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ABSTRACT

The thesis examines several model flows in an attempt 
to elucidate the effects of boundaries and/or bathymetry 
on the development of a rotating flow. In particular, the 
numerical method of contour dynamics is employed in order 
to capture the combination of the nonlinear effects of 
advection and the effects of bottom topography. This 
method is based on the fundamental property of 
conservation of potential vorticity. Previous linear work 
on such topographic effects has not incorporated 
advection, thus in some cases this conservation law is 
violated. A brief review of others' work using contour 
dynamics is presented first, together with some simple 
examples to illustrate the uses of the method.

The first model flow then considered contains a 
cylindrical underwater obstacle. Various possible flow 
developments are revealed using the contour dynamics 
technique and in particular the effects of allowing a 
free surface are examined.

The influence of a sidewall on the formation of Taylor 
columns is the next problem approached. An underwater 
semi-cylindrical obstacle, flush against the wall, 
generates topographic waves in a uniform flow, which 
travel uni-directionally around the step. In previous 
such problems, where no wall is present, a Taylor column 
is set up on the timescale over which the fluid above the 
obstacle is spun down by Ekman pumping. In this case, 
however, the presence of the sidewall accelerates the 
formation of the Taylor column, which is now set up on 
the shorter topographic timescale.

The contour dynamics method is used again in the final 
chapter. In this problem uniform flow in a channel is 
forced over a longitudinal step, thus generating 
topographic waves. The resulting flow is highly dependent 
on the oncoming flow rate. It is shown that if the flow 
is sufficiently fast a permanent nonzero relative 
vorticity region is set up, whilst a slower oncoming flow 
allows the upstream propagation of the topographic waves, 
resulting in behaviour similar to that of hydraulic 
control.
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INTRODUCTION.
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The complex behaviour of the oceans and atmosphere has 
long been a source of fascination for scientists. In 
spite of its complexity, however, this behaviour has 
proved to be well-represented by approximate scientific 
theory. The theory has, in general, been concerned with 
the fundamental dynamical concepts, rather than a 
detailed simulation, in order that from simple models a 
deeper understanding of the essential features may be 
gained. This knowledge can then be used both as a 
foundation for further investigation and as a tool for 
the interpretation of more complicated systems. In this 
thesis, a few simple model systems are examined in an 
attempt to isolate and hence illuminate some basic 
features of rotating flow over topography.

Historically, the subject of geophysical fluid dynamics 
is relatively young. The importance of the rotation of 
the earth was recognised by Hadley in the early 
eighteenth century, when he explained the easterly 
component of the trade winds by using the law of 
conservation of angular momentum, and also by Laplace, 
about fifty years later in his studies of the tides. In 
the latter half of the 19th century, Kelvin carried the 
subject further with his studies of the adjustment to 
equilibrium of a rotating fluid and in the early 20th 
century the work of Taylor led to, amongst other results, 
the fascinating "Taylor column" (Taylor 1923). But 
perhaps it was C.G. Rossby, in the late 1930s, whose 
pioneering work on rotating fluids is constantly 
acknowledged in the use of such basic concepts as the 
Rossby number and the Rossby radius, who laid the 
foundations for the subject as it is studied today.

One of Rossby1s major contributions to the field was 
his investigation of the process by which a rotating 
fluid adjusts to equilibrium, Rossby (1937, 1938). This 
equilibrium is not a rest state, but a state of balance,
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wherein the force of the pressure gradient is matched by 
the force due to the rotation itself, i.e. the Coriolis 
force. This balance was named geostrophy by Shaw (1916) 
and generally predominates in the large scale motions of 
the oceans and atmosphere. The geostrophic approximation 
is therefore an extremely powerful theoretical tool. 
However, due to an inherent mathematical degeneracy in 
the geostrophic equations of motion, it is insufficient 
to determine the dynamics of the system. It was with this 
degeneracy that Rossby was concerned.

In order to simplify the systems considered whilst 
remaining consistent with broad physical principles, 
several approximations are generally made, which remove 
unnecessary complications without losing the essential 
features of the flow which are the subject of the 
investigation. The assumptions made in this thesis, as 
elsewhere, include those of incompressibility and uniform 
density, p. Thus the effects of stratification are 
neglected here. In most of this work the fluid is assumed 
to be approximately inviscid, with the exception of the 
work in §4.4, which specifically considers viscous 
effects. In general the assumption that viscous effects 
are negligible is valid for large scale motions in the 
oceans and atmosphere because the Reynolds number is 
large. However, eddies and turbulence can be important. 
Here "large scale" is taken to mean motions for which the 
Rossby number, U/fL, is small, where U is a typical 
horizontal velocity scale, L is a typical horizontal 
length scale and the system rotates about a vertical axis 
with angular velocity f/2. A Rossby number of order unity 
or less implies that the effects of the rotation of the 
system are felt over the timescale of the motion, hence 
the Coriolis acceleration is at least as important as the 
relative acceleration of the fluid. In this work the 
Rossby number is assumed to be at most order unity, so it 
is to the large scale motions in the oceans and 
atmosphere that the results may be applied. For flows 
which are large scale but with horizontal scales
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considerably less than the distance from equator to pole, 
the assumption may be made that the Coriolis parameter is 
constant, the f-plane approximation. Thus the curvature 
of the earth is not taken into account over the scales 
considered.

Another major assumption made is the shallow water 
approximation. The aspect ratios of the oceans and 
atmosphere are very small: a typical ocean depth may be 4 
kilometers, while the horizontal length scales of some 
large scale motions may be hundreds or even thousands of 
kilometers. Thus the movement is essentially horizontal 
and vertical motions are relatively insignificant. This 
can be seen by considering the equation of conservation 
of mass, reduced by the earlier assumption of 
incompressibility to

jjH + jv + (1>1)ax ay az '

where u,v,w are the components of horizontal and vertical 
velocities in the x, y, z directions respectively. By 
considering the orders of magnitude of each term it is 
clear that the vertical velocity scale, W, say, must be 
at most O(AU) where X is the aspect ratio. A consequence 
of the relative insignificance of the vertical velocity 
follows from the vertical momentum equation, where the 
dominant terms are now the pressure gradient term and the 
gravitational acceleration, and is the last major 
assumption, the hydrostatic approximation, integrated to 
give

P(x,y,z) = pg(T)-z), (1.2)

where p is the pressure, g is the gravitational 
acceleration and Tj(x,y) is the position of the surface of 
the fluid. In this assumption we are simply approximating 
the pressure at a point in the fluid by the weight of the
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unit column of fluid above it at that instant. The 
horizontal momentum equations, incorporating all the 
above assumptions, are

5U 3u 3u 377 / - %
at + uax + v3y ” fv = <1 ’3a)

dv , av , av , £ dri /i
at ax ay + fu = ~9rf- d - 3b>

The shallow water approximation implies that the 
horizontal velocities are independent of depth. This 
allows the integration of equation (1.1), which, on 
substitution of the boundary conditions at the surface, z 
= T?(x,y), and rigid bottom, z = -H + h (x,y), where 
h0(x rY) Is the bottom topography, becomesB

where h = tj + H - h is the total depth of fluid and = 
d d 3 ^^  + u ^  + v ^  is the total derivative. Thus any increase 
in depth must be balanced by a horizontal convergence, so 
the volume of a given column of fluid remains constant.

The geostrophic approximation mentioned earlier may be 
derived from equation (1.3) by order of magnitude 
arguments. The relative acceleration terms on the 
left-hand side are smaller than the Coriolis term in each 
case, since the Rossby number is small, thus to leading 
order a balance is established:

v = g/f fa, (1.5a)

u = -g/f (1.5b)

However, substitution of the above into equation (1.4)
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only confirms that the flow is constrained to follow 
bottom contours in the geostrophic approximation,
providing no new information. This is due to the 
degeneracy mentioned earlier. Taking the curl of equation
(1.5) elucidates the problem. The curl of the pressure*gradient is identically zero, whereas the curl of the 
Coriolis acceleration /is the horizontal divergence of the 
geostrophic velocities, . which, although small, is not 
zero. The geostrophic approximation is clearly only a 
first step, which must be amended and improved upon in 
order to determine the dynamics of the fluid. Equally 
clearly, it is the smaller, non-geostrophic terms,
hitherto neglected, which must provide the extra 
information. It is through vorticity considerations that 
the further constraints on the flow are found. Due to the 
strongly two-dimensional nature of the flow, the only 
significant component of the vorticity is that in the 
vertical direction,

r _ av _ au /i c \
C " ax ay- (1*6)

The final equation required is found by taking the 
curl of equation (1.3) and substituting for the 
horizontal divergence using equation (1.4). The result is 
the equation of conservation of potential vorticity,

D_
Dt C + f = 0 (1.7)

The name "potential vorticity" was given to the quantity 
in square brackets by Rossby, who thus demonstrated that 
the development of an inviscid rotating fluid is 
eternally dependent on its initial state. It is the 
geostrophic approximations to the velocity and vorticity 
fields that are used in equation (1.7), thus the vital 
departures from geostrophy are included in the theory, 
without being found explicitly. By considering their
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orders of magnitude, it is seen that the ratio of the 
relative vorticity, £, to the planetary vorticity, f, is 
given by the Rossby number. Thus in this work, wherein 
the Rossby number is at most order unity, the planetary 
vorticity is at least as important as the relative 
vorticity.

The extra information provided by this conservation 
equation enables us to establish both the development and 
the final steady state of a flow in a theoretical model, 
given the initial state. Kelvin (see Thomson 1879) 
considered such flows, with zero initial potential 
vorticity, but it was again Rossby who extended the work, 
to cover flows with non-zero initial potential vorticity. 
The final flow may be determined without considering the 
intermediate states, but in this thesis we are concerned 
mainly with the evolution of flows, i.e. with initial 
value problems, so here, by way of illustration, we 
briefly summarise some transient features which are often 
instrumental in the adjustment to equilibrium of a 
rotating fluid.

We consider first small perturbations to a flow 
containing no topography and seek a solution to the 
linear, unsteady equation for the surface displacement, 
7), obtained from the linearised shaLlou lAaber equo&on^ •.

^  - gH ( ^  + S h  ] + = 0 .  (1.8)
at I ax ay >

A wavelike solution is possible, i.e. y « exp (ikx + ily 
- iwt), provided it satisfies the dispersion relation

<d2 = f2 + (k2+ l2 )gH. (1.9)

A very important length scale is apparent in this 
relation and in equation (1.8), namely the Rossby radius,
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a = (gH)1/2/f. This is the distance over which the
surface is deformed equally by the gravitational effects 
and the effects of rotation. Thus over length scales 
which are small compared with the Rossby radius, the 
pressure gradient force dominates and rotational effects 
are scarcely felt by the surface, which therefore behaves 
as if it had a rigid lid. Over a larger scale, however, 
the effect of the Coriolis acceleration increases, 
dramatically altering the behaviour of the flow and 
dominating as the relative size of the Rossby radius 
tends to zero. In Chapter 3 this feature of rotating 
fluids is examined in detail, using a simple model with 
various values of the relative Rossby radius. It is shown 
that the flow is significantly altered and attains a 
qualitatively different final state for different values 
of the relative Rossby radius.

In Chapters 4 and 5, however, the rigid lid 
approximation is made, in which g -» », but gy remains 
finite. This is a realistic and widely-used 
approximation: in the ocean the gravitational
acceleration is several orders of magnitude larger than 
the relative accelerations. This corresponds to the limit 
of infinite Rossby radius, in which the surface cannot 
deform over a finite length scale. Typical values for the 
Rossby radius vary between about 200 kilometers for a 
shallow sea and 2000 kilometers for deeper oceans.

From equation (1.9) it is clear that the behaviour of 
the wavelike solutions will depend on the relative size 
of the wavelength to the Rossby radius. If (k2+l2)a2 is 
small, i.e. the waves are long compared with a, then the 
second term in (1.9), the so-called buoyancy term, is 
small, the frequency of the wave is approximately f, the 
inertial frequency, and gravity plays little part. If 
(k2+l2)a2 is large, however, i.e. the waves are short, 
then the frequency u = (k2+l2 )1/2(gH)1/2 i.e. the
frequency of an ordinary gravity wave in a non-rotating 
system, and the effects of rotation are hardly felt. All 
the above waves are referred to as Poincare waves. The
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condition of no normal flow at a boundary cannot be 
satisfied by a Poincare wave, so if an internal boundary 
is present in the flow a combination of these waves is 
required, known as a Kelvin wave. Such waves require the 
wavelength in the longshore direction to be much larger 
than the Rossby radius, so are not present in flows for 
which the rigid lid approximation is valid. The velocity 
normal to the boundary is zero, thus the (small) 
longshore component of the pressure gradient is not 
geostrophically balanced, but is balanced instead by the 
small longshore acceleration.

These waves, then, are some of the means by which a 
rotating fluid may adjust to geostrophic equilibrium and 
they have been widely used in time-dependent models. 
Here, however, we concentrate on another wave, whose 
existence depends on the presence of bottom topography, 
the topographic Rossby wave. With the advent of larger 
computing facilities, topographic effects are beginning 
to be incorporated in large scale models of ocean 
circulation. Simple theory and experiments caution that 
small topography can have large effects, particularly in 
the temporal evolution of relatively slow flows.

The existence of such a topographic wave can be 
inferred from the equation of conservation of potential 
vorticity, equation (1.7). It is clear that a change in 
the depth h of the fluid necessitates a change in the 
relative vorticity. This generation or destruction of 
vorticity can also be illustrated by considering a given 
column of fluid, moving to a region of deeper fluid. As 
its length increases, it must become narrower, to 
conserve its volume, as shown by equation (1.4). Thus its 
cross-sectional area decreases and therefore, by Kelvin's 
theorem, it experiences an increase of relative 
vorticity. Similarly, a fluid column moving into 
shallower fluid loses vorticity as it becomes broader. 
Now consider the effect that such a column has on its 
neighbours. A column that has moved to a deeper region 
will move neighbouring columns on its right into the
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deeper region, and those on its left into the shallower 
region. The process is then repeated by the columns which 
have been thus moved. In this way the wave is produced 
and propagates along the change in depth, with the 
shallower fluid to its right, for an 
anticlockwise-rotating system. The above is a physical 
explanation in terms of vortex-stretching for the 
uni-directional phase propagation of the wave.
Mathematically, this feature can be seen from the 
dispersion relation for the topographic Rossby wave,

(j  --------  , (1.10)
k2+l2+a'2

where the slope of the topography is assumed to be slight 
and is given by h = /3y, with /3 > 0. Hence the phase 
speed normal to the slope, cj/k, is always negative. The 
maximum frequency for a given 1,

u  -----£----- , (i.ii)
max 2(12+a~2)1/2

is attained when k = (12+a"2)1/2. Thus the absolute
maximum frequency, when 1 = 0, is given by -a/3/2 and is 
reached when k = 1/a.

It is the limiting case of a step in the bottom 
boundary which is considered in this thesis. The waves 
produced by a sudden change in depth are seen in 
continental shelf regions of the oceans, and have the 
vortex-stretching dynamics described earlier. Although 
the abrupt change in depth violates the assumption that 
the slope is small, these shelf waves have many features 
in common with Rossby waves, and indeed they may be 
regarded as a limiting form of a Rossby wave, (see 
Pedlosky (1987) §8.2, Gill (1982) §10.12 and
Longuet-Higgins (1968)).

These waves may be produced by isolated topographic
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features as well as in continental shelf regions, and the 
particular case of a flat-topped cylindrical sea-mount in 
a uniform stream is considered in Chapter 3. Here the 
interaction of topographic waves with the effects of 
advection are illustrated. The advective timescale, L/U, 
where L is a typical horizontal length scale and U is a 
typical horizontal velocity scale, is taken to be 
comparable with the topographic vortex-stretching 
timescale, which is inversely proportional to the 
background rotation rate and the fractional height of the 
obstacle, i.e. (f6)”1 . In this chapter both 8 and the 
Rossby number are taken to be very small. In the absence 
of advective effects the waves cycle the obstacle 
indefinitely, as shown by Johnson (1984). This is no 
longer possible in the presence of advection, and the 
effects of the topographic waves combine with those of 
advection to determine the development of the flow. It is 
shown that the evolution depends on the relative 
strengths of these effects, measured by a parameter 
referred to throughout as the Hide parameter, after Hide 
(1961), given by S = S/Ro, where Ro is a Rossby number 
for the flow. If advective effects dominate, i.e. the 
Hide parameter is small, the fluid is swept away 
downstream before the topographic wave has had much 
influence. In this case a cyclonic eddy is produced by 
the fluid originally above the obstacle moving into the 
deeper region. This eddy is then advected away by the 
uniform stream, along a path which is found analytically. 
Similarly an anticyclonic vortex is produced over the 
obstacle by fluid moving up and hence losing vorticity. 
This vortex is constantly replenished by new fluid being 
carried in from upstream. At the other extreme, if 
topographic effects dominate and the Hide parameter is 
large, the original fluid remains in the vicinity of the 
obstacle for longer and some may be trapped over the 
topography, thus forming at least part of a "Taylor 
column".

This fascinating phenomenon was first demonstrated by
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Taylor (1923), who towed a short obstacle slowly across 
the base of a rotating tank. The fluid above the obstacle 
was found to be at rest relative to it, whilst outside 
this region the flow was two-dimensional. This result is 
predicted by the Taylor-Proudman theorem (Proudman 
(1916), Taylor (1917)), which states that the slow, 
steady flow of a rapidly rotating, homogeneous, 
incompressible, inviscid fluid must be depth-independent. 
Much theoretical and experimental work has since been 
carried out on this strange feature of rotating fluids. 
Hide (1961) showed that for Taylor columns to exist the 
aforementioned Hide parameter must exceed a certain 
critical value. In Chapter 3 the effects of a free 
surface are examined, and this critical value of the Hide 
parameter is found as a function of the Rossby radius of 
deformation. It is found that as the Rossby radius 
decreases the topographic effects become more localised, 
so the fluid is less likely to be trapped by the 
obstacle, hence a larger value of the Hide parameter is 
required for the existence of a Taylor column. Similarly, 
as the Rossby radius tends to infinity, i.e. in the rigid 
lid limit, the critical Hide parameter has a minimum 
value which is that given by Huppert (1975).

Fluid may also be captured from upstream, as it is 
carried over the obstacle, provided the Hide parameter is 
sufficiently large. This is illustrated in Chapter 3 in 
the particular case where there is an upstream eddy which 
is advected towards the obstacle. It is assumed that the 
fluid originally over the obstacle has been swept away by 
an earlier episode of faster flow, and the oncoming eddy 
may be assumed to have been produced by another 
topographic feature, further upstream. It is found that 
an upstream eddy with negative vorticity, i.e. vorticity 
of the same sign as the topographic vortex over the 
obstacle, with which it interacts, may be partially 
captured by the topography, while a positive eddy is 
merely deflected by the obstacle as it passes.

The problem is further extended in Chapter 3 to
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consider an oncoming shear flow rather than a uniform 
stream. Now two cyclonic vortices are shed, whose paths 
may again be approximated analytically. Again some fluid 
may be trapped above the topography and the results are 
compared with the steady solutions of Johnson (1983). As 
found by the latter, the results for positively sheared 
flows are shown to be qualitatively different from those 
for negatively sheared flows.

