 

yields the leading order properties

|  in fact, this paper and the motivating investigation by Hayes k  Probstein (1959) are referred 

to by Stewartson in his book.
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e = M ir ,  ~  0 (1 )

and

f  =  M i l  M ( )  H , T  = M l T 0(O  +  ••• , /* =  +  • • • , (2.3.27a -  d)

in the wall-layer (verifying the assum ption th a t there is such a layer if one chooses 

to  use Sutherland’s form ula). The resulting, scaled equations in the wall layer are

fo fott  +  I

/o ro £ +  (̂V) + ( 7 - D ^ = o ,

1
fio = (1 +  S )T ?  (2.3.28a -  c)

subject to the boundary conditions

/o(0) = /o{(0) =  0, /o£(oo) -* 1, To(oo) —> 0, (2.3.28d - g )

and

Tn(0) =  lim ( } (fixed wall — tem perature)
ov '  Moo —*0 0 F '  (2.3.28k)

or To^(O) =  0 (insulated wall), 

for /o , To and fiQ. From these equations it is easily to see th a t the tem perature

decays algebraically- it is this, instead of the exponential decay of the Blasius

function, th a t leads to  the inner boundary layer ra ther than  the distinct adjustm ent 

layer of the Chapm an-law-theory. However, when we revert back to  the ‘physical’ 

y -variable (rather than  the D orodnitsyn-H ow arth variable £) then  the  adjustm ent 

layer becomes much th inner than  the hot (therm al) boundary layer below, and 

the cool free-stream  above. This is basically due to the ‘norm al’-behaviour of the 

density, p, which occurs in the D orodnitsyn-H ow arth transform ation (2.2.1a). See 

Figure 2.2.
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Figure 2.2. The large Mach num ber form of the boundary layer for flow over 

a flat plate, far from  the leading edge: (a), in term s of the H ow arth-D orodnitsyn 

variable f ; and (b), in term s of the physical y—variable. Note th a t bo th  are for the 

same fluid satisfying Sutherland’s tem perature-viscosity  formula.
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The energy equation can be integrated to give

21lf,=jT{(̂ ) < 2 ' 3 ' 2 9 )

where the value of B  is determ ined from the tem perature condition being imposed 

at the wall. As T  appears in the right-hand side, it is not very helpful (cf the 

Chapm an-law-case) -  in fact one has to calculate To numerically a t the same tim e 

as / 0.

We can now easily pick out the sizes

Tw ~  M l ,  ~  M c0. (2.3.30)

Also

As  =  /„„( 0 )  -  M l  A ", Ag =  / o « ( 0 ) ,  (2.3.31a, b )

1
as noted earlier, i.e. As ~  in contrast to the fixed wall-shear value, Ab , of

the Chapm an-case.

Let us now re tu rn  to  the effects of large Mach num ber on our new triple-deck 

scalings. Recently, Sm ith (1989) found th a t when M 00 increased to O (R e l^ ) the 

whole triple deck structu re  (based on Chapman-scalings and assum ing th a t C  ~  

0 (1) always) collapses into a  two-layer structure, comprising of a viscous boundary 

layer and inviscid upper deck, and th a t the x-scale becomes 0 (1) suggesting tha t 

effects of nonparallelism  cannot be ignored. In the current work we see th a t the 

use of Sutherland’s form ula has modified the triple-deck scalings, as well as the 

large Mach num ber properties of their component parts and so we investigate 

what changes result in the large M 00 conclusions of Sm ith (1989). In drawing 

these conclusions there are some subtleties in the argum ent which are highlighted 

below.

In the current context, it is obvious tha t there will be factors, in the 

scales, resulting from the factors As, Tw, fiw th a t appear ‘explicitly’ in the triple- 

deck scalings. However, additional M qq factors arise ‘im plicitly’ in m ost of the 

scales, due to the Mach num ber appearing in the eigenrelation. Earlier we noted 

th a t,

(a,/} , to)  ~  ( M l h ,  M l * 0 ,  M - 1 &) + ■■■,
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for Moo ^  I , which infers th a t, in this ‘hypersonic’ lim it, the triple-deck scales 

(X , Z, T)  need rescaling themselves. Moreover, these scalings for (a ,/? ,f l)  result 

in m ost of the (already scaled) triple-deck quantities needing to be rescaled (w .r.t. 

Mqo). These include, in particular, the lower- and upper- deck norm al variables, 

Y  and y , respectively.

First consider the solution to  the linearized lower-deck equations, used to  

derive the eigenrelation. Note th a t the norm al variable actually used is

£ T =  ( » a ) i y  +  £0T , ( 2 .3 .3 2 )

where £T and are assumed to be 0 (1 ). Thus we see th a t

y ~ a - i ,  ~ m I  (2.3.33)

for large Mach number. Now let us see how the  upper-deck variable,?/, behaves 

in this limit. This can be easily deduced from (2.3.18a) which suggests tha t the 

upper-deck variable should, strictly, be y, say, where

V = M L - 1
- a 2 y ~  0 (1 ). (2.3.4)

3
Thus y ~  a:- 1 , ~  M£> as the Mach num ber increases.

Following Smith (1989), we see th a t the unsealed wavelength (with respect to 

non-dimensionalised x),

L r ~  R e - f \ g * i i Z ^ T $ ( M l  -  l ) “ f  a " 1 

(say), of linear disturbances described by triple-deck theory, increases in the form

_  5

L x ~  R e ~ i  ■ ( m I ^  4 • ■ ( M l ) *  ■ ( M ^ ) " '  • ( m J
-1

(2.3.35)

R e ~ f - m 2

for Moo 1, where the corresponding forms of As, Tw and a  have been used.
3 15

This is different than the result L x ~  Re~$  • M (J  obtained by Sm ith (1989) from 

the  Chapman-law-formulation. The ‘new’ regime, first found in the la tte r paper, 

is encountered when

L x -> 0 (1)
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which now occurs a t higher values of the freestream  Mach num ber

Moo ~  Re*  (2.3.36)

of the  Mach num ber th an  found from the Chapm an-law-form ulation.

It is found convenient to define the scaled M ach num ber

m  =  R e~ *  Moo, (2.3.37)

noting th a t the param eter m , (asym ptotically) small for supersonic flow, increases 

to  become 0 (1) in size, in the ‘new’ hypersonic regime.

The steady, two-dimensional non-interactive (therm al) boundary layer and 

the  m ain deck have the same thickness (a property  of the triple-deck structure)

i 1 1_ 1 j  j
2 /m ain—d e c k / b o u n d a r y —layer ~  Re * f^w T w .

As the Mach num ber increases

l i 1 l *■
2 /m ain—d e c k / b o u n d a r y —layer ^  R e  * ' ( - M 0o )  ’ ( - ^ 0 0 )   ̂ =  R e  * M 0o

= Re~*  - ( m R e * ^  ^ ~  R e ~ * m 5 , 

(2.3..38)

so th a t when m  increases to become 0 (1), the (therm al) boundary layer and the 

m ain deck have thickness y  ~  R e ~ * . Simultaneously, the lower-deck (location of 

the critical layer) expands in thickness like

5  3 1_ 5 5 21
J?e"SAs 4 ~  R e ~ ? M j  [M00 >  1]

~  Re * 

(2.3.39)

when m  ~  0 (1 ), i.e. the lower-deck coalesces w ith the main deck when Moo ~

Meanwhile the upper-deck expands in thickness like

R e ~ h ~ J  ^ * r J ( M ^  -  l y l a - 1 ~  R e ~ * M j  [Moo >  1] 

~  Re~*  

(2.3.40)
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when m  ~  0 (1 ) . Hence the y —variation becomes tw o-tiered (y  ~  R e y  ~  

R e ~ $ )  and the  z-scale is 0 (1 ). Similarly, it is easy to  show th a t the z-scale 

expands to z ~  Re~*  , the time-scale involved rises to  0 (1 ) and th a t the streamwise 

pressure gradient disturbance, P x , becomes negligible in the boundary layer.

Thus we have the sam e structure deduced by Sm ith (1989), for the Chapm an- 

law- form ulation (but note th a t the underlying basic boundary layer structu re  is 

different), b u t the dimensions have been modified. In  addition, the regime is 

encountered at a larger value of the Mach num ber. Most of the conclusions of 

Sm ith carry straight over, in particular th a t the m axim um  growth ra te  is for 

very oblique waves at nearly 90° to the free-stream  direction; the viscous- inviscid 

interaction continues (see next chapter), bu t the waves are now crucially affected 

by non-parallelism.

Let us now tu rn  and consider what size of the Mach num ber now, for Suther­

land ’s formula, corresponds to the so-called hypersonic-viscous range where the 

basic flow past the flat plate changes considerably (it becomes ‘interactive’) due

to a shock impinging on the (therm al) boundary layer. The thickness of this layer 
_ i 3

~  Re  ?M<J, whereas the position of the shock can be identified by the equation 

of the so-called Mach lines

y = i t  (2 -3 -41)

in the inviscid region above the boundary layer. As x ~  0(1)» we can see th a t the 

two (top of boundary layer and position of shock) converge, on one another, when

l — l
~  M " 1 i.e. when M ^  ~  R e %. (2.3.42)

Note th a t this is also occurs at larger values of the Mach num ber than  the corre­

sponding Chapm an-law-result (M ~  R e ^ , assum ing th a t C  ~  0 (1))- More 

im portant to  the present discussion, we see th a t the two-tier-structure-regim e 

(Mqo ~  R ^ ) occurs well before the basic boundary layer-flow becomes interactive 

(Mqo ~  Re  5 ).

The above restriction on the size of the Mach num ber, such th a t the norm al­

mode decomposition is rational, reads

1 2 ^
M o o < # e 9 ,  or M o o < # S ,  or Moo <C R ] , (2.3.43)
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in term s of the local Reyolds numbers R  = R e 2 and R& based on the (therm al) 

boundary layer thickness, since

1 ^
R s ~ R e ? M &  (2.3.44)

for large Mach num bers. Note th a t these restrictions are based on the assum ption 

th a t the flow over the plate is two-dimensional (more strictly, th a t there is no 

significant cross-flow) and th a t there is little ,or no, wall cooling. We would expect 

similar restrictions for other wall conditions, a rem ark m ade by Sm ith (1989). The 

la tte r paper also illustrates the restriction by considering a typical value for the 

global Reynolds num ber Re  of 2.25 x l O6, corresponding to  R  =  1500. In this 

case the restriction can be interpreted as meaning th a t the norm al-m ode (Orr- 

Som m erfeld-type) approach holds only for <C 5.08 which is slightly less severe 

than  th a t found from  the Chapman-law-formulation: note th a t the restriction 

becomes more severe as the Reynolds num ber decreases. Finally note th a t, for 

this chosen value of the Reynolds num ber, the basic flow over the plate becomes 

interactive when M 00 ~  18.64 -this is significantly higher than  the corresponding 

value, Mqo ~  11.45, obtained from the Chapm an-law-formulation.

Let us now, in addition to our typical Reynolds num ber Re  of 2.25x lO 6, also 

consider the typical range of Mach numbers

0 < Moo <  25

say, relevent to the limits of current technology and design. We imm ediately 

see, from the num bers quoted in the preceding paragraph, th a t the conventional 

normal- m ode approach of both linear-triple-deck and (the more classical) Orr- 

Som m erfeld-type theories are only rational for the a relatively small fraction 

(~  20%) of this range of Mach-numbers, whilst the interactive-boundary-layer 

theories (dating back to the 1950’s) are only strictly applicable to  the upper 25% 

of this range. This therefore leaves about h a l f  of the current range of Mach 

num bers yet to be accounted for. Clearly the new tw o-tier-structure discovered by 

Smith (1989), and discussed above, will fill at least some of the ‘gap’: the question 

whether it ‘fills’ all of the gap (i.e. what happens as the scaled Mach num ber 

m  —► oo?) is addressed in C lv x p b e r  Concluding the current discussion,
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we can see the m ajor significance of the restriction, concerning the validity of the 

norm al-m ode approach, found above for a Sutherland-fluid based on the  initial 

work due to Sm ith (1989).

Above we have derived the ~  i?e^ , R e % regimes from first principles — 

they can be obtained much more quickly, in an ad-hoc fashion, by simply setting 

C =  ~  in the respective Chapm an-law-form ulations. In fact, this is how
J-W

they were first derived by the author. The above derivation, of the condition M 00 ~  

Re% on where the basic boundary-layer flow becomes interactive, is based on a 

well-known argum ent: it came as no surprise to  the author to learn th a t Luniev 

(1959) (see also references therein, especially Lees, 1953) had essentially carried 

out such a derivation over th irty  years prior. Luniev used the power-law formulae, 

fj, oc to relate the wall value of the viscosity to  the corresponding value of the 

tem peratu re, obtaining the result for general u;. O ur result imm ediately follows

, corresponding to  the high tem perature leading order form ofby setting

S utherland’s formula.

W hat the author does find surprising, and a view essentially shared by P ro ­

fessor P. Hall (1989 onwards; discussions with present author) when pointing out 

the deficiencies in the Chapm an-law form ulation for large tem perature variations, 

is th a t most theoretical works (including earlier versions of the au th o r’s work de­

scribed in the present thesis) concerning large M acli-number, boundary-layer flows, 

in the last twenty-or-so years have still used the Chapm an-law-form ulation, seem­

ingly oblivious of the work carried out in the 1950’s and 1960’s using m ore realistic 

viscosity-tem perature relations. See Lees (1953), Luniev (1959), Freem an &: Lam 

(1959) and Bush (1966) as examples of the la tte r, and Stewartson (1964), Brown, 

Stew artson & Williams (1975), Brown &: Stew artson (1975), Smith (1989), Hall 

& Fu (1989), Smith & Brown (1989) and Balsa & Goldstein (1990) as examples 

of the former.

It could, perhaps, be argued th a t the model assum ptions used in the  la tte r 

papers were justified in order to allow the investigations contained therein to be 

carried out an d /o r be presented more simply: the author has found th a t the 

Sutherland-form ulation leads to complications, particularly with the num erical 

solutions (see C hapter 6). W hether the earlier papers had been forgotten, ignored, 

or dis-regarded for whatever reason, it is fair to say th a t the ideas contained within

55



them  have not, generally, been used or built uponf. This is now being rectified: 

see, for example, Cowley & Hall (1990); Blackaby, Cowley & Hall (1990); Fu

(1990); Fu, Hall & Blackaby (1990); Brown, Cheng & Lee (1990); as well as the 

present thesis.

Before concluding this section, it is w orth making some brief observations 

and  rem arks on some closely related topics. T he first concerns wall cooling. In 

this thesis wall cooling is not addressed in any great detail, mainly because we 

w anted the analysis to be as simple as possible, b u t also because th a t aspect has 

been the topic of research of fellow workers studying high-Reynolds num ber theory 

(see, for example, Seddougui, Bowles & Sm ith, 1989; Brown, Cheng &; Lee, 1990). 

However, the author recognises the necessity to  cool the airfoil in order to protect 

it from the high tem peratures produced in the hypersonic boundary-layer (note 

th a t Tw ~  3 > 1; if the wall is an insulator). The next point concerns the

large Mach num ber limit. Recently Cowley & Hall (1990) investigated the effect 

of incorporating a shock into the triple-deck structure. They considered flow over 

a wedge and found th a t the Newtonian assum ption (7 -  1 <  1) was necessary to 

complete their analysis. However the physical relevance of this assum ption has 

not been established. It is interesting to  note th a t, for the case of the triple­

deck structure  for the interactive boundary-layer, Brown, Cheng & Lee (1990) 

have shown th a t, by assuming the wall is significantly cooled, the Newtonian 

assum ption, which is needed for an insulated wall, is no longer necessary.

As well as being an interesting paper in its own right, the paper by Cowley 

& Hall is, in the au tho r’s opinion, m ost significant for a conclusion not explicitly 

drawn. Essentially it is shown th a t by setting the pressure disturbance to be iden­

tical to zero at finite (albeit large) y  (the upper-deck variable) values, ra ther than  

at infinity, then the solutions to the ‘new’ eigenrelation are radically different. Now 

assume th a t, for simplicity, there is no shock present. If one determines stability 

characteristics from the eigenrelation based on the theoretical triple-deck theory

f Stewartson (1974, page 153) remarks that the general features of the interactive flow solution,
ConStcLefed

for a non-linear viscosity-temperature relation, ^  by Bush (1966) and originally suggested 

by Lees(1955), are “extremely complicated” with many separate regions needing to be condidered 

and interrelated.
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then the correct (decay to infinity) boundary condition for the pressure d istur­

bance has already been applied. However, if one solves for the stability properties 

using an O rr-Som m erfeld-type approach, then infinity m ust be approxim ated by 

some, finite, estim ation of the location of the top of the boundary layer. Thus 

there appears to be the possibility of the la tte r (numerical) calculations picking 

up spurious solutions, in addition to the correct one corresponding to decay at 

infinity.

The next observation concerns the comparisons, m ade by Sm ith (1989) and 

Duck (1990) of their triple-deck results with the O rr-Som m erfeld-type results of 

Mack (1976) for supersonic, viscous boundary-layer stability. B oth of the (former) 

authors find reasonable qualitative agreement and rem ark th a t the quantitative 

differences could be due to the ‘lowness’ of M ack’s Reynolds num ber. It should be 

noted th a t all three papers use the ‘parallel-flow’ approxim ation and so the dif­

ferences between the predictions cannot be a ttribu ted  to boundary-layer growth. 

The au thor has repeated Sm ith’s comparison but for the Sutherland-form ulation 

(more closely related to Mack’s physical assum ptions) and found little change, 

graphically, from Sm ith’s predictions. The triple-deck theory predicts th a t, for 

Moo ^  1» !h e m ost unstable modes travel at quite oblique angles which is in 

disagreement with Mack who finds th a t the m ost unstable modes are less oblique.

The final observation relates to the hypersonic-lim it of the supersonic non- 

axisym metric Tollmien-Schlichting modes studied within the triple-deck frame­

work by Duck Sz Hall (1990). The form of the appropriate  eigenrelation (see 

next chapter), coupled with the need for span wise periodicity, results in the ‘new’ 

regime found for the planar case (where the triple-deck s tructu re  collapses and 

non-parallel effects become im portant) not occuring (for any large size of the Mach 

num ber).

Concluding, the Sutherland-form ulation given above rationally establishes the 

two results, M qq ~  Re  S , Re  5 for where non-parallel and shock effects, respec­

tively, are crucial. In addition it provides a sound basis for fu ture investigations 

concerning the viscous-stability of compressible boundary-layer flows (eg. see next 

chapter). Also we have seen (due to the coupling of the /o- and To- equations) tha t 

the wall-shear te rm  A5 is a function of the physical param eters 7 , P r ,  5, n , M 00 

(needing to  be determ ined numerically), in contrast to  the fixed Ab  — 0.3321.
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The last point, in conjunction with the fact th a t Sutherland’s law leads to differ­

ent triple-deck scalings, is crucial if one wants to convert results back into actual 

physical values; the approach of replacing C —► fiw/ T w in the Chapm an-law- 

form ulation and then  evaluating }iw by Sutherland’s formula, or a power law, is 

very useful for theoreticians wishing to estim ate the sizes of scalings, particularly 

in the large Mach num ber limit (see, for example, Cowley &: Hall, 1990).
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C hapter 3

N o n -lin ea r  T o llm ien -S ch lich tin g /v o rtex  in teraction  
in  com pressib le  b ou n d ary—layer flows.

§3.1. IN T R O D U C T IO N

The non-linear interaction between two oblique three-dimensional Tollmien- 

Schlichting (TS) waves and their induced stream  wise (longitudinal)-vortex flow is 

considered theoretically for a compressible boundary layer. In a recent paper Hall 

&: Sm ith (1989) considered an incompressible boundary layer, and the present 

study is an extension of their rational approach. The same theory applies to 

destabilisation of an incident vortex m otion by sub-harm onic TS waves, followed 

by interaction. The interaction is considered for all ranges of the Mach number. 

Compressibility has a significant effect on the interaction; principally through its 

im pact on the waves and their governing mechanism.

The m otivation for such a study is essentially the same as expressed by Hall &; 

Sm ith in the introduction to their paper; namely th a t often in experimental studies 

of lam in ar-to -tu rb u len t transition on a flat plate, there appear to be longitudinal 

vortices co-existing, and interacting, with the viscous TS modes. As there is no 

concave curvature of the surface, these longitudinal vortices are not driven by 

surface-curvature (cf. the Gortler vortex studies of Hall, 1982a,b) — instead one 

could postu late  th a t they are in fact being driven by, an d /o r interacting with, 

the (neutral) TS modes. Such experim ental studies have been carried out, for 

instance, by Prof. Y. A ihara and colleagues, in Japan  (eg. Aihara &: Koyama, 

1981; A ihara et a/, 1985); and by Prof. Y. Kachanov and colleagues, in the 

Soviet Union (Kachanov, 1990). The reader is referred to  the paper by Hall & 

Sm ith for a fuller account of relevant experim ental findings, as well as supporting 

com putational work (see, for example, Spalart & Yang, 1986). These experimental 

studies are all for incompressible flow; the au thor is unaw are of any experimental 

work specifically relevant to this compressible study.

Recently, the origin of streamwise vortices in a tu rbu len t boundary layer has 

been investigated theoretically by Jang et al (1986). The Reynolds num ber is 

taken to be finite and their formulation is of the  O rr-Som m erfeld-type. They
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show th a t two oblique travelling waves can combine non-linearly to  produce a 

stationary, streamwise vortex — this is essentially the theoretical idea la te r used 

Hall &: Smith in independent work. However the la tte r’s approach, the approach 

adopted in this chapter, takes advantage of the feature th a t the Reynolds num bers 

of interest in reality are large and indeed the Reynolds num ber is taken as a large 

param eter throughout. The non-linear interaction is powerful, starting  at quite low 

am plitudes with a triple-deck structu re  for the TS waves but a  large-scale s truc tu re  

for the induced vortex, after which strong non-linear amplification occurs. Non- 

parallelism is accom m odated within the scales involved.

The non-linear interaction is governed by a partial-differential system  for the 

vortex flow coupled with an ordinary-differential one for the TS pressure. The 

solutions of these systems depend crucially upon the interaction coefficients which 

are themselves functions of the Mach num ber. Additionally, the TS waves are 

significantly affected by the inclusion of compressibility. It is found th a t the  in ter­

action coefficients, for subsonic flow, do not differ significantly in na tu re  from the 

incompressible ones, but as the flow becomes supersonic the restriction (for high 

Reynolds num bers) th a t the TS waves m ust be directed outside the local Mach- 

wave cone (Zhuk & Ryzhov, 1981) excludes a flow solution which is possible for 

less oblique modes. The flow properties point to the second stages of interaction 

associated with higher am plitudes.

It is found th a t the present form ulation breaks down as the M ach num ber be­

comes large: for then , even when the presence of shock/boundary layer interaction 

is neglected, the viscous sublayers coalesce to form a single boundary-layer. The 

structure  which is applicable in this hypersonic limit is currently under investiga­

tion (see also C hapter 4).

The theoretical idea is basically th a t, if two low -am plitude TS waves are 

present (proportional to E \ ^  = e xp [ i (a X ±(3Z  — QT)\ say; see later no ta tion ), then  

nonlinear inertial effects produce the com bination E \ E ^'1 =  exp[2i/5^=  E$ say, 

a t second order, am ong other contribution, i.e. a standing-wave or longitudinal- 

vortex flow is induced. Equally the combination of the vortex and one TS wave 

provokes the other TS wave.

As we are assuming the Reynolds num ber to be large, the TS waves are 

supported by the triple-deck structu re  (Sm ith, 1979a,b; 1989) , whilst an ex tra
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sub-boundary  layer and a further z-scale are necessary to capture their interaction 

with the longitudinal vortices. The present vortex/wave interaction m echanism  is 

very similar to th a t of Hall &: Sm ith (1989); the difference is caused by an error in 

the la tte r, found by B lennerhassett & Smith (1991). The ‘corrected’ m echanism  

still has the induced vortices lying at the top of the lower deck but now the forcing 

from the TS waves is solely from an inner boundary condition. The w all-shear of 

the induced vortices modifies the w all-shear of the basic flow at the  same order 

as the la tte r’s leading-order non-parallel correction. These corrections to the 

wall shear force secondary TS waves in the lower-deck, whilst the am plitude of 

the prim ary TS waves here is governed by an am plitude eqation involving these 

corrections to the wall shear. The behaviour of the prim ary TS quantities at the 

top of the lower deck then leads to longitudinal-vortex activity being forced in the 

sub-layer above, via a boundary condition. Thus the system is tru ly  interactive: 

the longitudinal vortices are driven by the TS waves, the am plitude of which is 

determ ined by an am plitude equation involving a vortex-term . See Figure 3.1.

We consider the interaction for the case of compressible lam inar flow over a 

semi-infinite plate, using the notation and formulation of the previous chapter as 

our starting point. Results are presented, and conclusions draw n, for subsonic and 

supersonic flows. However, first the corrected results of the incompressible case are 

considered so tha t comparisons can be m ade with the latter; the incom pressible- 

flow results of Hall &: Sm ith suffer from (at least) two errors, bo th  of which are 

found to be significant with regard to the quantitative results and resulting pre­

dictions.

§3.2 FO R M U LATIO N . 

§3.2.1 D iscussion.

The underlying structu re  is th a t of the  three-dim ensional, compressible Toll- 

mien-Schlichting (TS) waves a t large values of the Reynolds num ber, namely the 

three-dim ensional ‘compressible trip le-deck’. This structure has been studied by, 

in particular, Zhuk &: Ryzhov (1981) (see also Ryzhov, 1984), Sm ith (1989) and 

Duck (1990)}, In the previous chapter this structure was discussed and particular 

attention was paid to  the changes brought about by using S utherland’s form ula
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Figure 3 .1. D iagram  of the 3D T S /vortex  structu re  for nonlinear interaction 

in a 2D boundary layer. (From  Hall & Smith, 1989.)
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to  relate viscosity and tem perature — it is this la tte r formulation tha t we shall 

follow in this chapter.

Recently, Cowley Sz Hall (1990) and Duck & Hall (1990) have shown tha t 

the (form er) theories can be adapted to include the effects of a shock for flow 

over a wedge, and cylindrical geometry, respectively. For definiteness, we assume 

th a t the flow is supersonic (M 00 > 1) during the form ulation of the interaction 

equations; the subsonic and other cases follow very similarly. In fact in Section 4 we 

give an alternative (non-first-principles) derivation of the im portan t interaction 

coefficients for a ‘general’ Tollmien-Schlichting eigenrelation.

In the  next subsection we briefly recap the scales and derivation of the eigenre­

lation for TS modes, described by the triple-deck structure . In §3.2.3 we describe 

the modifications necessary to the triple-deck s tructu re  in order to  support our 

chosen vortex-w ave interaction and derive the necessary scales. This argum ent 

follows very closely th a t of Hall & Smith, although their final choice of scales was 

not appropriate.

§3.2.2 T he 3-D com pressible triple-deck equations.

Here we state  the scales and resulting equations for equations for completeness 

— see C hapter 2 for a fuller discussion. These scalings will be referred to when we 

introduce ‘new’ x- and y- scales for the interaction, as well as when we investigate 

limiting values of the Mach num ber, in §3.5.3. In  the scalings given below, the 

Reynolds num ber is assumed to be large whilst the  o ther factors are taken be 

be 0 (1 ). Recall th a t although these factors were introduced to normalise the 

resulting governing equations, the Mach num ber still rem ains in the upper-deck’s 

pressure-d isturbance equation and hence it appears in the TS-eigenrelation.

The scales, for M 00 > 1, are (see also §2.3)

[x — xq , z — zq] — R e ~ % K \[X  , Z], (3 .2 .1a,b)

where K \  =  Vw* T * — 1 )~?,  (3.2.1 c)

and t = R e ~ \  ( ^ | )  *^  r J ( M ^  -  I ) - * i, (3.2.1d)
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where(xo» ^o) corresponds to the location of the initial disturbance of the lam inar 

base-flow. In the viscous sublayer, or lower deck,

_  3

y =  i f e - f 0 0  (3.2.2a)

and to leading order,

u = R e ~ 8

33 /  \  o \  i  3 _ 1 i
v = R e - 1 [ - ) L

\/2
1

and

P — Poo =  Re  * ( — P w T vl1 {Ml0 - l )  4 P. (3.2.26 -  e)V2
The main deck has

_ I  1 1
y = Re  2 / / J r J y ,  (3.2.3)

and merely transm its small displacement effects across the boundary layer as well 

as smoothing out an induced spanwise velocity (see later). The third, upper, deck 

then occurs where

y = R e - $ K 1( M l >- l ) - l y  (3.2.4)

and

[u,v,w,p] =  [1 ,0 ,0 ,p„] +  i?e- ii$'2[«(2,,w(2)(M^) -  l ) J , i « (2>,p<2>] H ,

^ = ( ^ |  (3.2.5a — e)

together with similar perterbations of the uniform density and tem perature.

After some m anipulation one finds th a t the Mach num ber has been scaled out 

of all but the upper deck equations. The lower deck equations are
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U x  +  Vy  +  W z  =  0,

Ut + UUx + VUy + WUz = -Px  + Uyy ,

Wt +  U W x  +  V W Y +  =  - P z  +  W yy,

P y = 0 ,  (3.2.6a — d)

to  be solved subject to no-slip a t the wall,

U = V  = W  = 0, on Y  =  0, (3.2.6c)

together with the displacement condition at infinity,

U -> A(Y +  A ( X , Z , T ) ) ,  as 7  -» oo. (3 .2 .6 /)

The displacement, A , is related to  the pressure, P , via a pressure-displacem ent 

law stem m ing from m atching this solution to the upper deck solutions. Note the 

‘incompressible’ appearance of the lower-deck equations.

The upper deck equations lead to  the governing equation for the disturbance 

pressure am plitude p,

{Mlo -  1) [ p x x  ~  Pyy] -  PZZ = 0, (3.2.7a)

classically known as the P randtl-G lauert Equation. This has to be solved subject 

to

p —> P as y —> 0 , p —» 0 as y —+ oo , (3.2.76, c)

whilst the pressure-displacem ent law is

—py —* A x x  as y —► 0. (3.2.8)

The vortex-wave interaction, of concern in this chapter, involves linear Toll- 

mien-Schlichting modes and so we write

(P , V, W,  P , A)  =  (AT, 0, 0, 0, 0) +  {h(U, V ,  W ,  P ,  A ) E  +  c.c.} +  0 { h 2), (3.2.9a)

with

E  = exp[i(aX  + f3Z — S7T)], 
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where a ,/?  are the  normalised wavenumbers; 17 is the norm alised frequency and 

h 1 is the small linearisation param eter. The solution of the upper-deck equa­

tions, with the desired decay as the freestream is approached, results in the fol­

lowing (relatively severe) restriction on possible a  and (3

ReaJ{ (m £ "-T )  -  a2)^ > ° ’ (3-21°)

m eaning th a t the waves m ust be 3-D and be directed outside of the  local Mach- 

wave cone.

The eigenrelation, for linear supersonic TS-m odes, is easily found to  be

( ta A )5 (« 2 +  /?’ ) =  A2( ^ 7 « ) ( ^ „ ) { — f —  -  a 2} i  (3.2.11a)

Here Ai  signifies the Airy function,

r°° . 1  17
k = I Ai(q)dq and £o = —i * ------ j". (3.2.116,c)

•'to (aA)5

The vortex-w ave interaction to be described concerns only neu tra l modes 

(tha t is a ,/?  and 17 are all real) and we note th a t this occurs for

£o =  —d iiS , (A ir/* )(fo ) =  d2i1/3

where the constants d i , ^  have the (well-known) values, d\ ~  2.297 and c?2 — 

1 .001 .

In Figure 3.2 we present the ‘neu tra l’ solutions of the eigenrelation (3.2.11),

and its subsonic counterpart, for a few (illustrative) choices of the M ach number.

Here (and hereinafter) the ‘wave-obliqueness-angle’ is defined by

0 < e = ta n -1 ( 0  <  90°.

We see for subsonic values of the Mach num ber (M 00 <  1) th a t neu tra l modes 

are possible for all wave-angles. However, for increasing supersonic M ach num ber 

values (Moo > 1) the solution properties s ta rt to differ noticeably, w ith only an ever 

decreasing range of very oblique TS-wave propagation angles, 6, being possible. 

Thus the restriction (3.2.10), which can be re-w ritten  as

6 > ta n " 1 [(M l ,  -  1)4] ,
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Figure 3.2. TS wave obliqueness angles 6 versus spanwise wavenumbers /?, for 

neutral modes at four values of the Mach num ber Mqq.
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for real a  and /?, is clearly evident in this figure. We shall see later, once the 

interaction has been formulated and numerical values have been calculated for 

the im portan t interaction coefficients, th a t this restriction proves to be a  more 

significant ‘compressibility-effect’ on the interaction th an  the ‘d irect’ effect due to 

the Mach num ber appearing in the interaction coefficients.

It is beneficial to spend a few moments considering the behaviour of the lower- 

deck quantities for large- Y  as these will be referred to in the next section; they are 

crucial to  the particular vortex-wave interaction th a t we are going to consider. It 

can easily be shown th a t

U ~  Y  +  A  +  C Y - 1 +  0 ( Y ~ 2) , V  ~  - Y A X + D  + 0 ( y _1),

and W  ~  B Y - 1 + 0 { Y ~ 2), as Y -+ oo. (3.2.12a -  c)

Here B ,  C  and D  are unknown, in ter-related  functions of X , Z  and T  (see Stewart 

and Sm ith, 1987).

Sm ith (1989) gives a comprehensive account of the consequences of the above 

eigenrelation on the stability of the flow to linear TS-m odes. O ur concern in this 

chapter is with a vortex-wave interaction based on these length- and timescales. 

In the next subsection we deduce the size of additional x-  and y- scales necessary 

to  capture this interaction.

§3.2.3 T he interaction scales.

Here we essentially follow the same argum ent as Hail & Sm ith (1989) but

with the compressible triple-deck scales given in the last subsection; we appeal

to their resulting equations to give an alternative physical in terpretation  of the

interaction mechanism. However, we will take the coupled low er- and  upper-deck 
o s

equations^our starting  point, ra ther than  returning to  the compressible Navier- 

Stokes equations; this will lead to the scales appearing simpler.

We have seen in the last subsection th a t TS-waves are governed by the trip le- 

deck structu re , and in particular by the unsteady interactive boundary-layer equa­

tions holding in the lower-deck. If the 3D T S - wave am plitudes are comparatively 

small, say of order h <C l  relative to fully nonlinear sizes, then (nonlinear) inertial
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effects force a vortex motion at relative order h2; the TS-m odes are taken to be 

proportioned to

=  exp[i{aX + (3Z -  n r ) ] ,  E 2 =  exp[ i(aX -  (3Z -  SIT)} (3.2.13a, b)

and we see tha t combinations yield, in particular, induced longitudinal-vortex 

term s proportioned to

E z = exp[i(2(3Z)\, (3.2.13c)

having only spanwise dependence.

We saw, in the last subsection, th a t certain lower-deck quantities decay al­

gebraically for large Y ; it can be easily shown th a t spanwise inertial effects (such 

as the ‘U W x 1 term  of the Z — m om entum  equation) decay slowly like l / Y 2 (from 

(3.2.12)) resulting in the spanwise velocity component of the induced vortex to 

grow logarithmically like In Y  (Hall & Sm ith, 1984; 1989) since the vortex response 

is predom inantly viscous here. Hall Sz Sm ith (1989) introduced the concept of a 

new sub-layer (‘the buffer layer’) situated  within, and at the top of, the lower- 

deck, along with a longer lengthscale (for am plitude m odulation) to dam pen down 

this logarithmic growth. They showed th a t the m ain vortex activity was confined 

to this region.

Before deriving the compressible sizes for X , the m odulation lengthscale, and 

the buffer where Y  =  8 Y y we briefly m ention the link between the x —scales present 

and non-parallel effects. The triple—deck is a local structure located at non- 

dimensionalised distance x =  xq from the leading edge. It is short, its length 

being 0 (e 3K i )  compared to the 0 (1) development of the underlying boundary 

layer, and all the X —dependence of the TS-m odes is taken to be in the Ei  and 

E 2 factors. The m odulation of the modes is assum ed to be on a longer x —scale 

and thus the eigenrelation (3.2.11) is unaffected. We define this (new) m odulation 

x —scale, X  say, by

X -  x 0 =  62X  +  S K i X ,  esK j <  S2 <  1 , (3.2.14)

where 82 is to be determined.

The only effect from the base, underlying non-parallel flow felt by the lower- 

deck equations is the wall shear A =  A(xq)* At leading order A is constant (hence
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the linear TS-waves are independent of non-parallel effects) but here we wish to  

balance the next order (i.e. its correction) term  into our interaction equations. A 

Taylor expansion, about the local station  x = xq, gives

A =  A(z0) +  82X \ b ( x o )  +  0 (  min[822 ,ez K \ \  ) (3.2.15a)

where A & ,=  —  , is 0 (1 ) and represents the first influence of non-parallelism 
ax

(streamwise boundary-layer growth). Note th a t we have multiple-scales in x; 

formally we should make the replacem ent

*  9  +  (3 .2 .1 5 6 )
d X  d X  S2 d X

in the triple-deck equations.

Let us now re tu rn  to the derivation of the Y  and X  scales. We have seen 

th a t the size of the spanwise velocity of the  induced vortex in the buffer layer 

is 0 ( h 2 ln T ) , ~  h2 \n8 , leading to an induced streamwise velocity of order 

h2 In 8, by continuity (and noting th a t the m odulation is on X ), which alters62  ,2
e3 K i

8 h2
the basic shear by a relative am ount of order — In 8 and this is the same

J t 3K \  8
order as the ‘non-parallel’ A{,-term if

62  ^  In S . (3.2.16)
e3K i  S

Recall tha t the X —m odulation was introduced to dam p the induced-vortex 

velocity components in the buffer layer, and so we want the inertial operator, Y

to balance the viscous one, which im m ediately implies tha t

e3K \
(3.2.17)

One further relation (between the unknowns A, 8 and £2) is required and 

results from balancing the slower X -m odu la tion  with the second (correction) term s 

in Taylor series for A (i.e. balancing A& term  with P% in the x — m om entum  

equation), leading to  the balance

e3K i  . 3 1 .
82 ~  —— - i.e. 82 ~  e ^ K i ?  . (3.2.18a)
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The other two sizes follow immediately from (3.2.16) and (3.2.17):

- 1 - 1 
8  ~  e Z K \  * and

5 5 1
& K  iff 

In 8
(3.2.186,c)

Note th a t we are now assigning a size to the small quantity h (cf. o ther weakly 

non-linear analyses).

The logarithm ic factor occuring in h is im portant (B lennerhassett &: Sm ith, 

1991); it is wrong to  dismiss it as unim portant, as did Hall & Sm ith (1989). We 

note th a t 8  is large, whilst h and 82 are small, as required. We re tu rn  to  a discussion 

of the implications of these scalings after deriving the interaction equations, and 

associated coefficients, in the following sections.

§3.3. T H E  D ER IV A T IO N  OF TH E IN T E R A C T IO N  E Q U A T IO N S

In the this section we briefly outline the ‘first-principles’ derivation of the in­

teraction equations and associated coefficients; for more details see Hall & Smith 

(1989), whose notation we try  to adhere to for ease of reference. This approach, 

though not being the most efficient way to derive the generalised interaction coeffi­

cients, has the advantage of clearly illustrating the underlying physical properties 

and natu re  of the vortex-wave interaction. We take advantage of their work in tha t 

we do not give any details of the main deck solutions — this layer is passive as far 

as the current vortex-wave interaction is concerned: we work w ith the  lower-deck 

equations, coupled w ith the upper-deck’s pressure-disturbance-equation, via the 

pressure-displacem ent law. It is im portant to note th a t, as far as is possible, the 

following scalings and expansions are given relative to those of the compressible- 

triple-deck structu re , ra ther than  the primitive Navier-Stokes equations. In this 

section we assume th a t the flow is supersonic ( M 00 > 1 )  for completeness; in Sec­

tion 4 we give an alternative derivation of the interaction-coefficients for a general 

Tollmien-S chli chting eigenrelation.

§3.3.1 T he lower deck.

Following Hall & Smith (1989), but using the ‘new’ scales derived in the last 

section, we expand the flow quantities as follows
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U = X Y  +  hu™  +  82[\zY  +  X X  bY] +  h2u (3) +  h82u ^  +  • • •,

V  =  +  h2v w  +  h82v ^  +  • • •,

W  =  /iti>(1) +  h 2w ^  +  / * W e) +  • • ■, (3.3.1a -  d)

P  =  fcpC1) +  h2p(3) +  M 2p(e) +  • • •.

Here superscript (1) corresponds to the (prim ary) TS-m ode; superscript (3) cor­

responds to  the induced vortex; superscript (e) corresponds to  T S -m ode forced

by the ‘XXb  +  A3’-te rm s; and A3 is the wall shear of the vortex which is induced

(in the buffer).

Further, we decompose the wave-term s into ‘oblique’ pairs, and  all term s are 

then expressed in term s of E\  , E 2 or E z which are assum ed to  capture all their 

X  , Z  and T  dependence. The am plitude functions are then  (ju s t)  functions of Y  

and the m odulation scale X  (at most). For example,

=  , Y ) E 1 + u 12( X  , Y ) E 2 + C.C.,

u (e) =  u el( X  , Y  ) E ! + u e2( X  , Y ) E 2 + c.c.,

u (3) = u 23( X  , Y  )E t +  c.c.,

A3 — A33(A  )E z +  c.c., (3.3.2a — d)

and similarly for the  V , W , A  and P  terms.

The resulting equations for (u u , v n y w u , p n )  , i= l ,2  , are m erely the linear 

TS-w ave equations studied in C hapter 2 (see also Sm ith, 1989). The equations 

for the induced vortex are those found by Hall & Sm ithf; they are forced by the 

TS-waves via the nonlinear inertia term s. Here, for completeness of argum ent, we 

consider the z —m om entum  equation as this is crucial to, and an understanding 

of, the in teraction-m echanism  which was not quite correctly deduced in the la tter 

paper. In fact, only the E z component is of concern and it is found to  satisfy

. _ - ( c c )  . - ( c c )  -  -  - ( c c )  - ( c c )  -  , n- n -  - ( c c )W33y y  =  - t a u u w{2 +  i a u \ 2 w u  +  v u w \ 2f  + v \ 2 w h y  +  2 i p w u w \ 2 ,

(3.3.3a)

|  note however that the definitions of E\  and E 2 differ between the two studies; the replace­

ment P ----► ^ is necessary to recover the equations of Hall &; Smith
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where superscript (cc) signifies complex conjugate. It can easily be shown tha t 

wzz ~  - 2 iP ^1 -  A-2p n  p[c2 ^ l n Y  +  0 (1 ), as Y —► oo; (3.3.3b)

this follows the solution for the TS-m odes, and from (3.2.12), the large-Y asym p­

totes of the TS-m odes. The buffer region, to  be discussed in a later subsection, was 

introduced by Hall & Smith to account for this logarithmic growth — to dam p it 

via am plitude m odulation. It is im portan t to  note th a t, following Blennerhassett & 

Sm ith, we are not treating the constant of integration as a leading order quantity, 

thus avoiding the mistake made by Hall &: Sm ith, Sm ith &: Walton (1989) and the 

present au thor (when he first considered the vortex-wave interaction under dis­

cussion in this chapter). This large-Y asym ptote for w Zz is essentially responsible 

for the forcing of the vortex in the buffer region, via a boundary condition at the 

bottom  of th a t region.

Next we consider the TS-modes forced by the non-parallelism of the under­

lying (growing) boundary-layer flow and by the induced vortex. These are found 

to satisfy the following equations (having substitu ted  (3.3.1) and (3.3.2) into the 

lower-deck equations (3.2.6))

-f -f V y ^  =  0,

4 C) +  X Y ( ^ x  +  *jJ}) +  (X X b +  A33 ) Y u{£

-t-(AA& +  X z z ) v ^  +  X v ^  -f- Az z z Y w  —

-(e )  - ( 1 )  . - ( e )
~ P X  - P X + UYY>

1>Y =  0,

and

+  X Y {w ^)  +  u ;^ )  +  ( X X b +  A33)Y w"x =  ~ P ^  +  W y y .  (3.3.4a -  d)

The ‘underlined’ term , proportional to  XZzz ,  is absent in Hall &: Sm ith (1989); 

this further error, found by the current au thor, (in addition to th a t found by 

B lennerhassett & Sm ith, 1991, concerning the order of the constant of integra­

tion in the large-Y asym ptote (3.3.3b); whose correction leads to a simpler set 

of in teraction-equations needing to  be solved) results in corrected values for the
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im portan t interaction coefficients. In Section 5 we will see tha t the numerical 

values of the corrected coefficients, for the incompressible (M =  0) case, are 

significantly different than  those calculated by Hall & Smith from the incorrect 

formulae, which in tu rn  leads to new conclusions being drawn concerning this 

vortex-wave interaction in incompressible flows. The current author did not un­

cover this error until he calculated the interaction coefficients by an alternative 

m ethod (which was, ironically, suggested by Prof. F .T . Smith; see Section 4) and 

found some disagreement in one of the interaction coefficients, between the two 

m ethods. W ith hindsight, the author finds it very surprising th a t this term  was 

initially missed by everyone (including himself); the fact th a t the induced-vortex 

modifies the w all-shear at lower order (A — > A -f 82Xz{Z))  is crucial to the whole 

interaction-m echanism , cleverly deduced by Hall & Smith.

The interaction-m echanism  is most apparent in (3.3.46); here we see contri­

butions from non-parallelism  (ex A&) and the induced-vortex (oc A33) appearing 

at the same order as the (prim ary) T S-w ave-quantities’ m odulation on X  ; this 

was the m otivation for the choice of scales of the  previous section. To complete 

the statem ent of problem for these T S-m odes we m ust of course consider the 

upper-deck and the  m atching process. Recall th a t  in the upper-deck, the Mqq- 

dependence m anifests itself, and so there the details (of the present study) alter 

significantly from those of Hall & Smith. In the next sub-section we consider the 

upper-deck expansions and solutions, then  we proceed to reconsider the solution 

of the lower-deck problem for the ‘forced’ TS-waves which requires a so-called 

‘compatibility relation’ to be satisfied. This relation is similar to th a t found by 

Hall & Smith bu t the associated coefficients are now functions of the Mach num ber 

(implicitly and explicitly). This relation is in fact a m odulation equation for the 

am plitude of the (prim ary) TS-m odes — sim ilar to  those commonly deduced from 

weakly-nonlinear analyses.

§3.3.2 The upper-deck  and pressure-d isp lacem ent law.

The changes, caused by compressibility, to the  corrected incompressible study 

of Hall & Smith are due to the presence of the Mach num ber in the P ran d tl-  

G lauert operator, governing the solutions in the  upper-deck. We have seen how 

the TS-wave eigenrelation is altered by compressibility; in addition we expect
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the interaction coefficients to be altered by the explicit occurrence of the Mach 

num ber. Thus we devote more attention to  this deck, as well as to the pressure- 

displacement law, linking the lower- and upper-decks, leading to the com patibility 

relation. Rem em ber th a t, at present, we are considering the supersonic case for 

definiteness; o ther cases will be considered in the next chapter.

The upper-deck lies outside the boundary layer and linearised potential flow 

properties are appropriate. Here, the nondimensionalised, velocities and pressure 

are expand as (cf. (3.2.5))

u = 1 -f R e ~ ^ K 2 -f • • • +  h S i U ^  +  • • • +

V =  R e ~ i K 2 ( M l  -  l ) j  [ f o > ( 1 )  +  • • • +  h & 2 » ( e )  +  •

w =

p = 

where

Re  4 K 2 +  • * • +  h 8 2 W^  +  • * •

Re~ i  K 2 [hp(1) +  • • • +  hS2pie) +  • • •

+

+

+
(3.3.5a -  d)

(3.3.5e)

and we have only highlighted the term s of im m ediate concern to  us here in this 

discussion. Again we decompose into E 1 and E 2 components,

P ( 1 )  =  P i ^ i  +  P 2 X )^ 2  +  C .C . ,  

p ( e )  =  P i e ) £ i  +  P (2g ) ^ 2  +  C . C . ,

and similarly for the o ther quantities. The boundary conditions are those of decay 

at infinity, and m atching with the boundary layer;

( 1 )  n  ( e )  n
Pi  0 , Pi -> 0 , as y  -> 00,

,(1) _  ADand p V } = p \ \ \  ^ e ) = p ^ ), as y -> 0+ , (3.3.6a -  d)

where i =  1,2 in the  above and rem ainder of this subsection. After a  little  m anip­

ulation we soon arrive a t the governing equations for the pressures,

C p V  =  0 and Cp\e) =  2ia  (M ^  -  l )  p-1^ ,

where

C = ( M l  -  1) 8 n  -  [ f  -  a 2 ( M l  -  1)] (3.3.7a — c)
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The solutions, which decay at infinity and m atch to the pressures in the viscous 

boundary sub-layers, are

(1) -(1)
Pi = Pi* exp - 1 3~hy' (e) ( - l a p u y  . -(1)\

» Pi -  1 +  Pei J eXP - B - i y
\  /

Where B  =  ( M 2 - l )2 "  “ 2 ^3'3‘8“ ~  ^

We can now solve for the unknown displacements (steming from the lower-deck),

A(1) =  A ^ E x  +  + c.c., A (e) = A ^ E t  + A ^ E t  +  c.c.,

by appealing to the pressure-displacem ent law, central to  the triple-deck theory,

'AD , u  ADd_
dy

d d
d x +hS2d I  +

Pu + +  • •

( A ^  + h S t A V  +  •■•); (3.3.9)

care m ust be taken to  avoid dropping 0 (/i^2)_l errils here, and in subsequent anal­

ysis.

