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Abstract 

Background: Smoking remains one of the leading preventable causes of death. Smoking leaves a strong signature 
on the blood methylome as shown in multiple studies using the Infinium HumanMethylation450 BeadChip. Here, we 
explore novel blood methylation smoking signals on the Illumina MethylationEPIC BeadChip (EPIC) array, which also 
targets novel CpG‑sites in enhancers.

Method: A smoking‑methylation meta‑analysis was carried out using EPIC DNA methylation profiles in 1407 blood 
samples from four UK population‑based cohorts, including the MRC National Survey for Health and Development 
(NSHD) or 1946 British birth cohort, the National Child Development Study (NCDS) or 1958 birth cohort, the 1970 
British Cohort Study (BCS70), and the TwinsUK cohort (TwinsUK). The overall discovery sample included 269 current, 
497 former, and 643 never smokers. Replication was pursued in 3425 trans‑ethnic samples, including 2325 American 
Indian individuals participating in the Strong Heart Study (SHS) in 1989–1991 and 1100 African‑American participants 
in the Genetic Epidemiology Network of Arteriopathy Study (GENOA).

Results: Altogether 952 CpG‑sites in 500 genes were differentially methylated between smokers and never smok‑
ers after Bonferroni correction. There were 526 novel smoking‑associated CpG‑sites only profiled by the EPIC array, 
of which 486 (92%) replicated in a meta‑analysis of the American Indian and African‑American samples. Novel CpG 
sites mapped both to genes containing previously identified smoking‑methylation signals and to 80 novel genes not 
previously linked to smoking, with the strongest novel signal in SLAMF7. Comparison of former versus never smokers 
identified that 37 of these sites were persistently differentially methylated after cessation, where 16 represented novel 
signals only profiled by the EPIC array. We observed a depletion of smoking‑associated signals in CpG islands and an 
enrichment in enhancer regions, consistent with previous results.

Conclusion: This study identified novel smoking‑associated signals as possible biomarkers of exposure to smoking 
and may help improve our understanding of smoking‑related disease risk.
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Background
Tobacco smoking is one of the leading preventable causes 
of death [46] and a leading risk factor for disease burden 
[16]. Smoking damages the airways and induces lung 
disease, such as chronic obstructive pulmonary disease 
(COPD), lung cancer and increased risk of multiple long-
term conditions including heart disease and stroke [43]. 
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Further wide-ranging health risks associated with smok-
ing relate to several other cancers (including oral, gastro-
intestinal, urinary tract and reproductive cancers), bone 
health, gum disease, macular degeneration, type 2 dia-
betes, rheumatoid arthritis and altered immune function 
[15, 16].

Smoking exposure has been robustly associated with 
changes in DNA methylation. Many smoking-associated 
CpG-sites, or differentially methylated positions (DMPs), 
have been identified and replicated to date [18, 25]. The 
majority of recent studies linking blood DNA methyla-
tion levels with smoking exposure have used the Infin-
ium HumanMethylation450 BeadChip (450k array) to 
generate genome-wide DNA methylation profiles. In 
the largest smoking-methylation study of adults to date 
[25], Illumina 450k methylation profiles for 15,907 blood 
samples from 16 cohorts were used to identify 2623 
smoking-DMPs in or near to 1405 genes. Many of these 
DMPs were already linked to smoking by previous stud-
ies [7, 49]. The most consistently associated CpG-sites 
across independent studies are located in or near the 
AHRR, RARA, PRSS23, F2RL3, GPR15 and GNG12 genes 
and in chromosomal regions 2q37.1 and 6p21.33. These 
epigenetic signals have also been used to develop DNA 
methylation-based biomarkers of smoking status such as 
EpiSmokEr, currently the most robust smoking classifier 
[5].

Recently human genome-wide DNA methylation stud-
ies have started to explore the additional genome cov-
erage afforded by the new Infinium MethylationEPIC 
BeadChip (EPIC array), which assays 850,000 CpG-sites 
at nearly double the coverage of the Illumina 450k array. 
Recent findings based on DNA methylation profiles in 
lung tissue [37] and saliva [2] identified smoking-associ-
ated methylation signals profiled only by the EPIC array, 
which suggests that novel smoking EPIC methylation sig-
nals may also be identified in blood. Here, we assessed 
the association between smoking and DNA methylation 
levels profiled using the Illumina EPIC array in 1407 
whole blood samples from four UK population cohorts 
and pursued replication in independent cohorts. Our 
analyses compared DNA methylation levels between cur-
rent and never smokers in a cross-sectional analysis to 
identify novel smoking-associated differentially methyl-
ated positions (smoking-DMPs). The observed signals 
were subsequently compared between former and never 
smokers to assess whether these alterations persist after 
smoking cessation. The results have potential to improve 
existing biomarkers of smoking that could be used to 
infer smoking exposure where it is not known. Further-
more, the findings may identify novel genes which may 
explain specific disease risk mechanisms in smokers.