Taylor columns are examined further in Chapter 4, with 
the emphasis in this case on the effects on their 
development produced by the presence of a sidewall. 
Unlike the regime of Chapter 3, the advective timescale 
is here assumed to be long compared with the 
vortex-stretching timescale, over which the development 
is followed, so that the only effects considered are
those of the topography and the sidewall. It is shown 
that a Taylor column is set up on this shorter timescale, 
in contrast to the result of Johnson (1984) that a
topographic wave cycles an isolated obstacle 
indefinitely, thus the presence of a sidewall is shown to 
accelerate Taylor column formation. The reason is clear, 
the waves,, being uni-directional, cannot propagate 
indefinitely when the isobaths end abruptly. The 
particular geometry considered is a flat-topped, 
semi-cylindrical obstacle, flush against the sidewall. 
The waves travel around the edge of the obstacle, but can 
go no further when they reach the wall-step junction. A 
Kelvin wave is not possible here, as the rigid lid
approximation has been made.

Although the governing equation of conservation of 
potential vorticity is linear in this case, the advective 
terms being negligible, the final steady state achieved 
satisfies the nonlinear equation for advection of 
potential vorticity, thus time dependence has here given 
a specific solution to a nonlinear problem. Furthermore, 
the results, like those of Johnson (1985), are more 
widely applicable. A parameter HRo/L was introduced by 
Stewartson & Cheng (1979) which measures the importance

18



of inertial effects on the flow. For Ro « 1, the vertical 
wavelength of a typical topographically forced inertial 
wave is L/Ro, Johnson (1982). Thus the flow is 
effectively two-dimensional provided H « L/Ro, i.e. H/L « 
Ro”1, a weaker condition than that for the shallow water 
approximation to be valid. Therefore these results apply 
also to slow flows with depth of the order of, or greater 
than, the obstacle width.

In §4.5 nonlinear effects are considered. For obstacles 
of fractional height of order unity, these become 
important for Rossby numbers of order unity and solutions 
are presented for arbitrary step height, under the 
assumption that the flow is sufficiently fast to have 
advected downstream all fluid initially above the 
obstacle. For obstacles of very small fractional height, 
nonlinear effects become important for Rossby numbers 
much less than unity. In this limit, as above, the 
restriction to shallow flows can be lifted, and the 
results apply to deep flows provided that H/L « Ro”1. It 
is in this limit that the fractional height and the 
Rossby number combine to give a finite Hide parameter.

It is in Chapter 4 that the effects of viscosity are 
considered. It is shown in §4.4 that viscosity arrests 
the flow at some stage in its evolution, thus some fluid 
still crosses the obstacle in the steady state. These 
solutions suggest that experimental results on separation 
for a similar geometry obtained by Griffiths & Linden 
(1983) can tentatively be ascribed to entrainment and 
expulsion of fluid through vertical shear layers at the 
edge of the topography.

In Chapter 5 we return to the parameter regime of
Chapter 3, in which the advective and topographic
timescales are comparable. The ratio of these effects, 
given by the Hide parameter, is again shown to be crucial 
in determining the flow evolution. In this chapter the 
geometry is somewhat more complicated than that of
Chapter 3, incorporating boundaries. The fluid is
advected along a channel of uniform width. The topography
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consists of a longitudinal step, separating a deep region 
beside one wall from a shallower region beside the other. 
There is a cross-stream perturbation to this step at some 
point along the channel, which, in a similar fashion to 
the topography in Chapters 3 and 4, generates regions of 
nonzero relative vorticity as fluid is advected to a new 
depth. For small values of the Hide parameter, i.e. for 
fast oncoming flows, all fluid is swept downstream, 
leaving a region of positive relative vorticity, in a 
similar way to the fast flows of Chapter 3. For larger 
values of the Hide parameter, however, the topographic 
waves can propagate upstream and a more complicated flow 
results.

Various limiting cases are examined analytically in 
§5.3. The results are compared in §5.4.1 with those found 
numerically using the contour dynamics technique and are 
shown to agree well. In the second part of §5.4 the 
computations are carried out for regions of parameter 
space which are not covered by these theories and 
qualitatively new results are revealed.

The numerical method used in Chapters 3 and 5, to 
follow the evolution of a rotating fluid under both 
topographic and advective influences is the method of 
contour dynamics. This highly efficient technique permits 
the nonlinear development of inviscid, two-dimensional 
flows with bounded patches of uniform vorticity to be 
modelled, allowing potential vorticity to be advected 
with the fluid, as is the case in reality. A further 
advantage of contour dynamics is again due to its roots 
in the equation of conservation of potential vorticity. 
The evolution of the entire flow can be determined by 
following the boundary which divides regions containing 
differing amounts of potential vorticity. Thus the 
two-dimensional problem is reduced to one dimension, 
hence contour dynamics has a great advantage over, for 
example, finite-difference schemes, which compute the 
velocity over a grid covering the entire area of fluid, 
and which must become unreliable as increasingly smaller
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scales develop. The contour dynamics algorithm used 
allows for the development of smaller scales, as the 
resolution along this boundary is automatically adjusted 
at each time step.

The method is based on the fact that the flow field is 
determined solely by the instantaneous vorticity 
distribution and the boundary conditions. All particles 
conserve their potential vorticity, thus if the initial 
vorticity distribution is known, then at later times both 
it and the velocity distribution can be calculated. 
Chapter 2 first presents a review of some of the studies 
by earlier workers involving the method of contour 
dynamics. This provides some basic results and a 
background for the work of this thesis. A full 
description of the method is then given, together with 
some simple examples to illustrate part of the range of 
problems to which it may be applied.
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CHAPTER 2.
THE CONTOUR DYNAMICS METHOD AND SOME APPLICATIONS.
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§2.1 Introduction.

The method of contour dynamics is a relatively new 
numerical technique, based on the nonlinear equation of 
conservation of vorticity. The fact that the velocity 
field can be determined at all times by the instantaneous 
distribution of vorticity is used to reduce the 
two-dimensional task of calculating the velocity field 
throughout the flow to the one-dimensional problem of 
tracking the boundaries between regions of fluid with 
differing vorticity strengths. By concentrating the 
computational effort on this more specific task, much 
unnecessary calculation is avoided and the method allows 
the computation to continue far longer and more cheaply 
than a similar two-dimensional scheme would permit.

A brief introductory review of some of the studies 
carried out using contour dynamics is presented first, in 
order to illustrate some uses of the method, to set a 
background for the work of this thesis, and to provide 
some basic results which act as useful tools in 
understanding more complicated systems.

The method itself is described in detail in §2.2 and in 
§2.3 a few simple examples are given, showing a range of 
flows to which the method may be applied.

From the above description, it is clear that the 
contour dynamics method is particularly suitable for 
flows containing piecewise constant vorticity regions and 
this has led to applications in several fields, including 
that of geophysical fluid dynamics with which this thesis 
is concerned. For example, one major motivation of 
contour dynamical work has been the study of high 
Reynolds number flows. It is widely accepted that such 
flows generally develop coherent vortical structures, 
however the flow is forced. These structures, having 
formed, then dominate the flow evolution. This has led to 
a great deal of contour dynamical work on the dynamics of 
vortex patches and the nonlinear behaviour of the
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boundaries of such regions.
A few fundamental results on vortex patch behaviour are 

outlined below. Various extensions to these results are 
then described. Deem & Zabusky (1978) find a class of 
"finite area vortex regions" (FAVRs) which rotate 
uniformly without change of shape, and similarly a class 
of FAVRs which translate uniformly. They refer to the 
members of these classes as "V-states". The rotating 
V-states are found to have m-fold symmetry; a well-known 
example is the Kirchoff ellipse (see Lamb 1932), shown in 
Figure 2.1, for which m=2. This V-state rotates with 
angular speed u = abcr/(a+b)2, where a and b are the major 
and minor axes respectively and o* is the vorticity 
strength within the ellipse. This example of vortex patch 
behaviour is often used as a test of the accuracy of 
contour dynamical algorithms. The translating V-states 
are pairs of opposite-signed FAVRs, i.e. regions 
containing vorticities of equal magnitude but opposite 
sign, which propagate in a direction perpendicular to the 
line joining their centres, with a speed dependent on the 
distance between them. This class may be regarded as a 
generalisation of the case of a pair of opposite-signed 
point vortices. Saffman & Szeto (1980) add the class of 
uniformly co-rotating V-states, i.e. a pair of FAVRs 
which rotate as a pair without change of shape.

A further investigation of the behaviour of FAVRs is 
carried out by Zabusky, Hughes & Roberts (1979) who 
examine the mutual interaction of such regions. It is 
shown that a pair of similarly-signed circular FAVRs 
rotate about one another, experiencing surface 
deformations which become increasingly more severe with 
decreasing inter-vortical distance. If the vortex regions 
are brought sufficiently close to each other, "arms" of 
vortical fluid are ejected, which then wrap around the 
other region. Figure 2.2 shows a case where the regions 
were initially so close that they have become entirely 
wrapped around one another.

The above basic results form a foundation for further
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Figure 2.1
A steadily rotating elliptical vortex patch at (i) t = 0 

and (ii) t = 1. The strength of the vorticity, <r, is 5 
and the semi-axes are of length .5 and 1. The rotation 
rate is given by go = <rab/(a+b)2.
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Figure 2.2
The mutual interaction of two FAVRs. The patches are 
initially circular, with centres at (±.7,0) and radius 
.5. They are drawn towards one another, eject arms about 
each other and finally become completely wrapped up in 
each other.
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exploration of vortex-patch dynamics. Modifications and 
improvements to the contour dynamics method have allowed 
extended examinations of more complicated flows. One 
aspect of the original method which clearly needed 
immediate improvement was the problem of resolution along 
a contour, i.e. along a boundary of a vortex patch. The 
contour is modelled by a discrete number of points, known 
as "nodes", and as the flow evolves these nodes tend to 
become widely separated along some parts of the contour, 
leading to inaccuracy in the computation. Several 
"renoding" schemes have been devised, wherein the number 
of nodes required to satisfy a pre-set standard of 
accuracy is determined and the optimum positioning for 
them along the contour calculated. Most such schemes use 
the local curvature to determine the number of nodes 
required - regions of higher curvature need a greater 
number of nodes to resolve them accurately. This 
procedure allows the computation to continue longer 
without loss of accuracy.

Having obtained this greater accuracy for longer times, 
it became possible to use the contour dynamics for more 
detailed investigations. With the recognition of the 
basic V-states described above there naturally arises the 
question of stability. This line of enquiry has led to a 
great deal of contour dynamical work. Overman & Zabusky 
(1982) show that if two co-rotating V-states are 
perturbed beyond what the authors call the "point of 
exchange of stability" they will merge to form an 
ellipse, with extending arms of fluid being ejected at 
each end. These arms then "roll-up" at their tips. In the 
same work the "entrainment" of one FAVR by another is 
demonstrated, i.e. the phenomenon where one vorticity 
patch completely surrounds another.

Dritschel (1986) compares the nonlinear evolution of 
various vortex systems with the corresponding known 
linear stability theory. He illustrates the interesting 
point that transition from one equilibrium state to 
another is possible in some cases, for example a
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perturbed ellipse may evolve into two stable vortex 
patches. Moreover this process may be reversed to recover 
the original ellipse. He finds that nonlinear 
instabilities occur in marginally linearly stable flows, 
for example an annulus may split into several distinct 
centres of vorticity, while flows which are linearly 
stable are shown to maintain this stability in the 
nonlinear case. This would seem to suggest that the 
parameter range for nonlinear stability is the same as 
that in the linear case. A further comparison with linear 
theory, this time for an elliptical vortex patch in an 
external straining flow, is carried out by Dritschel 
(1990). Here the effect on a vortex patch of randomly 
distributed distant vortices is modelled by a steady 
external straining flow together with a slight 
disturbance to the vortex boundary, to allow for 
variation in the external flow due to the other vortices. 
The contour dynamical results are compared with linear 
Floquet theory. The results are found to differ both in 
that linearly stable cases are found to be unstable and 
that linearly unstable cases appear to return recurrently 
close to the initial state.

The basic V-state results are extended by Polvani, 
Zabusky & Flierl (1989) to consider a two-layer fluid, as 
a first step towards geophysically relevant 
three-dimensionality. They examine the case wherein the 
lower layer has constant potential vorticity and find 
that the upper layer can be treated in a similar way to 
the one-layer case, but with a modification in the 
velocity calculation. The results show that in general 
the V-states found in the upper layer are similar to 
those for the one-layer case, except in the "equivalent 
barotropic" case, where the depth of the lower layer 
tends to infinity. This case is referred to in more 
detail in Chapter 3 of this thesis, which considers 
the similar case of a two-layer fluid with an infinitely 
deep upper layer.

Pullin & Jacobs (1986) present a further extension to
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the fundamental studies of FAVRs, relaxing the somewhat 
restrictive condition of entirely uniform vorticity 
patches, by allowing nested contours. They consider pairs 
of counter-rotating elliptical vortices, each consisting 
of 4 nested contours, in an external strain field. Thus 
the evolution of each contour is determined by three 
agents: the local strain from the other vortices; the
amplification of the vorticity by the external strain and 
the self-induction of the vortex. Their results show an 
intense rotating core developing in each vortex, while 
arms of vortical fluid spiral outward. If the external 
strain is strong, local instabilities develop on these 
arms and roll-up occurs at the tips.

A major departure from the original idea of an isolated 
patch of uniform vorticity is the inclusion of some 
external geometry in the flow. Much work has been carried 
out on flows adjacent to a wall. Pullin (1981) examines 
the effect of a finite amplitude sinusoidal disturbance 
to a layer of constant vorticity, beside a wall. The 
linearised solution, due to Rayleigh, shows a neutrally 
stable Kelvin-Helmholtz wave on the contour. However, as 
the disturbance amplitude is increased, it is shown that 
wedges of irrotational fluid may be entrained by the 
layer, in the valleys. This occurs for a broad range of 
wavelengths and with no preferred layer width. It happens 
if the lower part of the valley crosses the critical 
layer of the shear layer and is therefore convected 
against the direction of propagation of the wave, causing 
"overturning".

The periodicity of the above work is relaxed by Stern & 
Pratt (1985), with reference to coastal flows. They 
examine the evolution of the front, i.e. the bounding 
contour, as it develops from a given initial position. In 
particular, they study the development of the leading 
edge of an "intrusion" of constant vorticity, i.e. a 
layer which does not extend to infinity in the positive 
longshore direction. Longwave theory predicts a 
steepening of this leading edge, but it is shown that the
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shortwave effects act as a balance to this process, 
leading to an equilibrium state. Lee waves are seen to 
develop behind the leading edge and "backward breaking" 
occurs, i.e. the crest at the leading edge folds back on 
itself, if the initial slope is above a suggested 
critical value.

A feature of such coastal currents in the ocean is a 
plume of coastal water extending far away from the shore. 
Stern (1986) isolates the dominant dynamics involved in 
the production of such features using contour dynamics, 
with an intrusive wall layer. The plumes are successfully 
generated and in some cases are seen to "pinch-off" from 
the rest of the rotational fluid. This pinching-off 
process is examined in more detail by Pratt & Stern 
(1986), with reference to the warm/cold core rings formed 
by the Gulf Stream. In their computations, the front 
initially contains one or more meanders, developing in 
some cases into elliptical eddies which are then pinched 
off. It is shown that wave dispersion acts to inhibit the 
pinching-off process, whilst the steepening of the 
meander acts to accelerate it. Interestingly, 
pinching-off may be more likely if a small wavelength 
mode is present, as this acts to inhibit the dispersion 
process.

The study of instabilities on the boundary of a 
constant vorticity layer by a wall has applications in 
the investigation of the onset of turbulence in high 
Reynolds number flows. This is the motivation for the 
contour dynamical work of Stern (1989), who considers 
such a layer, perturbed by a small patch of irrotational 
fluid immediately beside the wall, wholly contained in 
the shear layer, which is otherwise stable. It is shown 
that a strong instability can develop and that this patch 
of irrotational fluid may be brought out, into contact 
with the external free stream, while high velocity fluid 
from the outer part of the shear layer is brought close 
to the wall.

An analogy of the work mentioned earlier using nested
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contours in FAVRs is carried out by Jacobs & Pullin 
(1989). They model a flow with several parallel nested
uniform vorticity regions, of infinite length, in an
external uniform strain field. Their results show initial
perturbations leading to the formation of discrete cores 
of vorticity within the layer, which wrap around each 
other in a similar way to the basic FAVRs shown in Figure 
2 .2 .

A ubiquitous problem occurring in contour dynamical 
simulations is that of "filamentation". In some 
circumstances a small instability on a contour may 
develop into an extremely long, thin strand of vorticity, 
which continues to grow and therefore demand more nodes 
than can eventually be provided. The computation 
therefore has to be terminated shortly after the onset of 
this phenomenon. Investigations of this process have been 
carried out, for example Pullin, Jacobs, Grimshaw &
Saffman (1989) discuss the filamentation of spatially 
periodic waves on vortex layers of finite thickness and 
suggest possible mechanisms which may give rise to the 
process. One way of dealing with the phenomenon of 
filamentation, devised by Dritschel (see Dritschel 1988, 
1989) is to truncate the contour when the width of the 
filament is less than a pre-set value. This procedure is 
one aspect of "contour surgery", a set of such contour 
dynamical modifications. Another is a mechanism which 
allows the merging of distinct contours containing the 
same vorticity when they come sufficiently close to one 
another. These devices allow the computation to continue 
longer, by removing the increasingly small spatial 
structures which otherwise tend to develop. One feature 
of contour surgery which is used in this thesis is the 
insertion and removal of "corners" along the contour, 
which are required when the angle of the contour is less 
than n/2 at a node. The renoding scheme used herein is 
also due to Dritschel (see Dritschel 1988) and uses a 
node density function which is a nonlocal function of 
curvature.
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Clearly a weakness of the contour dynamics method is 
the restriction to inviscid flows. In the field of 
geophysical fluid dynamics this is not a great 
disadvantage, since a lot of the flows considered may be 
taken as effectively inviscid. However, the restriction 
has led to some disagreement over the validity of the 
method for application to high Reynolds number flows. The 
problem of viscosity is approached by Zabusky & Overman 
(1983), who introduce "contour regularization" 
procedures, to represent aspects of dissipative or 
dispersive processes. These procedures inhibit the 
development of singularities on the contour, allowing the 
computation to continue longer.

As well as the major fields of contour dynamical work 
mentioned above, i.e. V-state stability studies and shear 
layer work, the contour dynamical method has applications 
to a wide range of flows. An example of a quite different 
application of the method is given by Hermann, Rhines & 
Johnson (1989). In this work the well-known process of 
linear Rossby adjustment is extended to include nonlinear 
advective effects. Fluid in a channel, with an initial 
discontinuity in free-surface height, adjusts 
geostrophically at first, producing an antisymmetric pair 
of boundary currents travelling along the sidewalls. This 
is taken as the initial state for the contour dynamical 
computation. It is shown that on the longer, advective 
timescale, which this method is able to model, fluid 
travels downstream along both walls and eventually all 
fluid is washed downstream, in complete contrast to the 
linear solution.