As (independently) pointed out by Zhuk Sz Ryzhov (1981), Smith(1989) and 

Duck (1990), the restriction,

Real{21} > 0, (3.3.10)

on the wavenumbers is necessary for the upper deck quantities to rem ain bounded 

as free-stream  is approached. Note tha t it is the quantity  B  th a t contains the 

influence of compressibility on the interaction in addition to  its influence on the 

TS-wave problem.

The leading order balance, of (3.3.9), yields the standard  P  — A  relation for 

the prim ary modes. The second order balance (at 0 (^1^)) yields the  following 

relation between and ,

B h [ \ ] =  o ? A ^  -  2 (3.3.11)

which enables us to  procede with the solution of the equations for the fo rced-T S - 

mode. These are considered in the next subsection.
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§3.3 .3  T h e  c o m p a t ib i l i ty  re la t io n s  a n d  t h e  in te r a c t io n  coefficients.

We now re tu rn  to the lower deck equations to  re-consider the prim ary and 

forced TS-m odes. Those for the prim ary mode can be solved in term s of the Airy 

function, leading to  the linear eigenrelation (3.2.11). The equations for the forced 

T S -m odes, (3.3.4), are inhomogenous versions of the form er, driven by the modula­

tion of the prim ary modes; the non-parallelism  of the  underlying boundary-layer; 

and the wall shear of the induced vortex. The solution of these equations, subject 

to  the  appropriate  boundary conditions, requires two compatibility relations,

aP n x  +  b \ bX p n  +  cA33A_ 1p^2C) =  0

and

aPi2X +b\bXj>i2 +  c A ^ A - 1^  =  0, (3.3.12a, b)

to be satisfied. These are identical in appearance to those derived by Hall & 

Sm ith; however, now the compatibility coefficients a , b and c are now functions of 

the Mach num ber. The presence of M oo in these coefficients leads to the solution 

properties for compressible flow (reported in Section 5) differing from those for the 

incompressible work. In fact, after a little algebraic m anipulation, we find that

2 r n D £ 0A  2 la =  i n  2
3a

2 B  B

T  +  3 ^  +

2r1- fD io a A  5 5B ?  (3.3.13a,b)
3 3a ’

c = +  /? 7*2 ) -  a~ B ~ ?

where

3 7

_  A t ( f o )  _  K ( t o )  _  { q ic ( ( q )

1 Ai'( fo)’ 2 A i t f . ) ’ A i 'K o)’

?2

7  =  a  +  /? , B  =  ——-----   -  a  , A  =  (zaA)5 and fo =  —
oo (Aa)' 

(3.3.14a — g )

Rem em ber th a t these coefficients correspond to  supersonic flow — in Sec­

tion 4 we consider other cases. The quantitative values of these coefficients, and 

their implications, are discussed in Section 5. F irst we consider the buffer re­

gion where the rem aining interaction-equations originate from. In this region the
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longitudinal vortex is forced solely by an inner (from the lower-deck beneath) 

boundary-condition  (Blennerhassett &: Sm ith, 1991).

§3 .3 .4  T h e  b u ffe r  layer.

This is the new layer tha t was introduced into the conventional triple-deck 

s truc tu re  by Hall & Smith. Here we take it to  lie inside, but at the top off, the 

lower-deck; in particular it is characterised by Y  ~  8 1. Thus we define the

buffer-?/ variable by

Y  = S - ' Y ,  (3.3.15)

where Y ~  0 (1) in the buffer.

As previously mentioned, the interaction’s vortex equations come from this 

sub-layer, bu t are solely forced by the (prim ary) TS-m odes in the lower-deck 

via the  sm all-Y  boundary conditions. Here, the  TS-m odes merely continue their 

asym ptotic decay from the lower-deck into the main-deck. Again, as Moo has 

been scaled out of all but the upper-deck problem , the forms of the expansions 

here follow those of Hall Sz Smith, but they are modified to take account of the 

inclusion of the neglected logarithmic factor (see B lennerhassett & Smith, 1991).

In this layer, the expansions for the lower-deck quantities!, are

U = 8 \ Y  + 626 X \ bY  + h2 In 8 - A -  *(3> +  . . .  +  hu(1) + ■ ■ ■
[e3A i

+  hS~xi  +  b h82vSe) H ,

V  =  hSvw  + h i  + - ] +  h 2S ln S v (3) + ■■■

+  hSS2v(‘> +  • • •,

W  = h S - ' w ™  + h5~2i) + h2 In 6ww  + h62S~1w M  + ■■■,

P  =  h p ^  -f h62p ^  +  • • •.

(3.3.16)

These expansions are implied mostly by the  large-Y" forms from the  lower 

deck, and by the desire to pick out our particu lar interaction. Again, the non- 

m ean-flow  term s are decomposed into their E i , E 2 and E$ components. The

f  note that in this chapter the interaction is being formulated with respect to the triple-deck 

scales and that, further, we are treating the buffer as essentially the upper-part of the lower-deck
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T S -parts , denoted by superscripts (1) and (e) for the leading order parts of the 

prim ary and forced waves, respectively , and the higher order p a rts , denoted by 

double-hat, are not of principal concern here.

W riting

u ^  = u zzEz +  c.c. , 

together with similar expansions for and w^3\  yields the vortex equations

^33X +  V3 2Y +  2i/3wz3 = 0 ,

+  ^ 3 3  =  ^ 3 3  Y Y i

— ™33YY> (3.3.17a — c)

which m ust be solved subject to the following boundary conditions:

i/33 —> AA33, U33 —► — AA33j£y , wz3 — y ~Z, as Y  —► 00, (3.3.17d)

£33 = vz3 =  0, u>33 =  - 2 i { 3 K \ ~ 2p u p [ C2 \  on Y  =  0, (3.3.17e)

where, for fu ture convenience, we have defined the im portan t quantity

K =  ( l  -  g )  . (3.3.18)

These vortex-equations are discussed in Section 5 w ithin the  fram ework of the 

whole interaction. Note th a t the last condition of (3.3.17e) contains all the  forcing 

(due to  the nonlinear com bination of the (prim ary) TS-m odes in the lower-deck) 

— this result is identical to  th a t deduced by B lennerhassett & Sm ith when they 

considered the corrections necessary to the initial study by Hall Sz Sm ith.
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§3.4 A N  A LTER N A TIV E D ER IV ATIO N  OF TH E IN T E R A C T IO N  

C O E FFIC IE N T S; G ENERAL T S-E IG E N R E L A T IO N .

In this section we show how the supersonic interaction-coefficients, (3.3.13), 

can be derived in an alternative, and quicker, m anner. Moreover, we generalise the 

theory to  o ther cases by considering a ‘general’ TS-eigenrelation. Recall th a t the 

interaction-coefficients (the coefficients of the com patibility relations) follow from 

an inhom ogenous (forced) form of the equations for the (prim ary) TS-m odes. As 

the la tte r leads to the TS-eigenrelation, we expect th a t by small (appropriate) per­

tu rbations of this eigenrelation (corresponding to  the inhomogeneities of the equa­

tion for the forced TS-m odes) we should recover (parts of) the compatibility rela­

tions (and hence the desired coefficients), at the order of the sm all-perturbations. 

This alternative m ethod, for deriving the interaction-coefficients, was suggested 

to the au thor by Prof. F .T . Smith as a m eans to  check the coefficients th a t had 

been calculated by solving the forced TS-wave equations, (3.3.4). As mentioned 

earlier, this ‘checking’ led the author to uncover an error in the work of Hall &: 

Sm ith, nam ely the absence of the A33^-term . W hilst performing the analysis for 

the supersonic case, the author realised th a t it would be far more sensible (and in 

fact less algebraically tiresome) to consider a ‘general’ TS-eigenrelation and hence 

derive a general set of interaction coefficients in one go.

The m ethod is much clearer in practice and we simplify the m ethod by split­

ting the analysis into two parts: firstly, we calculate the ratio of 6 to a, and then 

we calculate the ratio  of c to a in a separate analysis. Note th a t we are consider­

ing ‘ra tio s’ ra ther than  the interaction coefficients themselves, as the compatibility 

relations (3.3.12), are unique ‘m odulo’ a m ultiplicative factor — in fact there are 

only effectively two independent interaction coefficients, the ratios 6/a  and c /a .

By a ‘general TS-eigenrelation’, we are assum ing one th a t has the form

A * t *  \  r -  i P ’ M o o , - - - )  / o  a , \— (fo) =  M s A 3 , :? r j7 -------- r, (3.4.1)
K 9 \&  ) P ) ^ o o >  • • •)

where /  and g are known functions whose exact form is dependent on factors such 

as, for example, the  Mach num ber or geometry. In  the m ethods th a t follow, it is 

sufficient to  trea t them  as functions of a  alone —  see Table 3.1.
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Table 3.1: The functions /  and g for some typical TS-wave eigenrelations. }

Flow type / 9

1 Incompressible a 2 +  P2 (a 2 + P 2) \

2 Subsonic a 2 + P 2

3 Supersonic a 2 +/32

4 Hypersonic (no shock) P2 (p2 - c c 2)h

5(0 Hypersonic (with shock) 

(3 > a

P2 (P2 -  a 2)* coth[(/?2 -  a 2) i j /,]

5(ii) Hypersonic (with shock) 

(3 < a

P2 ( a 2 - P 2)? cot[(a2 - P 2)?y»\

6 Transonic limit a 2 + P 2 P

7 Non-axisymmetric flow 

on axisym m etric surface

’ r n 2 1ia  1 H— r—— x 
* 2a2

K n [ i a a ^ M l ,  -  1]

%/ML -  -  1]
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|T able 3.1: The functions f  and g are given for some typical TS-vvave eigenrelations. It should be 

noted that the scaled wavenumbers Ct and (3 , appearing within the table, are not the same for each 

case; they are the result of different scalings. The actual form of these scalings does not concern us 

here: the full details of the derivations of these eigenrelations can be found in the paper by Smith 

(1989), for cases 1-4 and 6; in the paper by Cowley k  Hall (1990) for cases 5(i,ii); whilst case 7, in 

which K n represents the n th modified Bessel function, is derived by Duck k  Hall (1990).

§3.4.1 T h e  ra t io  6/ a .

Firstly we indicate how the interaction coefficients a and 6, in term s of /  and g , 

can be deduced elegantly by using a m ethod referred to by Smith (1980) and Hall 

& Sm ith (1984). This m ethod involves expanding (perturbing) the eigenrelation 

about the neutral s ta te  and forming an am plitude equation for the pressure.

We suppose th a t the eigenrelation (3.4.1) is satisfied by a , /?, 17, A and £oj and, 

moreover, th a t these correspond to  a neutral mode. The neutral values of a  , A 

and £o are then pertu rbed  by small am ounts (signified by ‘overbars’)

(a , A, £o) — ► (a  +  a ,A - f  A,(o +  £o)- (3.4.2)

Now, from the definition of /c, (3.2.11b), and the properties of the Airy function, 

Ai, it follows th a t

*«•>
Ai
K, (fo) ( 1 +  fo

A i 0 A i 0 
^o-rrr +A i 0 aco

whilst ‘expanding’ £0 yields the following expression for £q:

+  0(overbar — squared)^ , (3.4.3)

to _  _ 2  / a  A 
( o ~ ~ 3 \ a  A

Further,

(3.4.4a)

( ia ) y — > (z a )3 (l -f —  -|-------) , A S — ► A S (1 -  —  H-------)

and
f ( a )  f ( a )

(3.4.46 -  d)
9(<x) ff(oc)

W hen these expansions are substitu ted  into the eigenrelation, the  ‘neu tra l’ 

eigenrelation (3.4.1) is recovered.. It is a t next order, Horn the overbar-term s, th a t
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the pressure-am plitude equation and the interaction coefficients follow. At this 

present order we find, after some algebraic simplification,

—2riD£o g f  1 f  g
3a / A  I 3a  /  g

a P  =
2j"i D ( a 5 g

3 / A
A P,  (3.4.5)

in which we have now set A =  1; also we have multiplied ‘both  sides’ by a ‘notional’ 

pressure am plitude P.  Here D , r i  are as defined by (3.3.14).

The crucial step in the arguem ent is to now equate the neutral-w avenum ber- 

perturbation , a ,  with a streamwise derivative,

a  -> (3-4.6)

say, and interpret A as the second term  of th e lay lo r expansion of the wall-shear 

A about the neutral position, i.e.

A =  X \ h, (3.4.7)

using the previous definition of A& (cf. (3.2.15a)).

We can now pick out the coefficients a and 6, of P% and Xi,X respectively, 

noting th a t these are unique to a common multiplicative constant of linearity — we 

are only actually interested in the ratio of the two anyway. We find th a t (setting 

this ‘constant of m ultiplication to  be / ’)

a = 2/ri£>£o _ i l  f  , f_ _ 9 _ \
3 a A 2 a  I 3a /  g J

and

3A 5 3a v ’ 7

Thus we have arrived at ‘general’ formulae for the interaction coefficients a 

and b. We suspend until later the investigation of these formula, including the 

check on the previous results (3.3.13). F irst, we outline the alternative m ethod of 

deriving the formulae for the interaction coefficients a and c; this is the subject of 

the next subsection.
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§3.4.2 T h e  r a t io  c /a .

We now tu rn  to the c /a , which we shall see in the next section to be crucial 

to the possible large-X  behaviour of the vortex-wave interaction. The interaction 

coefficients a and c (or, more precisely, the ratio of the two) can also be derived 

m ore elegantly (than  the ‘first-principles’ m ethod of Section 3) by not assuming 

harm onic Z-dependence when solving the triple-deck problem  for the (prim ary) 

linear TS-m odes (see, for example, Smith, 1979c; Sm ith & W alton, 1989; Wal­

ton, 1991). Instead of the conventional eigenrelation (of the form  (3.4.1)), the 

eigen-problem  consists of a second-order, ordinary differential equation (for the 

pressure-disturbance p of the form

<?P Az 3 f 0 , ,  , , . ' m dP 2uw
dz*-Tl2 + ur0(ioK+Al°)]i z - aup

= (  (*»•«) h ( « )  ft (3.4.9a)
y  /C o  J  a 2

to be solved subject to  specified boundary conditions (e.g. ‘periodicity’). Note th a t 

the possibility th a t the wall-shear, A, may be a function of the span wise variable, 

Z , has been accounted for. Here, and hereafter, we assum e th a t the  function / ,  

appearing in the ‘general’ TS-eigenrelation, is of the form

/  = i>a2 + P 2, (3.4.96)

where is is a constant; we see from Table 3.1, th a t this form is indeed general 

enough for the cases 1-6 considered.

The following m ethod (suggested by Prof F .T .Sm ith) has some similarity to 

th a t of §3.4.1; bu t now we must include the ‘wave- and vortex-factors’, E \ , E 2  

and E $ , in addition to  perturbing the ‘neu tra l’ quantities. We w rite

P =  PO lE i  -f pQ2^2 +  t ( P i i E i  +  P12E2)  +  • • • +  c.c.,

■f
A —> ^  c(AjF/3 -J- C . c )  -f- • • • , OL —► CL -|- C&i +  * • •

and

£0 —* £0 “I- “b ’ • • 5 (3.4.10a — d)
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where c <  1 is the small expansion param eter. The last two expansions, for a 

and £o> follow the corresponding ones of §3.4.1. The pertu rbation  to A is ‘vortex­

like’ — it represents the correction to the w all-shear due to  the vortex which has 

been induced in the  buffer-layer. The pressure expansion comprises of the two 

(prim ary) oblique TS-waves, each of whose am plitude has been perturbed by a 

small am ount. This perturbed pressure term s correspond to  the  TS-m odes forced 

by the  pertu rbation  to  the wall shear.

Once the  appropriate forms of the expansions, (3.4.10), are realised, the re­

m aining analysis to  derive the general forms for the  coefficients, a and c, simply 

follows th a t of §3.4.1. W hen these expansions are substitu ted  into (3.4.9a), the 

leading order term s (proportional to E\  and E 2 ) yield the  (familiar) linear T S - 

eigenrelation (3.4.1), whilst at O(e), there is a contribution from the ‘A^’-te rm . 

After a little algebraic m anipulation, the term s proportional to E ^ 1 at this order 

yield the following relation:

ai<*iPoi,2 +  cAi A_ 1po2^  =  (3.4.11a)

where a and c are functions of the ‘leading order’ quantities:

=  2/ r 1D ( 0 _ i g _ f  _  i _ \
3 aA 2 a  I 3a  /  g J

and

c =  iDto  A - 2 Q / n  + /J 2r 2)  -  x  ( ^  _  3 . (3.4.116, c)

We now equate a \  with a streamwise operator (cf. (3.4.6)),

d
ta i  a x '

and Ai is equated with A33, so th a t (3.4.11a) transform s into

a — b cA33A 1po2,i =  0* (3.4.l id )
a A

Thus we im m ediately see tha t a and c, as given by (3.4.l ib ,c ) ,  are the  desired 

interaction coefficients (to a given multiplicative constan t.) In the next section 

num erical values for these interaction coefficients are given and their physical im ­

plications are discussed.
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§3.5 TH E IN T E R A C T IO N  EQ U A TIO N S.

In the Section 3 the interaction was formulated. The interaction equations 

can be w ritten

t { X  , Y )  = Uv ( X  ,Y), 

t x x ( X  , Y) -  Y t x ( X  , Y) =  - 2 i ( 3 W (X  , Y),

-  YWX = 0,

Px ( X )  + (clr XbX  + c2rX3i) P ( X )  =  0,

A33 =  r (X ,0 ) ,  (3.5.1a — e)

together with the boundary conditions

W ( X  , 00) =  r ( X  , 00) =  T y ( X  , 0) =  0 and W ( X  , 0) =  - 2 i ( 3 K P 2{X) .

(3.5.1 f  - i )

Here we have replaced (£33 ,£33 ,^>33 ) by (E/, V, W)\  set A =  1, w ithout loss of 

generality; and, for simplicity, we have taken the two prim ary TS-m odes to  have 

equal pressure-am plitude P  (following Hall & Smith);

|p n | — IP12I =  P- (3.5.2a, 6)

The (normalised) interaction coefficients

b c
c ir =  R e a l ( - )  and C2r =  Real( —), (3 .5 .3a,b)

CL CL

are crucial to the solution properties; especially the large-X  behaviour. Real 

parts  have been taken as we are taking A33 to  be real; note th a t we are (prim arily) 

concerned with the m agnitude of the disturbance quantities, ra ther th an  with their 

phase.

In the next sub-section we show how they can be reduced to  a single ‘in tegro- 

differential’ equation by taking Fourier transform s; although, in practice, a num er­

ical solution of the full equations, (3.5.1), proves to be the most efficient m ethod of 

solution. In §3.5.2 we investigate possible large- X  behaviours (cf. Hall & Sm ith, 

1989; Smith & W alton, 1990), before investigating the limiting cases of the Mach 

num ber tending to  unity and infinity, in §3.5.3.
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§3.5.1 S o lu t io n  o f  in te r a c t io n  e q u a t io n s  b y  F o u r ie r  t r a n s f o r m s .

Here we show how (3.5.1) can be ‘solved’ by taking Fourier transform s in X f 

defined by
/ ° °  -

f ( X , Y ) e - ' “ x d X .

-oo

We find tha t (3.5.1c) transform s to

W$.(w,Y) -  iuY\Vu)(u,Y) =  0, (3.5.5a)

which is immediately recognisable as Airy’s Equation; its solution being

Y) = F“\w) (3.5.56)

The coefficient of the ‘H i’ having been set to zero so th a t the boundary condition

at infinity can be satisfied. The arb itrary  function of integration, F ^ \ u>), is fixed

up from the boundary condition (3.5.1i) — more precisely we find th a t

F  =  - 2  i (3KP2, (3.5.6)

where F ( X )  the inverse transform  of F ^ \ i o ) .

The transform  of (3.5.1b) gives

-  iu)Yru) = -2i0Wa), 
-2ipFU\w)

=  , , Ai\(tu>)3Y ,
j4i(0) lv ' J’

(3.5.7)

using (3.5.5b). This forced-A iry-equation is easily solved by appealing to the 

identity

(Ai (x)) — x(Ai (x)) = Ai(x)\

we soon find tha t

r ( / ) (u i ,? )  =  ~ 2t/3F(/>^ ^ A » '[(w )?y ]. (3.5.8)
A i(0)(ia?) 3

Now, as A33^  =  r ^ ( 0), it follows from (3.5.8) tha t

= C i f a ) * * F ( ^ ( u>), where Ci =  — 2 ^ ^ (3. 5. 9a, b)
Ai(  0)
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We need to invert (3.5.9a), to arrive at the desired result for A33, and to this end 

we note the standard  result

j f  x - S e - i“x AX- =  r Q ^ ( i a ; ) - h

where T is the gam m a function. From this we can deduce th a t the inverse-Fourier- 
_ 2transform  of (iu>) 3 is

G - 1[(ia)) - t ]  =  l ? ( I ) X " 5 ’ i f * > 0 > (3.5.10)
t 0, otherwise.

By employing the convolution theorem of Fourier tranformations, we can in­

vert A33^ ,  getting

X
*»»(*) = fTiy J  ^

We now suppose th a t the interaction is ‘initialised’ at X  =  0 and we define func­

tions to be zero for X  < 0 i.e. we can take the above lower limit of integration to 

be 0 instead of —00, so tha t

FfJpiT j f ( 3 - S . n )
Substituting the last expression into the pressure-am plitude equation, (3.5.Id ), 

yields a nonlinear ‘integro-differential’ equation,

S  + ('■'** + P -  0,

(3.5.12)

for the pressure am plitude P.  This then has to be solved numerically, by ‘m arching’
“ • s*in X .  Similar equationjhave been found by Smith h  W alton (1989), in their study 

of vortex-wave interactions.
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§3.5.2 P o ss ib le  l im i t in g  fo rm s  for l a r g e - X .

We investigate analytically the possible options for the flow solution for large­

s t .  Hall &: Sm ith found four such options for their system  of equations and coef­

ficients — below we see th a t (considering the incompressible case, M =  0) due 

to  the two am endm ents to their work (the correction of interaction coefficient c 

and the inclusion of the logarithmic factor in the scales) one of these options is 

no longer feasible, namely tha t of exponential growth. Moreover, there is a swap 

in the signature required for the crucial quantity K c 2r for the finite-distance- 

blow -up and the algebraic-grow th-to-infinity eventualities to  be possible. Thus, 

the conclusions, drawn later, for the case of zero Mach num ber are quite differ­

ent from  those found in Hall Sz Smith. In the next section numerical solutions 

of the interaction equations will be presented and comparison w ith these large-X  

predictions are m ade.

Option I : Finite — distance break — up.

In the vortex-wave study of Hall &: Smith, it was shown th a t a possible, 

u ltim ate behaviour of the nonlinear interactive flow, as X  increases, was th a t 

of an algebraic singularity arising at a finite position, say as X  —* Xq . It was 

found th a t the only TS-forcing, in this case, on the vortex-equations was through 

the inner boundary condition on W  : thus, as the present work does have these 

term s, this option is still possible but we find th a t there is a change in sign in 

the inner boundary condition on W  compared to the corresponding condition of 

Hall & Smith. This is essentially due to the la tte r au thors having to take the 

logarithm  of a small num ber— in the ‘corrected’ theory this no longer occurs as 

the logarithm  has been built into the interaction scales. This results in a sign 

change on the required polarity of K c 2 r for this option to  be possible meaning 

th a t th a t fin ite-d istance-break-up  is, in fact, the ‘exception ra th e r than  the rule’, 

a complete reversal to the conclusions of Hall & Smith. Finally, the ‘correction’ of 

the interaction, c, results in quite different values for the  polarity of K c 2T (versus 

wave-angle 9), with Moo =  0, to those calculated by Hall & Sm ith.
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We now give a few analytical details for this option. The ‘sim ilarity’ forms 

proposed by Hall & Smith are (still) appropriate, apart from th a t for the pres­

sure. As X  —> X q , we propose the following (leading order) behaviours for the 

interaction quantities:

p ~ (xQ -  xylpt f ) ,  w ~ ( x o -  x)-f w{$),

( t ,  A33) ~  (X 0 -  X ) _ 1( f (7;), ^ 33(77)) where rj = Y (Xo  -  X ) ~ * . (3.5.13 a - e )

W hen these forms are substituted into the interaction equations, (3.5.1), the re­

sulting ‘sim ilarity’ equations can be solved in term s of single and double integrals, 

as in Hall & Smith. Alternatively, these could be substitu ted  into the in tegro- 

differential equation from which the desired result follows more quickly and simply. 

It is deduced th a t we require

K c 2r <  0, (3.5.14)

for this option of finite-distance b reak-up  to be a possible large—X  state of the 

vortex-wave interaction.

The next option, tha t we consider in the next subsection, is less ‘catastrophic’, 

as far as the lam inar flow is concerned, w ith the solution continuing to downstream  

infinity.

Option II : Algebraic response at infinity.

Again, this option is still possible w ith our ‘reduced’ (corrected) equations — 

the term s we have ‘not got’ d rop-ou t from the Hall & Sm ith-equations in this 

case. Here we write,

( r , A 3J) ~ X ( f ( J | ) ,  ! „ $ ) ) ,  % =  Y X ~ i ,  ( 3 . 5 . 1 5 o - e )

as X  —► 00.

It is easy to show, from the integro—differential equation (3.5.12), th a t we

need

K c 2r > 0 (3.5.16)
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for this option to be possible. Note th a t, alternatively, this condition could be 

derived from the equations, as done so by Hall & Smith, but this m ethod is more 

complex.

The third large-X -option  proposed by Hall & Smith (see also Sm ith & Wal­

ton, 1989) was th a t of an exponential growth as X  —► oo. This option is no longer 

possiblef as it depended on direct forcing term  in the W -equation th a t is not 

present in the ‘corrected equations’. Thus, when the option of fin ite-distance- 

b reak-up  is not possible, we do not have the alternative ‘exponential-possibility’ 

to lead to very quick disturbance-grow th. These can be seen to be the only possible 

options, for the interaction evolution, due to similarity reasons.

However, there is a further option, mentioned by Hall & Sm ith, th a t is still 

feasible; th a t of decoupling due to  linearisation. Here the TS disturbance P  be­

comes very small/negligible, and the vortex flow then grows slowly on its own 

with downstream variable X  from its initial upstream  state. However, this op­

tion is ultimately unstable to the TS-waves since the non-parallel-grow th term , 

proportional to A&, will dom inate the vortex skin friction A33.

§3.5.3 The transonic and hypersonic lim its.

In this subsection we are interested in whether an asym ptotic description of 

the interaction equations and coefficients is possible in certain limiting cases for 

the value of the Mach num ber. There are three obvious limiting cases to consider; 

here we consider two of them , the th ird  case, corresponding to the incompressible 

lim it, was considered (incorrectly) by Hall & Sm ith and will be considered in the 

next section.

The Mach num ber tending to unity.

In his study of the ‘compressible’ TS-eigenrelation and its properties, Smith 

(1989) investigated various limiting cases, including those of M 0Q —* 1 and M —>

00. Further investigation of the large M ach num ber case has been carried out by 

the present author and progress m ade is reported  in the next chapter of this thesis,

f  unless K  — 0 0 =  4 5 ° . For this single value of K  the vortex-wave interaction

breaks down as there is no forcing. We do not consider this singular case in this study.

91



whilst the former case, the so-called ‘transonic lim it’, has been further investigated 

by Bowles & Sm ith (1989) and Bowles (1990).

The ‘transonic lim it’ will be considered first. The second case (the so-called 

‘hypersonic-lim it’) is found to be very similar but we consider it separately because 

of the further implications th a t follow from it. W ithout loss of generality, we 

suppose th a t the flow is (just) supersonic and define

m  = ( M l - 1)5, (3.5.17)

and suppose th a t rh is small. Smith showed th a t, in this case, the TS-m ode 

quantities behave like

(a ,/? ,f l)  ~  * a * ,m ~  * f l* ,m~ * Cl*) +  • • •. (3.5.18)

These result in K  and the interaction coefficients a, b and c needing to  be rescaled. 

We find th a t

( a ,6,c) ~  (ra - 4a*,77i- 1&*,77i- 1c*) -f • • •,

where a* ,b* and c* are all 0 (1 ) and can be easily found. Thus, the in teraction- 

coefficients appearing in the interaction equations have the followibehaviour:

(c ir, c2r) ~  rh~*{c*l r , c jp) +  • • • , c jr , c\T ~  0 (1 ), (3.5.19)

which results in the interaction scales X , Y ,  the vortex disturbances r ,  A33, W  and 

the TS- pressure am plitude P  needing to be modified by the inclusion of ra-factors;

(X , T , r ,  A33, W, P)  = ( m i x * 1m i Y * , m i r * 1m i \ l z , m l w mim i i p m) +  •••.

(3.5.20)

The last two results can be (and have been) used to check numerical results, for 

the general supersonic case, by providing a ‘transonic’ asym ptote. We do not 

consider the transonic limit any further—the author is not aware of any vortex- 

wave formulations for the transonic regime itself.

The large Mach num ber limit.

A nother limiting case th a t Smith (1989) went on to  investigate was the so- 

called hypersonic limit when M 1; this limiting case leads to some interesting
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consequences for the whole triple-deck structure (see also C hapters 2 and 4, of 

the present thesis.) Thus it would be most instructive to consider the same limit 

here, as our interaction structure is, of course, dependent to a great extent on the 

underlying triple-deck scales.

F irst, we recap the results of Smith (see also C hapter 2), before going on 

to investigate the result of large Mach num ber on the interaction-coefficients, 

equations and length-scales; the la tte r leading to a significant conclusion. For 

Moo 1 the m ain features revolve around the small regime

(a , 0, n) ~ (mJ  a, mJ p , M-1 n) h , (3.5.21a)

where a , /? and Cl are 0 (1 ); the eigenrelation reduces, at leading order, to

Ai
K (£o fo =  -

i * n
2~  * 

d*
(3.5.216)

Note th a t we have a ,/?  and Cl appear in the interaction coefficients, (3.3.13), 

so we m ust now investigate their large-Moo properties, in the light of (3.5.21). 

After a little m anipulation we obtain the behaviours

a = M]q a +  • • •, 6 =  6 +  • ■ • and c =  c +  • • •, (3 .5 .2 2 a -  c)

where the leading order coefficients are given by

. 2 f1/32£>|0A - 2 ,/ 3 t  . 2 , - 1a =  --------- ------------- i(p —ex. ) *
a

(32 — a 2 

3d2 + 1

6 =
2fi/3 D ( qA  5(/3 — d  )5

and c = iD£oA

3 3d

,2 (2fJ2 , pf2\+
6d

(3.5.22 d - f )

Thus,

(c i ,c 2) =  M oo? (c i, c2) H , where (c i,c 2) =  [ t , r- I •
a a

We could take futher Hmiting cases such as those described by Sm ith (i.e. 

consider the large- and small-/? limits) but here we are interested to see how these 

sizes for the interaction-coefficients, coupled with the ‘hypersonic-lim it-form s’ of 

the triple-deck scales, affects the interaction. Recalling th a t a  ~  c ir ~  c2r ~
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Moo1 , (3 ~  MooJ and I f  ~  — M ^  as Moo —► oo, we see th a t there is a need to 

rescale the quantities appearing in the interaction equations, in this limit. We 

write

( X , T , t ,A33, W , P )  =

( M £ X ,  M "  y ,  M ^ f ,  M ^A 33, A f^ w , M ^ P ) ,  (3.5.23a — e)

where the unknown powers, 7n,n ,/,p ,fc  and s, will be determ ined so th a t the 

interaction-equations remain as intact as possible, at leading order. In fact, the 

interaction-equations are recovered intact if we choose

3 1 3
l = p = rn = k =  - ,  n  =  -  and s =  — —; (3.5.23 f  — j )

giving the hypersonic-limit-interaction-equations

Tyy -  Yr% = - 2 0W, Wyy ~ ™ x  = °»

P X  r ^ b X  +  C2rA33) P  =  0, A33 =  f ( X  , 0 ) ,

with boundary conditions

W ( X ,  oo) =  f ( X t oo) = T y (X ,  0) =  0, W ( X ,  0) =  20 K P 2 (X ) ,  

Q2
where K  =  — .

Cl

These appear to be exactly the same, in th a t all the term s are still present,

bu t this hides the fact th a t the whole m ulti-layered boundary-layer structure is

radically altered as the Mach num ber increases to  such a size tha t it is the same

order as an inverse power of the Reynolds num ber. It was shown in the previous

chapter (see also Sm ith, 1989) tha t as M 0Q /*  Re  9, the triple-deck streamwise 
_ 3

lengthscale, Re i X ,  rises to become 0 (1 ) in size; implying th a t a norm al- 

m ode decomposition is no longer rational because the of non-parallelism of the 

underlying, growing boundary-layer is now a leading-order effect. Further, in this 

lim it it was shown th a t the lower-deck thickens to coalesce with the main-deck.

This collapse of the underlying com pressible-triple—deck, as the Mach num ­

ber increases, will obviously occur for our current concern, the large Mach num ­

ber behaviour of the vortex-wave interaction described in the earlier sections of
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bke
this chapter. However the large Mach num ber destiny of^buffer-layer (in par­

ticular, its thickness) and the am plitude-m odulation scale remain to  be estab­

lished. Intuitively, as the buffer-region is ‘sandwiched’ between the lower- and 

m ain-decks which merge into a single viscous layer in this limit, we would also 

expect the buffer-region to collapse into the same viscous layer. Similarly, as the 

m odulation-scale is ‘sandwiched’ between the trip le-deck’s streamwise lengthscale 

(which emerges as 0 (1 ) in this Mach num ber lim it) and the 0 (l)-len g th sca le  of 

the underlying flow, we would expect th a t the m odulation-scale also lengthens to 

th a t of the underlying base flow (as M 00 S  P e ^ ) . We now show th a t these are 

in fact the case, by formally considering the large Mach num ber properties of the 

scales involved (cf. §2.3.4).

Recall th a t, in the streamwise direction, we have the multiple scales,

dx — ■> dx +  S ^ d x  + R e t K - ' d x ;  (3.5.24)

necessary to capture the vortex-wave interaction. The quantities K \  and 82 are 

as defined by (3.2.1c) and (3.2.18a), respectively. In the large Mach num ber limit, 

we have seen tha t

_ 3 _ 3
d x  Moo4 whilst d x  a  Moo^,

so th a t the unsealed lengthscales, L w and L v say, of the TS-waves and the m od­

ulation of the induced vortices, respectively, are

3 3 3
L w ~  R e ~ 8"K i M ^  and L v ~  ^ M ^ ,  bo th  <C 1.

In the last chapter, we saw th a t, for the Sutherland tem perature-viscosity relation,

15
K i  ~  M oF, (3.5.25)

and so
27

L w ~  Re~& Mol , S '  0 (1 ) , as M 0Q S  R e ? .

As  far as the am plitude-m odulation scale is concerned, we find th a t

3 1 3  27
L v ~  S2 M i t -  R e - T S K f M l ,  ~  R e ~ T S M £ ,

S O (  1), as Moo S  R e* .  (3.5.26)
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Thus, as predicted earlier, this m odulation scale does indeed rise to 0 ( l) -s iz e  in 

this limit of the Mach num ber.

We now consider the buffer-region. This was found to lie a t the top of the 

lower-deck, where the lower-deck norm al-variable Y  =  S Y . For large Mach num ­

bers, we have found, (3.5.23), th a t the buffer-region is characterised by the location 
_ I  _

where Y , =  M 004 Fr, ~  0 (1 ). Thus the buffer-region lies where

Y ~ 6 M k ,
1 - 1 I

~  R e T S R 1 from (3.2.18b),
i    l

~  .Re 16 Moo1* 5 from (3.2.25),
i l i

- t  O ( R e W )  ~  0 (A f£ ) , as /  R e * .

(3.5.27)

Recall th a t (see (2.3.33)) for large Mach num ber, the lower-deck variable, y ,  also
1

scales on M 0c; in fact Y  ~  M&  — hence from this and (3.5.27) we deduce th a t the 

buffer-layer merges with the lower-deck, which in tu rn  coalesces with the m ain - 

deck. Thus three sub-boundary-layers, previously present, have all merged into 

one single viscous layer.

Summarising, when M —> Re  9 the four-layered, short-scaled structu re  un­

derlying the vortex-wave interaction collapses into the tw o-tiered, long structure 

found by Smith (1989), discussed in Chapters 2 and 4 of the present thesis.

§3.6. R ESU LTS, D ISC U SSIO N  A N D  C O N C LU SIO N S.

This study was m otivated by the desire to find out w hat changes (if any), to 

the theory, predictions and conclusions of the original work by Hall & Sm ith, are 

brought about by the inclusion of compressibility-effects. However, the changes 

brought about by the correction of the former tu rn  out to be more significant. For 

this reason, and for later comparison with the results for compressible flows, the 

results for incompressible flow will also be considered, in §3.6.2. F irstly  though, 

in the following subsection, we show how the interaction equations can be ‘nor­

malised’ so th a t their solution (for specified initial disturbance(s)) depends merely 

on two ‘similarity param eters’, each of which can (only) take the value ±1  (assum ­

ing th a t K  ^  0). The num erical solution of these normalised interaction equations
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is then briefly discussed, before presenting typical solutions for ‘b o th ’ choices of the 

second sim ilarity-param eter; the sign of the first being fixed on physical grounds.

§3.6.1 T h e  in te ra c t io n  e q u a tio n s  re n o rm a lis e d .

In §3.5.2 we considered possible limiting forms, for solutions to  the  interaction 

equations as X  —> oo, and found th a t the sign of the quantity K c 2r was crucial in 

deciding whether particular limiting forms were, in fact, possible. This suggests 

th a t the interaction equations, (3.5.1), can be renormalised. This being desireable, 

we investigated further and found this was, indeed, the casef.

Writing

X  =  |clrAi|"ix*, Y  =  |clrA,,rffy*, W =

P = \cs\~5P* and r  =  —Afi2 K \c \ r\b\~ $ |c3|_ 1t* , (3.6.1a — e)

where
4 Q2

c3 =  ~ K c 2r  --------- 5-, (3.6.2)

leads to the normalised system

-  Y*W*X. = 0, r* .y . -  Y*t*x . = W *

and Px * +  [sgn(cir Ah)X* — sgn(KC2 t ) t * ( X *, 0)] P* =  0, (3.6.3a — c)

which m ust be solved subject to initial conditions (at X*  =  0), together w ith the 

boundary conditions

W *(X *,oc) =  r* (X* ,oo)  = Ty„(X*,0) =  0 and W *(X *,0) =  P*2{X*).

(3.6.3 d - g )

Here, the function sgn(z) returns the signiture of x:

. N \  x  :if x >  0
sg11!®) ^ _ x . otherwise;

in (3.6.3c) we have used the fact th a t sgn(c3) =  —sgn(itTc2r )-

f  We note that such a renormalisation is possible because the system, and the pressure-equation 

in particular, is non-linear.
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Thus, the interaction equations (and hence their solutions) are dependent 

only on the initial conditions imposed; sgn(cir A&) and sgn(ATc2r )- In all the nu­

merical calculations carried out, it was found th a t c \r >  0, whilst Aj, <  0 for 

a growing ‘B lasius-sim ilarity- - type’ boundary layer — appropriate to the
h

present study, if we assume tha t there is no significant wall-cooling or pressure- 

gradient effects. We therefore choose sgn(cir Ai>) =  —1 and, apart from the initial 

conditions (which m ust be consistent with the interaction equations), the only pa­

ram eter left in the problem is sgn(ATc2r )- Thus, with hindsight, it is not surprising 

th a t the (predicted) solution properties for, la rg e-X , depend crucially on the value 

of sg n (ifc2r)- Recall tha t earlier, in §3.5.2, we noted the following predictions:

, jy. x J  > 0 : Algebraic response, as X  —> oo , v
sgn{ K c 2 r ) j  <  Q ; F i n i t e _ d i s t a n c e  break-up, as X  -> A " ,   ̂ j

for the behaviour of the solutions to the interaction equations.

To check these predictions, the normalised system , (3.6.3), was solved num er­

ically; for both  possible values of s g n ( K c 2 r ) i  and for different (consistent) initial 

conditions. The large-X  (X * ^>1) properties of the solutions were found to de­

pend solely on sgn(Arc2r); the initial conditions were found to affect only the 

initial development of the imposed disturbances. The equations were solved by 

taking ‘central differences’ in 7*  and ‘forward differences’ in X*  (following the 

m ethod of Hall h  Smith); the appropriate num erical checks were performed.

In Figures 3.3a,b, we present typical results for bo th  values of sgn (ifc2r)- In 

bo th  of these com putations the system was initialised at X *  =  —1 (upstream  of 

the neutral TS point) using

p* = p*, w" = p ;2(i + y 2)exp[-r*2], r* = (i -  + r*2)exP[-y*2],

(3.6.5a — c)

with Pq = 0 .1 . Note tha t this initial state, which is com patible with the interaction 

equations plus boundary conditions, corresponds to a ‘m ixed’ wave/vortex state. 

Moreover, we see from the ‘forcing’ boundary condition (eg. (3.6.3g)) th a t adm is­

sible initial states cannot consist off just the waves alone — longitudinal vortices 

m ust be initially be present (see later discussion). It appears to  the author th a t 

the initial states used by Hall & Smith (see their section 5; particularly figures 

2-5) are inconsistent with their system of interaction-equations plus boundary
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conditions; they do not appear to satisfy the boundary conditions. In their study 

of vortex/w ave interactions, Smith & Walton (1989) do not comment on the initial 

conditions they choose.

R eturning to Figures 3.3a,b, we see th a t these num erical results are in full 

agreem ent with the theoretical large-X* predictions, (3.6.4). Thus, in the following 

subsections, it is sufficient to calculate values of sgn(X c2r ) in order to determine 

the  solution properties for large-X* (of principal concern here, this vortex-wave 

interaction just possibly being the first stage in a sequence of non-linear theories 

leading to  a plausible theoretical model for the transition processes).

§3.6 .2  T h e  in c o m p re ss ib le  case (Moo =  0)*

In their (first such) study, Hall &: Sm ith considered ‘th is’ vortex-wave in ter­

action for incompressible boundary-layer flow. They cleverly deduced the scales 

and form ulated the interaction (as described in earlier sections); unfortunately, 

they m ade two errors in their analysis, both  of which have a significant effect on 

the  results and conclusions. The first of these errors (m ost kindly pointed out to 

th e  current author by Dr. P. Blennerhassett and Prof. F .T . Sm ith) leads to a 

simpler system of interaction-equations (see earlier) as well as leading to changes 

in the possible large-X  states and the param eter values for them  to be possible. 

The second (concerning the missing A33^-term  in the forced TS-mode-equations) 

was spotted  by the current author and leads to  a corrected form for c, and hence, 

a corrected value for the crucial quantity C2r -

The interaction coefficients, a and 6, are given by (3.4.8a,b), whilst (3.4.11c) 

gives the correct form for c — the incompressible case, of course, has /  =  a 2 +  /32 

and g = (a 2 + /? 2) 2 . In Figure 3.4 we have plotted the resulting numerical values 

for the im portan t interaction quantities, C\T and C2r, versus TS-wave obliqueness 

angle 0 — recall th a t, for incompressible flow, all such wave angles are possible. 

Note th a t c\T > 0 for all 6; whilst C2r has one zero, a t 9 ~  32.21°. Recalling the 

definition of X ,
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Figure 3.3a. Numerical solution of interaction equations (3.6.3) with

K c 2 r  < 0: F inite-distance break-up.
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Figure 3.3b. Numerical solution of interaction equations (3.6.3) with

K c 2t  > 0: Algebraic response at infinity.
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Figure 3.4. The interaction coefficients, c\r and C2r} versus wave-angle 6, for 

the incompressible case { M ^  — 0).
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we see th a t, when Moo = 0 ,

\ f - 1  : if 32.21° < 9 < 45°
sgn( K c 2r) =  { +1 ; otherwise7

Thus, from this last result and the numerical calculations described in §3.6.1, 

we deduce the following: (i) if 32.21° <  6 <  45° then the solution to  the interaction 

equations will ‘b low -up’ in a finite-distance; otherwise (ii) the solutions will grow 

slowly (far slower than  the linear TS-solutions if there were no vortices present), 

with am plitudes proportional to  algebraic powers of X*, as X*  —► oo. Note th a t 

these conclusions are quite different from those of Hall & Smith (who concluded 

th a t the ‘finite-distance b reak -u p ’ option was most likely, apart from the small 

range 45° < 9 < ~  50° where an ‘exponential-grow th’ option was favoured). We 

have found th a t the theoretically-exciting ‘finite-distance b reak -u p ’ option is now 

the exception, ra ther than  the rule.

§3.6.3 T h e  su b so n ic , s u p e rso n ic  a n d  h y p e rso n ic  cases.

For subsonic (Moo < 1) and some supersonic (1 <  M 00 < ~  1.15) flows, the 

properties of the interaction-coefficients were remarkably similar to  those found 

for the incompressible case i.e. graphs of c ir ,C2r against 6 appear very similar to 

Figure 3.4. However, the TS-wave angle restriction

0 >  ta n _ 1[(M ^ — 1) 2],

was found to have a significant effect for ‘m ore’ supersonic flows — essentially it 

can be thought of as preventing wave-angles tha t would allow sgn(X c2r ) <  0 *— > 

finite-distance b reak-up  option.

This is illustrated more clearly in Figure 3.5 where all the results are sum ­

marised; we see th a t the $ — Moo plane splits into four regions (labelled I - IV, as 

shown). Region IV corresponds to the ‘barred’ area, where no neutral TS-m odes 

are possible. We see how the border of this region acts as an ‘ab rup t cu t-o ff’ 

to the larger-Moo extent of Region II ( finite-distance break-up  option). This is 

so much so th a t, for Mach num bers above y/2, the possibility of finite-distance 

b reak-up  has gone. Thus sum m arising, in the subsonic case the results are almost 

identical to the incompressible case; whereas, in general, the finite-distance
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Figure 3.5. The regions of the 6 - M o o  plane.
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Figure 3.6. Spanwise wavenumber /3 and the interaction coefficient C2r , versus 

0, for Moo — 3.
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break-up  eventuality is not possible for supersonic flows, mainly due to  the severe 

cut-off restriction (a Re  1 effect). To illustrate this last point, in Figure 3.6 

we have plotted C2r versus /? and $ — note th a t (i) there is no zero for C2r > and 

(ii), the very oblique wave-angles encountered (so tha t K  is always negative and, 

hence, K cit is always positive).

The last set of results th a t we present are for hypersonic flow over a wedge, 

as considered by Cowley & Hall (1990), in which a shock is fitted into the  u p p er- 

deck (at y =  y3, where y  is the norm al-variable of the upper-deck), leading to  a 

modified form of Sm ith’s hypersonic TS-eigenrelation (see the paper by Cowley 

&: Hall for all details of the form ulation). In Figure 3.7, we present results for the 

first (lowest) neutral-curve for the case y a =  1 — here clch, P e n  ~  ^ (1 )  are 

a,/? of th a t paper. It is sufficient to note th a t, in our notation,

P  P c h  i-  ~  Moo------  >  1,
a a c H

and so the waves they consider are (generally) very oblique. Of particu lar interest 

here is the (small) interval where C2r > 0 <-> K c 2T < 0 <-> finite-distance break-up  

option; this is an effect of the shock. No such interval is found for th e  ‘higher’ 

neutral curves; this interval appears to be a feature of the ‘lowest’ neu tra l curves 

only (for each choice of y 3) and corresponds to ‘crossing’ the ‘divide’ o lch  — P ch-  

Also in Table 3.1, we refer to the case of nonaxisym metric supersonic flow 

over an axisym metric surface, as studied by Duck & Hall (1990). Unfortunately, 

the author has not found tim e (as yet) to  calculate any quantitative values for 

the interaction coefficients. However, as the governing TS-eigenrelation is quite 

different from th a t for planar supersonic flow, the results are awaited w ith interest.