Methods
Discovery phase participants
The participants in the discovery phase included 1407 
individuals from four UK population cohorts—Twin-
sUK and three birth cohorts, including the 1970 British 
Cohort Study (BCS70), the National Child Development 
Study (NCDS) or 1958 British birth cohort, and the MRC 
National Survey of Health and Development (NSHD) or 
1946 British birth cohort (Additional file  1: Note). The 
sample included 235 individuals from BCS70, 529 indi-
viduals from NCDS, 236 individuals from the NSHD and 
407 individuals from TwinsUK (Table  1). The majority 
of participants included for DNA methylation profiling 
were not selected for a specific phenotype distribution 
or environmental exposure, although sample selection 
strategies included minimizing exposure or phenotype 
data missingness across samples (see Additional file  1: 
Note). An exception was a subset of 294 participants 
in the NCDS cohort selected for extremes of child and 
adulthood adversity [6, 41] (see Additional file 1: Note). 
Smoking information was obtained from questionnaire 
data collected at the time of DNA methylation profil-
ing. All study participants provided informed consent, 
and ethical approval was granted by local research ethics 
committees (see Additional file 1: Note). The overall dis-
covery sample included 269 current, 495 former and 643 
never smokers from the UK population (see Additional 
file 1: Note).

DNA methylation profiles
DNA samples extracted from whole blood were profiled 
using the Illumina MethylationEPIC BeadChip (Illumina 
EPIC) array, which targets over 850,000 CpG-sites includ-
ing more than 90% of the probes on the 450k and addi-
tional CpG-sites predominantly in enhancers [36]. DNA 
methylation levels were determined using methylation 
beta-values, defined as the ratio of the methylated bead 
signal to the sum of the unmethylated bead signal plus 
the methylated bead signal plus 100 [10]. Methylation 
beta-values range between 0 at unmethylated CpG-sites 
and 1 at fully methylated CpG-sites. DNA methylation 
quality control measures included multiple checks and 
normalizations. Altogether, 72,471 probes were identi-
fied as cross-reactive or polymorphic and excluded from 
the analysis. Cross-reactive probes were defined as those 
mapping to multiple locations of the in silico bisulfite 
converted human genome allowing for two mismatches. 
Probes were also excluded if they targeted polymorphic 
CpG sites with minor allele frequency (MAF) > 5% in the 
UK10K haplotype reference panel. Probes with greater 
than 5% missingness were also excluded from the analy-
sis, spanning 1348 probes. DNA methylation levels were 
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then normalized using ENmix [48]. The number of CpG-
sites included in downstream analyses was 710,658.

Peripheral blood cell proportions
A significant difference in blood cell-type proportions 
has previously been reported between smokers and never 
smokers [32]. This finding, along with the observation 
that DNA methylation profiles also vary by blood cell 
type, highlights the need to take into account blood cell 
proportion differences in the analyses. Blood cell-type 
proportions were estimated for monocytes, granulocytes, 
immune cells (Natural Killer (NK) cells, CD8 and CD4) 
and plasmablasts using the approach proposed by House-
man et al. [22]. Correlations between estimated blood cell 
types were investigated to inform a set of covariates for 
inclusion in epigenetic linear models of association. As a 
result, blood cell subtype covariates used in downstream 
analyses included monocytes, granulocytes, NK cells and 
CD8-naive cells.

Epigenetic association analyses
Epigenome-wide association scans (EWAS) were car-
ried out within each cohort dataset, followed by meta-
analyses. DNA methylation values at each CpG-site 
were normalized to N(0, 1) prior to fitting linear models. 
EWAS focused on the comparison of DNA methylation 
profiles between smokers and never smokers at 710,658 
CpG-sites genome-wide. Linear models of association, 
run separately for each cohort dataset, compared DNA 
methylation values as the response variable to smoking 
status as a predictor. For the three birth cohorts, linear 
models were fitted (lm function in R) where normalized 

methylation level at each CpG-site was the response 
variable and predictors included smoking status, sex, 
blood cell-type proportion, BMI and methylation chip 
and position of the sample on the chip. EWAS were run 
separately in the two NCDS cohort subsets, due to differ-
ent sample selection strategies and proportion of smok-
ers. In the TwinsUK sample linear mixed-effects models 
were fitted using lme4 [3] and lmerTest [27] in R, using 
the same fixed-effects covariates as for the birth cohort 
models excluding sex because all twins were female, but 
including age as well as random effects variables for fam-
ily and zygosity.

Following individual cohort sample EWAS, a fixed-
effects inverse variance weighted meta-analysis was 
applied to combine results across cohorts. Meta-analysis, 
performed using GWAMA [34], was carried out across 
the 5 datasets of 1407 subjects in total. To minimize 
effects attributed to heterogeneity across cohorts we 
only considered meta-analysis results that did not exhibit 
strong evidence for heterogeneity (Qp < 10% and an 
I2 > 50%, [21]). Multiple-testing adjustment of the meta-
analysis results was performed using both the Benja-
mini and Hochberg false discovery rate (FDR) threshold 
(FDR = 1%) and a Bonferroni-corrected threshold (P  val
ue = 6.25 × 10−8 ≈ 0.05/800,000), with both sets of results 
reported. Methylation effect sizes were calculated using 
the same linear models, but without normalizing DNA 
methylation levels to N(0, 1) prior to data analysis. Evi-
dence for genomic inflation was assessed using λ, which 
is the ratio of the median of the empirically observed 
distribution of the test statistic to the expected median, 
thus quantifying the extent of the bulk inflation and the 