Another important geophysical application of the 
contour dynamics method is made by Kozlov (1983), in an 
investigation of the effects that an underwater obstacle 
has on the uniform flow of a rapidly rotating fluid. The 
evolution of the vorticity patches generated by 
vortex-stretching and compression is modelled using a 
contour dynamical algorithm. It is with geophysical 
applications of contour dynamics that this thesis is
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concerned and in particular with the effects of 
topography on rotating flows. An extension to the work of 
Kozlov (1983) is carried out in Chapter 3, which examines 
the effects of allowing a free surface and a different 
oncoming flow, as well as continuing the calculations 
longer to explore the possible final steady states. In 
Chapter 5, flow over topography in a channel is analysed 
and behaviour similar to hydraulic control behaviour is 
revealed. In both these contour dynamics chapters the 
results of the workers cited in this section prove 
valuable in interpreting and understanding the flows 
under consideration.
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§2.2 The contour dynamics method.

As mentioned in §2.1, this method is particularly 
suitable for flows containing discrete regions of uniform 
potential vorticity. For such a flow the equation of 
conservation of potential vorticity, equation (1.7), 
ensures that within these regions the fluid retains this 
potential vorticity for all time. The relative vorticity 
of the fluid may be altered, however, by the stretching 
and compression of fluid columns, as described in Chapter 
1. From the value of the relative vorticity, the stream 
function for the flow and hence the horizontal velocities 
may be calculated. This is the basis for the contour 
dynamics technique.

If the surface displacement, v(x,y), and the 
topography, h (x,y), are taken to be small, then equation 
(1.7) may be linearised to give

From equation (1.5) it is clear that a stream function 
for the flow, ¥(x,y), may be introduced, given by 4^-u, 
9 = v. Equations (1.2), (1.5) then give the pressure and
the surface displacement in terms of ¥ as

Nondimensionalising equation (2.2.1) using the following 
scalings

x = Lx/ ; y = Ly' ; ¥ = UL¥' ; h = 5Hh ' ,
B B

and dropping the primes gives

(2.2.1)

(fp)"1 Vp(x,y) = gf-1 Vtj(x ,y ) = (x,y). (2.2.2)
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V2* - (L/a)2 $ + ShB 1 = 0, (2.2.3)

where S = 6/Ro is the Hide parameter which was introduced 
in Chapter 1 and which measures the ratio of topographic 
to advective effects. It will be shown throughout this 
thesis that this parameter is of fundamental importance 
in the evolution of rotating flows over topography.

Consider a flow containing j discrete regions, A J# of 
uniform initial potential vorticity, fl . The contribution 
to the stream function from region is given by

V2* - (L/a)2 * + Sh = n . (2.2.4)

Clearly a nonzero value for h (x,y) may be taken toBJ
simply alter the magnitude of the right hand side of 
equation (2.2.4). In the rigid lid limit, which is used 
throughout §2.3 and Chapter 5, the nondimensional Rossby 
radius, a/L, is taken as infinitely large and hence the 
second term of equation (2.2.4) vanishes in this limit, 
leaving Poisson's equation

V2* = -Sh + n . (2.2.5)J Bj  j

In Chapter 3, a free surface is allowed and the equation 
for ¥ (x,y) is the Helmholtz equation

V2* - (L/a)2* = -Sh + Qj. (2.2.6)

Equations (2.2.5), (2.2.6) may be solved in terms of
Green's functions and hence the solutions may be written 
respectively as
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* = p j ( x , y )  = (27r)'1E ( n j- S h Bj) | J A  log r d x od y o , ( 2 . 2 . 7 a )  

'*'=E4,j ( x , y ) = - ( 2 7 T ) ‘1E ( n j- S h B j ) J J A  K 0 ( r L / a ) d x Qd y 0 . ( 2 . 2 . 7 b )

where r2 = (x-x )2 + (y-y )2 and K is the modified
Bessel function of zeroth order. Thus it can be seen that
the effect of a patch of vorticity decays exponentially 
with distance if a free surface is allowed, whereas the 
decay is only logarithmic if the rigid lid approximation 
is made. This point is explored in greater detail in
Chapter 3.

The respective horizontal velocities u(x,y) may be
found by differentiation of equations (2.2.7) and the use 
of Green1s theorem to b e :

u(x,y) = (2n)‘1E(n -Sh ) f log r(dx ,dy ), (2.2.8a)
j J BJ J SA

H(x -Y) = -(27i)'IE(£l -Sh ) f K (rL/a)(dx ,dy ), (2.2.8b)j J BJ JaA ° o o

where dA^ is the boundary of region . It is these 
integrals which are evaluated by the contour dynamics 
program. The velocity at each node along the boundary 
having been thus calculated, the new nodal positions can 
then be found, by integrating

* f = u  ; £ . v .  ( 2 . 2 . 9 )

The nodes are re-positioned and the new velocities 
calculated. In this way the entire contour is advected, 
with no need to calculate the rest of the velocity field.

In order to evaluate the integrals in equation (2.2.8), 
the sections of contour between each pair of nodes are 
approximated by cubics. The contributions to the velocity 
integral for a given node from each of these small 
sections are calculated separately and the results are
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added to give the total velocity at that node. The cubic 
approximation to a contour-section is given by

7)*(p) = o^p + ^ p 2 + y tp 3, (2.2.10)

where p is measured along the straight line joining node 
xt to x (see Figure 2.3). The cubic coefficients a

are calculated by insisting on continuity of 
curvature at each end of the section. The curvature at a 
node is computed by passing a circle through the node and 
its two neighbouring nodes.

Thus the velocity contribution for node k from the
section on contour j starting at node i is (in the rigid
lid case)

r ‘“d’W V  = (2n) (n j_ShBj)J log rkdV  (2.2.11)
— i

where r2 = (xk~ x q)2 + (yk~ yQ )2 and

xo = x i + Pa T  V'Cp)^ ; 7 0 = 7 ; +  Pb, + D * ( P ) V  

where ( a . b )  = (x - x .  y - y ) .  Rewriting in termsi ' i v l+i l ' 1 i+i 1 i ' J
Of p,

d “ , (x k /7 k ) = (2ir)', ( n j- S h B j ) J l o g ^ x k- ( x i+  p a (- ^ ( p j b j  )J

+ (7k- (7,+ Pb,+ / ( p ^ ) ) 2] 1'2^ , -  gp bj»bt+ ^a,}dp-

For the rigid lid case, the above may be expanded for 
small 7j* and the integral consisting of the first two 
terms solved exactly (see Dritschel (1988)). For the free
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Figure 2.3
An internodal contour section. The section between node 

*| = and node xj+i = (X1 + 1/Y1 + 1) is shown. The
straight line joining the two nodes is given by (af/b )
and p, varying between 0 and 1, is measured along this
line. The cubic by which the contour section is
approximated is given by i?*(p) .
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surface case and for the case in Chapter 5, wherein the 
fact that the flow is in a channel leads to a more 
complicated Green's function in spite of the rigid lid 
approximation, the corresponding integrals must be 
evaluated numerically. This is done using the Lobatto 
approximation (see Abramowitz & Stegun). In this case 
several "sub-nodes" along the cubic are used. The 
integrand is evaluated at each sub-node and the weighted 
results are added.

If the node in question, node k, lies at one end of the 
section along which the integral is being evaluated, i.e 
k = i or k = i + 1, as will occur twice for each node, 
the singularity in the integrand is dealt with by 
approximating the contour-section by a straight line and 
the integrand by a simple log in all cases, and by 
evaluating the integral exactly. This is, in general, the 
largest contribution to the nodal velocity.

In this way the velocities at all nodes are calculated. 
The new nodal positions are then computed from equation 
(2.2.9) by a 4th order Runge-Kutta scheme. Before the
next set of velocities are calculated, however, the
resolution must be checked. Stretches of contour with 
high curvature require a larger number of nodes to 
capture their evolution, which has led in the past to 
several renoding schemes based on the local curvature of 
the contour. However, as Dritschel (1988) points out,
nodes near to regions of high curvature may also 
experience rapid change, although their local curvature 
may not necessarily be high. For this reason, Dritschel 
suggests a more complicated "node density function", 
which is a nonlocal function of curvature. It is this 
renoding scheme that is used throughout this thesis. The 
node density may be adjusted, i.e. the standard of the 
resolution may be set, by varying the parameters of the 
density function. Both the node density parameters and 
the timestep have been varied to check the contour
dynamical results presented in this thesis.

Due to the cubic approximation to the contour and the
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condition of continuity of curvature at the nodes, 
"corners11 have to be inserted and removed along the 
contour if a discontinuity of curvature is required, as 
is the case in Chapter 5. Corners are inserted if the 
nodal angle becomes more acute than n/2. In this case the 
contour-sections adjacent to the corner node are 
approximated by straight lines. This surgical technique 
is due to Dritschel.
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§2.3 Some simple examples.

In this section some simple flows containing particular 
points of interest are modelled using the contour 
dynamics method, to illustrate a sample of the range of 
problems for which the technique is suitable.

The first example demonstrates the way in which sources 
and sinks within a rotating fluid may be incorporated 
into the contour dynamical model. The simple but 
illustrative case of a flow containing one source and one 
sink is considered. The contour whose development is 
followed by the computation is the boundary of the fluid 
which enters at the source. This fluid has zero potential 
vorticity, originating from a non-rotating system, and 
therefore on entering a system which is rotating with 
speed f/2 it gains negative relative vorticity. Thus a 
patch of nonzero relative vorticity spreads outward from 
the source and it is the evolution of this patch which is 
traced by the calculation. As this patch approaches the 
sink, a cusp forms on the contour and clearly the flow 
contains a singularity, as the velocity at the sink is 
infinitely large. A truncation technique is demonstrated 
which allows the computation to continue in spite of this 
singularity.

The next question considered is the effect that a 
sidewall has on the development of a patch of relative 
vorticity. The presence of the wall may be modelled by 
the creation of an image patch containing vorticity of 
equal magnitude but opposite sign. The two FAVRs then 
translate in the manner of the vortex pairs described by 
Deem & Zabusky (1978) who find the class of pairs of 
FAVRs which translate uniformly without change of shape, 
i.e. the class of translating V-states. Their results 
apply to flows containing a wall and are extended by 
Pierrehumbert (1980) who considers the limiting case 
wherein the patch is actually touching the wall. In this 
work we restrict ourselves to this latter case, but
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examine the development of a patch which is not of the 
steady shape found by Pierrehumbert. The initial shapes 
we consider are semi-ellipses of various aspect ratios, 
which are shown to lead to qualitatively different
results.

The points of interest investigated in the first two 
examples are combined in the third, in which a flow 
containing both a source and a sidewall is modelled. 
Again the boundary of the growing patch of nonzero 
relative vorticity which emanates from the source is 
tracked, but in this case the competing effects of the 
radially-outward source flow and the advection by the 
image patch combine to produce a new and fascinating 
result.

§2.3.1 A source-sink flow.

We consider the flow relative to axes Oxy, with the 
source at the origin (0,0) and the sink at the point
(1,0). By the equation of conservation of potential
vorticity, equation (1.7), it is clear that the relative 
vorticity of the fluid as it enters at the source is 
given by

C = -f. (2.3.1)

Nondimensionalising using the following scalings,

x' = Lx, y' ~ Ly, u' = Uu, v' = Uv,

where L is the distance between the source and the sink 
and UL is the inward flux at the source, and dropping the 
primes gives
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C = Ro'\ (2.3.2)

where Ro = U/fL is a Rossby number for the flow.
Thus the evolution of the flow may be considered in 

terms of the relative importance of rotational and 
advective effects. If the Rossby number is large,
advection dominates and the flow is similar to the
non-rotating case. If the Rossby number is smaller, 
however, the effects of rotation are felt. In the absence 
of the sink the patch spreads radially from the source, 
remaining circular and rotating in a clockwise direction. 
The presence of the sink, however, causes the contour to 
deform as it rotates.

To incorporate the effects of the source and the sink 
into the contour dynamical model, their contributions to 
the nodal velocities are added after the contribution 
from the patch itself has been calculated. The velocities
due to the source and sink are simply given by

u(x,y) = — -— (x(l x) + y )—  (2.3.3a)
(x2 + y ) ((x-1) + y )

v(x,y) = —  ------y ^ -x)—  ---— . (2.3.3b)
(x2 + y ) ((x-1) + y2)

The results are shown in Figure 2.4. In Figure 2.4(a) Ro 
= .5 The fluid spreads outward asymmetrically from the
source and the contour develops a cusp as it approaches 
the sink. The effects of rotation are scarcely felt in 
this regime. The computation had to be terminated at this 
stage due to the singularity at the sink. In Figure 
2.4(b) a truncation technique is illustrated which allows 
the computation to continue by distributing the sink. 
Nodes which are carried within a certain cut-off distance 
from the sink are repositioned at the cut-off distance. 
In Figure 2.4(b)(i) the cut-off distance is .2 and the 
first repositioning has been carried out, giving the
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Figure 2.4
The source-sink results, (a) Ro = .5. A cusp forms on

the contour along the x-axis as the patch approaches the 
sink at (1,0). (b) The contour is truncated when it is
closer than .2 to the sink. (i) After the first 
repositioning, (ii) The contour surrounds the sink and 
continues to spread outward from the source.
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contour a blunt appearance. Figure 2.4(b)(ii) shows the 
result at a later time. The contour has virtually 
encircled the sink, while the patch continues to spread 
slowly outwards from the source.

A smaller Rossby number is used in Figure 2.5, in an 
attempt to capture some rotational effects. Here Ro = .1. 
The cusp is no longer directed along the x-axis, but 
deflected by the clockwise rotation of the patch. Smaller 
values of the Rossby number are found to lead to 
instabilities along the contour, opening up a new line of 
investigation which is not pursued here.

§2.3.2 The effect of a sidewall.

In this subsection we extend the work of Pierrehumbert 
(1980) to consider the evolution of a semi-elliptical 
patch of relative vorticity adjacent to a sidewall, which 
is not a member of the class of uniformly translating 
V-states. The effect of the wall may be captured by the 
creation of an image patch of vorticity, of the same 
shape but containing vorticity of opposite sign. Thus in 
this problem the nodal velocities are calculated by 
integrating along two contours, bounding two regions of 
relative vorticity.

The results are shown in Figure 2.6. The aspect ratio 
of the initial semi-ellipse was taken first as 3, as 
shown in Figure 2.6(a). As the patch translates along the 
wall at y = 0 it is deformed as the upper part rotates in 
an anticlockwise direction. The patch remains attached to 
the wall at one point only and a lengthening thread joins 
this point to the main part of the patch which continues 
to rotate.

In Figure 2.6(b) the initial aspect ratio is 1/4 and a 
completely different development is shown. As the patch 
translates along the wall the fluid builds up in the 
front section. This shape of this section approaches that 
of the steady patch given by Pierrehumbert (1980),
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Figure 2.5
Ro = .1. The cusp no longer lies along the x-axis but is 
deflected by the clockwise rotation of the patch.
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Figure 2.6
The results for a patch by a wall, (a) The initial 

aspect ratio is 3. The patch translates along the wall in 
the positive x-direction, rotating as it does so, and 
remaining attached to the wall by only a thinning thread, 
(b) The initial aspect ratio is .25. The front part of 
the patch develops into a shape close to that of the 
steadily translating patch, leaving a trail along the 
wall. This trail in turn builds up at the front.
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leaving a narrow trail behind it. This trail in turn 
builds up at the front, suggesting that the patch divides 
itself into ever-smaller versions of the steadily 
translating case.

§2.3.3 A source at a wall.

The two previous examples are combined in this 
subsection. Here a flow containing a source at the origin 
(0,0) and a wall along the x-axis is modelled. As in 
§2.3.2 an image patch is created and the flow 
contribution due to the source is simply added as in 
§2.3.1. The result is shown in Figure 2.7. As the patch 
grows it begins to translate, in the negative x direction 
this time as the vorticity it contains is negative. 
Initially the patch is nearly semi-circular as the fluid 
first leaves the source. As it grows, however, an inward 
cusp develops towards the rear and the front forms into 
the steady shape given by Pierrehumbert (1980). At later 
times, as this shape moves off, a further build-up of 
fluid occurs and it appears that a stream of such 
steadily translating shapes is formed as the fluid 
continues to emanate from the source.
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Figure 2.7

The source by a wall. The patch is initially 
semi-circular, but develops an inward cusp and separates 
into two regions, as it translates along the wall in the 
negative x-direction. The eddy to the left resembles the 
steadily translating shape, whilst behind this the fluid 
builds up again as more fluid leaves the source.
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CHAPTER 3.
TOPOGRAPHIC GENERATION, TRAPPING AND CAPTURE OF 

FREE-SURFACE EDDIES
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§3.1.Introduction.

In this chapter attention is focussed on the 
modifications to the uniform flow of a rapidly rotating 
fluid caused by an isolated, submerged, flat-topped 
cylindrical obstacle, with particular regard to free 
surface effects. As mentioned in Chapter 1, it was the 
experiments of Taylor (1923) which first demonstrated the 
"Taylor column", and thus initiated a great deal of 
investigation into this phenomenon. Jacobs (1964) gives a 
linear theory, in the limit of vanishing viscosity, 
necessary to obtain a unique steady solution, and finds 
the required stagnant region surrounded by 
two-dimensional flow. His results, however, do not show 
the asymmetry in the flow seen in the experiments of Hide 
& Ibbetson (1966). Ingersoll (1969) considers the 
nonlinear conservation of potential vorticity, obtaining 
a unique solution by formulating the problem with 
viscosity and then letting the viscosity tend to zero. He 
shows that fluid within a region of closed streamlines 
must be motionless due to Ekman pumping, and uses this 
extra condition to find steady solutions to the nonlinear 
problem in the geostrophic limit. He finds the shape and 
position of a stagnant region trapped above the cylinder 
and asymmetric flow outside this region, when the Hide 
parameter, S = S/Ro, exceeds some critical value. This 
value is found for arbitrary axisymmetric topography by 
Huppert (1975), for both the homogeneous and stratified 
cases, as a function of the shape of the topography.

The evolution of such a column from the starting flow 
is difficult to obtain due to the presence of the closed 
streamlines. Huppert & Bryan (1976) integrate numerically 
the nonlinear time-dependent equations of motion, for the 
stratified case, and find that for values of S exceeding 
the critical value the cyclonic vortex interacts with the 
anticyclonic vortex above the topography and remains in 
the vicinity of the obstacle. Possible steady positions
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and shapes for such trapped cyclonic vortices are found 
by Johnson (1978a,b) by the use of both a variational 
principle and a gravitational analogy. The trapped vortex 
is considered further by James (1980), for a sloping 
axisymmetric obstacle. The nonlinear equations, including 
the effects of Ekman boundary layers, are integrated 
numerically and in particular the drag and lift forces 
found. It is shown that the drag force is initially 
larger for the case of the partially trapped vortex and 
that it oscillates as the highly deformed vortex cycles 
the topography, finally dying away as the trapped vortex 
is spun up by Ekman pumping.