Finally, we report th a t for the ‘hypersonic and transonic’ limiting cases studied 

in §3.5.3, the numerical results and the predicted asym ptotic behaviours (for the 

interaction coefficients) were in extremely good agreement.
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Figure 3.7 The quantities a c H  and C2r , versus (3cH,  for hypersonic flow over 

a wedge: y 3 =  1, lowest neutral curve.
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§3.6.4 F u r t h e r  d iscu ss io n  a n d  closing r e m a r k s .

We conclude this chapter with a few comments; m any of the conclusions of 

Hall &: Sm ith carry over to the present study and so we concentrate on compress­

ib ility-related aspects here. In this chapter we have shown th a t, within the trip le- 

deck framework (Re  1), tha t pairs of sm all-am plitude Tollmien-Schlichting 

waves and a longitudinal vortices can interact, leading to  m utual growth. We 

have seen th a t two possible ‘eventualities’, for the dow nstream  evolution of the 

interaction, exist; one in which the solutions grow relatively slowly (and ’respond 

algebraically’) as j  —> oo; whilst the other term inates a t a finite-distance in a 

‘b reak -u p ’. Further, we have seen tha t the la tte r is no longer possible, in gen­

eral, for supersonic flows (Re  ^>1) .  Hall h  Sm ith deduce the scales and in­

teraction structures for the next, higher-am plitude stages resulting from these 

‘first’, weakly non-linear vortex/wave interactions— they are currently investigat­

ing these ‘strongly non-linear’ interactions.

Note th a t in the transonic and hypersonic limits the interaction X-scale must 

be rescale^in  the transonic limit this m odulation scale shortens, whilst in the 

hypersonic limit the opposite is true. The investigation of such vortex/wave in­

teractions in transonic and hypersonic flows (not their ‘lim its’) should prove inter­

esting — note th a t the former flow has been studied by Bowles & Smith (1989) 

and Bowles (1990), whereas the la tter flow regime is discussed, a t length, in the 

next chapter. In C hapter 7 we consider an alternative vortex/w ave interaction, for 

hypersonic flow over a curved surface, involving inviscid (Rayleigh-type) modes 

and G ortler vortices.

O ther effects which could be incorporated into the present theory include 

pressure—gradient effects; wall-cooling effects (see Seddougui, Bowles & Smith, 

1989); and spanwise-variation (cf Smith & W alton, 1989). Recent investigations 

of vortex/w ave interactions include the papers by Hall & Sm ith (1988, 1990) and 

B ennett, Hall &: Sm ith (1991), who consider curved channel flow; whilst Hall & 

Sm ith (1991) consider ‘strongly non-linear’ interactions.
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C hapter 4

T h e tw o-tiered  in teractive  stru ctu re  governing  
th e  v iscou s stab ility  o f  su p erson ic  flow in 

th e  hyperson ic lim it.

§4.1. IN T R O D U C T IO N

§4.1.1 Introductory discussion.

In this chapter we investigate the two-tiered structu re  th a t results from the 

‘collapse’ of the triple-deck structure when the Mach num ber reaches a certain large 

size. This new structure was first deduced by Sm ith (1989) from the (supersonic) 

triple-deck scales based on the Chapman-law form ulation.

In C hapter 2 we have seen th a t the Sutherland-law form ulation leads to quan­

titative alterations (i.e. different length-scales and size of the Mach num ber for 

where it occurs ), bu t qualitatively the structure is the sam e as deduced by Smith. 

In the subsection below we show how this structu re  can be deduced by an al­

ternative, simpler physical argum ent. In the  previous chapter we have seen th a t 

the m echanism for the weakly nonlinear interaction between Tollmien-Schlichting

waves and longitudinal vortices, supported by the triple-deck structure, simulta-
1

neously ‘collapses’ along with the la tter as Mqo —» R e ? . Thus, when the Mach 

num ber is of this order, we expect the vortex-wave interaction(s) to be supported 

by the ‘new’ two-tiered structure. The possibility th a t such vortex-wave interac­

tions happen in /a re  responsible for the earlier stages of flow transition obviously 

necessitates the need for an understanding of the present tw o-tiered structure.

In §4.2 we form ulate the equations governing the flow properties in this region 

and deduce the pressure-displacem ent law. In §4.3 we discuss the consequences 

of the scales and governing equations before going on to  consider the linearized 

problem . The numerical solution is discussed. In §4.4 we look for asym ptotic 

solutions based on the high-frequency approach. We find th a t the usual m ethods 

th a t work so well for the triple-deck structure do not carry over (at least not easily). 

In §4.5 we consider even larger Mach num bers and try  to  deduce the appropriate 

balances for the governing equations.

109



§4.1.2 A n  a l te rn a t iv e , p h y s ica l a rg u m e n t .

Here we show how the conclusions detailed in C hapter 2, concerning the 

im portance of the regime where M qq ~  i 2e$ , can be deduced much more quickly 

and elegantly by extending a physical argum ent due to F.T . Smith. This argum ent 

also has the advantage th a t it is not based on a linearised solution of the triple-deck 

equations: the argum ent retains ‘nonlinearity’. It serves as a useful verification of 

the eigen-relation-argument approach due to Smith (1989) (see C hapter 2 for the 

generalisation to a non-linear tem perature-viscosity relation), as well as probably 

being more instructive to the non-specialist. Further discussion follows, bu t first 

the physical argum ent is outlined.

The formulation is th a t given in C hapter 2 , and the argum ent is a generali­

sation of tha t given by Sm ith (1982, pp. 222-223). We consider the large Mach 

num ber (supersonic) boundary layer flow over a flat plate; in fact we consider a 

particular streamwise location and suppose th a t breakaw ay-separation and stabil­

ity characteristics are governed by a small (local) three-dim ensional three-layered 

theoretical structure (the ‘trip le-deck’), located at tha t plate-position. We sup­

pose th a t this structure has length Z, spanwise-width k and th a t the three layers 

(denoted by I, II and III, say) are characterised by heights 6A, A , H  (in increasing 

size), where Z,fc,£, A , H  <C 1 are to be determined; see Figure 4.1.

Let us now deduce the unknown lengthscales using purely physical reasoning. 

The classical boundary layer ‘fills’ layers I and II — the th ird  layer will have 

inviscid character and is necessary due to  the short streamwise lengthscale Z. Thus 

we deduce th a t, for a power-viscosity law p, oc Tw (0.5 < u; < 1),

A ~  R e ~ ? M ] £ U}, (4.1.1)

and th a t the lengthscales H  and k are governed by the supersonic 3-D P ran d tl 

G lauert pressure-equation:

( A f o o  l ) p * z  —  Py-y ~  P z z  =  0 ,  ( 4 . 1 . 2 )
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Figure 4.1. The three-layered, short-scaled ‘triple deck’ struc tu re  governing 

the (‘low er-branch’) viscous stability and separation properties of 0 (1 ) Mach num ­

ber flow over a flat plate. Layer I: the lower deck; flow is nonlinear and viscous. 

Layer II: the m ain deck; flow is rotational bu t inviscid. Layer III: the upper deck; 

flow is irro tational and inviscid.
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so familiar in the classical inviscid aerodynam ic-theories. So, for large Mach 

num ber, it im m ediately! follows th a t we require

I
H  ~  ~  k, (4.1.3)

leaving only I and 8  to be determined.

We now suppose th a t, close to the plate, in layer I, a non-linear viscous 

response is forced due to an induced pressure gradient. This layer is hot, the 

tem perature  being 0(M%0), which in tu rn  fixes the sizes of the  viscosity and density 

in this layer, via the viscosity-relation and gas law respectively. Due to  the thiness, 

8 A, of this layer the oncoming velocity profile is very well approxim ated by a 

uniform shear. Thus the streamwise velocity, u , is 0(8) ,  while balancing inertial 

and viscous term s requires 8  =  0( 1S). The retention, here, of all term s in the 

continuity equation requires th a t v ~  8 2 l ~ l  A ~  6-1 A and w ~  8 k l ~ 1 

where v and w are the norm al and spanwise velocity com ponents of Layer I.

We now come on to consider the induced-pressure balances in layer I. Bal­

ancing its gradient with inertial term s in the z-m om entum  equation requires (re­

m em bering th a t the  density here is 0 ( M <̂,2))

p  ~  8 2 M ^ 2 , (4.1.4a)

but the balance in the z-m om entum  equation requires

p  ~  8 2M ^ 4. (4.1.46)

Thus, for large Mach num bers of concern here, we cannot retain  bo th  pressure- 

gradient balances. The streamwise pressure-gradient m ust be dropped, else the 

spanwise pressure-gradient would be solely leading order in the  z-m om entum  equa­

tion. Note th a t this is basically an inviscid effect; due to  the  necessity to  retain all 

term s in the P ran d tl G lauert equation of the inviscid layer III. Thus separation and

stability process th a t are governed by this viscous-inviscid interactive structure

are three-dim ensional in nature. We have seen in C hapter 2 (see also Sm ith, 1989)

|  The p Zz  balance must be retained for solutions, having harmonic X — and Z— dependence, to 

this linear equation that decay as y  —► OO.
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th a t the sam e result was deduced from the linear Tollmien-Schlichting mode eigen- 

relation. Finally, to balance time-derivative at leading order requires dt ~  udx,

i.e.

t ~ l- ~ 6 2. (4.1.5)
8

Layer II is displaced in an inviscid m anner by an am ount A  ~  0 (£ A ) due 

to  the thickness of layer I, the motion being linearized b u t ro tational, while the 

leading-order pressure is unaltered across layer II. This displacem ent effect (i.e. 

v ~  A x) induces an inviscid pressure response (which in tu rn  satisfies the P rand tl 

G lauert equation given above) of size

H A
I2

~ 8 ~2 M ^  A; (4.1.6)

easily deduced from the y-mom entum  inviscid Euler equation. Again, the final 

element of the argum ent is th a t this pressure size should coincide with th a t at 

the plate, in layer I, so th a t the classical boundary layer theory no longer applies. 

Thus, we require th a t

6 " 2M " 1 A ~  8 2 M~*  ^  ~  A . (4.1.7)

Substituting for A, the height of the classical boundary layer for large Mach 

num ber, yields the sizes

8 ~  and / ~  83 =  R e ~ I m J , (4+‘‘'>, (4 .1 .8a,6)

for the small param eter 8 , used in asym ptotic expansions, and the short stream - 

wise lengthscale Z, of the in viscid-viscous interaction. This lengthscale and ‘sm all’ 

param eter increase in size as the Mach num ber increases, becoming 0 (1 ) when

(4.1.9)

This result is merely a generalisation of those deduced by Sm ith (1989) for a linear 

viscosity law, where w =  1; and in C hapter 2, for Sutherlands form ula leading to 

a; =  | .  Thus we have shown how, via a first-principles physical argum ent, the 

im portan t conclusion of Smith (1989), concerning the im portance of non-parallel 

effects for large Mach num bers, can be deduced. Note th a t 8  is closely related 

to the param eter k  of the la tte r paper and the scaled M ach num ber, m , to be
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defined in the next section. This approach has also highlighted the point th a t, for

large Mach num bers, the usual small param eter e = Re~% employed in theoretical

studies based on the triple-deck structure, should be replaced by Re~% M&  +  ̂ =

e say. Thus,as the Mach num ber increases, e increases and all of the orders of the

perturbations increase (but remain ordered) until all orders become 0 (1 ) when

e 0 (1 ). So, this regime, where I ~  0 (1 ) signifies the to tal or absolute collapse

of triple-deck theory, in the present context. The new viscous-inviscid interactive
- t n g

structure  th a t results is discussed in the follow^sections of this chapter.

We now qualify a couple of statem ents m ade in the last paragraph. F irst, 

by the ‘present context’ we m ean supersonic flow over a flat plate as described 

in C hapter 2. However in other contexts (see, for example Brown, Stewartson &: 

W illiams, 197-5; Brown, Cheng &: Lee, 1990), it is possible to form ulate a triple- 

deck-type structure for much larger Mach num bers, thus appearing to contradict 

the restriction

M x  <  i ie I/2(4+u,) (4.1.10)

discussed above. In fact there is no contradiction: these papers indicate th a t it is 

possible to ‘fix-up’ I and 8 to be small (in the notation used above) by a couple 

of m eans: either by requiring 7 — 1 <C 1 (i.e. the Newtonian approxim ation), or 

by a certain, significant wall-cooling. The relevance of the form er restriction is 

doubtful, but the la tte r may be of practical im portance because some wall cooling 

is almost certainly necessary to protect the wall from very high tem peratures. 

Also, both  of these papers consider an interactive basic flow, just behind a shock, 

and the distance from the leading edge is shown to be significant.

The second comment to be m ade concerning the preceding paragraph is th a t 

results based on the supersonic triple-deck form ulation (i.e. the T -S  eigenrelation) 

may be of dubious validity well before the regime where non-parallel effects become 

im portan t at leading order, because the height 8 , of the lower-deck (labelled Layer 

I in the above) relative to the boundary layer thickness, also increases to  0 (1 ). As 

this layer is no longer so thin as before, firstly, it m ay not be rational to  consider the 

oncoming velocity profile to be well approxim ated by a uniform (wall) shear, and 

secondly, it may also not be rational to  still consider this layer as being ‘quasi’- 

incompressible; more effects of compressibilty than  just the wall-values of the
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basic flow may be necessary. It is fair to conclude th a t, in general, the triple-deck 

structu re  does not survive increasing Mach num ber.

We end this subsection with a couple of rem arks. The physical derivation, 

described above, may be be instructive to  the non specialist; highlights points th a t 

m ight be otherwise missed; and we have not had to linearize the problem at any 

stage, in contrast to the T -S  eigenrelation approach. We are cautious in claiming 

th a t the same reasoning applies to  similar flows; such a generalisation may result 

in possible significant differences not being immediately realized.

The same type of physical argum ent certainly will apply to o ther similar flows 

bu t will not necessary lead to similar conclusions; there are m any compressible 

boundary-layer problems tha t appear similar to  the flat-p late  problem, considered 

here (see also Smith, 1989), but apparently-slight variations, such as wall-cooling 

(Seddougui, Bowles & Smith, 1989; Brown, Cheng &: Lee, 1990); curvature-effects 

(Duck & Hall, 1990) and including the effects of a shock (Brown, Stewartson & 

Williams, 1975; Cowley & Hall, 1990; Brown, Cheng & Lee, 1990), can lead to 

m arkedly different results and conclusions.

The preceding discussion in this subsection has been m otivated by such an 

apparent ‘over-generalisation’ m ade by Sm ith (1982) when he concludes the phys­

ical derivation of the argum ents behind the steady, two-dimensional incompress­

ible triple-deck scales, by stating th a t same argum ents would carry over to several 

o ther boundary-layer flows. However, if he had in fact applied his physical a r­

gum ent to large Mach num ber supersonic flows, as we have done so above, the 

facts th a t (i) norm al-m odes propagate at increasingly oblique angles, and (ii)

the crucial restriction on the validity of the norm al mode approach due to  non-
l S

parallel effects, M <*, <C R e Tff - for linear viscosity lav^ which are deduced from the

supersonic Tollmien-Schlichting eigenrelation in Smith (1989), would have been 

known a few years earlier. The la tte r paper does not m ention th a t such conclu­

sions could be deduced from a reasonably simple physical argum ent, ra ther th an  

having to resort to some subtle asym ptotic argum ents based on the eigenrelation 

and the complicated scales involved in its derivation. There are of course m any 

other examples where the effects of compressibility lead to significant changes to 

the conclusions of the ‘generic’ problem; this example was chosen because of its 

simple, bu t illustrative, nature.
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§4.1.3 The m ulti-layered  upper—branch structure at large M ach  

num ber.

So far in this thesis we have just considered the fate of the  lower-branch 

asym ptotic struc tu re  (triple-deck) as the Mach num ber increases. It has been 

shown th a t this s truc tu re  collapses into a much longer, tw o-tiered structure  by 

two different argum ents; one based on the linear Tollmien-Schlichting eigenrela­

tion (see C hapter 2), and the other based on ‘first-principles’- ty p e  reasoning (see 

previous sub-section).

However, there is a second ‘viscous-inviscid’ structure governing the viscous 

stability of the boundary layer flow—the so-called ‘upper-b ranch  s tru c tu re ’ cor­

responding to the high-Reynolds-num ber part of the u pper-b ranch  of the O rr- 

Sommerfeldf neutral curve. Here the so-called ‘critical layer’ is distinct from the 

wall — the corresponding low er-branch critical layer lies ‘a t ’ the wall: the lower- 

deck of the governing triple-deck structure comprises of bo th  the  Stokes layer 

(necessary due to the fast timescale in operation) and the critical layer (due to the 

unsteady, small disturbance).

As the Mach num ber becomes large we have seen th a t the lower-deck (contain­

ing the low er-branch critical layer) grows to merge with the m ain-deck (spanning 

the classical boundary layer). Thus, as the critical layer for the  upper-branch  

modes lies above th a t for the lower-branch we would expect the form er to be si­

m ultaneously “pushed-up” into the heart of the boundary layer (cf the  ‘Sandwich- 

principle’). Hence, w ithout any prior knowledge of the scales and resulting eigen­

relation of supersonic upper-branch stability theory, it seems very reasonable to 

postulate th a t, (i) the supersonic upper-branch  modes m ust be three-dim ensional 

and travel at ever-increasing oblique angles as the Mach num ber increases; and, 

more significantly, (ii) th a t the governing three-dim ensional, five-layered structure 

collapses into the sam e long, tw o-tiered structure, th a t the triple—deck collapses 

into, as M —» R e ^ . The first, a necessary pre-requesite for the second, follows 

immediately from the fact th a t the pressure disturbance in the upperm ost layer 

will satisfy the supersonic P rand tl Glauert equation — this inviscid layer plays 

the same role as the upper-deck does for lower-branch modes, where we have seen

|  Strictly, the compressible counterpart of this normal-mode approach
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th a t spanwise z-variation is necessary for the solution to decay as the freestream  

is approached.

The au thor is unaware of any theoretical work concerning supersonic up p er- 

branch modes; the corresponding incompressible cases were ‘system atically’ con­

sidered by Sm ith & Bodonyi (1980, 1982a) and Bodonyi & Sm ith (1981); whilst 

G ajjar & Cole (1989) studied the subsonic, two-dim ensional cases. As implied 

by the use of plural “cases” above, there is a slight complication inherent in the 

upper-branch  theory: the asym ptotic structures and solutions depend crucially on 

the second term s of the near-w all asymptotes of the basic flow profiles — there 

are essentially two such cases; one corresponding to Blasius flow (with insulated 

wall, if appropriate), and the other for flows with ‘p ressure-gradient’ (this group 

includes those with wall-cooling, if appropriate).

So, ra ther than  deriving the scalings for, and deducing the large Mach proper­

ties of the supersonic upper-branch  eigenrelations, we choose to  use an alternative 

approach th a t follows the on the lines of the physical argum ent described in the 

previous subsection which proved so successful in highlighting the low er-branch 

properties for large Mach num ber. The extra layers present result in the argum ent 

being more complicated; we outline the argum ent below — a knowledge of the 

‘workings’ of upper-b ranch  structure (see the last four nam ed papers) m ay benefit 

the non-expert reader and it is assumed th a t the previous subsection has been 

read.

Our starting  point is the small, three-dim ensional and five—layered structure 

sketched in Figure 4.2. In labeling the layers (Z l - Z5) and their dimensions we 

have tried  to  conform to the notation of G ajjar & Cole (1989) and the previous 

subsection. Strictly, the structure consists of four ‘stacked’ layers — Z5, Z3, Z2 

and Zl; whilst Z3 is partitioned by the critical layer Z4. All layers lie inside 

the ‘classical’ boundary-layer except Zl which lies in the inviscid freestream . We 

suppose th a t the structure  has stream- and span-wise lengthscales I and Jb, re­

spectively; th a t layers Z5, Z3, Z2 and Zl have (increasing) thicknesses 8 2 ^ , 8 1  A ,A  

and H , respectively; and th a t l,k, 8 2 , 8 i , A  and H  are all small quantities (to be 

determ ined).Further, we assume th a t there is a fast timescale operating; we write 

^  ~ i f l ,  with Q 1.
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Figure 4.2. The five-layered, short-scaled s tructu re  governing the ‘upper- 

b ranch’ stability of 0 (1 ) Mach num ber flow over a flat plate.
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Additionally, we assume th a t the disturbances 

(u(y) ,v(y)  ,w(y)  ,p{y) , 0 { y ) , p(y)  exp[i(od~l x +(3k~1z  -

-fc.c., (4.1.11)

have purely harm onic dependence in z ,z  and t\ th a t they are sufficiently ‘small 

enough’ th a t nonlinear effects can be neglected; and th a t the Mach num ber is 

large. Finally, we choose to consider neutral modes, so th a t the scaled, 0 (1 ) 

wavenumbers and frequency a , /? and f I are all real. Note th a t the short z-scale 

enables non-parallel effects to be rationally ignored (at the orders of concern here).

In layer Z l, the pressure-disturbance satisfies the supersonic P ran d tl Glauert 

equation and thus it immediately follows th a t

k ~  H  ~  -r— . (4.1.12)
M « ,

Again, A is the thickness of the underlying classical boundary-layer i.e.

A ~  (4.1.13)

where w comes from the viscosity-tem perature power-law.

Layer Z5 is merely the standard , so-called, ‘Stokes Layer’ which captures the 

viscous-effects which are now essentially trapped  at the wall due to  the effective 

high-frequency of the disturbance. Balancing unsteady and viscous effects easily 

gives

(4.1.14)

It is im portant to note tha t in this layer, and indeed throughout all the layers 

residing inside the classical boundary layer, we do not expect (cf. the lower-

branch) the streamwise disturbance-pressure gradient to appear a t leading order

in the z-m om entum  equations— basically because of the different stream - and 

span-wise lengthscales in operation. Thus, wherever possible, we choose to work 

with the z-m om entum  equation (in preference to  the z-m om entum  equation), on 

the basis th a t we expect all the usual upper-b ranch  balances to rem ain intact as 

the Mach num ber increases. Recall also th a t, as we are considering Moo 1, the 

sizes of the therm odynam ic quantities will be proportional to powers of Moo in 

these ‘boundary sub-layers’.
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Balancing the unsteady and pressure-gradient term s, in Z5, of the  2-m om entum  

equation yields

10 ~ p A f£ ,n " 1r 1;

whilst balancing the u x ,vy and w z term s of the continuity equation gives 

v ^ p M ^ Q - l A r 2 and u ~

So, in Z5, we write y  =  £2^ $ ,  with y  ~  0 (1 ), and the disturbances have the

form

p  =  p(°) + . . . ,  v =  A r 2»(0) +  • • •,

w = M i ,n - 1A r 1a.(0) + ---,  u =  M ^ f i -1r 1« (0) +  - - ;  (4.1.15a -  d)

here p^°\  and iZ^°) are 0 (1 ). It can easily shown th a t

*(0) -> v ^ y  +  as V °°» (4.1.16)

where Vj|2>’^0oo are 0 (1) constants.
SiThus, as we enter layer Z3, y  ~  1, resulting in the two term s of the large
o 2

y  asym ptote for v ^  occuring at different orders (in term s of the Z3 form ulation). 

The ratio  of these two term s has a non-zero imaginary part which m ust be ‘played- 

off’ against the im aginary ‘phase-jum p’ in v across the critical layer Z4, when 

crossing from Z3~ to Z3+ ; ensuring th a t solutions m atch properly across the layers 

— this is essentially the ‘upper-branch  m echanism ’. We appeal to  this notion 

below.

In layers ZS^, the Stokes layer analysis and large y asym ptote implies th a t 

here p and w have the same sizes as they had in Z5 b u t now v has the  form

a 3 - 0 r 4 r» — a  7—2V =  A l -i— i-1 /1'3) + ( 4 . 1 . 1 7 )

Note th a t we have only highlighted the term s of interest as far as the  upper-b ranch  

mechanism is concerned.

The term  denoted by v^1,3) is either the second or fourth in th e  asym ptotic 

expansion, depending on the  small-Y forms of the basic-flow, where Y  =  A _1y 

is th e ‘classical boundary-layer’ variable. In fact, it is the second te rm  if the wall 

is cooled; the fourth term  if the wall is insulated — here we trea t these two cases
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simultaneously as we are principlely interested in the s tructu res’ dimensions and 

not in deriving the eigenrelations. We require this term  to  ‘suffer’ the  im aginary 

phase-shift (across the critical layer, Z4) to m atch with the im aginary p a rt of 

a t the top of the Stokes layer, Z5. This essentially says th a t we require the  ratio 

of first - to - second/fourth  term s in the disturbance expansion for v in  Z3 to 

be the same as the corresponding ratio from the small Y  basic-flow asym ptotes, 

w ritten in term s of Y  =  8 i ~ xY  (the appropriate scaled norm al variable for Z3); 

grouped and ordered in term s of the small param eter £1 (see G ajjar & Cole, 1989 

for fuller details).

Thus we require

Cooled Wall 
82  ~  U r 3 : Insul L Waff ’

~a.fctf.dl
which, on substitu ting the known size of 8 2, yields the first condition

Si ~  (  Q~_\ : Cooled waU (4 .1 .18a,b)
I ft ? : Insulated wall;

between the unknown quantities ft,61 and I.

Note th a t in Z3, where we have assumed th a t the critical layer lies, the basic 

streamwise velocity still has its near-w all shear form

Ub ~  +  • • • •

So for the critical layer to actually be in Z3 we require the balance dt ~  Ub 9x to

hold in this layer, which yields the second condition,

(4.1.19)

between the unknown quantities.

The th ird  condition follows from the fact th a t the layers Z3 and Z2 transm it 

the so-called Stokes-layer, viscous displacement effect (proportional to v ^ ) ,  from

Z5, up through to  the upperm ost layer, Z l, where the disturbance is dam ped

down to zero (cf. the roles of the main- and upper-deck in the triple-deck theory).

Returning to the bottom  layer Z5, we have shown tha t

v ~ p M ^ n - ? A r 2y  as y —* 00,
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implying th a t, at leading order,

v ~  p M ^ f i '2  A /- 2 -^-, in layer Z3+ . (4.1.20)
°2

In Z4 the disturbance-solutions will have the s tandard  ‘displacement form s’; 

in particular
A

u A  Ub y  and v A U b , (4.1.21a, b)
/

where the size of the displacement A  (already scaled on the small linearization 

param eter) is to be determined. For small Y  we see th a t

V ~  =-AY,
I

implying th a t, at leading order,

A
v ~  - j A 8 i , in layer Z3 . (4.1.22)

Now the leading-order size of the disturbance v is unaltered across the critical

layer Z4 and so we can equate (m atch) i t ’s sizes in thus evaluating A  in term s 

of the  Stokes-layer pressure disturbance p:

A ^ p M ^ Q - l A r 2^ - ^  (4.1.23)
O2 Adi

Returning to Z4, we see th a t

A A
v ~  — A U b , ~  — A  as Y  —> oo,

1 1

thus inducing (via the y-m om entum  equation) a pressure response in Z5 of size

A  , H  fj A - j .  (4.1.24)

Again the classical boundary-layer theory no longer holds; instead this pressure 

response m ust correspond to the pressure-disturbance in the boundary-layers be­

low. Thus the size of the pressure-disturbance p  can be expressed in term s of the 

displacement A:
A H A  ,

P ~  - j A  • -=- — j A  . (4.1.25)
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So, substitu ting this expression for p in the previous expression for A  finally yields, 

after a little simplification, the third condition

l2fl ~  A (4. 1. 26)

between the unknown quantities 17 ,^i and I. Solving (4.1.18a,b), (4.1.19) and 

(4.1.26) gives the sizes

[  H ~  [AAf*J” i ,  I ~  [ A Sx ~  [A M ^ ]_ A  : Cooled wall,

1 17 ~  [A M ^ ]"5 , I ~  [A M ^ ]"?  , ~  : Insulated wall.
(4.1.27a, b)

Encouragingly, the well-known ‘incompressible’ scales are recovered from

(4.1.27a,b) by leting Moo ~  0 (1 ), in which case A ~  Re~3;  in particular, the

cooled-wall result (which now corresponds to a boundary-layer with non-zero
_  9pressure gradient) gives I ~  Re  3TT, whilst the insulated-w all case (which now

_  5
corresponds to standard  Blasius flow) gives I ~  Re  T?.

However, for large Mach num ber, we see th a t compressibility has a significant 

effect on the upper-branch  scales. Moreover we see th a t all the M ach-num ber 

dependence is contained in the combination “ A M ^  ” — this is identical to what 

we have seen earlier for the triple-deck scales as Moo —> oo. Thus, for both  the 

upper- and lower-branch asym ptotic structures we have found the same ‘hypersonic 

sim ilitude’, namely A M ^  . Returning to the upper-b ranch  scales (4.1.27a,b), we 

see th a t the whole five-layered, short-scaled structu re  (for both  the insulated-wall 

and cooled-wall cases) simultaneously collapses into the same tw o-tiered structure 

(with streamwise lengthscale ~  ^ (1 )) th a t the low er-branch structure (trip le- 

deck) collapses into, as AM ^, f  1 (<-* M qo /*  -Re 9 : Sutherland’s viscosity- 

tem perature  formula).

This result was anticipated at the s ta rt of this subsection; we noted tha t 

the critical layer corresponding to the upper-b ranch  modes would be forced up 

into the heart of the boundary-layer, as the Mach num ber increased , because of 

the ever-increasing thickness of lower-deck containing the lower-branch critical- 

layer. Now th a t we have studied the upper-b ranch  mechanism, this result is 

even less surprising when one considers the ‘physical’ similarity between the two 

asym ptotic theories describing the viscous stability of a lam inar boundary layer
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flow. Both concern short-scaled, m ulti-layered structures in which the boundary - 

layer pressure disturbance is self-induced and is governed by the displacement 

effect of a thin viscous layer (the lower-deck, for the low er-branch modes; the 

Stokes layer Z5, for the upper-branch  modes) next to the wall.

So far we have considered linear upper-branch modes. As the  disturbance 

size increases, the first layer to  feel the effects of nonlinearity is the critical layer 

Z4 (see G ajjar & Cole, (1989); and references therein). However, the structure  

is identical to th a t illustrated above for linear-m odes; the differences th a t do 

occur ‘only’ affect the size of the phase shift across the critical layer, resulting in 

modified eigenvalues. Thus ‘these’ particular nonlinear theories disappear, along 

with their associated five-layered structure, as —► R e $ . None-the-less, it

still may be very profitable to investigate the high M ach-num ber limit of these 

nonlinear upper-branch  theories to  see if they provide (much needed) insight into 

the stability properties of the resulting two-tiered structure th a t governs viscous 

stability.

Theoreticians have mainly concentrated on linear and nonlinear stability char­

acteristics of the low er-branch, viscous modes; these are felt to be the more im ­

portan t in the context of practical airfoil flow. In addition, these modes have 

the added advantage of a simpler and ‘fruitful’ asym ptotic descrip tive-structure 

than  the upper-branch  modes. This last statem ent is especially true  in the case 

of compressible flows; the effects of compressibility merely affecting the pressure- 

displacement law in the triple-deck theory. However we have seen th a t as the 

Mach num ber increases , bo th  of these structures collapse into the same, tw o- 

tiered structure which, at first sight, appears to be far less tenable to  the existing 

theoretical techniques because of the 0 (1 )— lengthscale and lack of sub-layers. 

This initial view of the au tho rs’ was ‘borne o u t’ by the subsequent m onths spent 

considering the governing equations, looking for analytic theories th a t would pro­

vide insight into the solution properties. The rem ainder of this chapter formulates 

these ‘troublesom e’ governing equations, makes some additional observations con­

cerning physical aspects of relevance to the new slender structure and details why 

there are ‘troublesom e’ with regard to their analytical and numerical solution.
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§4.2. F O R M U L A T IO N

§4.2.1 In t r o d u c t io n .

The underlying form ulation is as described earlier, in C hapter 2. This chapter 

continues where th a t left off. We try  to avoid confusion over names: we essentially 

have different names for essentially the same region, depending on the size of the 

Mach number. By upper-deck and upper-tier we mean the same, relatively thin, 

inviscid layer, adjacent to and above the ‘boundary layer’, responsible for the 

‘inviscid reaction’ (via the pressure disturbance) to the viscous displacement from 

the boundary layer. It plays the same role as the upper deck in conventional triple 

deck theory.

The lower-tier covers the whole region next to the plate where viscous effects 

enter both the basic-flow and disturbance equations (these are of course one in the 

general nonlinear form ulation). This (non-linear) region is basically the over-grown 

lower-deck which has engulfed the (previously inviscid and linear) m ain deck. It 

covers the classical boundary layer (of the basic flow) and thus we frequently 

use this description. It is the  upper-tier (deck) which enables the pressure to  be 

unprescribed. See Figure 4.3.

We define the scaled Mach num ber,

m  = R e ~ ^ M 00. (4.2.1)

We assume th a t m  ~  0 (1 ) at present, bu t do not set it to  unity. This complicates 

the scales, especially in the boundary-layer (lower-tier) where (strictly) we must 

give dual scales, ensuring th a t we recover the lower- and main-decks of the (su­

personic) triple-deck structure  for (asymptotically) small m.  The large m  limit is 

studied in a later section. For later reference note th a t

m ~  0 (1 ) <-> present tw o - t ie r e d  structure

m  \  0 ( R e ~ ? )  <-> supersonic triple — deck structure (4.2.2a — c)
4

772 f  0 (R e 4 5 ) interactive basic flow.

The 772 1 work needs a lot m ore study— see Section 4.5.
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Figure 4.3. The tw o-tiered structure governing viscous stability when M 00 ~  

, where non-parallel-flow  effects become substantial, (from Sm ith, 1989.)
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The streamwise-lengthscale, spanwise-lengthscale and the timescale, common 

to bo th  the lower- and upper- tiers,

27 _  1 19 9 ~
x — m  8 X i, z =  Re  9m  8 Z\  and t = m ^ t ,  (4.2.3a — c)

follow im m ediately from C hapter 2. These are not appropriate  for m  1. Note 

th a t the multiple-scales in the streamwise direction,

d  _ 27 d d
  — y TJX 8 ------------------  “ f "   •

dx d X l dx  ’

merge into one as m  /  0 (1 ).

§4.2.2 T h e  lo w e r- tie r  (b o u n d a ry - la y e r) .

This region, in which viscosity effects are im portan t, comprises of the ‘old’ 

lower-deck which has grown in thickness (coalescing w ith the m ain deck) and now 

covers the whole ‘classical’ boundary layer. Here we write

_ i  \ m ^ Y L \
y = Re  3F1} Ti =  < 3 > where YLyM ~  0 (1 ). (4.2.4)

1 m * Y M I

Here, and in the following boundary-layer scalings, the upper-m -term  in the braces 

corresponds to  the ‘old’ lower-deck whilst the lower term  corresponds to the ‘old’ 

main-deck. The ‘duality’ of the scales is necessary to re-capture the (large Mach 

num ber) triple-deck structure for small m; the case of m  >  1 will be considered 

in a later section. W hen considering m  ~  0 (1 ) the term s in the braces can be 

neglected, w ithout any loss of generality.

The scales for the velocities, pressure and therm odynam ic quantities are

(it, v, w)  =  ( rn*U , R e ~ ^ m *  V, R e ~ * m * W ^ j  ,

p = 7  1i?e * m  2 +Re  5m  ? -P(f,X , Z)  +  Re  5m  * 1̂ 2>
s--------- v--------- '

P o o

(p, T, fi) =  ^Re  5m  2R, R e S m 2 0, Re *  ,

127



where

U =
U U t ^ x . Y u Z i )  

m ~ *  Uq{x,Yi )  +  UM( i , X i , x , Y i , Z i )

v = i  Vl & X u x . Y l Z!)

m ~ * V M ( i , X i , x , Y l , Z i )  H 1- m S[F0(a:,y i) +  V3( i , X i , x , Y i , Z i ) ]

( W l U X u x ^ u Z, )
W  =  < 9

\ m » W M { t , X i , x , Y u Z{)

P2L( i , X , Y u Z)
P 2 =  \  27

m  8 P2M( t , X , Y u Z)

and

m ? R L(t ,A ' i ,a j ,Y i ,Z i )  :0'w =  0 

7n5Rx,(£, X \ , x,  Y \ , Z i ) : 0^ fixed

m f  Rjvf(f, X i , x , Y i , Z \ )
i

with similar forms for 0 and M.

It is im portan t to note (especially when considering the upper-tier) tha t 

is not 0 (1 ): this is due to our (standard) choice of non-dimensionalisation. All 

functions depend on t , X \ , Y\ , Z\  apart from P.  The th ird  term  in the pressure ex­

pansion, necessary to  balance the leading order inertial term s in the p-mom entum 

equation, is crucial in deriving the pressure-displacement law (see later).

These scales can be deduced in a couple of ways; either by ’first -principles’, 

directly from the hypersonic limit of the supersonic triple-deck scales; or by just 

noting th a t u ~  0 (1 ) , the same as in most ‘classical boundary layers’ and fixing up 

the m-scaling and the and p scales such th a t (i) the expected balances (from 

the eigenrelation (2.3.25) in the resulting equations are obtained, and (ii) the lower- 

and main- deck scales are recovered in the appropriate, small-m limit. We shall 

restrict our discussion to the former approach. As in C hapter 2, the scales arise 

from ‘explicit’ contributions (the large-Mach num ber form  of the triple-deck scales) 

and ‘im plicit’ contributions ( due to the wavenumbers and frequency, th a t appear 

in the resulting (linearised) triple-deck equations, being dependent on M 0o).
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Let us consider these linearised equations, (2.3.17a-e, 2.3.18c). The crucial 

point to note is th a t we require

h U ~ U ~ Y ,  (w .r.t. Moo), (4.2.6)

to  ensure tha t the critical-layer rem ains in this layer. Note th a t we are assuming

th a t inverse-powers of Re  are smaller than  (relevant) inverse-powers of Moo > which 

in tu rn  are smaller than  the small linearisation param eter h.

Once the necessity of the balance, (4.2.6), has been realised, yielding

U ~ Y  ~  ~  M l  [Moo >  1], (4.2.7a)

the  required ‘im plicit’ scalings follow easily. Balancing all term s in the continuity 

equation (2.3.17a) gives

o X J  ~  ~  /? TT,

yielding the required sizes of V  and W  for large Mach num ber
1 2 1 

V ~ a Y U ~ a S  ~  M l 1 , W  ~  ^  ~  ~  M l 1 . (4.2.76,c)

The size of the pressure can be deduced in a couple of ways, for example from the

displacement condition (2.3.17e) we see th a t

A  ~  U

whilst the pressure-displacement law ,(2.3.18c), yields

P  ~  a.A.

Combining these last two results gives

P  ~  olU  ~  ~  M ^ 1 [Moo ^  1]- (4.2.7d)

These, together with the large Mach num ber forms of the ‘explicit’ triple-deck scal­

ings, will yield (the lower-deck version of) the scales,(4.2.5a-d), s ta ted  earlier. As 

an example we derive the scale for the induced pressure, P . From (2.3.8d),(2.3.15)

V -  Poo =  R e ~ i  iiw Tw *(M jo -  1)_ 4 h PV2.

R e - i  ■ ( M p J  *  • ( M o o ) 7  • ( M ^ ) - 7  • ( M i y i  ■ M " 1 ( 4 . 2 . 8 )

R e - l - M l *  [ M o o > l ]

_ _4 _ 7
=  Re  9 771 4
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The derivation of the lower-deck version of the scales, (4.2.5e-g), for the th e r­

m odynam ic quantities from the hypersonic limit of the supersonic scales is m ade 

very complicated by the need to  consider cooled and insulated walls separately. It 

is easier to deduce them  from the supersonic-triple-deck main-deck scales, rem em ­

bering th a t the lower-deck and main- deck have coalesced in the current regime 

and thus we would expect the corresponding two sets of therm odynam ic d istu r­

bance scales to have tended to the same limit. To determine the ‘lower-deck’ scales 

completely we also need to fix-up the m-power (the argum ent of the previous sen­

tence essentially determines the Re  scales). This is simply achieved by ensuring 

th a t we recapture the lower-deck scales in the appropriate small-m  limit. As an 

example consider the ratio of disturbance to base-flow in the main-deck density 

expansion , (2.3.l ie ) ,  f

_  3

~  R e - z  ■ ( m ! )  4 • ( M J - ?  • (M jo)* • ( M i y *  ■ M - 1 • ( m ^ J

~ R e - Z M l  [M0 0 > 1 ]
9

=  771$ ,

so th a t when the Mach num ber increases to size O(Re'S)  the disturbance scale 

has risen to the same order as the base-profile. This, coupled with the above 

arguem ent concerning the lower- and main- decks having the same limiting prop­

erties, accounts for the inclusion of compressibility effects in the viscous-layer of 

the present two-tier-regime.

The remaining scales follow in the same m anner and substitu ting (4.2.5a-g) 

into the compressible Navier-Stokes equations,(2.1.2a-d) together with the cho­

sen constitutive relations, yields (setting h — 1) the non-linear boundary layer 

equations,

- l

|  The corresponding ratio for the streamwise velocity U  is identical.
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R{ +  m ) Xl  +  ( R ^ ) n  +  ( R ^ ) Zl =  0,

R(Ui +  UUXl  +  VUYl +  W U Zl ) =  (M tfy J j ,  ,

0 = -  Py1,

R (W; + U W Xl + V W Yl + W W Zl ) = - P Z l +  ,

R ( $i + U6Xl  + V0Yl + W 6 Z l ) = + (7 -  1)MC/̂ ,

R0 =  1 and M =  (1 +  S )0 2 . (4.2.9a -  g)

These m ust be solved subject to boundary conditions at the wall

U = V  = W  = 0 on yj =  o

with 9 or 0y1 prescribed on Y\ =  0, together with conditions at infinity, essentially

U —> m ~ $, W  —► 0, M, 9 —> 0 (s .t . R 9 = 1), as Yi  oo,

whilst the norm al velocity tends to a constant (of Y\)

V  —> m $ Voo(X, Z, f), as Yi —> oo. (4.2.10)

The (so-called) displacement Vr00(-X"i, -^1,0, by (4.2.10d), is related to the

(induced pressure) P  via a  pressure-displacement law th a t stems from matching 

the  solutions in the upper-deck, to be considered next, with the limiting forms from 

the  boundary layer (cf. standard  triple-deck theory). The boundary conditions at 

infinity will be discussed further in a later subsection (§4.2.4).

Note th a t this regime was deduced from the linear triple- deck equations 

(h small); the general nonlinear equations given above can be thought of as the 

uniform  limit of letting h —► 1. We are allowed to  do this because h is independent 

of Mach num ber scaling. We shall see th a t the upper-tier equations are still linear. 

A lternatively, the argum ents of §4.1.2 could be appealed to.

§4.2 .3  T h e  u p p e r - t ie r  (u p p e r-d e c k ) .

This region is very similar to the ‘old’ upper-deck, the m ain differences being 

in the  dimensions and, more significantly, the effects of unsteadiness now emerge
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at leading order. Even when the (viscous) boundary layer equations are nonlinear, 

the inviscid upper- tier equations are linear- same as triple-deck structure . Here

y = R e ~ ^ m ~ ^ y  (4.2.11)

and the new normal-variable y  is taken to be 0 (1 ). The disturbances to the 

free-stream  state  have the form

[u , v ,w,p ,p ,T]  =  [1 ,0 ,0 , poo =  1,1] +

 4 _7  ̂ _ _  1 _  3 „ „  _  1 _  3  ̂ _  4 _  7  ̂ _  2 1 „ _ 2  1 -'
Re Re Re  $ ra ite  $m  ?p, Re  $m *p , ite  $ m ? T

+  • • • .  ( 4 .2 .1 2 a - / )

Notice th a t the scales are much more straightforward here : this region has always 

been one and hence there are no dual scales.

Again the first four scales can be deduced from the supersonic triple-deck 

scales, or merely by inspection, after noting th a t the role of the upper-tier is to 

dam pen the displacement effect from the boundary-layer by determ ining/driving 

the pressure in the la tter. Note th a t the sm aller-than-to-be-expected size of the 

■u-disturbance is due to the small size of the streamwise pressure-gradient: this 

results in there being no contribution from the term  (pu)x in the leading order 

form of the continuity equation quoted below. The remaining disturbance scales 

can be deduced from the gas law. These are substitu ted into the (compressible, 

inviscid) Euler equations, yielding

V u  = - p ^ , V v  =  -p $ , V w  = - p Z l,

Vp  +  Vy +  w z j =  0 and V p  =  £>p, (4.2.13a — e)

where the operator

T> =  ( m i  „ ,at ox1
These resulting equation for pressure is

p =  0, (4.2.14a)

to be solved subject to the boundary conditions

v 2 -  a|4 ~ d l  zyy



ensuring th a t the viscous-inviscid interaction is self-contained (no external in­

fluences), and tha t there is a m atch to the pressure-disturbance in the  viscous 

boundary-layer, respectively.

Note th a t when m  ~  0 (1 ) , the generalised P rand tl G lauert equation for the 

pressure disturbance, p, contains time-derivatives i.e. the upper-tier (upper-deck) 

is now unsteady at leading order. We also see th a t as m  \  0 these tim e derivatives 

drop-out and we recover the standard  pressure-equation for supersonic flow. Fur­

ther, note this equation is different than  th a t derived by Bowles &: Sm ith (1989) 

in their study of the transonic regime ( 1)? even though bo th  equations

include time-derivatives. Im £ - i /

In the next sub-section we show th a t the crucial pressure-displacem ent law 

can be stated in the form

- > W 00( X 1, Z 1J )  as j/ —> 0, (4.2.15)
dy

relating the displacement from the boundary layer, , Z \ , t), to  the pressure

P  (via the above equation and boundary conditions,(4.2.14), for p, the upper-deck
Q

pressure). As m  \  0, V  —> —— and Vqo —► A x , so tha t the previous P  — A  law,
u X

(2.3.14d), for supersonic flow is recovered.

§4.2.4 T h e  p re s s u re -d is p la c e m e n t law .

The derivation of this pressure-displacement law essentially follows th a t of 

Stewartson & Williams (1969) for the supersonic case. At first sight the  problem 

appears simpler than  the form er as here there is no main deck to  have to  solve 

for and m atch the pressure and displacement across. However the converse is true 

due to the apparent ‘m ism atches’ in the sizes of the therm odynam ic quantities 

between the two tiers. Strictly this current M qq ~  Re$- regime tw o-tier structure  

should be thought of as comprising of three layers : the current two-tiers bu t now 

with a third, thin layer lying in between to m atch the hot therm al boundary layer 

to the freestream state. This ex tra  layer basically corresponds to  th a t p a rt of the 

.Re-boundary layer th a t is not in, i.e. is above, the therm al boundary layer. Here, 

in the cooler part of the boundary-layer, viscous effects are still im portan t.
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The ‘adjustm ent layer’ has very different properties th an  the main-deck of 

conventional triple-deck theory, but there is some analogy between the two be­

cause they both  play ‘supporting roles’ in the respective viscous-inviscid inter­

action mechanisms. By this we m ean th a t the coupled set of equations to be 

solved  in both  instances involve the boundary-layer equations (from the lower-tier 

or lower-deck) and a pressure equation (or pressure- displacem ent law) from the 

upper-tier/deck: once the equations have been form ulated, there is no need to 

consider the main-deck or the ‘adjustm ent layer’ in fu ture analytical and /o r nu­

m erical studies.f Because of this fact we do not give full details of the ‘adjustm ent 

layer’ here, we merely point out the particular details necessary to  dem onstrate 

th a t this layer does indeed m atch together the expansions of the upper- and lower- 

tiers given earlier , as well as illustrating the origin of the pressure- displacement 

law quoted in the last subsection.