Table 1 Sample characteristics

a Cohort abbreviations: TwinsUK: https ://twins uk.ac.uk/, NSHD: MRC National Survey of Health and Development, NCDS: National Child Development Study 
(NCDS1 = selected to minimize data missingness, but not selected for specific exposures and trait outcomes. NCDS2 = selected for extremes of child and adulthood 
adversity), BCS70: 1970 British Cohort Study, SHS: Strong Heart Study. GENOA: Genetic Epidemiology Network of Arteriopathy
b Smoking status, age and BMI are obtained at the date of blood draw for DNA methylation profiling. Smoking status (S = smoker, F = former smoker, NS = never 
smoker) is determined through questionnaires
c Participants from the UK population cohorts are predominantly “White British.” NCDS2 includes one individual who did not identify as “White British” (“Mixed”). 
BCS70 includes three individuals who did not identify as “White British” (one “White Other”, one “White and Asian” and one “Other Ethnic Group”)

Cohorta Sample size Smoking  statusb Sex Age (years) BMI Ethnicityc

S (n) F (n) NS (n) F (%) M (%)

Discovery stage

TwinsUK 407 23 237 147 100 0 64 ± 8 26.8 ± 5.0 White British

NSHD 236 23 75 138 60 40 63 ± 0.5 27.9 ± 4.7 White British

NCDS1 235 53 118 64 53 47 45 25.6 ± 4.3 White British

NCDS2 294 125 87 82 51 49 45 25.8 ± 4.3 White British

BCS70 235 45 126 64 57 43 46 26.6 ± 5.0 White British

Replication stage

SHS 2325 893 648 748 59 41 55 ± 6 29.6 ± 3.0 American Indian

GENOA 1100 179 255 666 71 29 56 ± 10 31 ± 6.6 African‑American

https://twinsuk.ac.uk/
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excess false-positive rate. Results from the largest smok-
ing-methylation study to date, Joehanes et  al. [25] (at 
FDR < 0.05), were used to assess whether smoking-DMPs 
are novel.

Once smoking differentially methylated positions 
(smoking-DMPs) were identified from the meta-analysis, 
follow-up analysis included a comparison of DNA meth-
ylation levels between former and never smokers at the 
952 smoking-DMPs. In these follow-up analyses a Bon-
ferroni-corrected threshold was applied for multiple test-
ing (P value = 5.25 × 10−5 ≈ 0.05/952).

Replication in trans‑ethnic samples
Many of the previously established smoke exposure 
effects on DNA methylation have been robustly repli-
cated across different ethnicities. With this in mind and 
to assess whether the signals that we detected are con-
served across different ethnic populations, we pursued 
replication in two samples of non-European ancestry. 
Replication of the novel smoking-DMPs was carried out 
firstly in American Indian participants from the Strong 
Heart Study [28] and secondly in African-American par-
ticipants from the Genetic Epidemiology Network of 
Arteriopathy study [8] (see Additional file 1: Note).

The first replication sample consisted of 2325 American 
Indians aged 45–74 (893 smokers and 684 never smok-
ers). DNA methylation was measured using the EPIC 
array in whole blood samples collected in 1989–1991. 
Pre-processing was conducted according to Illumina’s 
recommendations, and snoob and Regression on Cor-
related Probes (RCP) normalizations were applied [13, 
35]. Batch effects by sample plate, sample row and DNA 
isolation time were corrected using comBat (sva R pack-
age). Peripheral blood cell proportions were estimated 
as in the other cohorts. Replication was pursued at 525 
of novel smoking-DMPs profiled by the EPIC array only 
that also passed quality control assessment in the replica-
tion dataset. The same covariates and modeling approach 
as for the birth year cohorts was used in the replication 
sample.

The second replication sample consisted of 1100 Afri-
can-Americans with a mean age of 56 (179 smokers and 
666 never smokers). A total of 1106 samples at GENOA 
Phase I and 304 samples at GENOA Phase II were 
assessed using the Illumina HumanMethylationEPIC 
BeadChip. Raw IDAT files were imported using Minfi R 
package [1]. The shinyMethyl R package [13] was used to 
visualize the raw intensity data and identify sex mis-
matches and outliers were removed. Individual probes 
with detection P  value < 10e−16 were considered to be 
detected successfully [29], and samples and probes with 
detection rate < 10% were removed. Samples with incom-
plete bisulfite conversion identified using the QCinfo() 

function in the ENmix R package were removed [48]. 
Sample identity was checked using the 59 SNP probes 
implemented in the EPIC chip and mismatched sam-
ples removed. Next, Noob was used for individual back-
ground and dye-bias normalization [14]. Since two types 
of probes are present on the EPIC BeadChip (Infinium I 
and Infinium II), we used the RCP method to adjust for 
probe-type bias [35]. After exclusions, a total of 857,121 
probes in 1100 samples at Phase I and 294 samples at 
Phase II were available for analysis. Peripheral blood 
cell proportions were estimated as in the other cohorts. 
Replication was pursued at 526 of novel smoking-DMPs 
profiled by the EPIC array only. Linear mixed-effects 
models were fitted using the same methodology as for 
the TwinsUK cohort (lme4 and lmerTest), and the same 
fixed-effects covariates as for the birth cohort models 
but including age as well as a random effect variable for 
sibship. Meta-analysis across the two replication sam-
ples was carried out using the same methodology as for 
the main analysis. A Bonferroni-corrected threshold was 
applied (P value = 9.5 × 10−5 ≈ 0.05/525), and only results 
showing the same direction of association as in the dis-
covery sample were considered.