Johnson (1984) considers the initial-value problem 
analytically by introducing the topographic 
vortex-stretching timescale, i.e. the time taken for a 
topographic wave (see Chapter 1) to cycle around the 
obstacle. The vortex-stretching time is taken to be long 
compared with the inertial period and short compared with 
the advection time. The resulting viscous equations are 
then solved for the case of axisymmetric obstacles, using 
the Laplace transform. The results for a right circular 
cylinder show a topographic Rossby wave cycling clockwise 
around the obstacle, decaying on the viscous spin-up time 
or continuing indefinitely in the absence of viscosity. 
The drag and lift show the decaying oscillations of the 
numerical computations of James (1980).

In this chapter we assume the ratio of the topographic 
to advective timescales, S, to be order unity. 
Information is carried through a combination of 
topographic wave propagation and particle advection, with 
the resulting effect that the region of fluid originally 
above the obstacle becomes deformed, in agreement with 
James (1980). In some cases part of this fluid remains 
trapped above the obstacle, pinched off from the rest 
which is advected away downstream.

An important aspect of this chapter is the inclusion of 
free surface effects. These effects become significant 
over scales greater than or of the order of the Rossby
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1/2radius of deformation, a = (g'H) /f, where H is the
undisturbed depth of the fluid, f is twice the background 
rotation rate and g' is gravitational acceleration. The 
fluid may be regarded as two-layered, in which case g7 
is the modified gravitational acceleration, and we 
consider the evolution of the lower layer, with an 
infinitely deep, passive upper layer. This is in contrast 
to the "equivalent barotropic" case of Polvani, Zabusky & 
Flierl (1989), who consider an infinitely deep, passive 
lower layer. In both cases, however, the governing 
equation in the active layer is the Helmholtz equation 
and comparisons may be drawn in the results.

If the modified gravitational acceleration is used, the 
Rossby radius of deformation is greatly reduced, which 
leads to the basic difference in the flow, due to the 
free surface. This lies in the decay of vortex influence 
- algebraic in flows with the rigid lid approximation but 
exponential in the free surface case. Hence the influence 
of a patch of vorticity is far more localised in the free 
surface case.

The inviscid nonlinear problem is integrated 
numerically using contour dynamics. As mentioned in 
Chapter 2, the use of contour dynamics in an 
investigation of the generation of vortices in a uniform 
flow over a cylindrical underwater obstacle was first 
carried out by Kozlov (1983), who points out the 
possibility of some fluid remaining above the obstacle. 
His work is extended here to consider both sheared 
oncoming flow and the effect of a free surface, and hence 
the dependence of the flow evolution on the Rossby radius 
of deformation.

Section 3.2 gives the equations of motion and a brief 
description of the necessary modifications to the contour 
dynamics method. The computation was carried out for 
various parameter values and §3.3 discusses the resulting 
generation of vortices. Several figures are shown, 
illustrating the various regimes: the cyclonic vortex is 
shown in "fast" cases where it is swept downstream and
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"slow" cases where it remains partially covering the 
topography, becoming highly stretched. It is shown that 
as the Rossby radius decreases the fluid is more likely 
to be swept downstream. This behaviour is investigated by 
examining the varying contribution to the flow from the 
topography as the Rossby radius is altered. An analytical 
approximation to the path of the shed vortex in the 
"fast" case is shown to agree well with the numerical 
results.

Section 3.4 considers first the trapping of fluid 
originally above the topography, which is shown to occur 
for sufficiently large values of S. Secondly, the 
possibility of the capture of fluid initially upstream of 
the topography is examined, under the assumption that all 
fluid initially over the topography has been swept off. 
The interaction of an initially upstream vortex with the 
topography is modelled and it is shown that fluid may be 
captured in this w ay, for sufficiently large values of S, 
provided that the upstream vortex is negative, i.e. has 
the same sign as the topographic vortex with which it 
interacts. If the upstream vortex is positive, the two 
vortices behave in a similar way to the translating 
vortex pairs of Deem & Zabusky (1978) and the free vortex 
is carried around the obstacle before being advected away 
downstream. The path of the oncoming vortex is again 
predicted analytically.

In §3.5 the problem is extended to examine the case of 
an oncoming shear flow. The method used is unchanged, and 
the main difference seen in the results is that two 
cyclonic vortices are now shed. The nonlinear steady 
problem is considered analytically by Johnson (1983) for 
both positive and negative oncoming shears, under the 
assumption that some fluid originating over the obstacle 
is retained there, an assumption which is shown here to 
be justified. The steady flow with negative shear is 
found by Johnson to be set up on the advective timescale, 
and consists of an elliptical stagnant Taylor column, 
elongated across the stream, partially covering the
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topography, surrounded by constant potential vorticity 
flow. There are no closed streamlines outside the 
stagnant region, thus the Ingersoll (1969) criterion 
(that, in the limit of vanishing viscosity, fluid within 
closed streamlines is spun up by Ekman pumping) is not 
expected to alter the flow on the longer viscous 
timescale. For flows with positive shear the Taylor 
column is again found by Johnson to be elliptical, this 
time extended in the streamwise direction. In this case, 
however, there are closed streamlines outside the column 
and therefore it is expected that on the viscous 
timescale the flow would be significantly altered by 
Ekman pumping. For both positive and negative shears the 
current numerical results agree well with the steady 
solutions of Johnson (1983), thus in this case the 
contour dynamics method enables us to see the complete 
development of a flow from rest to its final steady 
state. The paths of the shed vortices are again 
calculated.

Section 3.6 summarises the results and suggests future 
work.
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§3.2.The governing equations and modifications to the 
contour dynamics method.

The governing equation is the geostrophic equation for 
conservation of potential vorticity, equation (1.7), 
which may be linearised as in Chapter 2 to give equation 
(2.2.6).

For a flat-topped obstacle and initially irrotational 
flow the initial potential vorticity distribution is 
given by

q  _ f S above the topography ,3 2 1)
\ 0 away from the topography * *

Consider a cylindrical obstacle, radius L (i.e. 
nondimensional radius 1) as shown (dashed) in Figure 3.1. 
When oncoming flow with zero potential vorticity is 
introduced each fluid particle is advected downstream 
and two non-zero vorticity areas are produced, as some 
fluid moves up onto the obstacle and some moves off. 
These areas are labelled A^ and A2 respectively in Figure 
3.1(a). As 5, the fractional height of the obstacle, is 
small, the size of the two areas is the same, and they 
contain vorticity of equal magnitude but opposite sign. 
Neither the fluid contained in area A nor that in area3
A4 have gained or lost any vorticity. Thus the flow is 
determined by the contributions from A j and A2 together 
with the uniform oncoming stream. The contribution from 
Ai is given by :

V2* - ty/a2 = -S, (3.2.2)

where a is the nondimensional Rossby radius of 
deformation, scaled on L. Similarly the contribution from 
the second area is given by:
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Figure 3.1.
(a)The various regions of the flow. In area A1 fluid has 
moved onto the obstacle, in area A2 fluid has moved off, 
in A3 it has remained on and in A4 it has remained off.
(b)The topographic contour bounds the region of vertical 
shading and the advected contour bounds that of 
horizontal shading.
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V2* - ¥/a2 = S# (3.2.3)

Thus, as mentioned in Chapter 2, the stream function is 
given by:

*(x,y)
J = 1 , 2

Kc
Aj
v (x -xq)2+ (y-y0)2 dx dy , o zo' (3.2.4)

where fi = ±S and K is the zeroth order modified Bessel J o
function, which is the Green's function for equations 
(3.2.2) and (3.2.3). Thus the effect of allowing a free 
surface, i.e. a finite Rossby radius, is to alter the 
Green's function from being logarithmic to being 
exponential. The velocities are given by:

u(x'y)=S ?  [ Ko
j = l , 2 5 A j

W  (x—X J 2+ (y-yJ dx , o' (3.2.5a)

j = l , 2 J d A  J

W  (x-:(x-x )2+ (y-y )2 a o ' o dyQ , (3.2.5b)

where SA^ is the boundary of the region A^. Thus the 
problem of determining the flow field is reduced to 
evaluating the line integrals (3.2.5). However, 
integrating around 3At and 5A2 and adding the result is 
equivalent to integrating around the edge of the 
topography, shaded vertically in Figure 3.1(b), and 
around the curve bounding the region of fluid originally 
over the topography, shaded horizontally. The first of 
these curves, the so-called "topographic contour", is 
fixed and the contribution from it can be calculated 
analytically. The second curve, the "advected contour", 
is a material line and its contribution must be computed 
numerically.
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The topographic contribution follows from direct 
solution of (3.2.2) as:

a 2 - a I o ( r / a ) K 1 ( l / a ) r < 1
tf(r) = S< (3.2.6)

aI1(l/a)KQ (r/a) r > 1

where r is the distance from the centre of the 
topography. Thus the velocity contribution from this 
contour is:

The contribution from the advected contour is found 
numerically by calculating the integrals given in 
equation (3.2.5). In this case, as described in Chapter 
2, the integrand is evaluated using the Lobatto formula. 
Again the contour is split into small sections and the 
contributions from each section calculated separately. 
Renoding is used throughout to maintain resolution. The 
contribution to the velocity from the uniform stream is 
then added. The velocity at every node along the advected 
contour is calculated in this way. It is then moved 
accordingly and the new velocities calculated.

(u , v ) = S/r-
I1(r/a) ^ (1/a) (-y,x) 
LIj(1/a) Kj(r/a) (-y,x)

r < 1
r > 1

(3.2.7)
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§3.3.Generation of eddies.

§3.3.1 The analytical solution for fast flows.

For sufficiently strong oncoming flows or sufficiently 
low obstacles, i.e. for small values of S, all fluid 
above the obstacle is swept off downstream. The resulting 
vorticity distribution is steady and given by equation
(3.2.7). An anticyclonic vortex occurs above the 
obstacle, constantly being replenished by new fluid. The 
nondimensional surface displacement due to this 
topographic vortex is axisymmetric and given by

where ¥ is given by equation (3.2.6). This is shown in 
Figure 3.2(a) for a = 0.1, 1.0 and 10.0. The latter is 
clearly similar to the rigid lid case, a «, where the 
surface cannot deform at all. Hence blocking is more 
likely in this case than in the other limit, a -» 0, in 
which the surface deforms to a shape very similar to the 
step profile, and fluid is not inhibited from passing 
over the topography. For sufficiently small a, a ~ Ro << 
1, three-dimensional effects become important. As the 
vorticity produced by compression of the fluid filaments 
is determined entirely by the local depth, the 
topographically generated vorticity is uniform for the 
rigid lid case, but non-uniform for finite values of a 
when the amount by which the filaments are compressed 
varies with position. The relative vorticity, C, is given

n(r) = S _1¥(r)/a2, (3.3.1)

by

C = v - u = S/a*x y
r I0(r/a) Kt(l/a) 
k I1(l/a) Ko(r/a)

r < 1
r > 1

(3.3.2)
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and is shown in Figure 3.2(b). As a decreases the 
vorticity is confined to a thin region around the edge of 
the obstacle, where the initial compression takes place. 
The effect of this non-uniform vorticity distribution is 
seen in Figure 3.2(c), which shows the 
topographically-induced velocity in the azimuthal
direction, given by equation (3.2.7) to be

V(r) = S
r Ij(r/a) Ki(l/a) 
k 1 ^ 1  /a) K1 (r/a)

r < 1 
r > 1

(3.3.3)

As a -> w this becomes

V(r) = S
r r/2 r < 1
l/2r r > 1

(3.3.4)

Thus in the rigid lid case the fluid rotates as a solid 
body for r < 1, but decreasing the value of a causes the 
fluid to become virtually stagnant near the origin, the 
velocity being confined to a thin layer about r = 1, as 
is shown by considering equation (3.3.3) as a -> 0:

V(r) = S a/2 e~ I r 1 1/a r 1/2. (3.3.5)
Far upstream the flow is taken to be parallel with zero 

potential vorticity. Thus the streamfunction upstream 
satisfies

$ - $/a2 = 0 ,  (3.3.6)
yy

and hence the upstream velocity field can be written in 
general as

Uo = -¥ = U cosh (y/a) + /3a sinh(y/a). (3.3.7)
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The first term in (3.3.7) gives symmetric flow with 
centre-line velocity U, increasing exponentially on the 
scale of the Rossby radius. In the rigid lid limit this 
corresponds to a uniform stream. The second term in
(3.3.7) gives antisymmetric flow with shear rate /3 on the 
centre-line. In the rigid lid limit this gives a linearly 
sheared flow. The present section discusses in detail 
symmetric flow with <3 = 0. Flow with /3 * 0 is discussed 
in §3.5.

Thus with U normalised to be unity, and /3 = 0, the 
total stream-function is given by

$(r,0) = -a sinh (rsin0/a) + ¥(r,0), (3.3.8)

where r, 0 are polar coordinates centred on the 
topography. From equation (3.3.3) a stagnation point 
appears in symmetric flow first with increasing obstacle 
height at r = 1, 0 = -I, when S exceeds S , where

Z  c

q — cosh (1/a)____  , - - q xI d / a )  K (1/a)1 (3.3.9)

Figure 3.3 includes S as a function of 1/a. As theC
Rossby radius decreases the critical value for S 
increases towards 1/a e1^3 . As the Rossby radius
increases the critical value for S decreases towards 2. 
This is the value for the rigid lid, single-layer case 
given by Huppert (1975).

§3.3.2 Numerical results.

The numerical computation was carried out for both the 
rigid lid case and for two finite values of the Rossby 
radius, a=l and a=l/2. The relevant points in parameter
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I/M
Figure 3.3.

The analytical critical curve for the parameter 5/Ro, as 
a function of the inverse Rossby radius, and the points 
in parameter space corresponding to the numerical 
experiments carried out. The circles are at 
(0,12);(1,12);(0,5);(1,5) and represent the cases in 
which trapping occurs. The crosses are at 
(2,12);(2,5);(0,1);(1,1);(2,1) and represent the cases in 
which trapping does not occur.
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space are indicated on Figure 3.3 by circles 
(representing cases where fluid was trapped) and crosses 
(representing cases where no fluid was trapped), the 
values of S being 1, 5 and 12. The results are shown in 
Figure 3.4.

There several points of interest in this figure. 
Firstly, for values of S below the critical values given 
in Figure 3.3, all the fluid is swept downstream, with no 
stagnation points in the flow. Above the topography an 
anticyclonic vortex is formed, and a cyclonic vortex is 
advected downstream with a velocity tending to that of 
the uniform stream. The path of this shed vortex is 
considered in more detail later. For values of S above 
the critical value, some fluid remains over the obstacle. 
The stagnation point argument is no longer strictly 
valid, as there is no longer a completely circular vortex 
above the topography, and there is some cyclonic 
vorticity in the vicinity. However the pictures do 
indicate the presence of stagnation points and blocking 
and the earlier argument can be taken as an approximate 
guide to the evolution of the flow. As S is increased, 
the topographic effect is heightened, more fluid is held 
back over the obstacle and a larger blocked region 
formed. This region is considered in more detail in the 
next section.

Secondly, the effect of the Rossby radius is shown. For 
the same value of S, flows with a smaller Rossby radius 
are less likely to be blocked. For each value of S there 
is a critical value of the Rossby radius below which 
blocking will not occur. As seen in Figure 3.2(a), the 
adjustment of the free surface due to the step at r = 1 
takes place over a length scale of the order of the 
Rossby radius. Thus as a decreases this adjustment occurs 
over a shorter distance, the surface deformation is 
greater and the fluid can pass more easily over the 
topography. Figure 3.4 clearly illustrates this: for
smaller values of a, with S held constant, the topography 
is seen to have less effect on the advected contour. The
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Figure 3.4.
The results for the parameter values marked in Figure
3.3. As S/Ro increases the topographic effect increases 
as seen by comparing 3.4(g) and 3.4(a). As the Rossby 
radius decreases the topographic effect decreases as is 
seen by comparing 3.4(d) and 3.4(f). For values of 6/Ro 
above the critical curve in Figure 3.3, it is seen that 
fluid is trapped above the topography, while for values
below the critical value the fluid is advected
downstream. The time interval is 1., except in 3.4(c)
which has t = 0, 1., 2.5.
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restriction of the velocity to a thin layer around r = 1 
for smaller values of a can also be seen in Figure 3.4: 
as a decreases the topographic wave front, where the 
boundary of the advected contour crosses the step (e.g. 
in Fig.3.4(b)), decays exponentially away from r = 1, 
while in the rigid lid case the decay is algebraic.

§3.3.3 The path of the shed vortex.

Now consider the path taken by the cyclonic vortex in 
the case where all the fluid originally over the 
topography is advected downstream. Huppert & Bryan (1976) 
approximate the path by representing the cyclonic vortex 
as a point, advected initially from the origin to the 
position (1,0), and the topographic vortex as a point at 
the origin. They consider the path of a such a region, 
shed in a similar way, for both the stratified and 
homogeneous cases with a rigid lid. The equivalent result 
for the free-surface case can be found in the same way. 
The path of the point is given by

2asinh(Y/a) -SKq^ /  X2 + Y2 J = - S K Q(l/a). (3.3.10)

For the rigid lid case this reduces to

X 2 + Y2 = e"4Y, (3.3.11)

for S = 1, as found by Huppert & Bryan and this is
plotted (dashed) in Figure 3.5(a), together with the 
contour dynamics results. The solution of equation 
(3.3.10), for a = 1 and again S = 1, is plotted in Figure 
3.5(b) together with the relevant contour dynamics 
results. Again the more localised effect of the finite a 
case is seen: the topographically generated velocity
decays exponentially away from the cylinder in contrast
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Figure 3.5.
The path of the advected contour in the fast case. The 
vortices are shown at times from 0 to 7.(a) The rigid lid 
case, as found by Huppert & Bryan (1976). Here 5/Ro = 1 
as in Figure 3.4(g). The path tends algebraically to that 
of the uniform stream, (b) a = 1, as in Figure 3.4(h). 
The path tends exponentially to that of the uniform 
stream.
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with the algebriac decay in the rigid lid case.
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§3.4.Trapping and capture.

§3.4.1 Trapping.

In considering the flow in the case where some fluid 
which is originally over the topography remains trapped 
there, it is helpful to look again at the flow due to a 
purely anticyclonic region above the topography together 
with the oncoming uniform stream. The streamlines for 
this zero potential vorticity flow are shown in Figure 
3.6(a), for S = 5 and a = 1, i.e. the case shown in
Figure 3.4(e). The region of closed streamlines indicates 
the expected position of any trapped fluid. If a small 
amount of fluid were trapped in this region the 
streamlines would be very similar to those shown and it 
is unlikely that the fluid would subsequently escape.

Figure 3.6(b) shows the flow of Figure 3.4(e) at longer 
times, i.e. at t = 3, 4, 5, and it is clear that,
although most of the advected region is carried 
downstream, a fraction of it is trapped above the 
topography. By t = 5 the part which has moved off
downstream is virtually unaffected by the topography due 
to the localisation effect of the finite Rossby radius 
and similarly this part has little effect on the flow 
over the topography. The remainder still lies trapped in 
the closed streamline region, with a shape and position 
similar to those found by Ingersoll (1969) for the rigid 
lid case.

§3.4.2 Capture.