Consider the y- and z- momentum equations, in the lower tier, as the free- 

stream  is approached ( Y\ —» oc). Here the leading order balances are

( R (V Lt- +  ULVLXl  +  W LVLZl) = ~P2LYl : Lower-deck scales
\  9 9

 ̂R (m S VMi UqVMx 1 +  77i4 W m Vm Z}) = ~ P i m y m : M ain-deck scales 

and

( R ( W Li +  Ul W l x  +  W l W l z -l) = —P z l *• Lower-deck scales
\  9 9
1 R  -f- UqW m x  +  m ? W m W m z y ) =  ~ P z x ' M ain-deck scales

(4.2.16a -  d)

Recall th a t the X i,  Z\  and P  p  scales are common to  bo th  the lower- and 

upper- tiers, so th a t

w  X i P  1
W  ~ ----------  ~    as 1 1 —> oo.

R UZi R U

Now, as the ‘adjustm ent layer’ is crossed (from bottom  to top) the therm odynam ic 

quantities adjust rapidly, but smoothly and continuously, to their free-stream 

sizes (see C hapter 6); in particular

2
R —► R e ^ m 2 as Y\ —> oo.

I However, we shall see in later chapters that this layer is crucial to, and in fact dominates, the 

inviscid and Gortler instability mechanisms.
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Thus W  decays across the ‘adjustm ent layer’, to m atch on to the smaller w- 

disturbance size found in the upper-deck. Therefore, for large I j ,  we can neglect 

the W V z  term  appearing in the y-mom entum equations quoted above, and setting

(U, V, R) =  (m "l, miVco, R e i m 2), (4.2.18)

so th a t U, V  and R take their limiting, large Yi, freestream  values) gives

The rem aining argum ent closely follows th a t of Stew artson &: Williams (1969): 

writing the last expression, valid for Y\ 1, in term s of the upper-tier variable y 

gives
4 ( 777, f  I

P 2 =  - R e ?  < > W o o j/d -c i, y  <  1 , (4.2.19)

where the unknown function Ci is independent of y: its actual value is not needed 

here. Thus the pressure boundary-layer (lower-tier) expansion (4.2.5d), at the top 

of the layer, takes the form

p = 7 _1P e _ 9 m ~ 2 -t-Pe_ 9 ro- * [P(£, X , Z ) — T>V00yj +  • • • , (4.2.20)
V ,, ✓

P oo

w ritten  in term s of the upper-tier variable y  (cf. Van Dyke’s matching-principle). 

Now consider the upper-deck pressure expansion for small y,

p (°+ ) +  ^ | | ( o+ ) + +  •• • , (4.2.21)

Poo

where we have w ritten p in the form of a Taylor- M acLaurin series about y  =  0+ . 

Hence, m atching the pressure in the two tiers requires

p —> P, and —̂  —> —W o o  as y  —> 0+ . (4.2.22)
oy

These are the conditions stated  in the  previous subsection. They prescribe the 

pressure-displacem ent relation, crucial to the viscous-inviscid description of self­

induced separation, and the stability of, the present supersonic regime of concern.



§4.3. TH E TW O -TIER  ST R U C T U R E : PR O PER TIES A N D  R ESULT­

IN G  DIFFICULTIES.

§4.3.1 Introduction and review.

In this section we go on to investigate the properties and characteristics of the 

two-tier structure form ulated in the previous section. Recall th a t this structure 

is appropriate for the range of large Mach num bers Moo ~  R e ? . The details of 

the  last section were complicated by the fact th a t we were not specific about the 

size of the scaled Mach num ber, m  ~  MooRe- ^; the assum ption th a t m  <  0 (1 ) 

m eant th a t ‘dual’ scales were needed for the boundary layer so th a t the thinner 

lower-deck was recovered for small m.  In o ther sections we consider large or small 

m , bu t here we are interested in m  0 (1 ).

In fact we can choose m  — 1, w ithout loss of generality, by a suitable redefi­

nition of the lengthscale L  (used to non-dimensionalise x , y  and z).  The viscous- 

inviscid, nonlinear coupled system, governing self-induced separation and stabil­

ity properties, th a t must be solved, is now restated  for clarity. The tim e and 

streamwise-lengthscale are those of the underlying base-flow, but the spanwise 

z-variation is characterised by a short scale:

(t, Z, z) = (t , x , R e ~ ^ Z \ ) .

The boundary-layer is hot and of classical thickness. The scaled norm al variable, 

Y\  =  Re'Sy,  is 0 (1 ) and the rem aining quantities have the following scalings

( u , v , w , p  — poo) =  (?7, R e ~? V,  R e ~ $ W, R e ~ $ P )

and

(/?, T, p) = ( R e ~ ? R, Re^Oj R e ? M).

The resulting nonlinear equations are
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R< +  (RIO, +  (RR)yj +  (RR")Zl =  0,

R (Ut + UUZ + VUYl + W U Zl ) =  ,

0 = -fV,,
R ( W t + U W X + V W Yl + W W Z l ) = - P Z l +  (M ffn ) n  ,

R ( et + U8Z +  veYl + weZ l ) =  (m eYl ) n  +  (7  -  ,

R0 =  1 and M =  (1 +  S )0 J . (4.3.1a -  g)

These m ust be solved subject to boundary conditions at the wall

U = V  = W  = 0 on Yi =  0, (4.3.1h -  j )

with 6 or 0y1 prescribed on l i  = 0 ,  together with conditions at infinity

17 — 1, V  - +V00( x , Z 1,t),  W - 0 ,

M, 6 —► 0 s.t. R 0  =  1 as Y\  —* oo. (4.3.1& -  o)

A relation (pressure-displacement law) between the boundary layer pressure, P , 

and the displacement V̂ o stems from the upper-deck pressure equation and bound­

ary conditions:

JLV 32 32 p  =  0 ,
dt ' dx  J  dy 2 d Z \ 2

p —> P  as y 0+ , p —► 0( or bounded ) as y —* oo,

and
9V ( 9 , 9 \  „
dy + • (4.3.Ip  —«)

Note th a t the boundary layer equations are nonlinear, three-dim ensional and 

compressible- although some pressure gradient term s and all the bulk-viscosity 

term s are absent (at this order). The upper-deck pressure equation is linear but is 

now three-plus-one dimensioned: it is unsteady at leading order. Note the presence 

of the three physical param eters 7 , P r  and 5: these need to  be chosen before a 

numerical solution is attem pted.

These two coupled sets of equations would be very hard  to solve numerically 

and some analytical progress is only possible by assuming th a t there are much
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faster time-scales operating (see §4.4 and C hapter 5). Even then the familiar 

(weakly) non-linear theories (eg. Smith, 1979b - one mode, am plitude cubed; Hall 

Sz Smith, 1984 - several modes interacting, am plitude cubed; Sm ith & Burggraf, 

1985 -nonlinear evolution of initially linear Tollmien-Schlichting mode; Stewart & 

Sm ith, 1987 -resonant triads governed by triple-deck scales; Hall & Sm ith, 1989- 

longitudinal-vortex/TS-w ave interaction, am plitude squared -see also C hapter 3) 

DO NOT carry over (at least, not at all trivially): basically because there is no 

simple linear eigen-relation. All these theories basically rely on a conventional 

viscous sublayer of the boundary layer (lower-deck). Note th a t, even for very high 

frequencies, the triple-deck structure cannot be recovered when M 00 ~  R e ? .

As usual when confronted with a ‘new’ nonlinear system , we decide first to 

investigate the linear stability properties: we hope th a t it will simplify the problem 

to one th a t is more easily solvable. In addition it may be th a t disturbances of linear 

size, to the basic flow, lead to the eventual breakdown of lam inar boundary layer 

flows; thus a knowledge of linear stability properties is very useful. However, we 

shall see in the following pages th a t we are still left with, in general, a set of partial 

differential equations to  be solved numerically: the fact th a t x ~  0 (1 ) means that 

we cannot have harmonic- dependence in x. This results in no linear eigenrelation, 

so familiar in linear and weakly-nonlinear triple-deck theories, resulting in the need 

for a more sophisticated non-linear theory to be found. The best prospect seems 

to be one based on the high-frequency approach, so successful for the triple-deck 

structure; we discuss progress made in this direction in §4.4. Note th a t one must 

also take care over the ‘neglected’ adjustm ent layer (between the lower and upper 

tiers, where, in particular, the tem perature adjusts to its free-stream  value).

§4.3.2 T h e  l in e a r is e d  p ro b le m .

We shall now linearise the system (4.3.1a-s) about the conventional steady, 

two-dimensional, non-interactive, non-parallel base flow

(U, V, W, P , S)  = (Ub Ix ^ ) ,  Vb (x , Y x), 0, 0,

Note th a t Vjg, the norm al component of the underlying non-parallel base-flow is 

not leading order in the corresponding triple-deck expansion

( t / , v ,w ,R ,0 )  =  (Ay,o ,  0, 0, ew).
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Additionally, in the present study we must consider the general base-flow profiles 

(i.e. for all Yi) ra ther than  just their near- wall behaviour (cf. the  solution of the 

linearised lower-deck equations in conventional triple-deck theory).

Further, note th a t 0 even for the base-flow - there is always a displace­

m ent effect for non-parallel boundary-layers; here, however, the choice of scales 

enables the displacement to drive an induced pressure disturbance in the boundary 

layer (we have assum ed th a t the base-flow has zero-pressure gradient- if this was 

relaxed we would still have pressure-effects prescribed ra ther th an  self-induced).

As the base-flow is steady and two-dimensional we can choose to  look for

(linear) disturbances th a t have harmonic dependence in t and Z i ,  bu t NOT in x :

( U , V , W, P , 0 )  =(UB (x,Yr) ,  Vb {x , Y i ), 0, 0, M * , ^ )  )

+ h [(£(*,ft), VXz.yi), W(x,Yi). 0(x,y1)).E +  c.c.'

+ o(h2),
(4.3.2a - e )

where E  =  expi[/3Zi  — f It], c.c. denotes complex conjugate, /?, Q ~  0 (1 ) and h 

is a small (linearisation) param eter.

The leading order balances give the equations to be solved for the base flow

U ] 3 x  +  = 0 »

Rb (UBUBx + VBUBYl) = (MbUBYi)Yi ,

Rs (Ub B̂x + Vb0bYi) = — (Mb^syj)^ + (7  — 1)Mb?7by1,

Rb(®, Y \ ) =  1 / # b > M b ( z , Y i )  =  (1 +  S)0B ? , (4.3.3a — e)

with the usual boundary conditions for the velocities

U b ( x , 0)  =  0 =  V b ( * , 0 ) ,  U b ( x , oo )  =  1;

the tem perature  a t the wall m ust satisfy either

0B(z,O) =  O or 6B {x,0) = 0w(x) ,

for an insulated plate or specified wall tem perature, respectively, whilst the need 

to m atch with the cooler freestream , above the boundary layer necessitates tha t

0B —► 0 as Y\ —> 00.
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Recall th a t we are assuming tha t there is no pressure gradient; these equations 

can be easily modified to allow for an external pressure-gradient effect (in the 

i-m om en tum  equation, energy equation and the gas-law). We define the basic 

displacem ent, VBoo(x), by

VBoo(x) =  ^ s (z ,o o ) .

A similarity solution of these equations exists (and is the appropriate solution) 

if the wall is an insulator, or if the specified wall tem perature is constant (i.e. 

$w{x)  =  &w)- In fact the solution is very closely related to the conventional 

steady, two-dimensional boundary layer solution (see Stewartson, 1964) which, 

in tu rn , is very similar (in the analytical sense) to the classical Blasius solution 

(Blasius, 1908). See C hapter 6.

At next order we obtain the linear stability equations

- i n  R +  (R b U +  R UB)X +  (R b V  +  R  VB )Yl +  i p K W  = 0,

( _ tw  +  u  Bux +  iiuBx +  vu BYl +  vBuYl) =

9b [Mb Uy1 + M UBYi ]y1 +  9[MBUBYl]Yl,

0  =  -  P y 1,

(—i n W  -f UB W X +  VBWYl) =  — i/39B P  +  9B \M.B WYl]Yl,

{- in'9  +  XJb 9x + V9Bx +  V9BYl +  VB9Yl) =

j ;̂9b [Mb9Yi + ~p ^9[Mb9By1]y1 +

(7 -  l)9B[2MB UBYlUYl +  MU2BYi] +  (7 -  l)~9MBU2BYi,



The boundary conditions at the wall require

U(x ,0)  =  F ( x ,0) =  W (x ,0) =  0, and 6>y1(x ,0 ) =  0 or 0(x,O) =  O,

for adiabatic or cooled wall, respectively. The boundary conditions as Y\ —> 00 

are

U —> 0, W  —> 0, 6 —» 0 and V  —> Voo(^)-

The displacement perturbation , Voo(x) is related to the boundary-layer pressure 

pertu rbation , P  by a pressure-displacement law stem m ing from the upper-tier 

(upper-deck):

V°o(x), as y —► 0+ , p = qE + c.c; (4.3.5)

where the upper-deck normal variable, y  ~  0 (1), and its pressure perturbation , p, 

satisfies
_ 1 -  4 y  =  Re  $?/, and p = Re  3p . (4.3.6a, 6)

We now show how the resulting, simplified upper-deck system , for q, can be 

solved, using Fourier- transform  m ethods, and obtain a ‘closed’ expression relating 

the (disturbance) displacement to the pressure disturbance, (i.e. one does not have 

to solve the upper-deck problem numerically). Rem ember th a t we have assumed 

harm onic dependence in t  and Z 1, in particular we have written

(P, p, Voo) =  (P , q, Voo)E  -1- c .c ., E  =  ex-p[i((3Zi -  fit)]. (4.3.7)

This has reduced the upper-deck pressure-equation to

P L  -  dy .r, -  -  a 2 +/32}q = 0,
(4.3.8)

q =  P,  as y  —> 0+, q - ^  0, as y  —> 00.

We can solve this system by taking Fourier transform s in x, defined by

m  =  9f(/(*)) =  r  e~ikxf ( x )  dx,  (4.3.9)
J — OO

which further reduces the pressure equation to

[—dY1Y1 + f i 2 ~ ( k  — f l)2]q = 0, ?(&,0) =  P ,  5(fc,oo) =  0. (4.3.10a — c)
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We require solutions th a t decay oo, leading to the restriction

(32 > {k -  ft)2; (4.3.11)

(cf the wave obliqueness-angle restrictions of Zhuk & Ryzhov, 1981; Ryzhov, 1984;

Sm ith, 1989 and Duck, 1990). Thus the solution is

q = P exp[—{/?2 - ( k -  ft)2}y]- (4.3.12)

Meanwhile the pressure-displacement condition has been transform ed to

q\y=o = (ift -  0s )Voo,

and substituting for q yields

P =  dl)V- -  —  > (4.3.13)
{/32 -  {k -  a y } ?

the pressure-displacement law in transform -space. To invert this we appeal to  a 

modified form of the well known formula ‘Poisson’s Integral’, namely,

M / 3 X )  = -  f  
if Jo
2 cos k X  dk

r  ’
r0 [P2 - k 2]?

where Jo(X)  is the Bessel Function of order zero, to deduce th a t J q( /3X ) is the 

inverse Fourier cosine transform of the function

  if ft2 > I 2
[ P - k 2} ^  ’ (4.3.14)

0, otherwise.

Here the Fourier cosine transform  is defined by

C ( f ( x ) ) =  f  cos kx  f ( x )  dx.
Jo

It is very easy to  show th a t if f ( x )  is an even function then

3 ( / ) = 2 C ( / )

i.e. the Fourier transform  of an even function is twice its Fourier cosine transform . 

These last two results im ply th a t



where the function g is defined above. However we require S -1 {g(k  — D)} and this 

can be easily be evaluated by employing the so-called ‘shift theorem ’ for Fourier 

transform s, yielding

^ ~ 1 {g{k ~  fi)} =  exp[tfiz] (4.3.15)

Finally, applying the convolution theorem to the transform ed pressure-displacem ent 

law (with suitable extensions for negative argum ents and noting th a t we require 

£ <  x from the definition of g) yields

P  =  e‘n ( l ' {) -  {))<*£. (4.3.16)
Jo

as the final result.

This odd-looking expression, the relation between pressure and  displacem ent, 

can be partially checked by considering special cases where the form  is known 

already. Setting fi =  0 yields the correct expression for the steady, 3-D supersonic 

pressure-displacement law.

The steady 2-D case of Stewartson & Williams (1969) essentially corresponds 

to  putting H =  0 =  (5 and =  —A x. Thus

P  = j  di { - A i ) \ l d i  = ~ —  (4.3.17)

which is merely the familiar Ackeret’s Law for 2-D Supersonic case, as required. 

Returning to  the general case, we see th a t

p  =  {i[it(,-<)-DZ1] I  + c .c . ,  (4.3.18)
J o

which resembles a quasi-parallel form (am plitude is a function of z) for the linear 

disturbance where the  wave travels with phase-speed ~  1. Note th a t here we have 

implicitly redefined x by a translation, so th a t the origin corresponds not to  the 

leading edge, bu t to  the position of initial disturbance.
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§4.3.3 C o m m e n t s  on  th e  n u m e r ic a l  s o lu t io n  o f  th e  l in e a r ised  p ro b le m .

R eturning to the discussion of the numerical solution of the linearised problem, 

we see th a t we are left with a system of partial differential equations, in x and 

Yi, to  be solved subject to the usual boundary conditions a t, and far from, the 

wall. In addition, however, the pressure-perturbation in the boundary layer is 

driven by the displacement effect of the norm al velocity-perturbation at the top 

of the boundary layer, which in tu rn  depends on the pressure-perturbation itself 

(i.e. there is viscous-inviscid interaction).

Note th a t there are similarities with the linearised Gortler-vortex equations 

(see, for example, Hall, 1983 -incompressible version; Spall &: Malik, 1989 and 

Wadey, 1990 -compressible version; Hall & Fu, 1989 and Fu, Hall &: Blackaby, 

1990 -large Mach num ber -see also later chapter; Denier, Hall & Seddougui, 1990 

and M orris, 1992 -receptivity aspects for incompressible and compressible flows, re­

spectively; O tto  (199l)-Taylor vortices in a tim e-dependent flow, leading to p.d.e.s 

in y  and tim e). These equations are (usually) form ulated for steady vortices (that 

is, 12 =  0 in our notation) and appear more com plicated than  those just derived 

above for viscous-stability properties, tha t are governed by the two-tier structure. 

The linearised Gortler-vortex equations do have bulk-viscosity, fi , contributions 

as well as a curvature effect term  in the y-m om entum  equation (which must also 

be solved; the boundary-layer’s pressure disturbance is not constant of the nor­

m al boundary-layer variable) and spanwise viscous effects. However, they do not 

have a pressure-displacement law. We claim th a t the solution properties of these 

parabolic partial differential equations will provide insight into the, as yet unde­

term ined, solution properties of our linear disturbance equations.

The num erical studies, presented in the above papers, has shown th a t one does 

not obtain a unique neutral curve (the norm al m ode approach has been assumed 

by several researchers, notably by Floryan & Saric, 1979; they calculated a unique 

neutral curve th a t has since been discredited); instead it has been conclusively 

shown th a t solution properties depend crucially on initial conditions and solving 

the right equations (i.e. partial differential equations, initialised by a consistent 

profile), unless the wavenumber is large; in which case the solutions are easily 

obtainable analytically using a simple, asym ptotic theory.
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Thus, the norm al mode approach which works reasonably wellf for the Toll- 

m ien-Schlichting modes of incompressible, subsonic and moderately-supersonic 

boundary  layer flows (see, amongst others, Shen, 1954; Jordinson, 1970; Gaster, 

1974; Mack, 1984) is invalid for Gortler vortices, although both are (strictly) 

governed by partial differential equations: the resolution of this apparent paradox 

is due to  the short-scaled x-dependence of the Tollmien Schlichting modes (shown, 

using triple-deck theory, by Smith, 1979) rendering validity in the normal-mode 

approach. However, we have seen th a t as the M ach num ber increases to O (R e^ )  

the  viscous modes are no longer short-scaled; the  x-scale has risen to 0 (1) size 

which implies (see Smith, 1989) th a t the non-parallelism  of the base-flow cannot be 

ignored, suggesting th a t some of the supersonic, viscous stability results based on 

the norm al-m ode (Orr-Som m erfeld-type) approach ( see, for example, including 

references therein, Mack 1975, 1984, 1986; Malik 1982, 1987) may need checking 

w ith results obtained tha t include the fact th a t the boundary-layer is not parallel, 

bu t growing.

Hence, for the partial-differential equations of concern, governing the viscous 

linear stability properties, we would expect, in general, not to obtain a unique 

neu tra l curve, as the streamwise length-scale of the disturbances is th a t of the 

grow th of the basic boundary layer flow. Instead, we expect solution properties 

to be dependent on the imposed initial conditions. In some limiting param eter- 

space (probably for high-frequency or high-spanwise-wavenum ber) we might ex­

pect some analytic progress to be possible, giving a unique asym ptote to all of the 

(non-unique) neutral curves.

Let us now be a little more specific by w hat we m ean by neutrality. We choose 

to  study spatial stability properties^ and so fix (3 and ft to be real constants, 

independent of x (see Hall, 1983). However, once a neutral location has been 

determ ined these are rescaled on the x-value of this location giving the neutral

|  In recognising that the normal-mode (Orr-Sommerfeld-type) approach leads to reasonable results 

for predicting the linear viscous-stability of non-highly supersonic boundary-layer flows, we are not 

accepting that the approach is entirely rational or better than the triple-deck approach, especially at

large Reynolds numbers. The triple deck structure also provides a rational base for non-linear theories.

|  We take the view that the primary instability will be spatial in nature; the secondary instabilities

, of the non-linear stages of disturbance growth, are most likely temporal in nature.
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values (ftxy f tz ), say, representing a point on the neutral curve of the particular 

chosen initial disturbance profile.

There is some difficulty in deciding w hat criterion to employ to  decide when 

the numerical solution at a dow nstream  z-position represents a neutral state: note 

th a t in norm al mode analysis spatial neutrality is simply where the corresponding 

wavenumber is real. The two m ain such criteria are (i) when an energy functional 

of the disturbance is stationary, and (ii) when a measure of disturbance wall-shear 

is stationary. Different neutrality-criterion lead to different neutral positions (see 

discussion in Smith, 1979; Fu, Hall & Blackaby, 1990) but we hope th a t graphically 

they will be very similar- this is usually the case in incompressible studies bu t in 

his compressible study, Wadey (1990) noted th a t the inclusion of a therm odynam ic 

term  into their energy functional ‘causes problem s’ and uses the ‘incom pressible’ 

energy functional chosen by Hall (1983).

Spall Sz Malik (1989) also, independently of Wadey (1990), used an incom­

pressible measure for their compressible study. However, their functional, in con­

tras t to th a t of the previous au thor and Hall (1983), includes the Reynolds-num ber 

scalings (weighting factors) so th a t the u-disturbance, being larger, is m ost sig­

nificant in the energy m easure. They do not say what m otivated their (even­

tual) choice of energy-functional, or investigate the effects of different energy- 

functionals. Additionally, a further rem ark on this paper (see chapter 3 of Wadey, 

1990) th a t is relevant to the present viscous-stability study, is th a t despite solving 

p.d.e.s, the validity of their results is questionable due to their choices of initial 

disturbance th a t do not satisfy the disturbance equations.

The present viscous-stability problem  of concern is for large Mach num ber 

(hypersonic) flow. The centrifugal (Gortler) instability counterpart are the recent 

studies by Hall & Fu (1989) and Fu, Hall & Blackaby (1990). These studies, 

essentially, still employ ‘incom pressible’ energy functionals. The present au thor 

has some reservations about this approach (see next paragraph) on theoretical 

grounds, even if it makes no ‘graphical’ difference to the neutral curves. It is 

a generally accepted, well known fact th a t different initial disturbances lead to  

different (i.e. non-unique) neutral curves. However, there appears to  be less 

recognition th a t there is ‘secondary-uniqueness’, say, present in the  problem  in 

th a t even if the initial disturbance is fixed, different neutrality m easures will lead
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to  different (non-unique) neutral curves. This secondary non-uniqueness problem 

(which may or may not be significant) will not cured by receptivity argum ents 

(these essentially determ ine the relevant initial disturbance); instead there is a need 

for further thought in deciding w hat is the best (if it is tenable idea) neutrality  

criterion to be used in these ‘m arching’ linear-stability calculations.

Note th a t in hypersonic flow, the tem perature disturbance, in the boundary 

layer, is O (M ^ ); much larger than  the other, kinematic, disturbances. This sug­

gests th a t it should not be ignored in determining neutrality. The large (scaling) 

size of the tem perature pertu rbation , relative to the smaller u-pertu rbation  and 

even smaller v, lu-perturbations, surely suggests th a t it is most im portan t th a t the 

disturbance is neutral ‘with respect to tem perature disturbance’; this will mininise 

the to tal disturbance energy. Another open question concerns why the to ta l en­

ergy of the flow (basic and disturbance) is not considered. Note also th a t the effect 

of boundary growth means th a t the energy of the basic flow is not constant itself, 

because of viscous effects.

In conclusion of this discussion, the author believes th a t, for hypersonic flow, 

the neutrality criterion should be based on a measure (at a sole y-location or an 

integration of, across the boundary layer) the tem perature disturbance. It does not 

appear rational to be quoting, and applying ‘incompressible’ energy functionals to 

highly-compressible problems. However, in fairness, the au thor has not carried 

out any numerical solutions of this kind (see reasons below) and has thus not 

experienced the difficulties th a t may arise from theories th a t appear reasonable 

‘on paper’.

We now close this sub-section with some further discussion and closing re­

m arks. Note tha t the partial differential equations coupled with the pressure- 

displacement law has been assum ed to  be parabolic; this has not been formally 

verified. The standard  num erical solution would involve ‘m arching’ the equations, 

in x, from an initial position w ith prescribed disturbance which m ust be consistent 

with the disturbance equations, until a neutral x-position(s) have been identified 

from which a point on a neutral curve follows. At each x-station the disturbance 

profiles are com puted. The stepping-forward in x would be using a finite-difference
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type m ethod, bu t the y-solution at each x-station could be calculated by a finite- 

difference m ethod or a spectral m ethod. The la tter m ethod employing, in particu­

lar, Chebychev polynomials appears to be more appropriate to the new generation 

of com puters with their parallel processors. Additionally, the au thor believes tha t 

the la tte r m ethod is crucial in efficiently obtaining accurate solutions for the base 

flow equations (especially for the special case of the sim ilarity solution)- see Chap­

ter 6 for fu rther discussion. One last rem ark on possible difficulties concerns the 

discretisation of closed pressure-displacement law: it would have to  be checked for 

the usual conditions of stability, compatibility and consistency.

As m entioned previously, the numerical solution of the linearised equations 

derived earlier, governing viscous-stability when M ^  ~  O (R e ^ ) ,  has not been
CL

attem pted . This is due to^num ber of reasons, in particular: (i) the system to 

be solved appears complicated and there may be further difficulties in addition 

to those outlined above, (ii) much time was spent investigating if any simple an­

alytical progress could be made (see next section for a report on such studies), 

(iii) the (eventual) lack of enthusiasm  by everyone directly involved, (iv) the poor 

com puting resources and facilities available, and (v) the apparent lack of expert 

help and advice available on the numerical m ethods th a t the au thor wished to use.

§4.3.4. Further discussion concerning the tw o-tiered  

structure, including curvature effects.

Here we briefly summarize the features distinctive to  the  new tw o-tiered struc­

ture; noting the m ain differences compared to the compressible triple-deck struc­

ture. The most obvious difference is th a t non-parallel effects m ust be incorporated 

into any theories, as noted by Smith (1989).

However there are two further differences th a t result in analytical and num er­

ical solutions being harder to compute. The first is the fact th a t, as the lower-tier 

covers the whole classical boundary-layer, the general basic-flow velocity profile 

m ust be used — not just the wall shear. Secondly, we see th a t the equations (4 .2.9) 

are ‘tru ly ’ compressible, in contrast to the lower-deck equations of compressible 

triple-deck theory (2.3.9).

The fact th a t the timescale has risen to become 0 (1 ) is not significant if the 

base-flow is steady (which we have assumed to be the case throughout this thesis)
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but if the base flow does have some tim e-dependence then special care must be 

taken. On a similar them e, now tha t the lengthscale of the asym ptotic structure 

is 0 (1), much longer than  the spanwise scale, the effects of ‘cross-flow’ (spanwise 

variation of the basic flow) will be much more significant, in the sense th a t now a 

much smaller cross-flow will be felt by the governing structure.

Last, bu t not least, we come to curvature effects. These are now far more 

significant for essentially the same reason th a t cross-flow effects are. The ‘long’ 

0 (1 ) x —scale com pared to the small height, 0 ( R e ~ 5) of the upper-tie r (upper- 

deck) m eans th a t less severe (i.e. more significantly reasonable) curvature will 

affect the (planar) governing equations. The author unfortunately  did not have 

tim e to  investigate this aspect more deeply.

A nother effect of (the appropriate) curvature will be to  allow the secondary 

Taylor-G ortler instability of the (prim ary) nonlinear flow, a  generalisation of the 

study described in Hall & Bennett (1986). W hilst on the subject of secondary 

instabilities, we would expect the theories of Smith &: Bodonyi (1985) and Tutty 

&; Cowley (1986), on Rayleigh-type (inviscid; no curvature necessary) secondary 

tem poral instabilities of the (prim ary) nonlinear flow, to  generalise to the present 

problem . Note th a t most of the comments m ade here for the M ^  ~  Re?  regime 

will still be appropriate for larger Mach num bers because the streamwise length 

scale m ust rem ain 0 (1 ) (see §4.5).

§4.4. SO M E C O M M EN TS C O N C E R N IN G  TH E  SE A R C H  FOR  

A N A L Y TIC A L, A SY M PT O T IC  SO LU TIO N S: TH E  ‘HIGH  

F R E Q U E N C Y ’ A SSU M P T IO N . 

§4.4.1 Introduction .

The search for analytical, asym ptotic theories and solutions to  the governing 

equations of the tw o-tiered structure proved to be long, difficult and not particu­

larly fruitful. High-frequency asym ptotic theories were considered because of their 

success in triple-deck based theories. Such an approach can also be justified on 

physical grounds.

The similarities of the present linearised system with th a t for Gortler vortices 

has already been noted. This suggests th a t we should try  to  find large spanwise
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wavenumber (j3 $̂> 1) theories which prove so successful for the la tter. However, 

these theories do not work here as we have no ‘curvature’ term . Note th a t the 

assum ption th a t the frequency is large results in the need to rescale the lengthscales 

w ith the large param eter f2, anyhow.

We have noted earlier in this chapter th a t we have no linear-eigenrelation; this 

makes it very tricky to find any weakly-nonlinear theories. The linear and non­

linear equations are considered (see also C hapter 5): progress th a t has been made 

is described together with discussion of the problems encountered th a t prevented 

fu rther progress. It would be nice to  have ‘analytic’ asym ptotes to com pare/check 

the numerical results with (when the la tte r have been com puted). On the oth- 

erhand, perhaps a knowledge of the numerical-solution properties would help out 

finding analytical theories.

Note the ‘alm ost-full’ appearance of the governing equations; we appear to 

have recovered the ‘classical’ boundary-layer equations along with a few modifi­

cations. Thus one could easily be excused for assuming th a t we have essentially 

‘gone round in a full circle’ and th a t the high-frequency theories th a t ‘work’ for 

the classical boundary-layer work here as well i.e. th a t the high-frequency lower- 

and upper-branch theories can be applied, the actual scales deduced from physi­

cal argum ents th a t follow along the lines of those presented in §4.1.2 and §4.1.3. 
J iH l«

However, with a thought, one soon realises th a t these are not possible — this
A

follows immediately from the results of those subsections i.e. th a t the frequency 

necessarily rises to 0 (1 ) in such theories, due to  large Mach num ber effects. In 

o ther words, once the Mach num ber is fixed to be 0 (i? e 5 ), the triple-deck and 

upper-branch  structures are not tenable — they are the two-tiered structu re  being 

considered!

In the next subsection we consider the linearised problem. The expansions, 

scales and mechanism is outlined for two cases of travelling waves, both  having 

0 (1) wavespeed (the disturbances travel a t roughly the same speed as the un­

derlying base-flow). Note th a t the classical lower- and upper-branch  modes of 

incompressible, subsonic and m oderately supersonic boundary layer flows all have 

asym ptotically small wavespeeds. In C hapter 5 we consider a nonlinear theory 

based on a fast timescale.
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§4.4.2 A n  o u t l in e  o f  tw o p r o b a b le  h ig h - f r e q u e n c y  th e o r ie s .

In this subsection we deduce two sets of scales for the coupled boundary - 

layer/upper-tie r equations governing the viscous stability properties when ~  

R e ? . The mechanisms follow closely th a t for the ‘classical’ upper-branch  modes 

(see §4.1.3). The author did not have time to follow the analyses through, but feels 

th a t when the theories outlined below are properly investigated, they should prove 

to  be a useful first step and perhaps even provide a high-frequency asym ptote to 

the (yet to be com puted) linear neutral curve. If this is in fact the case, then 

it should be possible to base further asym ptotic theories (e.g. the inclusion of 

nonlinear effects) on such a description.

Our starting point is the linearised system (4.3.4),(4.3.5),(4.3.8) derived and 

discussed in the previous section; again, w ithout loss of generality, we take the 

scaled Mach num ber m  = 1. Recall th a t viscosity acts right across the boundary - 

layer for the disturbances. However, as soon as one assumes the frequency of the 

disturbances to be high, the leading-order disturbance equations of the boundary 

layer will be inviscid in natu re  (and closely related to the compressible Euler equa­

tions) apart from in (a t m ost) two th in  layers where viscous effects are im portan t. 

The first isthe so-called Stokes layer, alongside the wall, where the tim e-derivative 

balances with the viscous operator. The second is a so-called critical layer and 

exists if, and where, the wavespeed of the disturbance equals the local speed of the 

(nondimensionalised) underlying boundary layer. In this section we assume th a t 

a critical layer does indeed exist.

Before looking for a high-frequency description, there are three points worth 

noting. Firstly, stem m ing from the Stokes layer, there will be a displacement 

effect in the norm al velocity disturbance V,  which has an imaginary part relative 

to  the leading-order term . Secondly, there will be an imaginary ‘phase-jum p’ in V  

across the (linear) critical-layer. Lastly, we want the pressure disturbance, P , in 

the boundary to be driven by the displacement, V ^, via the upper-tie r equations 

(4.3.5) and (4.3.8). The ‘classical’ mechanism for upper-branch modes is a h igh- 

frequency theory which incorporates the last point whilst, additionally, balancing 

the two ‘im aginary’ effects (m entioned in the first two points) thus enabling neutral 

modes to exist.
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As our governing equations are very similar to those supporting the (compress­

ible, high-frequency) modes, and because the underlying m athem atical structure 

governing these modes collapses into the tw o-tiered structu re  as M 00 Re?,  

we look for a similar high-frequency mechanism. Now th a t we have assumed the 

frequency to be large, we can (at last) assume harmonic dependence in x i.e.

Q
—----- > ia  = i [fl^CKo +  Clkxlai  +  •• • ] , (4-4.1)

say, where k xo > k xi >  - • • are unknown and ao >  1 so th a t there is a  critical layer. 

Note th a t this assum ption (of a shortening of the x —scale to  0 ( f2 " fc*0) <C 1) relies 

on k xo >  0 which can be established a posteriori. Also we write

/3 =  +  ft**1/?! +  • * •, kz0 > k zl >  • • •. (4.4.2)

Note th a t the im portan t operator 

d d d
—  +  U b ~q ~  — — i £ l  +  U b ~q ~  —*■ —t f i  +  i U b  [fi*5*0 clo +  ol\  +  • • •] .

In fact we choose k xo =  1 to retain the balance of both  term s at leading order. 

Thus
Q Q
dt ^ B ~dx =  ~ 1) +  iUB^tkxl o l i  +  • • • (4.4.3)

and so the critical layer resides where U b ( Y i )  = —  < 1, a t Y\ =  Yic, say.

Let us now consider the thin Stokes layer of height O(0,~ ?), alongside the wall.

Again, as there is no pressure-gradient term  in the ^-m om entum  equation, we

choose to consider the ‘balances’ of the z — m om entum  equation. As the equations

are linearised, we can consider the sizes of other quantities relative to a typical

pressure disturbance P.  Balancing the tim e-derivative w ith the  pressure-gradient

gives W  ~  f l k*°~1P.  Meanwhile, balancing the vy and term s in the equation
3

~ 2kz o —
of continuity gives V ~  ft 2 . From standard  Stokes layer theory, we can 

deduce th a t as the inviscid region, above the Stokes layer, is approached

3
2k n — —v  ~o(n2fc-o-1) + o(n 2 );

where the second term  contains the ‘im aginary’ Stokes-layer displacement effect 

which we hope will balance with the ‘phase-jum p’ across the  critical layer, to  allow 

neutral modes.
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We now consider the upper-deck. Here we meet another complication, in that 

the upper-deck height also scales with the frequency. The leading order size of V  

will be transm itted  to  the upper-deck where balancing (dx +  dt)v  and py yields

Q2fc*o 1m Balancing the operators 5?- and &z1Z1 *n P ran dtl Glauert
d_ 

dy
equation, to  ensure a decaying solution, requires f i2fc*o-1 ~  i.e. kzo =  1.

This is the furthest th a t the author reached in the form ulation — it is not clear if 

continuing w ith this particular argument will lead to neu tral modes.

However, if ao =  1, then the wavespeed

Ct I L
-  =  1 +  • • • ,
Q

is asym ptotically close to 1 and new sizes for the unknown quantities emerge. Now

(dt +  UB dx) =  -iCl(UB -  1) +  iUB a i n l -i +  • ■ •,

and so as the freestream  is approached (i.e. as the upper-deck is entered) this 

operator becomes smaller:

(dt +  Ub 9x ) ~  0 ( f l kxl) as Yi —> oo. (4.4.4)

For the present case, the Stokes-layer analysis is the same as earlier, but the
n

V-solution in the inviscid regions are proportional to ( 1  Ub ) P , meaning tha t
a

as the upper-deck is approached

V  ~  . (i _  - U B ) P  ~  n 2 k * o + k * i ~ 2 p .
a

Thus

(0* +  3t )Voo ~  n 2t '»+l!* i- 2 • (4.4.5)

and the pressure-displacem ent law then requires tha t

~  ~  n 2fc*o+2fc«i-2< (4.4.6)
dy

Note th a t we still have two unknowns 2kz$ and k xi ,  these are determ ined by 

wishing to  retcdn all term s in the P randtl Glauert equation of the upper deck. 

Balancing (dt +  dx ) ~  d z x yields kxi =  k z0, whilst balancing d z 1 ~  d$ yields 

k zo +  2kxi —2 =  0. Solving the last two equations gives

kxi =  ^ =  kz l . (4.4.7)
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Again, no further analytical progress has been m ade with these scales. How­

ever, there are a couple of points th a t are worth noting. The above argum ent 

has resulted in the scales

d  d  d i d  1 2  2
—— ~  S7 ~  — and —— =  Re?  ~  R e ? Q? ~  M oqQ ? , (4.4.8a — c)
d x  d t  d z  d Z  i

after appealing to  (4.2.3) w ith m  =  1, whilst the disturbance wavespeed, cD say, 

has the form

cD = l-0(fi_b + °(n_b+ ••• (4.4.8d)

Suppose now th a t the frequency rises so to such a high value th a t it is pro­

portional to powers of the Mach num ber. Note th a t the scales (4.2.3a-c) above are 

all of the same order when

17 ~  Moofi* 17 ~  , (4.4.9a)

in which case
d d d  o i  ,
— ~  ~  ~  M  ~  R e 3 . (4.4.96 — d )
dt dx dz  00 v ;

Note th a t the thickness of the boundary layer (the low er-tier) is 0 { R e ~  ?),  from

(4.2.4); so th a t

—  ~  Re?  (4.4.9e)
dy

in the boundary layer. It follows immediately th a t, in this higher-frequency limit 

(17 f  0 ( R e  3 )) the modes take on classical Rayleigh-type character. T h a t is, these 

‘viscous’ modes, as their frequency increases, appear to m atch onto inviscid modes 

having wavespeeds of the form

cd = 1-0(M -1 ) + •••. (4.2.9/)

However, much more care m ust be taken since, as 17 /*  0(M ^)0), the critical 

layer leaves (the upper p a rt of) the boundary layer — it relocates itself in the ad­

justm ent layer lying between the lower- and upper-tiers. This layer is essentially 

passive in the viscous-stability mechanisms with which we have concerned our­

selves so far in this thesis and thus has not received much atten tion  yet. However,

the adjustm ent layer is crucial to an understanding of the inviscid (Rayleigh) and

centrifugal (G ortler) stabilities for large Mach num bers (discussed in C hapters 6 

and 7, respectively). It is discussed in some detail in C hapter 6 .
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The higher frequency lim iting forms (4.4.9), found above, appear to  corre­

spond to the so-called ‘acoustic m ode’ scales described in C hapter 6 , where it 

is found th a t neutral (acoustic) inviscid modes exist having essentially the same 

scales as (4.4.4). Alternatively, i t  could be argued th a t (4.4.9) corresponds to 

(asym ptotically) sm all- wavelength (inviscid) ‘vorticity-m odes’, also described in 

C hapter 6 — these modes are slightly unstable. However the (neutral) acoustic 

modes have wavespeed O ( M ^ )  relative to the (nondimensionalised) freestream -

speed, 1, and the corresponding relative wavespeed for the (slightly unstable)
_ 8

very-sm all-w avenum ber vorticity modes is 0 (M oo^)? whereas the lim iting rela­

tive wavespeed of the (higher frequency) viscous modes is 0 (M <̂)1), from  (4.2.9f). 

Thus further work is called for to investigate the link of very-high frequency vis­

cous modes with the inviscid modes.

§4.5. LARGE SCALED M A C H  N U M B E R  

§4.5.1 Introduction.

W hen m  ~  ^ ( l )  Moo ~  Re 5, the lower-deck has expanded in thickness 

and coalesced with the main-deck to leave just one viscous boundary layer of 

classical height. The disturbance length scale has risen to 0 (1 ) and so has the 

tim e scale. The cross-stream  (z) lengthscale and the thickness of the upper-deck 

have increased to order Re~  9 . The disturbance equations in the upper-deck are 

still linear but are now unsteady. Lastly, the disturbance velocities have grown to 

become comparable with those of the underlying base flow.

Earlier in this chapter, the expansions, the scales for the range R e ~ ?  m  < 

0 (1 ) were deduced. Note th a t (trivally) m occurs in these and so one m ight decide 

to allow m  to grow much larger than  0 (1), in these scalings, in order to deduce 

the resulting structure. Firstly, th a t would be (intuitively) quite irrational because 

the m-  scalings were based on argum ents associated with the notion of a triple­

deck structure, bu t, as m /  ^(1)> this three-tier structure disappears. Moreover, 

continuing with the approach of increasing the Mach num ber (m  0 (1 )) in the 

m  < 0 (l)-expansions and scalings results in absurd predictions, for instance: (i) 

the lower deck continues to grow faster than  the main-deck so th a t the lower-deck 

would be far thicker than  the classical viscous boundary layer! (ii) the velocity sizes
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would continue to grow, becoming much larger th a n  the corresponding velocity 

com ponents of the base !

Thus for m  1, the near-plate flow s tructu re  m ust be deduced from ‘first 

principles’. The form for m  \  1 is known, bu t in the  following argum ents we try
4 1

not to  ‘appeal to hindsight’ - recall th a t a s m  /  i?e<R>, M 00 —► Re% correspond­

ing to  the classical hypersonic-viscous range th a t has been studied several times, 

notably  by Bush (1966) and Blackaby, Cowley & Hall (1990) - see later chapter. 

These studies are for steady, two — dimensional flows; to  the au th o r’s knowledge, 

there  has been no study of the three-dim ensional case in the literature to date.

In this section we aim to deduce the m  1 s truc tu re  solely from the m  ~  0 (  1) 

(tw o-tier) structure which, in tu rn  was solely deduced from the compressible triple- 

deck for smaller (supersonic) Mach num bers. Once the m  »  1 problem has been
4

deduced we then set m  ~  Re%5 and com pare our predictions with the ‘known 

properties’, of the previous M qq ~  Re% studies. In addition we shall note the 

‘three-dim ensional’ predictions, in this regime.

§4.5.2 D educing the scales.

First, we suppose th a t there will be two layers- the boundary layer, above 

which lies a thin inviscid region - let us call this the upper deck, say. Note th a t, 

as m  /  1 the ‘need’ for a viscous sub-layer disappears (in general) and thus it is 

reasonable to assume th a t, for m ^ >  1, viscosity continues to act across the whole 

of the boundary layer, for the disturbances as well as the base flow.

Consider first the boundary layer. W hen m  ~  0 (1 ) the streamwise and 

norm al velocity perturbations have grown to become of the same order as the 

corresponding base flow quantities and thus, for m  1 , we take the u and v 

pertu rbations to be of the same order as the corresponding base flow quantities 

i.e.
1 3

u ~  0 (1 ) and v ~ R e ~ 3 m , 5 ~ y Bj (4.5.1a — c)

where y s  is the classical boundary layer height for large Moo compressible flow over 

a flat plate. Similarly we take the pertu rbation  streamwise (x —) lengthscale to be 

0 (1), corresponding to the non-dimensionalised, p late lengthscale; note th a t non­

parallel effects must be considered in any solution based on the present structure.
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We take the base flow’s vertical variable, y# , to  be the relevant vertical variable

in the  boundary layer. Finally, we also take the therm odynam ic quantities to be

of the  sam e size as the corresponding base ones i.e. in the la tte r has p ~  M ^  ~  
_ 2Re  , for M 00 1, and this the density-scaling we choose. Similar results

for the  tem perature  and the viscosity easily follow.

We are free to choose the timescale, bu t note th a t tim e derivatives will occur 

in bo th  the boundary-layer and the upper-deck equations, or in neither. Recall 

th a t a s m  /  1 the corresponding timescale for the pertu rbations becam e 0 (1 ). We 

wish to  include tim e variation, in our system , and thus choose the tim e scale to be 

0 (1 ) . Note th a t the base flow is (conventionally) steady so we have no precedent 

to  follow for the boundary-layer timescale, although 0 (1) is the logical choice.

Consider now the upper-deck. The vertical height is chosen such th a t its 

dimensions are the ’required fit’ for a Mach line (see figure 1 of R izzetta et al, 

1978). Recall th a t the gradient of a characteristic of the classical, inviscid high- 

Mqo P ran d tl Glauert equation, in unsealed, non-dim ensionalised variables x and y, 

is M ^ 1. Therefore the upper-deck y-scale, yu  say, m ust be O ( M ^ )  to incorporate 

the inviscid effects i.e.

yu  ~  =  m  1 Re  S’. (4.5.2)

We assum e th a t the normal velocity pertu rbation  at the top of the boundary layer 

induces a norm al velocity perturbation of the sam e size in the upper-deck i.e.

_  _ i  3
v ~  Re  5m ?

cf. the classical displacement effect at the top of a boundary layer.

In the upper-deck,

_  1 3 ^
u =  1 -f 8\u +  • • • , v = Re  3 m 2 v +  • • • , w = o2w +  • • •

p — Poo 8 ziu +  • • • , p — 1 -f- 6 ±p 0 = 1 -f- 8 4 O, (4.5.3a — / )

where ^1,^2>̂ 3 and £4 remain to be determ ined. Balancing pt +  upx with pvy in

the continuity equation requires

_  1 3
v Re  3 m  2 2 5

o4 ~  ~ --------7-------- =  Re  5 m ? , (4.5.4)
y R e ~ ^ m ~ 1
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while balancing (pu)x ~  p x, in the x-m om entum  equation, yields S\ = £3. The 

choice of 6 2 , for w , is far more troublesome; this is discussed below after we have 

deduced the size, £3, of the pressure disturbance in the upper-deck. The easiest 

way of determ ining £3 is from the gas-law, which w ritten in non-dimensionalised 

variables has the form

p — p9 =  poo/90 =  7 ~1R e ~ ^ m ~ 2p9. (4.5.5)

Balancing second order term s on both  sides of the ’gas-law’ in the  upper-deck 

requires th a t

03 ~  R e ~ ^ m ~ 28± =  R e ~ ^ m ^ . (4.5.6)

We write the pressure expansion, for the boundary layer, in the form

p = j ~ l R e ~ V m ~ 2 + S5P  + S6P2  , (4.5.7)

where the small sizes 6 5 and Sq are to be determined. A crucial point to note is

th a t we assume th a t the upper-deck pressure perturbation , p, has been induced

by the boundary layer and hence the leading-order pressure pertu rbation  size, 0s,
_  4 1

there (in the boundary layer) is also 0 ( R e  5 m J ) , as the leading order pressure

disturbance term , P, in the boundary layer is constant of the norm al variable.