SLAMF7 gene expression analysis
Gene expression analysis for SLAMF7 was carried out 
in a sample from the TwinsUK cohort with available 
whole blood gene expression data. RNA-seq data genera-
tion and pre-processing have been previously described 
in detail [17]. In summary, STAR software v2.4.0.1 [12] 
was used to align reads to the hg19 reference genome. 
Samples with fewer than 10 million aligned reads were 
excluded. Following this process, there were 383 whole 
blood samples remaining including 227 never smokers, 
30 current smokers and 126 former smokers, where 162 
individuals overlapped with the TwinsUK sample used 
in the main analysis. Gene counts were transformed into 
trimmed mean of M-values (TMM)-adjusted counts 
per million (CPMs) and inverse-normalized prior to all 
downstream analyses.

A mixed effect linear model was fitted (lme4) with 
smoking as the predictor and gene expression as the 
response. Covariates included fixed effects: insert-size 
median, mean GC content and random effects: primer 
index, date of sequencing, zygosity, family and RNA 
extraction batch. A P value was determined using lmerT-
est with a significance threshold of 0.05.

Genomic annotation and pathway analysis
Genomic annotation of smoking-DMPs was carried out 
initially using the EPIC Illumina manifest, for the pur-
pose of identifying novel CpG-sites that are specific to 
the EPIC-array, for allocating CpG-sites to genes, and 
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relative to CpG-density, including CpG island (CGI), 
CGI-shore, CGI-shelf, and open sea. Further genomic 
annotations took into account data from the ENCODE 
project [20]. We explored if smoking-DMPs mapped 
within ChromHMM [11] categories to assess enrichment 
or depletion in smoking-DMPs relative to different func-
tional genomic domains, including insulators, enhanc-
ers and specific transcription factors binding sites. In the 
enrichment analysis, we considered all smoking-DMP 
probes mapping to a specific annotation category com-
pared to the total number of probes tested that mapped 
to that category. For each genome annotation category, 
the results show the log fold change for smoking-DMP 
probes compared to total probes tested, and the signifi-
cance of the difference is based on a Fisher’s exact test. 
Pathway analysis was carried out for genes annotated to 
smoking-DMPs using Ingenuity Pathway Analysis (IPA; 
QIAGEN Inc. https ://www.qiage nbioi nform atics .com/
produ cts/ingen uityp athwa y-analy sis).

Prediction of smoker status
We tested several models for classifying smoking status 
based on subsets of the newly identified smoking-DMPs. 
The sensitivity and specificity of each classification was 
assessed using receiver operative curve (ROC), imple-
mented using the pROC package in R [38]. The analyses 
were carried out in the combined dataset of 1113 sub-
jects who were not selected for phenotypic extremes, 
excluding the NCDS subset of 294 individuals. Training 
datasets were created taking 60% of the combined dataset 
at random. A test dataset was created with the remaining 
40%. Altogether, 20 random samples were taken creating 
20 random training and test set combinations.

For each of the training datasets, a generalized lin-
ear model was fitted based on the predictors, including 
un-adjusted DNA methylation levels at the candidate 
CpG-site(s) and covariates (age, sex, blood cell-type pro-
portions, BMI, methylation chip and position of the sam-
ple on the chip) using the R glm function. The test dataset 
was then loaded into the derived model with outcomes 
predicted using the R predict function. The average AUC 
was determined for each methylation value combination.

Methylation combinations for distinguishing between 
current smokers and never smokers included cg05575921 
(AHRR)  and cg00045592 (SLAMF7) on their own, and 
then in combination.

Methylation combinations for distinguishing any 
smoke exposure (that is, either current or former 
smoker) and never smokers were explored in three mod-
els. The first model included the 5 ex-smoking DMPs 
with the largest effect size in the 450k array (cg21566642, 
cg05575921, cg01940273, cg25189904, cg12803068), the 
second model included the 5 ex-smoking DMPs with 

largest effect size sites from the EPIC array (cg14391737, 
cg21566642, cg05575921, cg25189904, cg05533761), and 
the third model included the 5 ex-smoking DMPs with 
the largest effect size overall (cg14391737, cg21566642, 
cg05575921, cg25189904, cg05533761).

Results
DNA methylation profiles and smoking were explored in 
1407 total whole blood samples from 4 UK population 
cohorts in the discovery stage (269 current smokers, 495 
ex-smokers and 643 never smokers), and in 3425 whole 
blood samples from American Indians and African-
Americans in the replication stage (Table 1). The primary 
analyses focused on identification of smoking differen-
tially methylated positions (smoking-DMPs) between 
current smokers and never smokers, and follow-ups 
explored smoking-DMPs genomic distribution, pathway 
analysis, stability upon smoking cessation, and predictive 
value.