In this section the possibility of originally upstream 
fluid being captured over the topography is considered. 
It is assumed that the fluid originally over the 
topography has been swept off already, by a previous 
episode of fast flow, so the flow is initially the zero
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Figure 3.6.

The trapping of fluid originally over the obstacle, (a) 
The zero potential vorticity flow, which acts as a guide. 
Here S/Ro = 5. and a = 1, i.e. the case shown in Figure 
3.4(e). (b) The case in Figure 3.4(e) at t = 3, 4, 5.
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potential vorticity flow considered in the previous 
section. This flow is further illustrated in Figure 3.7, 
for (a) the rigid lid case and (b) a = 1. In both cases S 
= 12. The more local effect of the finite Rossby radius 
case is immediately apparent. In both pictures there are 
regions of closed streamlines, within which fluid may be 
captured.

An upstream vortex is now introduced, of the same 
magnitude as the topographic vortex. In Figure 3.8 the 
rigid lid limit is used, the upstream vortex is positive 
and S is taken as (a) 12 and (b) 5. The dashed line 
indicates the path of the upstream vortex, which is 
predicted by the method used in the previous section. As 
the vortex is advected by the uniform stream the combined 
effect of the anticyclonic vortex above the obstacle and 
this moving vortex is to carry the latter around the 
topography, the overall deflection to its path being to 
the right looking downstream. This effect is quite easily 
understood: as the moving vortex approaches the
topography the vortices act in a similar way to the 
vortex pairs considered by Deem and Zabusky (1978) and 
Pierrehumbert (1980), in which it is shown that a pair of 
vortices of equal magnitude and opposite sign will 
translate together along a straight line perpendicular to 
the line joining their centres. Steady shapes of such 
translating pairs are found and, as mentioned in §2.1, 
recent work by Polvani, Zabusky and Flierl (1989) shows 
that as the Rossby radius decreases these shapes become 
more circular, and the velocity with which they translate 
decreases, reflecting the fact that each vortex is 
influenced less by the other due to the finite Rossby 
radius localisation effect. In this instance, the 
topographic vortex is fixed, and so the moving vortex is 
constrained to describe an arc around the topography, 
until it is advected away by the oncoming stream. For a 
smaller value of S, the interaction between the two 
vortices is weaker and the free vortex is deflected less 
by the topography, as shown in Figure 3.8(b).
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Figure 3.7.

The zero potential vorticity flow for (a) the rigid lid 
case ana (b) a = 1. In both pictures 5/Ro = 12. The 
region of closed streamlines is clear.
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Figure 3.8.
The interaction between the zero potential vorticity flow 
and an upstream cyclone in the rigid lid case, (a) 5/Ro = 
12. (b) 5/Ro = 5.
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If the upstream vortex has the same sign as the 
topographic vortex, however, the result is quite 
different. This is illustrated in Figure 3.9, again using 
the rigid lid limit. In Figure 3.9(a) S = 12. The moving 
vortex is initially carried clockwise around the 
topography as in the previous case. Unlike the previous 
case, however, part of the anticyclonic moving vortex is 
drawn in over the obstacle, then quickly spirals in 
towards the centre, while the rest is advected away. 
Clearly in this case some fluid will be captured. A 
larger fraction of the oncoming vortex is captured for a 
lower value of S. In Figure 3.9(b) S = 5. The effect of 
the topography is weakened and the oncoming vortex is not 
pulled as rapidly around the obstacle as it is in the 
previous case. This allows more fluid to be pulled in 
onto the topography and captured.

Further experiments reveal that no fluid is captured by 
a topographic vortex of strength below Sc, irrespective 
of the strength of the oncoming vortex. This implies that 
a larger value of S is required to capture upstream fluid 
for finite values of a.
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Figure 3.9.
The interaction between the zero potential vorticity flow 
and an upstream anticyclone in the rigid lid case, (a) 
S/Ro = 12. (b) 5/Ro = 5.
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§3.5. Oncoming shear flows.

Consider now the antisymmetric velocity profile so U = 
0 in equation (3.3.7). Then the total stream-function can 
be written

$(r,0) = -/3a2cosh(y/a) + ¥(r,0), (3.5.1)

where S is taken to be unity. The flows for both positive 
and negative values for the shear parameter /3 are 
considered, for both the rigid lid limit and with finite 
values of a. The former results are compared with the 
steady states found by Johnson (1983).

In the rigid lid limit (a -> «), omitting the constant, 
equation (3.5.1) becomes

*(r,e>) = -f3yz/2 + f(r,e). (3.5.2)

The computation was carried out first for this case, 
with negative shear, /3 = -.3, corresponding to the case 
in Figure 2(b) of Johnson (1983). In this case the 
background shear is opposing the shear induced by the 
topography. The results are shown in Figure 3.10. In 
Figure 3.10(a), at time t = 1, the flow is dominated by 
the shear. Two regions of positive vorticity are created 
by fluid being swept off the obstacle, and as this fluid 
is replaced two regions of negative vorticity are 
produced above the topography. In Figure 3.10(b), at t = 
8, as these four regions grow their own influence 
increases, and the flow development depends on these four 
regions together with the background shear. Topographic 
wave fronts are visible, moving clockwise around the edge 
of the obstacle, and at t = 28, Figure 3.10(c), the shed 
regions are pinched off from the trapped fluid, connected 
by an ever-thinning thread. The influence of these shed
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Figure 3.10.
Flow with negative shear, /3 = -.3, for the rigid lid 
case, for (a) t = 1 (b) t = 8 and (c)t = 28.
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regions begins to fade as they are advected away by the 
shear, and another, much smaller pair is shed. The 
process is repeated, and it is clear that eventually a 
balance is reached between the shear and the anticyclonic 
vortex regions above the obstacle, the final position of 
the trapped region being that given by Johnson (1983).

The path of the shed vortices may be found by the
method used in §3.3. The shed vortices are approximated
by points, initially at (0,±1). In this case,
contributions to their velocities come from the
topography, the ellipse above the topography, the shear
flow, and the other shed vortex. The problem is
simplified by its symmetry: the shed vortices have
position (±x,+y), so the velocity contributions from each
other can simply be added to that from the topography.
Further, it is clearly only necessary to calculate the
path of one of the vortices. The contribution from the
ellipse is given by Johnson (1983), and the shear flow is
simply added. The approximate paths are shown (dashed) in
Figure 3.11, together with the contour dynamics results

2 2for t = 30. The paths become more accurate as (x + y ) 
oo , and by t = 30 the vortices have begun to follow them.

The results for the free surface case are seen in 
Figure 3.12 at (a) t = 1, (b) t = 3, (c) t = 8. Here j3 = 
-.3 again but now a = 1/3. The topographic wave front is 
sharper than that of Figure 3.10, and the shear itself is 
stronger. The effect is that much less fluid is trapped 
over the obstacle than in the rigid lid case, and the 
paths of the shed regions again tend very quickly to the 
direction of the shear, as the influence of the 
topography dies away exponentially.

Next the computation was carried out for /3 = .2,
corresponding to the case in Figure 3(c) in Johnson 
(1983). Now the background shear is in the same direction 
as that due to the topography. The rigid lid results are 
shown in Figure 3.13 at (a) t = 1, (b) t = 8, (c) t = 24. 
As in the negative shear case four regions of new 
vorticity are set up and some fluid is trapped above the
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Figure 3.12.
The effect of a free surface on flow with negative shear, 
/3 = -.3, a = 1/3, for (a) t = 1 (b) t = 3 (c) t = 8.
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Figure 3.13.

Flow with positive shear, /3 = 2., for the rigid lid 
case, (a) t = 1 (b) t = 8 (c) t = 24.
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obstacle. In this case however the shed regions are not 
borne away so rapidly, and new regions are shed, the 
boundary becoming extremely convoluted. On the longer 
viscous timescale those filaments which have been off the 
obstacle for a long time will be spun up by Ekman 
pumping. The amount of fluid shed in these filaments 
decreases, and thus eventually the steady state is set
up. In this steady state, although there are closed 
streamlines surrounding the column and obstacle, there is 
still a generation and decay of vorticity, as fluid
continues to move up onto the topography, gaining
negative vorticity, which then decays due to Ekman 
pumping, so that when the fluid is carried off the
topography it has a net positive vorticity, which decays 
in turn.

Figure 3.14 shows the flow for 0 = .2 and a = 1/3, for 
(a) t = 1, (b) t = 3, (c) t = 8. Again the more
localised effect of the topography in the free surface
case is seen. In this case the stronger shear carries the 
filaments away from the obstacle before the trapped
region has rotated as far as in the rigid lid case, so
the contour does not become so convoluted. The effects 
from the filaments are weaker as they are carried away, 
and the final steady shape is more clearly visible 
throughout.
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Figure 3.14.
The effect of a free surface on positively sheared flow, 
0 = 2., a = 1/3, for (a) t = 1 (b) t = 3 (c) t = 8.
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§3.6. Discussion.

The initial-value problem of the uniform flow of an 
inviscid fluid forced over a cylindrical obstacle has 
been investigated using the contour dynamics method. It 
is found that the starting flow produces a topographic 
wave, travelling in a clockwise direction around the 
obstacle, in agreement with Johnson (1984). The ratio of 
this topographic effect to the effect of advection is 
measured by the parameter S. It is shown that a critical 
value exists for this parameter, depending on the Rossby 
radius of deformation. As this surface adjustment length 
tends to infinity, the rigid lid limit, the critical 
value for S tends to that given by Huppert (1975). As the 
Rossby radius decreases, the critical value increases 
without bound.

For values of S below the critical value, the fluid 
originally above the topography is carried downstream, 
forming a cyclonic vortex, due to the stretching of fluid 
filaments, and leaving an anticyclonic vortex above the 
obstacle. The approximate path of this cyclonic vortex is 
found analytically as a function of the Rossby radius, 
and is in agreement with the result of Huppert & Bryan
(1976) in the rigid lid limit. The velocity of this
advected vortex tends to that of the uniform stream, 
algebraically in the rigid lid limit and exponentially 
for a finite Rossby radius. This is shown to be a result 
of the localisation effect of a small Rossby radius, an 
effect which is examined by considering an isolated 
vortex for various values of the Rossby radius. It is
found that as the surface can adjust faster for smaller
values of a, vorticity is increasingly produced only at 
the edge of the topography, leading to a restriction of 
the velocity to a thin region at the boundary, decaying 
exponentially on both sides of this region, the central 
area of the vortex becoming virtually stagnant. Hence the 
topographic effect is smaller for finite values of the
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Rossby radius, blocking is less likely to occur, and the 
effect on the downstream fluid diminished.

For values of S above the critical value, some of the 
fluid originally above the topography is held there, 
initially carried around by the topographic wave, during 
which stage more of the fluid may be carried off 
downstream, until finally the remaining fraction is 
caught over the obstacle within the closed streamline 
region of the zero potential vorticity flow, on the 
right-hand side of the obstacle looking downstream, 
eventually forming all or part of a stagnant Taylor 
column. It is shown that the trapped fluid forming this 
Taylor column may not all have originated over the 
obstacle, as upstream fluid can also be captured, 
provided that S is sufficiently large, and would then be 
spun up by Ekman pumping. Upstream anticyclonic fluid is 
easily caught and held, while upstream cyclonic fluid is 
carried past the obstacle in the manner of the 
translating vortex pairs of Deem & Zabusky (1978).

The method of contour dynamics allows the extension of 
this work to other oncoming flows, and in particular a 
shear flow is considered, for both positive and negative 
shears. For a negatively sheared oncoming flow, the 
results show the generation of two cyclonic eddies, whose 
paths are calculated. Meanwhile ever-smaller filaments of 
vorticity are shed from the obstacle, and as their size 
decreases a Taylor column forms over the topography, 
whose shape and position agrees with the steady results 
of Johnson (1983). The effect of a free surface is that 
more fluid is swept off the obstacle, thus decreasing the 
size of the Taylor column.

For a positively sheared oncoming flow the shed fluid 
remains in the vicinity of the obstacle for longer, and 
the structure of the contour becomes highly complex. The 
effect of the free surface, however, is that filaments 
which form around the obstacle are carried away, and 
therefore have less influence on the trapped fluid. Thus 
the Taylor column in this case is set up on this
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filamentation timescale, as in the negatively sheared 
flow, rather than the longer viscous timescale over which 
the filaments remaining in the vicinity of the obstacle 
decay due to Ekman pumping.

On the whole it is not possible to model effects of
viscosity using this contour dynamics method. However,
the effect of Ekman pumping on a region of vorticity
which remains otherwise constant, i.e. does not pass over
any topography, may be modelled by allowing a
time-dependent vorticity parameter. In Figure 3.15 the
advected contour has been split into three contours, in
order that the shed vortices may have exponentially
decaying vorticity. The split takes place at t = 10,
Figure 3.15 (a), and the vorticity in the shed contours

1/2is taken to be exp(-yr) where y is E /Ro, here taken to 
be .25. Here E is the Ekman number and t = t - 10. 
Clearly the vorticity which is constantly being produced 
at the obstacle as more fluid is shed will also decay but 
this is not modelled, the aim being to observe the decay 
of the shed vortices. Figure 3.15(b) shows the effect of 
this exponential decay in the vorticity, which is
obviously to weaken the shed vortex, and it no longer 
rotates as rapidly as in the wholly inviscid case as it 
moves off.

One extension to this work lies in the number of 
density layers of the fluid. This number may be
increased, provided that the depth of the lower layer is
greater than the height of the obstacle.

The work in this chapter was carried out jointly by 
myself, Dr. E.R. Johnson and Dr. M.K. Davey and may be 
found in Hurst, Johnson & Davey (1990).
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Figure 3.15.
The effect of Ekman pumping on the shed vortices, (a) The 
split made at t = 10. (b) The vortices at t = 11, 13, 15. 
As their vorticity decays exponentially they translate 
without rotating.
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CHAPTER 4.
RAPID FORMATION OF TAYLOR COLUMNS: OBSTACLES AGAINST

SIDEWALLS.
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§4.1.Introduction.

In this chapter the behaviour of topographic waves such 
as those in Chapter 3 is examined more closely by 
considering the problem of topographic forcing by an 
obstacle against the boundary of a rotating flow in 
various parameter regimes. The timescale for the motion 
is the topographic vortex-stretching time, which, in 
§§4.3 and 4.4, is taken to be short compared with the 
advection time. This is in contrast to the system in the 
previous chapter, in which the effects of advection and 
topography combined to determine the development of the 
flow. In this case there is no advection over the 
timescale considered, so the flow is governed purely by 
the effects of the topography. It is shown that the 
presence of the sidewall causes a stagnant Taylor column 
to be set up far more rapidly than in cases with no 
sidewall.

Initial-value problems for slow flows in this limit 
have been considered previously in different geometries. 
For topography with closed isobaths, flow started from 
rest settles down asymptotically to almost periodic 
motion (Johnson 1984). For stepped topography with 
isobaths ending abruptly on sidewalls the almost periodic 
solutions are absent and the flow adjusts to become 
steady over a time of order the vortex-stretching time 
(Johnson 1985). The present geometry has the abruptly 
terminated isobaths of the latter geometry but the finite 
topographic extent of the former. It is shown that on a 
time of order the vortex-stretching time the flow becomes 
stagnant above the topography, giving a stagnant Taylor 
column. The column forms in the time taken for a long 
topographic wave to propagate along the obstacle, a time 
far shorter in this limit than the time required for a 
particle to be swept past the obstacle or for the column 
to spin down due to Ekman pumping.

Section 4.2 describes the equations of motion for this
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flow, which contain the nondimensional parameters whose 
relative magnitudes determine the final state: again we
find the Hide parameter, S; and in this case an Ekman
number, i±. Sections 4.3 and 4.4 consider the limit of
slow flow, Ro << 1, so topographic wave adjustment occurs 
before advection can become important. Section 4.3 
discusses first the free modes, showing that waves 
approaching the wall decelerate and decrease in 
wavelength, whilst waves leaving the the wall, at the 
other end of the obstacle, accelerate and increase in 
wavelength. These free modes are superposed to solve the 
initial-value problem for an impulsively started flow. A 
steady final state is set up on the topographic 
timescale: stagnant Taylor columns are set up more
rapidly when a sidewall is present. Section 4.4 discusses 
the effects of Ekman pumping on these solutions. Section 
4.5 considers nonlinear effects, in seeking the final 
steady state. Section 4.6 summarises the results.
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§4.2.The governing equations.

Throughout this chapter, unlike in Chapter 3, the fluid 
is assumed to be bounded by a rigid lid. The equation of 
continuity (1.4) allows the introduction of a volume flux 
stream-function, ¥, defined by

h u = - ¥  , hv = ¥ . (4.2.1)
y  x

Thus the relative vorticity, £, is given by

C = v - u = V. (h_1V¥).
x y

(4.2.2)

The equation for the conservation of potential vorticity, 
i.e. equation (1.7), becomes

+ x V C + f~ = -m C, (4.2.3)

where a simple dissipation term has been included on the 
right hand side. In the limit of small Rossby number this 
reduces precisely to an Ekman pumping term (Johnson 1984) 
and is proportional to v 1/2 for kinematic viscosity v.

Sections 4.3 and 4.4 discuss equation (4.2.3) in the 
limit of slow flow where topographic effects dominate and 
advective effects are negligible. In this limit, scaling 
jli with f, and using the inertial timescale, the 
nondimensional form of equation (4.2.3) becomes

• ( N (H (4.2.4)

where d(ty, ) = ¥ d d .
x y  y  x

We consider the particular case of a semi-cylindrical
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obstacle, against the vertical sidewall of the rotating 
system. Take Cartesian axes Oxy with the x-coordinate 
along the wall and let the radius of the cylinder be 
unity. Transform the coordinates using the conformal 
mapping:

£ + i0 = 2tanh~1(x+iy). (4.2.5)

This introduces the bipolar coordinates (£,0), with

x = sinhg = sine .. -
cosh£ + cose ' 1 cosh£ + cos0 ' \ • j

as shown in Figure 4.1. Equation (4.2.4) reduces to 
Laplace's equation away from the edge of the obstacle, 
with the dynamics contained in a jump condition at the 
step, Johnson (1985), Jansons and Johnson (1988), i.e.

*K  + *ee = °< (—00 < £ < 00 )
r 0—0<^7I 

1̂n<Q*n (4.2.7a)

% = 0, (-00 < € < 00) (0 = 0, 7T) , (4.2.7c)

where £ J represents the jump in the enclosed quantity
at 0 = n/2 and h is the local depth, i.e. h = h away
from the obstacle and h above it. Equation (4.2.7b)
guarantees continuity of pressure at the step. Four
timescales are relevant to the motion. These are the
inertial period 1/f, where f is twice the rotation rate;
the topographic vortex stretching time f"1hi/(hi- );

2 1/2the viscous spin-down time [2hi/(fi^)] and the 
advection time L/U. There are thus three non-dimensional
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Figure 4.1
Coordinate lines of the bipolar coordinates, (£,0). Lines 
of constant £ are circles, centre (coth£,0), radius 
cosech£. Lines of constant 0, shown dashed, are circles 
passing through (±1,0), with £ increasing from -» to +» 
on passing round the curved edge of the step, 0 = 
shown chained.
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parameters in the problem. These can be taken to be the 
Rossby number, Ro = U/fL, comparing the timescales of the 
inertial to the advective effects; the Hide parameter, 
S = (h - h )/(h Ro), measuring the relative importance of 
topographic to advective effects and an Ekman number, 
jn = [.5i^f"1/(hi- h 2)2]1/2, which is the ratio of the
viscous spin-down timescale to the topographic timescale 
and can also be regarded as the ratio of the thickness of 
the Ekman layer to the step height. In the topographic 
regime of §§4.3 and 4.4 the Rossby number is small, and 
the Hide parameter large: topographic effects are felt on 
a much shorter timescale than advective effects.