The remaining unknown, 6 q is easily deduced from considering the y-m om entum

equation of the boundary layer. Balancing puvx ~  py (at second order) requires 
_ 8

th a t ^6 — Re  Sra.

Summarising so far, we know the x , t , y  length-scales and the perturbation  

sizes of quantities in both  the viscous boundary layer and the inviscid upper-deck, 

except the spanwise velocity (iy) disturbances in both  layers. So these two scales 

rem ain to be determ ined, in addition to the corresponding spanwise lengthscale 

z. Note the argum ents used so far are based on the base-flow properties; the gas 

law; part of the continuity equation for the upper-deck and the assum ption tha t 

the pressure disturbance is local to the interaction. We have not considered which 

term s vanish from the boundary-layer or upper-deck equations yet.

Consider the induced pressure-gradients in the boundary layer stream -and - 

span wise m om entum  equations. We wish to keep the gradient in at least one of 

the equations to insure th a t the structure is still interactive and perturbations can
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be self-induced. W hen m  ~  0 (1 ) we saw th a t px is missing from  the  i-m om entum  

eqn, bu t pz is still present. We wish our m  >> 1 scalings to  m atch  back to  this 

s ta te  af affairs as m  \  1.

Let us now consider the unknown spanwise length and velocity scales. Con­

sider the following investigations:

z — m o m e n tu m  :

_  2 5
Balancing pz in boundary layer requires Wb ~  Re  (1)

_  4 1
Balancing pz in upper deck requires wu ~  Re $ m 5 / z ,  (2)

where Wb and w u ~  82  are the sizes of w in the boundary-layer and upper-deck 

respectively, and

Cont inui ty  :

Balancing w z in boundary layer requires Wb ~  z ,  ( 3 )

_  2 5
Balancing w z in boundary layer requires w u ~  Re $ m ? z ,  (4)

Note th a t when m  ~  0 (1 ) all the above are consistent (as expected), bu t for

m 1 the conditions above cannot all hold :

_  1 5
(1) and (3) yield Wb ~  Re  ~  z, ( 5 )

whilst

(2) and (4) yield w u ~  Re z ~  Re f  m  (6)

and clearly (5) and (6) are contradictory on the z-scale. This is not surprising as 

(1) to (4) represent four equations for just three unknowns Wb,wu and z. However, 

it is interesting to note th a t all four balances are possible in the lower-Mach num ber 

interactive structures, the two-tier structure and the triple-deck structure . Note 

th a t here, in the present m  1 argum ents, we have had to base most of the 

lengthscales on the underlying ‘highly compressible’ base flow and so it it perhaps 

not surprising th a t we have to drop (at least) one of the ‘spanwise’ balances.

So we have to settle for (at m ost) three of the above balances, (l)-(4 ). The 

problem tha t now arises is which one do we drop, and, more interestingly, is there
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m ore than  one option? Consider the pz balances of the z-m om entum  equations. If 

we have the balance in the boundary-layer then we also need it in the upper-deck 

for consistency. Thus only dropping one balance requires th a t we keep bo th  of 

the  z-momentum-balances which, in tu rn , m eans th a t we have to  drop the w z 

continuity component in one of the  two layers. A quick investigation indicates 

th a t option (4) m ust be ‘sacrificed’; otherwise the term s associated w ith operator 

w d z term s become solely leading order in the boundary-layer.

So it appears there is only one sensible option. This option results in dropping 

balance (4), yielding the unknown sizes

1 3  1 5
w u ~  R e ~ ^ m ~ *  ~  <52, and z ~  R e ~ $ m ? ~  u>&. (4.5.8a — d)

§4.5 .3  F u r th e r  c o m m e n ts .

In the last subsection we deduced the scales and (interactive) flow structure 

governing the viscous stability of the boundary-layer flow over a plate. We have 

seen th a t (at least one) of the ‘usual’ spanwise balances has to be dropped and 

argued th a t there was one choice th a t seemed more reasonable than  other possi­

bilities. We do not quote the equations or pressure-displacement law associated 

with these scales; instead we note th a t the structu re  closely resembles the two-tier 

structure, for m  ~  0 (1 ), discussed earlier in this chapter. However there are a 

couple of interesting observations of particular note.

The first observation concerns the streamwise pressure gradient, pXi in the

boundary layer; it is already known to be absent (at leading order) in the m  ~
_ 2 .

0 (l) -s tru c tu re ’s i-m om entum  equation: for m  0 (1 ), p uux ~  Re  5m  , whilst
_ i  i

p x ~  Re  9 777.2 . So px remains absent in the i-m om entum  equation for large scaled
A . IMach num ber. However, as m  /  R e *5 M 00 f  Re& , we see th a t it re -

emerges at leading order.

As mentioned in the introduction to  this section, one of the main reasons

for investigating the flow structure for large m  was to see what is predicted as

the classical hypersonic-viscous range (Moo ~  R e ^ )  is approached (from below).

We have just observed tha t in this limit the streamwise pressure-gradient, in the

boundary-layer, finally reappears a t leading order. Now we go on to investigate
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fu rther the implications of this lim it. Before doing so, it should be noted th a t we 

have not found any (further) new regimes - we find th a t the large-m study m atches 

stra ight on to  the hypersonic-viscous range.

It is convenient to define a second scaled Mach num ber, x  say> by

M qo =  Re^X.  =  R e * m ,  (4.5.9)

so th a t x  ~  0 (1 ) f°r the hypersonic-viscous range. Note th a t x  closely related 

to  the  so-called ‘hypersonic param eters’ commonly used in theoretical studies (i.e. 

the  ‘AT’ of Luniev, 1959; the ‘x ’ of Brown, Stew artson & W illiams, 1975) where 

there  is shock/boundary-layer interaction.

We consider first the dimensions. We have fixed x ~  0 (1 ) bu t find th a t (by 

substitu ting  (4.5.9) into (4.5.1c),(4.5.2) and (4.5.8c)) tha t

1 3  1 5
yu  ~  tfe - 5 x - \  * ~  (4.5.10a -  c)

Thus when x f  0 (1  )> we see th a t the boundary layer thickness is compa­

rable to th a t of the upper-deck. This ties in w ith the interactive boundary-layer 

s truc tu re  found by Bush (1966): the la tte r has a  viscous (therm al) boundary layer 

below an inviscid shock layer, bo th  having the same (physical — not Howarth- 

D orodnitsyn) ^/-scaling (y  ~  R e ~ S), whilst the x  ~  0 (1 ) limit of the m  1 study 

yields a viscous boundary layer and an inviscid layer above (upper deck) bounded 

by Mach-lines (shock), both having the same , y  ~  Re~  5, scale. Recall th a t the

two-tier and large-m structures strictly comprise of three layers, the th ird  an ad­

justm ent layer, inbetween the boundary-layer and the upper-tier (deck), to m atch 

the hot conditions near the wall to the free-stream  values. This layer corresponds 

to  the transition layer of Bush (1966).

However, the last paper considers two-dimensional flow but we are including 

spanwise variation. The large-m study has indicated tha t

z ~  x * , ~  0 (1 ) when x 0( 1)  (4.5.11)

i.e. the spanwise (disturbance) lengthscale grows to, finally, become of size 0 (1) 

in this limit.

Thus, as the stream - and span-wise lengthscales are now again of the same 

order, the effects of cross-flow are less crucial than  in the previous, ~  R e S
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regime. However, if there is significant, 0 (1 ), spanwise variation present (due to 

strong cross-flow or other factors) then it m ust be incorporated into any rational 

solutions, in addition to  the effects of non-parallelism  an d /o r unsteadiness of the 

base-flow which have been crucial since the Mach num ber rose to  O (R e^ ) .  Further, 

as the struc tu re  is long in the x — and z — directions relative to  its norm al height 

R e ~ * , relatively small wall-curvature (streamwise a n d /o r spanwise) should lead 

to the equations needing modifying.

Note th a t the other, less likely, option (for the  z —scale) th a t was rejected 

would yield z ~  R e ~ 5 ~  y, giving a long ‘toothpaste box-like’ structure. These 

scales suggest th a t the structure should support longitudinal vortices, usually as­

sociated with transition.

Now let us reconsider the pressure expansions,

4 1 _  8
Re ? m ? P  + Re * m P 2 -\------- : B oundary Layer
R e ~ ? m 5 p  +  • • • : U pper Deck ,

y  oo

for m  0 (1 ). Note th a t these are essentially linearised forms about p©©. In term s 

of the hypersonic param eter,x , these become

p  _  7 - 1JRe- t x -2 + {  R e ~ \ * \ P  + R e ~ * x p * “*—  : Boundary Layer
'--------^--------'  ( R e ~ s x ? p  -f • • • : U pper Deck ,

Poo
(4.5.12)

so th a t, as x /*  0 (1 ) , the leading order disturbances, P  and p, become of the 

same order as the base pressure i.e. the expansion becomes nonlinear. Note tha t 

the P2 term  still represents a small perturbation; this effectively m eans th a t the y- 

m om entum  equation gives, at leading order, P y  = 0 , so th a t the pressure is still 

constant (of Y )  across the boundary-layer. The fact th a t P  and p have grown to 

the size of po© suggests th a t there have been significant changes in the upper-deck 

equations.

Recall th a t the upper-deck expansions, for m  1, are

_ 1 3
u = 1 -f 8 3 U, v = Re  3 m 2 7}, w =  8 2w

p — 1 -f- 4̂ p, 9 — 1 -f- <$4 9

where we have determ ined tha t

8 2 = R e ~ ^ m ~ *  , 63 =  Re~ and <54 =  R e ~ '§ m ? . (4.5.13a — c)
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Note th a t these are linear perturbations of the base (freestream ) flow. W ritten 

in term s of the hypersonic param eter these together with the pressure expansion 

become
2 1 1 3  2 3

u  =  1 +  Re~  s x ^ u , v = R e ~ ^ x ^ v t w = R e ~ ^ x _ 4u),

(p, 0) = (1, l )  +  x t ( p ,  0), p = j ~ 1R e ~ i x ~ 2 + R e ~ * x % p .  (4.5.14a - e )

Thus we see th a t, as y  0 (1 ) the density and tem peratu re  disturbances rise to 

become leading order, in addition to  those for the pressure and norm al velocity. 

Note however, th a t the freestream-velocity expansion,

2 1 y ?
u = 1 + Re  S x 2 u  = l  + - — u,

J oo

still represents a small disturbance about the basic state.

The rem aining scales can be easily transform ed to  be in term s of the Mach 

num ber by simply replacing Re% by MqoX- 1 ; in studies of the hypersonic-viscous 

regime this is the formulation conventionally used. Moreover, we have seen , by 

taking the large-m  limit of the two-tier structure, which in tu rn , was logically 

deduced from  the familiar triple-deck structure, th a t the scales for the  classical 

hypersonic-viscous range can be deduced. In addition we have ‘predictions’ for the 

spanwise quantities,
 ̂ 5

 ̂ 5 X 4
2  ~  x 4 ~  w u ~  T 7 T '

-‘ -*00

which have not been considered in the literature, to  date, to  the au th o r’s knowl­

edge. We note, however, th a t there have been several studies of hypersonic flow 

over axisym metric bodies (see for example Cross &: Bush, 1969; Bush 1970); here 

the base-flow is very complicated, with several sublayers, and different properties 

depending on body radius. It is unclear to the au thor if any z an d /o r w scalings 

are implicit in, or can be picked out from, such studies. Finally note th a t we have 

shown th a t the upper-deck (upper-tier) remains linear until M qq ~  R e ^ ; recall 

tha t most of the other distinctive properties of the triple-deck s tructu re  disappear 

where M ~  R e ^ . So, although the la tter regime is crucial, being where non­

parallelism and compressibility become im portant a t leading order, an interactive 

(viscous-inviscid) structure  still exists to describe the separation and stability of 

supersonic flow at larger Mach numbers.
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It should be noted th a t there are several papers (eg. Neiland, 1970; R izzetta, 

B urggraf & Jenson, 1978; G ajjar & Sm ith, 1983) concerned with the  derivation 

of, or the implications of, the so-called ‘hypersonic triple-deck-structure’, w ith its 

simple pressure-dislacement law having the simple form (in standard  notation)

P  = —A.

This structure, which is short-scaled so th a t non-parallel effects can be safely ig­

nored, is far simpler than  those considered in this chapter. The derivation of this 

struc tu re  and pressure-displacement law relies mainly on the following assum p­

tions: (i) th a t the hypersonic param eter is large (the presence of a shock and the 

resulting sublayers is acknowledged) , and (ii) th a t 7  -  1 <  1 i.e. the Newtonian 

assum ption holds. It is unclear, to the author, whether the la tte r assum ption is 

physically realistic, or ju st m ade to  make theories simpler or even possible a t all. 

Recall th a t in the work described in this chapter we make no assum ptions on the 

size of 7 , the ratio of specific heat capacities.

The interaction laws of supersonic (Ackeret’s law; free-interaction) and hy­

personic flow (given above) were ‘linked’ by Brown, Stewartson & W illiams (1975) 

who deduced the following pressure-displacem ent law

A = — f  P  dx  — <rP, <74 oc
J —00

where the hypersonic param eter x  =  /  Re?  and C  is the C hapm an con­

stan t. It is clear th a t the limit <7 —> 0 (requiring x  ^  1) corresponds to  the usual 

supersonic (free-interaction law) whilst limit a —> oc (requiring large % an d /o r 

7 — 1 <C 1) yields the hypersonic law given above. It m ust also be noted th a t x  is 

a function of x , the distance from the leading edge, and thus the value of x  can 

be significantly different at different ^-locations, despite the fact th a t they are all 

experiencing the same freestream  Mach num ber,

This last point clearly carries over to the present study where, for a constant 

freestream  M ach-number, the value of m  and x  varies with z-location, especially 

when asymptotically close to the leading edge. Recently Brown, Cheng & Lee 

(1990) have shown th a t the requirem ent of the Newtonian assum ption, for an ‘hy­

personic triple-deck’ structure to be possible, can be replaced by a more physically

X

( 7 - 1) 2 ’
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realistic assum ption concerning the level of wall-cooling.

Related work is by Brown, K horram i, Neish & Smith (1991) who describe 

certain features of recent theoretical research into hypersonic flow, concerning 

boundary layers, shock layers, nozzle flows and hypersonic instability and transi­

tion.
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C hapter 5

F in ite —tim e  b reak -u p  in  su p erson ic  and  
larger—M ach—num ber b ou n d ary  layers.

§5.1 IN T R O D U C T IO N .

In this chapter we are particularly interested in the possibility th a t finite-time 

break-up can occur in the nonlinear unsteady interactive boundary-layer equations 

th a t can govern instability and transition in the supersonic and larger-M ach- 

num ber regimes. Recent work by Brotherton-Ratcliffe & Sm ith (1987) (hereinafter 

referred to  as B-RS), Smith (1988) (hereinafter referred to  as S), Hoyle, Sm ith & 

W alker (1990) (hereinafter referred to as HSW) and Hoyle (1991) has indicated 

th a t finite-tim e break-up can occur in any such boundary layer (i.e. one governed 

by a so- called ‘pressure-displacem ent’ law), and the present work concentrates 

on the differences required in the details necessary for the Mach num ber range of 

concern. The break-ups proposed in the above are a ‘m odera te’ type, yielding a 

singular pressure gradient, and a ‘severe’ type, associated w ith a pressure discon­

tinuity. Here we concentrate principally on the former. The present work can be 

thought of as an extension of the theory of S who showed formally th a t any 2-D 

subsonic or supersonic unsteady interactive boundary layers can break-up within 

a finite tim e by encountering a nonlinear localized singularity and rem arks th a t 

the theory carries over to other unsteady interacting boundary layers, to provide 

a potentially powerful means for transition.

In the present work it is found to be necessary to  include spanwise effects and 

also, la ter on, varying density, due to the nature  of the governing equations. The 

la tte r effect is novel to this study (in the present context) bu t the 3-D effects have 

begun to be addressed by Hoyle (1991) (see also HSW) who has considered the 

generalisation of the 2-D study of B-RS for a particular pressure-displacem ent law 

which does not result in a “troublesome” critical layer.

The fact th a t the boundary layer is governed by a pressure-displacem ent law 

is crucial to the possibility of the occurrence of ‘finite-time break-up’. In Figure 

5.1 the various layers of the m ulti-structured  boundary layer are sketched. Briefly, 

the flow in the lower deck is governed by the usual boundary-layer equations with
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Figure 5.1. The m ulti-structu red  3-D interactive boundary layer.
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the  im portan t exception th a t the pressure is not  prescribed as in classical theory; 

instead the pressure is driven by a displacement effect transm itted  from  the  lower 

deck through to the upper deck. Effectively, this means here th a t a  particular 

form  for the pressure (with discontinuity or singular gradient) can be proposed; 

the analysis (and numerics - Hoyle, 1991; HSW) is required in order to  show th a t 

such a choice is justified. The theory also involves ‘fast tim e-scales’, resulting 

in the usual viscous (Stokes) wall layer, although its effects on the  lower-deck 

solutions enter at higher order and so they are not felt here.

In the next section details of the formulation are kept to a m inim um  as the 

m ethod and argum ents involved to  derive the particular nonlinear pressure equa­

tions follow very closely the previously nam ed works, instead we highlight the 

differences/ complications arising in the present cases. In §5.3 we discuss the 

M qo ~  two-tier unsteady interactive boundary layer (see C hapter 4), here 

the study is truly 3-D and compressible with the analysis far more complicated 

than  the studies mentioned above. Finally, in the last section, we conclude with a 

brief discussion.

§5.2 SU P E R SO N IC  B O U N D A R Y -L A Y E R S, IN C L U D IN G  LA RG E  

M ACH  N U M B E R  LIM IT.

Following Stewartson (1974), Ryzhov (1984) and Smith (1989), it is now well 

known th a t the unsteady lower-deck equations are those of the 3-D incompressible 

case. S showed th a t the crucial nonlinear pressure equation during b reak-up  arises 

from an inviscid form of the lower-deck equations; the viscous wall layer and the 

upper deck play supporting roles. Thus we concentrate on the lower-deck equations 

and choose to write the relevant scalings as

1 9  _  3 3 _  i  1
( u , v , w )  =  ( R e  % m ' $ U , R e  %rr i&V,Re &rri&W),

_ 1   ̂ _  7 
p  — Poo =  R e  4 771 4 P y

3 27 5 21 3 19 1 9
(x, y,  z, i) =  (Re~  "8”X , Re~*rh~i~Y, Re~%rh~* Z , R e ~ * m ^ T ) ,  (5.2.1a — g ) 

leading to the governing unsteady lower deck equations
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UT +  U Ux  +  V U y  +  W U z  =  - m ~ 2P x  +  U y y ,

0 =  - P y ,

W t  + UWX +  V W Y + W W Z = - P z  +  W Y y ,

and

Ux  +  Vy  +  W z  = 0 , (5.2.2a — d )

to  be solved in conjunction w ith ‘no-slip’ at the wall and the pressure satisfying 

a displacement law. We have assum ed th a t the wall is an insulator and th a t 

the viscosity is related to the tem peratu re  via Sutherland’s formula. Here the 

param eter rh is 0 (1) for m oderately supersonic boundary layers, bu t rh ~  Moo 

for larger Mach num bers which are of prim ary concern here. Observe th a t as M 00 

increases the streamwise pressure gradient term  becomes small and therefore the 

spanwise gradient m ust play a more im portan t role. We seek a m oderate break-up 

of the local flow at X  = X s as tim e T  —+ Ta and, following the 2-D theory of S, 

write

X  -  X s = - c T  +  T I f  where f  =  Ta -  T, (5.2.3a, b)

where c is a constant to  be determ ined, and the local pressure response expands 

as

p =  po +  f i p ^ . r j )  -|------- . (5.2.3c)

In the m ajority of the lower deck (away from the critical layer)

u  =  U 0 ( y )  +  f i u 1 { t 1Tl , Y )  +  f i u 2 + f u z  +  - - -  ,

V =  r ? V i ( { ,77,y )  +  • • • , (5.2.3d, e)

and, assuming th a t there is no crossflow,

W =  t l W ^ v , Y )  +  • • • ,

where 77 is a (local) scaled spanwise variable defined by

z - z a = f aT) . (5 .2 .3 /, g)
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T he unknown constants a and b are due to  the inclusion of three-dimensionality 

and  rem ain to  be determ ined/chosen. The operator is crucial in the derivation 

of the  nonlinear pressure equations, and has the form

d  - _ 3 3  ~ , d  * , 9  d
s - ( - r  +

This form ulation is similar to tha t of Hoyle (1991) (see also HSW ), who chooses 

-  =  f  and b = |  leading to a second order nonlinear partial differential equation ( 

in (  and 77) for p i , but the present study concerns a  general basic flow profile. Two 

possible choices of the pair (a, b) will now be discussed in the following subsections.

§5.2.1 C ase  I: a  =  |  and b =  |

This choice of a and b results in the term  W i v , containing the leading order 

three-dim insionality effects, occurring with +  V$y  in the th ird  order continuity 

equation; this case can be thought of as being weakly three-dim ensional in tha t 

the  leading two orders are unaltered from the two-dimensional theory and it relies 

on the presence of in the streamwise m om entum  equation. In the present case 

(general base flow profile) there is a so-called critical layer, where the speed of the 

base flow is the same as th a t of the disturbance, and  c would be fixed by Uo(y). 

Solving in the lower deck (away from the critical layer) leads to the following 

non-linear partial differential equation for the unknown pressure function pi(£,r))

m
1 3  5 -

_ 2 ( - 2 Pl  +  9  ^PH  +  =  J

Here are constants, their value depending on Uq (cf. Sm ith, 1988) and

J  is the anticipated jum p across the critical layer. Note th a t only one ‘three- 

dim ensional’ term  appears, in contrast to th a t of Hoyle (1991) and HSW - this is 

due to the fact th a t the coefficient of the ‘m issing’ term  can be shown to be zero. 

We assume th a t J  can be chosen to be zero, leading to

1 3  5 -
( ~ 2 Pl +  2^Ph  +  4 7?PlT?)Al +  =  0 (5.2.4)

as the governing equation for the pressure . Note th a t as £ —► 00 (77 kept fixed)
I  2\pi \ ~  |( | 3 and as 77 —► oc (( fixed) |p i| ~  [77! 5 which m atch with the flow solution

away from the singular point (x , z )  = (xa, z 3). Here we are assuming also th a t the
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solution is sm ooth, as required: a full numerical solution (see Hoyle, 1991; HSW) 

is strictly  necessary to  show this is, in fact, the case.

We can now investigate the effect of increasing M (i.e. m  —► oo) which is 

the  principal concern of this investigation. Letting to  —► oo and keeping all other 

quantities 0 (1) leads to

1 3^ 5
~ 2 Pl + 2 ^  +  4 T>Pl” =

which, firstly, is no longer nonlinear and, secondly, does have the desired asymp-
. A

totes. An inner region is required, where £ =  to  £, in order to  bring in the 

nonlinear term  , ensuring a solution there. Alternatively we could keep the full 

nonlinear form everywhere by simply writing p\  =  m 2p i . We would have to ensure 

th a t the p  expansion does not break down a s m - 4  oo.

§5.2.2 C ase  II: a  =  |  and b =  |

This choice leads to the term  W i v (and thus the |^ -effec ts) appearing in the 

leading order form of the continuity equation. The reason for this particular choice
We

are twofold: firstly, as the ^  has to -2 multiplying it we expect ^  to 

m uch m ore dom inant/ significant, and secondly, this will again lead to  a nonlinear 

second order partial differential equation for p \ . In fact it is this choice for a and b 

necessary for the ‘varying density’ case considered in §5.3. One last rem ark before 

examining the details concerns the effects of cross-flow, if present. We would then 

need to modify the w expansion depending on the strength  of the cross-flow. We 

do not consider this here.

For general £,77 dependence a non-linear partia l differential equation for p\ 

can be derived, but the determ ination of the jum p requires some involved three- 

dimensional-critical-layer analysis. Instead here we choose the special case of the 

skew-direction

ip =  <*£ - f  j3rj

for the pressure and other disturbance quantities, working with the skew-velocity

U = aU + 0W,
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resulting in the problem  m irroring the two-dimensioned theory of S. T he resulting 

non-linear pressure equation is

Ai . _ , rh~2a 2 + p 2 ~
— (3 $ p i*  -  p i) -|- ( ----------------- )A2p iP i*  =  0,
I a

a similarity form of the inviscid Burger’s equation. Again we consider the large 

m  limit. It is im portan t to  note th a t a , (3 are all 0 (1 ) by definition as all 771

dependence has been incorporated into the X  and Z  scalings (see (5.2.1a-d)).

Thus, as 77i —* 00, the equation reduces to

A /32
—̂ ( 3 ^ 1 *  -  p i)  +  ( — )A2p iP i*  =  0, (5.2.5)
2 a

illustrating the im portance of the inclusion of three-dimensional effects at leading 

order for large Mach num bers: in the next section we choose this a and b. Finally 

we note th a t the breakdown is a three-dimensional effect -the inclusion of spanwise 

variation is a necessity ra ther than  a just a variation on the two-dim ensional theory; 

and for larger Mach num bers density variation m ust also be included: see next 

section.

§5.3 LA R G ER M A C H  N U M B E R : TH E T W O -T IE R  ST R U C T U R E .

W hen the Mach num ber increases to become of size O( Re^ ) ,  we see, for ex­

ample from (5.2.1a-g), th a t the usual triple-deck structure collapses. The lower 

deck now envelops the whole classical boundary layer and is no longer incom press­

ible at leading order. The possibility of ‘finite-time break-up’ is considered for 

the new two-tiered interactive structure. The lower tier (the classical boundary 

layer) is predom inately inviscid, for the fast timescales considered herein, contains 

a nonlinear critical layer and there is a thin viscous wall layer beneath  next to the 

wall. Again, for the reasons discussed in the previous section, we concentrate our 

analysis on this tier.
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§5.3.1 T h e  in v isc id  re g io n s  o f  th e  low er t ie r .

Here the governing equations are a simplified form of the so-called Euler 

equations:
u t 4  u u x 4  v u y 4  w u z =  0,

Py  =  0,

p[wt +  u w x +  v w y 4  w w z) =  —pz, (5.3.1a — e)

u x + vy + w z = 0,

Pt 4  u px +  vpy -f wpz =  0, 

to  be solved for suitable boundary conditions. The continuity equation (5.3.Id) 

has been simplified by use of the energy equation (5.3.1e). Note the absence of 

pressure gradient term s in (5.3.1a), (5.3.1e) but the presence of compressibility 

term s, equations.

Again we propose a ‘m oderate’ break-up at (z, z )=( xa, x a) as tim e t /* t a and 

write

x — x a = —cT  4  T ^ X , T  = t — i ai z  — z s — T 7* Z

so tha t

and

d  3 d d  d rri_z d d
 v T  z  1-, ------------- ► T  2 ------- 1------
dx d X  dx dz d Z  dz

?  -* ( - T “ § c +  - X T - 1) - ? -  + - z r ‘ ^ r  +  ■? . (5.3.2o - c )
dt 1 2 ’ d X  2 d Z  dt  1 ’

The local expansions, about x — are

u = u 0 ( x 3 , y ) + T 2 u i ( X , y , Z )  4  T * u 2 ( X , y , Z )  4  T ( u z ( X , y , Z )  -  cu0x)) H ,

v = T ~ l v i ( X , y , Z )  4  T ~ i v 2 { X , y , Z )  +  T ~ ? v 3 ( X , y ,  Z )  -\------ ,

w  =  T ^ w i ( X , y , Z )  +  T%w2 ( X , t / , Z )  4  T w 3 ( X , y ,  Z )  H ,

P — Po + 212 p i(X , Z)  4  T * p 2 (X,  Z)  4  T p 3 ( X , Z )  4  • • • ,  

p = pQ(xa, y )+T%Pl( X , y , Z )  4  T * p 2 ( X , y , Z )  4  T( p 3 ( X , y , Z )  -  cp0x) 4  • • •.

(5 .3 .3 a -  e)

The term s u 3x  and p3x  appearing above are non-parallel corrections of the base 

flow profile - they could be incorporated into the relevant subscript 3 quantities. 

Thus nonparallelism of the base-flow is a minor effect due to the short scales
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involved; for the same reason the operator ^  is too small to  be felt at the orders 

of concern.

Equating powers of T  yields the following equations for the leading orders 

x  — m om entum

(u0 -  c)lLiX 4  ViUQy =  0,0 ( T - 1) 

0 ( T ~ I )  

0 ( T ~ ? )

z — m om entum

o ( r _1) 

o (t ~ I )

0 ( T " 5 )

continuity

0 ( T _1)

O ( T T )

0 ( T " J )

energy

o ( r _ 1 )

0 ( T ~ i )

o ( r _ b

(u0 -  c)U2X  +  V2 Uoy =  0,
3

(u0 -  c)uZX +  VZU0y +  - X u i x  4  U!U1X

1 3
4  w\ Ui z  4  v iu i y  -  -U ! 4  - jZuxz  =  0,

p0 (u0 -  c)wi x  =  - p i z ,

Po(^0 -  c)w2X- =  -P2Z ,

Po(uo -  c)u;3x  4  Pi(^0 -  c)wi x  +
3 1 3

p o [ - X w lX  4  u i w lX  4  4  v xwiy -  - w 1 4  - Z w i z ]  =  ~Pzz ,

u \ x  4  v \ y  4  w i z  —  0,  

U2X +  v2y 4  w 2z  =  0, 

u z x  +  v 3 y  4  w 3 z  =  0,

(u0 -  c ) p i x  4  v ipoy  =  0,

(u0 -  c)p2X 4  v2p0y =  0,
3

(u0 -  c)pzx  +  Vzpoy  4  - X p i x  +  U i p i x

1 3 ^
+  W l P l Z  +  V lP ly  -  - />1 4  - Z p i z  =  o,

whilst y-m om entum  yields

P l y  —  P 2 y  —  P Zy  —  0 *

§5.3.2 T h e  inv isc id  so lu tio n s .

Solving the leading order equations gives

vix  = —pizz[$(y)  + ex. i], 
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where

*(») =  (“ » -  c ) f y C)2 dy (5.3.4a, b)

and a \  is a constant of integration. The second order solution is very similar, i.e.

V 2 X  =  - P 2 Z Z &  +  « 2 ,

while the  other first order quantities can all be expressed in term s of p i :

(32u 0y*  (3
Ui =  27---------rP i, = --------- t---------rPia*{uQ — c) ccpo{uo — c)

and pi  =  f / ° » V  (5.3.5a — c)
a 2(uo — c)

At th ird  order the nonlinear term s first appear and the equation to be solved for 

vs is found to take the form

Po[(^o -  c)vsy -  vsuQy\ x  =  P z z z  +  PoF , (5.3.6a)

where F  contains the nonlinear (inertia term s). In fact

/  3 1 3 \
F  =  1 ^X u 1x  -f u i u i x  + w i u i z  +  v i u l y  -  - u i -f - Z u i Z  \

1 \+  I - X w i x  +  u 1w i x  +  w \ w l Z  +  v i w ly -  - w i +  - Z w i z  j  

Pi \
— ;Pi z

W  J z

(5.3.66)

which, in due course, leads to the 2-D nonhnear partia l differential equation. Thus

,°° 1
vsx  =  ~ P s z z $ ( y )  -  (u0 -  c) f  F - ---------—dy + a 3, (5.3.6c)

J  y (ti0 O)

and a velocity jum p J ,  in v3, is necessary in the above requiring the replacement

a 3 [for uq > c] —► 03 -f J x  [for u 0 < c]. (5.3 .6 d)

Note th a t the jum p here has been defined to be in v 3 whereas in S the jum p is in 

—v3; this results in an apparent minus sign discrepancy between the two analyses. 

In view of the pressure displacement law it can be shown tha t

Oi =  c*2 =  a 3 = 0.
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Two th in  layers are needed to make the above solution acceptable, one being 

a viscous wall layer required for the satisfaction of the no-slip condition at y =  0 

and the other being a critical layer near the position y  =  t/c, where uq = c. It is 

noted here th a t for self-consistency in the wall layer, the tangential-flow conditions 

vn = 0 are required due to  the smaller sizes in the wall layer. Hence, from the 

above, the relations

/  o J u n -  c V d y  =  a  a n d  /  F ( u « - c Y ‘ d y  =  J x  (5 .3 .7a,6)J  0 P 0 \ ^ 0  C) J o  V O /

m ust hold, where the jum p effect J  is produced by the critical layer and remains 

to  be determ ined. The first relation serves to determ ine the effective phasespeed 

c of the m oderate singularity in term s of the profile uq and we note th a t to avoid

a contradiction we m ust have uq = c at some positive y — yc giving rise to the

critical layer. The second relation leads to a non-linear equation for the pressure 

Pi-

In an a ttem p t to  ease the evaluation of the jum p J  we introduce a shear 

coordinate

$  =  a l  +  (3Z, (5.3.8)

where o,/3 are real, and shear velocities

Un =  a u n +  (3wn, n  — 1 ,2 ,3  (5.3.9)

m aking the problem  appear two-dimensional. The forcing function now takes the 

form

i [ w a* + U 1 Uv t  + v 1 Ulv -  i t / !  -  P m ™
2 ‘ 2 po2

where

U\ = ^ $ y P i  • (5.3.10a, b)

Note th a t the dependence of F  on first order quantities can be expressed solely 

in term s of p\ .  If we choose to  set /? =  0 then u\  =  v\ — wi  =  pi  =  0 ; 

this is anticipatable as we are solely relying on the spanwise derivative of the 

pressure to  drive the disturbances: there is no explicit i-dependence. Also note 

th a t compressibilty effects modify the equations of previous studies.
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The quantity

£
d y ,  =  I n ( V )  (say), (5.3.11a)

o (a 0 -  c)2

to be equated with the derivative of the jum p J x , is merely a nonlinear expression 

in pi  th a t can be w ritten in the form

d
I n  = d y

P  , 3 T 1 N P ,  X— 7 i ( - 4 ,p 1*  — —P i)  +  - j ( 7 2  -  7 3 )P lP l*  a  Z Z or
(5.3.116)

where the real constants 71,72 and 73 are functions of the basic flow profile;

7i / ° °  1 1. ' ■ M *  2,  -  £  ( V  -
and

73 - FJ 0

$ POy dy (5.3.11c — e)
p0 2 (u0 -  c)3

So, for the  present skew-coordinates, the nonlinear differential equation for the 

pressure is
r 2 r*v, r 2 i

=  J. (5.3.12)
a 4

7i P— (3 # p i*  -  pi)  +  — (72 -  73)piPi<b 
I  a

The term  in the square brackets is closely related to  a similarity form of the inviscid 

B urger’s equation, namely
no no

(5.3.13)
d Q _ n dQ
dt 9x  '

This result is th a t found by S and is again anticipatable from  B-RS; the present 

coefficients are m ore complicated due to varying density. The above result can be 

seen by writing

Q = a i t np i ( ^ )  and y  =  x t m

so th a t
d d m y  d d
—  —> — H — —  and
dt dt  t d y  dx d%

and choosing
1 3 ^ ( 7 2 - 73)m = - ,  n = — , and ai =  ----------------
2 2 071

§5.3.3 N ear the critical layer at y rN"/ yc-

Recalling th a t

p 2 rvi =  Pi*{u0 -  c ) f
' J  x Po(u0 -  c ) 2

dy,
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it is clear th a t special attention is necessary near y =  yc where uo =  c. The basic 

flow profiles, as power series, about this point are

oo oo
U q  =  c -J- ^   ̂ bm& and P q  — ^   ̂ dm<s , (5 — y 2/c l )

771= 1  7 7 1 = 0

where

bm = ^ M  and =  (5.3.14o — d)
ml  ml

We also choose to write, for convenience,

"3/0

~  C)

where

1 f y  0 1

J y  Po{uq -  c y d y  II  t y P o i u o - ^ 2 ^ '

Vo

It is easily shown th a t, near j/c,

1
1

t°° 1
h - f  — 7---------T^dy. (5.3.15a, b)J Vn P o ( U Q - c ) 2

P o( uq -  c ) 2 d 0 b i 2 s 2

d \  ~ 62
—  +  2 —  
d0 61

s + 0 ( s 2) )  (5.3.16a)

and so, to avoid a logarithmic singularity in $ , the coefficient of 5 m ust be zero,

th a t is
di bo 
—  +  2 —  =  0 
d 0 T  hi

or, equivalently,

( p q u ' q |y=yc= 0  (5.3.166)

i.e. we require th a t y = yc is a point of  generalized inflexion ; it is assum ed th a t 

this is so. Then it is the second (forcing integral) part of 1/3 th a t causes the first 

logarithm ic irregularity, occurring a t th a t order, leading to the necessity to  allow 

for a jum p J  anticipated earlier.

Further, we expand

00
$  =  <j>mSm , as y -> 2/c  (5.3.17)

T7l =  0

where the early 0 m are

1 62 +  I\dob\
0 0  j  1  > 0 1  j  j  2 7ao&i aoOj
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[3 ^ 6 !6S -  3<P0bl + -  2 ^ 0 ^ i i )b2 +  (d0 d2 -  </?)&=]

h =  m

and

<i>z — (4c?q6j64 +  ( —2 .d ^ b \b 2 -{- 2 I \ d ^ b \  — 2 d ^ d \ b \ ) b 3 

- d f a h b l  +  { d 2 d 3 -  2 d Qd 1d 2 +  d \ ) b \ ) l ( 2 d \ b \ ) .

The series for Um and vm follow im m ediately and, for convenience, the series

^ 7 T * =  £
is defined so th a t, in particular,

-,-£9l__ $  =  \  ' r sm
(„„ - cfv m= —1

/32
P i  =  —f P i  (5.3.18)

m =  —1

The initial term s are

d\( f>o — {d\(f>Qb2 +  ( — 2 d 2(f>o — d \ ( j ) \ ) b i )
T~ 1 ~  “ i T ’ r ° “  6j

and

(d\(f>Qbib3 — d\<j>Qb\ +  ( 2 d 2 <J>Q +  d\<f>\)bib2 +  ( — S d 3 <f)Q — di<j>2 — 2 d 2 (f>i^b^)
r i  =  -

*>1

W ritten as a function of the skew-variable \£,

[§ V U w  +  V i U w + v M y  -  i f / :  -
dy ;_  ~ @ 2  *  (^o -  °) r ____________________________________________________

Vz a  P<t a  J y (u0 -  c)2

(5.3.19a)

near the critical level, y  ~  yCi it has the form

c  i +
v3 =  f-Co +  sin .s +  =  • "  , as .s —» ±0. (5.3.195)

Here c_i,co are (known) expressions involving the basic profile, the form er leading 

to  a higher order term  in the v 2 asym ptote, and c f  are the unknown coefficients 

of s either side of the critical layer; the evaluation of the ‘ju m p ’

c t  ~ c i
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is the principal aim of the next section where the critical layer is analysed. The 

coefficient of the logarithm ic term  is central to the current study, its value being

(  P 2
c il <h =  — ( ^ ^ 2  (^ 2&i ~  <t>ih)(pi ~  3 p i^ ^ )

\+ ~^y^PlPl^{~402̂ 0̂ 2 + 20J&2 + 6<t>3<t>obi — 2<j)\<j>2b\) J
tf4 /

+  a 3^4ft3Pi Pi* ^do(r_i(25i63 -  362) +  2 r06i62 -  r ib\ )

-f- ( 2 d 2b2 — 4 d j6 ib2 ) 4- 2 d \ T $ b — 3 d 2r —i b ' ^ ^ .

(5.3.20)

This can be checked, to some extent, with its counterpart in S. The implications 

of this expression are discussed in the next section, where the critical layer is 

investigated.

§5.3.4 T h e  n o n lin e a r  c ritic a l layer.

The appropriate  scales and expansions follow very closely from  S. The normal 

variable 1/, defined by

y  ~  Vc = T * v  , (5.3.21)

is 0 (1 ) in the critical layer. Now

and

d . 3 3 3 , d v 1 d
—  -> ( —r ~ ? c +  - X T - 1) — -  +  - Z T - 1—- 4- - r ~ *  —  
dt  v 2 Jd X  2  d Z  4 dv

d  j d

along with the previous forms for the stream - and span-wise derivatives. The 

expansions here are

u = c-\ -T*i i i (X,  v, Z )  4- T ^ u 2 +  T * u 3 4- T I t l T u ^ l  4- Tu^  -f • • •,

v = T ~ l v i(X ,z /,Z)  +  T ~ 4v2 4- T ~ ^ v 3 -f T - 4 ln T ‘04L +  T ~ 4 v4 4-----,

w = T * w i ( X ,  v, Z )  +  T 2 w 2 4- T ^ w 3 -f Tin Tw±l  4- T 1D4 +  • • • , 

p — d o + T ^ p i ( X ,  v, Z)  4- T 2 p2 4- T 4 p 3 4- Tin Tp^L 4- T p4 4- • • •,

(5.3.22a -  d)
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with the sam e expansion for the pressure as in the surrounding inviscid region. 

Transform ing to the skewed co-ordinates and defining the skew-velocities

Un = a u n -(- f lwn, n = 1, 2,3 ,4  and 4.L

yields the leading order equations in the critical layer

do[UiUiqf -f- viUiu] =  — /32p i¥ ,

U i *  + vii/ = 0, 

U ipm  +  v\Piv =  0.

(5.3.23a -  c)

These have to  be solved subject to matching conditions stem m ing from the study 

of the inviscid solutions near the critical level. These are found to  be

jj , . P 2 4>qpi*Ui —> aoii/, tq —> —
a

and

Pi ~ ► d iu  -|— ^°^>1 . . . ,  as v  ±oo. (5.3.23d — / )
b \o rv

Solutions for V\ and Vi follow the standard  forms and are simply

0 2 <l>oPi*JJ\ =  a b \v  and =
a

whereas the solution for p\ is very similar to those for u \ and ttfi, had we solved 

for these. In fact

pi = d\G(r)), (5.3.24a)

where 77 is the stream line coordinate (cf. ‘Kelvin’s cats eyes’)

v = v 2 +  % ^ - p i  (5.3.246)
o r Oj

and the function G is undeterm ined at this order; the boundary conditions on p\ 

require th a t

Giv)  ~  as 77 —> 00 , (5.3.24c)

where the ‘—’ sign is taken for u >  0 and +  sign for v  <  0 .

Note th a t here, as in S, p\ = p i( \f) , i.e. general ^-dependence; Smith &

Bodonyi (1982b), for example, have trigonom etric dependence for the spatial (x
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and z ) variables whereas G ajjar & Sm ith (1985), Cowley (1985), Sm ith & Bodonyi 

(1987), for example, have tim e-dependent stream lines. The previous, present study 

included, all have open streamlines, apart from Smith & Bodonyi (1982b) where 

some of the streamlines are closed to  form ‘cats eyes’.

The second order equations are

+  V2 v =

— — f j\  - f  —vU lu  +  +  U\ U2'b +  +  ^ 1 ^ 2 1 / +  V2 U1U =
4 4 2

P 2
~w{PlPl^ — d'QP2 'i! )j a 0

and
1^ 1 ,  3

— ~P  1 +  ~Vf) \v +  ~ ^ P  l<fr +  Uif>2<jf +  U2P\<S/ +  Vi P2 v +  V2f>lv =  0 .4 4 2

(5.3.25a -  c)

The boundary conditions (from m atching with the inviscid region ) are

P 2 P 2 p 2
U2 ~  ab2 v 2 H (fripi +  • • •, v 2 ~  <l>iP\<liV 4>oP2 'iia a  a

and
j  2 , /?2 , dl p 2 <f)0p 2 ,P2 ~  d2 v  +  — r 0pi--H----—  ------- 1----- ,

or bicx^v

as v  —> ±oo. Substituting for the leading order quantities leads to

U2 <t +  V2 v =  0

and

P 2 - P 2 P 2
a b i i / ^ y  <f>oPi^U2v +  V2 <xh = - x - p ^ d i G M  —p2<z- (5.3.26a, b)

OC CLq Uq

Note th a t transform ing to the stream line coordinate ( # , 77), from ( ^ ,^ )  re­

quires
_d_ d_ d  
m i  m  + q *dri

and
d d  . i d

m ^ 2 v m l = ± 2 {r' - q)*d-rl
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where q =  ^ f*1 . Here the ‘-j-’ sign is taken for v  positive and the ‘ —’ sign
a 2bi

otherwise; these are the natu ra l coords for the critical layer. The solution for U2 

is more complicated, being

U2 =  2ab2 j  (7 7  -  9 ) 2  G ( t j ) cLt i  - f  / i ( ' I ' )
Jq

where h is fixed up from m atching to  the inviscid regions. The solutions for the 

o ther quantities at this order have similar forms. The th ird  order equations are

4- vsv  =  0)

1 .  1 . 3 *
— — U2 4" ~ v U 2 v +  ~'&U2'fr 4* -f- t/̂ 2 ^ 2 ^ 4“ UzU\<b-\-

f t2 f t2 PIPl't
V l U 3l/ -f V2 U 2 U 4- V z U l v  =  ~^P2Pl<! /  -  - r - p s *  -  P l [ - P 2 *  4-j 2  7 r*'* r±L r*'* ■ 1a 0 ao ao

and

~  ~f>2 +  —V p 2 v  4- “ ^ P 2 ^  4- U i P z y  4- U2P2'i? 4" U z P l < f { -2 4 2

V i p 3 v 4- V2 p 2 u +  V3 P i u  =  0, (5.3.27a -  c)

coupled with boundary conditions to  m atch with the outer, surrounding inviscid

flow. As far as working out the desired jum p the subscript 4L  equations are not

im portan t and neither is the density equation for p±. The im portan t equations at 

fourth  order are (noting th a t viscous effects enter at this order- below po is the 

value of the base viscosity at yc)

4~ ^41/ — 0

and

3  1 - 3
— —1 / 3  +  —v U ^ i ,  +  4" t j \ U ^  4- U 2 4" U 2 'i +

4 4 2

v \ U i v  4- V2 &ZV 4- V3 U 2 U 4- V4 U 1 V =

P Q f j  . P 2 ~ P 2 . r  , P l P l ¥ i
~ T ~ U I w  4" - j 2 P 3 P l ' t  — - J ~ P ^  — P 2 [ ~ P 2 ' i  4 J  J
ao a 0 ao ao

~ ( P 2 ~ P 2 - r  . P l P l ^ A  / k q o q
~ P \  y - j 2 P 2P i *  -  -  P i [ - P 2 *  4----2 — 1J  * (5 .3 .28a,0)

together with m atching conditions, to  the inviscid region, requiring

ft2
U± ~  641/  H [3pi</>3i/2 -f 2p2<̂2*'] -  c1L ln i/ -  (c1L +  c f ) H-----

CL
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and

( 3 2
t)4 ~  \p iv fa v 3 + P2*<f>2 V2} +  c i L y v l n v  +  cfyV  +  • • • , (5.3.28c,d)

a.

as v —> ±oo. Note the  first appearance of logarithms at this order; they have been 

suppressed at earlier order by the assum ption tha t this critical level coincides with 

a point of inflexion. The presence of these leads to the jum p across the critical 

layer which still rem ains to be determined.

§5.4 D ISC U SSIO N .

In the previous section the problem th a t needs to be solved for the determ i­

nation of the jum p J  has been formulated. Unfortunate/^yiespite the use of the 

skew-coordinate \P, the solution requires some involved algebraic m anipulation- 

the calculation of c n *  was only comfortably achieved by use of the com puter 

symbolic m anipulation package M A CS Y M A .  As no simpler m ethod is apparent 

we choose to  suspend the analysis at its current position: the  evaluation of the 

jum p has eluded the current investigation. However, note th a t in the  expressions 

(5.3.12) and (5.3.20) , the proposed nonlinear differential equation for the pres­

sure and the value of cn ,*  respectively, the pressure term s occur only in linear 

combinations of

Pi ~  and p ip i* .

This means, assum ing th a t J  = 0, th a t c i^* , the coefficient of the  logarithmic 

term  th a t results in the jum p, is merely proportional to the nonlinear term  pipiq?. 

Thus we can postu late  th a t J  =  0 on the basis th a t the previous analysis, when 

compared to S, contains no evidence to the contrary. Further one could argue th a t 

it is the unsteadiness of the critical layer th a t is crucial to  the  whole break-up 

mechanism which we have not altered from previous studies, the  trouble is caused 

by nonlinear term s ,in the critical layer analysis, being m ore com plicated due to 

compressibility, which (the nonlinear critical layer term s) do not affect the eventual 

jum p anyhow.