Epigenome‑wide association analysis: current versus never 
smokers
Meta-analysis comparing DNA methylation profiles in 
current smokers (N = 269) and never smokers (N = 643) 
identified 952 CpG sites or smoking-DMPs in 500 genes 
that were statistically differentially methylated at a Bon-
ferroni-adjusted threshold (P  value = 6.25 × 10−8). At a 
more relaxed threshold (FDR 1%), there were 3348 CpG 
sites in 1632 genes (Additional file 2: Table S1). There was 
evidence for genomic inflation (see Methods) with an 
overall λ of 1.28 (Fig. 1a), which is consistent with other 
meta-analyses of smoke exposure [25]. Smoking-DMPs 
are spread across the genome, consistent with previous 
observations (Fig. 1b).

Of the 952 smoking-associated CpG-sites, 422 have 
previously been identified [25] and are represented on 
both the 450 k array and the EPIC array (Additional file 2: 
Table  S2). The strongest association was observed at 
cg21566642 in the 2q37.1 region (P value = 1.6 × 10−121), 
which has been observed previously in multiple studies. 
Furthermore, cg05575921 in AHRR, which is the most 
frequently observed association in previous studies, was 
the most significantly associated CpG site in our study 
that was also annotated to a gene (P = 2.9 × 10−99). The 
effect size at this site, based on unadjusted DNA meth-
ylation beta values, was also the largest where current 
smokers exhibited on average 25% lower DNA meth-
ylation values compared to never smokers, which is also 
consistent with previous studies [25, 49].

Of the 952 significant CpG-sites, 526 smoking-DMPs 
represent novel CpG sites only profiled by the EPIC 
array (Additional file  2: Table  S2). The 526 smoking-
DMPs were annotated to 277 genes, of which 80 genes 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis


Page 6 of 13Christiansen et al. Clin Epigenet           (2021) 13:36 

have not previously been linked to differential meth-
ylation with smoking. The most significant novel CpG-
site, cg00045592, was annotated to gene SLAMF7, 
(P  value = 1.39 × 10−59), which has not been previously 
linked to methylation changes with smoking (Fig.  2). 
The effect size, or the unadjusted mean methylation in 
non-smokers compared to smokers, was 10% change 
in mean methylation, representing one of the larger 
effect sizes (13th largest). Furthermore, a second DMP 
at this gene, site cg04009575, was also identified as a 
smoking-DMP (P  value = 3.02 × 10−10). In addition to 
novel DMPs mapping to the 80 novel genes, many other 
novel DMPs mapped to genes linked to smoking by CpG 
sites measured by the Illumina 450k array. Examples 
include cg1431737 in PRSS23 (P value = 6.5 × 10–92) and 
cg17739917 in RARA  (P value = 1.97 × 10–92). Altogether, 
68% of novel DMPs are upstream of or within genes, with 
20% in new genes and 48% in genes where methylation 
changes have previously been associated with smoking.

The majority of smoking-DMP effects were hypometh-
ylated in current smokers (74% of Bonferroni-adjusted 
sites, and 90% of the 100 sites with the lowest associated 
P  values). The average effect sizes, measured as the dif-
ference in mean unadjusted methylation levels between 
never smokers and current smokers, were broadly similar 
between the hypomethylated (average effect size of 3.3% 
for hypomethylated sites) and hypermethylated (average 
effect size of 2.2% for hypermethylated) signals. However, 
the largest effect sizes detected overall (up to 25% mean 
difference) were observed at hypomethylated sites.

Replication of novel smoking signals
Novel smoking-DMPs that were profiled only by the 
EPIC array were evaluated for replication. Many smoking 
signals have previously been replicated across ancestries, 
and therefore we tested whether our results were robust 
across different ancestries. Replication was pursued in 
two independent samples, the first included 2325 Ameri-
can Indian participants from the Strong Heart Study [28], 
and the second included 1100 African-American partici-
pants in the Genetic Epidemiology Network of Arterio-
pathy (GENOA) study. A recent study in the SHS sample 
by Domingo-Relloso et  al. [9] analyzed EPIC array pro-
files of whole blood samples for smoke exposure in con-
nection with cadmium levels in urine and also identified 
novel smoking-DMPs. In addition to the distinct ances-
try, this cohort also has a higher proportion of smokers, 
and furthermore one of the leading causes of death for 
American Indians is CVD, for which smoking is a risk 
factor. Of the 526 novel sites, 389 (74%) replicated in the 
SHS sample alone at a Bonferroni-corrected threshold 
(P  value = 9.5 × 10–5) with the same direction of asso-
ciation. This included cg00045592, annotated to gene 
SLAMF7, which replicated with a P value of 1.45 × 10–23. 
At nominal significance (P  value = 0.05), there were 500 
(95%) novel sites with the same direction of association 
effect. The GENOA sample also has distinct ancestry, and 
African-Americans have the highest incidence of hyper-
tension, for which smoking is a risk factor. Recent analy-
sis of the dataset validated smoking-DMPs identified in 
saliva [2]. Of the 526 novel sites, 418 (79%) replicated at 
a Bonferroni-corrected threshold (P  value = 9.5 × 10–5) 

Fig. 1 Methylation association results in current versus never smokers. a Manhattan plot of genome‑wide results for methylation association with 
smoking. Smoking‑DMPs are indicated above the Bonferroni‑adjusted threshold (red line). b Quantile–quantile (QQ) plot for CpG‑site association in 
current versus never smoker
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with the same direction of association in the GENOA 
sample alone. This also included cg00045592, anno-
tated to gene SLAMF7, which replicated with a P  value 
of 7.57 × 10–31. At nominal significance (P  value = 0.05), 
there were 508 (97%) novel sites with the same direction 
of association effect.