When the fluid is set impulsively in motion the 
pressure field instantaneously sets up an irrotational 
motion. If the fractional depth is not small this flow is 
not geostrophic and evolves to geostrophy over a time of 
order the inertial or topographic timescales, which 
coincide for order unity fractional depth. If the 
fractional depth is small as in Johnson (1985) the 
initial flow is uniform and geostrophic but not steady 
and evolves to a steady state over the topographic time 
which is then long compared to the inertial period.
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§4.3.The linear inviscid case.

Consider the inviscid (/i = 0) limit of (4.2.7). Then

= 0, (4.3.1)

& • « ]
fh  - h  1 2 1
h h 1 2

= 0 , (0 = f) (4.3.2)

§4.3.1 Free modes.

System (4.3.1)-(4.3.2) has solutions of the form

¥ = g(0)exp (4.3.3)

provided g(0) = g(7r) = 0, and

— ^o>g(0) + ik
fh -h 12 1
h h 1 2

g(0) = 0, (0 = |). (4.3.4)

Thus g is given to within a multiplicative constant by

g (0) =
rsinhk0
sinhk(Tr-0)

(0 < f)

<. > ; y
(4.3.5)

where the jump condition gives the dispersion relation:

tt,a> = A tanh^k, (4.3.6)

with A = (h - h2)/(hi+ h2). The phase and group speeds
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are given by:

c = £tanhl7rk , c = ^sech^irk. (4.3.7)p k 2 ' g 2 2

The waves are uni-directional, propagating with shallow 
water to their right for anticlockwise rotation and to 
their left for clockwise rotation. Interchanging h i and 
h2, i.e. considering the case of a hollow of depth h in 
a flow of depth h2, is equivalent to reversing the 
direction of rotation.

Figure 4.2 shows the eddies moving around the step in 
the original coordinates, for the particular wavelength 
k = 4. The eddies are uni-directional, travelling
clockwise around the step for anticlockwise background 
rotation. In the transformed plane waves propagate with 
no change of amplitude or wavelength. Long waves travel 
fastest, with group and phase speeds both -^nL and both 
speeds decrease monotonically to zero with decreasing 
wavelength. Let # be the usual polar angle in the 
original coordinates. Then cos# = tanh£. The wavelength, 
which is constant in £, becomes proportional to the 
distance from the wall, near the wall-step junctions. 
Similarly, the phase and group speeds, constant in £, 
vanish in the x-y plane as the points (±1,0) are 
approached. Unlike the geometries of Johnson (1985), 
which similarly have either a source or a sink of eddies, 
the present geometry prevents the waves from growing 
arbitrarily.

§4.3.2 An initial-value problem.

Let the fluid be set into motion impulsively. Then the 
initial flow is irrotational and remains uniform at 
sufficiently large distance. In the transformed plane the 
effect is that of a dipole at the point (0,7r). The system 
to be solved is changed only in the boundary conditions. 
Now

96



Figure 4.2
Eddies moving around the step in the original 
coordinates. In the transformed plane waves travel along 
the step, the amplitude decreases exponentially away from 
this line. In the original plane eddies created at (-1,0) 
move around the step (h >h ) and disappear at (1,0). Here 
k = 4 and the contours are drawn for amplitudes of -.25, 
-.5 (dashed) and .25, .5 (solid).
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¥ = 0 (0 = 0), (4.3.8a)

* = -5(C) (0 = "), (4.3.8b)

where 5(£) is the Dirac 5-function.
The new system has a Fourier integral solution:

= j i(k,e,t)eik5dk, (4.3.9)
—00

provided

i00 - k 2* = 0, (4.3.10)
A A
* = 0 (0 = 0), ¥ = -1 (0 = 7i), (4. 3.11a, b)

[e v I + ikp S } * = 0 (e = 5>- (4-3 -i2)

At t = 0 the irrotational flow is given by

-A) r < 1' 2 /

(4.3.13)
¥ = I _y(1" «o \ -y(1-A/r ) r > 1

AXsinhk0 0 < ?
' (1“A)iIHEkiF 2
-sinhk0 . sinhk(7T-0) . rr
sinhkir sinhkir 2

where r is the usual polar radial coordinate.
A, A A

Write ¥ = ¥q+ ¥ (k,0,t). The jump condition provides 
the equation for time-dependence and the solution for ¥ 
is:

¥=
1 .  (0W../2)

( 7T/2—0—7T )
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= $ + 00

r“-( 1-A)sinhke _r.,, . ,.1.,, [J_ sinhkn °xp[ikg-1u,tjdk “ I

lJ.
-(1-A)sinhk(n - 9 )
00 sinhk7r exp £ik£-icdtj dk 0 ^

(4.3.14)

where

$ f“ sinh(“ 0) 
-00 _ . 7l i

7T
sinh-Trk 2

exp(ik£)dk
(4.3.15)

the two-dimensional irrotational flow past a right 
circular cylinder, stretching the whole depth of the 
fluid. Note depends on A but ¥ is independent of A.

Expression (4.3.14) is readily evaluated using fast 
Fourier transforms. Figure 4.3 shows the streamlines in
both the transformed and original planes for A = 1/2. 
Eddies form just behind the point (0,1) and move
clockwise around the step. The streamlines are deflected 
around the obstacle, and cross it in an exponentially 
thinning region near the step-wall junction at (1,0). 
Figure 4.4 shows the flow development with a hollow, 
A = -1/2, rather than an obstacle. Comparing Figure
4.3(a) with Figure 4.4(a) shows the difference in the
initial flows: the flow over the obstacle is only about 
40% as strong as that away from it and hence the flow in 
Figure 4.3(d) above the obstacle is dominated by free 
waves, whereas over the hollow the initial flow is 
strong. The streamfunction along the step at times t=0
and t=100 is shown in Figure 4.5. Here the formation of 
eddies just before £=0 is clear. The wave front is seen 
to move around the step, leaving behind a wave-train. 
Consider first the point £ = 0. At this point the
integral form of the stream-function can be evaluated 
directly to give $(0,1) = -JQ(t), where JQ(t) is the
zeroth order Bessel function. The streamfunction
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(C)

(d)

(e)

Figure 4.3
The development of the inviscid flow for A = 1/2, in the 
transformed coordinates on the left and the original 
coordinates on the right. The streamlines are shown for
(a) t=0, (b) t=2, (c) t=4, (d) t=6# (e) the steady state.
In the transformed plane the contours are swept off to
the right as expected from the free modes
characteristics. In the original coordinates the 
streamlines are deflected around the obstacle and cross 
in an exponentially thinning region at the front. The 
contour interval is 0.2 in the £-0 plane and 0.1 in the 
x-y plane.

100
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( C )

( d )

(e)

Figure 4.4
The development of the flow over a hollow with A = -1/2, 
rather than an obstacle. The times and contour intervals 
are as in Figure 4.3. •
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oscillates with zero mean, and amplitude decaying as 
t~1/2. For other values of £ the long-time behaviour of 
the streamfunction can be obtained from the method of 
stationary phase. The dominant contribution to the 
integral comes from those values of k for which ^ = 
c (k). The wave front moves along at the long-wave speed,9 *
i.e. the maximum group velocity, — The stationary phase 
formula yields:

$ - -(Ant)-‘/a[l-I| g ' 1/4co3{k0?-At[l-2| g ‘1/- S},

(4.3.16)

where kQ = ^ arcsech [2£/(Arrt) ]1/2. Except at £ = Airt/2, 
where the singularity corresponds to the position of the 
wavefront, the streamfunction decays like t~1/2. Near the 
front considering terms to third order gives:

¥ - (4.3.17)

In a widening region of thickness t1/3 about the front, 
the disturbance decays like t"1/3. This slower decay 
shows in the larger amplitude at the front in Figure 4.5.

There is no flow across the obstacle in the steady 
state: all streamlines are deflected around it. As the
wavefront given by (4.3.16) moves from £ = -1 to £ = 1 in 
a time t of order unity, information in the untransformed 
plane moves from being an exponentially small distance 
from (-1,0) to being an exponentially small distance from 
(1,0) in a time of order unity. The steady pattern is set 
up almost everywhere on the topographic timescale, which 
is short compared to the advection timescale, provided 
S >> 1. In this respect the results differ markedly from 
those for flow unbounded by a sidewall. Ingersoll (1969) 
shows stagnant regions being set up on the longer, 
spin-down timescale. Similarly in Johnson (1984), for a 
cylindrical obstacle, the topographic waves produced when
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Figure 4.5
The stream function along the step at (i) t=0, (ii)
t=100. A=l/2. Initially the streamfunction is -sech£. As 
the disturbance disperses, its amplitude decays as t“l/2, 
except near the front which travels at speed tt/4 and has

“ 1 / 3amplitude decaying as t
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the obstacle is set impulsively in motion cycle clockwise 
round closed isobaths in times of order the topographic 
timescale, continuing indefinitely in the absence of 
dissipation. It is the absence of closed geostrophic 
contours supporting free waves that accelerates the 
formation of a Taylor column against a sidewall.
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§4.4.The linear viscous case.

Consider the effect of a bottom frictional force 
proportional to the velocity, thus corresponding to Ekman 
pumping for shallow topography. From §4.2 the equation of 
motion i s :

V -(e  V$t) + w V -(e  H  + s (^'h ) = °' (4.4.1)

where /ll = [.Svf^/Ch - h2)2]1/2. As in §4.3, the dynamics 
are contained in a jump condition at the step, and 
elsewhere the flow is irrotational. The viscous term 
alters the jump condition to:

“ ■ fh -hi ¥E et + fi*e + « 2 1 
h h

m 2 1 k /
= 0€ 0 = 5 ) .  (4.4.2)

The solution is now

• ■ f  { - a s s ?  -
J — no

¥ =
.00

00

-sinhke
sinhkir

sinhk(ir-g)
sinhkTr [(r-A)exp(-n-icj)t -r]},

(4.4.3)

( 0 £f )

where r = iu/iu+iu). For flow started from rest the 
pattern initially evolves like the inviscid flow of §4.3
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but quickly reaches the steady state

,00
-sinhke
sinhk7T [ i - r]

-sinhke „ sinhk(Ti-e) 
sinhkn sinhkrr dk (e*f)

(4.4.4)

If jli = 0, T = 1 and (4.4.4) reduces to (4.3.15). The flow 
becomes steady in an e-folding time of order u. Comparing 
the results of the viscous and inviscid cases shows that 
viscosity arrests the flow at a stage of the inviscid 
development, intermediate between uniform flow and the 
final state of irrotational flow about a cylinder, as 
viscous dissipation destroys vorticity generated by 
vortex-stretching. The more viscous the fluid the earlier 
this arrest occurs: if the fluid were sufficiently
viscous the irrotational flow of Figure 4.3(a) would be 
its steady state. This freeze is shown in Figure 4.6. In 
Figure 4.6(a) (jli=0.5, A=l/2) viscous effects are strong
and the flow deviates little from uniform flow. In Figure 
4.6(b) (jit=0.1, A=l/2) the viscous effects are weaker and 
the flow is closer to the two-dimensional irrotational 
flow. In Figure 4.6(c) (/li«0.01, A=l/7) parameter values
corresponding to Figure 5(a) of Griffiths and Linden 
(1983) are used. Taking into account the difference 
expected due to the differing obstacle shapes the results 
agree well.

Changing the sign of f reflects the pattern about x=0. 
Altering the direction of the oncoming flow leaves the 
streamline pattern unchanged.
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Figure 4.6
Steady viscous flows. Viscosity freezes the inviscid 
development, (a) = 0.5, A = 1/2, (b) = 0.1, A = 1/2,
(c) the experimental regime of Griffiths and Linden ( /i * 
0.01, A = 1/7 ). Unlike the inviscid flows, some fluid
passes over the obstacle. The more viscous the fluid is, 
the more fluid crosses the step.
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§4.5.The nonlinear inviscid case.

For Rossby numbers of order unity, steady solutions can 
be found to the nonlinear equation, under the assumption 
that the imposed velocity is sufficiently large to sweep 
downstream all fluid initially above the obstacle. 
Conservation of potential vorticity then gives, above the 
obstacle, the nondimensional equation

where D is the fractional height of the obstacle. It 
follows that

D(D-l) above the obstacle
2 Ro

0
(4.5.2)

elsewhere

Write ¥ = -y + A$, where A = D ^ q^--, and introduce
polar coordinates (r,0). Then

1
0

(r<l) 
(r>l)' (4.5.3)

with the impermeability and boundary conditions

$ = 0 on G = 0, 7T (4.5.4a)
$ bounded as r — > 0,

$with $ and r continuous at r = 1.
(4.5.4b)
(4.5.4c)

“E”

The solution of (4.5.3), (4.5.4) can be written:
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* =

where

V C r“ (2m 1)sin (2m-l)0
M =  1 m

r>l

(4.5.5)

y C r2m 1sin(2m-l)e + D (r2-r2m 1 )sin(2m-l)e Lf_ - m m ' 'm=l
.2 _2m-l. _ .

r<l

C = m
4(2m-3)

(2-D)(2m-l) n (2m-l)
(4.5.6)

Dm =
i

(2m-l)7r 4 - (2m-l)2

Ingersoll (1969) shows that closed streamline regions 
become stagnant due to Ekman pumping destruction of 
vorticity over a timescale of order the viscous spin-up 
time. The solutions presented here have no closed 
streamlines provided the flow is sufficiently fast. For 
slower flow, closed streamlines are present in the 
solution and it is expected that they will evolve slowly 
to stagnant Taylor columns. The velocity component in the 
x-direction, u = ~^fy , satisfies Laplace's equation above 
the obstacle and so, by the maximum principle, takes its 
extreme values on the boundary of the obstacle or against 
the wall. By symmetry these values occur on x=0. Thus 
stagnation in the flow occurs first with decreasing 
velocity at either the origin or at the point 
(x,y) = (0,l). Since ¥ = -y + A$, a stagnation point will 
occur at the wall if A < -l/ui(0), where u^O) is the 
topographically induced velocity at the origin. Similarly 
the critical value of A for the occurrence of a 
stagnation point at the step is 1/u (1), where u (1) is 
the topographically induced velocity at the point (x,y) =
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(0,1). Thus the case when A < 0, i.e. anticlockwise flow, 
can produce stagnation points only at the wall, while 
only clockwise rotation can lead to stagnation points on 
the step. The latter case requires a larger magnitude of 
A.

The figures have been presented for values just larger 
than those required to produce stagnation to illustrate 
the position of first stagnation and the nature of the 
flow. Figure 4.7(a) shows the case with closed 
streamlines forming at the wall. The streamlines are 
deflected away from the wall by the presence of the step. 
In Figure 4.7(b) the direction of rotation is reversed 
and the streamlines are pulled in towards the wall, 
closed streamlines beginning to form at the edge of the 
step.
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for the nonlinear cas Jtj.e w a U n e8 appear 

Contours of * 0 .9. ^ e  cloSe for case (b) •
and (to) A = 8; (a) and at the

at the wall for
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§4.6.Discussion.

The problem of flow over an obstacle against a sidewall 
of a rapidly rotating container has been considered for 
various parameter regimes. In the inviscid limit and with 
a linear approximation to the governing conservation 
equation the flow is deflected by the obstacle, blocking 
occurs over it and eventually, in the steady state, there 
is no flow over it at all. This stagnant Taylor column is 
set up on the time taken for a topographic wave to travel 
along the semi-cylindrical boundary. As there are no 
closed isobaths the flow becomes almost steady far more 
rapidly than for flow over an isolated truncated cylinder 
where topographic waves can cycle the closed isobaths 
indefinitely (Johnson 1984). Introducing viscosity 
arrests the flow at some stage in this process, when the 
viscous dissipation destroys the vorticity created by 
vortex stretching. Even in the steady state some 
streamlines still cross the obstacle; the less viscous 
the flow the thinner the region in which they cross.

On reversing the direction of rotation the pattern is 
reflected about x = 0 for this linear approximation,
where advective effects are assumed to be unimportant, 
but if the full nonlinear equation is used, different 
patterns are shown. The departure of the flow from the 
uniform stream changes sign and so the streamlines are 
either pushed away from the wall or pulled towards it.

Griffiths and Linden (1983) present experimental 
results for flow in a similar geometry, but over a 
quarter-sphere instead of a semi-cylinder. Again the 
presence of the sidewall is shown to have a large effect, 
and for the same parameter values the flow is effectively 
independent of depth. Figure 4.6(c) shows the streamlines 
computed for the parameter values corresponding to the 
experiments. Figure 5(a) in Griffiths and Linden (1983) 
is the most relevant: inertial waves are present in the 
others. Much of the difference in flow patterns can be
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ascribed to the differing obstacle shapes. The depth 
change over the quarter-sphere is smooth whereas that 
over the semi-cylinder has a sharp discontinuity. From 
Johnson (1984), Figure 3(b), it can be seen that 
streamlines curve back on themselves for a smooth slope.

The rigid lid approximation has been made throughout 
this chapter. However, from the results of Chapter 3, it 
can be seen that the effect of a free-surface would be to 
localise the topographic wave influence to a thinner
region along the edge of the topography.

Griffiths and Linden also present extensive results on 
separation. In the limit of small Rossby number the 
boundary layer structure for the flows in Figure 4.6 can 
be divided into three. A depth-independent layer of 
thickness of order v brings the outer tangential
velocity to zero at r = l+ and a similar layer
brings the inner tangential velocity to zero at r = I".

1 /3Within these layers a vertically varying v layer
matches the derivatives of the tangential velocity and 
balances the Ekman fluxes. As the Rossby number increases 
separation occurs first in the vw * layer. The dynamics 
of the depth-independent layers have been discussed by 
Walker and Stewartson (1972), Merkine and Solan (1979), 
Page (1987) and Page and Cowley (1988). Page (1987) shows 
that the dynamics are governed by a boundary layer 
equation of exactly the classical boundary layer form
with an extra term giving the effect of rotation that 
delays separation. He points out that many features of 
the flow do not require detailed calculation of the 
profiles in the layer. He calculates separated flow 
solutions showing that the further the separation point 
migrates towards the rear stagnation point the narrower 
is the separated region.