Summ arising, the  present study has indicated th a t as the M ach num ber in­

creases the problem  becomes truly 3-D and compressible. This results in the 

analysis becoming very awkward, even when the special case of a skew-direction
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is considered. Despite not being able to dem onstrate explicitly th a t break-up can 

occur we conclude th a t it is likely. The verification , or otherwise, will only follow 

from carefully controlled direct numerical simulations of the governing equations 

(5.3.1a-e), as in Peridier, Sm ith & Walker (1990), and, perhaps to  a much lesser 

extent, from physical experiments.

Finally we note th a t the above theory can be generalised by writing

x - x ,  = - c f  + T NX  and p - p , ,  = f N ~ 1p i ( X , Z )  ■■■
/

along with similar expansions for other quantities. In particu lar, the case N  — 1 

corresponding to ‘severe’ break-up (with a discontinuity in the pressure, rather 

than  its gradient) rem ains to be studied. Note th a t the above theory should 

carry over to o ther related interactive boundary-layer structures such as when a 

shock is incorporated into the upper deck (Cowley & Hall, 1990), as well as other 

geometries. Recent related work is by HSW and Peridier et al (1990) (see also 

Peridier, 1989).
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C hapter 6

O n th e  inviscid  in sta b ility  o f  h yp erson ic  flow
past a flat p la te .

§6.1 IN T R O D U C T IO N

In this chapter we are concerned with the inviscid instability of hypersonic 

boundary-layer flows. In the first instance we will consider flows where the influ­

ence of shocks is negligible, and then we will show how the instability problem 

can be significantly modified by shock effects. The m otivation for this and related 

work on hypersonic boundary-layer instability theory is the renewed interest in 

hypersonic flight which has been stim ulated by plans to build a successor to the 

Space Shuttle. A prim ary concern with such vehicles is the question of where 

transition will occur over a wide range of Mach num bers and whether it can be 

controlled. At the largest relevant Mach num bers, say Mach 20-25, the extremely 

high tem peratures associated with the flow would destroy the vehicle unless it were 

cooled, so th a t it is of interest to identify the effect th a t the wall tem perature has 

on flow instability.

The purpose of this chapter is to  determ ine the inviscid instability character­

istics of physically realistic hypersonic boundary-layer flows. We recall tha t there 

is a simple generalization of Rayleigh’s (incompressible) inflection point theorem 

to compressible flows (Lees & Lin, 1946), and th a t m any compressible boundary 

layers tu rn  out to be inviscidly unstable even though their incompressible coun­

te rp arts  are stable. This is a significant result because the growth rates of inviscid 

disturbances tend to be much larger than  those of viscous or centrifugal instabili­

ties; thus they are prim e candidates for causing transition to turbulence in many 

situations. The modes discussed in this chapter are referred to  as generalized- 

inflection-point modes because the phase speed of the neutral mode is equal to the 

fluid velocity at the generalized inflection point. Furtherm ore the eigenfunctions 

of the fastest growing modes are localized around th a t inflection point.

For convenience we will concentrate on high-Reynolds-number flow past a flat 

plate, although m any aspects of our analysis are applicable to other boundary-layer 

flows (e.g. flow past a wedge). Throughout we assume th a t the fluid viscosity is
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N ewtonian, and is adequately described by Sutherland’s formula. We will also take 

the  P ran d tl num ber to be one. While it is relatively straightforw ard to relax this 

restriction, doing so complicates the analysis and numerical work further, and is 

not thought to alter significantly the qualitative features of the results presented. 

Also, while we assume tha t the Mach num ber is large, the complications arising 

from  real gas effects are not investigated; Fu (1990) considered real gas effects on 

the Gortler vortex instability mechanism, w ith no shock present, and concluded 

th a t they have little direct influence at the edge of the boundary layer, where the 

disturbance is concentrated.

Reshotko (1976) and Mack (1987) have reviewed earlier work on the linear 

instability of high-Reynolds-number compressible flows. Many of these studies are 

based on the Orr-Sommerfeld equation; for a critique of the m athem atical rigor 

of this approach see Smith (1979a, 1989). Here we examine the linear stability 

of high-Reynolds-number flows by means of formal asym ptotic expansions. For 

example, Smith (1989) has used such an approach by applying triple-deck theory 

to  lower-branch, viscous, Tollmien-Schlichting modes of compressible boundary 

layers. Seddougui, Bowles & Smith (1989) have extended this theory to include 

the effects of severe wall cooling, while Cowley Sz Hall (1990), hereafter referred 

to  as CH, have shown how such modes can interact with a shock at large Mach 

num ber. However, viscous modes have relatively small growth rates, and our main 

concern will be with the faster growing inviscid modes. As a result, our analysis 

is based on the Rayleigh equation ra ther th an  the triple-deck equations. We note 

th a t the th ird  type of instability responsible for boundary-layer transition, the 

G ortler vortex mode, develops an asym ptotic structure at high Mach numbers 

closely related to th a t of our inviscid modes (Hall & Fu, 1989; for the Sutherland- 

form ulation, see Fu, Hall & Blackaby, 1990 and C hapter 7).

W hen a quasi-parallel approxim ation is formally justifiable because the Reyn­

olds num ber is large, inviscid modes satisfy the compressible generalisation of 

Rayleigh’s equation. Numerical solutions to  this equation have been reported by, 

inter ali<K Mack (1984, 1987, 1990) for boundary-layer flows, Jackson &: Grosch 

(1989) for shear flows, and Papageorgiou (1989) for wake flows. For fluids satis­

fying a Chapm an viscosity law, high-M ach-num ber asym ptotic solutions to this 

equation for the so-called ‘acoustic’ boundary-layer modes have been obtained by
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CH, while Smith & Brown (1990), hereafter referred to as SB, have identified the 

asym ptotic form of the ‘vorticity’ mode - including an exact solution of the gov­

erning equation. Balsa & Goldstein (1990) and Papageorgiou (1990) have given 

asym ptotic descriptions for the high-M ach-number inviscid instability of shear- 

layers and wakes, respectively, assuming a Chapman-law fluid. Though the basic 

states investigated by SB, Balsa & Goldstein (1990) and Papageorgiou (1990) are 

different, they found essentially the same most unstable eigenvalue because it cor­

responds to a disturbance trapped  in a thin layer where the overall features of the 

basic state  are un im portan t.

In the above m entioned boundary-layer analyses, and also in the hypersonic 

Gortler vortex instability analysis of Hall h  Fu (1989), one of the key asym ptotic 

regions for the case of a C hapm an viscosity law is a logarithmically th in  ‘ad just­

m en t’ layer which develops due to  the exponential decay of the underlying steady 

tem perature field away from the wall. However, C hapm an’s viscosity law is not 

exact, and was introduced as a useful interpolation law which greatly simplified 

steady boundary-layer calculations; for example Stewartson (1955) hoped th a t the 

use of idealised physical properties would help in understanding ‘the  behaviour 

of more realistic fluids’. At the large tem peratures typical in hypersonic flows, 

C hapm an’s law differs significantly from the more precise Sutherland’s formula. 

In fact, because C hapm an’s law is simply a linear approxim ation to the viscosity- 

tem perature dependence of the fluid, it is of questionable validity in the hypersonic 

limit.

At high Mach num bers the steady tem perature field in a Sutherland-form ula 

fluid initially decays algebraically away from the wall, before reverting to exponen­

tial decay in an asym ptotic region ‘fa r’ from the wall (e.g. Freem an Sz Lam  1959). 

This algebraic decay significantly changes the scalings in the adjustm ent region; in 

particular the asym ptotic expansions proceed in inverse powers of M 00 ra ther than  

y'log(M oo). Moreover the wavelength of the most unstable disturbance varies by a 

factor of ylog^M oo) in the two cases. We note th a t a similar difference in scalings 

is evident in the interaction region of steady hypersonic flow past a flat plate. In 

th a t case Lee & Cheng (1969) have shown th a t the shock-heating adjustm ent layer
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is logarithmically th in  for C hapm an’s viscosity law, whereas for a power-law vis­

cosity form ula, and hence for Sutherland’s formula, the scaling for the  adjustm ent 

layer is algebraic in na ture  (Bush 1966).

The flows which we consider here are appropriate to different downstream  

locations for hypersonic flow past a semi-infinite flat plate. In the  first instance 

we shall consider the instability of a non-interactive flow. This is appropriate 

to  large distances dow nstream  of the leading edge of the plate, where the Mach 

wave, corresponding to the attached shock at the leading edge, has no effect on 

the flow field. This basic state, and the Rayleigh equation which governs its 

inviscid instability, are discussed in §6.2. The dispersion relation associated with 

the Rayleigh equation is then derived in §6.3. We consider the grow th rate  and 

show th a t it is m axim um  for a vorticity mode. The sm all-w avenum ber limit of 

the vorticity modes is then investigated and we show how the vorticity mode is 

related to the acoustic mode.

Then in §6.4 we go on to  discuss the basic state in the ‘interaction zone’ further 

upstream . Since S utherland’s viscosity formula reduces to a so-called ‘power-law’ 

at large tem peratures, the description of the underlying steady flow in this region 

is essentially th a t for a power-law fluid due to Luniev (1959) and Bush (1966). 

They show th a t this region occurs where Re  =  O (M ^ ), where Re  is the Reynolds 

num ber based on distance from the leading edge. The resulting system  of equations 

can only be solved numerically, and we are unaware of any published solutions. 

Nevertheless it is still possible to  consider the instability of the flow in the inter­

active region, and we derive appropriate (quasi-parallel) stability equations. The 

‘strong’ hypersonic interaction limit then corresponds to letting the streamwise 

variable tend to zero on the Re  =  0 ( M l o) scale. In th a t limit a sim ilarity solution 

for the basic flow can be found (Bush, 1966), and a re-scaled Rayleigh equation 

for the disturbance derived. The solution of th a t equation is discussed in §6.5. 

We could have instead considered the weak hypersonic limit fu rther downstream 

where Bush & Cross (1967) have given an appropriate asym ptotic description. We 

choose to concentrate on the strong-interaction regime because it is, to a certain 

extent, simpler. Further, if the flow, is unstable in this regime it is arguable th a t
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growing disturbances will originate here. Finally in §6.6 we shall draw some con­

clusions, as well as briefly outlining the m ain difficulties encountered during the 

num erical solution of the equations herein.

§6.2 N O N -IN T E R A C T IV E  ST E A D Y  FLOW S 

§6.2.1 T he sim ilarity solution

The similarity solution to the boundary layer equations has already been 

form ulated in §2.2 and its large Mach num ber properties were briefly considered 

in §2.3.4. However, in this chapter it is shown th a t the adjustm ent layer is now

crucial to  understanding the inviscid stability of hypersonic flow (in contrast to

the viscous stability) and so here we consider the large Mach num ber properties 

of the similarity solution in some detail. Let us now briefly recap their derivation; 

note the slight change in notation here com pared with C hapter 2.

For a shear viscosity obeying Sutherland’s form ula

1 1 +  S \ m 3 „ 110.4
>i= ( r T s )  <“ •»

In  the num erical calculations discussed below we took T =  216.9, leading to the 

value S  = 0.509.

The boundary-layer equations are recovered from the (compressible) Navier 

Stokes equations by substituting

my

= Re  2 /  pdy, v =  R e ~ ^  V, (6.2.2a, b)
Jo

where the Dorodnitsyn-Howarth variable, 77, is introduced for convenience, and 

then  taking the limit Re  —> 00.

For steady two-dimensional flow over a flat plate with leading edge at x — 0, 

a similarity solution to these equations exists. W ith

Tj
V =  n - — ;— AT"  > U =  Tl>V, P V  =  - ( T p x + V x T p r j ) ,

-^/(l +  S)x

= Vi1 + S)z/(77)> T = T(tj), p = p( 77), p = (̂77), p=-^—,

(6.2.3 a  —  h )
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the governing equations are found to  be

p T =  1 ,  \ f f „  +  =  °*  (6 .2 .4a,6)

1 m  , 1 (  T l  , (7 -  i ) M * , r l  j2 n
2 ^  v P r  y T  +  S V)  T  + S  vv ’ ( ' • )

subject to  the boundary conditions

/(0 )  =  f v(0) = 0, f v ( oo) =  T(  oo) =  1, (6.2.4d)

and T (0) =  (fixed wall — tem perature), or 2^ (0) =  0 (insulated wall).

(6.2.4e)

For simpficity we will focus attention on P r  =  I f ,  and denote by Tr the wall tem ­

pera tu re  when the boundary is insulated. Then, as is well known (e.g. Stewartson 

1964), the energy equation can be integrated to yield

r = i + ((r» - 1) + 1(t -  m U n  + /,))(i -  /,), (6.2.5)

where Tw = T{>Tr and Tr =  1 +  | ( 7  -  1)M ^ .

The solution to  (6.2.4) in the limit of large Mach num ber has been examined 

by Freem an Sz Lam (1959). They showed th a t two asym ptotic regions develop,
l

distinguished by the positions where the coordinates rj and £ =  M & 77, respectively, 

are order one.

_  1
§6.2.2 T h e  h ig h  te m p e r a tu r e  reg io n : £ =  0 (1 ) <-> 77 =  O(Moo^)

_ 1
In this region we write /  =  Moo2 /o(£) +  • ■ •, then using (6.2.5) it follows from 

(6.2.46) th a t

/o /o «  +  ( - ^ V  f ---------------------------- r )  = » .  (6.2.7a)
\7  /  y (7̂  _j_ / 0̂ )^(1 — fo{)^ /  ^

with

/o(0) =  /o*(0) =  0, (6.2.76)

|  the case of non-zero Prandtl number is discussed briefly, in §6.6.2, in connection with the 

numerical solution of the boundary-layer equations.
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and

/o ~  £ 4- A +
24 72A

— +  . . . ,  as £ —> oo. (6.2.7c)
( n  + 1)(7  -  i)f»  (Tb + 1)(7  -  i ) c

Throughout the chapter detailed expansions are given for the solutions at the 

edges of asym ptotic regions; this is because the algebraic na tu re  of the expansions 

often m eans th a t m ore than  the leading-order term  is required to obtain accurate 

num erical results. The algebraic decay is of course different from the case of a 

Chapm an-law  fluid for which the expansions converge exponentially. The constant 

A m ust be determ ined numerically.

For fu ture reference observe: (a) tha t in this region T  = and hence

Sutherland’s form ulareduces to a power-law form at leading order, and (b) tha t
• 3 / 2from (6.2.2a) the boundary-layer thickness in this region is 0 ( M oJ> ), and is thus 

relatively large. See Figure 6.1.

u . A?
/V\ACH W A V S ’

I

A 'T T ^c h e v

S H o e k

ttsm pc ta tu  r e
A"DTVJSr/AENT

L fty g -R

H O T

r F L /r r  p L e - n r

-Ih ^2.
OCRt i% )

LBAVMVCt  £T>(x E

Figure 6.1. The four distinct downstream -regions of hypersonic flow over a flat 
plate. Region I: the strong interaction zone/region; x <C 1. Region II: x ~  o ( i ) ;  
no asym ptotic description. Region III: the weak interaction zone/region; x 1. 
Region IV: ‘far dow nstream ’, x 1; boundary-layer unaffected by Mach wave 
(shock) at leading orders of concern. Note th a t in this thesis we only consider 
Region IV, apart from  the second half of this chapter, when we consider Region I. 
F urther, note the so-called tem perature adjustm ent layer (alternatively, sometimes 
referred to  as the viscous transition layer) which ‘splits’ the  flow beneath the 
shock/M ach wave into three (vertical) layers: the hot, viscous, inner layer; the 
tem peratu re  ad justm ent layer; and the outerm ost, cool inviscid layer.
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§6.2.3 T h e  te m p e r a t u r e  a d ju s tm e n t  reg io n : 77 =  0 (1 )

Here, with

/  -  V +  r  +  J j T  +  * • *» (6.2.8)
■5■00M,

we find th a t the small pertu rbation  f \  satisfies the nonlinear equation

J 1 - 1(7  -  i) ( r*  +  i ) / i ,

+  2 I 1 +  S  - 1(7  -  i ) ( r 6 + 1  )A , / l ’"  1 -  ° ’ (6 '2 '9a)

subject to

- 24
•ft ~   7VT as ^ °> and /1 0 as *7 (6.2.96)(Tb +  1)(7 -  1)77

In this region T  =  0 (1 ) , and thus the full form of Sutherland’s form ula holds.

Note th a t although this tem perature-adjustm ent layer is thicker th an  the high-

tem perature region in term s of the Dorodnitsyn-Howarth similarity variable 77, it

follows from (6.2.2a) th a t in physical coordinates it is a thin layer of 0 (1) thickness
3

sitting at the edge of the m uch wider 0 (Md>) high-tem perature boundary layer.

In order to illustrate the underlying velocity profiles, in Figure 6 .2a we have 

plotted the function /o^ against £ for the adiabatic case Tb =  1 w ith 7  =  1.4, 

and then in Figure 6.26 we have plotted the adjustm ent-layer function f i v against 

77. The figures illustrate the respective algebraic and exponential decay of the 

two velocity profiles awray from the wall. It is also worth pointing out th a t for 

a Chapm an-law fluid the adjustm ent-layer equation corresponding to  (6.2.9a) is 

linear, and th a t its solution can be expressed in term s of the exponential function. 

It is this simplification th a t enabled SB to spot the exact solution of the neutral 

vorticity mode in their study of instabilities in this layer. We shall see th a t an 

exact solution of the analogous stability equation for Sutherland’s form ula cannot 

be found.
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Figure 6.2a. The function /o£ against £ for the adiabatic case Tb 

7  — 1.4.
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Figure 6.2b. The adjustm ent layer function / j
v against 77.
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§6.2.4 R a y le ig h ’s E q u a t io n

We now investigate the stability of this non-interactive steady flow. Suffi­

ciently far dow nstream  the quasi-parallel assum ption is valid for inviscid instability 

modes. It is then appropriate to seek perturbations of the form

(u ,p) = :̂ r )+ .. .+A(u(7])ip(r]))exp ( i R e ? d ( x , z , t ) ' ) + . . .  , (6.2.10a, 6)

with similar expressions for the other flow quantities. Here A is the small dis­

turbance am plitude, and as is conventional we define local wavenumbers, a local 

frequency and a local wavespeed by

(a,/?,u>) =  \ / ( l  +  S)x  c — —. (6.2.10c ,d)

If A is sufficiently small, the pressure perturbation  p  satisfies the linear, compress­

ible, Rayleigh equation,

d2p 2 f ” dp 2 n 2 \ m / m  i f  ~  c)2 ..
T T  “  7T — - f - ( a  + P ) T { T  T i  aoT  )P =  °- (6.2.11a)dt)2 f  — c dr] '  '  v ( a 2 + /3 2) ’ v ’

The conditions th a t there is no norm al velocity at the wall, and th a t the distur­

bance is confined to  the boundary layer, can be expressed as

p  — 0  on 77 =  0 , p  —► 0  as 77 —> 00. (6.2.116)

Equation (6.2.11a) and boundary conditions (6.2.116) specify a tem poral stability 

eigenrelation c =  c(a,/?); alternatively the eigenrelation can be regarded as a  E 

a(c ,/?) from  a spatial stability standpoint.

§6.3 T H E  F A R  D O W N S T R E A M  B E H A V IO U R  O F  T H E  IN V IS C ID  

M O D E S .

In this section we discuss the asym ptotic form of unstable solutions to (6.2.11a) 

for the region far downstream  of the leading edge of the plate. In a previous inves­

tigation CH studied the so-called acoustic modes of (6.2.11a) in this region using 

C hapm an’s viscosity law. Simultaneously SB investigated the vorticity mode using 

C hapm an’s law. The main difference between these two types of modes is tha t the 

acoustic modes have (a ,/? ) =  0 (M ^ 2), whilst the vorticity m ode, at least close
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to  the upper branch, has (<*,/?) = 0 ( y /2 log M ^ ) .  Moreover the vorticity mode 

is centred in the adjustm ent layer at the edge of the boundary layer, whilst the 

acoustic one is concentrated in the main p art of the boundary layer.

However, as indicated above, at high Mach num bers the tem perature  varia­

tions in the boundary layer are large. Thus a linear tem perature-viscosity law is 

a bad approxim ation, and Sutherland’s formula should be used to  give a better 

representation of the viscosity. It is then im portan t to  see how the asymptotic 

structures developed by CH and SB change. We shall see th a t there are significant 

differences.

In the first instance we derive an asym ptotic solution for a vorticity mode 

of (6.2 .11a). We determ ine the neutral values of a ,  j3 and c for this mode, and 

find the limiting form of the mode when the small wavenumber lim it (a ,/?) —» 0 is 

taken. This lim iting solution points to a sequence of distinguished asym ptotic lim­

its. W ithin this sequence the scaling (a ,/?) =  0 ( M oo ^ 2), appropriate  to acoustic 

modes emerges; we therefore discuss these modes as a lim iting case of the vorticity 

mode.

§6.3.1 M odes w ith  wavelengths com parable w ith  th e thickness

o f  th e  a d ju s tm e n t  reg io n : (a,/3) =  0 (1 ) . T h e  v o r t ic i ty  m o d e s .

Consider then  the solution of (6.2.11a) which has the eigenfunction trapped 

in the tem perature-adjustm ent layer at the edge of the boundary layer. We seek a 

solution which has (a , (3) = 0 (1 ), so th a t the wavelength of the vorticity mode is 

com parable with the width of the physically-thin adjustm ent layer. Defining the 

scaled ad justm ent-layer function

<3 =  l (T i  + l ) ( 7 - l ) / i „  (6.3.1a)

we easily deduce from (6.2.3),(6.2.5) and (6.2.8), th a t the velocity field, 12, and 

tem peratu re  field, T , of the underlying steady flow expand as

“  =  1 +  (7 -  l)2( r !  +  l ) M i  +  " '  ’ f  =  1 - < 5 + -- - (6-3-l6 ’c)

where r) = and G has the asym ptotic behaviour

G = — —  -|— -—-= +  (25 +  1) +  . . .  as fj —> 0, (6.3.2a)
V fj3~v l
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G  —► 0 exponentially as 77 —> 0 0 . (6.3.26)

Here B is a constant which has to be calculated numerically.

Next we expand a , /?, c and p as

( a , / » ) = - h ( d 1/j) +  . . . 1 c =  l + ( T _ 1)(2? +  i ) M i c +  . . . ,  p = p + . . . ,

(6.3.3 a, 6, c)

where we have assumed th a t the disturbance moves downstream  with the fluid 

speed in the adjustm ent layer. On substitu ting for u and T  from (6.3.1), and 

using (6.3.3), we find th a t the zeroth order approxim ation to (6.2.11a) in the 

adjustm ent layer is the vorticity-m ode equation

d2p 2G' dp 
dfj2 G — c dfj

where

Z -  k \  1 -  G y p  = 0, (6.3.4a)

k =  (d 2 + /? 2)K  (6.3.46)

Equation (6.3.4) is to be solved subject to  p vanishing in the limits 77 —► 0 and 

77 —> 00, i.e. the disturbance is to  be confined to the adjustm ent layer. For fj >>  1

it follows from (6.3.4) th a t p decays like exp( — kfj), whilst for 77 < <  1 a W KB

solution of (6.3.4) can be expressed in the form

p ~  exp(— J  0(77)^77), (6.3.5)

where
9 k 2 B k

O ~  +  3  H j= + 2S k  + . . .  as 77 —► 0. (6.3.6)
V V fj3- v 7

First, we restrict our atten tion  to  the neutral case. The wavespeed c is then 

real and can be evaluated by finding the fluid speed correct to order M ^ 2 at the 

generalized inflection point where

-  B -  = 0 , (6.3.7)
u v 1

i.e. where
G" 2 &  t

_  =  0 . (6.3.8)

A numerical solution to (6.2.9a) using a R unge-K utta m ethod shows th a t this

occurs at fj ~  1.604924, in which case c ~  —0.993937. The corresponding real

198



value of k is obtained by integrating (6.3.4) from fj = 0 to fj = oo. In order to 

avoid difficulties at the generalised inflection point the path  of integration was 

deformed into the complex 77-plane by taking a triangular indentation around and 

below the generalised inflection point f. Such a calculation predicts th a t the neutral 

wavenumber is k ~  0.645065 in addition to  the same neutral wavespeed, c, value 

as th a t calculated from the inflexion-point criterion (6.3.8).

However, of greater significance are the unstable eigenmodes. Figure 6.3 illus­

tra tes  the dependence of the growth rate, Im (dc), on the real wavenumber a  for 

two-dimensional modes. The m axim um  tem poral growth rate , Im (dc) ~  0.256853, 

occurs at a  ~  0.143619. Further, it follows from the functional form of c, i.e. 

c = c(fc), th a t three-dim ensional modes have smaller growth rates, as do acoustic 

modes (see Blackaby, Cowley & Hall, 1990 — hereinafter referred to as BCH). 

Hence this two-dimensional m ode is the most unstable inviscid m ode for a hy­

personic boundary layer. We note th a t c as defined above is independent of Tj, 

and 7 , and th a t the growth ra te  is obtained from (6.3.3b) by dividing Im (dc) by 

^ (T &  +  1)(7 — 1). Thus wall cooling has a destabilizing effect on the vorticity 

mode to the extent th a t the tem poral growth rate  can be doubled by reducing the 

wall tem perature sufficiently.

In Figure 6.4 we show the eigenfunction of the vorticity m ode equation at 

different values of the wavenumber. This figure indicates th a t as the wavenumber 

decreases the eigenfunction s tarts  to  expand out of the adjustm ent layer. Thus, 

if the wavelength increases sufficiently the possibility arises of the disturbance 

extending outside the boundary layer, and hence of it interacting w ith external flow 

features such as shocks. Further, the form of the grow th-rate at small wavenumbers 

is of interest because for sufficiently small values of the wavenumber the vorticity 

m ode is expected to develop a structure  similar to th a t of the acoustic mode.

f  the actual shape of the indentation to.the contour at the inflexion point is unimportant — in 

his comprehensive paper concerning the computation of the stability of the laminar compressible 

boundary layer, Mack (1965; see his figure 2) employs a rectangular indentation.
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§6.3.2 T h e  v o r t i c i ty  m o d e  for sm a l l  w a v e n u m b e rs .

The key to understanding the subsequent regimes when a ,/3  are related to in­

verse powers of the Mach num ber is to write down the small k asym ptotic structure 

of (6.3.4). Figure 6.5 is a schematic illustration of the different regions in fj space 

which emerge in the limit k —> 0. Also shown in this figure is the  high tem perature

wall layer, £ =  0 (1 ) . For the moment k is not considered to  be sufficiently small
X  ufor it to be O ( M ^ )  for some positive <j>\ it then turns out th a t region II, and to

a lesser extent regions I and IV, are passive. However, at sufficiently small values

of k the wall-layer struc ture  of the basic state  will enter the problem  - see §6.3.3

and BCH.

In BCH it is reported  th a t, after some careful num erical calculations at small 

values of fc, it was deduced th a t c expands in the form

- +  +  A -  +  . . . .  (6.3.9)
£ 4 / 7  £ 3 / 7  £ 2 / 7  £ 1 / 7

The present au thor has performed his own, independent, num erical calculations 

for small values of k  and such a deduction was not obvious. The au thor was not 

too surprised at this ‘set back’ as their predicted small expansion param eter, ^7 , 

is not particularly small i.e. when k takes the reasonably small value of 0.001, 

kT ~  0.37, so th a t the asym ptote is approached very slowly as k —> 0.

Instead, in this subsection we show how the leading-order &-power ( —f ) and 

the value of its coefficient (ci) can be deduced simultaneously via an alternative 

argum ent. It is clear from numerical results tha t c —> oo as k —> 0 and this is our 

starting  point. In this small wave-num ber limit the ad justm ent layer will split 

into asym ptotic regions, as mentioned above.

From (6.2.l i b ) , (6.3.2b) and (6.3.4) we can im m ediately see th a t for large fj 

Cbufc ScrvdJL) - 2
p — exp( -k f j ) - \-------  = 1 -  kfj + — fj2 ------ , (6.3.10)

Z

where an arb itra ry  multiplicative constant has been set equal to  one. Thus, for 

k <C l  there is a significant region (region I in Figure 6.5) where fj ~  k ~ l ^>1 — 

this region captures the decay of the disturbance a t the top of the adjustm ent layer. 

The rapid exponential decay of G results in the c-term s first occuring at very low 

order in (6.3.10). This suggests tha t the next significant asym ptotic region

2 0 2
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»—I

Figure 6.5. The different regions th a t emerge in the small k  limit.
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(region II) is where fj ~  0 (1 ), so tha t Gv ~  0 (1 ). However, it is found to be more 

profitable to consider the small 77 limit first.

Considering fj <C 1, the WKB solution, (6.3.5), of (6.3.4) will breakdown when 

the second (middle) term  of (6.3.4a) grows to become leading order. For fj <C 1, 

(6.3.2a) implies th a t

G , dp f j - 5 p =_2j;
7;-----------  j z z i -P; (6.3.11)G — car] (77 * — c) 77

thus the first and second term s automatically balance. The th ird  term  of (6.3.2a) 

has size k 2fj~8p and so balancing all three term s requires 77 ~  fc? <  1. Thus 

we consider an asym ptotic region (region III) in the lower pa rt of the  adjustm ent 

layer where

£ ~  k~^f j  ~  0 (1 ). (6.3.12)

Here the zeroth order approxim ation to (6.3.4) is

8 81 
pu  +  ~  f P  = °-

which m ust be solved subject to p —> 0 as £ —► 0. The appropriate  solution has

p —> Eq as f  -+ 00, (6 .3 .13)

where E q is an order one constant.

The next asym ptotic region (region IV) occurs for larger (bu t still small)

values of fj where c (also) enters the analysis at leading order. This will be where
 .  ̂ _  1 . #  1 -1

G ~  77 4 ~  c 77 ~  c 4 < 1 .  Obviously we are assum ing th a t c 4 ^ 3 , i.e.

c < A r f ,  (6 .3 .14)

in this argum ent —  this can be verified a posteriori.

The large £ asym ptote, (6 .3 .13 ), suggests th a t here we expand

p  = E q +  c i P i ( £ )  +  • • • ,  (6 .3 .15)

where is a small param eter (to be determ ined) and

£ = c? 7 7 ~ 0( 1 ) .  (6.3.16)
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Note th a t, at leading order,

 ̂i  Gfj  ~  2 -  iP i j f j^ t lC ? ,  -= -Pi) ~  tlT] ~  Cl c?,
Ur —  C

whilst

jb2( l  -  G)2p ~  k2Tj-*E<, ~  *2c2. 

Balancing all these term s at leading requires

£1 =  0(fc2c?), (6.3.17)

which is small by the previous assum ption (6.3.14).

In fact Pi satisfies

- 72 f  81E°
1 l « 4 +  9) 1 i*

with solution

P[ = E „ ( l +  I - ) 2( f ( -81d^------- E i ) ,  (6.3.18)
1 H  \ L (£4 +  9)2 '  K 1

where Ei  is the constant of integration; its sign has been chosen for later conve­

nience. We require th a t —► 0 as £ —> 0 to  m atch on with the large £ form of 

the solution in the previously considered layer; this can only be achieved if

j; 81d£̂ +  £ i  =  0. (6.3.19a)
'o (£4 + 9)2

As £ —> oc we see from (6.3.18) th a t P 1 ~  —E \  (~  0 (1)), so th a t

p ~  E 2 — k 2c± Eifj,  as £ —> 00 (fj \  0 (1 )), (6.3.196)

where E 2 is an arb itrary  constant. We see th a t this asym ptote matches (directly)

onto (6.3.10) if E 2 = 1 and k 2c±Ei  =  fc, i.e.

4 ~ 4
c = E 1~'rk~7  + . . .  .

- - 4Thus we have found th a t c ~  k 7, as deduced numerically by BCH. Moreover, 

the quantity  Ei  is simply given by (6.3.19a). This definite-integral can be easily 

evaluated by a standard  contour integration to yield the (complex) value of Ei \  

the appropriate choice of seventh root leads to

, 8 \/2  x 4 427T. « 4
Cl =  ) expi( — 7 +  " ,  (6.3.20)
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which corresponds to an unstable mode of (6.2.11a), for small k.

§6.3 .3  M o d es  w ith  w av e len g th s  c o m p a ra b le  w ith  th e  th ic k n e ss  o f  th e
_  3

h ig h —te m p e r a tu r e  reg io n : a , (3 =  0 ( M Oo ^ ) ‘> a n d  th e i r  link  w ith  

th e  aco u stic  m o d e s .

Now we consider the situation when a ,/?  are so small th a t region IV in Figure

6.5 merges with the wall layer of the basic state. Since the wall layer is of thickness 
_ i _ 3

Moo*, this occurs when (<*,/?) ~  MooJ ; it is then appropriate to write

=  o,A>) +  . . .  • (6.3.21)

_ 8
Since (1 — c) =  0(Moo7 ), the zeroth order approxim ation to (6.2.11a) in the wall 

layer is thus

-n 2 ^ 0  - i  1 /  - , \ 2 ( r n  , -  \ 2 / i  -  \ 2 ( (  2 , a 2 \  2 Q q ( 1  "Uo)P “  7 (7 - 1) (Tt +  Uo) ( 1 - u o )  ( ( a0 +/ ?0) - - ------—————— ) p  == 0,
U o - 1  4 (7 — 1)(^6 +  u o)

(6.3.22)
I

where a dash denotes a derivative with respect to the wall-layer variable £ =  M£,r)i 

and uo = f'Q is the first term  in the expansion of u in th a t layer. The above equation 

is to  be solved subject to ^ ( 0) =  0. For large £ it has the asym ptotic solutions

p ~  No = constant and p£7 ~  N i  = constant. (6.3.23)

For most choices of <*0, (3q, Tb and 7 , the constant N q is nonzero, and the structure 

in layers I, II, III survives intact. Thus for these values of cco, Po the wavespeed c 

expands as (see (6.3.3),(6.3.9),(6.3.13b) and (6.3.14a))

1 2 ^ i  / xc =  1 +  — r -------------------- -------------- r  +  . . . ,  (6.3.24)
M<J, (7 -  1 )(̂ fe + l)(«o + Po)7

_ 37
implying th a t the wave growth ra te , Im (ac), is of order Moo** •

However, equation (6.3.22) has a countably infinite set of eigenvalues for which 

the constant No = 0. For two-dimensional disturbances with T& =  1 and 7  =  1.4, 

a numerical solution of (6.3.22) yielded the eigenvalue sequence

a 0 =  2.47, 7.17, 12.19, 17.33, 22.54, 27.79, . . . .
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Figure 6 .6 . The first three acoustic mode eigenfunctions.



The first three eigenfunctions associated with this sequence are shown in Fig­

ure 6.6 . These eigenvalues indicate the existence of acoustic m odes th a t are the 

counterpart of those discussed by CH for a Chapm an-law fluid. We conclude tha t 

a t a countable discrete set of points the acoustic modes emerge a special case of 

the vorticity mode analysis; an outline of the structure of the vorticity mode in 

the vicinity of an acoustic mode is given in BCH.

In fact it is possible to  seek acoustic modes with (o:,/3) =  0 (1 ) , i.e. with 

wavenumbers com parable with those chosen in §6.3.1. The eigenfunctions for these 

modes are again concentrated in the £ =  0 (1) wall layer, bu t they now have a fast 

variation in this layer which can be described using the W KB m ethod. At certain 

values of M qq these eigenvalues coalesce with the neutral vorticity m ode discussed 

in §6.3.1. An analysis outlined in CH (see also the earlier study by D iPrim a &; 

Hall, 1984, of the Taylor problem ), and developed in full in SB, can be perform ed 

to describe the ‘sp litting’ of the eigenvalues in this region. We do not pursue this 

calculation here. In BCH the main concern is with completing a discussion of the 

s tructure  of the vorticity mode at all lengthscales, to see if the vorticity mode 

connects with another neutral state.
—3 / 2To summarise, the m ain significance of the (a ,/?) =  0 ( M oQ ) asym ptotic

regime is th a t it is the stage at which the acoustic modes emerge. However, 

apart from asym ptotically small regions close to the acoustic m ode eigenvalues, 

the small wavenumber structu re  developed initially in §6.3.1 for ic <<  1, see 

(6.3.3), (6.3.9), (6.3.20) and (6.3.24), survives this regime largely in tact. We con­

clude th a t the scaled departure of the complex wavespeed from the unit freestream  

velocity increases w ithout bound as the wavenumber decreases to  zero, thus sug­

gesting th a t another asym ptotic regime will develop. This new regime, where 

phase and free-stream  velocities differ by the order of the sound speed, is dis­

cussed in BCH along with two further asym ptotic regimes. They found tha t: (a) 

the fastest growing modes have (cc,/3) =  C (l)  and Im(u;) =  0 (M ^ 2), (b) the

two-dimensional modes whose influence extends furthest from the  boundary have 
_  1  _  n  7

a  = 0 (Moo4 ), Im(u?) =  0 (M oo 4 ) and an 0 (M<4 ) scale norm al to  the boundary,

and (c) the modes whose influence is felt furthest from the boundary  are the three-

dimensional, highly oblique, lower-branch Tollmien-Schlichting waves studied by

Zhuk & Ryzhov (1981), Ryzhov (1984), Smith (1989), Duck (1990), CH and the
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present au thor in C hapters 2 and 4. This completes our asym ptotic description of 

quasi-parallel instability modes of basic flows far downstream  of any leading-edge 

effects.

§6.4. T H E  IN  V ISC ID  IN STA BILITY  PR O BLEM  IN  IN T E R ­

A C T IV E  B O U N D A R Y  LAYERS

We consider now the hypersonic flow of a Sutherland-form ula fluid past an 

aligned semi-infinite flat plate where leading-edge effects cannot be neglected. We 

assume th a t the plate has a sharp leading edge, attached to which is a shock tha t 

acts as an upper boundary for disturbances. The steady flow beneath  the shock 

has been studied by Stewartson (1955, 1964), Bush (1966) and others. A part from 

some m inor differences, our formulation closely follows this earlier work, and so the 

reader is referred there for a detailed formulation. Only the parts  of the solution 

th a t we require are outlined below.

In order to obtain a specific formulation, a choice of viscosity law m ust be 

made. As indicated in the introduction, m athem atical simplifications sometimes 

arise with the choice of the model Chapm an law, and this ra th e r severe, linear 

approxim ation is still used in hypersonic shock/boundary-layer research. However, 

in interactive hypersonic flow no significant complications arise from  the use of 

S utherland’s formula; this is primarily because the viscous layers are regions of 

high tem perature  where Sutherland’s formula reduces to a power law, /z oc T u , 

with & =  The steady hypersonic flow of a general power-law fluid past a flat 

plate has been studied by Luniev (1959) and Bush (1966).

Figure 6.7 illustrates the distinct asym ptotic regions th a t describe the different 

parts  of the flow field beneath the shock. The lower region is hot and viscous, and 

of com parable thickness to the cooler, inviscid, upper region. Between these two 

layers is a th in  viscous adjustm ent region, whose accurate description is vital to the 

correct form ulation of the instability problem. We consider each of these regions 

in turn .
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Figure 6.7. The different parts  of the flow field in the strong interaction region.



§6.4.1 T h e  u p p e r  inviscid  reg io n .

Since viscosity is negligible in this region, the choice of viscosity law does not 

alter the well-known governing equations. As in previous studies we assume that 

the flow is two-dimensional, and introduce the  steady stream function 0  defined by

pu = ij)y , pv =  —0*. (6.4.1a, b)

T hen the velocity, tem perature, density and pressure are expanded as

=  +  . (6.4.2a — e)

On substitu ting into (2.1.2),(2.1.3), and re-writing the equations in term s of Von- 

Mises coordinates using the scaled stream function

0  =  Moo-0 , (6 .4 .2 /)

the leading-order governing equations are found to be

vix =  - p^  , vnp = ( — ) » Pi = £ ( 0 W -  (6.4.3a -  c)
Pi

The function i?(0) can, in principle, be evaluated from the initial conditions for 

these hyperbolic equations. The la tte r are specified at the shock, which is taken 

to  be a t y = M^01F ( x), for some unknown function F.  Conservation of mass, and 

the Rankine-Hugoniot relations imply th a t a t the shock

-  =  2 T i ^ W -  l*A A ‘ ~ d)

§6.4.2 The upper inviscid region in th e strong—interaction zone.

The solution of (6.4.3), (6.4.4), and the corresponding equations for the lower 

layers, can be investigated analytically for large and small x  using expansion pro­

cedures, e.g. Stewartson (1955, 1964), Bush (1966), Bush & Cross (1967), Brown 

& Stewartson (1975). We will concentrate on the small-z solution valid very close 

to  the leading edge of the plate, although equivalent expressions for large x  can 

be found.
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Since the shock is attached to the leading edge, for x < <  1 we assum e tha t 

F  oc x n . Then a scaling argum ent based on (6.4.3),(6.4.4), together with the 

viscous equations (6.4.10-12), shows th a t if the pressure and norm al velocity in 

the different asym ptotic regions are to m atch then n =  |  (e.g. Stew artson 1964, 

Bush 1966). The appropriate  similarity solution is thus of the form:

F  = a i z 3/4 +  . . .  , =  a i« 3/4^  , (6.4.5a, 6)

v l =  a i x ~ l / *v i ( ^ )  +  . . .  , pi = a \ x ~ 1/ 2p1(,ij)) +  . . .  , pi =  p x{$)  +  . . .  .

(6.4.5c -  e)

On substitu tion of (6.4.5) into (6.4.3,4), it follows tha t

8 - 2 - 9(̂ 7 — I )7
E $ )  ~  e ia fV ^ S  as -* 0 , where ei =  — — x'jr -M ’ (6-4 -6a>*0

and tha t

vi +  3^v i =  4pi , Pi{$)  = ^ J J P i W  » ^1 =  » (6.4.7a -  c)

where

3 _ 9 7 + l  7 i

v '  = 2 h T T ) ’ Pl =  I ( 7 T T ) ’ =  ^  *
(6.4.7d — / )

For given 7 a num erical solution can be found for < 1; in particular p 10 = Pj(0) 

and v10 =  Fi(0) can be evaluated. Note th a t oc /̂>2/ 37 as ^  > 0, and thus we

require 7 > |  if the leading-order solution for Vi is to have the form  (6.4.5c); for 

a realistic gas this condition is satisfied.

The no-slip boundary condition is not satisfied by (6.4.2a), and thus there is 

a t least one viscous sublayer beneath the present region. We consider next the 

viscous boundary layer which is im mediately adjacent to the surface of the plate.

§6.4 .3  T h e  v isco u s  b o u n d a r y  lay er.

As is conventional the pressure does not vary significantly across this boundary 

layer, and it is appropriate  to  take T  =  0 ( M l o ) as in §6.2. It follows from the 

gas-law , (2.1.2d), and (6.4.16), (6.4.2e) th a t ip = 0 ( M ^ 3), and so we introduce 

the scaled stream function

$  =  M ^ i p  . (6.4.8)
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A balance between viscous and inertia forces then dem onstrates th a t the hyper­

sonic param eter, r ,  defined by

Re = rA f^ , (6.4.9)

should be taken to be order one (Luniev, 1959)f. Recall th a t the power of the Mach 

num ber is six in the definition of the hypersonic param eter for a linear viscosity 

law. The appropriate  expansions of the flow quantities are

(u ,v ,p ,p ,T ,^ )  =  +  ••• ,

°° °° (6.4.10a -  / )

w ith fii = (I + S)0 \^2.

In order to simplify the analysis, we now assume th a t the wall is an insulator. 

Since the P rand tl num ber is taken to be unity, the energy equation can then be 

integrated once to obtain

e1 = =̂d(i - ui). (6.4.11)
We do not expect the relaxation of these assum ptions to substantially alter our

conclusions, bu t they allow us to explain better the effect of the shock on the

inviscid modes.

The stream function is again adopted as an independent variable instead of y. 

The z-m om entum  equation in the boundary layer then becomes

U1U1I = - ('<~  l){ ' l ~ ^ ) Plz + U ^ \  , (6.4.12)
2 7^1 r \V i  )  *

where Pi =  Pi(x)  =  p i(x ,0 ) . The boundary conditions on the  wall, and the 

m atching conditions w ith the upper inviscid layer, yield

TJ\ =  0 on =  0 , U1 —► 1 -j- 0 ( ^ f_4) as ^  —> 00 , (6 .4 .13a,b)

and

M * ,° )  =  ( 2^ i ) i ( /  w * * ® )  ’ ( 6 - 4 - 1 4 )

where we have anticipated the fact th a t the viscous adjustm ent region plays a 

passive role as far as leading-order m atching is concerned.

f  By a suitable redefinition of the the lengthscale L  we could take r  =  1 without loss of 

generality.
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§6.4 .4  T h e  b o u n d a ry - la y e r  so lu t io n  in th e  s t r o n g - in t e r a c t io n  zone

For small x we introduce the similarity variable and the velocity function 

{7(4*), defined by

*  =  (4 r ( l  +  S ) f t0)1/2 , V1 = £ 7 (f) +  . . .  . (6.4.15a,b)

The boundary-layer equation (6.4.136) then takes the similarity form

_ W U' = ( ^ ) ( 1  -  U2) + g ( (1 _ ^ ' ) 1/2) '  . ( 6 - 4 - 1 6 )

with boundary conditions

— — 18-r2 —17(0) =  0 , U =  1 —  --------- ' ------ +  . . .  as > oo . (6.4.17a, 6)
V ' ’ (37 - l ) 2$ 4 V '

This is a modified Falkner-Skan equation where U decays algebraically rather 

th an  exponentially for large Substitution of (6.4.15) into (6.4.13) and use of 

(6.4.5) yields the leading-order coefficient a\ in the small x  expansion for the as 

yet unknown shock location:

_ a e + 5 ) t / a ^ i y ' Y x ^ y ' -  r
4uio V nPio J  V 2 )  Jo U

The value a\ =  2.7842533 was obtained numerically for our chosen param eter 

values: S  =  0.509, 7  =  1.4, r  =  1.

§6.4 .5  T h e  v isco u s  a d ju s tm e n t  layer.

The existence of this layer can be seen by considering the limiting forms of 

the tem peratu re  at the edges of the upper and lower layers. F irst, from (2.1.2d) 

and (6.4.2), (6.4.3c) and (6.4.6) it follows th a t

m m , xi = i / e ? a f \ £  7
T  ~  Ti ~  7 p 1( x , 0 )  y as V’ 0- (6.4.19)

Second, as the edge of the boundary layer is approached from below we see from 

(6.4.8),(6.4.10e),(6.4.11),(6.4.13b) tha t

M 2 1
T  = M l.0 i  oc —^  oc  ^  as oo . (6.4.20)

M « > 4
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Since (6.4.19) and (6.4.20) do not m atch, there m ust be an interm ediate asymptotic 

region where the scaled stream function, £, defined by

c = , with A =  , (6.4.21a,f>)

is order one. Note th a t the value of A follows from  m atching (6.4.19),(6.4.20), 

and further, th a t the power of M 00 is a function of 7 , the ratio of specific heat 

capacities!

Exam ination of the small ip limit of the inviscid solution implies tha t the 

appropriate  expansions in the adjustm ent layer are

1 - 1  . 6 1 1
(u -  1 , v , T , p , p )  =  ( — j j - v f a O ) ,  M g ^ T u  j x - P u  ------—  ? U )

m J ,1- 1 °° “  m J F 1 1

+  . . .  , (6 .4 .2 2 a - e)

where we have anticipated the fact th a t the leading-order contributions to v and 

p are independent of £, and can hence be fixed by m atching. W hen these expan­

sions are substitu ted  into the Navier-Stokes equations, and the energy equation is 

in tegrated  once, we obtain in term s of Von-Mises co-ordinates

fr Tin 7(1 + 5 )^ a ( 1 auA * 7
V ^  = - — p -  + -----------------   _ j ,  r 1 =  ( 1 - 7 ) 1 7 , .  (6.4.23,24)

-M

Equation (6.4.23) is a perturbation form of (6.4.12), and hence in this adjustm ent 

layer the high tem perature form of Sutherland’s form ula is still valid. This is in 

contrast with the shock-free adjustm ent layer where the full form occurred -  see 

(6.2.9a).

Again, a similarity form of these equations can be found for x < <  1. Us­

ing (6.4.5d),(6.4.15),(6.4.17b),(6.4.19) and (6.4.20) it follows th a t the appropriate 

similarity variable is s, defined by

where b] =  (1 +  S )7 a f o ,
61 r

This is in agreement with B ush’s (1966) result. W riting

f j x =  x x ~ 2 G ( s ) (6.4.26a),

215



and using (6.4.5d), we find th a t the governing equation for the flow solution in 

this crucial region is

(A -  2)G -  ~  * K g , =  )  . (6.4.26!))
' 4 27  V -v/(1 — ~ l ) G ) ,  K ’

From (6.4.22a),(6.4.26a) we expect th a t G < 0.