In a meta-analysis of the two replication cohorts in 
altogether 3425 individuals, 486 (92%) of the 526 novel 
smoking-DMPs replicated at a Bonferroni-corrected 
threshold (P  value = 9.5 × 10–5) with the same direction 
of association. This also included cg00045592, anno-
tated to gene SLAMF7, which replicated with a P  value 
of 3.54 × 10–51. At nominal significance (P  value = 0.05), 
there were 522 (99%) novel sites with the same direction 
of association effect (Additional file 2: Table S4).

Genome annotation analysis
We assessed the genome distribution for all 952 smok-
ing-DMPs identified in our study, relative to all probes 
assayed by the EPIC array. We explored enrichment and 
depletion of smoking-DMPs across different genomic cat-
egories. The enrichment analysis considered 18 genomic 
annotation categories (Fig. 3a). The strongest effect was a 
clear enrichment of smoking-DMPs in enhancer regions 
as predicted by ChromHMM (36%  of smoking-DMPs 
relative to 12% of probes tested), consistent with previous 
studies [25] and with the hypothesis that smoking expo-
sure impacts regulatory genomic features. Furthermore, 
also consistent with previous work, there was an enrich-
ment of smoking-DMPs in gene bodies (50% of smoking-
DMPs relative to 42% of probes tested). Finally, there 
was a depletion of smoking-DMPs in CpG islands (7% 
relative to 18% of tested probes), which is consistent with 

Fig. 2 Novel smoking‑associated DNA methylation signals in SLAMF7. a coMET plot [33] describing the genomic region of epigenome‑wide 
association between smoking and SLAMF7 methylation (top panel) showing the two smoking‑DMPs cg00045592 and cg04009575, along with 
functional annotation of the region (middle panel) where broad ChromHMM regions are displayed using UCSC genome browser color schemes, 
and pattern of co‑methylation at the 12 CpG sites in the EPIC array annotated to SLAMF7 (bottom panel). b Boxplot showing a comparison of DNA 
methylation levels at cg00045592 between smokers, former smokers and never smokers in the combined TwinsUK, NCDS, NSHD, BCS70 data set. c 
Boxplot showing a comparison of DNA methylation levels at cg04009575 between smokers, former smokers and never smokers in the Strong Heart 
Study
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previous observations that CpG islands are less dynamic 
in response to exposure [50].

Pathway analysis
The 952 smoking-DMPs were annotated to 500 genes. 
We explored evidence for enrichment of these genes 
within different biological processes, focusing on canoni-
cal pathways using IPA (see Methods). Altogether, the 
500 genes identified enrichment for 101 molecular path-
ways (P value = 0.01, Additional file 2: Table S5). Among 
the 20 most-enriched pathways, 8 (40%) relate to cancer, 
with the remainder relating to cell signaling and growth 
pathways, neuronal health, cardiovascular health and 
insulin receptor activity (Fig. 3b).

SLAMF7 gene expression follow‑up analysis
To assess potential functional impacts of the novel smok-
ing-DMPs identified in SLAMF7, we explored SLAMF7 
gene expression levels in smokers and never smokers. 
The analysis was carried out in 383 blood samples from 
the TwinsUK cohort with available blood RNAseq levels 
[17]. A nominally significant difference in SLAMF7 gene 
expression (P = 0.02) was detected where current smok-
ers had reduced levels of expression of SLAMF7.

Epigenome‑wide association analysis: former versus never 
smokers
To assess how smoking-DMPs behave after smok-
ing cessation, we carried out a cross-sectional analy-
sis comparing DNA methylation levels in 497 former 

and 643 never smokers at the 952 smoking DMPs. If 
DNA methylation levels at smoking DMPs persist after 
smoking cessation, we would expect significant dif-
ferences in DNA methylation at all 952 signals, as we 
did in the comparison of current and never smokers. 
However, we observed that at the majority of smok-
ing-DMPs there was no significant difference between 
former and never smokers, suggesting reversal of smok-
ing-associated DNA methylation levels upon smok-
ing cessation. Altogether, there were 37 differentially 
methylated sites at a Bonferroni-adjusted threshold 
(P  value = 1.5 × 10–5), at which our results were con-
sistent with persistent effects after smoking cessation 
(41 signals at FDR 1%, Additional file  2: Table  S3). Of 
the 37 Bonferroni signals, 16 represented novel signals 
only profiled on the EPIC array, 20 replicated previ-
ously identified persistent smoking-methylation signals 
observed by Joehanes et al. [25] present on both arrays, 
and one signal profiled on both arrays was novel. The 
16 novel EPIC-specific signals annotated to 11 genes, 
and the most significant signal in a novel gene was in 
SLAMF7 (cg00045592, P  value = 8.8 × 10–7), where 
former smokers have on average around 2.4% lower 
unadjusted methylation levels than never smokers. The 
majority (92%) of the 37 signals are hypomethylated in 
former smokers, and the effect sizes were smaller than 
observed between the smokers and never smokers. On 
average, the mean effect size across all 37 signals was 
a hypomethylation of 2% in former smokers, and the 
largest effect size obtained was 6% (cg14391737).