In the present geometry for r > | the dynamics is
precisely that considered by Page (1987). The sole 
difference is that, due to the combined effect of Ekman 
pumping and topography, there is a normal velocity at 
r= l+. Classical analyses of boundary layers with normal
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velocities (Rosenhead, Ch.VI) show that separation is 
inhibited when fluid is sucked through the boundary and 
occurs almost immediately when fluid is blown through the 
boundary. Figure 4.8 gives the normal velocity across r=f 
for the present geometry. For anticlockwise rotation, 
line (i) in Figure 4.8, fluid is sucked into the boundary 
layer in a region of favourable pressure gradient to be 
expelled in a region of adverse pressure gradient. The 
additional topographically generated velocities thus act 
to enhance separation which occurs then almost 
immediately after the zero of the normal velocity. For 
less viscous flow, line (iii), the zero of the velocity 
migrates towards the front stagnation point. From the 
results in Page (1987) this points to a wider separated 
region. For clockwise rotation fluid is blown from the 
boundary in a region of favourable pressure gradient but 
sucked into the boundary in a region of flow deceleration 
where separation would otherwise be likely. Hence the 
topographically generated velocities act to delay 
separation in this case. Any separation point will be 
closer to the rear stagnation point than if the cylinder 
extended throughout the depth of the fluid and from Page 
(1987) any separation bubble would be narrower. This 
description accords with the observations of Griffiths 
and Linden who show a wide separated region for 
anticlockwise rotation but little downstream influence 
for clockwise rotation.

The work in this chapter was carried out jointly by 
myself and Dr. E.R. Johnson and may be found in Hurst & 
Johnson (1990).
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Figure 4.8
The radially-outward cross-step velocity in steady 
viscous flow for 0 s <p * TI where <p is the usual polar 
angle, (i) fi = .5, with anticlockwise rotation flow
passes onto the obstacle at the front and off at the 
rear, (ii) li = .5, with clockwise rotation the flow
directions are reversed* (iii) M = *2, with anticlockwise 
rotation. In less viscous flow the region of entrainment 
is progressively moved towards the front stagnation 
point.
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CHAPTER 5.
CHANNEL FLOW OVER TOPOGRAPHY.
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§5.1 Introduction.

We return to the method of contour dynamics in this 
chapter, to examine the effects of topography on rotating 
flow in a channel. The physical system considered is
illustrated in Figure 5.1. A rapidly rotating channel of 
uniform width, normalised to be n , contains fluid moving 
from right to left with uniform speed U. The bottom
topography of the channel consists of a longitudinal step 
whose position is given by y = YTop(x) where YTop(x)-»7r/2 
as | x | co, with deeper fluid lying to the right of the 
step, looking downstream. At some point along the channel 
there is an irregularity in the position of this step, 
here the flow may no longer be uniform and
vorticity-free. The cross-stream width of this 
perturbation to the step is given by B and the 
perturbation length by 2A. This chapter tackles the 
initial-value problem of determining the evolution of the 
flow from an initial state of impulsively started
uniform flow to its final steady state.

As was the case in previous chapters, the bathymetric 
variation leads to the generation of topographic waves, 
the effects of which combine with the advective effect of 
the oncoming flow. The relative strengths of these 
effects is again measured by the Hide parameter, S=U/fL, 
which is the ratio of the advective to topographic 
effects. If the oncoming flow is sufficiently fast, i.e. 
S is small, all the fluid is swept downstream, leaving a 
region of positive relative vorticity at the position of 
the topographic perturbation, constantly replenished by 
upstream fluid, in a similar fashion to the "fast" case 
of Chapter 3. For larger values of S, the topographic 
effects are stronger and, as in Chapter 3, the vorticity 
distribution grows more complicated.

The governing equations are discussed in §5.2 and the 
necessary modifications to the contour dynamics method 
are described. The method is basically that detailed in
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Figure 5.1
The physical system considered. A rapidly rotating 
channel of uniform width contains a step in the bottom 
topography at y = YTop. The oncoming flow has speed U and 
is from right to left. The approximate length of the 
topographic perturbation is aiven by 2A, the width by B.

118



Chapter 2 and used in Chapter 3, but the channel geometry 
leads to a different Green's function in the stream 
function integral.

The vorticity distribution, and hence the entire flow 
field, may be determined from the instantaneous position 
of the line which initially lies along the step. This 
line, y = Y(x,t), say, divides the regions of fluid with 
differing potential vorticities. In the final steady 
state Y(x) is a streamline and in §5.3 the position of 
this streamline is found in three limits: S << 1,
corresponding to a fast oncoming flow; B << 1,
corresponding to a small cross-stream perturbation width 
and A >> 1, i.e. the longwave limit wherein the
perturbation varies slowly with x.

First, the fast case mentioned above is examined and 
the shape and position of the resulting region of 
positive relative vorticity are determined. The 
cross-stream width of this region is found to increase 
with B. As A is increased, the position of the interface 
rapidly reaches that predicted by longwave theory. The 
second case considered is that with a small value of B, 
i.e. a small cross-stream perturbation width. The nonzero 
relative vorticity region is treated as a sheet along the 
line y = n/2. It is in this limit that a standing
topographic wave is seen, as larger values of S are used. 
For relatively small values of S the topographic waves 
cannot travel against the oncoming flow, but are carried 
downstream, leaving behind a simple vorticity 
distribution, similar to that of the first limit. As S-»0 
the predictions of the former theory are recovered and as 
A is increased the longwave prediction for the 
interfacial position is again rapidly attained. The 
critical value for S for the existence of a standing wave 
is found to be 4/tt. The group velocity of the waves is 
shown to be less than or equal to the phase speed for all 
wavelengths, with equality occurring only in the longwave 
limit, thus there is no standing wave possible upstream 
of the perturbation. Instead Y(x) decays exponentially
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towards y = n/2 in this direction for these small values 
of B .

In the third case the flow is considered in the 
longwave limit, i.e. A -» », and we can study the effects 
of larger values of B and S . For small values of S the 
symmetric shape with the interface lying between the step 
and the wall at y = n is again found. For values of S 
above the critical value of 4/7T, a new symmetric shape 
results, with the interface lying between the step and 
the wall at y = 0. This solution is shown to be possible 
only for values of B below a critical value which depends 
on S. For values of B above this critical value, a 
qualitatively new final position for the interface is 
shown. In this case the interfacial position tends to a 
constant value, greater than tt/2, upstream and a 
different constant value, less than tt/2, downstream. This 
asymmetric behaviour is significant, in that it shows 
that models of such flows must allow for the possibility 
of upstream influence.

The nonlinear evolution of Y(x,t) from its initial 
value of Y may be followed using the method of contour

TOP ■*

dynamics. The results are discussed in §5.4. Initially, 
in §5.4.1, the computation is carried out for parameter 
values corresponding to the limiting cases of §5.3, for 
comparison. The results show good agreement, particularly 
with the longwave limit, in which both the symmetric and 
asymmetric interfacial positions are seen. In §5.4.2 a 
wider parameter range is explored and a qualitatively new 
set of results is revealed, containing features which the 
three theories fail to capture. For values of S above the 
critical value, a lee wave again appears. However, in 
some cases this wave becomes highly nonlinear and 
overturns or "breaks", in a fashion reminiscent of the 
work of Pullin (1981), discussed in §2.1. An eddy is seen 
to form on the downstream side of the topographic 
perturbation and is then pinched off, in a similar way to 
those eddies studied by Pratt & Stern (1986).
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§5.2 The governing equations and modifications to the 
contour dynamics method.

The governing equation is again that of conservation of 
potential vorticity, equation (1.7), and, as in Chapter 
2, this may be linearised to give equation (2.2.4) for 
the stream function, ¥. The rigid lid approximation is 
made throughout this chapter, i.e. the nondimensional 
Rossby radius, a/L, is taken as infinitely large. Thus in 
this case the stream function is given by equation 
(2.2.5), i.e.

V2* = -Sh + Q (5.2.1)
B

The flow is started from rest and, as a result of the 
topographic variation, there are two regions with 
different potential vorticities: the shallow region, y < 
Y (x), and the deeper region, y > YTop(x), where the 
position of the step is given by y = YTQp(x). The 
topography is nondimensionalised to be

h = { 1 
B I n

y < Y
1  T O P

y > y .
(5.2.2)

T O P

The potential vorticities are therefore given by

y < Y
1  T O P

y > Y
1  T O P

Q = \ 1 . (5.2.3)

As the fluid is advected by the oncoming stream the 
boundary between these two regions, y = Y(x,t), is
carried off the step, thus generating regions of nonzero 
relative vorticity, labelled Ai and A2 in Figure 5.2. 
Equation (5.2.1) thus gives
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Figure 5.2
The nonzero relative vorticity regions generated from the 
oncoming flow. Region contains positive relative
vorticity, region A2 contains negative relative 
vorticity.
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Y < y < Y
n r  T O Pelsewhere

(5.2.4)

As in Chapters 2 and 3, ¥ may be found from equation
(5.2.4) by the use of Green’s functions. In calculating 
the Green's function in this case the effects of the 
channel walls must be taken into account. This is 
achieved by using the transformation C = ez r where 
z = x + iy, to assess the contribution from the image 
vorticity patches. This maps the channel into the 
semi-infinite plane. Then the contribution to the stream 
function from a point vortex at (xQ ,yo ), together with 
its image, is given by

Thus in the current case, wherein the only regions of 
nonzero vorticity are A i and A2, ¥ is given by

(2n)_1log|C - C0 | - (2Tr)‘1log|C - C0 1

1/2
( 2tt)-1 log £sinh2(x - x q )/2 +sin2 (y-yQ )/2J

1/2

(27r)"1log^sinh2(x-xo )/2 + sin2 (y+yQ )/2J

1/2

+ sin
A



+ (2tt)-l SlogTsinh2- ^ ^
A 2

+ sin 2(Y+Yq)
1 / 2
dx dy o 2o (5.2.5)

The velocities are therefore given by differentiation of 
equation (5.2.5) to be

(U,V) = (27T)-l Slogfsinh2- ^ !  + sin2t o i
dA

1 / 2

(dxo ,dyo)

-(271)-1 Sloglsinh2! * ^  + sinz- t m > ±
8A

1 / 2

(dxo'dy 0 >

-(271)-1 Slog |"sinh2-ff Xo-̂- + sin2 ̂  ^0-̂-
3A

1 / 2

(dxo/dy0)

+ (2tt)-l SlogTsinh2- ^ ) !  + sin2t o > i
dA

1 / 2

(dxo#dyo)f (5.2.6)

where 3 A , 3A2 are the boundaries of A^ , A respectively. 
However, as the magnitude of the vorticity is the same in 
both A i and A ^ , integrating around 3Ai and 3A2 and 
subtracting the results is equivalent to integrating 
around the closed contour formed by the line y = Y(x,t) 
from x = oo to x = -oo and the line y = Y (x) from x = -oo

TOP

to x = oo. Far from the perturbation Y(x,t) = YTQp(x), so 
the contributions cancel and the closed contour is kept 
finite in length. If further nonzero vorticity regions 
develop the argument is similar and one closed contour is 
sufficient to determine the flow. It is this contour that 
is used in the contour dynamics calculations. Corners are 
inserted at each "end" of the contour (see §2.1) in order 
to maintain the acute angle at which Y(x,t) meets 
YToP(x) . As the computation proceeds, it becomes
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necessary in some cases to move the ends of the contour 
up- or downstream, to ensure that Y meets Y at ar TOp
sufficiently acute angle.

As in Chapter 3, to carry out the integrations this 
closed contour is split into small sections whose 
contributions to the velocities are calculated separately 
and added. Along each small section the contour is again 
approximated by a cubic, ensuring continuity of 
curvature, and the integral is evaluated using the 
Lobatto formula (see Abramowitz & Stegun). The sections 
which end on the node whose velocity is to be found are 
approximated by straight lines. Here the integrand is 
approximated by a simple logarithm and the integral is 
evaluated exactly. In this way the line y = Y(x,t) is 
tracked from its initial position along y = YTop(x) to 
its final steady position.
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§5.3.Some limiting cases.

§5.3.1 The "fast" case, S « 1.

In this sub-section the shelf perturbation is taken to 
be rectangular. A small value of S represents the case 
with a fast oncoming flow, which sweeps the fluid away 
downstream. In terms of topographic waves, the speed of 
the oncoming flow is far greater than the phase and group 
speeds of the waves, which therefore cannot propagate 
upstream.

We seek the steady position of the line, y = Y(x), 
which divides the regions containing different potential 
vorticities. The deviation from Y(x) = n/2 is 0(S).

Let ¥(x,y) = y + S$(x,y). Then the streamline required 
is that along which $ = tt/2, since $ -» 0 as |x| ».
Hence

Y(x) = Jl/2 - S$(X,ti/2) + 0(S2). (5.3.1)

From equation (5.2.3),

V2$ = H (x+A) H(A-x) H(7i/2-y) H(B-7r/2+y) , (5.3.2)

where H(x) is the Heaviside step function. The boundary 
conditions are given by

$ = 0 at y = 0,7T, (5.3.3a,b)
continuous at y = n/2, tt/2-B. (5.3.4a-d)

Taking Fourier transforms in x of equation (5.3.2) gives

A A
- k2$ = o*(k) H(7i/2-y) H(B-7i/2+y), (5.3.5)
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a

where $(x,y) = (27t)-1 J $(k,y) eikx dk, and
— 001 /Pcr(k) = (2/7i) sinAk/k. Hence

( A sinhky y<7r/2-B
$(k,y) = -I C1sinhky + D coshky n/2-B<y<n/2, (5.3.6)

[ B^sinhk(TT-y)1 y>n/2

where A ,B ,C and are found from (5.3.4a-d). Then 
equation (5.3.1) gives

00
Y(x) = tt/2 - S/2rrJ Bisinhk7r/2 e i k x  j .dk

= n/2 + S/2n
r.00

sinkA
k 3 -00

[i - I ' ™ ® '  <5 .3 .7 .

Expression (5.3.7) is readily evaluated using fast 
Fourier transforms, and the results are shown in Figure 
5.3. Figure 5.3(a) shows a typical steady state, here A = 
4 and B = tt/4. The line y = Y(x) bows outward from y = 
n/2 around x = 0, but rapidly tends to n/2 away from the 
perturbation. Figure 5.3(b) shows S-1Yo = S_1(Y(0) - n/2) 
against B, again for A = 4. As B increases from zero to 
its maximum value of n/2, the maximum deviation of Y(x) 
from y = n/2 increases, as there is a larger area of 
relative vorticity present. Figure 5.3(c) shows S_1Y 
against A, for B = 7T/4. As A increases, S_1Yq quickly 
attains its longwave limiting value, given by S_1Yo = 
B(tt-B)/4.

§5.3.2 A small perturbation, B << 1.

In the rest of this chapter the position of the step is 
given by YTQp(x) = n/2 - B exp(-x2/A2) . In the limit of 
small B the region of nonzero vorticity is taken to be of
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Figure 5.3
The results for the limiting case of small S. (a) A 
typical steady state. A = 4, B = tt/4 . (b) The maximum
deviation of S-1Y from n/2, given by S_1Yo, against B, 
for A = 4. (c) S~1Yq against A for B = tt/4.
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y-extent of 0(B). We can take the vorticity to be 
confined to lie along the line y = n/2. The stream 
function is written as

*(x,y,t) = y + B$(x,y,t) (5.3.8)

If Ai and A2 are the two nonzero vorticity regions shown 
in Figure 5.2, then, from equation (5.2.3), $ is given by

BVS> =
S

-S
in A , i m  A
elsewhere

(5.3.9)

Again the argument may be extended to many regions of 
nonzero vorticity. Before solving the above equations it 
is helpful to consider the free topographic wave modes 
which may occur. Away from y = n/2, equation (2.2.3) 
reduces to Laplace's equation, i.e.

V2$ = y * n / 2, (5.3.10)

with $ = 0 at y = 0, ir and integrating equation (2.2.3) 
across the step gives the jump condition, valid on 
y-scales greater than 0(B),

[ $ _ $ _ s$ h 1 = 0. (5.3.11)L yt yx X B J

ikx—ittjtSeeking a solution of the form $ « g(y)e , we find
g(y) is given to within a multiplicative constant by

» w - { : £ £ ? . - r , ? » / ! •  ,5-3 -12’

Then equation (5.3.11) gives the dispersion relation for 
the possible topographic waves as
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u = -k + S/2 tanh7rk/2. (5.3.13)

This is the dispersion relation given in Chapter 4, 
together with an advection term. A standing wave 
occurs when u = 0. This is possible only for values of S 
greater than 4/tt and only for such values of S may 
waves propagate upstream. These, then, are the possible 
topographic wave modes which may occur.

Returning now to equation (5.3.9), $ may be written, as 
in §5.2, as

B$(x,y,t) = (27r)-l Slogfsinh2^x 9xo-̂  + sin2--̂  ^o-̂
1/2
dx dy o

- (2tt)-l
1/2

Slog ̂ sinh2- ^ ^ 0^ + sin2
A i

dx dyo

- (271)-1 Slog ̂ sinh2 + sin2 ̂ ^ oX

A

1/2
dx dy o 1o

+ (271)-l Slog Tsinh2 ̂ X2~Xô - + sin2
1 / 2

dx dy (5.3.14) o -*0 ' '

using the Green's function for equation (5.3.9), 
incorporating the effects of the image vortices in the 
walls of the channel. The kinematic condition along y = 
Y(x,t) may be written

v(x,y,t) = Y t + (5.3.15)

Using the relation between the stream function and the
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horizontal velocities, taking y and yQ to be 
approximately n/2 and taking the Fourier transform in x 
of equation (5.3.15), gives

Yt + ik Y = iks{Y(k,t) - Ylop(k)} t a | h W i ,  

00A
where Y(x,t) = (2rr)-1 f Y(k,t) elltJt dk. Hence

Y(k,t) = YTOp(k) 1 - 5 < ei<Jt -1 ) (5.3.16)

where u is the topographic wave frequency given by 
(5.3.13) and thus

.00 ^

Y(x,t) = Y (x) + (an)'1 Y (k)-(l - elut)e\  I  /  TQp v /  I TOP CJ
lk x dk

(5.3.17)

As cj' (k) has no maximum or minimum, the method of 
stationary phase may be used to show that the unsteady 
component of this integral decays algebraically in time. 
The steady solution is therefore given by

Y(x) = Ytqp(x ) + ( 2tt )-l
.oo . i  k x-kY e

TO p

k-S/2 tanhkrr/2
dk. (5.3.18)

The phase speeds of the waves are given by

c = <j/k = -1 + S/2k tanhk7r/2,
p

thus a standing wave is possible if S > 4/tt. The group 
velocity is given by

c = dcj/dk = -1 + Stt/4 sech2k7r/2, g
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and is thus always less than the phase speed, except in
the longwave limit, k = 0. Any standing wave must
therefore lie only to the downstream side of the
perturbation. For S < 4/tt, the only poles in the
integrand in equation (5.3.18) lie on the imaginary axis.
These give a symmetric solution for Y(x) which decays
exponentially as |x| -» oo. For S > 4/tt there are also two
poles on the real axis, which give rise to the wavelike
component of Y(x). The above condition, that the standing
wave lies only to the downstream side of the
perturbation, requires that the path of integration lies
above these poles. The integral in (5.3.19) is evaluated
using fast Fourier transforms and the results are shown
in Figure 5.4. For S < 4/tt no standing wave is possible
and the result is symmetric in x. Figure 5.4(a) shows
such a result with B = .0257T, S = 1 and A = 4. As in the
previous limit Y(x) tends rapidly to n/2 away from x =
O.If S > 4/tt, however, a lee wave is present. Such a lee
wave is shown in Figure 5.4(b), where S = 3 and again B =
.025rr, A = 4. Figure 5.5(a) shows Y* = B_1(Y(x) - n/2)

against A, for S = 1. The longwave limit is again reached*for a relatively small value of A, and is given by Y = 
S7t/(4-S7t). Figure 5.5(b) shows Y* against S for S < 4/tt, 
with A = 4. As S -» 0, Y -> Y tanh(rrk/2)/2k in agreement 
with the limit of §5.3.1 as B 0.