As s —> 0 we find th a t G has the asym ptotic behaviour

5 7 6 y 2
G = - G qs ~* +  G is ~ q +  . . .  , where G0 =    -rr  ------— -  . (6.4.27a, b)

(7 -  1)(3t “ I)2

Thus the adjustm ent-layer solution m atches onto the large ^  form of U. The 

coefficient G\  m ust be determ ined from a numerical solution, bu t the param eter 

q satisfies a known quadratic equation w ith coefficients which are functions of 7 . 

W ith 7  =  1.4 we find th a t Go a  275.6 and q ~  0.6267, so th a t the correction term s 

are relatively small.

For large s we find th a t

G -> - A 0s~ A  8 A ° +  -----3~2~ £  +  . . . ,  (6.4.28)
97(7 - 1) 5(37 -  1)

where from m atching with the inviscid solution in the upper layer,

For the choices r = 1, 7 =  1.4 and 5  =  0.509, v/e find A q ~  0.744528. Note 

th a t G decays algebraically for large s, in contrast to the rapid exponential decay 

of the Blasius and the ‘Modified Blasius’ functions which arise in the shock-free, 

far-downstream  cases (the form er after employing the C hapm an’s law, and the 

la tte r from the use of the m ore realistic Sutherland’s formula).

Now th a t the leading-order base flow for this region has been identified, we 

can consider its stability characteristics. In particular we are interested in the 

linear stability of inviscid modes concentrated (trapped) within this ad justm ent 

layer; these are considered in the next subsection.
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§6.4.6 T h e  v o r t ic i ty  m o d e  in  th e  s t ro n g - in te r a c t io n  zone .

The scalings for these modes appear complicated but follow in a stra igh t­

forward m anner after applying the usual vorticity mode argum ents to the flow 

field discussed above. In particular, the modes should have wavelengths com pa­

rable with the physical thickness of the adjustm ent region, because th a t is where 

the generalised inflection point occurs. A Rayleigh analysis using the stream func­

tion as norm al co-ordinate, ra th e r than  the related D orodnitsyn-Howarth variable, 

suggests th a t we require d^  ~  T 2d 2, where a  is the streamwise wavenumber 

non-dimensionalised using L. From (6.4.21),(6.4.22c) we have T  ~  M ^ ~ 6 and 

if) ~  M “ A_1. We deduce th a t a  ~  M^J~3A > >  1, which indicates th a t this is a 

short wavelength mode. The time-scale can be deduced by using the fact th a t vor­

ticity modes propagate in a moving frame whose velocity is approxim ately equal 

to  th a t of the fluid in the adjustm ent layer -  see (6.4.22a). The appropriate  ‘fast’ 

space and tim e scales are thus

X  = M 7̂ 3X(x - t )  , Z =  M ^ -3Az ,  t  =  M ^ 1t , (6.4.30a -  c)

which lead to the leading-order multiple-scales transform ations

dz -  dt + M ^ 3Xdx  , dz -* M 7- 3Xd z  , 0, -  M ^ - 'd r  -  M ^ 3Xdx  .

(6.4.31a, 6)

Note th a t non-parallel effects are 0 ( d x ) ~  ^(1)> an(i  are thus negligible in com­

parison with the direct growth effects of m agnitude a(u  — 1) =  0 (M ^ - 1 ) > >  1 

(A =  1.7027 for our choice of 7 =  1.4). To be consistent with (6.4.30,31) the 

wavespeed is expanded as

“ 1 + 5 < N  + " '

Now th a t the scales have been deduced, the rem ainder of the analysis fol­

lows the classical inviscid m ode approach for formulating the pressure equation 

describing linear wave-like disturbances. We perform a norm al-m ode analysis, 

assume th a t the infinitesimal pressure disturbance, p, is such th a t

p  <x e .̂“X+pz-acr)  , (6.4.33a)
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and th a t in the adjustm ent layer the perturbation velocities, tem perature and 

density scale such th a t

( u , v , w )  = O ( M l p )  , T  = 0 ( M l p ) ,  p =  0 (M ^ 6- 8Ap ) .  (6.4.336)

After some m anipulation, and assuming th a t 7 <  f» we obtain a simplified

Rayleigh equation, the ‘vorticity mode equation’, for the  am plitude of the dis­

turbance pressure, p:

2Uh  . ( 7 - l ) 2^ 2 , 2 - „
P a  -  f T-------P< - T 52— k P =  0 ,  (6.4.34)

U \  — C 7  M

where k 2 =  a 2 -f /?2, and p decays to zero for large and small £. This equation 

describes short-wavelength vorticity modes at any dow nstream  location x in the 

interaction zone. However, at present numerical solutions of U\ for x  =  0 (1 ) are 

not available, and so we again consider the strong-interaction limit x <<  1.

From  (6.4.5d),(6.4.25),(6.4.26a) the appropriate small-x dependences for c and 

k are

'  =  l A _ 2 c - h = i ^ ^ = m K - (6-4 -35a-6)

These lead to the following vorticity-mode, pressure-am plitude equation in the 

strong-interaction zone (cf. (6.3.4a)):

2 G
P .. -  ^~ZcP> -  £ 2G2P = 0 . (6.4.36)

This is to  be solved subject to p vanishing in the lim its s —» 0 and s —> 00, so 

th a t the disturbance is again confined to the adjustm ent layer. The leading-order 

asym ptotes are found to be

p —► pos~2 exp as 5 ~^ 0 ? (6.4.37a)

1 /  3~f A n  (3*r-2)  \
V Poo'S^ expf — - -------)Cs j  as s —► 00 (6.4.376)

where po and p ^  are constants. Higher order term s in these expressions can be 

found analytically, and are needed for accurate num erical solutions. We discuss 

our num erical results, and the asym ptotic solution for small wavenumber, in the 

next section.
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§6.5 T H E  SO LU T IO N  OF TH E ST R O N G -IN T E R A C T IO N  

V O R T IC IT Y -M O D E  EQ U A TIO N .

§6.5.1 N um erical results.

First we consider the neutral mode; C is then real and equal to  G evaluated 

at the generalized inflection point where

GG33 =  2G\  . (6.5.1a)

A num erical solution to  (6.4.266) using a R unge-K utta  m ethod shows tha t 

this occurs when s ~  1.661432, where the new variable s = In s  is introduced 

to  stretch  the co-ordinate in the small-s region where G and p vary rapidly. The 

resulting neutral value of the wavespeed is C ~  —0.633318. The corresponding real 

wavenum ber fC is obtained from a numerical solution of (6.4.36) using a method 

similar to th a t outlined in $6.3.1. The neutral wavenumber was calculated to be 

K  ~  0.477957, whilst the corresponding value of C corresponds with th a t predicted 

from  the inflexion-point criterion.

Figure 6.8 shows the growth ra te  for two-dimensional waves, Im(JCC), plotted 

against K  for 7 =  1.4, S  =  0.509, r  — 1. Observe th a t the m axim um  growth rate, 

Im(/CC) ~  0.060918, occurs at K  ~  0.156100, and th a t the growth rate goes to 

zero as the wavenumber goes to zero. Figure 6.9 illustrates the eigenfunction of 

the m ost unstable mode, including the exponential decay of the eigenfunction at 

bo th  ends of the range of integration.

We now deduce the asym ptotic structure of the strong-interaction inviscid 

mode as the wavenumber tends to zero, for the present scaling. This is sufficient 

to  illustrate an im portan t dependence on 7 .

§6.5.2 T he small-/C behaviour.

Numerical solutions of the pressure-am plitude equation, (6.4.36), indicate tha t 

for 7 =  1.4, C increases as K, tends to zero. Similar behaviour was found for the 

far-dow nstream  problem  studied in §6.3. Again the leading-order dependence on 

the wavenumber was not indicated from the num erical solutions, whereas such 

guidance was not possible here due to a complicated dependence of C on /C.
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Figure 6.8. The growth rate  of the vorticity m ode in the strong interaction 

region.
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As an alternative we note th a t although the WKB asym ptote (6.4.376) is

valid if s is sufficiently large, for small JC this form  breaks down in a ‘turning-

po in t’ region where

(6.5.2)

In this region we define

y  =  2 s , p  = Po(y) + . . .  • (6 .5 .3a,6)

Using the large-s asym ptotes for G, (4.28), it follows th a t Pq satisfies

Poyy ~  A l y ~ ^ P o  = 0 . (6.5.4)

This equation for Pq has an analytic solution involving the modified Bessel

function K v:

Po = ( 4 A o v y D a y ? K v (2A0v y k )  , (6.5.5a)

where
37

v  =
2 ( 3 7 - 2 ) *  ( 6 ' 5 ' 5 i )

and Do is an arb itrary  constant. From the series expansion of the modified Bessel 

function, e.g. Abramowitz Sz Stegun (1964), we have tha t as y —> 0

~ 2 2U~ 11tD 0 (  r ( l  -  v ) { A ov )2V A l u 2 1 \
Po = \ 1 --------- ^ 7 7—,— x y +  7; \ V V +  • • • , (6.5.6)T(1 — u) sin(i/7r) \  T(1 -(- v) (1 — v)

where T is the G am m a function. The ordering of the second and th ird  term s is 

dependent on the value of 7 . For 7  =  | ,  i.e. v  =  1, the powers of y  of these 

term s are equal, while their coefficients are singular; this indicates the  presence of 

a logarithmic term  which requires special treatm ent (see later).

As y  —> 0 the expansion (5.3) continues to be valid until contributions from 

the term  proportional to p s in (6.4.36) become significant. The scaling in this 

region can be deduced by analogy with the corresponding analysis of §6.3.1. In 

particular we expect C > >  1 as K  —> 0, and th a t s C- 1/4 in the new asym ptotic 

region (see (6.4.27),(6.4.36)). The appropriate scalings are

f)2v —1 _  f)
y  =  8 , p  = —  ---------r—— — r ( l  +  AZ28 z ^2p i { y )  +  . . . ) ,  C =  8 l C +  . . .  ,

1 (1 — v) sin(i/7r)
(6.5.7a -  c)
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where 6 < <  1, )C28~Ẑ 2 <<  1, and the form of the expansion for p  follows from

the  condition th a t (6.4.36) simplifies to  an equivalent equation to  (6.3.18). Sub­

stitu tion  of (6.5.7) into (6.4.36) and use of (6.4.27) yields

_ 8Go _ Gn . .
P m  +  y (G 0 + Cy*)PlS = ¥  ' ( 5

As before this can be integrated to give

'■• =  <i + f K £ < J F ? b  + f t ) '  (6'5'9)

where the constant D\  is fixed by m atching to  the y = 0 (1 ) region. A straight­

forward m atch is possible only if 7  >  | f ,  and consistent choices of 8 and D\  are 

then
?7 r ( l + i / )  ^  A 2vS i  =  ■ T  1 fC37-2 , D i = ---- . (6 .5 .10a,6)

T(1 -  v ) v 2v C2

The eigenrelation for C is fixed by considering a fu rther region where s =

0(/C 1/ 3). The details are identical to  those of region IV in §6.3.1, and lead to the

condition th a t piy —► 0 as y  —> 0. From (5.9,106), the eigenrelation for C is thus

(cf. (3.13))

r <3* +dr=0  ̂ c=(8-^4
Jo (Cy* + Go)2 C2 V 3ttG£/4 /  7

(6.5.11a,6)

This corresponds to to an unstable mode of (4.36) such th a t the complex frequency, 

C/C, tends to zero as K  decreases.

The above derivation only holds if 7  >  | .  If 7  =  | ,  then v  =  1, and the small 

y  series (6.5.6) is replaced by a form ula including logarithm s. We now consider 

the more general case, where

7 =  l ( l  +  c), |e| < 1 .  (6.5.12)

This small interval, ra ther than  ju st being of m athem atical interest, is, in the 

opinion of the author, the most relevant on physical grounds. Note th a t for the 

standard  value, 7 =  1.4, e =  0.05 which certainly represents a small p e rtu rb a­

tion. Moreover, 7 is known to decrease (slightly) as the tem perature increases 

to values typically found in hypersonic boundary-layers, its value being about

f in which case the ordering of (6.5.6) is as shown.
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1.32 («-► e =  —0.01) at 2,000°iiT and 1.29 («-> e =  —0.0325) a t 4 ,000°iC (see page 

9 of Stew artson, 1964; and reference therein).

The previous analysis, (6.5.2)-(6.5.6), is still appropriate; now

v  =  1 -  £ +  0 (e 2),

so th a t (6.5.6) takes the form

Pq — 2D q (1  +  A Qy y € - 1
+  0 (e) ) > (6.5.13)

a t leading order. Note th a t, by applying L’H opital’s rule, one can easily deduce 

th a t
~ye - 1lim

€ —►O
=  In y.

Returning to general |e| <C 1, we see im m ediately from (6.5.13) tha t

y€ -  iPoy — 2DqA\ + y  , as y  -> 0. (6.5.14)

R e-w riting this last result in term s of s , noting th a t (6.5.3a) gives y ~  1C2 es, 

yields
JC<2- e> -  1

+ 1 + (6.5.15)

where only the leading-order constant term , of interest, has been highlighted.

The rem ainder of the argum ent follows th a t for the 7 > |  case — again we 

suppose th a t C 1 as K —> 0; (6.5.7b) is replaced by

P  — 2Dq(1 +  K?8 ^ p i ( y )  +  • • •) (6.5.16)

and piy is as given by (6.5.9). M atching constant term s, as y  —► 0 and y  —» oo, in 

(6.5.15) and (6.5.16) respectively, gives

K 2s ~ % r * c 2D 1 = k (2- ()a \
K 2 - e *

- 1

We choose D\  =  — A \ / C 2, where C takes the same value, (6.5.11b), as before. Thus

/ c 2 _ t €  -  1
8~ 4 ~  -JC' (6.5.17)

It can easily be verified th a t ^ <  1 ,<-> C >  1, for /C <  1. W hen e —► 0 <->

7 —» | , we see that

6 4 ~  — (ln/C2 ) ^> 1. 
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Thus, for physically relevant values of 7 ~  we see th a t the small-/C asym p­

to te  for C has a complicated form which limits further analytic investigations for 

even smaller /C-values. The case of 7 <  |  is not considered here; although it is 

of undoubted m athem atical interest, the author has reservations concerning the 

physical relevance of these values for the ratio of specific heat capacities.

§6.6 D ISC U SSIO N .

§6.6.1 G eneral discussion.

We have investigated the instability of flat plate hypersonic boundary lay­

ers to the vorticity mode of instability. This inviscid m ode is associated with 

the generalized inflection point of the basic flow and is thought to  be the most 

dangerous m ode of instability of a high Mach num ber flow. W hen the mode is 

neutral the wave propagates downstream  with the speed of the fluid a t the gener­

alized inflection point. At wavenumbers smaller than  the neu tra l value the mode 

is unstable and the growth rate attains its m axim um  value a t a finite value of 

the wavenumber. In the small wavenumber limit the growth ra te  approaches zero 

and for the non-interactive boundary layer at sufficiently small wavenumber the 

vorticity mode spreads out towards the lower boundary and reduces to  an acoustic 

mode at a countable infinite set of wavenumbers. We believe th a t a similar process 

happens in the strong-interaction case since there the acoustic mode is correctly 

described by a quasi-parallel theory there. We did not pursue th a t calculation 

here because it would be essentially unchanged from th a t of §6.3 except tha t it 

would be m ade somewhat more complicated by the necessity of treating  the case 

7  =  4 /3  as a special case in the strong-interaction zone.

We believe th a t the results we have presented in §6.4 are the first which 

show the effect of a leading-edge shock on any form of hydrodynam ic instability. 

Interestingly enough the shock does not have a direct influence on the vorticity 

mode; thus the m ain effect of the shock is to restructure the boundary  layer in the 

leading-edge region and thereby influence the susceptibility of the  flow to inviscid 

disturbances.

The vorticity mode eigenvalue problem was form ulated in the interactive re­

gion along the plate at 0 (1 ) values of x. However to the au th o rs’ knowledge the
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basic flow in this regime has not yet been calculated; the num erical problem  was 

set up by Bush (1966) bu t is sufficiently difficult to  have rem ained unsolvedf. Thus 

we were unable to solve the eigenvalue problem in this regime and therefore choose 

to consider the strong-interaction regime where a sim ilarity solution for the basic 

state  is available. An alternative to  th a t limit would have been to  consider the 

weak-interaction problem , Bush & Cross (1967), where a different similarity struc­

tu re  holds. We choose to  concentrate on the strong-interaction limit because the 

growth rates there are bigger and if the flow is indeed unstable there the stability 

of the flow further dow nstream  is possibly of less relevance.

U nfortunately we are unaware of any experim ental observations or other the­

oretical work which we could compare with our results for the strong-interaction 

regime.

In §6.3 we showed how the acoustic inviscid m ode emerges from the small 

wavenumber description of the vorticity mode. Again it is not possible for us to 

compare our work with th a t of previous authors since it appears th a t the finite 

Mach num ber calculations available, mostly due to Mack, have either being carried 

out using a C hapm an viscosity law or a combination of Sutherland’s formula and 

C hapm an’s law. In fact M ack’s calculations were carried out using a combination 

of the different laws so as to efficiently model the viscosity-tem perature structure 

of the fluid. The fact th a t the calculations of CH and SB agree so well with M ack’s 

calculations suggests th a t over the part of the flow where instability took place 

C hapm an’s law was being used; in the case of the vorticity mode this is clearly 

a bad approxim ation because the mode locates itself in the  layer where the basic 

tem perature field varies rapidly.

Further work called for includes: the generalisation to  P r  ^  1 (see §6.6.2); 

the inclusion of real gas effects; a study of the properties of the vorticity-m ode 

equation away from the strong-interaction region; and the  generalisation to dif­

ferent geometries, i.e. the very slender axisym metric bodies studied by Cross & 

Bush (1969), Bush (1970). The link between the inviscid modes and the viscous 

Tollmien-Schlichting modes remains to be firmly established; also the extension 

of the theory to incorporate larger, nonlinear disturbances calls for further study.

|  the corresponding problem for Chapman’s viscosity law has recently been solved by Brown, 

Khorrami, Neish Smith (1991).
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In the next C hapter we consider the ‘co-existence’ of inviscid modes and Gortler 

vortices in (non-interactive) hypersonic boundary-layers; we are particularly  in­

terested  in investigating the possibility of interactions between them  —  in addition 

to  the inviscid modes being possible ‘secondary instabilities’ to the m ean flow gen­

erated  by nonlinear Gortler vortices.

Further to the comments m ade in a previous paragraph concerning the com­

parison of our results, for non-interactive flows, w ith the finite Mach num ber cal­

culations; the author feels th a t there is a need for such comparisons of like flows 

i.e. closer links between ‘theoreticians’ and those running general com puter-codes 

for predicting transition-properties. Unfortunately, at present m ost of the large 

Mach num ber analytical theories are for unrealistic flows (so th a t such theories are 

simplified — see, for example, the discussion in §6.6.2) whereas the la tte r codes 

can in general incorporate, and are usually run  for, more realistic flow conditions. 

W hilst writing this chapter, the au thor was m ost grateful to receive a le tter (Mack, 

1990) from Prof. L.M. Mack (of the J.P .L ., California Inst. Tech.) detailing the 

interesting results tha t he had obtained from re-running his code, after reading 

the closely related study, BCH. Based on his newly calculated stability results, he 

concludes th a t, at finite (but large) values of the Mach num ber, the flow in the 

far-dow nstream  region will have its m axim um  inviscid instability caused by an 

acoustic mode, not a vorticity mode.

§6.6.2 Som e com m ents on the num erical solutions: why the  

P randtl num ber was chosen to be unity.

R ather than  cloud the previous sections with details of the ‘obstacles’ encoun­

tered in the calculation of the num erical values quoted therein, such a discussion 

has been postponed until now; the m otivation for such a discussion, a t all, follows. 

Firstly, much time was spent in solving the num erous equations (for the base-flow 

profiles and for the eigenvalues) — even though these equations are ‘only’ or­

dinary differential equations, their numerical solution was found to require much 

more thought and care than , for instance, for Blasius’ equation or Rayleigh’s equa­

tion for 0 (1 ) Mach numbers. Secondly, there is a need to ‘justify’ our choice of 

Pr  — 1 — or, at least, to illustrate why such a choice is attractive. The underlying 

cause of these difficulties is, essentially, due to the choice of Sutherland’s form ula
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(to  relate viscosity to tem perature) which leads to  coupled, nonlinear equations 

for the base-flow profiles. The au thor wishes to  stress th a t, despite these difficul­

ties, he is very confident in the accuracy of the num erical results which have been 

presented within this chapter.

We now outline some of the difficulties encountered during the numerical 

solutions. Consider first, the similarity solution to  non-interactive steady flow, 

first considered in §6.2. For general-M ach-num ber flows, equations (6.2.4b,c) 

m ust be solved for the base-flow profiles. We see th a t they are coupled — if 

the  linear Chapm an viscosity law had  been used then  the equations would not be 

coupled; moreover, the equation for /  is then  simply Blasius’ (i.e. it is very easy to 

solve numerically) and T  is simply com puted from  / ,  using an analytical solution. 

R eturning to (6.2.4b,c), their solution for 0 (1 ) M ach num bers should not cause 

too m any problems — however, their high Mach num ber form certainly do.

In the high tem perature region (we are now considering M <*> ^> 1) we have 

previously w ritten

/  =  Moo1 fo{()  H , where £ = M ^ tj ~  0 (1); (6.6 .1a ,b)

here we additionally need to consider the tem peratu re  equation and write

T  =  M l T o ( i )  +  • • • . ( 6 .6 .1 c )

These lead to the h igh-tem perature form of the similarity equations

^ f o f o a  +  (
2 \  t 1

^foTot  +  — I f  ^  i  ̂f l u  -  0 » (6.6 .2a, b)

which m ust be solved numerically, subject to the standard  boundary conditions 

on £ =  0; our concern is with the large-£ behaviour. For a m atch with the 

tem perature adjustm ent region we require th a t

/o^ —► 1 and To —» 0, as £ —* oc . (6.6.3a, b)

It is the boundary condition (6.6.3b) which is at the root of the difficulties w ith the
_ l

numerical solution — note the T0 ^ factors in the equations (6.6.2a,b), which can
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cause problem s, numerically, as £ —» oo. It should be stressed th a t this problem 

still exists for P r  =  1 — however for this particular case the  equations decouple 

and  only one equation, (6.2.7a), has to be solved, i.e. the problem  is ‘halved’. 

T he au tho r was not able to find transform ations for /o,To a n d /o r £ to  completely 

remove this difficulty.

A nother difficulty with the numerical solution of (6.6.2) also concerns their 

decay as £ —> oo. It can easily be deduced tha t

D

36 1 ,
Tq = W27~,  TTT +  ' " ’ as f  ““* °°> (6 .6 .4a,b)P r 2 (£ _  A )4

where A and D  are constants (but dependent on P r ,  S  and 7 ) whose values must 

be determ ined numerically. Thus /o and To only decay relatively slowly (cf. the 

exponential decay of the Blasius equation) but this problem  can easily be over­

come by transform ing to a new variable, say £ =  ln£. Once this transform ation
_  1

is m ade, and the appropriate care is taken of the T0 ^ factors as £ —> 00, it 

does not take m uch effort to  ‘solve’ the equations using a R u n g e-K u tta  approach, 

subject to the boundary conditions on £ =  0, such th a t (6.6.3) ‘appear’ to be 

satisfied. Usually such solutions are sufficient (to the accuracy required); how­

ever problem s occur here as the value of D  m ust be determ ined accurately, from 

the num erical solution, to feed into the boundary condition of the tem peratu re- 

ad justm ent-reg ion  /-eq u a tio n . This is unless P r  =  1, when D  can be evaluated 

analytically (see (6.2.7c)). It proved to be impossible to have any confidence in cal­

culated P -v a lu es  for the preferred choice P r  =  0.72; thus the case of unity P rand tl 

num ber was considered instead, when D  is known i.e. the num erical solution of 

the tem peratu re-ad justm ent-reg ion  base-flow equations can be carried out w ith­

out first having to  solve the troublesome boundary-layer equations. W hen these 

boundary-layer equations were solved with unity P rand tl num ber, the predicted 

D  varied greatly for small changes in wall-shear values; even though its value was 

known analytically, it still proved extremely difficult to obtain numerical predic­

tions for D  th a t were at all accurate. Similar conclusions have been arrived at, 

independently, by Drs. Y.B. Fu and A.P. Bassom (private communications with
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the author, 1989-1990), when they also attem pted  to  solve these equations using 

R un g e-K u tta  m ethods.

The au tho r believes th a t, despite its simplicity, the R u n g e-K u tta  solution 

approach to these equations, (6.6.2a,b), is not sufficient to obtain severalf, accurate 

numerical predictions for D\ instead the author believes th a t a  ‘spectra l-m ethod’ 

of num erical solution is required, based on Chebychev polynomials say. Such 

a solution has not been carried out by the author; despite the  very adequate 

com puter facilities available to the author, there was little advice and help available 

(and forthcom ing) on how these resources could be (most appropriately) used for 

such a spectral-solution. Finally, note th a t the above discussion applies equally 

to the solution of the viscous-boundary-layer equations of the  interactive flow, 

considered in §6.4.

We now m ention a couple more of the difficulties encountered during the 

numerical solutions — note th a t these difficulties are not removed by the un ity - 

P rand tl-num ber assum ption. First we discuss the numerical solution for the base- 

flow profiles in the adjustm ent layers. We concentrate on (6.4.26b)-(6.4.29), for 

the interactive flow case; these being the more complex. Note th a t, (i) G grows 

extremely rapidly for s < 1 — so much so th a t a new variable s = In s was 

introduced to  stretch the co-ordinate, and (ii) G decays very slowly for large s. 

To make m atte rs  worse, the preferred m ethod of solution, by ‘shooting’ from both 

and m atching the solutions at some interm ediate 5-value, was found 

not to be possible as the solutions ‘blow u p ’ if initialised at some s 1. It can be 

shown (analytically) th a t equation (6.4.26b) does indeed possess a solution which 

breaks-up at some 5-value. This equation was eventually solved numerically by 

starting from the sm all-s asym ptote and iterating on the value of G \ , by ‘shooting’ 

to some 5 1 and then adjusting G\ appropriately to ensure th a t G behaved as

required, (6.4.28), as s =  In s —► oo. In fact, ra ther than  solving for G, the author 

actually solved for

exp[2s] y/G,

using the R u nge-K u tta  approach. Related discussion, concerning the numerical 

solution of the second Painleve transcendent, is due to Rosales (1978).

|  for different w a l l -coo lin g s  or 5 ,7 and P r  values.
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Lastly, we comment on the (numerical) solution of the vorticity—m ode equa­

tion, (6.4.36,37), for the interactive boundary-layer case. Difficulties are caused 

by the behaviour of G for lim iting s-values; the fast growth of G, as s —* 0, results 

in the eigenfunction decaying to  zero very rapidly there; whilst the slow decay of 

G, as s —► oo, results in the eigenfunctions decaying very slowly —  preferably, 

m any term s in the large-s asym ptotes should used here. These difficulties can be 

overcome; we emphasis th a t the  resulting neutral, real value of C differed from its 

predicted value, from the generalised inflexion point criterion (6.5.1), by less than  

0.001%; whilst we find numerically th a t C becomes large as K, —*• 0 , as predicted 

analytically. However, problems are caused by the sm all-s and large-s asym ptotes 

becoming ‘disordered’ for the very small values of K  th a t need to  be studied to 

have any chance of identifying the detailed asym ptotic behaviour necessary for 

comparisons with the theories outlined in §6.5.2.

Summarising, the asym ptotic theories considered in this chapter will easily 

generalise to non-unity  P ran d tl num ber flows; however the solution of the  resulting 

equations, for quantitative results, will require careful numerical solutions.
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C hapter 7

On th e  co—ex isten ce  o f G ortler v o rtices  and  
in v isc id  R ay le igh  m odes in h yp erson ic  

b ou n d ary -layer  flow s.

§7.1 IN T R O D U C T IO N .

§7.1.1 Introductory discussion.

In this chapter we are prim arily concerned with the  centrifugal instability 

of hypersonic boundary-layer flows — the inviscid instability of such flows was 

considered in the previous chapter (see also Blackaby, Cowley & Hall, 1990). The 

m otivation for the present study is essentially the sam e as th a t as for the  la tte r 

studies. It is now well established, both  experim entally and theoretically, th a t 

incompressible and 0 (l)-M ach -n u m b er flows over a concave plate  are unstable 

to longitudinal vortex structures whose axes He in the stream wise direction (see 

figure 7.1) — such disturbances are commonly referred to as G ortler vortices.

Figure 7.1. The form of the secondary flow which occurs a t the onset of 

centrifugal instability in boundary layers along a concave wall. (From  G ortler, 

1940.)
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A comprehensive account of the theoretical progress m ade, so far, for the case 

of incompressible flow can be found in the recent review paper by Hall (1990). 

The 0 (1 ) Mach num ber case has been recently studied by W adey (1990) and 

Spall & Malik (1989) — it is found th a t there is little  significant difference from 

the incompressible theory. However, the num erical calculations of W adey (1990) 

suggest th a t as the Mach num ber increases the position where an unstable Gortler 

vortex locates itself moves towards the edge of the  boundary layer. This result 

is consistent w ith what we shall describe in this chapter. The case of hypersonic 

flows was first considered by Hall Sz Fu (1989), they choose to simplify the analysis 

by employing a linear viscosity-tem perature law. Very recently, this theory has 

been extended to flows satisfying Sutherlands viscosity form ula by Fu, Hall Sz 

Blackaby (1990) (hereinafter referred to  as FHB) —  this paper also presents a 

first study of ‘real gas effects’ in connection w ith the Gortler instability. The 

more realistic viscosity law, chosen by FHB, leads to  significant changes in, and 

introduces complications into, the theory of Hall Sz Fu (1989), these are outlined 

in the next section; it is shown th a t the curvature of the underlying flow is very 

significant.

The hypersonic boundary layers, being considered here, are also unstable to 

inviscid Rayleigh-type modes; in §7.3 we recap the form ulation of C hapter 6, but 

extended to non-unity P rand tl num ber. Thus we expect the Gortler and Rayleigh 

stabilities to  co — exist in such boundary-layer flows, this is our concern in the 

last two sections. In §7.4 we investigate the modification of the Rayleigh stability 

properties due to the present of larger-am plitude (nonlinear) vortices — this is 

closely related to the recent study, concerning the inviscid secondary instabilities 

of an incompressible strongly nonlinear vortex sta te , by Hall Sz Horsem an (1990). 

In §7.5 we make a few comments on the possible interaction of the Gortler and 

Rayleigh modes — no detailed formulation is given; and no num erical results have 

been com puted.

Recall th a t, in C hapter 3, we noted th a t (experim entally) longitudinal vortices 

have been observed on a flat plate (for 0(1)-M ach num ber flows). These are 

not caused by centrifugal effects, it is presently believed th a t they are driven by 

nonlinear interaction with the viscous Tollmien-Schlichting modes also present. 

Regardless of the origin of these longitudinal vortices, we note th a t once, and if,
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they have grown strong enough to affect the basic s ta te  then  they too will modify 

the  Rayleigh stability properties of the boundary—layer flow — alternatively, one 

m ay regard the  Rayleigh modes as being possible secondary instabilities of these 

strongly nonlinear longitudinal vortex structures. A nother closely related problem, 

th a t has yet to  be investigated, concerns the co-existence of Gortler and Rayleigh 

m odes in a general, 0 (l)-M ach -n u m b er, compressible boundary layer.

§7.1.2 The G ortler instability in com pressible flows.

For later reference, we now briefly outline the form ulation of the Gortler vortex 

equations for general-M ach-number, compressible flows. The notation of previous 

chapters, especially C hapter 6, will be adhered to  where-ever possible.

The basic state.

Consider a compressible boundary layer over a rigid wall of variable curvature 

(1 / A ) k (x * /L ) ,  where L  is a typical streamwise length scale and A is a lengthscale 

characterizing the radius of curvature of the wall. We choose a curvilinear coor­

dinate system  (x* , y *, z*) with x * measuring distance along the wall, y* perpen­

dicular to the  wall and z* in the spanwise direction. The corresponding velocity 

com ponents are denoted by (u*,v*,itf*) and density, tem peratu re  and viscosity 

by p* , T* and p* respectively. The free stream  values of these quantities will be 

signified by a subscript oo. We define a curvature param eter 8q by

8g = —, (7.1.1)

and consider the limit 8q —► 0 with the Reynolds num ber Re  defined by

u* Lp*R e = . ~  (7.1.2)
/̂ oo

taken to be large so tha t the Gortler num ber

G =  2Re1/2SG (7.1.3)

is 0 (1 ). In the following analysis, coordinates (x*,y*,z*) are scaled on

(1, Re~  ? , R e~?  )Z-, the velocity fu*, v*, iu*) is scaled on (1, Re~  2 , R e~ ^  and

other quantities such as and p* are scaled on their free stream  values with

the only exception tha t the pressure p* is scaled on p^o^oo an(  ̂ coefficient of
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heat conduction k* is scaled on /z^ . All dimensionless quantities will be denoted 

by the same letters w ithout a superscript *. Then the Navier-Stokes equations 

reduce to, a t leading orders in Re  1,

dp d . \
m  +  a ^ (pvp)  =  0)

D u  dp d  du d du  
p ~Dt =  ~ a i  +  a ^ ^ a ^  + a i ^ ' a ^ '

Dv  1 2 7-> dpp —— -J- - G n u  — —R e —— -f- 
D t 2 dy

d (  2 dvp 1 d dvp

d dv d dv 

Dw dp d  ( 2 dvQ 1 d dvn d  dw d . d w
p~Dt ~ ~ e!h + !h p  "  z ^ a ^ ]  + a^^~aT^ + dy^dy^ +

D T  . . ,9 m ., , d u x0. , x, r , d h .  .D p
^ W = M 7 _ 1 ) M “ [(^ ) 1 +  ( 7 ~ 1)M“ [1 - p (^ )T l;Df

l a riar. i a. .ar.
P r  dy  dz

7W2o? =  (1 +  ctd)pT. (7.1.4 a - f )

Here we have used a mixed notation in which (vi,V2,V3) is identified with 

(u ,v ,w )  and ( z i , £2* *3) w ith (:c,?/,z). Repeated suffices signify sum m ation from 

1 to 3. The functions A, fc, cp and h denote in tu rn  the bulk viscosity, the coefficient 

of heat conduction, the specific heat at constant pressure and the enthalpy per unit 

mass. The constants 7 , M qq and P r  are in tu rn  the ratio of specific heats, the Mach 

num ber and the P ran d tl num ber defined by

*2 *2 *CVoo 71 /f U00 U OO T) f1 CpOO (n ^7 = -----1 M 00 = - ^ —r  = — , P r = — ---- , 7.1.5a -  c)
CP~ l& T Z e  a.%, r

where 5ft is a gas constant and is the sound speed in the  free stream .

The function ad in the equation of state (7.1.4f) denotes the percentage by mass 

of the m ixture which has been dissociated and in equations (7.1.4), the operator 

D / D t  is the m aterial derivative and it has the usual expression appropriate  to a 

rectangular coordinate system.

A similarity solution to these boundary layer equations exists; it is identical to 

tha t for the ‘fla t-p la te ’ boundary-layer equations which was form ulated in C hapter
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6, where we also considered its large Mach num ber properties. For completeness, 

we recap this solution here.

This similarity solution to  these equations, for steady two-dim ensional flow 

over the curved plate w ith leading edge at x =  0, has the form

u — u(rj) =  *07), v =v{rj)  =  - - ( 0 * + r j x M ,  0  =  V i 1 +  S )x f ( v )>
P

T  =  T ( t] ) ,  p  =  p (  77), p  =  p ( r j ) ,  p  =  p =  — =  poo, (7.1.6a — <7)
l M oo

where

77 =  - = L = ,  (7.1.7a)
^ ( 1  +  S)z

and the D orodnitsyn-Howarth variable

V = f  pdy, (7.1.76)
Jo

has been introduced for convenience. Here 5  is the constant which appears in 

Sutherland’s formula,

/ l  + 5 \ m3 „ 110.4

our chosen viscosity-tem perature relation. We are assuming here th a t the fluid is 

an ideal (one com ponent) gas undergoing no dissociation so th a t =  0 . Then we 

can assume th a t (i), the specific heats are constants; (ii), the coefficient of heat 

conduction is linearly related to the shear viscosity and (iii), the enthalpy h is 

given by h =  cpT.  These assum ptions lead to the results

7 -  1k = p, cp = 1, p =  j - .

(Note tha t all of these quantities have been non-dimensionalized).

The governing equations, for the similarity solution, are then  found to be

2 +  i v  1 f + s 1 ' J  +  f + s  ^  -  ° ’ (7 -1-8 a  ~  c)\  /  77
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subject to  the boundary conditions

f ( 0 )  =  / ,(0 )  =  0, /„(«>) =  f (o o )  =  1, (7.1.8<i)

and T (0) =  Tw (fixed wall — tem perature), or T^(0) =  0 (insulated wall).

(7.1.8c)

Note th a t (7.1.4c,d) require th a t the leading-order pressure term  is a function 

of x  a t m ost: in the above we have assum ed th a t there is no pressure gradient acting 

along the  streamwise direction and equated the constant basic-state pressure with 

the  freestream  value, (7.1.6g). Modifications necessary in (7.1.8) for dissociated 

gases are discussed in Fu, Hall & Blackaby (1990).

The linear pertu rbation  equations.

We now assume th a t the flow is pertu rbed  to  spanwise periodic stationary 

vortex structure  with constant wavenumber a. The linearized stability equations 

for these Gortler vortices are then found by linearizing (7.1.4) about the basic 

state:

( u , v , w , T , p )  =  (iZ, v, 0, T ,p 00)-f/i(I7, V, W,  T, R e -1 P ) E + c . c + 0 ( h 2), (7.1.9a — e)

where h <C 1, E  = exp(iaz) and U, V, W ,T, P  are functions of x and y.

At 0{h )  we obtain the linear stability equations

± ( u U t  + VUy) + (jia2 + ^ ) U  -  {fiUy)y + l u y V  

-  {  + *«„) + (*«,)„} T  -  P.UyTy = 0 ,

+  K,uG)U  +  —p,yUx — —fiUXy —jLxUy -^{uVx -+- V Vy ) +  (p, a +  )V  — ^{P'Vy)y

+  P y  -  [ ^ { U V Z  +  V V y  +  \ k G U 2 )  +  ^ f l U X y  -  J j l y U x  +  ^ { f L V y ) y  +  j l X U y \ T

r  2 4 _ 2 _ 1 _
- J lU y T X -  [ - - j j . U x  + ~P>Vy\ Ty +  ~(.LylaW ~ ~iaflWy = 0,
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1 1 2
£LxiaU  -j— jliaUx +  p,yiaV  H— £LiaVy — i a P  — —p ( u x +  vy) iaT  

3 3 3

- j ( u W x + v W y) -  J » a 2w  +  ( p W y)y =  0,

^ ( u T x + v f y)T  -  ± ( u x + vy ) T  -  ± ( u T z + vT y) 

+ f ( U *  + Vy) -  ± ( T XU + TyV )  +  i a ( ^ )  =  0,

l f xU -  2(7  -  1 ) M lp .u yUy +  +  l ( u T x +  vTy) +  j L a*T

~  I  7j ^2 ( u  ^ 'x  ^ y )  +  ( 7  — 1 ) M 0 0 ii'u-y  4 - y ~ ) i ( 1  T - - ^ j i T y T y  — ~ p ^ { P 'T y ) y  =  0-

(7.1.10a — e)

Here p = d j l /d T , whilst (U, V, W ), P  and T  denote the vortex velocity field, 

pressure and  tem perature, respectively. Equations (7.1.10) differ from the corre­

sponding equations given in Hall Sz Fu (1989) only in th a t the bulk viscosity is 

taken to be zero here; th a t assum ption is actually implied in th a t paper.

It was shown by Hall (1982a) th a t in the incompressible case the neutral curve 

for small wavelength vortices has G ~  a4 and th a t the vortices are confined to a 

layer of depth  a -1 / 2 where the flow is locally m ost unstable. Hall &; Malik (1989) 

extended this approach to the above system for M = 0(1)  and wrote

G =  goa* T  gqa3 4- • • ■. (7.1.11a)

They found th a t the leading order growth ra te  a28* has 8* given by

c *  _  P  I  /  ^  T y  U U y  .

~  Pr  ( 2T z P r T 2  ̂ ^

In the neutral case, 8* = 0 and (3.15) then determ ines the neutral G ortler num ber 

<7o as a function of 77. The most unstable location 77* is where go has its minimum. 

In Hall Sz Fu (1989), it is found tha t when C hapm an’s law is used, 77* moves away 

from the wall as the Mach num ber increases.
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§7.1 .3  T h e  R a y le ig h  in s ta b il i ty  in  c o m p re ss ib le  flow s.

In §6.2.4 we form ulated Rayleigh’s equation for compressible flows, we recap 

th a t form ulation here for completeness, as well as for later reference. The basic 

s ta te  is th a t considered in the previous subsection, §7.1.2; we are assuming th a t 

z-stations under consideration are sufficiently dow nstream  so th a t (i), the basic 

sta te  is non-interactive (not influenced by a shock), and (ii), the quasi-parallel 

assum ption is valid for inviscid instability modes. It is then  appropriate  to seek 

perturbations of the form

( u , v , w , T , p )  =  ( tt ,v ,0 ,r ,p o o )

^A(u(ri),Re^v(r}),Re^w(7})iT(7]),p(r]))exp (iRe? z,t) Ĵ + . . .  ,

(7 .1 .1 2 a -  e)

where A is the small disturbance am plitude (linearisation param eter). We define 

local wavenumbers, a local frequency and a local wavespeed by

(a,/?,u>) =  ^ /( l  +  S)x  {tixitiz, —i?t), c — —. (7.1.13a — d)

If A is sufficiently small, the pressure perturbation p  satisfies the linear, compress­

ible, Rayleigh equation,

The conditions th a t there is no normal velocity at the wall, and th a t the distur­

bance is confined to the boundary layer, can be expressed as

p — 0 on 77 =  0, p —► 0 as 77 —> 00. (7.1.146, c)

Equation (7.1.14a) and boundary conditions (7.1.146, c) specify a tem poral s ta­

bility eigenrelation c = c(a,/3). The large Mach num ber features of equation 

(7.1.14b,c) were considered in Chapter 6 and will be re-considered in §7.3.
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§7.2 T H E  G O R TLER  IN ST A B IL IT Y  IN  H Y P E R S O N IC  FLOW S.

§7.2.1 The basic sta te  and the location o f  the vortices.

Before investigating the large Mach num ber properties of the  stability equa­

tions, we need to  recap the corresponding properties of the basic state; these were 

considered in C hapter 6 . An explicit analytical for the equations (7.1.8) is not pos­

sible; however, an asym ptotic analysis in the large Mach num ber lim it shows th a t 

the boundary layer can be divided into two regions: an inner high tem perature
_ l

region, where 77 =  O(Moo^), and an outer region, where 77 =  0 (1).

In the inner region, we define the 0 (1 ) quantities £, To and  fo by

(  =  M i n ,  3o({) =  M ~ 2T  and /<,(£) =  M l f ,  (7.2.1 a -  c)

so tha t (7.1.8b,c) reduce to

2 / 0/»{{ +  I -  °>

y ° T°i + 151 ( +  t L _ i i / 2 f f  =  0 , (7.2.2a, b)
T? /  , T?

2 1  J T T \  ' • «
0 /  £ 0

at leading order. These equations must be solved numerically, subject to the 

conditions

/ o ( 0 )  =  / 0* (0 ) =  0 , T0(o o )  =  0 , /o ^ (o o )  =  1,

To^(0) =  0 : if the wall is therm ally insulated,
To(0) =  t iT q w : if the wall is under cooling,

where Tqw is the wall tem perature scaled on M ^,T00 when the wall is therm ally 

insulated and n  is the wall cooling coefficient.

For large £, equations (7.2.2a,b) have the asym ptotic solutions

D
fo  =  £ — A  H------------= j _  +  * • •,

(7.2.3a, b)
36 1± 0  =   ---------=-------h ■ ■ • , as £ —► o o ,

P r 2 ( ( -  A )4

where A and D  are constants (but dependent on P r , S  and 7 ) whose values m ust 

be determ ined numerically.
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These asym ptotic expressions imply th a t in the tem perature adjustm ent re­

gion, where 77 =  0 (1 ),

X -  A . h
f  ^  1 3 , 1 ’

. m i  M g r  1

T  = T1(r])-\------ ,/2 =  7x1(77)-H-----. (7.2.4a -  c)

On substituting these into (7.1.8b,c), we obtain to leading order

y f f i  f \  . 1 ^f i v i j ) ~f~ n'nf17777 _t1 + s ' ±t,1,J 2 IJvv
m r  x ” , (7.2.5a, 6)

T i v )  + ~ n T i v = 0 -P r  VTi +  5  7 ,  2

These two equations m ust be solved numerically subject to the m atching conditions

f i M  ~  ^ r ,  Ti ~  +  • • •, as jj -+ 0, (7.2.5c, d)

and the conditions at infinity

/ i ( ° ° )  =  0, Ti(oo) =  1. (7.2.5e , / )

We note th a t whilst the solution of (7.2.5b) is independent of the inner region 

solution and thus of the conditions at the wall, the function f \  is dependent on 

the  inner region solutions through the m atching constant D .

Returning to the linear theory for Gortler vortices in compressible flows, we 

can now consider the location of the m ost unstable small-wavelength vortices, for 

large Mach num bers, when the more realistic Sutherland’s formula is used. Recall 

th a t for these linear, sm all-wavelength vortices to  be neutral we require th a t 8* =  0 

(see (7.1.11b)) which then determ ines the (scaled) neutral G ortler num ber go as a 

function of y  (or, equivalently, 77). The m ost unstable location, 77* say, is where go

has its minimum. Using (7.1.11b) with 8* = 0 to calculate the orders of go in the
 2. / 2inner layer, where 77 = 0 ( M 00 ' ), and the outer tem perature adjustm ent layer, 

where 77 = 0 (1 ), we find th a t go = 0 [ M ^ 2) in the former and go =  0 (1 ) in the 

la tter. Hence, as with the C hapm an-form ulation, the tem perature adjustm ent 

layer is most susceptible to G ortler vortices with wavenumber of order one or 

larger.

It should be noted, however, the above conclusion is based upon a large
“ 1 / 2wavenumber argum ent. In fact the wall layer, where 77 = 0(Moo ' ), is actually
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of order M i l 2 thickness in term s of the physical variable y. Thus Gortler vortices 

w ith wavelength comparable with the boundary layer thickness m ust be trapped 

in the wall layer and have a =  0 ( M o ^ ^ 2). It will be reported later th a t this wall 

m ode has neutral Gortler num ber decreasing monotonically and has the centre 

of Gortler vortex activity moving towards the tem perature  adjustm ent layer as 

the wavenumber increases. Therefore, the m inim um  Gortler num ber corresponds 

to  the m ode trapped in the tem peratu re  ad justm ent layer and the la tte r is in­

deed found the  most dangerous m ode when the whole range of wavenumbers are 

considered (see FHB).

It should also be noted th a t the result go = 0 (1 ) for the tem peratu re  ad­

justm ent layer is obtained by taking the large Mach num ber limit of the 0 (1 ) 

Mach num ber results. By doing so we have actually missed a term  related to the 

curvature of the basic state which is not im portan t for the case Moo =  0 (1 ) and 

a 1, bu t is im portant in the large Mach num ber limit. As we shall show later 

on, the curvature of the basic state  produces an effective negative Gortler num ber
3 /2of order Moo in the absence of wall curvature so th a t instability can not occur 

for G =  0 (1 ).

§7.2.2 The strongly unstable inviscid G ortler m ode.