Fig. 3 Smoking‑DMPs annotation and pathway analysis. a Log fold changes relating to the proportion of probes annotated to particular genomic 
locations and the proportion of smoking‑DMPs. Only annotation categories with statistically significant results based on Fisher’s exact test are 
shown b. IPA canonical pathway analysis, 20 lowest P values shown
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Methylation‑based detection of smoking status
We assessed the performance of the peak smoking-
DMPs as classifiers of smoking status. The DNA methyla-
tion level at our peak novel smoking-DMP, cg00045592 
(SLAMF7), is a moderately good classifier for distinguish-
ing between current smokers and never smokers with an 
AUC of 0.87. The overall peak smoking-DMP and widely 
replicated cg05575921 (AHRR) is a much stronger clas-
sifier between smokers and never smokers with an AUC 
of 0.95. Adding SLAMF7 to AHRR marginally improves 
the AUC to 0.96. We next explored the predictive value of 
different DMPs to distinguish current or former exposure 
to smoking (‘ever smoked’), by comparing current and 
former smokers to never smokers. Neither cg00045592 
(SLAMF7) or cg05575921 (AHRR) are very good pre-
dictors of current or former smoke exposure compared 
to never smokers, with AUC values of 0.68 and 0.76, 
respectively. Using the 5 450 k-only array signals with the 
largest effect sizes from the comparison of former and 
never smokers (cg21566642, cg05575921, cg01940273, 
cg25189904, cg12803068) results in a slightly better clas-
sification of ever smoked exposure with an average AUC 
of 0.79 (Additional file  3: Figure S1a). The classifier is 
marginally improved by including novel EPIC-specific 
sites, where the 5 overall signals with the largest effect 
sizes from the comparison of former and never smok-
ers (cg14391737, cg21566642, cg05575921, cg25189904, 
cg05533761) result in an average AUC of 0.80 (Additional 
file 3: Figure S1b).

Discussion
The current study explored smoking status and DNA 
methylation levels profiled on the EPIC array in 1407 
whole blood samples from individuals across 4 independ-
ent UK population-based cohorts. We identified 952 
CpG smoking-DMPs between smokers and never smok-
ers at Bonferroni adjustment. Of these, 422 replicated 
previous findings and 526 signals were novel, involving 
CpG sites profiled only by the EPIC array. Of the 526 
novel signals, 486 replicated in the American Indian and 
African-American replication sample. The different eth-
nicity of the replication samples, along with the high pro-
portion of smokers and their propensity for CVD in the 
American Indian population and prevalence of hyper-
tension in the African-American population, indicates 
that our smoking-DMPs signals are robust and trans-
ethnic. While many of the novel signals were in genes 
previously found to be associated with smoke exposure, 
80 novel genes were also identified where the top novel 
signal was in the SLAMF7 gene. The genes that harbored 
smoking-related methylation signals were enriched to fall 
in biological pathways related to cancer, cell signaling and 
growth pathways, neuronal health, cardiovascular health 

and insulin receptor activity. Although the majority of 
signals showed at least some evidence for reversal in 
DNA methylation levels with smoking cessation, we also 
identified smoking-DMPs which persisted after smoking 
cessation. Overall, this is consistent with previous stud-
ies and observations that upon smoking cessation risk of 
smoking-related diseases reverts to non-smoker levels 
over time [45], but for some outcomes risk is not fully 
reversible.

The most strongly associated novel smoking-DMP 
(cg00045592) is in a gene not previously linked to smok-
ing, SLAMF7, which also contains a secondary smok-
ing-DMP signal (cg04009575, ranked 489th of the 952 
smoking-DMPs). Both sites are located in an enhancer 
and therefore likely to influence the expression of genes 
including SLAMF7. A follow-up analysis showed that 
smokers had significantly lower levels of expression of 
SLAMF7. Both signals replicated in both replication 
cohorts. DNA methylation at cg00045592 alone can dis-
tinguish current smokers and never smokers with an 
average AUC of 0.87. SLAMF7 is a protein coding gene 
and a member of the Signalling Lymphocyte Activation 
Molecule Family (SLAMF), a family of receptors with 
a role in both innate and adaptive immunity. SLAMF7 
is expressed on immune cells, recognizes and binds to 
itself, in turn leading to the downstream activation of 
natural killer cells [19]. Smokers have been shown to have 
suppressed NK activation [23], which in turn has been 
shown to lead to a reduction in NK tumor surveillance 
in smokers, and consequently an increased propensity 
for tumors [30]. SLAMF7 has been linked to several dis-
eases, for example, it is associated with systemic lupus 
erythematosus [26], multiple myeloma [24] and immu-
noregulatory interactions [31]. Methylation of SLAMF7 
has also been identified as a regulator in atherosclero-
sis [47]. SLAMF7 has also been suggested as a possible 
therapeutic target for rheumatoid arthritis, a disease 
more common in smokers [44]. Our analysis showed that 
the differential methylation at cg0045592 persisted after 
smoking cessation, retaining on average at 2.4% lower 
DNA methylation levels compared to never smokers, 
which given its potential functional role may have impli-
cations for altered immune function in current and for-
mer smokers.