§5.3.3 The longwave limit, A » 1.

In this case the topographic perturbation is taken to 
be extremely long and Y(x) is calculated assuming YTQp to 
be locally constant, thus neglecting variations in the x 
direction, i.e. along the channel. The method of 
calculating the steady interfacial position is 
illustrated in Figure 5.6. The conservation of mass flux 
above and below the streamline y = Y(x) gives two 
equations for the unknowns Y(x) and U , the velocity for 
0 < Y < ytop at the perturbation, for a given B. If is
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The results for the limiting case of small B. (a) The 
symmetric case S < 4/rc. Here S = 1, A = 4 and B = .025rr. 
(b) The lee wave generated when S > 4/tt. Here S = 3, A = 
4 and B = .025tt.
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X

Figure 5.6
The model flow for the limiting case of large A. Two 
strips containing uniform flow are separated by a shear 
layer.
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the distance from y = tt to the interface y = Y, where 
Y > Ytqp at the perturbation, then Y is given by

Y^-27TY^-Yi[̂ B2-7r(B+.757r+2U/S)J-UTr2/S = 0. (5.3.19)

It is also possible that Y < YTop at the perturbation, in 
which case the slightly different flux equations lead to 
the following equation for Y , the distance from y = n to 
y = Y.

(B+.57T)2-2U7T/sl-U7T2/S+7T(B+.57r)2 = 0. (5.3.20)

Valid roots of these equations are those which tend to 
tt/2 as B 4 0. Equation (5.3.19) has no valid roots in the 
range 0 < Y1 < n/2 + B if S > 4/tt. Thus for such values 
of S there is no solution which decays towards n/2 as |x| 

oo and which bows out towards the wall at y = tt at the 
perturbation. Equation (5.3.20) has no valid roots in the 
range n/2 + B < Y2 < it if S < 4/tt. Thus for this range of 
values of S the only solution possible for Y(x) is Yi(x). 
Figure 5.7(a) shows a typical solution for Yi(x). Here B 
= tt/4, S = 1 and A = 8. For S > 4/7T equation (5.3.20) has 
a valid root in the required range only for values of B 
below a certain critical value, which depends on S. 
Figure 5.7(b) shows a typical solution for Y2(x). Here B 
= tt/8, S = 6 and A = 8. The critical values for B are 
shown in Figure 5.8. For S near to 4/7T the critical value 
for B is very small, i.e. there is only a small range in 
which a symmetric, decaying solution can be found. As S 
increases, the critical value for B tends to n/2, i.e. 
symmetric solutions can be found for any value of B. The 
roots for Y and Y2 for various values of (S,B) are shown 
on Figure 5.9. For S < 4/7T there are roots for Y , shown 
on the lower half of the figure. As S -> 0, Yi(0) ->
SB(tt-B)/4 in agreement with the result of §5.3.1. As B -4

Y3-nY2 2 2■ <
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Typical solutions for Y(x). (a) The supercritical case. S 
= 1, B = 7r/4, A = 8. (b) The subcritical case. S = 6, B = 
n /Q, A = 8.
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The critical values for B, above which no symmetric
solutions can be found in the longwave limit for S > 4/tt. 
As S * the critical value for B tends to n/2.

138



£- to

s «

0
2B/PI

Figure 5.9
The symmetric solutions for Y, given by Y and Y 
against B for various values of S. For S < 4/tt, Y = 
and for S > 4/rr. B < B . Y = Y .

'  c r l t  2

139

(M



0, Yi(0) -» SBtt/(4-S7t) in agreement with §5.3.2. For S >
4/tt there are roots for Y , shown on the upper half of
the figure, for values of B below the critical values of 
Figure 5.8.

Thus there is a wide range of values for (S,B) for 
which no solution of Y(x) which decays towards n/2 as |x| 
-»  oo exists. We therefore allow an asymmetric solution for 
Y(x), which tends to two constant values up- and 
downstream of the perturbation. This possibility is
illustrated in Figure 5.10. As x ■) «, Y(x) n/2 + C and 
as x -» -o o , Y(x) -» n/2 - D. Again the conservation of mass 
flux in the regions y > Y(x) and y < Y(x) provides the 
necessary equations and again this leads to two
equations, depending on whether Y lies in the deeper or 
the shallower region:

A similar equation is found for D. As C -> 0, equations 
(5.3.19) and (5.3.20) are recovered.

For a given maximum value of B, B say, i.e. for aMAX
given YTQp(0), the upstream constant C may be determined. 
We assume that the root for Y(x) required is that for 
which the maximum allowed value of B is B„ . The valueMAX
of this Y(x) for B = 0 then gives us C. This value of C 
may then be used in equations (5.3.21) and (5.3.22) to 
give Y(x) for any value of B < Bm . These asymmetricMAX
solutions exist for those values of (S,B) for which no 
symmetric solutions could be found. Examples of the 
asymmetric predictions of this theory are shown in the 
following section, in which they are compared with the 
numerical results obtained using the contour dynamics 
method.

Y^-2ttY^-Yi C2+B2-2U7T/S+7T(C- . 757T-B) -Utt(7T-2C) /S=0
(5.3.21)

Y2-ttY2-Y2|c 2+(B+ . 57r)2+7TC-2U7r/sl -U7T(7T-2C)/S+7r(B+ . 5tt)2=0
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Figure 5.10
The model flow for the asymmetric case in the longwave 
limit. Upstream, the interface approaches n/2 + c,
downstream the interface approaches n/2 - D.



An interesting analogy may be drawn between this 
longwave theory and hydraulic control theory in open 
channel flow, of depth h, over a submerged symmetric 
obstacle. The parameter 4/Stt (= 4U/5fL7r) corresponds to 
the upstream Froude number, U2/gh, the topographic 
perturbation corresponds to the submerged obstacle. Thus 
for 4/Stt > 1 the flow may be said to be supercritical and 
the advective effects of the oncoming flow dominate the 
topographic effects just as those of the oncoming flow in 
the open channel dominate the effects of gravity. No 
waves, topographic waves in the present case, gravity 
waves in the open channel, can propagate against this 
oncoming flow. In this case the free surface in the 
channel rises over the obstacle and the interfacial 
position in the present case bows towards the wall y = tt.

If 4/Stt is less than unity, the flow is said to be 
subcritical. This case corresponds to that with an 
upstream Froude number of less than unity which results 
in two possible flows. If the obstacle is less than a 
critical height a symmetric flow again results, this time 
with the free surface dropping above the obstacle. The 
flow therefore speeds up significantly at this point and 
for a sufficiently large obstacle the local Froude number 
may reach unity. An obstacle above the critical height 
acts as a hydraulic control, i.e. it causes the upstream 
conditions to be modified to accommodate the large 
obstacle and thus leads to an asymmetric free surface 
position, with a large upstream depth and a small 
downstream depth. For the present case, a symmetric 
interfacial position again results for values of B below 
the critical value, this time bowing towards the wall y = 
0. The flow in the region between the interface and the 
wall at y = 0 must speed up at this point. In a similar 
way to the open channel theory, a stage is reached, as 
the size of the perturbation is increased, when the 
symmetric solution is no longer possible. This occurs 
when the speed required beside the wall y = 0 exceeds 
that which can be produced by the finite-width shear
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layer with the given strength, S. In this case 
modification of the upstream conditions is again 
necessary and again the asymmetric result is produced.
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§5.4 The contour dynamics results

§5.4.1 Comparison with the limiting cases.

The topographic perturbation is again taken to be of a 
Gaussian shape in this section. The contour dynamics 
algorithm was run first with parameter values close to 
those covered in the previous section, in order both to 
examine the range of validity of the theories, which are, 
of course, strictly valid only in their various limits, 
and to investigate the evolution of the flow from its 
initial state of uniform flow to these final states. The 
points in parameter space for which the computations were 
carried out are indicated by crosses on Figure 5.11.

Figure 5.12 shows the results for cases (a-c). in (a) S
= .25 ; in (b) S = .5 and in (c) S = 1. In all three
cases B = rr/8, A = 2 and the time is given by t = 12. The 
predictions for Y(x) by the small-S theory are dashed in 
on the figures. These predictions are made using 
parameter values such that the area of the rectangular 
topographic perturbation is the same as that of the 
Gaussian topographic perturbation used in the
computations, since regions of similar area woMld be 
expected to produce closer results than regions with the 
same height or length but differing areas. For small
values of S the agreement is fairly good, the slight 
discrepancy apparently being due to the differing shapes 
of the perturbations, but as S is increased the 
disagreement grows and the range of validity of the 
small-S theory is clearly being exceeded by the case S=l. 
The figure illustrates the evolution of Y(x,t) in the 
fast case. A front forms, with an amplitude increasing 
with S, which moves off downstream, leaving behind the 
expected symmetric solution.

In the next figure, 5.13, the result of case (d) is 
shown. The parameter values for this case are those for 
case (c) except that B is now tt/4. The amplitude of the
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Figure 5.11
The points in parameter space corresponding to the 
computations carried out in §5.4.1, the results of which 
are shown in Figures 5.12, 5.13 and 5.14.
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Figure 5.12
The contour dynamics results for the parameter values 
corresponding to the limiting case of §5.3.1. in all 
cases t = 12 and A = 2. The dashed line indicates the 
predictions of the small-S theory for a rectangular
perturbation, (a) S = 1/4, B = tt/ 8 . ( b )  S = 1/2, B = tt/ 8 .

( c )  S = 1, B = tt/ 8 .
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front is increased by the larger value of B but the 
qualitative behaviour is similar to cases(a-c).

The small-B case is illustrated in Figure 5.14. Here A 
= 2, S = 3, t = 10 and B = .025tt. A s expected, as S is 
above the critical value of 4/tt, the downstream behaviour 
is wavelike. The amplitude seems at first to be larger 
than that predicted by the small-B theory. However the 
waves seen up- and downstream of the perturbation in the 
figure are longwave and shortwave transients
respectively, which are predicted by the theory to have 
larger amplitudes than the standing wave of the steady 
state. Further work on this matter (Dr. P. Haynes,
private correspondence) confirms that large amplitude 
transients can dominate the flow development for some 
considerable time.

Next, some cases with large values of A are considered 
and compared with the longwave theory of §5.3.3. Figure 
5.15(a) shows the case with B = tt/4, A = 8, S = 1, at 
times t = 15, 23. The evolution is qualitatively similar 
to that of the cases shown in Figure 5.11 - a front moves 
off downstream leaving behind the symmetric solution. The 
dashed line indicates the longwave prediction for this 
solution. As S < 4/tt, the predicted position of Y(x) lies 
between y = YTQp(x) and y = tt, and the agreement with the 
numerical results is very good. In Figure 5.15(b) a 
larger value of S is used. Here S = 6, A = 4v̂ 2, B = n/8 
and t = 17. The solution is now the symmetric solution 
lying between y = YTop and y = 0. Again the agreement is 
very good.

Values of B above the critical value are used in the 
cases shown in Figure 5.16. Thus symmetric solutions are 
no longer possible according to longwave theory. In 
Figure 5.16(a) S = 6, A = 8, B = tt/5 and t = 6, 12 and 
18. It is shown that the asymmetric solution is attained
as a wave train moves off downstream. Again the agreement
with the theory is good. In Figure 5.16(b) S = 3, A = 8, 
B = tt/4 and t = 10. In this case a greater upstream
influence is both predicted and seen. The front moving
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Figure 5.15
The contour dynamics results for the parameter values 
corresponding to the limiting case of §5.3.3 in the
symmetric case, (a) A = 8, B = tt/4, S = 1, t = 15, 23.
(b) A = 4^2, B = tt/8, S = 6, t = 17.
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Figure 5.16
The contour dynamics results for the parameter values 
corresponding to the limiting case of §5.3.3 in the
asymmetric case, (a) A = 8 ,  S = 6, B = tt/5, t = 6, 12, 18.
(b) A = 8, S = 3, B = tt/4 , t = 10. (c) A = 8^2, S = 6, E 
= tt/4, t = 13.
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downstream is larger and non-sinusoidal. Again the 
predicted interfacial position is approached as the front 
moves off. In Figure 5.16(c) the perturbation is still 
longer. Here A = 8/2, B = tt/ 4 ,  S = 6 and t = 13. Again 
the shortwave feature is non-sinusoidal and moves off 
downstream leaving behind the predicted asymmetric 
solution. Continuing the analogy with open channel 
hydraulic control theory given in the previous section, 
we may consider the fronts which move off up- and 
downstream, adjusting the flow to the asymmetric steady 
solution and producing upstream influence, as
corresponding to travelling hydraulic jumps or bores.

§5.4.2 Other parameter regimes

We now consider the points in parameter space indicated 
by crosses on Figure 5.17. The results are shown in 
Figure 5.18. The longwave predictions are again shown 
(dashed), although A = 2 in all cases. In spite of this 
small value of A, the predictions still show good
agreement with the numerical results. In Figure 5.18(a) B 
= tt/ 4 ,  S = 3 and t = 5. The region of negative vorticity
to the downstream side of the perturbation is
sufficiently large that we may expect it to be influenced 
by the image region in the wall y = 0. This pair of 
patches seem to act in a way similar to the translating 
pairs of Pierrehumbert (1980), mentioned in §2.3, and 
move off downstream together. Nearer to the step, 
however, this effect is diminished and this differential 
translation results in the overturning of the interface, 
in a fashion similar to that described by Pullin (1981). 
This effect is seen more clearly in Figure 5.18(b), where 
B = 3tt/ 8  , with all other parameter values as in the
previous case. The negative vorticity region is brought 
still closer to the wall and the overturning process is 
faster. In Figure 5.18(c,d) a larger value of S is used, 
S = 6. Again B = tt/ 4  and 3n/Q respectively and the values
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Figure 5.17
The points in parameter space corresponding to the 
computations carried out in §5.4.2, the results of which 
are shown in Figure 5.18.
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Figure 5.18
(a) S = 3, B = tt/ 4 ,  t = 5. (b) S = 3, B = 3tt/8, t = 5.
(c) S = 6, B = tt/ 4 ,  t = 4.5. (d) S = 6, B = 3tt/8, t = 4. 
In all cases A = 2.
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of t are 4 and 4.5. In 5.18(c) the overturning process 
has led to the formation and shedding of an eddy, while 
in 5.18(d) the developing eddy has been drawn into the 
shallow region and a highly complicated structure is 
evolving.

In all cases shown in this figure, the shortwave 
features, which the longwave theory obviously cannot 
capture, move off downstream as the negative vorticity 
patch translates along the wall, thus the asymmetric 
solution again results.
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§5.5 Discussion

The evolution of a flow forced over a step change in 
bottom topography in a rapidly rotating channel has been 
investigated in various parameter regimes. Three limiting 
cases have been discussed and the resulting predictions 
compared with the results of the fully nonlinear 
time-dependent contour dynamics calculations. Further 
such calculations have been carried out, for parameter 
values outside the ranges of validity of the limiting 
cases, revealing new features in the development of the 
flows.

The first limit considered is that of small S, in which 
the oncoming flow is strong and all fluid is advected 
downstream, a permanent region of positive vorticity is 
formed at the topographic perturbation. As the value of S 
is increased, the size of this region grows. The 
time-dependent contour dynamics calculations reveal that 
this steady state is reached as a front moves off 
downstream, with an amplitude increasing with both S and 
B.

Flows with a larger value of S are considered in the 
second limiting case, that with values of B sufficiently 
small that the nonzero vorticity regions may be 
approximated as lying along the line y = tt/ 2 .  If S > 4/7T 
a standing topographic wave is predicted downstream from 
the perturbation. The contour dynamics results for this 
regime show the large-amplitude transients which dominate 
the development of the flow, with long waves travelling 
upstream and short waves travelling downstream.

The final limiting case considered is the longwave 
limit. The theory predicts two qualitatively distinct 
results, depending on the values of S and B. If S is 
small, again the symmetric solution of the small-S theory 
is found. For values of S > 4 / tt, the topographic waves of 
the small-B theory are no longer possible in the longwave 
limit. In this case a symmetric solution for the
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interface is again predicted, this time lying in the 
shallow region of the channel, provided. B is below a 
critical value which depends on S. Thus i:n this case the 
permanent nonzero vorticity region formed contains 
negative relative vorticity. For values of B above this 
critical value, no symmetric solutions can be found and 
instead an asymmetric interfacial position is predicted, 
with the interfacial position tending to a constant 
value, greater than tt/2, upstream and a different
constant value, less than tt/ 2 ,  downstream. Thus the
possibility of upstream influence must be allowed in 
modelling flows of this nature. An analogy is considered 
between this theory and hydraulic control theory in open 
channel flow.

The contour dynamics results show extremely good 
agreement with both the symmetric and asymmetric
predictions of this limit. In the symmetric cases a front 
is again seen to move off downstream, as in the earlier 
cases. The larger value of A leads to a larger 
cross-stream width for the permanent vorticity region. 
The evolution of the asymmetric case may be understood in 
terms of translating vortex pairs. The region of negative 
relative vorticity produced at the perturbation as the 
fluid is advected up the step is sufficiently close to 
the wall at y = 0 to be affected by its image and hence 
to translate downstream, sweeping out the asymmetric 
shape as it does so. The region between the interface and 
the wall at y = 0 narrows as B or S is increased and, as 
the interface is a streamline in the steady state, this 
means that the flow between the interface and the wall 
becomes virtually blocked at the perturbation, since an 
upper limit is imposed on the flow speed in this region 
by the requirement that it match with the slower flow in 
the region y > YTop through a shear layer of finite width 
and strength. Hence the flow in the shallow region 
upstream must be slow and a shear layer is required to 
match this flow with the faster flow in the deeper 
region. The width of this shear layer therefore increases
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with S and B, i.e. greater upstream influence is expected 
for larger values of S and B.

For large values of A the downstream-travelling front 
has a relatively small amplitude and little effect on the 
flow development. As the value of A is decreased, the 
longwave predictions still show remarkable agreeement 
with the numerical results. However, the amplitude of the 
front increases with decreasing A and now becomes 
non-sinusoidal and overturns, in some cases producing an 
eddy which may be shed or may be drawn into the shallow 
region, in which case the interface becomes extremely 
convoluted. It is expected that these shortwave features 
are carried downstream as the flow develops, however, 
thus again leaving a final flow similar to the longwave 
asymmetric prediction.

There is clearly further study possible on this topic, 
for example more complicated topography could be 
considered. I hope to continue with this work in the 
future.

The work of this chapter forms part of a forthcoming 
joint paper (Haynes, Hurst & Johnson, 1990).
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