Let us first confine our atten tion  to the m ode trapped in the tem perature 

adjustm ent layer. It is easy to show, from (7.1.6),(7.1.7),(7.2.1)and (7.2.4), tha t 

in this tem perature  adjustm ent layer,

^  j 2
u v x +  v v y  =  —■J -/2 +  ° (!)»  (7.2.6a)

where

H =  B (7 , 5 , P r , n ) =  [  T0( f K  -  0 (1 ). (7.2.66)
Jo

An investigation of the y-m om entum  equation (7.1.10b) shows th a t the Gortler
3 /2num ber m ust be of order Moo in order to  enter the leading order analysis. Thus 

we write

1- n ( z ) G ^ G - { x ) M U \  (7.2.7)
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and for convenience, we also define another function Q(x)  by

<?(*) =  ( 2 ^ 7 .  • (7-2-M

so th a t

u vx + v v ,  +  l * ( x ) G u 2 = (G* -  Q ) M 2J 2 +  o{M U 2). (7.2.86)
L i

W ith the  use of this relation, we can deduce from  the pertu rbation  equations

(7.1.10) th a t

V  = 0 ( M U * T ) ,  W  =  0 ( M l l l T) ,  P  = 0 ( M U 2T) ,  U = 0 ( M - \ T ) ,  

and th a t for fixed 77,

A  =  where M 00l d= ' l / M F 7+ 7. ( 7 .2 .9 a - / )

We therefore look for asym ptotic solutions of the form

( U , V ,W ,T ,P )  =

exp U t T  J *  /3(x)dx^) ( M ^ U o i x ^ M U ^ M U ^ f o ^ ^ P o )  +  • ■ ■

(7 .2 .1 0 a -  e)

where (3(x) is the local growth. On substituting these into (7.1.10) and then
v

equating the coefficients of like powers of M 0Q, we find, at leading order, th a t Vo 

satisfies the  differential equation

d2V0 2Tiv 8 Vq T2rp2y _  k 2 . * . 7 .
- w ~ - k T ' v ° -  ^ / ( 1 + s ) x j32 ~ Q M ’ (7-2-l lo )

V U V u
whilst To 5 kFo and Pq are related to Vo by

To =  T l"— Vo, iaW 0 =  1 ___ —  P0 =  _ ^ V ( 1 + S )̂ ^ ±
7 (1  +  S)xTi0  7 (1  +  S)xTi dv  T i 2k2 9-q

and note th a t IJq does not appear in the leading order analysis. Here k =  

V U T S )  x a is the local wavenumber. Equation (7.2.11a), subject to  Vo vanishing 

at 77 =  0,oo, is a Sturm-Liouville problem which has solutions if

(G* -  Q )TU
P2 -  ’
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This m eans th a t (32 > 0 if G* > Q, f t2 < 0 if G* < Q , (7.2.116, c)

since T\^ <  0 . It then  follows th a t neutral stability (/3 = 0) occurs a t the  position 

x = x n , where

G*(xn) = Q (xn ), (7.2.11 d)

at zeroth order. Therefore, in view of the definitions (7.2.7) and (7.2.8), the neutral 

G ortler num ber has the expansion

2B  3/2 •G =  —:— —------------------- +  higher order correction term s. (7.2.12)
/c(xn )(2xn )3/ 2

The im portan t point concerning (7.2.12) is th a t the first te rm  on the right
_ 3hand side is independent of x n if the wall curvature varies like x  5̂ ; in the la tter 

situation nonparallel effects dom inate and the vortex growth ra te  is smaller. Thus 

to determ ine the higher order correction term s to  the  neutral G ortler num ber, we 

have to distinguish two cases, namely (i) /c(x) oc x -3 / 2, and (ii), k ( x ) 9̂  x -3 / 2.

Equation (7.2.11a), with appropriate boundary conditions, can also be in ter­

preted as an eigenvalue problem which determines the growth ra te  j3(x) at a given 

value of x corresponding to any wavenumber k. It is easy to  show analytically 

th a t as k —> 0, fi2 —> 0 whilst as k —► 00, /?2 —> constant; these results are borne 

out by a num erical solution (see FHB).

The inviscid Gortler mode we have described above therefore has growth rate 
3

proportional to M<4 and we refer to it as the strongly unstable inviscid Gortler 

mode. We note th a t when G* = Q the growth ra te  vanishes. In this case it 

is necessary to  look for evolution of the vortices on a shorter lengthscale in the 

streamwise direction; tha t problem will be addressed in §7.2.4 and we shall refer 

to the inviscid Gortler mode in th a t regime as the near neu tra l inviscid Gortler 

mode.

§7.2.3 N e u t r a l  s ta b il i ty  w ith  /c(x) oc ( 2 x ) ~ 3/ 2 .

In the case when the curvature /c(x) oc (2x )-3 / 2, G*(x) =  Q(x)  and the 

0 ( M 3/ 2) term  on the right hand side of (7.2.11a) vanishes for all x. Thus, for 

this special distribution, the curvature of the basic state  is exactly counteracted 

by wall curvature over an 0 (1 ) interval in x, in the more general curvature case 

th a t is only the case over an asymptotically small interval. An investigation of
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the  p e rtu rba tion  equations (7.1.10) then reveals th a t the neutral Gortler num ber 

expands as

2,B ^  3
G =  -----— h G +  o (l), where k; =  (2x ) ? k (x ), (7.2.13a,b)

K

and th a t the  perturbation  quantities have relative orders

tf =  C>(— !— V), T  = 0 ( V ) ,  W  = 0 ( V ) ,  P  = 0 ( V ) ,  (7.2.14a -  <£)
-Mool

where G — 0 ( M ^ o) is to be determ ined. We therefore look for the following form 

for the  solutions for (7.1.10):

U =  -rp— U(x,r)) H , V  = V{x,rj)  +  • • •, W  =  W {x,  77) +  • • •,
M-ool

P  =  /v -1 -T -P ( g ^ )  H--1 r  =  V (r+ ^ jx 5 (z ,T 7 )  +  • • •, (7.2.15a -  e)
<^(1 +  S)x

where the insertion of the factor y / ( l  +  S )x  is purely for convenience.

On substitu ting these into (7.1.10) and then equating the coefficients of like 

powers of M ^ ,  we obtain, to leading order,



d  , V  ,  V  9 0  •7 -7x 7 v T ! . §  2 x d §

d ^ T i  +  d r )  ~  * + ( +  T i  ^  +  r ,  d x '

j _ d _ ( t ± M  =  _ ,  -*fiiT[ de T i v
P r  ar?VT i d r i 1 W  P r T i  ’ d r )  T i

i ffh i ’,T l' 5 9  I i 5#1r / - 2l i
+  [1 +  r T  _  p ; ^ ( 1 T ) +  * v  1 1 +

(7.2.16a — e)

Here k =  \ / { l  +  <S’)x a  and s = 2/(1 +  5 ). We see th a t (7.2.16b-e) are independent 

of U and the la tte r is determ ined from (7.2.16a) after (V", W , T , P )  have been 

determined.

Since these leading order perturbation  equations are parabolic w ith respect 

to  the variable £, they have to  be solved by specifying the pertu rbation  quantities 

at a given upstream  position and then m arching downstream . The numerical 

solution to these equations is reported in FHB, where it is found th a t neutral 

stability depends crucially on what initial conditions are imposed and where they 

are imposed. However, there is a special case, the large wavenum ber limit, for 

which a simple asym ptotic solution is possible.

Large wavenumber limit

In the large wavenumber limit, the length scale over which vortices vary is 

small com pared with the lengthscale over which the boundary layer grows. Then 

we expect th a t nonparallel effects do not come into the leading order analysis. 

This is indeed the case, as we show below.

For large k , vortices are confined to a thin layer of 0 ( e */2) thickness centred 

on 7] = 77* where,

e = l /jfe, (7.2.17)

and where r f  is the m ost unstable position to be determ ined in the course of our 

calculation. We therefore define a new variable (f> by

<6 =  e“ 1/2(r7 -  77*). (7.2.18)

An investigation of equations (7.2.16a-e) implies the following asym ptotic ex­

pansions, as e  —> 0,

G = ~^{Gq +  €1/ 2G i -f £^2 +  e3/ 2(?3 +  •••),
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U = (eU0+t*/2U1+- • ) E , V  = ((.-1Vo+e-i l2V1+- ■ ) E , W  = { t ^ ^ W a + W ^ -  ■ -)E, 

P  =  (e~3/2P0 +  eA + • • •)» $  =  («*o + ^ ' 2 h  +  • • -)E,

where

E  = exV { ^ /  (^oW) +  c1/ 2A (^ )  +  - - - ) ^ | ,  ( 7 .2 .1 9 a - / )

and where Vo, Vi etc. are functions of <f> and x.  Note th a t E  here represents the 

fast variation of the pertu rbation  quantities along the streamwise direction whilst 

the dependence of Vo, Wo etc. on x  represent the slow variation of pertu rbation  

quantities due to the nonparallel effect of the boundary layer grow th. Here we 

are only concerned w ith neutral stability, so we set (3q =  /?i =  • • • =  0. On 

substitu ting (7.2.19) into (7.2.16) and then equating the coefficients of like powers 

of €, we obtain  a hierarchy of m atrix  equations. To leading order, we have

- s q r t l x f ' '  - - P r T n  _  1 dV0
u ° ~  — J ^ t T Vo’ *° -  ~ 7 ^ T f 0 Vo’ tW<,- - T T 0 - d t ’

p  _  4s/zio „ _  2szil\ qT*q
k G ° - ~  P rT u  ’ (7 .2 .2 0 a -e )

where T i0 =  11(77*),T u  = T[(t]*) and fiio = /xi(Tio)- To next order, we deduce 

th a t Gi = 0 and at next order we find th a t Vo m ust satisfy a parabolic-cylinder 

equation. The centre of vortex activity 77* is determ ined by the condition th a t Go 

attains its m inim um  there:
QGq . .  ,

=  0. (7.2.21)drj )  lv=v*

After solving (7.2.5b) numerically for the basic state  tem peratu re  T i, we then use 

(7.2.20e) and (7.2.21) to determ ine 77* and Go- The value of the higher order 

correction term s can similarly be found. We find th a t

77* =  3.455 and k G 0 = 27.20 , (7.2.22a, 6)

for the choices S  = 0.509, P r  =  0.72,7 — 1*4. Finally, we rem ark th a t the above 

analysis is valid as long as the local wavenumber k =  ^ /( l  +  S )x a  is large. This 

means th a t the far dow nstream  evolution of Gortler vortices can always be de­

scribed by the above theory.
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§7 .2 .4  N e u t r a l  in s ta b il i ty  w ith  «(x) 9  ̂ ( 2 z) 3/ 2.

W hen the  wall curvature is not proportional to  (2a;)-3 / 2, the 0 ( m H 2) term  

on the  right hand side of (7.2.8b) only vanishes at the leading order neutral posi­

tion and its effect will persist in the dow nstream  development of Gortler vortices. 

An im portan t consequence of such an effect is th a t non-parallel effects will be 

im portan t over a larger range of wavenumbers th an  was the case for the special 

curvature case. Suppose we m easure the order of the wavenumber by writing it as 

a = 0 ( M ^ 0). Then FHB show th a t non-parallel effects continue to be dom inant 

for a  up to, and including, 1 /4 . For a  >  1 /4 , non-parallel effects become negligi­

ble com pared with viscous effects and an analytical expression can be obtained for 

the second order correction to the G ortler num ber expansion. This second order 

correction becomes of the same order as the  leading order term  (which, we recall, 

is due to the curvature of the basic state) when a  = 3/8.

The 0(l)-w avenum ber regime— the near neutral inviscid Gortler mode

In the 0 (1 ) wavenumber regime, it is convenient to determ ine the stability 

properties by considering the evolution of Gortler vortices in the neighbourhood 

of the leading order neutral position x n given by (7.2.l id ) .  Thus we shall fix the 

Gortler num ber as

G =  (2 * „ )» /* * (* „ ) " “ * (7-2'23) 

and determ ine the second order correction, x n say, to the neutral position x n so 

th a t Gortler vortices with G given by (7.2.23) are neutrally stable at location 

i n - t- in . Replacing x n by x n — x n in (7.2.23) then  gives the appropriate expansion 

of the Gortler num ber for vortices neutrally stable at x =  x n .

It can be shown tha t in the neighbourhood of x n , the second term  in the
1 / 2expansion of k ( x ) G / 2  will force a growth ra te  of order Moo • Hence we shall

^   l / 2
consider the evolution of Gortler vortices in an 0 ( M 00 ) neighbourhood of x n 

by defining a new variable X j  by

X i  = ( x - x n ) M H 2, (7.2.24a)

and look for asym ptotic solutions of the form

T  = T , ( X l t ri) + ■■■, V  = M ^ V ^ X , , * )  + . . . ,
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W  = M U 2W I ( X I ,n) + --- ,  P  = M o0PI { X I ,rt) + --- .  (7.2.24 6 -  e)

Equation (7.2.8b) becomes

uvx +  vvy +  ]-k(x )Gu2 = E X  i  +  o(Moo),

where
E = d(G -  Q) | (7.2.25a,4)

dx l l= I” '  '
•  1 /2  Note th a t it is this term  th a t gives rise to  a local growth ra te  of order Mob • On

substitu ting  (7.2.24b-e) into the pertu rbation  equations (7.1.10), we soon find, at

leading order, th a t Tj satisfies the equation

d 2
d X 2

d 2T/ 2T" dTr rj2 m m l / l  T{' xl '
L v  _  1 - 1  2?  ~   ̂ * 1

-fc2 . = T i  = 0, 
> /( l +  S )z n

(7.2.26)

where £ = ^ ( 1  +  a- We can in terpret (7.2.26) as the turning point equa­

tion associated with the breakdown of the W KB structure  in x of the expansions

(7.2.10), indeed the evolution equation (7.2.11a) is retrieved from (7.2.26) by tak­

ing X i  to  be large. The la tter equation adm its separable solutions of the form

T ^ X m ) =  (7.2.27 a)

with <j> and ip satisfying

4>"(xI) - w X Ii(Xi) = o,

*"(v)  -  -  [kzTl  -  r , z i ( T .  -  ^ m n )  -  k2 - # £ % - - - ■ m  =  0,
i i 1 i i ! i i v  (1 +  S ) x nu>

(7.2.276, c)

where the separation constant uj is to be determ ined by solving the eigenvalue 

problem  (7.2.27c) subject to appropriate boundary conditions. By a simple sub­

stitu tion z = ATju;1/ 3, equation (7.2.27b) reduces to the standard  form of Airy’s 

equation W n(z) — z W( z )  = 0 which has the two independent solutions Ai{z ) and 

B i ( z ), so the solution of (7.2.27b) is given by

^ (X /)  =  a A i ^ ^ X i )  + bBi(wi/3 X j ) ,  (7.2.28)

where a and 6 are two constants to be determ ined by initial conditions.
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In the large wavenumber limit, the solution of (7.2.27c) can be w ritten in 

term s of H erm ite polynomials. However, in the 0 (1 ) wavenum ber regime, this 

equation has to  be solved by a numerical integration, and in general an infinite 

num ber of eigenvalues uj3 (5 =  0 ,1 ,---) and eigenfunctions 0 ,  can be obtained. 

Then the general solution of (7.2.26) can be w ritten as

00

T i  = ^ 2  {a3Ai(u>aX i )  +  baBi(u>aX I )} 0 , ( 77), (7.2.29a)
5 =  0

where aa and 6, are constants to  be fixed by initial conditions a t X j  = 0. We also 

find th a t Vo is given by

Vj  =  -  ^ (1 +^ XnTl-  X )  { a .A i ’(u>,X) + b.Bi '(o>.X)}  w .tf.fo ). (7.2.29b)
»=o

It is clear th a t once T j(X , 77) and Vjr(X,77) are specified a t X j  =  0, the coef­

ficients (aa,b3) and hence the evolutionary behaviour of the pertu rbation  field 

(Vo, Wo, To,Po) will be completely determined.

The correction term  to the neutral position can be defined as the position 

where a certain energy measure has zero growth rate. It is obvious th a t such a 

position would depend upon what initial conditions we impose at X i  — 0 and what 

energy m easure is employed to m onitor the energy growth. In principle then it is 

an easy m atte r to determ ine the local neutral position associated w ith any initial 

perturbation , we note however th a t before growth of the vortices occurs they will 

have an oscillatory behaviour in X j  since both Airy functions are oscillatory on the 

negative real axis. Clearly this occurs because the boundary between instability 

and stability is controlled by inviscid effects in this regime, there is no counterpart 

to this result in the behaviour of Gortler vortices or, for th a t m atte r, Tollmien- 

Schlichting waves in incompressible flows. We further note th a t appropriate  forms 

for the initial conditions can be obtained from the receptivity problem s associated 

with wall roughness or free stream  disturbances, see Denier, Hall & Seddougui 

(1990) and Hall (1990). We merely note in passing here th a t it is reasonable to 

expect th a t the type of mode discussed above is more likely to  be stim ulated by 

free-stream disturbances since the effect of wall roughness is diminished by the 

wall layer over which the wall roughness must diffuse before reaching the unstable 

adjustm ent layer.
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In the present problem , non-parallel effects dom inate in the evolution of 

G ortler vortices mainly through the curvature of the  basic state. As

we increase the wavenumber, viscous effects will gradually come into play in the 

evolution of G ortler vortices and nonparallel effects will become less im portan t. 

W avenumbers of order M il*  are considered in FHB — this is the  m axim um  order 

at which nonparallel effects are dom inant. W hen the wavenum ber is increased
3

further, to O ( M t t )  order, nonparallel effects become negligible and viscous effects 

dom inate.
3

The 0(M d>) wavenumber regime— the parallel viscous m ode

W hen the wavenumber becomes of order 8, viscous effects are of the same 

order as the centrifugal acceleration of the basic state  in the determ ination of the 

Gortler num ber, and the leading order inviscid result (7.2.12) has to  be modified. 

We assume th a t to leading order the Gortler num ber now expands as

9  R  A
G = , w9 °°' W 5 + a V  (7-2-30)/c(xn)(2x„)'J/'!

Here the first term  is due to  the curvature of the basic state  and the second term  

is due to viscous effects and is to be determined.

For convenience, we introduce a small param eter e and an 0 (1 ) constant N

by

e = - , N  = M U 2ei , 
a

so th a t (7.2.30) can be w ritten

G - U x „ ) ( 2 * n)V 2 + S ° ) F -  ( 7 .2 .3 1 a - c)

To determ ine the higher order correction term s to  the G ortler num ber ex­

pansion, we shall first fix the Gortler number as given by (7.2.31c) and consider 

the evolution of Gortler vortices in the neighbourhood of the leading order neu­

tral position x n defined by (7.2.30), aiming at finding the second order correction 

say exn to the neutral position. As we have rem arked at the  beginning of the 

first subsection, replacing x n by x n — exn in (7.2.31c) would give the appropriate 

expansion of the G ortler num ber for vortices neutrally stable a t x =  x n .

The vortices under consideration vary on small lengthscales in bo th  x and 

7] directions. In the streamwise direction, their growth ra te  can be shown to be
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0 ( l / e )  so th a t they evolve on an 0{e)  lengthscale. In the 77 direction, they are 

confined to an 0{e l t 2) th in  viscous layer because of their small wavelength. We 

therefore define two new variables X  and £ by

X = x- ^ ,  C = V- ^ £ ,  (7.2.32a, b)

where 77* is the centre of vortex activity and is to  be determ ined.

We now look for asym ptotic solutions of the form

T  = e[9o(X,C) + eI /2fli(X ,< ) +  it)2(X ,C )  +  •••],

V = r 1 [Vb(x, 0  + €1/2 Vi(x, 0  + eV2(x ,  0  + ■ • •], 

w  = r ll2[Wa{X,Q + e1/2Wi(X,C) + ZW2(X,() + •••], 
p  = r 3/2[P0(i\C ) + 1̂/2P i(x ,0  + eP2( x , 0  + • • •],

(7.2.33a -  d)

where the relative orders of the pertu rbation  quantities are deduced from the per­

tu rbation  equations (7.1.10). On inserting these expansions into the pertu rbation  

equations (7.1.10), expanding all coefficients there about x =  x n and 77 =  77*, 

and then equating the coefficients of like powers of e, we obtain a hierarchy of 

equations. To leading order, the  G ortler num ber <70 in (7.2.30) is determ ined as a 

solvability condition for (Vb,#o) and is given by

_  2^/(1 +  5 ')x n,/i.io2T io 4 7 7 0 0  a\
9 0 — , (7.2.34)P tkoTh

whilst #0, Wo and Po are related to Vo by

P tT12 t ,  _  1 dV0
9q =    Vo, iW o =  . ■ --------———,

V (1 +  S ) x nii w T la y /(  1 +  S ) x nTio dC

4^io  5 V 0
Po = -------7= ------ — , (7.2.35a — c)

3^/(1 + S)xnT10 dC

where T i0 =  T i^ * ) , T11 =  Ti(rj*), fi10 = f i i (T i0) and /c0 =  /c(zn ). Note th a t 

(7.2.34) is of the same form as (7.2.20e), as we would expect.

At next order, we obtain three expressions for 9\ , W\ and P\ in term s of Vi 

and Vo and the condition th a t

t r ) ^ =0> (7-2-36)

which implies tha t 77* is where go a tta ins its minimum.
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At one one order higher, a solvability condition for ( ^ , # 2) follows which 

requires th a t Vo m ust satisfy an evolution equation of the form

~ - i ^ - a ( : 2V0 + b X v o = 0 (7.2.37),

where 7 ,a(>  0) and b are functions of the basic sta te , evaluated at (x n i rj*).

The solutions of (7.2.37) which satisfy the conditions V̂  —» 0 as |£| —* 00 can 

be w ritten in term s of parabolic cylinder functions. The neutral position x n is 

taken to be the point where d V o /d X  = 0, and it is found tha t

5» =  (7.2.38)
b

W ith the expression for x n determ ined, we could now replace x n by x n — exn in 

(7.2.31c) and then expand the two term s on the right hand side up to and including 

the  0 ( l / e 3) term , hence obtaining an expression for G corresponding to Gortler 

vortices which are neutrally stable at position x n . Note th a t the above analysis 

is essentially identical to th a t presented in 7.2.3 for the special curvature case, in 

the high-wavenum ber limit.

§7 .2.5 T h e  w all m o d e .

We have seen th a t as the wavenumber becomes large, Gortler vortices become 

increasingly trapped in the 0 (1 ) tem peratu re  adjustm ent layer. Thus the preced­

ing sub-sections are devoted to Gortler vortices which have wavelength of 0 (1 ) or 

smaller and which are trapped in the tem peratu re  adjustm ent layer. Clearly it 

is possible for vortices of wavelength smaller than  the thickness of the transition 

layer to be excited, far enough dow nstream  the local wavenumber will become 

comparable to the adjustm ent layer thickness and the previous analysis will ap­

ply. However before this occurs the vortices m ust be described by an analysis 

which takes account of the fact th a t they are of wavelength much larger th an  the 

adjustm ent layer thickness, we shall now address th a t situation.

We can immediately deduce from the definitions (7.1.7a) and (7.1.7b) th a t 

the variation d y , of the physical variable j/f, and the variation dr7, of the B lasius- 

H ow arth-D orodnitsyn similarity variable 77, satisfy

dy = ^ /( l  +  S)xTdr}.

_ 1
f note that the dimensional normal variable y* = Re % Ly.
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The wall layer which corresponds to 77 =  0 (M oo1̂ 2) with T  =  0 ( M )̂O) is therefore 

actually of 0 ( M l l 2 ) thickness in term s of the physical variable y , whilst the tem ­

pera tu re  ad justm ent layer is still of 0 (1 ) thickness. Thus a n a tu ra l scale for larger 

wavelength vortices is provided by the thickness of the  wall layer, the appropriate 

size of the G ortler num ber is found by rescaling the vortex wavelength and velocity 

field by the scales relevant to  the wall layer. Such G ortler vortices are referred to 

as the  wall modes and are considered in the present subsection to complete our 

brief review of the linear stability theory.
4 jty

Since in the  large Mach num ber limit the boundary layer thickens by 0(Moo  ),
3 /  2we should rescale (y, z) by a factor Moo and the  corresponding velocity compo­

nents likewise. This effectively replaces all “P e -1 / 2”s by “P e - 1/ 2M ^/2” . It is 

therefore appropriate  to rescale the Gortler num ber G and the wavenumber a by 

defining

Gw  =  M ~ z/2G and aw  = M ^ 2a, (7.2.40a, 6)

where G w  1 aw  0 (1).

The basic state  in the wall layer is (from (7.1.6a-c),(7.1.7) and (7.2.1)) given

by
M 3/2

fi = /o«(£), V =  —f = = - [ -T 0f o ( t )  +
V 2z

where

n w { 0 =  I  T0d£. (7.2.41a -  c)
Jo

It can be deduced, from the perturbation equations (7.1.10), th a t the relative 

scalings of the velocity, pressure and tem perature disturbance fields are such tha t

V  = 0{M*Ji 2U), W  = 0 ( M H 2U), T  =  0 ( M l oU), P  =  0 ( M oaU).

Therefore solutions of the form

U = Uw { x ,Y )  + --- ,  V  = M 3J 2Vw ( x ,Y )  + ■ ■ ■, W  =  M 3J 2W w (x , Y )  +  • ■ ■,

P  =  M ^ P w i x ,  Y ) +  • ■ •, T  = M l e w (x, Y )  +  ■ ■ •, (7.2.42a -  e)

are sought. On substitu ting these into the pertu rbation  equations (7.1.10) and 

then equating the coefficients of like powers of Moo, to  leading order a set of 

partial differential equations are obtained which govern the evolution of Gortler
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vortices in the wall layer, the wall layer. Obviously, this set of partia l differential 

equations have to be solved numerically to determ ine the evolution properties of 

G ortler vortices in the wall layer. We further note th a t the dow nstream  velocity 

com ponent of the  pertu rbation  now does not decouple from the o ther disturbance 

quantities — these wall modes can be thought of as being the ‘classical’ hypersonic 

lim iting-form  of the  0 (1 ) Mach num ber Gortler vortices ( which have been studied 

by, for exam ple, Wadey, 1990; Spall & Malik, 1989).

We conclude this subsection by stating the m ost im portan t results of FH B ’s 

investigation of the wall mode. They show th a t the wall layer can support a dis­

turbance trapped  in the wall layer with wavelength com parable with the wall layer 

thickness. This m ode is dom inated by nonparallel effects and has a neutral Gortler 

num ber which is a m onotonic decreasing function of the vortex wavenumber; the 

neutral curves have no ‘right-hand’ branches. In the limit of high vortex wavenum- 

bers the m ode takes on a structure essentially identical to  th a t found for the small 

wavenumber limit of the inviscid Gortler modes of wavelength com parable with 

the ad justm ent layer thickness. Moreover in this limit the wall-mode vortices have 

neutral G ortler num ber which approaches from above the zeroth order approxim a­

tion to the neu tra l Gortler num ber of the tem perature-adjustm ent-layer modes.

§7.3 T H E  R A Y LEIG H  IN STA BILITY  IN  H Y P E R SO N IC  FLOW S.

For large Mach num bers, we have seen th a t the basic boundary-layer state
 2 /2

splits into two regions; an inner wall layer, where rj ~  Moo ; and an outer layer, 

the so-called tem peratu re  adjustm ent layer, where rj ~  ^ (1 )- Thus there are 

two na tu ra l choices for the size of the wavelengths a ,/?  (defined in §7.1.3). One 

choice, to be considered first, has a ,/?  ~  0 (1 ) so th a t the modes have wavelengths 

com parable w ith the thickness of the adjustm ent region — the so-called vorticity 

mode  is confined to  this region and are thus dependent on the Mach num ber being 

large. The vorticity mode has been discussed in some detail in C hapter 6 for the 

case P r = 1. In §7.3.1 we formulate the governing equation for general P rand tl
 3/2num ber. The other choice has a ,/?  ~  Moo , so th a t the modes have wavelengths 

com parable with the thickness of the wall layer (=  ‘classical’ boundary layer). 

These so-called acoustic modes were also m entioned in C hapter 6 — in §7.3.2 we 

form ulate the governing equation for general P ran d tl num ber.
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§7.3 .1  T h e  v o r tic i ty  m o d e .

This inviscid Rayleigh m ode, which has (a ,/? ) ~  ^ (1 ) , is ‘trap p ed ’ in the 

tem peratu re  adjustm ent layer, where 77 ~  0 (1) — in general they decay to  zero 

before the wall layer is entered. The neutral m ode has wavespeed equal to  the 

streamwise velocity of the  basic s ta te  evaluated at the generalised inflexion point 

(g.i.p.) which can be shown to  lie in this tem perature  adjustm ent layer. Thus, in 

the  vicinity of the g.i.p., the basic-sta te  streamwise velocity

fl =  /„ (,,) =  1 -  .M 1 L  + . . .  = +

from  which it follows th a t the wavespeed of disturbance of the disturbance (vor- 

ticity mode) should be w ritten

0  =  1  r r r  +  - .  C7-3-1)

where cv ~  0 (1 ) and is real for the case of neutrality. In fact, the neu tral value 

of cv = /it)(t75), where rjg is the location of the g.i.p.. W riting p = pv +  • • • and 

substituting from (7.2.4a,b), (7.3.1) for / ,  T  and c, we find th a t the zeroth order 

approxim ation to (7.1.14a), in the tem peratu re  adjustm ent layer, is the  so-called 

vorticity mode equation

* £ .  _  ,  +  ^  ^  =  Q

dV J l ~  °v drt
This equation, which holds for all P rand tl num bers, must be solved subject to p 

vanishing in the limits 77 —> 0 and 77 —* 00, i.e. the disturbance is to be confined to

the tem perature adjustm ent layer. In C hapter 6, numerical results cv =  cv(a 2 +/32)

were given for Pr = 1 (when f i  can be expressed in term s of T i). Finally we note 

th a t only one neutral mode exists, for each set of physical param eters: cf. the 

acoustic modes, to be discussed in the next subsection.

§7.3.2 The acoustic m odes.

Classically, inviscid Rayleigh modes are sought which have wavenumbers com­

parable with the thickness of the viscous boundary layer. In the present con­

text, the la tter corresponds to  the inner wall layer, where the physical variable 
1   3

V — Re? L y * M ? . Thus we seek solutions to (7.1.14a) with

( a , / ? )  = M ~ * ( a a , l 3 a ) ,  ( 7 . 3 . 3 )
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where a a 0 (1 ). The wavespeed again has the form (7.3.1), we write p =

P a  +  * * •> and substituting for 77, /  and T  (from (7.2.1)) in (7.1.14a) yields the 

so-called acoustic mode equation

The conditions tha t there is no norm al velocity at the wall, and th a t the d istu r­

bance is, in general, confined to  the  boundary layer, can be expressed as

pa{ =  0 on £ =  0, pa —> 0 as £ —► 00. (7.3.46, c)

The special case of 2-D disturbance and unity P ran d tl num ber was considered in 

§6.3.3 where it was reported th a t an infinite, discrete set of (neutral) eigenvalues a a 

were found to exist. This m ode has received much less attention than  the vorticity 

m ode because its associated unstable modes are far less ‘dangerous’ th an  those of 

the vorticity mode. Thus we see th a t for bo th  the Gortler and Rayleigh instabil­

ities, the most unstable d isturbances are located in the tem perature adjustm ent 

layer.

§7.4 THE LIN EA R  R A Y LEIG H  IN ST A B IL IT Y  OF H Y P E R SO N IC  

FLOWS M O D IFIED  B Y  N O N -L IN E A R  GORTLER VO R TEX  

EFFECTS.

In the previous two sections we have considered separately, in isolation, the 

Rayleigh and Gortler instabilities of hypersonic flow over a concave plate. We 

considered small enough disturbances (/i, A 1) such tha t non-linear effects could 

be ignored. In this section we are still concerned with linear Rayleigh modes and 

investigate how they are affected as the unstable, linear, Gortler vortices evolve 

downstream, becoming more and m ore non-linear in nature until they m odify/alter 

the basic state at leading order.

Very recently, Hall h  H orsem an (1990) have studied the inviscid secondary in­

stability of fully nonlinear vortex structures in growing, incompressible, boundary 

layers. They show th a t the strong vortex activity renders the previously inviscidly- 

stable Blasius flow unstable to  linear Rayleigh-type modes. This section can be 

regarded, in some sense, as an extension of their work to the case of hypersonic
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flows — in fact, the study described in §7.4.2 is very closely related to  the latter 

paper.

R eturning to hypersonic flow, some theoreticians m ight also refer to  the acous­

tic and vorticity Rayleigh modes as being possible secondary instabilities of the 

p rim ary  non-linear vortex state. However, in the opinion of the author, this is 

mis-leading as it suggests th a t in the absence of nonlinear G ortler vortices such 

instabilities are not possible. We have seen th a t the  basic state , in the absence 

of nonlinear Gortler vortices, is still unstable to  (linear) Rayleigh modes and thus 

it is felt more appropriate to refer to the Rayleigh stability properties as being 

modified by, ra ther than  the Rayleigh modes being secondary instabilities of, the 

nonlinear Gortler vortex flow. We note th a t the la tte r flow state  does have an­

o ther, proper, secondary instability in which the th in  shear layers bounding the 

(high-w avenum ber) vortex activity are destabilised by so-called wavy modes — 

the  counterpart for incompressible flow was first studied by Hall &: Seddougui 

(1989).

Again, as implicitly assumed in previous sections, we assume th a t the size, h, 

of the Rayleigh modes is small enough such th a t nonlinear com bination of these 

m odes will not force the vortices (linear or nonlinear) at the leading orders of 

concern. T hat is, the Rayleigh modes do not affect the governing equations for 

the vortex state — in this section we are not considering a vortex/w ave interaction.

We have seen th a t there are, essentially, two types of Rayleigh and Gortler 

modes in hypersonic flows (over a concave plate): those trapped  in the tem per­

a tu re  adjustm ent layer (the Rayleigh vorticity m ode and the ‘non-w all’ Gortler 

modes) with 0 (1 ) wavelengths; and those lying in the high tem perature region 

(the Rayleigh acoustic modes and the G ortler wall mode) with wavelengths of
3

O(AfJb). Thus the nonlinear effects of the non-w all Gortler modes will modify the 

stability characteristics of the Rayleigh vorticity mode; whilst the nonlinear effects 

of the Gortler wall modes will modify the stability characteristics of the Rayleigh 

acoustic modes.

In the following subsections, we consider two illustrative cases; the first in­

volving the tem perature-ad justm ent-layer modes; and the second involving the 

wall-layer modes.
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§7.4.1 T h e m odifications to  the vorticity m ode due to a nonlinear, 

high—w avenum ber, G ortler vortex sta te .

3
For simplicity, we consider the 0 (Afj[> )-w avenum ber-parallel-viscous Gortler 

modes trap p ed  in the  tem perature adjustm ent layer (previously discussed in the 

second p a rt of §7.2.4) — we have seen th a t the linear stability properties of such 

m odes can be easily described using asym ptotic m ethods. The evolution of these 

modes im m ediately downstream  of the point of linear instability, (z n , 77*), is de­

scribed by the linear evolution (7.2.37). The weakly nonlinear evolution of these 

vortices (further downstream ) can be described asym ptotically, by a simple gen­

eralisation of the corresponding incompressible theory due to Hall (1982b). Here 

the  basic state  is unaltered, to leading order, and thus there is no vortex-related 

effect felt by the Rayleigh vorticity mode.

It can be deduced from the weakly non-linear analysis th a t at positions 0 (1) 

dow nstream  of the neutral position, the m ean tem peratu re  correction and the 

m ean streamwise velocity (due to the non-linear G ortler vortex state) become as 

large as the corresponding basic state  quantities, T\ and f \ .  This nonlinear

theory was first established by Hall & Lakin (1988), for incompressible flow. Thus, 

as T\ and f \  occur in the Rayleigh vorticity m ode equation, (7.3.2), the stability 

characteristics of the la tte r can be expected to suffer modification due to the 

modification of the former by the nonlinear vortex state.

Due to lack of time, the present author has not been able to fully formulate 

this non-linear vortex state and thus has not calculated either the non-linear vortex 

state  or the modified eigenvalues of the vorticity mode equation. However, one 

can im m ediately (intuitively) deduce (from the incompressible theory of Hall h  

Lakin; and the corresponding compressible theory due to  Wadey, 1990) th a t the 

‘new ’ basic state  quantities / i 5, 7 i 5, d e f i n e d  by

r  _  ^  , f i g ( x > v )
f  = v  r + ----3~TT’

m i  M i r  5

T  =  T ig(x,T)) +  • • •, p. = iiis (x,rj) H , (7.4.1a -  c)
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will be governed by coupled m ean-flow/vortex equations of the form

1

B N  1 K(zn) ( U , ) 3/ 2 (2 x f / 1 )  +  2 K9e
P r  dTl L  +  ^ ( l  +  S)® =  0,

T 1
where filg = (1 +  5 ) . (7.4.2a -  d)

l \ g +  o

The ‘forcing functions’ F h l i ,2 can be determ ined analytically — we see th a t the 

m ean flow is driven by |Vo|2> arising from the nonlinear com bination of vortex 

term s — h has now grown to  0 (1 ) size, in (7.1.9). Note the dow nstream  influence 

of basic-state  curvature (the term  proportional to  B ).

In fact, the non-linear vortex state  only exists in a finite, growing region 

bounded above and below by ‘shear layers’ a t 77 =  771,772 (say). The locations 

772(2;) and 772(2;) m ust be determ ined numerically from a ‘free-boundary’ problem. 

Outside of the vortex region (77 > 771, 77 < 772) Vq = 0  but the m ean-state  is still 

different than  if there were no non-linear vortex activity at all.

Note th a t the mean-flow (basic state) is (i), independent of z-variation, and 

(ii), still two-dimensional, to orders of concern. Thus, its Rayleigh stability prop­

erties are still governed by the ordinary differential equation (7.3.2), but with 

( / i ,T i )  replaced by ( f i g ,T lg).

§7.4.2 T h e  n e c e ssa ry  m o d if ic a tio n s  to  th e  a co u s tic  m o d e s  d u e  to  

fu lly  n o n - l in e a r  G o r t le r  w all m o d e s .

In this subsection it is assum ed tha t a fully nonlinear vortex state  exists

in the wall layer — we do not concern ourselves with its evolution, or with the

detailed formulation of the governing equations. This flow sta te  is merely the

‘classical’ generalisation to hypersonic flow (in the sense tha t the wavenumbers are
3

scaled on the boundary-layer thickness, Afd,) of the fully nonlinear, incompressible, 

vortex flow studied and com puted by Hall (1988). Moreover, the ‘generalised’

260



acoustic modes studied here are merely the hypersonic counterparts of the inviscid 

secondary instabilities (to  this fully non-linear vortex state) investigated by Hall 

& Horsem an (1990).

The underlying flow sta te , ‘felt’ by the acoustic Rayleigh modes, now has 

spanwise variation at leading order — it has been completely altered by the vortex 

activity. The 0 (1 ) co-ordinates ( x ,Y ,  Z )  are now defined by

3 3
L ~ \ x ' , y ' , z ’ ) = ( x , R e - ? M £ Y , R e - ? M £ Z ) ,  (7.4.3a -  c)

whilst the 0 (1 ) nonlinear vortex velocities, pressure and tem peratu re,

(17, V , W , T ,  P ) , are defined by

3 3
=  ( U ( x , Y , Z ) , R e - ? M l V ( x , Y , Z ) , R e - ? M l W ( x , Y , Z ) ) ,  

T ' / T Z ,  = M l T ( x , Y , Z )

and

p V i p ^ u ' ^ ^ T ^ M ^ + R e - ' M ^ P i x ^ Z ) .  (7.4.4a -  e)

Poo

These forms can be deduced from §7.2.5, where the linear wall m odes were 

considered; alternatively those for the co-ordinates, the velocities and the pressure 

can be arrived at by replacing Re~  2 (the thickness of the incompressible boundary
_ 1 3

layer) by Re  2 M£> (the thickness of the hypersonic boundary layer) in the  scales 

of Hall (1988), Hall Sz Horsem an (1990).

We now consider the inviscid stability of the fully non-linear vortex state, 

represented by (7.4.4a-e). As the leading-order flow state now has z-variation, it is 

no longer appropriate to seek inviscid modes with harm onic z-dependence. Instead, 

we perturb  this flow sta te  by small disturbances having general z-dependence;

(u%v\w^)/u^=(U,V,W)

+ A[(u(y, Z), v(Y, Z),w{Y, Z ) ) E  + C.C.] + • • •,

-  M l T ( x f y , z )  +  M l A [r(y , z )e  +  c.c.] +  • • •,

p’ K p 'o o O  = 7 _1A C 2 +  R e ~ l M x P (x , Y, Z ) + M - 2 A[p(K, Z ) E  + ex.] +  • • •,

(7.4.5a — e)
1 _2

where A <C 1; E  =  e xp { ia R e?  Moo2 (x — c<)}, a ,c  ~  0 (1 ); and the ‘h a tte d ’ 

quantities represent the inviscid disturbance (Rayleigh m ode). The Moo-factors
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of T  and  p are implied from the large Mach num ber form of the linearised Euler 

equations for general M ach num ber.. W hen the expansions (7.4.5) are substitu ted 

into the  Navier-Stokes equations, we find th a t the  Rayleigh disturbances satisfy

ia.(U — c)u +  U yv  +  U z w  =  —ictTp,

ia (U  — c)v = —T p y ,

ia (U  — c)w = —T p z ,

ia u  +  v y  +  w z  +  ia (U  — c)p =  0. (7.4.6a — d)

Note th a t the z-variation of the underlying flow is only ‘felt’ through the stream - 

wise velocity component, U (see underlined term  above).

The disturbance-equations (7.4.6) can be combined to form the generalised 

acoustic mode equation

( u  -  c)21. 2{Uypy + U zp z)  . {T yp y  d r T z p z )  2
P Y Y + P Z Z ---------------------  + ------------ y ----------------a 1 - p  =  0.

(7.4.7a)

This partial differential equation m ust be solved subject to the boundary condi­

tions

p y (0 ,Z ) =  0, p(Y yZ ) —>0 as Y  —>00; (7.4.76, c)

additionally, we require th a t p is periodic in Z  (due to the spanwise periodicity of 

the underlying vortex state). Equation (7.4.7a), together with the boundary and 

periodicity conditions, specifies the tem poral stability eigenrelation c =  c(a).

Note th a t the usual acoustic mode equation, (7.3.4a), is easily recovered (for 

weaker vortex states) by setting Uz = 0 =  T z , transform ing to the H ow arth- 

Dorodnitsyn variable and then setting (a , - ^ )  = ( a a , i/3a). Alternatively, the 

pressure equation of Hall Sz Horseman (1990) can be easily recovered by setting 

T  = M ^  and then letting —* 0. The solution to the above eigen-problem

requires a (non-trivial) numerical solution in general. However for weaker Z- 

dependence, corresponding to low wavenumber vortices (aw  1), we expect 

th a t some further analytical progress will be possible, along the lines of tha t 

described by Hall Sz Horseman (1990). Finally note th a t, similarly, we can de­

rive a generalised vorticity mode equation to describe the Rayleigh stability of
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the  strongly-vortex-affected tem perature ad justm ent layer. This has the form of 

equation (7.4.7a) bu t now the term  in the square brackets is replaced by unity.

§7.5 SO M E C O M M EN TS ON TH E IN T E R A C T IO N  OF TH E  

R AYLEIG H  A N D  GORTLER M O D ES.

In the previous sections we have considered, in isolation, the Gortler and 

Rayleigh instabilities, before considering how the presence of strong vortex activity 

will modify the Rayleigh stabilities of the basic flow. As the title of this section 

implies, we shall now investigate the possibility of interaction between the two 

instabilities.

In the present context, for such a vortex/w ave interaction, we require tha t, 

(i), the vortex activity ‘affects’ the Rayleigh waves, and (ii), the presence of these 

Rayleigh modes ‘affects’ the vortex state. In §7.4.1 we considered the high- 

wavenumber nonlinear vortex state, in the tem peratu re  adjustm ent layer, and 

found th a t the eigen-problem  for the inviscid (Rayleigh) modes still takes the 

form of a linear, second-order, differential equation (plus boundary conditions) 

for the pressure disturbance but now the coefficients are functions of the under­

lying non-linear vortex state. However, when the vortex state  is fully nonlinear 

(as in §7.4.2) a partial differential equation now replaces the ordinary differential 

Rayleigh equation.

In contrast to the non — linear vortices (which affect the Rayleigh modes 

indirectly, via the 0 (1 ) mean-flow corrections), linear Rayleigh modes can af­

fect/force the (linear or non-linear) Gortler vortices directly via the nonlinear 

combination of two modes having opposite spanwise wavenumber (cf. the vor­

tex/w ave interaction studied in C hapter 3). This mechanism has the ‘advantage’ 

th a t the am plitude of the Rayleigh modes does not have to be so large as to modify 

the basic flow at leading order.

Again, the full details for all possible cases rem ain to  be form ulated. This is 

principally due to the fact tha t the Gortler vortex linear instability in hypersonic 

flows has only very recently been properly understood. Moreover, the resulting 

infinite set of coupled equations will require a non-triv ia l num erical solution.

Obviously, we would expect the acoustic Rayleigh modes to interact with the 

Gortler wall modes; whilst the Rayleigh vorticity mode should interact with the
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vortices trapped  in the tem perature adjustm ent layer. At first sight, it appears sen­

sible to consider the special case of the interaction involving the large-wavenum ber 

parallel vortex modes trapped  in the la tter layer — it should be simpler than, and 

provide insight into, the ‘general’ problem. However, one soon realises th a t such 

an interaction (as invisaged above) is not tenable: the inviscid m ode would need
•---------------   3

to have large wavenumber (~  for the case of general curvature) and such

modes do not exist (see C hapter 6)!

The vorticity mode can interact with the 0 (l)-w av en u m b er Gortler

modes, whose linear stability properties are also inviscid in na tu re  (see §7.2.4). The 

nonlinear evolution of such modes has yet to be studied and thus it is not easy to 

consider this particu lar (possible) interaction, at the present tim e. Thus we turn  

to the inner, h igh-tem peratu re  region.

The neutral curves for the Gortler wall mode do not have ‘righ t-hand’ branches, 

in contrast to  their incompressible and 0 (1 ) Mach num ber counterparts; thus the 

non-linear Hall—Lakin theory cannot be employed in the high-w avenum ber limit 

(aw  >> 1). Thus, we m ust consider the general non-linear vortex sta te  (discussed 

in §7.4.2); this exists across the whole wall-layer, with all harm onics of aw  0 (1 ) 

present. The corresponding vortex state for incompressible boundary-layer flow 

(which, in some sense, can be thought of as a special case of the present wall-mode 

equations) has been com puted by Hall (1988). The Rayleigh modes appropriate to 

this interaction are governed by the generalised acoustic m ode equation (7.4.7a) 

— in general they can, at best, be expressed as an infinite Fourier series in Z. 

As the nonlinear vortex state has the Fourier-series form s, we can expect tha t 

the interaction will be controlled by an infinitely-coupled system  of equations — 

the numerical solution of such coupled systems, commonly found in theoretical 

formulations of strongly non-linear vortex/wave interactions, is very difficult.

The size of A necessary for an interaction.

To conclude this section, we deduce the smallest size of the  small linearisation 

param eter A C  1 (the am plitude of the Rayleigh m odes) th a t will lead to the 

Rayleigh modes affecting (forcing) the strongly non-linear vortex state  in the wall- 

layer i.e. we seek the smallest size of A necessary for an interaction.
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Hvx
Consider the term  ~jTi  appearing in the ^-m om entum  equation of the govern­

ing Navier Stokes equations. This results in the ‘non-linear’ vortex-term  T ~ l \£Vx;
5/a

this leading-order term  occurs at 0 (R e  jrM0o) (from (7.4.3),(7.4.4)). The former 

will also result in the non-linear combination T ~ l iaukv (<c'c^ involving the Rayleigh 

modes, among others. The la tte r term  will contain, also am ong others, stationary 

vortex-like term s: those term s proportional to E E ^C,C,\  Thus the potential forcing 

term s (due to the nonlinear combination of the linear Rayleigh modes) arise at 

0 ( A 2 Re? Moo2 ) (from (7.4.4d),(7.4.5) and definition of E ).  Hence, these potential 

forcing term s do indeed force the y-mom entum, non-linear, vortex equation (and 

thus completing the proposed interaction) if the previously deduced orders are the 

same, i.e.
%  - i - l

Re~^Moo ~  A 2Re?M oo2 .

I I
A ~  Re  aAf,% (<C 1) (7.5.1).

Note th a t this choice of A is small enough such th a t the equations for the 

Rayleigh mode are still linear. It is obvious th a t the o ther nonlinear inertial 

term s, including those in the other governing Navier Stokes equations, also lead 

to  ‘forcing’ term s — for our choice, (7.4.8), of A it can be shown th a t all leading- 

order forcing is due to the m aterial derivative term s vd y -f w dz . Further it can be 

shown th a t there is no direct forcing of the z-m om entum  equation; moreover this 

choice of A is consistent in the sense th a t none of these forcing term s are solely 

leading-order.

The complete formulation of this proposed interaction should not cause too 

m any problems — however the resulting infinite sets of coupled equations will not 

be easy to solve numerically.
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