Genome annotation analysis showed a clear enrich-
ment in smoking-DMPs in enhancer regions. Although 
this result has previously been observed on the 450k 
array in blood [25], a key strength of the EPIC array is 
the more detailed genome coverage of enhancers. This 
enrichment provides evidence that smoke exposure 
leads to methylation changes in regulatory regions, 
which in turn likely result in functional changes. This 
is consistent with previous studies which have shown 
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gene expression changes as a result of smoke exposure 
[25, 42]. In addition, the rest of the annotation analysis 
showed results consistent with previous work [25, 50].

The results from the current study can be used to not 
only understand possible implications of smoke expo-
sure on gene function, but also as potentially useful bio-
markers of smoke exposure. Smoking is a confounder 
in many epidemiological studies given its wide-ranging 
impact on human health [43]. Not only is a molecular 
biomarker of smoking useful to confirm self-reported 
smoke exposure data, but it can be also valuable as a 
predictor of smoking in samples with missing smok-
ing data, errors in self-reported status or in forensic 
settings. Previous work has developed predictors of 
current smoking based on 450k array smoking-DMPs, 
observing good predictive value (AUC of 0.95) of AHRR 
in particular as a smoking predictor. Our novel signals 
do not significantly improve smoking classification 
compared to using AHRR alone. However, a subset of 
smoking effects persists after cessation. Although we 
are unable to assess exactly how long these effects last 
for, they can be used as measures of current or previ-
ous smoke exposure. Therefore, our smoking-DMPs 
may be useful toward developing a classifier of present 
or past smoke exposure, that is, distinguishing current 
and former smokers from never smokers. In an attempt 
to address this, we observed an AUC of 0.80 for distin-
guishing present or past smoke exposure using the top 
5 signals from both arrays. Including novel sites present 
only on the EPIC array affected prediction only mar-
ginally (0.79 vs 0.8). The results could also be used for 
further studies toward prediction of future smoking-
related health outcomes.

Our findings may provide insights into molecu-
lar changes underlying tobacco smoke exposure risk 
effects in disease. Pathway analysis of the smoking-
DMPs indicated that the genes annotated to smoking-
DMPs are strongly linked to cancer, with 40% of the 
top 20 significant pathways relating to cancer. These 
included a number of different cancer types, not solely 
those relating to lung cancer, which concurs with epi-
demiological studies which show that smoking is a risk 
factor for several types of cancer. The methylome varies 
by tissue type, but we see a relationship between smok-
ing-DMPs found in blood and those found in tissues 
directly relevant to some of these cancers, for example, 
in lung tissue. Specifically, there is an overlap between 
the smoking-DMPs identified here and those found by 
Ringh et al. [37] in lung tissue, where 32 of the 952 sites 
overlap particularly at sites annotated to AHRR and in 
genes previously found to be associated with cancer 

(KCNMA1, CDH23, LRP5) [[4, 39, 40]]. In addition to 
implications for cancer, the pathway analysis results 
also revealed strong links between smoking-DMPs and 
neuronal health. The novel gene findings are a starting 
point for analyzing whether and how DNA methylation 
alterations could lead to smoking-related disease.

There are some limitations to the current study. While 
the birth cohorts are not in themselves selective and 
should therefore lead to a broad sample representative 
of the population, not all individuals will continue to 
participate in cohort sweeps. In this study the majority 
of subjects were selected based on minimizing missing 
data across a range of variables, with low level of over-
sampling of specific subgroups. This approach could 
lead to some bias in sampling more engaged cohort par-
ticipants. We observed genomic inflation in the smoking 
epigenome-wide analyses, which has also been observed 
in previous smoking-methylation meta-analysis reports 
[25]. Although this observation raises potential concerns 
about false positives, our results are in line with previous 
studies, replicating many previously reported signals, as 
well as 92% of novel signals in the trans-ethnic samples. 
We took a conservative approach by removing meta-
analysis results that may be due to heterogeneity. This 
approach is likely to have removed some results that may 
well be true positives in some sample subsets. Whole 
blood samples are a mixture of different cell types, and we 
used methylation estimates of cell proportions to address 
this in the analysis. However, these are likely to be over 
generalizations and ideally analyses in specific cell sub-
populations should be carried out. Another limitation 
is that DNA methylation was only studied in blood and 
not in other tissues (e.g., lung, adipose), which have pre-
viously been explored in the context of smoking on the 
450k array. Other tissues such as lung tissue are likely to 
produce more insight into disease mechanisms, although 
with the exception of saliva, they lend themselves less 
well to biomarker detection due to the relative difficulty 
of sampling. Follow-up analyses, which our study did not 
explore, include a full gene-expression analysis to assess 
functional impacts at the novel smoking-DMPs, longi-
tudinal analyses to characterize the stability of smoking-
DMPs upon cessation over long timescales, and studies 
of these signals in samples of other ethnicities.

In conclusion, our study identified hundreds of novel 
smoking-methylation signals, including those anno-
tated to genes not previously associated with smoke 
exposure. Some of the novel signals persist after cessa-
tion of smoking. The findings have potential to act as 
biomarkers of exposure to smoking and may improve 
our understanding of smoking-related disease risk.
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